├── LICENSE
├── README.md
├── cifar10_sup.sh
├── cifar10_unsup.sh
├── ckn
├── __init__.py
├── data.py
├── kernels.py
├── layers.py
├── loss.py
├── models.py
├── ops.py
└── utils.py
├── experiments
├── cifar10_sup.py
└── cifar10_unsup.py
└── third-party
└── miso_svm-1.0
├── LICENSE.txt
├── PKG-INFO
├── README.md
├── cblas_alt_template.h
├── cblas_defvar.h
├── common.h
├── ctypes_utils.h
├── linalg.h
├── list.h
├── misc.h
├── miso.cpp
├── miso_svm
├── __init__.py
├── classification.py
├── miso.py
└── quick.py
├── setup.py
├── svm.h
└── utils.h
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 | CKN-Pytorch-image
635 | Copyright (C) 2019 CHEN Dexiong
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | CKN-Pytorch-image Copyright (C) 2019 CHEN Dexiong
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Convolutional kernel network with Pytorch
2 |
3 | Re-implementation of Convolutional Kernel Network (CKN) from Mairal (2016)
4 | in Python based on the [Pytorch][1] framework.
5 | The package is available under the **GPL-v3** license.
6 |
7 | Author: Dexiong Chen
8 |
9 | Credits: Ghislain Durif, Mathilde Caron, Alberto Bietti, Julien Mairal
10 |
11 | The code is based on
12 |
13 | >Mairal, Julien.
14 | [End-to-end kernel learning with supervised convolutional kernel networks][5]. NIPS 2016.
15 |
16 | If you have any issues, please contact dexiong.chen@inria.fr.
17 |
18 | ## Installation
19 |
20 | We strongly recommend users to use [anaconda][2] to install the following packages
21 |
22 | ```
23 | numpy
24 | scipy
25 | scikit-learn
26 | pytorch=1.2.0
27 | miso_svm
28 | ```
29 | The Python package `miso_svm` can be installed with (original [repository][3])
30 | ```
31 | cd third-party/miso_svm-1.0
32 | python setup.py install
33 | ```
34 |
35 | ## Results
36 |
37 | Reproduction of the results from [Mairal (2016)][5] with this package.
38 | The results from the original paper (Mairal, 2016) were achieved using
39 | cudnn-based Matlab code available [here][4]. To run the following experiments, please first download the [data][6], put into the folder `./data/cifar-10` and then do
40 |
41 | ```bash
42 | export PYTHONPATH=$PWD:$PYTHONPATH
43 | cd experiments
44 | ```
45 |
46 | #### Unsupervised CKN
47 |
48 | Here is a summary of the results of **unsupervised** CKN on CIFAR10 image classification dataset with pre-whitening
49 | and without data augmentation or model ensembling.
50 |
51 | ```bash
52 | # Code examples
53 | python cifar10_unsup.py --filters 64 256 --subsamplings 2 6 --kernel-sizes 3 3
54 | ```
55 |
56 | | #layers | #filters | filter size | subsampling | sigma | Accuracy |
57 | |:---------:|:-------------:|:-------------:|:-----------:|:------------:|:--------:|
58 | | 2 | 64, 256 | 3, 3 | 2, 6 | 0.6 | 77.5 |
59 | | 2 | 256, 1024 | 3, 3 | 2, 6 | 0.6 | 82.0 |
60 | | 2 | 512, 8192 | 3, 2 | 2, 6 | 0.6 | 84.0 |
61 |
62 | #### Supervised CKN
63 |
64 | Here is a summary of the results of **supervised** CKN on CIFAR10 image classification dataset with pre-whitening
65 | and without data augmentation or model ensembling.
66 |
67 | ```bash
68 | # Code examples
69 | python cifar10_sup.py --epochs 105 --lr 0.1 --alpha 0.001 --loss hinge --alternating --model ckn5
70 | python cifar10_sup.py --epochs 105 --lr 0.1 --alpha 0.1 --loss hinge --alternating --model ckn14
71 | ```
72 |
73 | | Architecture | Accuracy | training time (GTX1080\_ti) |
74 | |:------------:|:--------:|:--------------------------:|
75 | | CKN-5 | 86.1 | ~60 min |
76 | | CKN-14 | 90.2 | ~260 min |
77 |
78 |
79 | [1]: https://pytorch.org/
80 | [2]: https://anaconda.org/
81 | [3]: https://gitlab.inria.fr/gdurif/ckn-tf/tree/prod/miso_svm/
82 | [4]: https://gitlab.inria.fr/mairal/ckn-cudnn-matlab/
83 | [5]: http://papers.nips.cc/paper/6184-bayesian-latent-structure-discovery-from-multi-neuron-recordings.pdf
84 | [6]: http://pascal.inrialpes.fr/data2/mairal/data/cifar_white.mat
85 |
--------------------------------------------------------------------------------
/cifar10_sup.sh:
--------------------------------------------------------------------------------
1 | . s ## activate virtual environment
2 | cd experiments
3 | python cifar10_sup.py --epochs 105 --lr 0.1 --alpha 0.001 --loss hinge --alternating --model ckn5
4 |
--------------------------------------------------------------------------------
/cifar10_unsup.sh:
--------------------------------------------------------------------------------
1 | #filters="64 256" # 77.6%
2 | #filters="256 1024" # 82.0%
3 | filters="512 8192" # 84.0% with kernel-sizes="3 2"
4 | kernels="3 2"
5 | . s ## activate virtual environment
6 | cd experiments
7 | python cifar10_unsup.py --filters $filters --subsamplings 2 6 --kernel-sizes $kernels
8 |
--------------------------------------------------------------------------------
/ckn/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/claying/CKN-Pytorch-image/19ae94bd5964ee0734fe413668f8293b2568304d/ckn/__init__.py
--------------------------------------------------------------------------------
/ckn/data.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | import os
3 | import scipy.io as sio
4 |
5 | import numpy as np
6 |
7 | import torch
8 | import torch.utils.data as data
9 | import torchvision.transforms as transforms
10 |
11 |
12 | class Rescale(object):
13 | def __init__(self):
14 | self.xmax = None
15 | self.xmin = None
16 |
17 | def __call__(self, pic):
18 | if self.xmax is None:
19 | self.xmax = pic.max()
20 | self.xmin = pic.min()
21 | pic = 255 * (pic - self.xmin) / (self.xmax - self.xmin)
22 | return pic.astype('uint8')
23 | return self.xmin + pic * (self.xmax - self.xmin)
24 |
25 | def create_dataset(root, train=True, dataugmentation=False):
26 | # load dataset
27 | if not '.mat' in root:
28 | mean_pix = [x/255.0 for x in [125.3, 123.0, 113.9]]
29 | std_pix = [x/255.0 for x in [63.0, 62.1, 66.7]]
30 | tr = [transforms.ToTensor(), transforms.Normalize(mean=mean_pix, std=std_pix)]
31 | if dataugmentation:
32 | dt = [transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip()]
33 | tr = dt + tr
34 | dataset = torchvision.datasets.CIFAR10(
35 | root,
36 | train=train,
37 | transform=transforms.Compose(tr),
38 | download=True,
39 | )
40 | return dataset
41 | else:
42 | tr = [transforms.ToTensor()]
43 | if dataugmentation:
44 | dt = [transforms.ToPILImage(), transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip()]
45 | tr = dt + tr
46 | dataset = CIFARmatlab(
47 | root,
48 | train=train,
49 | transform=transforms.Compose(tr),
50 | augment=dataugmentation
51 | )
52 | return dataset
53 |
54 |
55 | class CIFARmatlab(data.Dataset):
56 | def __init__(self, root, train=True, transform=None, augment=False, dtype='float32'):
57 | self.root = os.path.expanduser(root)
58 | self.transform = transform
59 | self.train = train # training set or test set
60 | if self.train:
61 | split = 'tr'
62 | else:
63 | split = 'te'
64 | matdata = sio.loadmat(root)
65 | R = matdata['X' + split][:, :32, :].transpose(2, 1, 0)
66 | G = matdata['X' + split][:, 32: 64, :].transpose(2, 1, 0)
67 | B = matdata['X' + split][:, 64:, :].transpose(2, 1, 0)
68 | data = np.stack([R, G, B], axis=3)
69 | labels = [e[0] for e in matdata['Y' + split]]
70 | data = data.astype(dtype)
71 | labels = labels
72 | if self.train:
73 | self.train_data = data
74 | self.train_labels = labels
75 | else:
76 | self.test_data = data
77 | self.test_labels = labels
78 | self.augment = augment
79 |
80 | def __getitem__(self, index):
81 | """
82 | Args:
83 | index (int): Index
84 | Returns:
85 | tuple: (image, target) where target is index of the target class.
86 | """
87 | if self.train:
88 | img, target = self.train_data[index], self.train_labels[index]
89 | else:
90 | img, target = self.test_data[index], self.test_labels[index]
91 |
92 | if self.transform is not None:
93 | if self.augment:
94 | rs = Rescale()
95 | img = rs(img)
96 | img = self.transform(img)
97 | if self.augment:
98 | img = rs(img)
99 | del rs
100 | target = torch.tensor(target, dtype=torch.long)
101 | return img, target
102 |
103 | def __len__(self):
104 | if self.train:
105 | return len(self.train_data)
106 | else:
107 | return len(self.test_data)
108 |
--------------------------------------------------------------------------------
/ckn/kernels.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | import torch
3 |
4 | def exp(x, alpha):
5 | """Element wise non-linearity
6 | kernel_exp is defined as k(x)=exp(alpha * (x-1))
7 | return:
8 | same shape tensor as x
9 | """
10 | return torch.exp(alpha*(x - 1.))
11 |
12 | def poly(x, alpha=None):
13 | return x.pow(2)
14 |
15 |
16 | kernels = {
17 | "exp": exp,
18 | "poly": poly
19 | }
--------------------------------------------------------------------------------
/ckn/layers.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | import math
3 | import torch
4 | from torch import nn
5 | import torch.nn.functional as F
6 | import numpy as np
7 |
8 | from scipy import optimize
9 | from sklearn.linear_model.base import LinearModel, LinearClassifierMixin
10 |
11 | from . import ops
12 | from .kernels import kernels
13 | from .utils import spherical_kmeans, gaussian_filter_1d, normalize_, EPS
14 |
15 |
16 | class CKNLayer(nn.Conv2d):
17 | def __init__(self, in_channels, out_channels, kernel_size,
18 | padding="SAME", dilation=1, groups=1, subsampling=1, bias=False,
19 | kernel_func="exp", kernel_args=[0.5], kernel_args_trainable=False):
20 | """Define a CKN layer
21 | Args:
22 | kernel_args: an iterable object of paramters for kernel function
23 | """
24 | if padding == "SAME":
25 | padding = kernel_size // 2
26 | else:
27 | padding = 0
28 | super(CKNLayer, self).__init__(in_channels, out_channels, kernel_size,
29 | stride=1, padding=padding, dilation=dilation, groups=groups, bias=False)
30 | self.normalize_()
31 | self.subsampling = subsampling
32 | self.patch_dim = self.in_channels * self.kernel_size[0] * self.kernel_size[1]
33 |
34 | self._need_lintrans_computed = True
35 |
36 | self.kernel_args_trainable = kernel_args_trainable
37 | self.kernel_func = kernel_func
38 | if isinstance(kernel_args, (int, float)):
39 | kernel_args = [kernel_args]
40 | if kernel_func == "exp":
41 | kernel_args = [1./kernel_arg ** 2 for kernel_arg in kernel_args]
42 | self.kernel_args = kernel_args
43 | if kernel_args_trainable:
44 | self.kernel_args = nn.ParameterList(
45 | [nn.Parameter(torch.Tensor([kernel_arg])) for kernel_arg in kernel_args])
46 |
47 | kernel_func = kernels[kernel_func]
48 | self.kappa = lambda x: kernel_func(x, *self.kernel_args)
49 |
50 | self.register_buffer("ones",
51 | torch.ones(1, self.in_channels // self.groups, *self.kernel_size))
52 | self.init_pooling_filter()
53 |
54 | self.ckn_bias = None
55 | if bias:
56 | self.ckn_bias = nn.Parameter(
57 | torch.zeros(1, self.in_channels // self.groups, *self.kernel_size))
58 |
59 | self.register_buffer("lintrans",
60 | torch.Tensor(out_channels, out_channels))
61 |
62 | def init_pooling_filter(self):
63 | size = 2 * self.subsampling + 1
64 | pooling_filter = gaussian_filter_1d(size, self.subsampling/math.sqrt(2)).view(-1, 1)
65 | pooling_filter = pooling_filter.mm(pooling_filter.t())
66 | pooling_filter = pooling_filter.expand(self.out_channels, 1, size, size)
67 | self.register_buffer("pooling_filter", pooling_filter)
68 |
69 | def train(self, mode=True):
70 | super(CKNLayer, self).train(mode)
71 | self._need_lintrans_computed = True
72 |
73 | def _compute_lintrans(self):
74 | """Compute the linear transformation factor kappa(ZtZ)^(-1/2)
75 | Returns:
76 | lintrans: out_channels x out_channels
77 | """
78 | if not self._need_lintrans_computed:
79 | return self.lintrans
80 | lintrans = self.weight.view(self.out_channels, -1)
81 | lintrans = lintrans.mm(lintrans.t())
82 | lintrans = self.kappa(lintrans)
83 | lintrans = ops.matrix_inverse_sqrt(lintrans)
84 | if not self.training:
85 | self._need_lintrans_computed = False
86 | self.lintrans.data = lintrans.data
87 |
88 | return lintrans
89 |
90 | def _conv_layer(self, x_in):
91 | """Convolution layer
92 | Compute x_out = ||x_in|| x kappa(Zt x_in/||x_in||)
93 | Args:
94 | x_in: batch_size x in_channels x H x W
95 | self.filters: out_channels x in_channels x *kernel_size
96 | x_out: batch_size x out_channels x (H - kernel_size + 1) x (W - kernel_size + 1)
97 | """
98 | if self.ckn_bias is not None:
99 | # compute || x - b ||
100 | patch_norm_x = F.conv2d(x_in.pow(2), self.ones, bias=None,
101 | stride=1, padding=self.padding,
102 | dilation=self.dilation,
103 | groups=self.groups)
104 | patch_norm = patch_norm_x - 2 * F.conv2d(x_in, self.ckn_bias, bias=None,
105 | stride=1, padding=self.padding, dilation=self.dilation,
106 | groups=self.groups)
