"
364 | ]
365 | },
366 | "metadata": {},
367 | "output_type": "display_data"
368 | }
369 | ],
370 | "source": [
371 | "sns.set()\n",
372 | "%matplotlib inline\n",
373 | "# Later in the course I shall explain why above 2 lines of code have been added.\n",
374 | "\n",
375 | "sns.swarmplot(x=\"species\", y=\"petal_length\", data=iris)"
376 | ]
377 | },
378 | {
379 | "cell_type": "markdown",
380 | "metadata": {},
381 | "source": [
382 | "This beautiful representation of data we see above is known as a `Swarm Plot` with minimal parameters. I shall be covering this in detail later on but for now I just wanted you to have a feel of serenity we're getting into. \n",
383 | "\n",
384 | "Let us now try to load a random dataset and the one I've picked for this illustration is [PoliceKillingsUS](https://github.com/washingtonpost/data-police-shootings) dataset. This dataset has been prepared by The Washington Post (they keep updating it on runtime) with every fatal shooting in the United States by a police officer in the line of duty since Jan. 1, 2015."
385 | ]
386 | },
387 | {
388 | "cell_type": "code",
389 | "execution_count": 10,
390 | "metadata": {},
391 | "outputs": [],
392 | "source": [
393 | "# Loading Pandas DataFrame:\n",
394 | "df = pd.read_csv(\"C:/Users/Alok/Downloads/PoliceKillingsUS.csv\", encoding=\"windows-1252\")"
395 | ]
396 | },
397 | {
398 | "cell_type": "markdown",
399 | "metadata": {},
400 | "source": [
401 | "Just the way we looked into Iris Data set, let us know have a preview of this dataset as well. We won't be getting into deep analysis of this dataset because our agenda is only to visualize the content within. So, let's do this: "
402 | ]
403 | },
404 | {
405 | "cell_type": "code",
406 | "execution_count": 11,
407 | "metadata": {},
408 | "outputs": [
409 | {
410 | "data": {
411 | "text/html": [
412 | "
\n",
413 | "\n",
426 | "
\n",
427 | " \n",
428 | "
\n",
429 | "
\n",
430 | "
id
\n",
431 | "
name
\n",
432 | "
date
\n",
433 | "
manner_of_death
\n",
434 | "
armed
\n",
435 | "
age
\n",
436 | "
gender
\n",
437 | "
race
\n",
438 | "
city
\n",
439 | "
state
\n",
440 | "
signs_of_mental_illness
\n",
441 | "
threat_level
\n",
442 | "
flee
\n",
443 | "
body_camera
\n",
444 | "
\n",
445 | " \n",
446 | " \n",
447 | "
\n",
448 | "
0
\n",
449 | "
3
\n",
450 | "
Tim Elliot
\n",
451 | "
02/01/15
\n",
452 | "
shot
\n",
453 | "
gun
\n",
454 | "
53.0
\n",
455 | "
M
\n",
456 | "
A
\n",
457 | "
Shelton
\n",
458 | "
WA
\n",
459 | "
True
\n",
460 | "
attack
\n",
461 | "
Not fleeing
\n",
462 | "
False
\n",
463 | "
\n",
464 | "
\n",
465 | "
1
\n",
466 | "
4
\n",
467 | "
Lewis Lee Lembke
\n",
468 | "
02/01/15
\n",
469 | "
shot
\n",
470 | "
gun
\n",
471 | "
47.0
\n",
472 | "
M
\n",
473 | "
W
\n",
474 | "
Aloha
\n",
475 | "
OR
\n",
476 | "
False
\n",
477 | "
attack
\n",
478 | "
Not fleeing
\n",
479 | "
False
\n",
480 | "
\n",
481 | "
\n",
482 | "
2
\n",
483 | "
5
\n",
484 | "
John Paul Quintero
\n",
485 | "
03/01/15
\n",
486 | "
shot and Tasered
\n",
487 | "
unarmed
\n",
488 | "
23.0
\n",
489 | "
M
\n",
490 | "
H
\n",
491 | "
Wichita
\n",
492 | "
KS
\n",
493 | "
False
\n",
494 | "
other
\n",
495 | "
Not fleeing
\n",
496 | "
False
\n",
497 | "
\n",
498 | "
\n",
499 | "
3
\n",
500 | "
8
\n",
501 | "
Matthew Hoffman
\n",
502 | "
04/01/15
\n",
503 | "
shot
\n",
504 | "
toy weapon
\n",
505 | "
32.0
\n",
506 | "
M
\n",
507 | "
W
\n",
508 | "
San Francisco
\n",
509 | "
CA
\n",
510 | "
True
\n",
511 | "
attack
\n",
512 | "
Not fleeing
\n",
513 | "
False
\n",
514 | "
\n",
515 | "
\n",
516 | "
4
\n",
517 | "
9
\n",
518 | "
Michael Rodriguez
\n",
519 | "
04/01/15
\n",
520 | "
shot
\n",
521 | "
nail gun
\n",
522 | "
39.0
\n",
523 | "
M
\n",
524 | "
H
\n",
525 | "
Evans
\n",
526 | "
CO
\n",
527 | "
False
\n",
528 | "
attack
\n",
529 | "
Not fleeing
\n",
530 | "
False
\n",
531 | "
\n",
532 | "
\n",
533 | "
5
\n",
534 | "
11
\n",
535 | "
Kenneth Joe Brown
\n",
536 | "
04/01/15
\n",
537 | "
shot
\n",
538 | "
gun
\n",
539 | "
18.0
\n",
540 | "
M
\n",
541 | "
W
\n",
542 | "
Guthrie
\n",
543 | "
OK
\n",
544 | "
False
\n",
545 | "
attack
\n",
546 | "
Not fleeing
\n",
547 | "
False
\n",
548 | "
\n",
549 | "
\n",
550 | "
6
\n",
551 | "
13
\n",
552 | "
Kenneth Arnold Buck
\n",
553 | "
05/01/15
\n",
554 | "
shot
\n",
555 | "
gun
\n",
556 | "
22.0
\n",
557 | "
M
\n",
558 | "
H
\n",
559 | "
Chandler
\n",
560 | "
AZ
\n",
561 | "
False
\n",
562 | "
attack
\n",
563 | "
Car
\n",
564 | "
False
\n",
565 | "
\n",
566 | "
\n",
567 | "
7
\n",
568 | "
15
\n",
569 | "
Brock Nichols
\n",
570 | "
06/01/15
\n",
571 | "
shot
\n",
572 | "
gun
\n",
573 | "
35.0
\n",
574 | "
M
\n",
575 | "
W
\n",
576 | "
Assaria
\n",
577 | "
KS
\n",
578 | "
False
\n",
579 | "
attack
\n",
580 | "
Not fleeing
\n",
581 | "
False
\n",
582 | "
\n",
583 | "
\n",
584 | "
8
\n",
585 | "
16
\n",
586 | "
Autumn Steele
\n",
587 | "
06/01/15
\n",
588 | "
shot
\n",
589 | "
unarmed
\n",
590 | "
34.0
\n",
591 | "
F
\n",
592 | "
W
\n",
593 | "
Burlington
\n",
594 | "
IA
\n",
595 | "
False
\n",
596 | "
other
\n",
597 | "
Not fleeing
\n",
598 | "
True
\n",
599 | "
\n",
600 | "
\n",
601 | "
9
\n",
602 | "
17
\n",
603 | "
Leslie Sapp III
\n",
604 | "
06/01/15
\n",
605 | "
shot
\n",
606 | "
toy weapon
\n",
607 | "
47.0
\n",
608 | "
M
\n",
609 | "
B
\n",
610 | "
Knoxville
\n",
611 | "
PA
\n",
612 | "
False
\n",
613 | "
attack
\n",
614 | "
Not fleeing
\n",
615 | "
False
\n",
616 | "
\n",
617 | " \n",
618 | "
\n",
619 | "
"
620 | ],
621 | "text/plain": [
622 | " id name date manner_of_death armed age \\\n",
623 | "0 3 Tim Elliot 02/01/15 shot gun 53.0 \n",
624 | "1 4 Lewis Lee Lembke 02/01/15 shot gun 47.0 \n",
625 | "2 5 John Paul Quintero 03/01/15 shot and Tasered unarmed 23.0 \n",
626 | "3 8 Matthew Hoffman 04/01/15 shot toy weapon 32.0 \n",
627 | "4 9 Michael Rodriguez 04/01/15 shot nail gun 39.0 \n",
628 | "5 11 Kenneth Joe Brown 04/01/15 shot gun 18.0 \n",
629 | "6 13 Kenneth Arnold Buck 05/01/15 shot gun 22.0 \n",
630 | "7 15 Brock Nichols 06/01/15 shot gun 35.0 \n",
631 | "8 16 Autumn Steele 06/01/15 shot unarmed 34.0 \n",
632 | "9 17 Leslie Sapp III 06/01/15 shot toy weapon 47.0 \n",
633 | "\n",
634 | " gender race city state signs_of_mental_illness threat_level \\\n",
635 | "0 M A Shelton WA True attack \n",
636 | "1 M W Aloha OR False attack \n",
637 | "2 M H Wichita KS False other \n",
638 | "3 M W San Francisco CA True attack \n",
639 | "4 M H Evans CO False attack \n",
640 | "5 M W Guthrie OK False attack \n",
641 | "6 M H Chandler AZ False attack \n",
642 | "7 M W Assaria KS False attack \n",
643 | "8 F W Burlington IA False other \n",
644 | "9 M B Knoxville PA False attack \n",
645 | "\n",
646 | " flee body_camera \n",
647 | "0 Not fleeing False \n",
648 | "1 Not fleeing False \n",
649 | "2 Not fleeing False \n",
650 | "3 Not fleeing False \n",
651 | "4 Not fleeing False \n",
652 | "5 Not fleeing False \n",
653 | "6 Car False \n",
654 | "7 Not fleeing False \n",
655 | "8 Not fleeing True \n",
656 | "9 Not fleeing False "
657 | ]
658 | },
659 | "execution_count": 11,
660 | "metadata": {},
661 | "output_type": "execute_result"
662 | }
663 | ],
664 | "source": [
665 | "df.head(10)"
666 | ]
667 | },
668 | {
669 | "cell_type": "markdown",
670 | "metadata": {},
671 | "source": [
672 | "This dataset is pretty self-descriptive and has limited number of features (may read as columns).\n",
673 | "\n",
674 | "`race`:\n",
675 | "`W`: White, non-Hispanic\n",
676 | "`B`: Black, non-Hispanic\n",
677 | "`A`: Asian\n",
678 | "`N`: Native American\n",
679 | "`H`: Hispanic\n",
680 | "`O`: Other\n",
681 | "`None`: unknown\n",
682 | "\n",
683 | "And, `gender` indicates:\n",
684 | "`M`: Male\n",
685 | "`F`: Female\n",
686 | "`None`: unknown\n",
687 | "The threat_level column include incidents where officers or others were shot at, threatened with a gun, attacked with other weapons or physical force, etc. The attack category is meant to flag the highest level of threat. The `other` and `undetermined` categories represent all remaining cases. `Other` includes many incidents where officers or others faced significant threats.\n",
688 | "\n",
689 | "The `threat column` and the `fleeing column` are not necessarily related. Also, `attacks` represent a status immediately before fatal shots by police; while `fleeing` could begin slightly earlier and involve a chase. Latly, `body_camera` indicates if an officer was wearing a body camera and it may have recorded some portion of the incident.\n",
690 | "\n",
691 | "Let us now look into the descriptive statistics:"
692 | ]
693 | },
694 | {
695 | "cell_type": "code",
696 | "execution_count": 12,
697 | "metadata": {},
698 | "outputs": [
699 | {
700 | "data": {
701 | "text/html": [
702 | "
\n",
703 | "\n",
716 | "
\n",
717 | " \n",
718 | "
\n",
719 | "
\n",
720 | "
id
\n",
721 | "
age
\n",
722 | "
\n",
723 | " \n",
724 | " \n",
725 | "
\n",
726 | "
count
\n",
727 | "
2535.000000
\n",
728 | "
2458.000000
\n",
729 | "
\n",
730 | "
\n",
731 | "
mean
\n",
732 | "
1445.731755
\n",
733 | "
36.605370
\n",
734 | "
\n",
735 | "
\n",
736 | "
std
\n",
737 | "
794.259490
\n",
738 | "
13.030774
\n",
739 | "
\n",
740 | "
\n",
741 | "
min
\n",
742 | "
3.000000
\n",
743 | "
6.000000
\n",
744 | "
\n",
745 | "
\n",
746 | "
25%
\n",
747 | "
768.500000
\n",
748 | "
26.000000
\n",
749 | "
\n",
750 | "
\n",
751 | "
50%
\n",
752 | "
1453.000000
\n",
753 | "
34.000000
\n",
754 | "
\n",
755 | "
\n",
756 | "
75%
\n",
757 | "
2126.500000
\n",
758 | "
45.000000
\n",
759 | "
\n",
760 | "
\n",
761 | "
max
\n",
762 | "
2822.000000
\n",
763 | "
91.000000
\n",
764 | "
\n",
765 | " \n",
766 | "
\n",
767 | "
"
768 | ],
769 | "text/plain": [
770 | " id age\n",
771 | "count 2535.000000 2458.000000\n",
772 | "mean 1445.731755 36.605370\n",
773 | "std 794.259490 13.030774\n",
774 | "min 3.000000 6.000000\n",
775 | "25% 768.500000 26.000000\n",
776 | "50% 1453.000000 34.000000\n",
777 | "75% 2126.500000 45.000000\n",
778 | "max 2822.000000 91.000000"
779 | ]
780 | },
781 | "execution_count": 12,
782 | "metadata": {},
783 | "output_type": "execute_result"
784 | }
785 | ],
786 | "source": [
787 | "df.describe()"
788 | ]
789 | },
790 | {
791 | "cell_type": "markdown",
792 | "metadata": {},
793 | "source": [
794 | "These stats in particular do not really make much sense. Instead let us try to visualize age of people who were claimed to be armed as per this dataset.\n",
795 | "\n",
796 | "Quick Note: Two special lines of code that we added earlier won't be required again. As promised, I shall reason that in upcoming lectures."