107 | patch_norm = patch_norm + self.ckn_bias.pow(2).sum()
108 | patch_norm = torch.sqrt(patch_norm.clamp(min=EPS))
109 |
110 | x_out = super(CKNLayer, self).forward(x_in)
111 | bias = torch.sum(
112 | (self.weight * self.ckn_bias).view(self.out_channels, -1), dim=-1)
113 | bias = bias.view(1, self.out_channels, 1, 1)
114 | x_out = x_out - bias
115 | x_out = x_out / patch_norm.clamp(min=EPS)
116 | x_out = patch_norm * self.kappa(x_out)
117 | return x_out
118 |
119 | patch_norm = torch.sqrt(F.conv2d(x_in.pow(2), self.ones, bias=None,
120 | stride=1, padding=self.padding, dilation=self.dilation,
121 | groups=self.groups).clamp(min=EPS))
122 | # patch_norm = patch_norm.clamp(EPS)
123 |
124 | x_out = super(CKNLayer, self).forward(x_in)
125 | x_out = x_out / patch_norm.clamp(min=EPS)
126 | x_out = patch_norm * self.kappa(x_out)
127 | return x_out
128 |
129 | def _mult_layer(self, x_in, lintrans):
130 | """Multiplication layer
131 | Compute x_out = kappa(ZtZ)^(-1/2) x x_in
132 | Args:
133 | x_in: batch_size x in_channels x H x W
134 | lintrans: in_channels x in_channels
135 | x_out: batch_size x in_channels x H x W
136 | """
137 | batch_size, in_c, H, W = x_in.size()
138 | x_out = torch.bmm(
139 | lintrans.expand(batch_size, in_c, in_c), x_in.view(batch_size, in_c, -1))
140 | return x_out.view(batch_size, in_c, H, W)
141 |
142 | def _pool_layer(self, x_in):
143 | """Pooling layer
144 | Compute I(z) = \sum_{z'} phi(z') x exp(-\beta_1 ||z'-z||_2^2)
145 | Args:
146 | x_in: batch_size x out_channels x H x W
147 | """
148 | if self.subsampling <= 1:
149 | return x_in
150 | x_out = F.conv2d(x_in, self.pooling_filter, bias=None,
151 | stride=self.subsampling, padding=self.subsampling,
152 | groups=self.out_channels)
153 | return x_out
154 |
155 | def forward(self, x_in):
156 | """Encode function for a CKN layer
157 | Args:
158 | x_in: batch_size x in_channels x H x W
159 | """
160 | x_out = self._conv_layer(x_in)
161 | #print(x_out.shape)
162 | x_out = self._pool_layer(x_out)
163 | lintrans = self._compute_lintrans()
164 | x_out = self._mult_layer(x_out, lintrans)
165 | #print(x_out.shape)
166 | return x_out
167 |
168 | def extract_2d_patches(self, x):
169 | """
170 | x: batch_size x C x H x W
171 | out: (batch_size * nH * nW) x (C * kernel_size)
172 | """
173 | h, w = self.kernel_size
174 | return x.unfold(2, h, 1).unfold(3, w, 1).transpose(1, 3).contiguous().view(-1, self.patch_dim)
175 |
176 | def sample_patches(self, x_in, n_sampling_patches=1000):
177 | """Sample patches from the given Tensor
178 | Args:
179 | x_in (batch_size x in_channels x H x W)
180 | n_sampling_patches (int): number of patches to sample
181 | Returns:
182 | patches: (batch_size x (H - filter_size + 1)) x (in_channels x filter_size)
183 | """
184 | patches = self.extract_2d_patches(x_in)
185 |
186 | n_sampling_patches = min(patches.size(0), n_sampling_patches)
187 | patches = patches[:n_sampling_patches]
188 | return patches
189 |
190 | def unsup_train_(self, patches):
191 | """Unsupervised training for a CKN layer
192 | Args:
193 | patches: n x (in_channels x *kernel_size)
194 | Updates:
195 | filters: out_channels x in_channels x *kernel_size
196 | """
197 | if self.ckn_bias is not None:
198 | print("estimating bias")
199 | m_patches = patches.mean(0)
200 | self.ckn_bias.data.copy_(m_patches.view_as(self.ckn_bias.data))
201 | patches -= m_patches
202 | patches = normalize_(patches)
203 | block_size = None if self.patch_dim < 1000 else 10 * self.patch_dim
204 | weight = spherical_kmeans(patches, self.out_channels, block_size=block_size)
205 | weight = weight.view_as(self.weight.data)
206 | self.weight.data.copy_(weight)
207 | self._need_lintrans_computed = True
208 |
209 | def normalize_(self):
210 | norm = self.weight.data.view(
211 | self.out_channels, -1).norm(p=2, dim=-1).view(-1, 1, 1, 1)
212 | self.weight.data.div_(norm.clamp_(min=EPS))
213 |
214 | def extra_repr(self):
215 | s = super(CKNLayer, self).extra_repr()
216 | s += ', subsampling={}'.format(self.subsampling)
217 | s += ', kernel=({}, {})'.format(self.kernel_func, self.kernel_args)
218 | return s
219 |
220 | class Linear(nn.Linear, LinearModel, LinearClassifierMixin):
221 | def __init__(self, in_features, out_features, alpha=0.0, fit_bias=True,
222 | penalty="l2", maxiter=1000):
223 | super(Linear, self).__init__(in_features, out_features, fit_bias)
224 | self.alpha = alpha
225 | self.fit_bias = fit_bias
226 | self.penalty = penalty
227 | self.maxiter = maxiter
228 |
229 | def forward(self, input, scale_bias=1.0):
230 | # out = super(Linear, self).forward(input)
231 | out = F.linear(input, self.weight, scale_bias * self.bias)
232 | return out
233 |
234 | def fit(self, x, y, criterion=None):
235 | # self.cuda()
236 | use_cuda = self.weight.is_cuda
237 | # print(use_cuda)
238 | if criterion is None:
239 | criterion = nn.CrossEntropyLoss()
240 | # reduction = criterion.reduction
241 | # criterion.reduction = 'sum'
242 | if isinstance(x, np.ndarray) or isinstance(y, np.ndarray):
243 | x = torch.from_numpy(x)
244 | y = torch.from_numpy(y)
245 | if use_cuda:
246 | x = x.cuda()
247 | y = y.cuda()
248 |
249 | alpha = self.alpha * x.shape[1] / x.shape[0]
250 | if self.bias is not None:
251 | scale_bias = (x ** 2).mean(-1).sqrt().mean().item()
252 | alpha *= scale_bias ** 2
253 | self.real_alpha = alpha
254 | self.scale_bias = scale_bias
255 |
256 | def eval_loss(w):
257 | w = w.reshape((self.out_features, -1))
258 | if self.weight.grad is not None:
259 | self.weight.grad = None
260 | if self.bias is None:
261 | self.weight.data.copy_(torch.from_numpy(w))
262 | else:
263 | if self.bias.grad is not None:
264 | self.bias.grad = None
265 | self.weight.data.copy_(torch.from_numpy(w[:, :-1]))
266 | self.bias.data.copy_(torch.from_numpy(w[:, -1]))
267 | y_pred = self(x, scale_bias=scale_bias).squeeze_(-1)
268 | loss = criterion(y_pred, y)
269 | loss.backward()
270 | if alpha != 0.0:
271 | if self.penalty == "l2":
272 | penalty = 0.5 * alpha * torch.norm(self.weight)**2
273 | elif self.penalty == "l1":
274 | penalty = alpha * torch.norm(self.weight, p=1)
275 | penalty.backward()
276 | loss = loss + penalty
277 | return loss.item()
278 |
279 | def eval_grad(w):
280 | dw = self.weight.grad.data
281 | if alpha != 0.0:
282 | if self.penalty == "l2":
283 | dw.add_(alpha, self.weight.data)
284 | if self.bias is not None:
285 | db = self.bias.grad.data
286 | dw = torch.cat((dw, db.view(-1, 1)), dim=1)
287 | return dw.cpu().numpy().ravel().astype("float64")
288 |
289 | w_init = self.weight.data
290 | if self.bias is not None:
291 | w_init = torch.cat((w_init, 1./scale_bias * self.bias.data.view(-1, 1)), dim=1)
292 | w_init = w_init.cpu().numpy().astype("float64")
293 |
294 | w = optimize.fmin_l_bfgs_b(
295 | eval_loss, w_init, fprime=eval_grad, maxiter=self.maxiter, disp=0)
296 | if isinstance(w, tuple):
297 | w = w[0]
298 |
299 | w = w.reshape((self.out_features, -1))
300 | self.weight.grad.data.zero_()
301 | if self.bias is None:
302 | self.weight.data.copy_(torch.from_numpy(w))
303 | else:
304 | self.bias.grad.data.zero_()
305 | self.weight.data.copy_(torch.from_numpy(w[:, :-1]))
306 | self.bias.data.copy_(scale_bias * torch.from_numpy(w[:, -1]))
307 | # criterion.reduction = reduction
308 |
309 | def fit2(self, x, y, criterion=None):
310 | from miso_svm import MisoClassifier
311 | if isinstance(x, torch.Tensor):
312 | x = x.numpy()
313 | if isinstance(y, torch.Tensor):
314 | y = y.numpy()
315 | scale_bias = np.sqrt((x ** 2).mean(-1)).mean()
316 | print(scale_bias)
317 | alpha = self.alpha * scale_bias ** 2 * x.shape[1]
318 | alpha /= x.shape[0]
319 | x = np.hstack([x, scale_bias * np.ones((x.shape[0], 1), dtype=x.dtype)])
320 | y = y.astype('float32')
321 | clf = MisoClassifier(Lambda=alpha, eps=1e-04, max_iterations=100 * x.shape[0], verbose=False)
322 | clf.fit(x, y)
323 | self.weight.data.copy_(torch.from_numpy(clf.W[:, :-1]))
324 | self.bias.data.copy_(scale_bias * torch.from_numpy(clf.W[:, -1]))
325 |
326 | def decision_function(self, x):
327 | x = torch.from_numpy(x)
328 | if self.weight.is_cuda:
329 | x = x.cuda()
330 | return self(x).data.cpu().numpy()
331 |
332 | def predict(self, x):
333 | return np.argmax(self.decision_function(x), axis=1)
334 |
335 | def predict_proba(self, x):
336 | return self._predict_proba_lr(x)
337 |
338 | @property
339 | def coef_(self):
340 | return self.weight.data.cpu().numpy()
341 |
342 | @property
343 | def intercept_(self):
344 | return self.bias.data.cpu().numpy()
345 |
346 | class Preprocessor(nn.Module):
347 | def __init__(self):
348 | super(Preprocessor, self).__init__()
349 | self.fitted = True
350 |
351 | def forward(self, input):
352 | out = input - input.mean(dim=1, keepdim=True)
353 | return out / out.norm(dim=1, keepdim=True).clamp(min=EPS)
354 |
355 | def fit(self, input):
356 | pass
357 |
358 | def fit_transform(self, input):
359 | self.fit(input)
360 | return self(input)
361 |
--------------------------------------------------------------------------------
/ckn/loss.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | import torch
3 | from torch import nn
4 | import torch.nn.functional as F
5 | from torch.nn.modules.loss import _Loss
6 |
7 |
8 | class HingeLoss(_Loss):
9 | def __init__(self, nclass=10, weight=None, size_average=None, reduce=None,
10 | reduction='elementwise_mean', pos_weight=None, squared=True):
11 | super(HingeLoss, self).__init__(size_average, reduce, reduction)
12 | self.nclass = nclass
13 | self.squared = squared
14 | self.register_buffer('weight', weight)
15 | self.register_buffer('pos_weight', pos_weight)
16 |
17 | def forward(self, input, target):
18 | if not (target.size(0) == input.size(0)):
19 | raise ValueError(
20 | "Target size ({}) must be the same as input size ({})".format(target.size(), input.size()))
21 | if self.pos_weight is not None:
22 | pos_weight = 1 + (self.pos_weight - 1) * target
23 | target = 2 * F.one_hot(target, num_classes=self.nclass) - 1
24 | target = target.float()
25 | loss = F.relu(1. - target * input)
26 | if self.squared:
27 | loss = 0.5 * loss ** 2
28 | if self.weight is not None:
29 | loss = loss * self.weight
30 | if self.pos_weight is not None:
31 | loss = loss * pos_weight
32 | loss = loss.sum(dim=-1)
33 | if self.reduction == 'none':
34 | return loss
35 | elif self.reduction == 'elementwise_mean':
36 | return loss.mean()
37 | else:
38 | return loss.sum()
39 |
40 | LOSS = {
41 | 'ce': nn.CrossEntropyLoss,
42 | 'hinge': HingeLoss,
43 | }
44 |
--------------------------------------------------------------------------------
/ckn/models.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | import torch
3 | from torch import nn
4 | import torch.nn.functional as F
5 | import numpy as np
6 | from sklearn.model_selection import cross_val_score
7 |
8 | from timeit import default_timer as timer
9 |
10 | from .layers import CKNLayer, Linear, Preprocessor
11 | from miso_svm import MisoClassifier
12 |
13 |
14 | class CKNSequential(nn.Module):
15 | def __init__(self, in_channels, out_channels_list, kernel_sizes,
16 | subsamplings, kernel_funcs=None, kernel_args_list=None,
17 | kernel_args_trainable=False, **kwargs):
18 |
19 | assert len(out_channels_list) == len(kernel_sizes) == len(subsamplings), "incompatible dimensions"
20 | super(CKNSequential, self).__init__()
21 |
22 | self.n_layers = len(out_channels_list)
23 | self.in_channels = in_channels
24 | self.out_channels = out_channels_list[-1]
25 |
26 | ckn_layers = []
27 |
28 | for i in range(self.n_layers):
29 | if kernel_funcs is None:
30 | kernel_func = "exp"
31 | else:
32 | kernel_func = kernel_funcs[i]
33 | if kernel_args_list is None:
34 | kernel_args = 0.5
35 | else:
36 | kernel_args = kernel_args_list[i]
37 |
38 | ckn_layer = CKNLayer(in_channels, out_channels_list[i],
39 | kernel_sizes[i], subsampling=subsamplings[i],
40 | kernel_func=kernel_func, kernel_args=kernel_args,
41 | kernel_args_trainable=kernel_args_trainable, **kwargs)
42 |
43 | ckn_layers.append(ckn_layer)
44 | in_channels = out_channels_list[i]
45 |
46 | self.ckn_layers = nn.Sequential(*ckn_layers)
47 |
48 | def __getitem__(self, idx):
49 | return self.ckn_layers[idx]
50 |
51 | def __len__(self):
52 | return len(self.ckn_layers)
53 |
54 | def __iter__(self):
55 | return self.ckn_layers._modules.values().__iter__()
56 |
57 | def forward_at(self, x, i=0):
58 | assert x.size(1) == self.ckn_layers[i].in_channels, "bad dimension"
59 | return self.ckn_layers[i](x)
60 |
61 | def forward(self, x):
62 | return self.ckn_layers(x)
63 |
64 | def representation(self, x, n=0):
65 | if n == -1:
66 | n = self.n_layers
67 | for i in range(n):
68 | x = self.forward_at(x, i)
69 | return x
70 |
71 | def normalize_(self):
72 | for module in self.ckn_layers:
73 | module.normalize_()
74 |
75 | def unsup_train_(self, data_loader, n_sampling_patches=100000, use_cuda=False, top_layers=None):
76 | """
77 | x: size x C x H x W
78 | top_layers: module object represents layers before this layer
79 | """
80 | self.train(False)
81 | if use_cuda:
82 | self.cuda()
83 | with torch.no_grad():
84 | for i, ckn_layer in enumerate(self.ckn_layers):
85 | print()
86 | print('-------------------------------------')
87 | print(' TRAINING LAYER {}'.format(i + 1))
88 | print('-------------------------------------')
89 | n_patches = 0
90 | try:
91 | n_patches_per_batch = (n_sampling_patches + len(data_loader) - 1) // len(data_loader)
92 | except:
93 | n_patches_per_batch = 1000
94 | patches = torch.Tensor(n_sampling_patches, ckn_layer.patch_dim)
95 | if use_cuda:
96 | patches = patches.cuda()
97 |
98 | for data, _ in data_loader:
99 | if use_cuda:
100 | data = data.cuda()
101 | # data = Variable(data, volatile=True)
102 | if top_layers is not None:
103 | data = top_layers(data)
104 | data = self.representation(data, i)
105 | data_patches = ckn_layer.sample_patches(data.data, n_patches_per_batch)
106 | size = data_patches.size(0)
107 | if n_patches + size > n_sampling_patches:
108 | size = n_sampling_patches - n_patches
109 | data_patches = data_patches[:size]
110 | patches[n_patches: n_patches + size] = data_patches
111 | n_patches += size
112 | if n_patches >= n_sampling_patches:
113 | break
114 |
115 | print("total number of patches: {}".format(n_patches))
116 | patches = patches[:n_patches]
117 | ckn_layer.unsup_train_(patches)
118 |
119 | class CKNet(nn.Module):
120 | def __init__(self, nclass, in_channels, out_channels_list, kernel_sizes,
121 | subsamplings, kernel_funcs=None, kernel_args_list=None,
122 | kernel_args_trainable=False, image_size=32,
123 | fit_bias=True, alpha=0.0, maxiter=1000, **kwargs):
124 | super(CKNet, self).__init__()
125 | self.features = CKNSequential(
126 | in_channels, out_channels_list, kernel_sizes,
127 | subsamplings, kernel_funcs, kernel_args_list,
128 | kernel_args_trainable, **kwargs)
129 |
130 | out_features = out_channels_list[-1]
131 | factor = 1
132 | for s in subsamplings:
133 | factor *= s
134 | factor = (image_size - 1) // factor + 1
135 | self.out_features = factor * factor * out_features
136 | self.nclass = nclass
137 |
138 | self.initialize_scaler()
139 | self.classifier = Linear(
140 | self.out_features, nclass, fit_bias=fit_bias, alpha=alpha, maxiter=maxiter)
141 |
142 | def initialize_scaler(self, scaler=None):
143 | pass
144 |
145 | def forward(self, input):
146 | features = self.representation(input)
147 | return self.classifier(features)
148 |
149 | def representation(self, input):
150 | features = self.features(input).view(input.shape[0], -1)
151 | if hasattr(self, 'scaler'):
152 | features = self.scaler(features)
153 | return features
154 |
155 | def unsup_train_ckn(self, data_loader, n_sampling_patches=1000000,
156 | use_cuda=False):
157 | self.features.unsup_train_(data_loader, n_sampling_patches, use_cuda=use_cuda)
158 |
159 | def unsup_train_classifier(self, data_loader, criterion=None, use_cuda=False):
160 | encoded_train, encoded_target = self.predict(
161 | data_loader, only_representation=True, use_cuda=use_cuda)
162 | self.classifier.fit(encoded_train, encoded_target, criterion)
163 |
164 | def predict(self, data_loader, only_representation=False, use_cuda=False):
165 | self.eval()
166 | if use_cuda:
167 | self.cuda()
168 | n_samples = len(data_loader.dataset)
169 | batch_start = 0
170 | for i, (data, target) in enumerate(data_loader):
171 | batch_size = data.shape[0]
172 | if use_cuda:
173 | data = data.cuda()
174 | with torch.no_grad():
175 | if only_representation:
176 | batch_out = self.representation(data).data.cpu()
177 | else:
178 | batch_out = self(data).data.cpu()
179 | if i == 0:
180 | output = batch_out.new_empty(n_samples, batch_out.shape[-1])
181 | target_output = target.new_empty(n_samples)
182 | output[batch_start:batch_start+batch_size] = batch_out
183 | target_output[batch_start:batch_start+batch_size] = target
184 | batch_start += batch_size
185 | return output, target_output
186 |
187 | def normalize_(self):
188 | self.features.normalize_()
189 |
190 | def print_norm(self):
191 | norms = []
192 | with torch.no_grad():
193 | for module in self.features:
194 | norms.append(module.weight.sum().item())
195 | norms.append(self.classifier.weight.sum().item())
196 | print(norms)
197 |
198 | class UnsupCKNet(CKNet):
199 | def initialize_scaler(self):
200 | self.scaler = Preprocessor()
201 |
202 | def unsup_train(self, data_loader, n_sampling_patches=1000000,
203 | use_cuda=False):
204 | self.train(False)
205 | print("Training CKN layers")
206 | tic = timer()
207 | self.unsup_train_ckn(data_loader, n_sampling_patches, use_cuda=use_cuda)
208 | toc = timer()
209 | print("Finished, elapsed time: {:.2f}min".format((toc - tic)/60))
210 | print()
211 | print("Training classifier")
212 | tic = timer()
213 | self.unsup_train_classifier(data_loader, use_cuda=use_cuda)
214 | toc = timer()
215 | print("Finished, elapsed time: {:.2f}min".format((toc - tic)/60))
216 |
217 | def unsup_cross_val(self, data_loader, test_loader=None, n_sampling_patches=500000,
218 | alpha_grid=None, kfold=5, scoring='accuracy',
219 | use_cuda=False):
220 | self.train(False)
221 | if alpha_grid is None:
222 | alpha_grid = np.arange(-15, 15)
223 | print("Training CKN layers")
224 | tic = timer()
225 | self.unsup_train_ckn(data_loader, n_sampling_patches, use_cuda=use_cuda)
226 | toc = timer()
227 | print("Finished, elapsed time: {:.2f}min".format((toc - tic)/60))
228 | print()
229 | print("Start cross-validation")
230 | best_score = -float('inf')
231 | best_alpha = 0
232 | tic = timer()
233 | encoded_train, encoded_target = self.predict(
234 | data_loader, only_representation=True, use_cuda=use_cuda)
235 |
236 | n_samples = len(encoded_target) * (1 - 1. / kfold)
237 |
238 | clf = self.classifier
239 | n_jobs = None if use_cuda else -1
240 | iter_since_best = 0
241 | print(encoded_train.shape)
242 | print(encoded_target.shape)
243 |
244 | if test_loader is not None:
245 | encoded_test, encoded_label = self.predict(
246 | test_loader, only_representation=True, use_cuda=use_cuda)
247 |
248 | encoded_train = encoded_train.numpy()
249 | encoded_target = encoded_target.numpy().astype('float32')
250 | encoded_test = encoded_test.numpy()
251 | encoded_label = encoded_label.numpy().astype('float32')
252 |
253 | for alpha in alpha_grid:
254 | alpha = 1. / (2. * n_samples * 2.**alpha)
255 | #alpha = 1. / (2. * 2. ** alpha)
256 | print("lambda={}".format(alpha))
257 | clf = MisoClassifier(
258 | Lambda=alpha, max_iterations=int(1000*n_samples), verbose=True, seed=31, threads=0)
259 | if test_loader is None:
260 | score = cross_val_score(clf, encoded_train,
261 | encoded_target,
262 | cv=kfold, scoring=scoring, n_jobs=n_jobs)
263 | score = score.mean()
264 | else:
265 | clf.fit(encoded_train, encoded_target)
266 | score = clf.score(encoded_test, encoded_label)
267 | print("val score={}".format(score))
268 | if score > best_score:
269 | best_score = score
270 | best_alpha = alpha
271 | iter_since_best = 0
272 | else:
273 | iter_since_best += 1
274 | if iter_since_best >= 3:
275 | break
276 | print("best lambda={}, best val score={}".format(best_alpha, best_score))
277 | if test_loader is None:
278 | clf = MisoClassifier(
279 | Lambda=best_alpha, max_iterations=int(1000*n_samples), verbose=True, seed=31, threads=0)
280 | clf.fit(encoded_train, encoded_target)
281 | toc = timer()
282 | #self.classifier.weight.data.copy_(torch.from_numpy(clf.coef_))
283 | self.classifier.weight.data.copy_(torch.from_numpy(clf.W))
284 | print("Finished, elapsed time: {:.2f}min".format((toc - tic)/60))
285 | return best_score
286 |
287 | class UnsupCKNetCifar10(UnsupCKNet):
288 | def __init__(self, filters, kernel_sizes, subsamplings, sigma):
289 | super(UnsupCKNetCifar10, self).__init__(
290 | 10, 3, filters, kernel_sizes, subsamplings,
291 | kernel_args_list=sigma, fit_bias=False, maxiter=5000)
292 |
293 | class SupCKNetCifar10_5(CKNet):
294 | def __init__(self, alpha=0.0, **kwargs):
295 | kernel_sizes = [3, 1, 3, 1, 3]
296 | filters = [128, 128, 128, 128, 128]
297 | subsamplings = [2, 1, 2, 1, 3]
298 | kernel_funcs = ['exp', 'poly', 'exp', 'poly', 'exp']
299 | kernel_args_list = [0.5, 2, 0.5, 2, 0.5]
300 | super(SupCKNetCifar10_5, self).__init__(
301 | 10, 3, filters, kernel_sizes, subsamplings, kernel_funcs=kernel_funcs,
302 | kernel_args_list=kernel_args_list, fit_bias=True, alpha=alpha, maxiter=5000, **kwargs)
303 |
304 | class SupCKNetCifar10_14(CKNet):
305 | def __init__(self, alpha=0.0, **kwargs):
306 | kernel_sizes = [3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1]
307 | filters = [256, 128, 256, 128, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256]
308 | subsamplings = [1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2]
309 | kernel_funcs = ['exp', 'poly', 'exp', 'poly', 'exp', 'poly', 'exp', 'poly',
310 | 'exp', 'poly', 'exp', 'poly', 'exp', 'poly']
311 | kernel_args_list = [0.5, 2, 0.5, 2, 0.5, 2, 0.5, 2, 0.5, 2, 0.5, 2, 0.5, 2]
312 | super(SupCKNetCifar10_14, self).__init__(
313 | 10, 3, filters, kernel_sizes, subsamplings, kernel_funcs=kernel_funcs,
314 | kernel_args_list=kernel_args_list, fit_bias=True, alpha=alpha, maxiter=5000, **kwargs)
315 |
316 | SUPMODELS = {
317 | 'ckn14': SupCKNetCifar10_14,
318 | 'ckn5': SupCKNetCifar10_5
319 | }
320 |
--------------------------------------------------------------------------------
/ckn/ops.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | import torch
3 |
4 |
5 | class MatrixInverseSqrt(torch.autograd.Function):
6 | """Matrix inverse square root for a symmetric definite positive matrix
7 | """
8 | @staticmethod
9 | def forward(ctx, input, eps=1e-2):
10 | use_cuda = input.is_cuda
11 | #if input.size(0) < 300:
12 | # input = input.cpu()
13 | input = input.cpu()
14 | #print(torch.isnan(input).any())
15 | e, v = torch.symeig(input, eigenvectors=True)
16 | if use_cuda:
17 | e = e.cuda()
18 | v = v.cuda()
19 | e.clamp_(min=0)
20 | e_sqrt = e.sqrt_().add_(eps)
21 | ctx.save_for_backward(e_sqrt, v)
22 | e_rsqrt = e_sqrt.reciprocal()
23 |
24 | output = v.mm(torch.diag(e_rsqrt).mm(v.t()))
25 | return output
26 |
27 | @staticmethod
28 | def backward(ctx, grad_output):
29 | e_sqrt, v = ctx.saved_variables
30 | ei = e_sqrt.expand_as(v)
31 | ej = e_sqrt.view([-1, 1]).expand_as(v)
32 | f = torch.reciprocal((ei + ej) * ei * ej)
33 | grad_input = -v.mm((f*(v.t().mm(grad_output.mm(v)))).mm(v.t()))
34 | return grad_input, None
35 |
36 |
37 | def matrix_inverse_sqrt(input, eps=1e-2):
38 | """Wrapper for MatrixInverseSqrt"""
39 | return MatrixInverseSqrt.apply(input, eps)
40 |
--------------------------------------------------------------------------------
/ckn/utils.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | import torch
3 | import math
4 | import random
5 | import numpy as np
6 |
7 | EPS = 1e-6
8 |
9 |
10 | def gaussian_filter_1d(size, sigma=None):
11 | """Create 1D Gaussian filter
12 | """
13 | if size == 1:
14 | return torch.ones(1)
15 | if sigma is None:
16 | sigma = (size - 1.) / (2.*math.sqrt(2))
17 | m = (size - 1) / 2.
18 | filt = torch.arange(-m, m+1)
19 | filt = torch.exp(-filt.pow(2)/(2.*sigma*sigma))
20 | return filt/torch.sum(filt)
21 |
22 | def spherical_kmeans(x, n_clusters, max_iters=100, block_size=None, verbose=True, init=None):
23 | """Spherical kmeans
24 | Args:
25 | x (Tensor n_samples x n_features): data points
26 | n_clusters (int): number of clusters
27 | """
28 | print(x.shape)
29 | use_cuda = x.is_cuda
30 | n_samples, n_features = x.size()
31 | if init is None:
32 | indices = torch.randperm(n_samples)[:n_clusters]
33 | if use_cuda:
34 | indices = indices.cuda()
35 | clusters = x[indices]
36 |
37 | prev_sim = np.inf
38 | tmp = x.new_empty(n_samples)
39 | assign = x.new_empty(n_samples, dtype=torch.long)
40 | if block_size is None or block_size == 0:
41 | block_size = x.shape[0]
42 |
43 | for n_iter in range(max_iters):
44 | # assign data points to clusters
45 | for i in range(0, n_samples, block_size):
46 | end_i = min(i + block_size, n_samples)
47 | cos_sim = x[i: end_i].mm(clusters.t())
48 | tmp[i: end_i], assign[i: end_i] = cos_sim.max(dim=-1)
49 | # cos_sim = x.mm(clusters.t())
50 | # tmp, assign = cos_sim.max(dim=-1)
51 | sim = tmp.mean()
52 | if (n_iter + 1) % 10 == 0 and verbose:
53 | print("Spherical kmeans iter {}, objective value {}".format(
54 | n_iter + 1, sim))
55 |
56 | # update clusters
57 | for j in range(n_clusters):
58 | index = assign == j
59 | if index.sum().item() == 0:
60 | idx = tmp.argmin()
61 | clusters[j] = x[idx]
62 | tmp[idx] = 1.
63 | else:
64 | xj = x[index]
65 | c = xj.mean(0)
66 | clusters[j] = c / c.norm().clamp(min=EPS)
67 |
68 | if torch.abs(prev_sim - sim)/(torch.abs(sim)+1e-20) < EPS:
69 | break
70 | prev_sim = sim
71 | return clusters
72 |
73 | def normalize_(x, p=2, dim=-1):
74 | norm = x.norm(p=p, dim=dim, keepdim=True)
75 | x.div_(norm.clamp(min=EPS))
76 | return x
77 |
78 | def accuracy(output, target, topk=(1,)):
79 | """Computes the precision@k for the specified values of k"""
80 | maxk = max(topk)
81 | batch_size = target.size(0)
82 |
83 | _, pred = output.topk(maxk, 1, True, True)
84 | pred = pred.t()
85 | correct = pred.eq(target.view(1, -1).expand_as(pred))
86 |
87 | res = []
88 | for k in topk:
89 | correct_k = correct[:k].view(-1).float().sum(0)
90 | res.append(correct_k.mul_(100.0 / batch_size).item())
91 | return res
92 |
93 | def count_parameters(model):
94 | count = 0
95 | for param in model.parameters():
96 | count += np.prod(param.data.size())
97 | return count
98 |
99 | if __name__ == "__main__":
100 | x = torch.rand(10000,50)
101 | x = normalize(x, dim=-1)
102 | print(x.norm(2, dim=-1))
103 | z = spherical_kmeans(x, 32)
104 | print(z)
105 | print(z.norm(2, dim=-1))
106 |
--------------------------------------------------------------------------------
/experiments/cifar10_sup.py:
--------------------------------------------------------------------------------
1 | import os
2 | import copy
3 | import argparse
4 | import torch
5 | from torch import nn
6 | from torch import optim
7 | from torch.utils.data import DataLoader
8 |
9 | from ckn.data import create_dataset
10 | from ckn.utils import accuracy, count_parameters
11 | from ckn.models import SUPMODELS
12 | from ckn.loss import LOSS
13 |
14 | from timeit import default_timer as timer
15 |
16 |
17 | def load_args():
18 | parser = argparse.ArgumentParser(
19 | description="CKN for CIFAR10 image classification")
20 | parser.add_argument('--seed', type=int, default=1234)
21 | parser.add_argument('--datapath', type=str, default='../data/cifar-10/cifar_white.mat',
22 | help='path to the dataset')
23 | parser.add_argument('--batch-size', default=128, type=int, help='batch size')
24 | parser.add_argument('--model', default='ckn14', choices=list(SUPMODELS.keys()), help='which model to use')
25 | parser.add_argument(
26 | '--sampling-patches', type=int, default=150000, help='number of subsampled patches for initilization')
27 | parser.add_argument('--lr', default=1.0, type=float, help='initial learning rate')
28 | parser.add_argument('--epochs', default=100, type=int, help='number of epochs')
29 | parser.add_argument('--alternating', action='store_true', help='use alternating opitmization')
30 | parser.add_argument('--alpha', default=0.1, type=float, help='regularization parameter')
31 | parser.add_argument('--loss', default='hinge', choices=list(LOSS.keys()), help='loss function')
32 | parser.add_argument('--outpath', type=str, default=None, help='output path')
33 | parser.add_argument('--augmentation', action='store_true', help='data augmentation')
34 | args = parser.parse_args()
35 | args.gpu = torch.cuda.is_available()
36 |
37 | return args
38 |
39 | def sup_train(model, data_loader, args):
40 | criterion = LOSS[args.loss]()
41 | if args.alternating:
42 | optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9)
43 | else:
44 | alpha = args.alpha * model.out_features / args.batch_size
45 | optimizer = optim.SGD([
46 | {'params': model.features.parameters()},
47 | {'params': model.classifier.parameters(), 'weight_decay': alpha}], lr=args.lr, momentum=0.9)
48 | # lr_scheduler = None
49 | if args.model == 'ckn14':
50 | lr_scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [90, 100], gamma=0.1)
51 | if args.augmentation:
52 | lr_scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [90, 120], gamma=0.1)
53 | else:
54 | lr_scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [60, 85, 100], gamma=0.1)
55 | if args.augmentation:
56 | lr_scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [60, 100, 130], gamma=0.1)
57 |
58 | if args.gpu:
59 | model.cuda()
60 | print("Initialing CKN")
61 | tic = timer()
62 | model.unsup_train_ckn(
63 | data_loader['init'], args.sampling_patches, use_cuda=args.gpu)
64 | toc = timer()
65 | print("Finished, elapsed time: {:.2f}min".format((toc - tic)/60))
66 |
67 | epoch_loss = None
68 | best_loss = float('inf')
69 | best_acc = 0
70 |
71 | for epoch in range(args.epochs):
72 | print('Epoch {}/{}'.format(epoch + 1, args.epochs))
73 | print('-' * 10)
74 | if args.alternating or epoch == 0:
75 | model.train(False)
76 | tic = timer()
77 | model.unsup_train_classifier(
78 | data_loader['train'], criterion=criterion, use_cuda=args.gpu)
79 | toc = timer()
80 | print('Last layer trained, elapsed time: {:.2f}s'.format(toc - tic))
81 | if not args.alternating:
82 | optimizer.param_groups[-1]['weight_decay'] = model.classifier.real_alpha
83 |
84 | for phase in ['train', 'val']:
85 | if phase == 'train':
86 | if lr_scheduler is not None and epoch > 0:
87 | try:
88 | lr_scheduler.step(metrics=epoch_loss)
89 | except:
90 | lr_scheduler.step()
91 | print("current LR: {}".format(
92 | optimizer.param_groups[0]['lr']))
93 | model.train()
94 | else:
95 | model.eval()
96 |
97 | running_loss = 0.0
98 | running_acc = 0
99 |
100 | tic = timer()
101 | for data, target in data_loader[phase]:
102 | size = data.size(0)
103 | if args.gpu:
104 | data = data.cuda()
105 | target = target.cuda()
106 |
107 | # forward
108 | if phase == 'train':
109 | optimizer.zero_grad()
110 | output = model(data)
111 | loss = criterion(output, target)
112 | pred = output.data.argmax(dim=1)
113 | loss.backward()
114 | optimizer.step()
115 | model.normalize_()
116 | else:
117 | with torch.no_grad():
118 | output = model(data)
119 | loss = criterion(output, target)
120 | pred = output.data.argmax(dim=1)
121 |
122 | running_loss += loss.item() * size
123 | running_acc += torch.sum(pred == target.data).item()
124 | toc = timer()
125 |
126 | epoch_loss = running_loss / len(data_loader[phase].dataset)
127 | epoch_acc = running_acc / len(data_loader[phase].dataset)
128 |
129 | print('{} Loss: {:.4f} Acc: {:.2f}% Elapsed time: {:.2f}s'.format(
130 | phase, epoch_loss, epoch_acc * 100, toc - tic))
131 |
132 | if phase == 'val' and epoch_acc > best_acc:
133 | best_acc = epoch_acc
134 | best_loss = epoch_loss
135 | best_epoch = epoch
136 | best_weights = copy.deepcopy(model.state_dict())
137 | print()
138 |
139 | print('Best epoch: {}'.format(best_epoch + 1))
140 | print('Best val Acc: {:4f}'.format(best_acc))
141 | print('Best val loss: {:4f}'.format(best_loss))
142 | model.load_state_dict(best_weights)
143 |
144 | return best_acc
145 |
146 | def main():
147 | args = load_args()
148 | print(args)
149 | torch.manual_seed(args.seed)
150 | if args.gpu:
151 | torch.cuda.manual_seed_all(args.seed)
152 |
153 | init_dset = create_dataset(args.datapath)
154 | train_dset = create_dataset(args.datapath, dataugmentation=args.augmentation)
155 | print(train_dset.train_data.shape)
156 |
157 | loader_args = {}
158 | if args.gpu:
159 | loader_args = {'pin_memory': True}
160 | init_loader = DataLoader(
161 | init_dset, batch_size=64, shuffle=False, num_workers=2, **loader_args)
162 | train_loader = DataLoader(
163 | train_dset, batch_size=args.batch_size, shuffle=True, num_workers=4, **loader_args)
164 |
165 | model = SUPMODELS[args.model](alpha=args.alpha)
166 | print(model)
167 | nb_params = count_parameters(model)
168 | print('number of paramters: {}'.format(nb_params))
169 |
170 | test_dset = create_dataset(args.datapath, train=False)
171 | test_loader = DataLoader(
172 | test_dset, batch_size=args.batch_size, shuffle=False, num_workers=2, **loader_args)
173 |
174 | data_loader = {'init': init_loader, 'train': train_loader, 'val': test_loader}
175 | tic = timer()
176 | score = sup_train(model, data_loader, args)
177 | toc = timer()
178 | training_time = (toc - tic) / 60
179 | print("Final accuracy: {:6.2f}%, elapsed time: {:.2f}min".format(score * 100, training_time))
180 |
181 | # y_pred, y_true = model.predict(test_loader, use_cuda=args.gpu)
182 | # scores = accuracy(y_pred, y_true, (1,))
183 | # print(scores)
184 | if args.outpath is not None:
185 | import csv
186 | table = {'acc': score, 'training time': training_time}
187 | with open(args.outpath + '/metric.csv', 'w') as f:
188 | w = csv.DictWriter(f, table.keys())
189 | w.writeheader()
190 | w.writerow(table)
191 |
192 | torch.save({
193 | 'args': args,
194 | 'state_dict': model.state_dict()},
195 | args.outpath + '/model.pkl')
196 |
197 |
198 |
199 | if __name__ == '__main__':
200 | main()
201 |
--------------------------------------------------------------------------------
/experiments/cifar10_unsup.py:
--------------------------------------------------------------------------------
1 | import os
2 | import argparse
3 | import torch
4 | from torch.utils.data import DataLoader
5 |
6 | from ckn.data import create_dataset
7 | from ckn.utils import accuracy
8 | from ckn.models import UnsupCKNetCifar10
9 |
10 |
11 | def load_args():
12 | parser = argparse.ArgumentParser(
13 | description="unsup CKN for CIFAR10 image classification")
14 | parser.add_argument('--seed', type=int, default=1234)
15 | parser.add_argument('--datapath', type=str, default='../data/cifar-10/cifar_white.mat',
16 | help='path to the dataset')
17 | parser.add_argument('--batch-size', default=128, type=int, help='batch size')
18 | parser.add_argument('--filters', nargs='+', type=int, help='number of filters')
19 | parser.add_argument('--subsamplings', nargs='+', type=int, help='sampling routine')
20 | parser.add_argument('--kernel-sizes', nargs='+', type=int, help='kernel sizes')
21 | parser.add_argument(
22 | '--sigma', nargs='+', type=float, default=None, help='parameters for dot-product kernel')
23 | parser.add_argument(
24 | '--sampling-patches', type=int, default=1000000, help='number of subsampled patches for K-means')
25 | parser.add_argument('--cv', action='store_true',
26 | help='if True perform model select with cross validation, else on test set')
27 | args = parser.parse_args()
28 | args.gpu = torch.cuda.is_available()
29 |
30 | nlayers = len(args.filters)
31 | if args.sigma is None:
32 | args.sigma = [0.6] * nlayers
33 |
34 | return args
35 |
36 |
37 | def main():
38 | args = load_args()
39 | print(args)
40 | torch.manual_seed(args.seed)
41 | if args.gpu:
42 | torch.cuda.manual_seed_all(args.seed)
43 |
44 | train_dset = create_dataset(args.datapath)
45 | print(train_dset.train_data.shape)
46 |
47 | loader_args = {}
48 | if args.gpu:
49 | loader_args = {'pin_memory': True}
50 | data_loader = DataLoader(
51 | train_dset, batch_size=args.batch_size, shuffle=False, num_workers=2, **loader_args)
52 |
53 | model = UnsupCKNetCifar10(
54 | args.filters, args.kernel_sizes, args.subsamplings, args.sigma)
55 | print(model)
56 |
57 | test_dset = create_dataset(args.datapath, train=False)
58 | test_loader = DataLoader(
59 | test_dset, batch_size=args.batch_size, shuffle=False, num_workers=2, **loader_args)
60 | # model.unsup_train(
61 | # data_loader, n_sampling_patches=args.sampling_patches, use_cuda=args.gpu)
62 | if args.cv:
63 | model.unsup_cross_val(
64 | data_loader, test_loader=None, n_sampling_patches=args.sampling_patches, use_cuda=args.gpu)
65 | y_pred, y_true = model.predict(test_loader, use_cuda=args.gpu)
66 | score = accuracy(y_pred, y_true, (1,))
67 | else:
68 | score = model.unsup_cross_val(
69 | data_loader, test_loader=test_loader, n_sampling_patches=args.sampling_patches, use_cuda=args.gpu)
70 | print(score)
71 |
72 | #test_dset = create_dataset(args.datapath, train=False)
73 | #test_loader = DataLoader(
74 | # test_dset, batch_size=args.batch_size, shuffle=False, num_workers=2, **loader_args)
75 | # y_pred, y_true = model.predict(test_loader, use_cuda=args.gpu)
76 | # scores = accuracy(y_pred, y_true, (1,))
77 | # print(scores)
78 |
79 |
80 |
81 | if __name__ == '__main__':
82 | main()
83 |
--------------------------------------------------------------------------------
/third-party/miso_svm-1.0/PKG-INFO:
--------------------------------------------------------------------------------
1 | Metadata-Version: 1.1
2 | Name: miso_svm
3 | Version: 1.0
4 | Summary: Python interface for MISO SVM classifier
5 | Home-page: UNKNOWN
6 | Author: Ghislain Durif
7 | Author-email: ckn.dev@inria.fr
8 | License: GPLv3
9 | Description: UNKNOWN
10 | Platform: UNKNOWN
11 | Classifier: Development Status :: 4 - Beta
12 | Classifier: Intended Audience :: Science/Research
13 | Classifier: Topic :: Scientific/Engineering :: Mathematics
14 | Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3)
15 | Classifier: Programming Language :: Python :: 3
16 | Classifier: Programming Language :: Python :: 3.2
17 | Classifier: Programming Language :: Python :: 3.3
18 | Classifier: Programming Language :: Python :: 3.4
19 | Classifier: Programming Language :: Python :: 3.5
20 | Classifier: Programming Language :: Python :: 3.6
21 |
--------------------------------------------------------------------------------
/third-party/miso_svm-1.0/README.md:
--------------------------------------------------------------------------------
1 | # MISO SVM
2 |
3 | This package implements a SVM (support vector machine) classification procedure
4 | based on the MISO optimization algorithm, which is introduced in [1] (available
5 | at or
6 | ).