797 | ]
798 | },
799 | {
800 | "cell_type": "code",
801 | "execution_count": 13,
802 | "metadata": {},
803 | "outputs": [
804 | {
805 | "data": {
806 | "text/plain": [
807 | ""
808 | ]
809 | },
810 | "execution_count": 13,
811 | "metadata": {},
812 | "output_type": "execute_result"
813 | },
814 | {
815 | "data": {
816 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAEFCAYAAABO0IgHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXecXFd5sJ9z7/SZ7V3aVZdGVrMlS5a75YJtDAYHUwIJJISa+DMdQksIEFIoJmBKQknshIRmbIwB44YLuHdZbVRXq5W21+nl3vP9MdLszty7q9Fqd2d2dZ7fD6xz9txz39mdmfe+521CSolCoVAoFKVEK7UACoVCoVAoZaRQKBSKkqOUkUKhUChKjlJGCoVCoSg5ShkpFAqFouQ4Si3AZPT1hVWon0KhUJwiDQ0VotQynCrKMlIoFApFyVHKSKFQKBQlRykjhUKhUJQcpYwUCoVCUXKUMlIoFApFyVHKSKFQKBQlp/yVkZRoA0OIWLzUkigUCoVihijrPCMRi+O77xH0oRGkEKTOXkNy0/pSi6VQKBSKaaasLSPXK7vRh0YAEFLiemknYjRSYqkUCoVCMd2UtTLSwtG8sQC0aNR+sUKhUCjmLGWtjNJLF+WNTZ8Xo7G+RNIoFAqFYqYoa59RZvli4qaJ80A7ps9L6uw1oOulFkuhUCgU04wo57bjqlCqQqFQnDqqUKpCoVAoFFNAKSOFQqFQlByljBQKhUJRcpQyUigUCkXJUcpIoVAoFCWnrEO7AdxPvYDz4GGk2038os2YzY2lFkmhUCgU00xZW0bup1/EvWsvWiKJPjKK/96HIZUutVgKhUKhmGbKWhk5Dx7OGwspce49UCJpFAqFQjFTlLUyMr0e61x1dQkkUSgUCsVMUtbKKHHRFqSWTSSWQKa+FqO1ubRCKRQKhWLaKf9yQJkMzn3tGDWVKnhBoVAoimAulgMq+2g6HA7SZ60otRQKhUKhmEHKXhm5doRyVbuTm9Zj1tWUWqRpIdb9COHDdyE0J5VL/xRP/eZSi6RQKBQlo6yP6YYff0l6//hsbmx63ETefD04yl6HTkpyaAe9z36ErCcMEA6aL/oBTt/CksqlUCjmB3PxmK6sAxgcHcfyxloiid7bXyJppo9431PkFBGAzJDof3bC9QqFQjHfKWtlhJHJG0rADARKI8s04vS32cwtslmpUCgUZwZlrYz0odG8sQAcXb2lEWYa8bVcibd5GyBAaATaXo+nblOpxVIoFIqSUdbOF6lbdaXd3FxDaA7qN3wGI/h+EDq6SyXyKhSKM5uy/mZPnrthvGcF0+Mms2JJqcSZdnR3nVJECoVCwQxaRsFg0AncDiwBDOA9QAa4jaz7ZwdwUygUMifaI7OkjdSyYzjbjyBdThIXnzdT4ioUCoWihMykZXQd4AiFQhcCXwC+BNwCfDYUCl1C1gX0+sk2cO3ah/vgYTTTRE8k8T3yJKRSMyiyQqFQKErBTCqjvYAjGAxqQCWQBs4FHj3+83uBqybbQO/qyRuLTAa9b3D6JVUoFApFSZnJAIYI2SO6PUA98Frg0lAodMINFAaqJtvAGfBa5qqXt6BVzP3wboVCoVCMMZPK6MPAfaFQ6FPBYLAN+D3gGvfzCmB4sg3SsSTOgrnh9l6M5vKtGqFQKBSlpqGhotQinDIzeUw3BIwc//cg4AReDAaD247PvRr4w2QbSI/bOud22axUKBQKxVxmJi2jrwP/GQwG/0DWIvo08Bzw/WAw6AJ2A3dMtkFq3WochzvREsnseMUSzJpJTvYMA3R9eqRXKBQKxawxY8ooFApFgDfb/OiyYvcw/V6M5gZEeyfS7SLT2mK7TsRjeB+7D0dXJ0ZlNYmLrsBoUkVHFQqFYq5Q1kmvrh17cLZ3IgAtmcL72NOIeMKyzv3sH3F0dQKgjw7jffQ+MCdMX1IoFApFmVHW5YAKw7iFaaINDmMszG89rvfnh4BrsSgiHkX6C5x4mRTuHQ+j93WQaVxCat020AtDJBQKhUIx25S3MurPV0YSMHw+yzqjeSH66FhgnlFRhfRZw789T/4C16EXAXB07UOLjZC44I3TK7RCoVAoTpmyPqYrPJITgOe5lyzrEpsvIrUsiHS5yTS2EL/8OhAFvaWkxNn+ct5U4Xg6kEaK1NGHSXX8FjM1evILFAqFQlHelhG6BsaY70cCmaZ66zqXm8SlV2P1Jo1DCKTTg0jFxvZzWEPHTwdppok+8SGMkX3ZW4ZuJ3Dxt9C8DdN6H4VCoZhvlLVlFL9oS65qtwRw6GQ2rJn6hqZRMM7Yr5simd5nc4oIQCYHSXX8dlrvoVAoFPORslZGmcYGcIwZb5mCwIVTRVBQuaHwKO80kWbaOmk3p1AoFIo8yloZ+R59EpHJWi8CcBw+itbbP+X9UmddXDC+5HTEs+Bs2ormWzA24fDhbLt2Wu+hUCgU85Gy9hlp4WjeWAB6dy+Oo0dwHm7HrKggee5mzOriGtQlN16LUdeK3teB0bSUTOtZ0yqv0D34L76VdOf9yEwc18Kr0Pz2iboKhUKhGENIWb5FR6P/ead09A3kxhJIbliO55VXcnNmIEDkxjeCVtZGnkKhUMwaDQ0V0+uDmAXK+hu8sCiqAJxHOvPmtEgEbXio6D0dHTtwP/9bHJ27pkNEhUKhUEwDZX1Mh5lvtUnAqKlGH6d8pK5j+ovrb+R+8T7crzyUHeyExMZrSa2/YrqkVSgUCsUUKWvLSB8ZyRsLwKhrwqjP5hpJp5PEBReCu7h8IdeeP+aPd0/awUKhUCgUs0R5W0aG1Z8lfX6i178OEYkgPZ680O+TIWVWoeVNKBQKhaLklLcyyuQnpUpAHk9clYEptB7XCnodaeX98hUKheJMoayP6USBMhLA+Oi6U0JKRLqg1l0mOUXJFAqFQjGdlLVpIIVAjDtKk0ByggZ7J0UI0kvOzlXtBkgvOfs0JVQoFOWKEYbo4zqZXnA0gv8iA73i5NcpSkNZKyNR4NMRgGf3fhKLWi1rHQf34jjajlldR+qsDeCw9ilKXHAjMlCL3j+un5FiykTTg7zYfxfxzDBn1byK1sCGUoukUOSIPq6T6cl6iTM92XHltcZJrlKUirJWRlKAGKePJJBetsiyzrXrZTzPPJYb6z3HiF91vXVDh4vkxmtmQNIzD8NM89P9H2IkdQyAnYP3cePyL9MWOKfEkikUWTK9k48V5UV5+4wK65oCrr2HLOuc+3bmjzvbEfGYZZ1i+uiMbs8pIgCJyc7B35VQIoUiH0fj5GNFeVHWysgOo9J66Cvdnvyx7kCeQsi34tTx2By+e/TKEkiiUNjjv8jA0SRBSBxNEv9F6oiunJlzykhLWiPgkhu3Isf5iJLnnAdOl2WdYvpo8q0iWH15bhxw1rOp4cYSSqRQ5KNXQOW1BrXvMKi8VgUvlDtlXSg18a/fl4XV/jK11cRusLZlEIk4evdRzOpazOra2RFQQVd0N7HMMIsrNuHQprdzrkKhmBpzsVBqWZ9lSfIrJkgguXyJ/VqPl8ySFbMglWI8Lf7pbcOhUCjOTMpaGRWqdgG4Dh4mvn51KcQpCmNkP8kDP0VmErgWvxZn09ZSi6SYZzzQP8qTQ1EaXE7e1FJNvausP8YKRVGU9bvYzjKKr15eImlOjpkcJvLkRyGTjeTL9D6N/8JbcNSuK7FkivnC/f2j/EfHiSokCXZFEnxjzUI0MedOZRSKPMo6gMHOMvLt2DvzN5YS/dizOPfciRjtPPn642T6ns0pouMbkT726PTLpzhjeWIov/vxsWSa9niqRNIoFNNHWVtGhUgg01Q/4/dxP/sNnPt/A4Drpe+TuOyLGC2bT3qd5rEmMmi+pmmXT3HmUu/M/8jqQK1zTn2MFQpbytoyKkQA2mjk9DbJpNCO7YOM/dOkiA/iOHDv2NjM4Nz106K2dtSfjbP16txYr1mDa9F1pyevYsZJmwZdyQhmGUeWnuBNLdU0HfcRacBbF9RQ7dQnv0ihmAPMuUcqYUw9cc255wk8z9yNQCKFIH7BG8ms2JK/SJoIaebf0yz+nr5zPo6x8m1gJNAry9e/pcjyQriHfzvyPKNGiiaXj08vPp/FnvJN3m1yO7l1bSsHYynqXTo1yipSzBPmlGUkAcM39VwWz3P3IMg+/Qop8T79S+s9fPWkF1027p6CVPBPTuk+un+hUkRzAENKvt35IqNG1kruScX44bFXSizVydGFYKXfrRSRYl4xp97NAnB292M5YEsm8N1/N/pQP9LjJXbptZjNC/LXmCYUWjhGGhEdxPP8T9CGjpBpWUty05tIXvhJjIVb0UY7ySw8H7N++nNposceJNxxF0JzULn0bXgbVAj4bJMwMwxk8ntcHU2GSySNQnFmU9bKyC60O7rUWrXbd/8vcQz0ASBiUfwP/JLw2/8mf5FmYwQKgfexb+HoPwiAPtqFkAaJrX9BZumrpudF2JAY3M7gjn/Njftf+hzNF/4Ap9/aGkMxc/h1J2t8deyKjTVs3FLZXEKJFIozl7I+prML7fbvO2hZpw/ld38VhoHW15O/yMz3AwEgjZwiOoGj8+UpSHpqJPqfsciRGHhuxu+rsPLxRVu4vLqNxZ5KXle3nHe2lC4n7FgiyY+7evhlTz/hgi7HCsV8p6wto0IkkKqvsc57vIhYNG+dWVWwzs4yQkM6XIhxkXXS6bFZN704A4tt5pbM+H0VVmqcHj7Ydm6pxeBIPMHf7j1I4vhD0wMDg3x99Qpctu9bhWL+Mafe6QJwjkbAMNB7uhHRrAKKXXI1UsuGt0ogtX4zuIqp2m1C4RNoJj2tMtvha74CX8uVgAbCQWDxjXhqVVO6M5kHB4ZyigigK5nihdNNY1Ao5hBzyjKCbPfXwC/uQItGkUKQ3HQuqQ0bCL/jb9B6uzCr64pURAACdAcY40IiXN4ZkTvvrppO3fpPUh38a4TQ0Jyqtv2ZjlOzlvNxqRI/ijOIOWUZSUCTabTjFpGQEveLLyAScQDMxpZTUEQAgtTaV4/tLzSS623alc8QuqtKKSIFANfU11LlGEteDfq9nF0ZKKFECsXsMqOWUTAY/BTwOsAFfAd4FLiNrF7ZAdwUCoVsIgvsEYCWzA/FFaaJiCeQnpNYNHYBDEB68Xk4jryANtqN0bgKo1m1RJgNfjFwD3cP/Q6ncPCWuhu4elyjvjOReqeTbbXV3N8/iFvTuba+Dl1ZRooziBmzjILB4DbgQuAi4DKgDbgF+GwoFLqErG55/WR7FBZnkUCiJr9xnlFTg1ldfXKBJgzt/g760BGEkcbRtRP3s/978r0Up8VzkZf4r74fM5gZoifdxze7v8+BRHupxSopjw2NcHfvAHFTMpzJcOvhTnqSqgCq4sxhJi2ja4BXgLuASuDjwHvIWkcA9wJXH/+5Lbb9jAajJFefhbPjMKbPR/ySS0EI3E8+gvNoO0ZlDfFLXgVeX/7FpmnZD2mgj+SHgDt6QqfyGi2Y0S6S7Xdl+xktejWOmrlnacVSfTx96MtEkl0srL6QTYv+5uQXnQI7Ynts5naz3LNkWu8zl9gVya/GbQK7o1Ga3Kdy7KxQzF1mUhnVA4uB1wJLgV8BWigUOmHwhIGqyTawO6TQAw70PbsB0GIxKp96AgI6cn+2tYQWCeO858e4b/qQ5dqkZX+BqG5GDnfn5hwLVtLQMDU/jpEM0/HgBzESQwCkjz5A22t/iLsuOKX9SsX3HvgTkplsJYK9vXeCHuWac74wbftvEeu4Y/BXeXNbWzbQUHnm+s82JWt4YGAoNxbA1tYGGvwzH1CjUJQDM6mMBoA9oVAoBYSCwWCC7FHdCSqA4ck2KKzAAGCGw4wPPJJd3Ug9nr8uFmNgbztmTd3YnGFQQWFFB0HkgvfifeKH6CNHyTSdRfzsP0X2Ta0kTKrzoZwiygqboWfHr/Cuef+U9isFfeEdOUV0ggM9j9I3xd+JHWtZxxtrX8c9Q/fhEDpvqbuB5uTCab3HXGOzy8ur62t5cGAIr67x1pYmvLEMfbEz93eimDpTfaAuJTOpjP4IfDAYDN4CtAB+4KFgMLgtFAo9ArwaePh0b2JX9F8CprsgeVW3L7Nv1i8j+rovZevWaadXil+4rNWehWtS46/s8DrrLHMOberFaSfiLxv/lHc0vBkATcypoM4ZQReC97Qt4K9aW9AAoYIXFGcYM/YtEAqFfg28CDwD3APcBHwU+HwwGHySbITdHae8sa1SsfvgnmJvmtNURACOhnNxNIy1pNACbbgWvea0951NAp4WGis25s2dvfA9E67PmCkSmdEp3UsTmlJEBehCKEWkOCOZ0dDuUCj0CZvpy2zmiqcgRFtgVTvZEPAkpm9cnkZ65isrCKHhqN9IZnA7GGn0mnUIp3/G7zvdXBH8CseGn6YvsoPl9a8h4LEvHnpfx5fZNfQAIKlwNvLnq76Hx6FyYxQKxalT1o+ldqHdKV/+l12mqYl029K8OdPry/cXATid0y9gAcboARK7vwdGEjBJH7mXdOcDM37fmWBB9VbObn3XhIqoK7qbXUP3c+KvFE73cm/HP82ihAqFYj5R1uWA7EK7ndEk6eYmHH19SKeTxNnnYLa0IO6L4ejvwfT6iL3KJn1pgqRXkhHc2+9GP97PKLX21aBN7ddiDO+zn2u7dkr7lTMHR5+yzPUnDpVAkvnDU8OjPNA/iFfXeENTA8t8KpJOceZQ1srIrp+R4QJXTzY3SCST+B98gNT61Th7jgGgR8J4H3+I2HVvzN9sgurHvj98F0fXTgAcPXsQ6TjJTW+emsCeWsuUNGf+eLAUnFVzFc/05icIL/SvL5E0c59XwhG+fKgjN34pHOG7a1ZR4Zj9j2hfAm7br3MgAssD8JcrDBpmvpi94gynrI/pbC2jlLUckHP/7rw5R28XIlZQ8djWZ2TmFNEJnO3P2KwrjkzXHy1zxvDpJdGWAiklx4afZk/3HYzGO2zX1HrauKj5r3AINwKNBb51XNtm5yIsf7ZH+vhl3z4OxifNNJhRnhjODwKJGSYvlahq9237dfaGBYYU7A0Lbtt/+sE9UyUVh74DgqFOMeHhhmJ+UNaWUSESkEIgxnmTJGBWVKKNUz7S6UK6Ch7lbH1GwprLlIpNWT4tYO1CK9zW/kvlzrOHv87B/t8C8PLR73Ppii/SUnWeZd15TW/jvKa3zbZ408r/du/i533ZhGkBfKj1XC6raZv8ohmg0WV9fzaWqPrCgcjk49kiPgL7HtMxM9lPaKDBZMXFSiPNV8raMipEjPv/8XPJ9ZsxvdmoNanrJM67FIo63rC+sUV66spI91md/VqFVUFNRjreg5EambIMp0siPcSh/t/lxlIa7O7+acnkmUlSpsHd/QdyYwn84rhimm2uqa8l6M+WsBLA1XU1ufFsszww+Xi26Dug5RQRQKRPIzowyQWKOc2csoyyWPOHpNCQJ5SP0JCzEDlni7QqN63IhFHTiNP98j8QH3wehE714jdTt+Jd0y3hSZHSRBb8jk1pzLocs4EEzILXapxqfto04dN1/nnVMg7HE3g1rWRWEWR9RIU+o5Jg86eQpfnzKGaBOWUZTVRtwb3jefRw1poQmTSeJx8Go5gPkPXlS+fUI5gcTVvR/OOOeBx+nItePfEF4xjtvCeriACkwXD7j0mOWqPzZhqvq45FtdvGzQiCTTfOuhyzgVvTubZ2Sd7c6+tXlEaY4yz2ekqqiAAaPPDxdQb/fr7Bx9eVLnihfpmJ0MY+9b4aid9aIEQxT5hTlpGA7KORyJ/Th/Ntdy2ZQCTiSP+484VkYZlUyFanK8Ax9U+e0N3olcsxo52ARPM1o/sXFHVtKnrEMpeOdeKuXDlleabK+Us/ycKqCxhNHGFB9Vbq/Ktt1x2N7uDJ7tuIZYZZU3M1mxunGIVYQt7Vsp61/noOJUY4O9DAWn99qUVSHMdXA8ErDIaPChxuqGmTqOIU85eyVkZ2od0ZoeNkzOqRQmB6fWjxMV+P1PV8RQTgtjsu05DkB0RkE1anRqr7j6S7HsmNzdEDRF/8F/wbP3nSa3WXtSeT07/UZuXMowmdxXVXTLomYUT45cFPkzKzv/c/dH0Pn6OaNbVXz4aI04YQgguqFnBBVXEPDYrZxVMBzavV2dyZQFkf09mFdmvSSXrBAqSuY/p8xF71KkQmP2xbGAYiWkxodyZfEQEiHZ+yvKkDv7DeoffZoq41Utaw4lS0fJNIj0V35BTRCQ6Fpx4Wr1AozmzK2jIqRAIpNNLX5Fc0EAX+ISmEtQ25bVCDZrW+9Kmf14vKFTC0I3/OUZwPyhVYUtRcuVDrXkRhZcD6M7g5nkKhOD3K2jIqRAC22ULxgnBsKdEiBZWkJyyUWmB/uaZe2FTGjlrn0gmblVYqF16Pv+FiQCA0N7XL34k7UJpjumKodi/gsgXvx6llfWxLK85jY/38DHQoN9KmZGc4Tm9yflb3UJyZzCnLCCZoDGHj1TT1gpc2QdJr4Y7SOI0PuG4T/FCkpaXpLprP/geM1AhCc6EVaVGVkk0NN7K+9jrSZgKfc+4l984W3ckE3+o4RCgaIegP8P8WLaW5sN9WkXQl0nxuXxcDaQMBvLmlmje3qN+9Yu4zpywjsFdGptcmOdBTzIfdJi8oOfV0c+fCq6xzjeee0h66q2pOKKITOHWvUkQn4Vsdh9gVDWMg2RUN862OqfsC7+geZiCdPZaWwM+7hhlKZ6ZJUoWidMw5y0jHxH/Hz9HCYdB1Epu3WKotCECkUkjHOGvINrTbsGnLV3zkjnHscYxdP0AmR9AXXQ3V1mM14fASO3w3sQM/AUx8S9+Ib+mbir7HfOXnA7/i7sF7cQoHb6m/gWurryy1SDNGqCCYpnB8KgwUKB4TGEob1Djn3EdZocijqHdwMBisAb4MLAfeCHwV+GgoFBqaQdlsQ7slSRzh434Yw8Dz9FMkz16DPjyYW5dpbkX6Cnw/tqHdLmttumJlSwySee5LcLwqt3HgF+hr3g3OAKRPfNloiIolhHd+PXddZM/3cFQsx1W/aQp3nR88G3mR2/t+kht/q/uHrPAsY4WnfH1kxdKdTHDrkX2EomGC/gpubltJ0B9gVzScWxMsTDs4BS6pCfBKeMwP2eZxstRb2iRZhWI6KPZx6vvA/cB5QAToAn4EzGhPbbvQbr0wFBswq+rJNLagD/RierzEzrdpJptO2yidVPGKKDmM2PsLiPUi27ZhCplTRCeQI/vxnPVeEru+BzKDc9F1GJmwZavU0CvzVhkNJo/x5MCdJM04m2uuY5F/rWXNztge27n5oIxuPbKPXdFs8Myu6Ci3HtnHzYtWWnxGU+XK+gocQvDEcJRGl4M3NFepNuWKeUGxymhpKBT6XjAY/OtQKJQCPhMMBl+eScFgIsvIOuc8sBNHbxcAejRC4N5fEHnre/I3czptrCDdOids3GjSRDz2CcRI9qxfHPk9ctMHQegwrm6b9C8gsf3rnDjqSx+6E+dKa1VrZ5V9RYNSEE0c48VDX2UwspPawFo2Lv0Yfs/UEkATRoTvHfgAUSObM/Xy0IO8d/k3WegL5q0Leq0ld+zm5iKhaNgybnZ7+MeVZ03bPS6rC3BZnWrvXmrEiIHnoTBadxqz2UniygpkVenabcx1ig1gyASDwSqOf8sGg8GV2Hn/pxk7y8hujaO7M29OSybQhgrK+ybsQqxtPEbuSuuyoX05RZS7x7EncWz6BHjqQHOiLb6OTGaEQp+T0fMM/lXvQjgCCN2Hf8U7cDduRZopYr2PE+97BlnCQqQvHvoqA+HtSGkwEN7Oi4e+CsBgdC/tAw+RSBd/EhsKP51TRAAmBi8PP2RZd0HFFt5SdwNezUNA8/Ouxj9jtXf2yx7NBEF/xaTjE6RNk2dGhnl+dASjxNU/j8Qkj/Wb9CdVpYNTwfNQGP1YGmGCfiyN5yHrKYiieIq1jD4HPAIsCgaDvwQuAP5qpoSaDIkOBeWA0LS8tuISMAtDZ22j62yUUcZGabmrrGWD3NXobVegt12BlBIhBOm9P7Jeq7nxL/9T/Mv/NLfOTIfpefqDZGLZenSuqrNo3PI1hDb71cYHIzst45c7f8Du7qxPR9c8bFv5LzRUrDvpXn7dWtLI77DOAby94c38ef2b5t0R081tKy0+o0KimQyf2rePzmT2vbbS5+MfV6zEOUE34pnk110m/92RfV/rQvLRlRqba+bX32Sm0LrTk44Vp0ZR7/5QKPQ74FXAO4D/BDaEQqHfzKRgE2EKF+a4YITU+vW5XkZ5FNVGwmqRaHbKyN8MK/4kN5TuGuTqP82Nc1+opo2FM87qObEuevS+nCICSI3sJt77RBHyTj+1gXyfTpU/yJ6en+fGhplgZ9f/FLXXssBGghUX5MYN7kVsqZ3YrWiniEYyEWJmcYnC5Uiz28OXVqznjrMv5Esr1tvmEz0yNJhTRAD7YjGeGpn9LrMZU/LzzrEHLEPCTztV87piMZudk44Vp0ax0XR/XzB1djAYjAO7Z1spCWkiUikgawFpwyO2TU5EJoN0josysj2mK/6DJ8/5a+TSayHWCw1n21f3To9ar5PWHBAzEy1qbjbYuPRjeT6j1QvfSdfeD+etSRvFNRzUhMafL/kiR2K7SBpxlgbOQRfFnaEnzBQ3H/wa3ens8er5gbV8pu2dp/Zi5ghRw/q+i9nMzTSGhGTBbeNztHVVJgKDT+mk+sDVALXnGzhm2K2WuLLC4jOaDcRoDM9jO9F7hjGaqklcuhZZWZpGjNNJscd0K4CVwI+Pj28ERoGLg8HgZaFQ6BMzIVwhEtBIIo7rHgE4Og6DZv2ylHrBU7ftMZ0rG7Awrime9Ezyhqpamv3fBOiBxRQa6prD+ibxtVxJ+PAdSCOrIDVnNd7Giye+7wzi9yzg4rNuyZtrqTyPrtGxoqfLG04taLLNt+aU5fjGsZ/mFBHAU5GdPB3ewdYijgfnGpfW1PDL3h4Sx4+WK3UH51dXzbocbl1wSb3g0f6xh7mrGufmEd3gUzqp3qzsqd7suPGqmdWsskon/gb7Y+iZxPPYThzdWV+uo3sIz2M7ib92y6zLMd0Uq4yCwKWhUCgJEAwG/x14NBQKXXA8qm5WlNFEAQxSWsO99e4ujEXLxiYnaLYQM7ClAAAgAElEQVQXOe/tBJ6+Hch2N4q85gtTls8YCVnmpI215PS3UrXyfYTbf4IQDqpWvQvdZRM4USIuWv73HOj7NaOJIyysvpAF1Vun/R7PRV7inqH7cAoHb6h9LYeSxyxrXoiE5qUyana7+fKqIA8M9OMQgmvq6qlylOaI531LBSsDcCgK66vgwro5V5QFgFTf5OP5hN4zPOl4rlKsMqo5vvZEGQM3cMKEmLF3r21ot8gPJMj+K7/GnASMhYvzN9Ptj4sCT9+eu4dAUnHnRwn/+X9OSV69Zj3pzvvz5oTLWionORJieM+tnDgmHHzlX3BVBnF4G6d03+nGoXsINr9xxvbfnzjIFzq/kmv5/UJ0O5dWXMvRgm+QK6vn/tPeRLR6PLxzYWupxcChCa5umpo1NBKHB/fodI9CcyVctdqgqkSVrFwNWYto/Hi+YjRV5yyjE+P5QLGK5FvAc8Fg8CvBYPAW4Bng28Fg8EPA9pkSzi60W0oX5vGcIQkkN5xtKZQqAK2g+6t9OaC41dqSUz+7N4Z3WeZkasR6194/Mt5fJc0U8b6npnzfciJlJnhh6D6e6r+LyARh4U+Gn8spIoCUTLPcW8tGfxAdDZdw8Ja6K1nlXTRbYp8UQ5o8MdzD3X3tdCWL86FNRjiT4Xf9fTww0E/suNU+lE7zm74BHh4YImmWfyDBg3t0jo0ITCk4NiJ4cE/pcmxqzzdwNUoQElejpPb8Oer8KoLEpWvJNNcghSDTXEPiUmti+VykWMvoe0A12e//YeC7QAvwP8B3ZkY0KxIwhYljXDUF14H9FgUiAdNfcOxlWw7IMeVyQHZoAeuXp3Bbn1oc3habueZpkqJ0ZMw03z/wQboTBwB4uPd/eP+K71Djyn9tTU7rY2uzs5EvLLpmVuScCl85/ApPj2Yfvf+3+wD/sGwTa/xTKxA7nE7zsb0hBo+3Nfllby+fWLyUv9vfTuS4YvpN3wD/GlyOXsah792jk49nE0eAGfcRlQuy0jcvfESFFGsZ/R9wOfBesjlGnwLOCoVC+45XZJgVBOCQ+WV9tOgEUWjt+4vccfrQfVaFolcsscz5W67CU7c5N/a1XImnfrNl3Vxjb/iZnCICiBmjPDf4W8u6yysv5lz/2bnxtsqL8sblxtFENKeIANLS5J6+jinv98jQYE4RAXQlk/xPV3dOEQEcjCd4cXTqBVVng+bKyccKxalQrGW0gWw03TfI5hl9FvjpTAk1LZSkqoE1xLwwuAJA6C4azv1n0tEjCOHA4bNaSnMRaRMqbzfn1Jx8vu1v6UwewyF0ml1NsyHelDFt/q52c0XvZ3Op7dxp3GM2uGq1YfEZKRRTpVjLqDcUCklgD9mE14PArJcKzgYwWOdsWV5MLTDrGbfUpx7VZCQGLHMy2mmzMovT3zZvFBHAqoqtNLjHjio9mp/NNddNuL7VvaDsFRFAmyfApoq63NghBK+tn7o/a1ttLVXj2p40ulz82YImfOMqMLR53GysKO/6c1VeuHGjwU2XGdy4sXTBC4r5QbGW0Y5gMHgrWV/R/waDwQVM9xlXEQiwhNgJjpcEGmeBCEAbHcKsH/dFl7I7TZTWF+Gcettxc/SAdc5GQQFEjv6OyOG7EJqTimVvxdd4UVH3kNKg69BtDPc/hsvTwsJl78UbWHbyC2cBp+biyqa/5Hdd/0HaTHF+/eupdU+t6Gq58cnF5/D4SDe9qQRbqxpZ7Jm6oqh1OrkluJrHhgZxCMGlNbVUOBx8/awV/GFoBJ+mcVltdUnKA5WSrkOC7nYNhwPagibVjeVtGSqml2KV0V8DF4ZCoV3BYPBzwJWAtRz1NGMf2m0z5/IgkvG8uTxFBOCyM+Q0yz1Eaurn9I6mi0kf+V3enF5lrU2WGHyJoZ1fy40HXv4Czgt/gNPfdtJ79HT8hJ4j2dzjZPwoB15pZ+3WHyG00jdXG0718PMj/4whs/6Qh3puo8WzgmDl+SWW7PRxahrbaqZPsdY4nby+Mf892uBy8YameRyTPAmDXYJDr4ydVOx+RmPTlQbuM8jaEqMJPI8cQu+JYDQFSGxbiqycWnv6uUhR32ChUMgA/nD8378CfjWTQp3Atmq3nWVUUBNOACIaQY5vYmZbDsimn5GZASOF4+B9aKOdGK0XYjTZO9dlKoxx+F5IjqC1XQE2oczCpmxQov/Zgo1MEgPPk4p2MNT+YzRngPpVN+GyUU6jg/nXplP9xKOH8FWUvur1wehLOUV0gr3hZ+aFMkqYBg8OHqUvFeeCqiZW++dHbke5MNSb/0mUpmCkX9DYduZYR55HDuHoylb+dnSF8TxyiPjrpq/1SLlT+sfpU8DubSkB6fVDeuwYTmo60lPwSGVbDsimnxECzx//EcfRJ7PD0J0kLvwUmSVX5N/XNEj/4SPIcDsAxoE70TZ+yHqHCmv5IGfAOpdOjTC091u58ZGn3s3Sy+5Ec+QfG3oDS4mO7siNNc2D2yZUvBQ02TTHs5ubi3zx0AvsimYz3X/d38Gnl5zDuZVnphUzE/gqrZ9uv83cfEbviUw6nu/MqUPpicoBiXSBP8g0rHMxu0RFm+g30mOK6DjOvXdb1/W/nFNE2YkM9O/AveodnPi1iqZLcbZZc2d8LZfjX3htti6ecFKx5C1E+x8vuIHB0KGfWK5tXvwO/FXrAdAdFbQFP4I+0xUhi2ShdxVXNP4FDuFCoLG+6nI21Vx7Wnsa0mRH9DCdSXvf23QwlE7wcqSXmGHfAuBwPJxTRJBNV753YOLAlOnEkJKd4RhHE7OWQVESmhZL6haYgETTJW2rDfyzX66vpBhNgUnH8505ZRnZkfUZuSE+Lt9I05CFzl+fXVVbO12sI4WGGF881a5Ct25NojVwkNz7I05UV5A9j2EM34ijNr9wqBA6tWs/SvWq94HQ0Bw+wk8/b5XOYQ2mcLpqWHXO10mnhtAdfjRt1oMaJ+XyprdzYf0bMWQan+P0Ek/606N8uv1/6D5+/Hl97Rbe0zy9ibG/H+rgO0dfJCMlPs3BZ5acz1p/fd4al2aNuvTYzE03A6k0f7/vCN3JrJJ8dUM1724r/+jDYojFYOd2nZEhqKqBtRsMgptN0qlsezJ9zn8zTY4YTeJ5uBO9J4rR5CdxeSuJbUstPqMziTllGU1EesXaPOWTWrsRXHYVFwqxyQFCkF75urEVmpP0Wmushla3FtE4LgvaVUk60UFhW4rYs4XdN8bt4Qzkqnq7K6xtt91VE58XO101ZaeITuDWvaetiADuGngqp4gA7hl8liPJ/tPe9wQZafJfXa+QOR6JGTMz/He3taRTi9vHtpqxo1CPpnNDw2LLuunmV71DOUUEcG/fMB1xu7JWc4+d23WGBwVSCoYHBTu3Z5W70zX/FRGA5+FOHF1RhAmOriiehzuRlR7irzuLyHu2EH/dWWdU8ALMsGUUDAYbgefJNubLALeR1QA7gJtCodBpF+ASgEylkS4PJGKg6xhVtdaFabsjGMP26C+1+SYyiy5FGz2C0bIZ6bcvYOq84IuYPc9BagSt+XyST1h9RtKI21xp8zps+v6YaWtdu9mgP7KL5zu+ma3aXXUBW5Z8GKdeXMj7i0P381DPbaTMOFtqr+eqpndOuZvrYMbaxnkwE6bNXW+z+tRJmwaRgqO5wbT93+sDrWu5vGYBvak451bUU+Ms5mGneKSU/G9XD/f3D+HVNd7W0sRgytoLayidYZF3eu9dCkaGJh/Pd/Se6KTjM5EZs4yCwaAT+A/gxKf7FuCzoVDoErI65PUn26PQbpkogMF1cCdaIpb1HxkG3scfzGtDDkzQ+dWFLAiJlr6sIjMb15NZcd2EigiyCkRv3oq+6GqEqxK9bpN1kbO4c99A8xWM/3Nozmp8decWde10YkqDxw98nqHYfgwzScfQI2zvLK6KeX+yk7s6v8JIupe4Eeaxvv9j+8jvpyzLtuO+sRM0OqtY45u+4qle3cmWyvwSTpdV24fXCyHYEKjlqtqF066IAB4dGubOnn4ihkFfKs2thzvZUJkfhFPvcrAmMD9inatqJh/Pd4wm/6TjM5GZPKb7KvDvwIlGNecCjx7/973AVSfbwDa022ZOi+Y/QQsp0QZ68xdmMrbXhy+9CXm8KYUpdCKv/ceTiTUhctSmHp5p7xRPjuxhYMdXGNz1b6Qjh/HWbKB2xbtweBpx+hfTtO5Ttj6jmSaS7CKezg8W6IvsmGB1Ph3RHciCR4aOaHHX2rG1YhWfbn0TF1Ss5rqazfzT4rfjFDqPj+zjK0fu5faexxnNFGd5TsSHWzfzlsYgWyqaeXfLet7WVJpQ2t2R/AAbE3Bq8LfLFrC1OsC19dV8ceWieZMIu3aDQXWtRAhJda1k7YYzq5RQ4vJWMi1+pAaZlqzP6ExnRo7pgsHgXwJ9oVDovmAw+Knj0+J4SSGAMHDSWJmJlE8xczWrliIio6R/dwfy2GHEgsUWy0oAlY98k1xXJGlQeffHcd/03ycTzRZt8QUMDe3Mm3P66mhoyO8eGx8+SOezH0Wa2QipRM+jLLrwcwwe+GGuAnn/7i9zzmvvQHfObjvhWnMlvn11xMZFr7XWb7C8Bjs2+Dbzy6MiTyGtadpU1LUTcX3DZq5nrIjsvd3b+dfOseKrryQ6uX3zu6e8P8AHms87reung3NTtTwwMHZWJYDzWxto83t5DfOjikUhi2fe7Va+NFTA8rHj5jMrbs6emfIZ/RUgg8HgVcA5wH8D48+7Ksi2opgUu/YOxc4Nv/gK7j1P4ug5kl3TucumekOSwpJAMhmlr8/qqwCg7xWI90LTFnBbHfSxwW7LXNrQLPuN7P9NThEBGOkIHdtvz2uFkU4M0BF6mEDTpfayzCDnL/kszx3+N8KJIyyovoBVde+w/Z1IKTkSeYl4ZpgllVtw6/W8buGH8nxGy/SLJ/59ToG7j7yYN94b6eaZIwdZ6pnbOT+bnR6ub6jj/oFBvJrOny1owhPL0Bez/u6OJlL8pneUxV4X1zScfqBIR0xyKCpZUylocJdvywpF8ZzOA2CpmBFlFAqFct+gwWDwEeD9wFeCweC2UCj0CPBq4OGp7G1XIshujVFVjd57dNysl7FGtScoPjxXPPdVRPt92f2dfuRlt0B1fk044bV+IWpu65tCc1mz93W3NehCt+kSOxs0VqznunU/POm6e9o/x4HRJwDwOap5y4pvsrn2NWyufc2MyVblyPeZaAgq9bnvR9GE4J2tLbyzdfIE5scGw3yjfSyi8Ld9o3xjzdSPeO7pMvmfjuynSBeSj6zQ2FKrFJJi9pnNA+iPAp8PBoNPkq34fcdUNin6Y+LyYDQuPMmiIs+pw505RQQg0lHE3p9Zltn1LnJULgdAGkmkkS1J5F9wNc5x5XvcdZuoW/U3OH1jznN/46V4a/Id+HmSZyLIKbTJkFKSTp9+F7Tu2J6cIgKIZYZ5sf/O0973ZLy5/jyqximfG+s3U1dkkMh84EdH88POOhNpdocn9puFM6ZtGxOAjCm5o3PsZ4aEnx0t/w6zivnJjEf0h0KhbeOGl033/oITB235HzgtnSJ+0WvxPv5r9N6jGFX16COFJ4NFfvDsnORpm1BMw1r/TkpJJPQDYu13gZR4F70W/+r34aoKko4cBKHhrlqDw1NH2/k/ID78MrojgLtylb0o6RHad32J8PALOJzVtK38ANUNxR3ljUb3s33vl4gljuD3LmbDqs9S4ZtaYl3SsL7+hE0o9nSzyFPHD1a9kx3RozS5Kmm1sSjnMymbxkejGev7uCthcMvBUQ7FDBpdGh9YVsHqQH5EqSEhVbBd/MyKI1CUEXMqNGfC2nSa1V4yAwFkRQ2xa99O+B2fJPZ6Oyd3kUmjNSuRtavH3VMgl73WKothLdmSGdlN7OBPwUyBTBM/fBfhvd8n2vnrbANAM83owR+RHHoFoen4ajdNqIgAutr/m/DwC9m908Mc3vNljExxOQo7D3yVWCLrQ4vGD7PrwC1FXWdHlct6nOTUZidJz605ObdiyRmniACuqs8/9vVqgq011qjLH3ZEOBTLapbelMm3DoUtFpJbF1xSn//ZeVWjOqJTlIY5letstX+OH9sV5BQJQBsaxGwYl0MyYpdAap/0aoe85F+QB3+NiPUiWy+Dhg3W3QZfscxl4j2WueTIHstcKnwA9yTHcieIR/LDx00zQTJ+rKiq3eHowYKxtf9SsQwkDlvmksbcK+x4NBHhyx1P05uOs8xTxWcWX4DPUZqPxeNDIzzQP4hX17mxuYEVPqsv7M8X1lLl0Pj9QIQGl4P3L7JPAD4UzU8p6E6axE2JT89/x79vqWBVAA5FYX2V4PwS+ov6jwl62gW6AxauNKk4w3KPznTKWhkVG6xgN2fWFSSrVtlFkrtsI/Fscfoh+JbJG0E7rfcQ5ok7jF3pbbqE5Mj4EHANT+3GYqSgouZcoqNj1zpcdXj8S4q6tq5qIwMjYzXw6qqnnlTb4LE29PPopx/ZNdv87cFHc1UYdsYG+Myhx/j6yitOctX08/JohK+1H8mNt4cjfHftKiptFOP1TdVc3zR5Cwu/Q2fEGDtz8+kCn249CNGF4KoysIaG+wR7n9PzxudeZTAD+cWKMqWsj+mKTXq1m3McKLA+bC2jSPEBEWYGjjwCoZ9B2L5ic/rog5Y5LTVKxdoPIty1CFcNgdV/TcWSG6k56wM4fG04A8uo2/BpnIHiki6aFr2VhtY34nQ3EqjawPJ1X0TTimuVvm7FJ6ipWI+u+6it3Mia5R8p6jo7BpLtlrmEMfM+o+mkPxWzlAM6nCjNa3hqJD+oJG6avDQ6dUszVnBaEDMkcaN8WzIMdOV/Ek1DMNxbeiWpmD3K2jIq5FQso0xzQaKgrWXkKNoyEk9+HtH1VHb/nbchL/0y1K/LX+RthFR+tJNEI3rwJ8jkIACx9jvwLLiCQNv1BNquL+LO+Wiak9bl76d1+ftPujaeOEZo31cZDe+ksmItvsrVDIWzR4mDoy/S3f97FrfceMoygL3PqHqOtRivtKnGfipff93JOLce2UMoOkrQX8nNbatpnmJrUp9NZYUGV3EPGXY0u3WG02O17WqcGq4yfvT0+KyfZI+/fJXnRIiRDJ6HB9C7kxjNbhKX1yGr5tTXbMko47enlYmsIGlX5tdVjDO9yDfJSHtOEQEIM43Ylw1jlskhzEjWUtJsVKMpwIyPJcOaiT4Sx7L12jLxbjKJ6atCXUho31cZGd2OlAYjo9s5fOwXeT8/dPSnU9671rOI8xrfhjj+FmryBjm34Y0AhNMDDCaPTXZ5WZA0rYVIT4Vbj+xhV3QEA8mu6Ai3HrH6AoslJa0RcVHDPrRNSklnPEUkM3Ho21+2+al2Zj8xXk3wnkV+9CkWrJ0NmpdIKutO/A4kzUtMKuZgfIrn4QEcx5LZatzHkngenrk+XPONeaKyZ/pDNkGexu7bMfb+GKSBqF2TjY4rZjeZpv/FzxHvewIQ+BdeQ82aj0y5uvVEjIbzSxNJaRT8qk4vp+Silr/inPobSBhh6jzZY8bfHPs2Tw/cjcRkReBc3rr487hmKcpuOhACupMxbu3czp7oEKv9NdzcuoFmt7UsUyg6Oun4VHAK63Oh3btuIJXhH/d305FI4xKCty+s5bpGq69uhd/Jd9fX0pkwaHbrePXyVUSQbRux7iKTeMRE02GKBmbJ0buTk44VEzOnLKOJjuSE3ROuUcxTb5Ef0KqlyOax3kVSc2IsuBAj9KOcApKDuzBt8pE0zYnmHWuIprlrMTXHcUWUfQXRo78jOWBtrne6VFaszRv73fkVqpcseMtp38PvrM0poo7oTp4auAt5XMntjzzP84O/nezyklLhcLHcmx8IcGlVG7d2bmdndBADyc7oILd2bre9PuivnHR8KryqviYvwGCxx83GSmv1jp91DdORyPq5UlJy+9EBRtL2D0FOTbDU5yh7RTQeb2DuKiIAo9k96VgxMXPKMpootLswf0IA+kAfhm9cZn7Ezhl8CqHdF34e2fkYxHphwUXImM0xVNLalEVIg9oLv0Oi6/cgTTwtVzDa8QvLunTsKInD7Ywe/S2a00/tsr/AV7fZsk6aGY61/xfDfY/h9rSwYPl78QWsjfkAgis/luczWrrkPezt+AHh6H4qA0EWNFxd5KuHvmiIZ49+n0i6l2XV29i04C/QCnowDaSOWq6zmysnPt66mS8eforedIzl3mrevWA9b9+ZH4iyJ2rfbOfmttUWn1GxPDQwwD19vehCcGNTExdW1/Bvq1fyx6ERfLrGJTVVOGws5a5kfsBFRkJ/OkOVc+Y7zypOTuLyOovPSFEcZa2M7EK7bcO9dUeeJSQBo62gskDArmTMKYR2a05YdOXY0FsPzgpIj0VfORo2k+n5Q95lwtOA5qrEt/iG3Jy34QLCh35KTrVqTkwkA/v+Pbem++W/Y9FFP8Lhzn8z9xz5Cb1Hsr6eVKKLg698hrVb/xehWf+UXs8Czlk/ltj6/O5PMTT6MgCDIy+w88DX2Lj6Cyd96Rkzxf0HPkMik61g8XLP/+Fy+NnQlG9ZrQhsxik8pOVYJYqzKi866f6l5Gudz3M0lX1Q2RMb5Iddr7DaX8PO6GBuzWq/fcJLs9vLl1YUF5I/np2RMN8+0pEb39LeTmvQwyKvlxuaJm8cuLXax87I2O+30eVgibc8O/6eicgqB/Eb5kdr+NmmrI/p7EK7RcGsAGRBi3EBiIIeR8Tt6neNFO9tSsdg7x2Il74D/TsRTh/Oi76M1nIRom4djnM+gnBZ/QpCt0ZEuavXUH3W/0P3NKJ7F1C77pMkI/kJqNJMEx962XLt6OBz+WKlBohHDxX1EgaGny8YPzfByoLrYvtziugER0efI5EJ82zvT3j02L/TE9tHhbOWtyz6LHWuViodDVzT/D6WB2waDk7A4UQX/9lzDz/tf5DhWSgtFDFS7IvnWz0vhnu5uXUDa/216AjW+mu5udWa4Hw6vBTOf20m8HK4uNd7XUMlf7mwllV+NxfX+Pn7Fc1lHZhwugx2QOhhnQOPayRVM9R5TVlbRoVIwESgjzusk0IgReE6gfQWKAav3UG0E0myuNDuP3wKMbgrO9h/N/KiL6K1nIe29R/G1uwdtFxnV6MyE+tiZO8PkUa2odrwnm/jW/InlnXugDWx1BtYRnR0rGGdpnlweyev9HyCCt9SwrExpRfwW/e3o8qzEF24MORYuaNqzxJ+duDDDCTaAXip7y5uWPYv/PrYrQyns1Unft9zGysrttDkWXLSexxKHONj7d8kJbMW7oPDz/KtZR/DXWQO1VTwaU4anT5602ON7ZZ4Kml2+/jS8vNn7L7VNomsja7irBshBNc3VXF900nbgc15+g7A0e06Jx5D9zwoWH+9wUz3FxQjEs/9oHWB2QKJq0FWzV+FXy6UtWVUSPYtWeAfkhItHitYKdFGC5Jc0/YdV4tiaP+YIgIEJuLgry3L0l2PWuZk1OpbinY9mFNEAGZqEIfmJ9C0DdAQuofaFe/BFVhiubZlyV8QqDobAN1RyaLgR9EdxVWtXrv8o3iP5wL5PK2sXfbhCddGkt10jzxPxojjcVRx8aKP4NazDvUFFZtorDg7p4gATAz+0POjnCICSMskLw7dV7i1LQ8MP5NTRADd6QFeiEw9VLoYNCH4QOsm6p3ZB5UlnkrevWB6rSA77EK2RzL2ATcZKXklHKMzfuZFZfXtP6GIskhT0H9g5pWC537Qj4Iws//13D/jt1QwxyyjLHKS0Rims+BJ02n3hF2kLrZJjrS7sxR262w+PMLqbNYcfprWf5b61RGE5kTT7aNwHM4qVp7zNTLpEXTdb+srmojKwCou3ng7qcwwLkf1hKHku7t/yvbOHyIxcTkquXzVl1lRdxVLay4jbcbwOKroiu62XOfSrDIXHqtOhEezWgYem/2mm3WBev4jeDVhI0W1Y3Yin7ya9e/vsSnVM5BK83d7j9CTyj5IXVNfzXsXzT1/RDQGz+/QGRyG2mo4d52Bv4gGxjYfExyuaU6EHQH9IR26gWYwrjTQuvKXFI5PFTGawvP7bvSeOEaTl8QVzchK5ecrZE5ZRjBBsIFNwiBmMTk/Rb58zWmjemyuldaq3bY9k2xySsTxLyjdGZhQEY3H4aw6JUWUu48QuJ01EyqiVCbCK0dvy4VnpzKjvHL09qxsmhOPI3s81OI/i6WVY0dZXr2KVdXWDiGFEXcTcV3NhdQ6xkKj1/uWc7bfPkpwutGFmDVFBLCttpYW99j9lnq9bK2y1pq7u2cop4gA7usfpmMOWkjP79AZGBJIKRgYEjy/o7j3xMJ1BuMf+hxuSe00tyrXH9IRxwTCFIhjAv0hHbPg1LtwfKp4ft+NoyueTYTtiuP5vbUjtGJOWkb5TBTurY+OYFSMO1ePFR7lQdHN9ZJDViVo2nwppGxCgO0UpU0+kllkwzvDiHNk779lQ7u9LbSuuJmKmlOP6JqIlBHGlPlHmom0fRb565d8gY7IC8Qywyyt2Eoo/IxlTdru92RDvbOa7y77BM9EdhHQvWz0B9FslPZ0054Y4dudL3EoMcwGfyM3t26kxjmzSboVDge3BFfz3MgIDiHYVFmJ08YRMmxzdDeUzrDIO7dyVwaHJx9PRGUznHW1Qe9eDadP0rhyBsoDFeqFbkj8GRaf0emg98QnHSuylLUyOp2q3UZzQZdXn925QJG5GYGFSES+v8qm1bVevxXj6L35k05r4qKwazvubbbM2dF9+EcM9T4EQCLWwaFdX2Dd+T8pypoqhoC7hfrAOvojY0ESS+peZbtWCI3FFWO5UKsqz8OnVxIzsopVQ2N99eVF39une9hWVXz03cnoToX5ZucT7In1sdrXwAdaL6TZlf/3+FrHcxxJZiPZXoj08P1j2/nE4vOmTYaJcGsaF9VM3iPhstpKHh8ai7JrcDlYEyjifKvMqK2GgaH8cbG4/XhkjGgAACAASURBVNC2cQa7zzYDx/LHskoQf9P03cJo8uLoiueNFVbKWhnZhXbbJr3azOlHD2MsGhctNjxsc8SXLs6jMXrYEjhBJoaM9WDsvwOZHEZfdDXEOmwuNkmP7id++G6QBt5Fr8dMWuvRZWJHgS3WywuIjuzIGxuZMIlYR1H9jIrl0hVfZHf3zwgnjrCw+kKW1l9NPD3E9p6fEU31sLRmG0trrN1lvXoF717+DZ7ov4OkEWNL7Wto8501bXKdKt/sfIKdsV4AdsZ6+WbnE/zTsmtyP48YqZwiOsHumDUislScWxXgU8sX8sjAKDVOndc31eLUBI8PRXhyKEqDy8kNTVVln/B67jrD4jMqF4wrDYvPaLpJXNFs8RkprJS1MiraMhJa3nGYBIyFBYfL1dU2Ca7O4pJeq5YiHV7EuOM1WRMk9YcPQ7wPAPPoo8gF1nBgicbwUx9GHm9Jnuh6FN9Z77Osc1evOZkUAPgr1+b1M9IdFXh8i4q6tlhcjgrObn1XbiylyW/3fZzh49Fzh4YfY5v8NMtrrX1/GtxtvH7hxFF6M0V3apRvdj7KnlgPq31NfKD1MvbE+vLW7I728ZmDD7Mn2s9qfz03t26h1V1B5ziFtNpXXtU5N1cF2Fw1Fi35yECYWw+PPcxsD8f56uoFRdU17EmYfLs9wd6IyaqAxk1LPDR5Zv4o1O+DS88rHwWURxUYb5hZ2WSli/gNU/uMitE4nkf3oveMYjRVkrhsFbJyflpWZR3AUHQ/I2mdE8lE/mTULmOuSPPf6Uee/3fIwEKk5kQufhVGXTCniLJIzAFrkqphRHKKKHvLFCIVJrD4TdmqDpqbqlXvwzVJq/HxNC95O1X1FwM6TncjS9f83bQd0U1Ef2xfThGdYP/gAzN6z1Plm52PsjPWna0nF+vmm52PstrXkLfGq3nZGe07XnOuj1s7n+VjbZtZ4a1GR7Ap0Mh7ZyG0+3R4dDC/rFV7PEV73C5wxsq32xPsDpsYEnaHs4pJUd54Ht2Lo3sEISWO7hE8j+4ttUgzRllbRsUgAVPX0I18y0gWhnb7/TZXn8LxRvMW5LW35YZieL91jR4AIz9QQggHhYESJoJIx525Iquj+28j0PpqNIedjPkkoocJDz0PGKSTvQz1PUZFzfT5WezwOquxdKt1lJcFsSfWYxl/Z9Vb8nxGewqqau+J9rPEW8VXV2ybRUlPj+qCIzkNqHTo9CQzfLt9iFAkRTDg4qYlNTS58z/eeyPmpGNF+aH3jE46nk+UtWVULJpdhe7CckC2TN0816pXoC26dmzCvwC96QLLOodvIc66c3JjZ/UaEiM78tpNSDPJyP7bi7pvz5GfYBpjx4UDXb8hleiZ5IrTJ+BqYkPTm3Njn7OOs5vfOqP3PFVW+5os42ZXBf+07BruXPfn/NOyazjLn1/3bbV/8jpw5ciNzdVUO8YU0g1NVdS5HHy7fYhdkRQGsCuS4tvt1sjOVQHNdmxKyWh6bjWyM1L2garzDaOpctLxfGLOW0Z2AQwAWjKRfwhnW7X79N7Nzk0fxVz+BkgNI+rWY+z6d4t6kwiclStJD2Q7rOqVK0jF2q2SpItrMT1eEZ24g1lk+PTpsGXhe1hZdy3RVC9NgfU4bJJUS8kHWi+z+IwKubl1C7d2PpvnM5prtHpcfGddK3siSRpcDhZ4ssncoUj+UV3hGOCmJR6Lz2j3qORbB0z6UrDY9//bO/MwuYpy4f/O6e7pnn3LJDPZyEJSIYEEWRQQZBFBQETEJYog4vJ5P+Di9fJ5uer9LvJ5vXo/9KoPIoIXccUd8YqCoARBNkUhIZgKIWQhmck2+z7dfe4fdU769OkzMz2Tmenu5P09zzw9p06dOlV1quqtt5a34OPLbFoSxWv6JjUMrU/a9O+1scscZr8mTc3C0hKkE2HwzOU5c0aHKyUljEZfwGDlGIFLNwZ6vaFWuw/d7pldm7EO7ozk7mVKD7Yx9MpPDl4P7vgl0ebTCTYV8ZDjIsKYNfdiejr+gpcbVXXHT/kChtGoSyygLrFgRt41UZrLavjckrGPcW8uq+LfluS/1LxYids2awKT2KqqjBd9AkhV5XYW5iRsbl6RWRruOA7/b5MRRADb++GubWk+taJ4V+cdeNEIIoD0sMWeP9tUNqeIFFffaMpwasoZuHhNoaMxI5SUMJrIeUZ2RzvpJt8Syu6wsdY8l3bnSarjxRy3dGogZ+VFKmRzrJMMHwvu2P0rOtseJlbWwKzFV1I363SOXnMLXfsfoyzRQmPLhVMSd6G0uWZRfc6c0XgMpGBvQKneHrY3vIgYCmyYdVIWw71QXlxTmMIkKGphlPd5RiHPZQkigJqwsdYKHHqnTCBZ1Utx+rMPk7OJkWI4K6YVzWcy1LUxy1eiIdeKQmfbw7TqLwMwAPR1bWDZKd+jum4N1XVHRm9JyI858Sg3q6bxPfqoiFocXQlbfAtN1xS5derKOU7WItZI3CF++BswPyIo6gUM4ecZje3Hc4u+FNBSurpCfPYckiByUkOktj9I8qUf4/S1ku7IPZ7aTo9Qvep67HgjVlkDlcf8b6qOupTKhZeB5S3t/gixqlyjWz37Hs+6Tg130J8lxEqXjmQX97X/hl93PERvqrAH1fy5u40f79XoItrwOlP8wzKbk+phVhmc3WTxgaOKWxjVK4d6lSZW6VDelGbeGSlC7M4KJUhRa0ZBJmIOKNk8N9uxNqz7FM3/pNfgO5w0I4//H5wOY706tem7UDkbhrPHERygb+s9pIeMfbeBrT+Csjr6vKPHHejafDuJplMpq8yOc1l5IA1YlOV5dlExsXd4N3e13sLL/RtZWrGKtzd9hJt3fYXOlOkg3Nv+a76y6HNUhJhYmm7ubn2BX+w3y/R/sOdvXDfvNbxxqq1xFjFNcYtPLB+/NW8fgPs2R9jZAwuq4ZLlKRoKsPfSsqFpdZqm4t4OJkyCotaMgoy66TWMLblHHEwlzoENBwURAKlBGMy1xpu20qQHMkuv00MH6Nx0a46/jhe/mOPWuPDdJKrd1TNWlKbFV5WkMLqr9RY2968nRYrN/ev5yu4vHRREAK0je3iy90+jPr9jaB+dyanXnobSKe4/sDXL7d79IfvHpom2oSH2Dee3YbXQ3Lc5wvZui7Rjsb3b4r7Noo4IU0tJaUYTwiq1pOWK1WhZLUtOuo2hvh1EYjVEQwyslgIv92cPLbaP7AFr/A2+3cl+btpxD1sGW4lg8+6m01nblGsTr9QYSae5Zds2/uQeAHlWfQPXLlyIXcTHh+/sGftaEA6VktKM8h2mA2B5PgY6J1/5rcbjsBp89uSi5eGH5jlg+yxy2/FZ1K24Lsdf/cqPj/queOXCkhVEAEsrVmVdH1O+iLpIZti0JTaHU6ty9/z8/MCTbBk0J5ulSHPPvj/QOjx18zpxO8JFjdlHr1/aNP1nKD3W0XFQEAGs62jnrz3FvbN+QfXY14JwqJSU+jAhq90H9pGq8O0tCt30mpy0OLIsm4h6H8n1t8JIr7Have1noXFueP1tDO5eB6RItJyDXVZDJNFA56avgR2jYdUNOfNFhxNXt9yQNWd0dcsNxO0qHu1+gpgV4w01p4bOF7UFlsA7QNtwJy1lU7eO94LGxWzsO8CuoR5WVjZySs30f4e24dxNym1DQ9y3Zz+/PdBOhW2ztmUOJ9bmtvhJx+H7uzp4srOP2WVRrpzXwNGV03++0SXLUzlzRoIwlVjBPTrFxMAX7nT8qpuJaT/+0Qyz6bU/64gHB+i58hoIHFhW/Z1P5C4Lt/bmuPVccfe4cXOGuxl+8HIzV+QyWD0fBl4N+LSpfcuD44Yn5PJo1wt8cdcvDl7XRSq5c9m1xO1D36zsccOWdWwZyCw6ObtuAdcvOHHKwg9jS38/N27WB+1/xCyL98+dzzdfzcw5Ri2L21YuZ1ZZdlp/2trJPa0ZIV0XjXD7sQuI2cU7xCfMPE1N1SVXIIpaM8r/PKOQTa8H9mbvNRoIO12xb9KaUfrAC1mCCMAa6c4dNoxVkupvY2Dn/YBDYv4FRCvnBX2NSn/Xi3TvfYRoWQP1c99CJOSwvsOVM2uPZSg9wu+71tMQrWbtrDOI2zE29L3KE91bmBOr4fz6Yymf5Pb73tRwliACeL533yi+p46jKyq4cfES7t+/j4hlcens2fyhPXuYLuk4bOzt48zASXTre7LLcWcyxfaB4RnRjgRhOilqYRRkIku70/WBoZzysHWoeZ5nFIJdsxgz5Zaxb2dXHUWqc0O2x2gl7U9cg+MeKz6w41c0nH4HkfLZ476jr+M5tj//iYMWIbv2rmPJSV/HmoHjuIuF8+pfw3m+Y9Wf7N7C53fef/C7P92zlX9f/I5JhV1hx5gTq2CPz4zTosTM7KA8qbaWk3zbDXaEHAOxqDz3+POjysvY2JvpBMVti5Z4SVXjguJ0w8ijEZw9YM2B2JkprDxsj1pdaRIPDWK3pUk32wy+KYFTe+TUw5mgpHJzIku77Zc2ZTsMhp3dMvnkW5UtRFdfA9FKwMKeewZ2Te7+lJSTPCiIAJxkH4O7f5/XOzp2359lmnio92UGDpNNr5PlgfYNWR2Qjf272DF4YFJh2ZbF3y84gTr3PKj58Wo+XKDzjM5trOeM+losIG5ZXDl3DkeFCKN3tdSxutq410Rtrlk4i8qoLLPOl5FHIzhtFjgWTpvFyKP55V3ioUEiu9NYaYjsNoJJmFpKvks12oxXujIwnJXIrdjhwih/PSmy5K3YR70Z0iNYsUqSm+7ODc0OyeI85zzskEl9O1oR4vPIITgkZwHlhzCH9HD7djpTZkHBq0M9PNO9m0uapu4I93wZTKfZNjCIAww5Di/1hw0rQ3U0wr8ua6EvmSIesYkW2XLwngF44sUIe7tgdi2ctjJFdREdTOrsGft6NOy29JjXwqFTUprRhKjOZ24lbEXQxBZ0WJEyrJjZM+OECZ6QITUrZAl4GI0L3kEkmklHTdMbSFQtnVD8Djcum3US5b7jK86vP5amssmd8TKYTvJI584st3v2bBrF9/TywP52dg5mVtk92dnNxp7RN/pWRiNFJ4jACKI9nRaOY7Gn0+KJF4tLa7PmjH09Gulme8xr4dCZFs1IKRUD7gIWAXHgs8CLwN2Y1v4F4Bqt9SF3L0Zb1BDtaCdZ7ztGIhlyAN9EDtdrfQbrua+Zo8bnn4lz4scgeNx3yHBROpW7jNfJ05pAvHIhR5/yHXoPPEM03