7 |
8 | The 'miso_svm' package is based on C++ interfaced codes. All files included in
9 | the 'miso_svm' package ([miso_svm/*] and in particular [miso_svm/miso_svm/*])
10 | are released under the GPL-v3 license.
11 |
12 | ---
13 |
14 | # Installation
15 |
16 | This package requires the MKL from Intel (for Blas and OpenMP). You can get
17 | the MKL by using the Python Anaconda distribution, or you can use your own
18 | MKL license if you have one.
19 |
20 |
21 | ## Prerequisite when using Anaconda
22 |
23 | You can get anaconda or miniconda from
24 | or .
25 |
26 | Create a conda virtual environment and install dependencies within it:
27 | ```bash
28 | conda create -n cknenv # if not done yet
29 | source activate cknenv
30 | conda install numpy scipy scikit-learn matplotlib
31 | ```
32 |
33 | ## Install miso_svm
34 |
35 | * On GNU/Linux and MacOS:
36 |
37 | If using previously created conda environment:
38 | ```bash
39 | source activate cknenv
40 | ```
41 |
42 | then
43 | ```bash
44 | git clone https://gitlab.inria.fr/thoth/ckn
45 | cd ckn/miso_svm
46 | python setup.py install
47 | ```
48 |
49 | OR
50 | ```bash
51 | wget http://pascal.inrialpes.fr/data2/gdurif/miso_svm-1.0.tar.gz
52 | tar zxvf miso_svm-1.0.tar.gz
53 | cd miso_svm-1.0
54 | python setup.py install
55 | ```
56 |
57 | To specify an installation directory:
58 | ```bash
59 | inst=
60 | PYV=$(python -c "import sys;t='{v[0]}.{v[1]}'.format(v=list(sys.version_info[:2]));sys.stdout.write(t)";)
61 | export PYTHONPATH=$inst/lib/python${PYV}/site-packages:$PYTHONPATH
62 | python setup.py install --prefix=$inst
63 | ```
64 |
65 |
66 | ## When using the official GitLab repository (for developpers)
67 |
68 | (on GNU/Linux and MacOs only)
69 |
70 | * To build/install/test the package, see:
71 |
72 | ```bash
73 | ./dev_command.sh help
74 | ```
75 |
76 | ## Example of use
77 |
78 | See [classification.py](miso_svm/classification.py),
79 | [quick.py](miso_svm/quick.py) or [miso.py](miso_svm/miso.py)
80 |
81 |
82 | ---
83 |
84 | ## References
85 |
86 | [1] Lin, H., Mairal, J., Harchaoui, Z., 2015. A universal catalyst for first-order optimization, in: Advances in Neural Information Processing Systems. pp. 3384–3392.
87 |
--------------------------------------------------------------------------------
/third-party/miso_svm-1.0/cblas_defvar.h:
--------------------------------------------------------------------------------
1 | #ifndef CBLAS_H
2 | #define CBLAS_H
3 | #include
4 |
5 | /*
6 | * Enumerated and derived types
7 | */
8 | #define CBLAS_INDEX size_t /* this may vary between platforms */
9 |
10 | enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102};
11 | enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113};
12 | enum CBLAS_UPLO {CblasUpper=121, CblasLower=122};
13 | enum CBLAS_DIAG {CblasNonUnit=131, CblasUnit=132};
14 | enum CBLAS_SIDE {CblasLeft=141, CblasRight=142};
15 |
16 |
17 | char CBLAS_TRANSPOSE_CHAR[] = {'N', 'T', 'C'};
18 | char *cblas_transpose(CBLAS_TRANSPOSE TransA)
19 | {
20 | switch(TransA)
21 | {
22 | case 111: return &CBLAS_TRANSPOSE_CHAR[0];
23 | case 112: return &CBLAS_TRANSPOSE_CHAR[1];
24 | case 113: return &CBLAS_TRANSPOSE_CHAR[2];
25 | }
26 | return NULL;
27 | }
28 |
29 | char CBLAS_UPLO_CHAR[] = {'U', 'L'};
30 | char *cblas_uplo(CBLAS_UPLO Uplo)
31 | {
32 | switch(Uplo)
33 | {
34 | case 121: return &CBLAS_UPLO_CHAR[0];
35 | case 122: return &CBLAS_UPLO_CHAR[1];
36 | }
37 | return NULL;
38 | }
39 |
40 | char CBLAS_DIAG_CHAR[] = {'N', 'U'};
41 | char *cblas_diag(CBLAS_DIAG Diag)
42 | {
43 | switch(Diag)
44 | {
45 | case 131: return &CBLAS_DIAG_CHAR[0];
46 | case 132: return &CBLAS_DIAG_CHAR[1];
47 | }
48 | return NULL;
49 | }
50 |
51 | char CBLAS_SIDE_CHAR[] = {'L', 'R'};
52 | char *cblas_side(CBLAS_SIDE Side)
53 | {
54 | switch(Side)
55 | {
56 | case 141: return &CBLAS_SIDE_CHAR[0];
57 | case 142: return &CBLAS_SIDE_CHAR[1];
58 | }
59 | return NULL;
60 | }
61 |
62 | #endif
63 |
--------------------------------------------------------------------------------
/third-party/miso_svm-1.0/ctypes_utils.h:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 | #include "linalg.h"
4 |
5 | #include "common.h"
6 |
7 | /**
8 | * From Daan Wynen
9 | */
10 |
11 |
12 | // check for a condition, and fail with an exception strin set if it is false
13 | #define assert_py_obj(condition, error) if (! (condition) ) { \
14 | PyErr_SetString(PyExc_TypeError, (error)); \
15 | return NULL; \
16 | }
17 |
18 | // the same macro, but for cases where the calling method returns an integer
19 | #define assert_py_int(condition, error) if (! (condition) ) { \
20 | PyErr_SetString(PyExc_TypeError, (error)); \
21 | return 0; \
22 | }
23 |
24 | // and another version that throws the error message as a const char* instead
25 | #define assert_py_throw(condition, error) if (! (condition) ) { \
26 | throw (error); \
27 | }
28 |
29 |
30 |
31 | template inline string getTypeName();
32 | template <> inline string getTypeName() { return "intc"; };
33 | template <> inline string getTypeName() { return "uint8"; };
34 | template <> inline string getTypeName() { return "float32"; };
35 | template <> inline string getTypeName() { return "float64"; };
36 |
37 | template inline int getTypeNumber();
38 | template <> inline int getTypeNumber() { return NPY_INT; };
39 | template <> inline int getTypeNumber() { return NPY_UINT8; };
40 | template <> inline int getTypeNumber() { return NPY_FLOAT32; };
41 | template <> inline int getTypeNumber() { return NPY_FLOAT64; };
42 |
43 |
44 | // these structs hold define the python type objects for Vector, Matrix and Map
45 | // they only hold pointers to the actual C++ objects
46 | // this way, the data does not get deallocated immediately when objects leave
47 | // the scope
48 | template struct VectorWrapper {
49 | PyObject_HEAD;
50 | Vector *obj;
51 | };
52 |
53 | template struct MatrixWrapper {
54 | PyObject_HEAD;
55 | Matrix *obj;
56 | };
57 |
58 | template struct MapWrapper {
59 | PyObject_HEAD;
60 | Map *obj;
61 | };
62 |
63 |
64 | // these are the deallocation methods for she structs defined above
65 | // they'll be linked to the destructor hooks of the python objects further down
66 | template
67 | static void _delete_cpp_mat(MatrixWrapper* self){
68 | if (self && self->obj) {
69 | delete self->obj;
70 | }
71 | Py_TYPE(self)->tp_free((PyObject*)self);
72 | }
73 |
74 | template
75 | static void _delete_cpp_vec(VectorWrapper* self){
76 | if (self && self->obj) {
77 | delete self->obj;
78 | Py_TYPE(self)->tp_free((PyObject*)self);
79 | }
80 | }
81 |
82 | template
83 | static void _delete_cpp_map(MapWrapper* self){
84 | if (self && self->obj) {
85 | delete self->obj;
86 | Py_TYPE(self)->tp_free((PyObject*)self);
87 | }
88 | }
89 |
90 |
91 | static PyTypeObject MatrixWrapperType = {
92 | PyVarObject_HEAD_INIT(NULL, 0)
93 | "miso_svm.MatrixWrapper", /*tp_name*/
94 | sizeof(MatrixWrapper), /*tp_basicsize*/ // FIXME: does this break if using double?
95 | 0, /*tp_itemsize*/
96 | (destructor)_delete_cpp_mat, /*tp_dealloc*/ // FIXME: does this break if using double?
97 | 0, /*tp_print*/
98 | 0, /*tp_getattr*/
99 | 0, /*tp_setattr*/
100 | 0, /*tp_compare*/
101 | 0, /*tp_repr*/
102 | 0, /*tp_as_number*/
103 | 0, /*tp_as_sequence*/
104 | 0, /*tp_as_mapping*/
105 | 0, /*tp_hash */
106 | 0, /*tp_call*/
107 | 0, /*tp_str*/
108 | 0, /*tp_getattro*/
109 | 0, /*tp_setattro*/
110 | 0, /*tp_as_buffer*/
111 | Py_TPFLAGS_DEFAULT, /*tp_flags*/
112 | "Internal deallocator object for the Matrix class", /* tp_doc */
113 | };
114 |
115 | static PyTypeObject VectorWrapperType = {
116 | PyVarObject_HEAD_INIT(NULL, 0)
117 | "miso_svm.VectorWrapper", /*tp_name*/
118 | sizeof(VectorWrapper), /*tp_basicsize*/ // FIXME: does this break if using double?
119 | 0, /*tp_itemsize*/
120 | (destructor)_delete_cpp_vec, /*tp_dealloc*/ // FIXME: does this break if using double?
121 | 0, /*tp_print*/
122 | 0, /*tp_getattr*/
123 | 0, /*tp_setattr*/
124 | 0, /*tp_compare*/
125 | 0, /*tp_repr*/
126 | 0, /*tp_as_number*/
127 | 0, /*tp_as_sequence*/
128 | 0, /*tp_as_mapping*/
129 | 0, /*tp_hash */
130 | 0, /*tp_call*/
131 | 0, /*tp_str*/
132 | 0, /*tp_getattro*/
133 | 0, /*tp_setattro*/
134 | 0, /*tp_as_buffer*/
135 | Py_TPFLAGS_DEFAULT, /*tp_flags*/
136 | "Internal deallocator object for the Vector class", /* tp_doc */
137 | };
138 |
139 | static PyTypeObject MapWrapperType = {
140 | PyVarObject_HEAD_INIT(NULL, 0)
141 | "miso_svm.MapWrapper", /*tp_name*/
142 | sizeof(MapWrapper), /*tp_basicsize*/ // FIXME: does this break if using double?
143 | 0, /*tp_itemsize*/
144 | (destructor)_delete_cpp_map, /*tp_dealloc*/ //FIXME does this break if using double?
145 | 0, /*tp_print*/
146 | 0, /*tp_getattr*/
147 | 0, /*tp_setattr*/
148 | 0, /*tp_compare*/
149 | 0, /*tp_repr*/
150 | 0, /*tp_as_number*/
151 | 0, /*tp_as_sequence*/
152 | 0, /*tp_as_mapping*/
153 | 0, /*tp_hash */
154 | 0, /*tp_call*/
155 | 0, /*tp_str*/
156 | 0, /*tp_getattro*/
157 | 0, /*tp_setattro*/
158 | 0, /*tp_as_buffer*/
159 | Py_TPFLAGS_DEFAULT, /*tp_flags*/
160 | "Internal deallocator object for the Map class", /* tp_doc */
161 | };
162 |
163 | template
164 | inline PyArrayObject* copyMatrix(Matrix* obj) {
165 | std::cout << "matrix data: " << obj->rawX() << std::endl;
166 | int nd=2;
167 | std::cout << "n: " << obj->n() << " m: " << obj->m() << std::endl;
168 | npy_intp dims[2]={obj->n(), obj->m()};
169 | PyArrayObject* arr=NULL;
170 | arr = (PyArrayObject*)PyArray_EMPTY(nd, dims, getTypeNumber(), 0);
171 | Matrix copymat((T*)PyArray_DATA(arr), dims[1], dims[0]);
172 | std::cout << "numpy array data: " << PyArray_DATA(arr) << std::endl;
173 | if (arr == NULL) goto fail;
174 | copymat.copy(*obj);
175 | return arr;
176 | fail:
177 | delete obj; // FIXME Error Handling!?
178 | std::cout << "FAIL in copyMatrix" << std::endl;
179 | Py_XDECREF(arr);
180 | return NULL;
181 | }
182 |
183 |
184 | template
185 | inline PyArrayObject* wrapMatrix(Matrix* obj) {
186 | int nd=2;
187 | npy_intp dims[2]={obj->n(), obj->m()};
188 | PyObject* newobj=NULL;
189 | PyArrayObject* arr=NULL;
190 | void *mymem = (void*)(obj->rawX());
191 | arr = (PyArrayObject*)PyArray_SimpleNewFromData(nd, dims, getTypeNumber(), mymem);
192 |
193 | npy_intp* strides = PyArray_STRIDES(arr);
194 | for (int idx=0; idx, &MatrixWrapperType);
199 | if (newobj == NULL) goto fail;
200 | ((MatrixWrapper *)newobj)->obj = obj;
201 | PyArray_SetBaseObject((PyArrayObject*)arr, newobj);
202 | return arr;
203 | fail:
204 | delete obj; // FIXME Error Handling!?
205 | std::cout << "FAIL in wrapMatrix" << std::endl;
206 | Py_XDECREF(arr);
207 | return NULL;
208 | }
209 |
210 | template
211 | inline PyArrayObject* wrapVector(Vector* obj) {
212 | int nd=1;
213 | npy_intp dims[1]={obj->n()};
214 | PyObject* newobj=NULL;
215 | void *mymem = (void*)(obj->rawX());
216 | PyArrayObject* arr = (PyArrayObject*)PyArray_SimpleNewFromData(nd, dims, getTypeNumber(), mymem);
217 | if (arr == NULL) goto fail;
218 | newobj = (PyObject*)PyObject_New(VectorWrapper, &VectorWrapperType);
219 | if (newobj == NULL) goto fail;
220 | ((VectorWrapper *)newobj)->obj = obj;
221 | PyArray_SetBaseObject((PyArrayObject*)arr, newobj);
222 | return arr;
223 | fail:
224 | delete obj; // FIXME Error Handling!?
225 | Py_XDECREF(arr);
226 | return NULL;
227 | }
228 |
229 | template
230 | inline PyArrayObject* wrapMap(Map* obj) {
231 | int nd=3;
232 | npy_intp dims[3]={obj->z(), obj->y(), obj->x()};
233 | PyObject* newobj=NULL;
234 | PyArrayObject* arr=NULL;
235 | void *mymem = (void*)(obj->rawX());
236 | arr = (PyArrayObject*)PyArray_SimpleNewFromData(nd, dims, getTypeNumber(), mymem);
237 | if (arr == NULL) goto fail;
238 | newobj = (PyObject*)PyObject_New(MapWrapper, &MapWrapperType);
239 | if (newobj == NULL) goto fail;
240 | ((MapWrapper *)newobj)->obj = obj;
241 | PyArray_SetBaseObject((PyArrayObject*)arr, newobj);
242 | return arr;
243 | fail:
244 | delete obj; // FIXME Error Handling!?
245 | Py_XDECREF(arr);
246 | return NULL;
247 | }
248 |
249 | template
250 | static int npyToMatrix(PyArrayObject* array, Matrix& matrix, string obj_name) {
251 | if (array==NULL) {
252 | return 1;
253 | }
254 | if(!(PyArray_NDIM(array) == 2 &&
255 | PyArray_TYPE(array) == getTypeNumber() &&
256 | (PyArray_FLAGS(array) & NPY_ARRAY_C_CONTIGUOUS))) {
257 | PyErr_SetString(PyExc_TypeError, (obj_name + " should be c-contiguous 2D "+getTypeName()+" array").c_str());
258 | return 0;
259 | }
260 |
261 | T *rawX = reinterpret_cast(PyArray_DATA(array));
262 | const npy_intp *shape = PyArray_DIMS(array);
263 | npy_intp n = shape[0];
264 | npy_intp m = shape[1];
265 |
266 | matrix.setData(rawX, m, n);
267 | return 1;
268 | }
269 |
270 | template
271 | static int npyToVector(PyArrayObject* array, Vector& matrix, string obj_name) {
272 | if (array==NULL) {
273 | return 1;
274 | }
275 | T *rawX = reinterpret_cast(PyArray_DATA(array));
276 | const npy_intp *shape = PyArray_DIMS(array);
277 | npy_intp n = shape[0];
278 |
279 | if(!(PyArray_NDIM(array) == 1 &&
280 | PyArray_TYPE(array) == getTypeNumber() &&
281 | (PyArray_FLAGS(array) & NPY_ARRAY_C_CONTIGUOUS))) {
282 | PyErr_SetString(PyExc_TypeError, (obj_name + " should be c-contiguous 1D "+getTypeName()+" array").c_str());
283 | return 0;
284 | }
285 | matrix.setData(rawX, n);
286 | return 1;
287 | }
288 |
289 | static vector get_array_shape(PyArrayObject* array) {
290 | vector result;
291 | if (array == NULL) {
292 | return result;
293 | }
294 | const int ndim = PyArray_NDIM(array);
295 | const npy_intp* shape = PyArray_DIMS(array);
296 | for (int i = 0; i < ndim; ++i)
297 | result.push_back(shape[i]);
298 | return result;
299 | }
300 |
301 | template
302 | static int npyToMap(PyArrayObject* array, Map& matrix, string obj_name) {
303 | if (array==NULL) {
304 | return 1;
305 | }
306 | const int ndim = PyArray_NDIM(array);
307 | if(ndim != 3) {
308 | PyErr_SetString(PyExc_TypeError, (obj_name + " should have 3 dimensions but has " + to_string(ndim)).c_str());
309 | return 0;
310 | }
311 |
312 | if (PyArray_TYPE(array) != getTypeNumber()) {
313 | PyErr_SetString(PyExc_TypeError, (obj_name + " has wrong data type.").c_str());
314 | return 0;
315 | }
316 | if (!(PyArray_FLAGS(array) & NPY_ARRAY_C_CONTIGUOUS)) {
317 | PyErr_SetString(PyExc_TypeError, (obj_name + " is not contiguous.").c_str());
318 | return 0;
319 | }
320 |
321 | T *rawX = reinterpret_cast(PyArray_DATA(array));
322 | const npy_intp *shape = PyArray_DIMS(array);
323 | matrix.setData(rawX, shape[2], shape[1], shape[0]);
324 | return 1;
325 | }
326 |
327 | template
328 | static int sequenceToVector(PyObject* seq, std::vector& res) {
329 | if (!PySequence_Check(seq)) {
330 | PyErr_SetString(PyExc_TypeError, "input should be a sequence");
331 | return 0;
332 | }
333 |
334 | int n = PySequence_Size(seq);
335 | res.resize(n);
336 |
337 | for (int i=0; i
350 | static PyObject* convert_primitive(T i);
351 |
352 | template <> PyObject* convert_primitive(long i){ return PyLong_FromLong(i); }
353 | template <> PyObject* convert_primitive(int i){ return PyLong_FromLong(i); }
354 |
355 | template
356 | static PyObject* vector_to_pylist(vector vec) {
357 | PyObject* result = PyList_New(vec.size());
358 | for (int i = 0; i < vec.size(); ++i) {
359 | if (PyList_SetItem(result, i, convert_primitive(vec[i])) == -1) {
360 | Py_DECREF(result);
361 | return NULL;
362 | }
363 | }
364 | return result;
365 | }
366 |
367 | template
368 | static int npy_list_to_vector(PyObject* list, vector*>& vec, string list_name) {
369 | const int n = PyList_Size(list);
370 | vec.resize(n);
371 | int i;
372 | for (i = 0; i < n; ++i) {
373 | PyArrayObject* arr = reinterpret_cast(PyList_GetItem(list, i));
374 | if (arr == NULL)
375 | goto fail;
376 | Matrix* mat = new Matrix();
377 | if(npyToMatrix(arr, *mat, list_name+"["+to_string(i)+"]") == 0) {
378 | delete mat;
379 | goto fail;
380 | }
381 | vec[i] = mat;
382 | }
383 |
384 | return 1;
385 |
386 | fail:
387 | for (int j = 0; j < i; ++j) {
388 | delete vec[j];
389 | }
390 | return 0;
391 | }
392 |
393 | static PyObject* wrapMatrices(vector *> matrices) {
394 | PyObject* result = PyList_New(matrices.size());
395 | if (result == NULL)
396 | return NULL;
397 | for (int i = 0; i < matrices.size(); ++i)
398 | PyList_SET_ITEM(result, i, reinterpret_cast(wrapMatrix(matrices[i])));
399 | return result;
400 | }
401 |
402 |
403 | inline int set_omp_threads(int threads) {
404 | if (threads <= 0) {
405 | threads=1;
406 | #ifdef _OPENMP
407 | threads = MIN(MAX_THREADS, omp_get_num_procs());
408 | #endif
409 | }
410 | threads=init_omp(threads);
411 | return threads;
412 | }
413 |
--------------------------------------------------------------------------------
/third-party/miso_svm-1.0/list.h:
--------------------------------------------------------------------------------
1 |
2 | /* Software SPAMS v2.1 - Copyright 2009-2011 Julien Mairal
3 | *
4 | * This file is part of SPAMS.
5 | *
6 | * SPAMS is free software: you can redistribute it and/or modify
7 | * it under the terms of the GNU General Public License as published by
8 | * the Free Software Foundation, either version 3 of the License, or
9 | * (at your option) any later version.
10 | *
11 | * SPAMS is distributed in the hope that it will be useful,
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 | * GNU General Public License for more details.
15 | *
16 | * You should have received a copy of the GNU General Public License
17 | * along with SPAMS. If not, see .
18 | */
19 |
20 | #ifndef LIST_H
21 | #define LIST_H
22 |
23 | template class Element {
24 | public:
25 | Element(T el) { element=el; next=NULL; };
26 | ~Element() { };
27 | T element;
28 | Element* next;
29 | };
30 |
31 | template class ListIterator {
32 |
33 | public:
34 | ListIterator() { _current = NULL; };
35 | ~ListIterator() { };
36 | inline void set(Element* elem) { _current = elem; };
37 | inline T operator*() const { return _current->element; };
38 | inline bool operator !=(const void* end) const { return _current != end; };
39 | inline bool operator ==(const void* end) const { return _current == end; };
40 | inline void operator++() { _current = _current->next; };
41 | inline Element* current() { return _current; };
42 | inline T operator->() { return _current->element; };
43 | private:
44 | Element* _current;
45 | };
46 |
47 | template class List {
48 | public:
49 |
50 | List() { _first=NULL; _last=NULL; _size=0; _iterator = new ListIterator(); };
51 | ~List() {
52 | this->clear();
53 | delete(_iterator);
54 | };
55 | bool inline empty() const { return _size==0; };
56 | inline T front() const {
57 | return _first->element;
58 | };
59 | inline T last() const {
60 | return _last->element;
61 | };
62 | void inline pop_front() {
63 | Element* fr=_first;
64 | _first=fr->next;
65 | fr->next=NULL;
66 | delete(fr);
67 | --_size;
68 | };
69 | void inline push_back(T elem) {
70 | if (_first) {
71 | Element* la=_last;
72 | _last=new Element(elem);
73 | la->next=_last;
74 | } else {
75 | _first=new Element(elem);
76 | _last=_first;
77 | }
78 | ++_size;
79 | }
80 | void inline push_front(T elem) {
81 | Element* fr=_first;
82 | _first=new Element(elem);
83 | _first->next=fr;
84 | if (!_last) _last=_first;
85 | ++_size;
86 | }
87 | void inline clear() {
88 | ListIterator it = this->begin();
89 | while (it != this->end()) {
90 | Element* cur = it.current();
91 | ++it;
92 | delete(cur);
93 | }
94 | _size=0;
95 | _first=NULL;
96 | _last=NULL;
97 | }
98 | void inline remove(T elem) {
99 | if (_first->element == elem) {
100 | Element* el = _first;
101 | _first = _first->next;
102 | delete(el);
103 | } else {
104 | Element* old = _first;
105 | for (ListIterator it = this->begin(); it != this->end(); ++it) {
106 | if (*it == elem) {
107 | Element* el = it.current();
108 | old->next=el->next;
109 | delete(el);
110 | break;
111 | }
112 | old=it.current();
113 | }
114 | }
115 | };
116 | int inline size() const { return _size; };
117 | inline ListIterator& begin() const { _iterator->set(_first); return *_iterator; };
118 | inline void* end() const { return NULL; };
119 | inline void fusion(const List& list) {
120 | for (ListIterator it = list.begin(); it != list.end(); ++it) {
121 | this->push_back(*it);
122 | }
123 | }
124 | inline void reverse(List& list) {
125 | list.clear();
126 | for (ListIterator it = this->begin(); it != this->end(); ++it) {
127 | list.push_front(*it);
128 | }
129 | }
130 | inline void copy(List& list) {
131 | list.clear();
132 | for (ListIterator it = this->begin(); it != this->end(); ++it) {
133 | list.push_back(*it);
134 | }
135 | }
136 | void inline print() const {
137 | std::cerr << " print list " << std::endl;
138 | for (ListIterator it = this->begin(); it != this->end(); ++it) {
139 | std::cerr << *it << " ";
140 | }
141 | std::cerr << std::endl;
142 | }
143 |
144 | private:
145 |
146 | ListIterator* _iterator;
147 | Element* _first;
148 | Element* _last;
149 | int _size;
150 | };
151 |
152 | typedef List list_int;
153 | typedef ListIterator const_iterator_int;
154 |
155 | template class BinaryHeap {
156 | public:
157 | BinaryHeap(int size) { _last=-1; _values=new T[size]; _id=new int[size]; _position=new int[size]; _size=size;};
158 | ~BinaryHeap() { delete[](_values); delete[](_id); delete[](_position); };
159 |
160 | bool inline is_empty() const { return _last==-1; };
161 | void inline find_min(int& node, T& val) const {
162 | node=_id[0]; val=_values[node]; };
163 | void inline insert(const int node, const T val) {
164 | ++_last;
165 | assert(_last < _size);
166 | _values[node]=val;
167 | _position[node]=_last;
168 | _id[_last]=node;
169 | this->siftup(_last);
170 | };
171 | void inline delete_min() {
172 | _position[_id[_last]]=0;
173 | _id[0]=_id[_last];
174 | _last--;
175 | this->siftdown(0);
176 | };
177 | void inline decrease_key(const int node, const T val) {
178 | assert(val <= _values[node]);
179 | _values[node]=val;
180 | this->siftup(_position[node]);
181 | };
182 | void inline print() const {
183 | for (int i = 0; i<=_last; ++i) {
184 | std::cerr << _id[i] << " ";
185 | }
186 | std::cerr << std::endl;
187 | for (int i = 0; i<=_last; ++i) {
188 | std::cerr << _values[_id[i]] << " ";
189 | }
190 | std::cerr << std::endl;
191 | }
192 |
193 | private:
194 | void inline siftup(const int pos) {
195 | int current_pos=pos;
196 | int parent=(current_pos-1)/2;
197 | while (current_pos != 0 && _values[_id[current_pos]] < _values[_id[parent]]) {
198 | this->swapping(current_pos,parent);
199 | parent=(current_pos-1)/2;
200 | }
201 | };
202 | void inline siftdown(const int pos) {
203 | int current_pos=pos;
204 | int first_succ=pos+pos+1;
205 | int second_succ=first_succ+1;
206 | bool lop=true;
207 | while (lop) {
208 | if (first_succ == _last) {
209 | if (_values[_id[current_pos]] > _values[_id[first_succ]])
210 | this->swapping(current_pos,first_succ);
211 | lop=false;
212 | } else if (second_succ <= _last) {
213 | if (_values[_id[first_succ]] > _values[_id[second_succ]]) {
214 | if (_values[_id[current_pos]] > _values[_id[second_succ]]) {
215 | this->swapping(current_pos,second_succ);
216 | first_succ=current_pos+current_pos+1;
217 | second_succ=first_succ+1;
218 | } else {
219 | lop=false;
220 | }
221 | } else {
222 | if (_values[_id[current_pos]] > _values[_id[first_succ]]) {
223 | this->swapping(current_pos,first_succ);
224 | first_succ=current_pos+current_pos+1;
225 | second_succ=first_succ+1;
226 | } else {
227 | lop=false;
228 | }
229 | }
230 | } else {
231 | lop=false;
232 | }
233 | }
234 | };
235 | void inline swapping(int& pos1, int& pos2) {
236 | swap(_position[_id[pos1]],_position[_id[pos2]]);
237 | swap(_id[pos1],_id[pos2]);
238 | swap(pos1,pos2);
239 | };
240 |
241 | T* _values;
242 | int* _id;
243 | int* _position;
244 | int _last;
245 | int _size;
246 | };
247 |
248 |
249 | #endif
250 |
--------------------------------------------------------------------------------
/third-party/miso_svm-1.0/misc.h:
--------------------------------------------------------------------------------
1 | /*!