kBF3fHjPzSD6M51PLb7DvqTnaxqOI+z5l1LZJo3Gy8rn8Mdy97PX3q3MydWw8oJLAYJMhByKONwgU5s6xzJjUtHaJktbvZ2jX1daGJnpnLmjPJh8E2JnDmjYsLq7iPx2HNE9rSTmtPAYNuBJYkbL986/pPFw3S1HO8DDmitr1BKNQJ/BZ4DPq21XqeUuh24BLh3rEDytdrtxBNYQ4NZbsklgUOoomFJzbNnOdKH9fRnsZLu0MmOh6FyDs6qq7JDi+ea7Y/acdKRchzvUDy7jHhL7sFvoxGJVVPb/Ma8/c8UvSMHeGDH50k7psFcf+BX1McXcELTZdP+7tpoBWfX5bOpeWzqYwkaognak5mys6KiMGcRvKGhjgf3tx9cDlMTjXBCTdgZXMXN7FrY05l9XUxYNVB28cT3SDm1NgPvKN4h8sRjzxFtM51h9/dbQP4NTREwXcLoJ8BPfddJ4ETgUff6N8B5jCOMgorwaFa7o2+8gNQjD8JAP9g2kcvW0tSUPUw3MjKSc66rxUjOOy3IfbZ1K93J7DH8sp7N1AT8vfrM87lpSPay5MI7OPC3n4CTpmHFOyhvXJHjr9TYv++5g4LIoz31Uk7eFTt3Vl3AdX99iP1D/SyuquNrJ5xPWWTmh5aamqr5ck2CX+3aS2U0wruOamF+Rfhky+9aO3mkrZPm8jLeu7iJhvjU7bs6VN5yepoHnx5h9/40c2fZnP+6GHVVMqQ13QzuzbFMcloh4nEoTIsw0lr3AiilqjFC6dPALVprb0StBxi3z5QmWyA5gGPluvXt2kViwF2em04z/PhjdFY25oRXTVCrMpU4qGnt2xcwvOU0Y0UrsJKZJcDD1Sty/KWqjoG92cdIpO0KepLNlC0zJoB609AbDL8EKR9ZSMSKkXIyAr0xonLzrsj5j+1Ps3vQWOfQPe3c9uKfubx55ThPTQ/zsflos7s3ri/Jvr7cvHzkQA+3bt9/8PqpPV186Zh5WEU0f3SOb0HiyMAw+8LXYghTSPnshoOakcsThYrLZJm2LotSagHwCPBdrfUPIEsxqQY6Qx/0EXqekZPrFl//bJZbtHUnVn9gXiYdNheQZw84VoFzyr/gVC/AiSRwFp2Ps2Jtjrd0V8jkd6rIj86cJJWxBi5Y+Elqy1qI2eUc33gJa2a9tdDRmhADqRGe6W7NclsXWNBQbDzanm3WasfgCNtC9igdziQHoesVi/69FkVsQGZGGTzjeJLNjTiWRbK5EeADhY7TRJmuBQxzgN8C12qtf+c6/1UpdZbWeh1wAUZQTZyAhHKAtG0TSaWy3JxYYFe+HSZ3Q9xGO6mr+SSc5rvGjloid2mOFZ2Zda2DA7vZuvkWens2UlW9iiXLbyCRcx7S1LKs7gyW1Z0xre+YTmJ2hJgVYdjJlJ1YkW8oro9ll08bqD2C9hkNdsDOdRGcpGkIahalaT5Zllk7NZUMXPT6g9dNTdUltXgBpk8z+iRQD/yLUmqdUmodZqjuM0qpJ4EysueU8iekJ2SnQyYkQ4xRTjb8vImHTH7HZmYGd+vmW+jpXo/jpOjpXs/WzbfMyHtLGcdxSAdmEtOHVACmn3c219PgCiQLeHtzHQ1lJb9dMG/aN9kHBRFA9zab4TAbyELJMV1zRtcD14fcmvLVHRamUQliJwMLFkZyFyuQs6SBLIsHE45LOlcAztRYfm/PxjGvhVzSODnDPNYhHUQ//cxNxPjaqvls6h1idjxKcxEtXpgJnJDV7o4YED8sKO4xiQDGynaumxMyBJeuDBzeFgurtFPb8CSOfk/OJtfEssun9B2jUVW9asxrIZe4HeWc+oVZbhc0Li5QbPKnzLZZXVN+xAkigNql3gYPQ/ksh3iRLR8XJkdJCaPRbNNZgWE6C7A7ss/CCV/AkAoJc/LDNHainrKla91TZm0is08h1nzqpMObCEuW30B1zWosK0J1zWqWLL9hRt5b6rxnzgpWVjRSGynj1JoW3txQ/MLoSKZqrsOCs1PULUvTdHyKeWeIWnS4UNSDzflueiUSgcAChnRTYDFB2AIGK55rtXu0BQx5kOzawvCWHxy8Tu19iqGXf0J86TsnHWa+JMrnsnLNl6b9PYcb/7nzWV7sN0tin+xupb7tBT4yd02BYyWMRfksKJ8lixYON4paMwpd2h3mJxWiGe0PWEAM04ycXM3IiU9+0+bwtvty3V59eNLhCdNLf2qEDX37s9ye7modxbcgCNNJUQujIA7gBMz6GLdYjlu6OjCQbNsQXExgRXACVqCdssmb/IjU5lp7tg/BdpowvcTtKPXRbBtjc+OlZ4JHEA4HSkoYWQCRWI6bk8hzL09gcYFjRyAdWJ4TYjwzX+KL3opdvSTzulgt5as/NunwhOklYln83bw1VLjW1mfFyvlAy7EFjpUgHJkU9ZwRlkVw7a0TjUBwBXVwg+toGxejZTDss00Si8OInb2cOzq5I6w9qs/8BsmurZDsJdpYmIPahPx5bU0L3zrmzewZ7mdevIpIkW96FYTDlaKuecna7HNqHGDoxBOzlnKPLF7M0JqTcXxDcCNqFcRzTbwPHXtW1vXwcW9keMW5vvAthlZdeMjxjtYuEUFUQsTtKAsTNSKIBKGAFLdmVFMFnZkDUSzAqaii722XEt2xg3R1NcmFCyGVJLlwCZHdO3Cq6xhWx4UGN3zs2aRmLSSybwepOYtJzV4EQLJ5JZGOnSRbVpFuXDT96RIEQRCysMKsFxQLnU9ucMr/8NTB63R5gt53XWyWcvtIPLWOsk0bDl6nauvpe9vluQsWBEEQjgCamqpLrvEras1o5OhFkE4R27Idp6KcoeNXQSRCZPcuYtu3k66qZnjFCiK7sy0tR7o6sPp7cSpL62wdQRCEI5WiFkYAI8uXMrJ86cHr6CuvULEuY/A7+upO0g1NRLozJ1Kkyytwyov3VEZBEAQhm5KbsS3T2WcGRdvaGF6xmmSTOZQsXVnFwBnnHZIlBUEQBGFmKXrNKEjwnCLHskhX19J/0TthaAjKymSuSBAEocQoOc1oaM0aHJ8F7pEVK3A8C93xuAgiQRCEEqSoV9Pt29cTGjlrcIDIrt041dWkZs+e6WgJgiAUNbKaboZwEuUkly4d36MgCIJQEpTcMJ0gCIJw+CHCSBAEQSg4IowEQRCEgiPCSBAEQSg4IowEQRCEgiPCSBAEQSg4IowEQRCEglN6+4wch7IN6w9a7R488UScmprxnxMEQRCKlpITRmUvvEDi2WcBiOzfT+TAfnrffhnYouQJgiCUKiXXgkd3bM+6tnt6sDs7ChQbQRAEYSooOWGUrq3NunYiEdKVVQWKjSAIgjAVlJwwGnrNCaTq6wFwolEGTznFWOsWBEEQSpaStNoNYHd1kS4vN+cXCYIgCAcRq90zSHC4ThAEQShdSm6YThAEQTj8EGEkCIIgFBwRRoIgCELBEWEkCIIgFBwRRoIgCELBEWEkCIIgFBwRRoIgCELBEWEkCIIgFJyitsAgCIIgHBmIZiQIgiAUHBFGgiAIQsERYSQIgiAUHBFGgiAIQsERYSQIgiAUHBFGgiAIQsERYSQIgiAUnBk7XE8plQDep7X+5jSF3wx8H/gTsBZYobUeDPi5ClgBXAc8ArwP2AtsBjYCv9Na3+H6fQpYq7XeppRaBPwQuB14r9b6PKXUpcBRQLPW+kb3mceBXVrrd48T1wbgYuBMYK/W+kal1A+BK7XWw66fAeAi4J+ASuBBoFVr/U2l1BuATq31eqXUVzGditOBQa31Ke7zPwRuBl7QWttKqXXAR7XWm0aJ0zbgVuDTwH+5754NpIFBoE5rXaWUSgH7gX8AyoBbXfcfAk8BbwNeB3RprZuVUj8H3gvsA84Ffg/8k9b6Vt83adda/9K93udG6Q7gYq31aqVUF/AF4GGt9TOuv2uBVuDbQATYDQxprVcqpb4IrAR6gXOA1wPnaq1vVUr9GXgCOBr4pdb6dje8K4CrgfOATwForW/y5c9NQA1wLXCJ1vo3rlszcLPWercvPSvcb7oX+KDW+r+VUscB9cA7gGuAdUCtm+fnAbbWeq1SagVwu9b6LDesdwL3Av8OXKG1fsAXp88D78GU5S8DbwV2AOe76asH6oAPAau11jcrpc4C/s51PwH4CvCqF2df2I8D5cA3gJeBz7nvGXT9rvXqhdb6FKVUm5um+cAa4K9ung/jwy1nO4CPANswdfB7wG3AyUAfcFWwnAbLr1Lqm8AqrfWpSqnvAMuBz2DqSxtwJabcrTKfMrvdcevgm7XWP3Cvr3HzrQb4qPv3Xq31bPd+wo3rh4CYm2fXY9qFG13/m9x334R5abNbRtrce18B+oEFmDK23U3TWq+9Ac7CrQ9KqWeBfwQSwGuBy4FjtdYjbpwO5j+jEGi7vHC9/FqqtW4K+N9GSNs5StjHAfVa6z8E2qQ2rXXzeM8HmUnNqBnzIacFrXUb8N08vfdgCsWxmMb2FuAVTxCNw2nu7/WYyjoZVmMapTM9B6312mDFBRqBWcDDbjy9/LsamOv+fx5GKGShtV4L7HKfy5cbgLjW+h+BzwMaI6x/6v56xDAN37hord+O+fYOoNxn/ffv9gRRgDf4/FYBX/IEkcvHMB0LMJXdH78NwPNuHCOu26fd315Mw/eGwPsimMY54oa3O4/kgRF2NaPci2MEIcBlGAG5BtOg/wUjiMZjA+b7j4nW+jmt9c1a67sx3+1YYB5GgP9Ca32zz3sCU66+hulYjMZK4JNk8tDjglHisBb4Babz9ERIeQ7itQnNmLqwRGt9ymgdpjE4322QX/Hi4Xt3FeHtzmqyy/ACjAD30vIxsuuOv/3ag2nMJ8o2oExrPV9r/e0wD4H6sNJ1ewD4MabzG/wWeREI18uv1GTC8uGVachukybFjFlgUErdielZ/BmjFfwAU5GHgIcwFedk4DlgCyahI+79XqAB6MT00k5z3ROYRm47prd7OSaDHUxPpBxYQkbopgkXwEPuM4mAuwNY7q+Hhem9VU4g+V44o91LM3YhSxKuxY4V7mj+RtywrFHuj0WK7HhO5v0ew4QI0TyfPVTGC9NL5wgZgei47lFyv4cDHMB0Hiyfm/9/h/Cyl0/6wvyM9lyYu7/ch90Pftd83jnafQLuo5W3JJm89b8/7B1bgYWuH384o9ULMGkeIrvDmHafH6++BcPJt9MezBPvu49gOiC1rrvXRtmBsAfItGn47o1g2pw6TDmrxaR7yPXjkKlLA65bzI2LF58ksBPTCal20+UAHZiOVw+mw3Y38CiwCCN03+8+exewFJNvXwIeB/6IqcdXAPdhOoRvAZ5xtcLjgK+6cTgAXK217hot82ZSM/o3TKL/iEn07zA90I2YXuqPMBn+B8zQQBSjzm/ECKNfAnMwvR8LWA+0u2HfjxFE+zGCKYbJwFkYDeghTKbZrjuYD+z1CmNkCsC3yfSInsF8XK9CPO+6f939HSbTu2j1pdULa9D3P2T3tByf23d91/sxhQz33Un3z38/7b7P8uWB4/tL+dy8eAA8S3bD4Ln74+49t8d3/aj7O0JGeEJ2xZtIL2sfmYbICyvseX+6dwLd7v9P+Z4N9qZ6Q8Jxxvnfn6YURhuBzPcbAbrI5MkT7u92zLeyMNrRI5jKDaZDhXs/7QvHe98u93+vs+OPgxePft97vLh+ikz58PwPu2GnMcNj3vNJ93fY/f8lchtLyDRo3b6w/TztAGllVAAACVNJREFU/o74nvGXsX2+/73w0+57Y+6vg8lPr/4NYsrjoPteLw+GMQ1XCnjR9TvHfbeFafD2uNd+gZImk88p9y/hy6MNZNo72/dO7xn/sNQ+33M2ph76y6f/PZ5/rxwE6/sGjKDw0u1g2rkh9y9Jpg7HfG6Pu27bMR3ruPtsNaZs/QjTnsbcOI5g6umw69drN4bdtNqYDv9G122DG97PgX8GLsFoygBf11qfidHkPgz8L2C/1vo0zFD7Z9143o0ZsXgaeAD4hNZ6hy/9dwLXaK3PAn4NfIIxKNQChmMwQglMxrQDr8HM97wOOM51b8EIlCrM0INNpgE+BvMhUkCFG1Y1RhMCI9mrMRrMG8k0fl6a92EKs9dD8bSiN5EpVGvIFPgF7jvBjEXjhhnx/e/hFeQE2b0Tr6D2kS045vj81PvCstzw/d+pwb32xno9Dc3rbfnfN+D+xt3fNWQ3Rl6aW8hlti++ZwTS449PmGAKErzX5HPzwgpqXGmM4PTuz8d8TzBlxfMXzNswjdUa539/mmxM2j13x41HnfsHpmMCZljCy9soJp+83u9R7m/cDbPPl0YLo0X54+H/brh+vXLd7Lv3djIagpfmKJlGySujKfc67YvDArLxwvA0hhqytVUv/BN91148/GnxyqJNtoDziLv+EmQ6Q20YrSVK9rePuum2MGUdMvXMAR7zvdf/7Q+QafAtMmXfw8sXL63VZL67ReY7emnzC5VEII7B+jWLTL4Fv+Eq9/9a3/0q930pN4ztGGFiu89EMaNEuGlqcN09DbIV+BmmcwGZ738CJu/83xTMd/XC3uq+6z/de+/FzMf+zA0nqbX2OntPYIbWj8EoCWitezCdhKWMzzHAbe5837jDeDMpjLzeRAvwN8Cb5C/DZNaz7v2lmAnWGBnNqBwzNpnGTNTXY9TCCOZjej2uVoyQ8wSMp/08TqYn5BXYmBuup7b3ue7/TaagP0/mw45gCjxkei37yRRIvzAaLV+9nr5X2bzn/kKmUe/GCGJ87/OELu7z/WTmSLx0eRUo5QvbEzZ7yfR8/b3BXvf3VXI1DP94v6cResOZfr+TKUNJ3/9eWCOBawuTzrTvvtd79XrqkUBYXhyDBDVSfyMc9DOAaSg9bEy56iUz5DPL/X3ZjVPajcceMpqRf2gYjJD0Ogxe4+mPU1icPc19p8+9nOxvDdmaiReW58frbe930+V/DrIbz/ZAXPxaG2S+vz9daTICwh+evxx6GmYfmbra4IY3iGkDvHd5Q6MjZIS/P76nYfLO858kI0i9+Fi+X+//4GhBp/ub9D3n3WsnW/h4380Lw0tXleve6nvWXx6TGI06jdFivDzbh6mLnhCZR0bYePn2MzfMIUzZifrefzLwGzJzXN2+d3jlz9P2ujD13xsZOs79ne/6udVNxwXAT4CoUup4N4wzgBcw7fUZAEqpajeMV8gewgwbztSYRVlnYbSi+xmDmZwzSmA0n1pMpjVhNII08HHMSrjHMBODnZgPtBfTgxzACJlzMZna4z7X4vp9GDgbk6mdmJ7k7RgV0+v5eHiNkffRvQwMm8PwKp/Xa+p139Hn/vrxN6K9gfvBseTgR9yFKRxW4P6Q791jjY8H4xEcc/f/hvVcw+YMioVg3o3mNpX0YzoMwTkjr5OzC1M+IXt+yT8EGoxjMI8HyZ2jHA1vLmG0NIfNCQW/+WhzRilMOatgfPzvGW3Ob6zy53/nbzGjEF4j6xccwfmjbjJalCdYysgMRfq1Gu+54Bye5+6Rb/kZrW7kUwb92skeTLvkuScx7Vg9Ji8Trp86MkNykBkajWGEWA2Z4Ud/GxbxhQ3mm75AZjQkQqbDXYlpg2dj2st2THm8DbOI6XFgGUZju9p9/k6MolAOfFVr/W2l1EXA/8esDl3u/r4beMSdMzoR+KIvbh/UWm8eLbOK5ggJpdRpmAb8bcCTwE1a63xUwXzD/2fM+OaQUmqP+/8XpiDc04AqrfVvlVLLgAemMt55xuFy4Gmt9Ral1IcwvcfzgOhkllj6wr0JaPOWP4/hL6+lnGP5U0o9h1kWf9Eo978P/JfW+vch9z4MLNBa/9+w63zwlb/nMJr5jZjltPcC5wTGwvMN83KMFvcwZnXia7XWV/vurwAuxDQMD2GGP6KY3uT9/vI0kSW3o8TlKnKXb4e5nYW73Dif8DDzGd5S9oPPKqUuBPZprf+klDoX+KTW+pw84jlufVJKVWDmR16HWcKdlQafv7sxGkSj1vo2pVQcM9Iy7vcM5o1S6mTgOq31leOlYTpRSt0OoLX+qFfX/WWqlJmxfUZ5sBVTGUeAkzBSdirpAZ5SSnmTwr+eonC3Avcopf4V03uZ6njnw07gh27avJ7u02SWFZc0bkdiJZnJef+9CzHL7D8adj0BtgL3YHrcyzE9zO8D35yMIHLZidnj0YzZD/SBkPvnYDoPZZiRgC8DNyilPknhytNU8Apwl1IqiekZ/32ez41Zn1xh9Q3gU1rrtFJqvPC6gTcrpf6E0TAm/D3dPW1XY1b4Fpp24ANKqZWYuv7BAsdnyigazUgQBEE4chFzQIIgCELBEWEkCIIgFBwRRoIgCELBEWEkCDOEUuoqd4WXIAgBRBgJgiAIBaeYlnYLwoyilIpi7Awei9mAvR5jp+teMtY1vo85TqMRY87kGxhTP+dgNlZeoLUeVEpdibEkbmOsiVzjul+BscXYjdlEGGY7TxCOeEQzEo5kTgOGtdanYkyr1GE2oSrM2Vtvcv29FrMZ+3yMxeLfaK1Xu/fOV0qtwlj7OE1rfTxmv9ANSqm5wH9gDAGfSsa2niAIAUQzEo5Y3EPBDrgHq63AmECpwhx4uM3n9Y9a626g291k+TvXfTvGnMvZ7rNPuffLMPYGT8Oc67MHQCn1PYzRXkEQAohmJByxKKXeihmG6we+hbFMvJ1ci89Zh8RprYPGWSPAj7XWx7ua0WsxJ8IG7ZcFnxMEwUWEkXAkcy5GiHwLYzDybCZnMHYdcKlSarZSysLMQ30MY3DyVKXUPKWUTcZSvSAIAUQYCUcydwLvUUptwJjP/yNGIE0IrfXzwGeA32MMcUaAz7vDc9dhDKU+Q+ZwQEEQAohtOkEQBKHgiGYkCIIgFBwRRoIgCELBEWEkCIIgFBwRRoIgCELBEWEkCIIgFBwRRoIgCELBEWEkCIIgFJz/AUUhLHkKXwiFAAAAAElFTkSuQmCC\n",
817 | "text/plain": [
818 | ""
819 | ]
820 | },
821 | "metadata": {},
822 | "output_type": "display_data"
823 | }
824 | ],
825 | "source": [
826 | "sns.stripplot(x=\"armed\", y=\"age\", data=df)"
827 | ]
828 | },
829 | {
830 | "cell_type": "markdown",
831 | "metadata": {},
832 | "source": [
833 | "As you would have guessed by now, this plot is known as a Strip plot and pretty ideal for categorical values. Even this shall be dealt in length later on.\n",
834 | "\n",
835 | "I hope these sample plots have intrigued you enough to dive deeper into statistical visual inference with Seaborn. And in next lecture, we shall learn to control aesthetics of our plot and few other important aspects."
836 | ]
837 | }
838 | ],
839 | "metadata": {
840 | "kernelspec": {
841 | "display_name": "Python 3",
842 | "language": "python",
843 | "name": "python3"
844 | },
845 | "language_info": {
846 | "codemirror_mode": {
847 | "name": "ipython",
848 | "version": 3
849 | },
850 | "file_extension": ".py",
851 | "mimetype": "text/x-python",
852 | "name": "python",
853 | "nbconvert_exporter": "python",
854 | "pygments_lexer": "ipython3",
855 | "version": "3.6.4"
856 | }
857 | },
858 | "nbformat": 4,
859 | "nbformat_minor": 2
860 | }
861 |
--------------------------------------------------------------------------------
/Seaborn Cheat Sheet.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/clair513/Seaborn-Tutorial/fd562f8c662b0d3805a2b0a5bd848b2e318d0f06/Seaborn Cheat Sheet.pdf
--------------------------------------------------------------------------------
/_config.yml:
--------------------------------------------------------------------------------
1 | theme: jekyll-theme-slate
--------------------------------------------------------------------------------
/docs/CONTRIBUTING:
--------------------------------------------------------------------------------
1 | Steps for creating good issues or pull requests:
2 |
3 |
4 | Links to external documentation, mailing lists, or a code of conduct:
5 |
--------------------------------------------------------------------------------