2 | * \file
3 | * toolbox Linalg
4 | *
5 | * by Julien Mairal
6 | * julien.mairal@inria.fr
7 | *
8 | * File misc.h
9 | * \brief Contains miscellaneous functions */
10 |
11 |
12 | #ifndef MISC_H
13 | #define MISC_H
14 |
15 | #include
16 | #include
17 | #include
18 | #include "utils.h"
19 |
20 | #if defined(_MSC_VER) || defined(_WIN32) || defined(WINDOWS)
21 | #define isnan _isnan
22 | #define isinf !_finite
23 | #endif
24 |
25 | using namespace std;
26 |
27 |
28 | /// a useful debugging function
29 | static inline void stop();
30 | /// seed for random number generation
31 | static int seed = 0;
32 | /// first random number generator from Numerical Recipe
33 | template static inline T ran1();
34 | /// standard random number generator
35 | template static inline T ran1b();
36 | /// random sampling from the normal distribution
37 | template static inline T normalDistrib();
38 | /// reorganize a sparse table between indices beg and end,
39 | /// using quicksort
40 | template
41 | static void sort(I* irOut, T* prOut,I beg, I end);
42 | template
43 | static void quick_sort(I* irOut, T* prOut,const I beg, const I end, const bool incr);
44 | /// template version of the power function
45 | template
46 | T power(const T x, const T y);
47 | /// template version of the fabs function
48 | template
49 | T abs(const T x);
50 | /// template version of the fabs function
51 | template
52 | T sqr(const T x);
53 | template
54 | T sqr_alt(const T x);
55 | /// template version of the fabs function
56 | template
57 | T sqr(const int x) {
58 | return sqr(static_cast(x));
59 | }
60 |
61 | template
62 | T exp_alt(const T x);
63 | template
64 | T log_alt(const T x);
65 |
66 | /// a useful debugging function
67 | /*static inline void stop() {
68 | std::cout << "Appuyez sur entrée pour continuer...";
69 | cin.ignore( numeric_limits::max(), '\n' );
70 | };*/
71 | static inline void stop() {
72 | printf("Appuyez sur une touche pour continuer\n");
73 | getchar();
74 | }
75 |
76 | /// first random number generator from Numerical Recipe
77 | template static inline T ran1() {
78 | const int IA=16807,IM=2147483647,IQ=127773,IR=2836,NTAB=32;
79 | const int NDIV=(1+(IM-1)/NTAB);
80 | const T EPS=3.0e-16,AM=1.0/IM,RNMX=(1.0-EPS);
81 | static int iy=0;
82 | static int iv[NTAB];
83 | int j,k;
84 | T temp;
85 |
86 | if (seed <= 0 || !iy) {
87 | if (-seed < 1) seed=1;
88 | else seed = -seed;
89 | for (j=NTAB+7;j>=0;j--) {
90 | k=seed/IQ;
91 | seed=IA*(seed-k*IQ)-IR*k;
92 | if (seed < 0) seed += IM;
93 | if (j < NTAB) iv[j] = seed;
94 | }
95 | iy=iv[0];
96 | }
97 | k=seed/IQ;
98 | seed=IA*(seed-k*IQ)-IR*k;
99 | if (seed < 0) seed += IM;
100 | j=iy/NDIV;
101 | iy=iv[j];
102 | iv[j] = seed;
103 | if ((temp=AM*iy) > RNMX) return RNMX;
104 | else return temp;
105 | };
106 |
107 | /// standard random number generator
108 | template T ran1b() {
109 | return static_cast(rand())/RAND_MAX;
110 | }
111 |
112 | /// random sampling from the normal distribution
113 | template
114 | static inline T normalDistrib() {
115 | static bool iset = true;
116 | static T gset;
117 |
118 | T fac,rsq,v1,v2;
119 | if (iset) {
120 | do {
121 | v1 = 2.0*ran1()-1.0;
122 | v2 = 2.0*ran1()-1.0;
123 | rsq = v1*v1+v2*v2;
124 | } while (rsq >= 1.0 || rsq == 0.0);
125 | fac = sqrt(-2.0*log(rsq)/rsq);
126 | gset = v1*fac;
127 | iset = false;
128 | return v2*fac;
129 | } else {
130 | iset = true;
131 | return gset;
132 | }
133 | };
134 |
135 | /// reorganize a sparse table between indices beg and end,
136 | /// using quicksort
137 | template
138 | static void sort(I* irOut, T* prOut,I beg, I end) {
139 | I i;
140 | if (end <= beg) return;
141 | I pivot=beg;
142 | for (i = beg+1; i<=end; ++i) {
143 | if (irOut[i] < irOut[pivot]) {
144 | if (i == pivot+1) {
145 | I tmp = irOut[i];
146 | T tmpd = prOut[i];
147 | irOut[i]=irOut[pivot];
148 | prOut[i]=prOut[pivot];
149 | irOut[pivot]=tmp;
150 | prOut[pivot]=tmpd;
151 | } else {
152 | I tmp = irOut[pivot+1];
153 | T tmpd = prOut[pivot+1];
154 | irOut[pivot+1]=irOut[pivot];
155 | prOut[pivot+1]=prOut[pivot];
156 | irOut[pivot]=irOut[i];
157 | prOut[pivot]=prOut[i];
158 | irOut[i]=tmp;
159 | prOut[i]=tmpd;
160 | }
161 | ++pivot;
162 | }
163 | }
164 | sort(irOut,prOut,beg,pivot-1);
165 | sort(irOut,prOut,pivot+1,end);
166 | }
167 | template
168 | static void quick_sort(I* irOut, T* prOut,const I beg, const I end, const bool incr) {
169 | if (end <= beg) return;
170 | I pivot=beg;
171 | if (incr) {
172 | const T val_pivot=prOut[pivot];
173 | const I key_pivot=irOut[pivot];
174 | for (I i = beg+1; i<=end; ++i) {
175 | if (prOut[i] < val_pivot) {
176 | prOut[pivot]=prOut[i];
177 | irOut[pivot]=irOut[i];
178 | prOut[i]=prOut[++pivot];
179 | irOut[i]=irOut[pivot];
180 | prOut[pivot]=val_pivot;
181 | irOut[pivot]=key_pivot;
182 | }
183 | }
184 | } else {
185 | const T val_pivot=prOut[pivot];
186 | const I key_pivot=irOut[pivot];
187 | for (I i = beg+1; i<=end; ++i) {
188 | if (prOut[i] > val_pivot) {
189 | prOut[pivot]=prOut[i];
190 | irOut[pivot]=irOut[i];
191 | prOut[i]=prOut[++pivot];
192 | irOut[i]=irOut[pivot];
193 | prOut[pivot]=val_pivot;
194 | irOut[pivot]=key_pivot;
195 | }
196 | }
197 | }
198 | quick_sort(irOut,prOut,beg,pivot-1,incr);
199 | quick_sort(irOut,prOut,pivot+1,end,incr);
200 | }
201 |
202 | template
203 | static void quick_sort(T* prOut,const I beg, const I end, const bool incr) {
204 | if (end <= beg) return;
205 | I pivot=beg;
206 | if (incr) {
207 | const T val_pivot=prOut[pivot];
208 | for (I i = beg+1; i<=end; ++i) {
209 | if (prOut[i] < val_pivot) {
210 | prOut[pivot]=prOut[i];
211 | prOut[i]=prOut[++pivot];
212 | prOut[pivot]=val_pivot;
213 | }
214 | }
215 | } else {
216 | const T val_pivot=prOut[pivot];
217 | for (I i = beg+1; i<=end; ++i) {
218 | if (prOut[i] > val_pivot) {
219 | prOut[pivot]=prOut[i];
220 | prOut[i]=prOut[++pivot];
221 | prOut[pivot]=val_pivot;
222 | }
223 | }
224 | }
225 | quick_sort(prOut,beg,pivot-1,incr);
226 | quick_sort(prOut,pivot+1,end,incr);
227 | }
228 |
229 |
230 | /// template version of the power function
231 | template <>
232 | inline double power(const double x, const double y) {
233 | return pow(x,y);
234 | };
235 | template <>
236 | inline float power(const float x, const float y) {
237 | return powf(x,y);
238 | };
239 |
240 | /// template version of the fabs function
241 | template <>
242 | inline double abs(const double x) {
243 | return fabs(x);
244 | };
245 | template <>
246 | inline float abs(const float x) {
247 | return fabsf(x);
248 | };
249 |
250 | /// template version of the fabs function
251 | template <>
252 | inline double sqr(const double x) {
253 | return sqrt(x);
254 | };
255 | template <>
256 | inline float sqr(const float x) {
257 | return sqrtf(x);
258 | };
259 |
260 | template <>
261 | inline double exp_alt(const double x) {
262 | return exp(x);
263 | };
264 | template <>
265 | inline float exp_alt(const float x) {
266 | return expf(x);
267 | };
268 |
269 | template <>
270 | inline double log_alt(const double x) {
271 | return log(x);
272 | };
273 | template <>
274 | inline float log_alt(const float x) {
275 | return logf(x);
276 | };
277 |
278 |
279 | template <>
280 | inline double sqr_alt(const double x) {
281 | return sqrt(x);
282 | };
283 | template <>
284 | inline float sqr_alt(const float x) {
285 | return sqrtf(x);
286 | };
287 |
288 | static inline int init_omp(const int numThreads) {
289 | int NUM_THREADS;
290 | #ifdef _OPENMP
291 | NUM_THREADS = (numThreads == -1) ? MIN(MAX_THREADS,omp_get_num_procs()) : numThreads;
292 | omp_set_nested(0);
293 | omp_set_dynamic(0);
294 | omp_set_num_threads(NUM_THREADS);
295 | #else
296 | NUM_THREADS = 1;
297 | #endif
298 | return NUM_THREADS;
299 | }
300 |
301 | template
302 | struct Triplet {
303 | T1 x;
304 | T2 z;
305 | T3 s;
306 | };
307 |
308 |
309 | #endif
310 |
--------------------------------------------------------------------------------
/third-party/miso_svm-1.0/miso.cpp:
--------------------------------------------------------------------------------
1 | #include
2 | #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
3 | #include
4 | #include
5 | #include "cblas_alt_template.h"
6 |
7 | #include "linalg.h"
8 |
9 | #include "ctypes_utils.h"
10 | #include "svm.h"
11 |
12 | #include
13 | using namespace std;
14 |
15 | #define MAKE_INIT_NAME(x) init ## x (void)
16 | #define MODNAME_INIT(s) MAKE_INIT_NAME(s)
17 |
18 | #define STR_VALUE(arg) #arg
19 | #define FUNCTION_NAME(name) STR_VALUE(name)
20 |
21 | #define MODNAME_STR FUNCTION_NAME(MODNAME)
22 |
23 | /*
24 | Get the include directories within python using
25 |
26 | import distutils.sysconfig
27 | print distutils.sysconfig.get_python_inc()
28 | import numpy as np
29 | print np.get_include()
30 |
31 | gcc -fPIC -shared -g -Wall -O3 \
32 | -I /usr/include/python2.7 -I /usr/lib64/python2.7/site-packages/numpy/core/include \
33 | mymath.c -o mymath.so
34 |
35 | */
36 |
37 |
38 | template
39 | bool all_finite(const T* const x, const int n) {
40 | bool finite(true);
41 | #pragma omp parallel for shared(finite)
42 | for (int i=0; i Xmat;
95 | Vector yvec;
96 | if (!npyToVector(y, yvec, "y")) return NULL;
97 | if (!npyToMatrix(X, Xmat, "X")) return NULL;
98 | if (max_iter <= 0) {
99 | max_iter = 1000 * Xmat.n();
100 | if (verbose)
101 | cout << "Setting max_iter to 1000*n = " << max_iter << endl;
102 | }
103 |
104 | assert_py_obj(all_finite(Xmat.rawX(), Xmat.m()*Xmat.n()), "X contains inf or nan values!");
105 | assert_py_obj(all_finite(yvec.rawX(), yvec.n()), "y contains inf or nan values!");
106 |
107 | Vector* iter_count = new Vector();
108 | Vector* primals = new Vector();
109 | Vector* losses = new Vector();
110 |
111 | const int num_classes = yvec.maxval()+1;
112 | Matrix* Wmat = new Matrix(Xmat.m(), num_classes);
113 |
114 | threads = set_omp_threads(threads);
115 |
116 | /* actual computation */
117 | miso_svm_onevsrest(yvec, Xmat, *Wmat, *iter_count, *primals, *losses, lambda, eps, max_iter, accelerated, reweighted, non_uniform, verbose);
118 |
119 | PyObject* PyW = (PyObject*) wrapMatrix(Wmat);
120 | PyObject* PyIterCount = (PyObject*)wrapVector(iter_count);
121 | PyObject* PyPrimals = (PyObject*)wrapVector(primals);
122 | PyObject* PyLosses = (PyObject*)wrapVector(losses);
123 |
124 | return Py_BuildValue("OOOO", PyW, PyIterCount, PyPrimals, PyLosses);
125 | }
126 |
127 |
128 | template
129 | PyArrayObject* new_array(vector shape) {
130 | const int ndim = shape.size();
131 | PyArrayObject* result = (PyArrayObject *) PyArray_SimpleNew(ndim, shape.data(), getTypeNumber());
132 | return result;
133 | }
134 |
135 |
136 | static PyMethodDef method_list[] = {
137 | {"miso_one_vs_rest", (PyCFunction)pymiso_miso_one_vs_rest, METH_VARARGS | METH_KEYWORDS, "Train a linear SVM using the MISO algorithm."},
138 | {NULL, NULL, 0, NULL} /* Sentinel */
139 | };
140 |
141 | static struct PyModuleDef misomodule = {
142 | PyModuleDef_HEAD_INIT,
143 | "_miso", /* name of module */
144 | NULL, /* module documentation, may be NULL */
145 | -1, /* size of per-interpreter state of the module,
146 | or -1 if the module keeps state in global variables. */
147 | method_list,
148 | NULL//, NULL, NULL, NULL
149 | };
150 |
151 | PyMODINIT_FUNC
152 | PyInit__miso(void) {
153 |
154 | PyObject* m;
155 | m = PyModule_Create(&misomodule);
156 | assert_py_obj(m!=NULL, "failed to create miso module object");
157 |
158 | // initialize wrapper classes
159 | MatrixWrapperType.tp_new = PyType_GenericNew;
160 | VectorWrapperType.tp_new = PyType_GenericNew;
161 | MapWrapperType.tp_new = PyType_GenericNew;
162 | assert_py_obj(PyType_Ready(&MapWrapperType) >= 0,
163 | "Map wrapper type failed to initialize");
164 | assert_py_obj(PyType_Ready(&MatrixWrapperType) >= 0,
165 | "Matrix wrapper type failed to initialize");
166 | assert_py_obj(PyType_Ready(&VectorWrapperType) >= 0,
167 | "Vector wrapper type failed to initialize");
168 |
169 | /* required, otherwise numpy functions do not work */
170 | import_array();
171 |
172 | Py_INCREF(&MatrixWrapperType);
173 | Py_INCREF(&MapWrapperType);
174 | Py_INCREF(&VectorWrapperType);
175 | PyModule_AddObject(m, "MyDealloc_Type_Mat", (PyObject *)&MatrixWrapperType);
176 | PyModule_AddObject(m, "MyDealloc_Type_Map", (PyObject *)&MapWrapperType);
177 | PyModule_AddObject(m, "MyDealloc_Type_Vec", (PyObject *)&VectorWrapperType);
178 |
179 | return m;
180 | }
181 |
--------------------------------------------------------------------------------
/third-party/miso_svm-1.0/miso_svm/__init__.py:
--------------------------------------------------------------------------------
1 | from __future__ import absolute_import
2 |
3 | from miso_svm.quick import quick
4 | from miso_svm.miso import MisoClassifier
5 |
--------------------------------------------------------------------------------
/third-party/miso_svm-1.0/miso_svm/classification.py:
--------------------------------------------------------------------------------
1 | #! /usr/bin/env python
2 |
3 | """run Miso svm classifier on features"""
4 |
5 | from __future__ import absolute_import
6 | from __future__ import division
7 | from __future__ import print_function
8 |
9 | __author__ = "Daan Wynen, THOTH TEAM INRIA Grenoble Alpes"
10 | __copyright__ = "INRIA"
11 | __credits__ = ["Alberto Bietti", "Dexiong Chen", "Ghislain Durif",
12 | "Julien Mairal", "Daan Wynen"]
13 | __license__ = "GPL"
14 | __version__ = "1.0"
15 | __maintainer__ = "Ghislain Durif"
16 | __email__ = "ghislain.durif@inria.fr"
17 | __status__ = "Development"
18 | __date__ = "2017"
19 |
20 |
21 | import numpy as np
22 |
23 | import logging
24 |
25 | from miso_svm.miso import MisoClassifier
26 |
27 | from sklearn import model_selection, metrics
28 | from sklearn.metrics import confusion_matrix
29 | from sklearn.model_selection import StratifiedShuffleSplit
30 | from datetime import datetime
31 |
32 | EPS_NORM = 0.00001
33 |
34 | def run(features_tr, features_te,
35 | labels_tr, labels_te,
36 | out_file=None, threads=0, start_exp=-15, end_exp=15,
37 | add_iter=3,
38 | confusion_matrix=True, do_cv=False,
39 | verbose=True, seed=None):
40 | """run miso svm classification on features and labels
41 |
42 | Args:
43 | features_tr (np.array): Matrix of features (observations in rows)
44 | in training set.
45 | features_te (np.array): Matrix of features (observations in rows)
46 | in test set.
47 | labels_tr (np.array): Matrix of labels (observations in rows)
48 | in training set.
49 | labels_te (np.array): Matrix of labels (observations in rows)
50 | in test set.
51 | out_file (string): File to store final classifier in. Should end
52 | in '.npz'
53 | threads (int): Number of OpenMP threads to use, default is 0.
54 | start_exp (int): Parameter search starting point, default is -15.
55 | end_exp (int): Parameter search end point, default is 15.
56 | add_iter (int): How many iterations to continue before
57 | accepting current best iteration, default is 3.
58 | confusion_matrix (bool): should confusion matrix be ploted or not.
59 | do_cv (bool): If False, do not do cross validation. Instead, use
60 | test accuracy to select model, default is False.
61 | verbose (int): 0 or 1, indicates verbosity in C++ code, default is 0.
62 | seed (int): Random seed for the SVM, default is None.
63 |
64 | """
65 |
66 | logging.info('Training feature map sparsity: {:5.2f}'.format(100*((features_tr==0).sum()/features_tr.size)))
67 | labels_tr = labels_tr.astype(np.float32).squeeze()
68 | logging.info('Test feature map sparsity: {:5.2f}'.format(100*((features_te==0).sum()/features_te.size)))
69 | labels_te = labels_te.astype(np.float32).squeeze()
70 |
71 | logging.info("Train shape: {}".format(features_tr.shape))
72 | logging.info("Test shape: {}".format(features_te.shape))
73 |
74 |
75 | logging.info('doing normalization')
76 | features_tr -= features_tr.mean(axis=1, keepdims=True)
77 | features_te -= features_te.mean(axis=1, keepdims=True)
78 | features_tr /= np.maximum(EPS_NORM, np.linalg.norm(features_tr, axis=1, keepdims=True))
79 | features_te /= np.maximum(EPS_NORM, np.linalg.norm(features_te, axis=1, keepdims=True))
80 |
81 | logging.info('shuffling training data')
82 | shuffle_in_unison_scary(features_tr, labels_tr)
83 |
84 | start_time = datetime.now()
85 |
86 | logging.info('\n\n')
87 | logging.info('==================== START CLASSIFICATION ===================\n')
88 | logging.info(' Starting time: {0}\n'.format(start_time))
89 | logging.info('=============================================================\n')
90 |
91 |
92 | clf = cv_C_only(features_te, features_tr, labels_te, labels_tr,
93 | start_exp, end_exp, seed,
94 | add_iter, do_cv, verbose, threads)
95 |
96 | predictions_te = clf.predict(features_te)
97 | acc_te = clf.score(features_te, labels_te)
98 | logging.info("\n\n\tBest Acc_test: {:6.2f}%\n".format(100 * acc_te))
99 |
100 | end_time = datetime.now()
101 | logging.info('============================================================\n')
102 | logging.info(' End time: {0}\n'.format(end_time))
103 | logging.info(' Time taken: {0}\n'.format(end_time - start_time))
104 | logging.info('============================================================\n')
105 | logging.info('saving classifier to {}'.format(out_file))
106 | print("{:.2%}".format(acc_te)) # for scripts that expect the score in the last line
107 |
108 | if(out_file is not None):
109 | np.savez(out_file, clf=clf)
110 |
111 | if confusion_matrix:
112 | try:
113 | cm = confusion_matrix(labels_te, predictions_te)
114 | plot_confusion_matrix(cm, list(set(labels_tr)))
115 | plt.show(block=False)
116 | confmat_img_fname = 'confusion_matrix.png'
117 | plt.savefig(confmat_img_fname, bbox_inches='tight')
118 | except:
119 | pass
120 |
121 |
122 | # shuffles two arrays along the first axis, with the same permutation
123 | # taken from http://stackoverflow.com/q/4601373/393885
124 | def shuffle_in_unison_scary(a, b):
125 | rng_state = np.random.get_state()
126 | np.random.shuffle(a)
127 | np.random.set_state(rng_state)
128 | np.random.shuffle(b)
129 |
130 |
131 | def cv_C_only(features_te, features_tr, labels_te, labels_tr, start_exp, end_exp, seed,
132 | add_iter=3, do_cv=True, verbose=0, threads=0, **kwargs):
133 | # manual grid search {{{
134 |
135 | best_score = -1
136 | best_acc_te = -1
137 | best_c = 0
138 | CV_FOLDS = 5 if do_cv else 1
139 | CV_TEST_PROPORTION = 0.2
140 | N = int(labels_tr.shape[0]*(1-CV_TEST_PROPORTION)) if do_cv else labels_tr.shape[0]
141 | np.random.seed(seed)
142 | splits = StratifiedShuffleSplit(CV_FOLDS, test_size=CV_TEST_PROPORTION)#, random_state=1)
143 | Ctab = np.arange(start_exp, end_exp)
144 |
145 |
146 | iter_since_best = 0
147 | start_time = datetime.now()
148 | last_time = start_time
149 | for exp in Ctab:
150 | Lambda = 1 / (2 * N * 2.0**exp)
151 |
152 | clf2 = MisoClassifier(Lambda=Lambda,
153 | max_iterations=1000*N,
154 | verbose=verbose,
155 | threads=threads,
156 | seed=seed)
157 | clf2.fit(features_tr, labels_tr)
158 | acc_tr = clf2.score(features_tr, labels_tr)
159 | acc_te = clf2.score(features_te, labels_te)
160 |
161 | if do_cv:
162 | clf = MisoClassifier(Lambda=Lambda,
163 | max_iterations=1000*N,
164 | verbose=verbose,
165 | threads=threads,
166 | seed=seed)
167 | cv_scores = model_selection.cross_val_score(clf, features_tr, labels_tr, cv=splits.split(features_tr, labels_tr), n_jobs=1)
168 | cv_i = np.mean(cv_scores)
169 | cv_i_std = np.std(cv_scores)
170 | now_time = datetime.now()
171 | logging.info("{:%H:%M:%S}\t{}\tLambda= {:<9.4e} cv={:6.2f}% (std={:6.2f})"
172 | .format(now_time, str(now_time-last_time).split('.')[0], Lambda, cv_i * 100, cv_i_std * 100))
173 | else:
174 | now_time = datetime.now()
175 | logging.info("{:%H:%M:%S}\t{}\tLambda= {:<9.4e}\t"
176 | .format(now_time, str(now_time-last_time).split('.')[0], Lambda))
177 | last_time = now_time
178 |
179 | logging.info("\tAcc_train: {:6.2f}% |".format(100 * acc_tr))
180 | logging.info("\tAcc_test: {:6.2f}% |".format(100 * acc_te))
181 |
182 | if do_cv:
183 | if cv_i > best_score:
184 | best_score = cv_i
185 | best_c = Lambda
186 | best_clf = clf2
187 | logging.info(' *')
188 | else:
189 | logging.info(' ')
190 |
191 | if acc_te > best_acc_te:
192 | best_acc_te = acc_te
193 | iter_since_best = 0
194 | # if we're not doing CV, use acc_te instead of CV score
195 | if not do_cv:
196 | best_score = acc_te
197 | best_c = Lambda
198 | best_clf = clf2
199 | logging.info(' +')
200 | else:
201 | iter_since_best += 1
202 | if iter_since_best >= add_iter:
203 | break
204 | logging.info(' ')
205 |
206 | # manual grid search }}}
207 |
208 | return best_clf
209 |
210 |
211 | def plot_confusion_matrix(cm, labels, title='Confusion matrix', cmap=plt.cm.Blues):
212 | plt.imshow(cm, interpolation='nearest', cmap=cmap)
213 | plt.title(title)
214 | plt.colorbar()
215 | tick_marks = np.arange(len(labels))
216 | plt.xticks(tick_marks, labels, rotation=45)
217 | plt.yticks(tick_marks, labels)
218 | plt.tight_layout()
219 | plt.ylabel('True label')
220 | plt.xlabel('Predicted label')
221 |
222 |
223 | def clamp_values(arr, clampval = 800):
224 | """clamps array input in-place"""
225 | to_clamp = np.abs(arr) > clampval
226 | if (to_clamp).any():
227 | logging.info('clamping {} values to +- {}'.format(to_clamp.sum(), clampval))
228 | else:
229 | logging.info('no clamping necessary')
230 | np.clip(arr, -clampval, clampval, out=arr)
231 |
232 |
233 | def heal_nans(arr):
234 | """remove NaNs if any and replace them by the average of the column"""
235 | if np.isnan(arr).any():
236 | logging.info('replacing {} NaN values in array.'.format(np.isnan(arr).sum()))
237 | else:
238 | logging.info('no NaNs in array')
239 | return
240 |
241 | for j in xrange(arr.shape[1]):
242 | nans = np.isnan(arr[:, j])
243 | if not nans.any():
244 | continue
245 | if nans.all():
246 | arr[:, j] = 0
247 | continue
248 | arr[:, j][nans] = np.mean(arr[:, j][np.logical_not(nans)])
249 |
--------------------------------------------------------------------------------
/third-party/miso_svm-1.0/miso_svm/miso.py:
--------------------------------------------------------------------------------
1 | """Miso svm classifier"""
2 |
3 | from __future__ import absolute_import
4 | from __future__ import division
5 | from __future__ import print_function
6 |
7 | __author__ = "Daan Wynen, THOTH TEAM INRIA Grenoble Alpes"
8 | __copyright__ = "INRIA"
9 | __credits__ = ["Alberto Bietti", "Dexiong Chen", "Ghislain Durif",
10 | "Julien Mairal", "Daan Wynen"]
11 | __license__ = "GPL"
12 | __version__ = "1.0"
13 | __maintainer__ = "Ghislain Durif"
14 | __email__ = "ghislain.durif@inria.fr"
15 | __status__ = "Development"
16 | __date__ = "2017"
17 |
18 | import miso_svm._miso as cmiso
19 | import numpy as np
20 | from sklearn.base import BaseEstimator
21 | from sklearn.base import ClassifierMixin
22 |
23 | class MisoClassifier(BaseEstimator, ClassifierMixin):
24 |
25 | def __init__(self,
26 | Lambda=0.01,
27 | eps=1e-4,
28 | max_iterations=None,
29 | accelerated=True,
30 | threads=-1,
31 | verbose=0,
32 | seed=None):
33 | self.Lambda = Lambda
34 | self.eps = eps
35 | self.max_iterations = max_iterations
36 | self.accelerated = accelerated
37 | self.threads = threads
38 | self.verbose = verbose
39 | if seed is not None:
40 | self.seed = seed
41 | else:
42 | # set the seed, so that we can retrieve it later if needed
43 | self.seed = np.random.randint(np.iinfo(np.int32).min, np.iinfo(np.int32).max)
44 |
45 | def fit(self, X, y):
46 | assert X.shape[0] == y.shape[0]
47 | assert len(X.shape) == 2
48 | assert len(y.shape) == 1
49 | assert X.dtype == y.dtype
50 | assert X.dtype == np.float32 # TODO: might want to drop that later
51 |
52 | if self.max_iterations is None:
53 | self.max_iterations = 1000 * X.shape[0]
54 | self.W, self.iter_count, self.primals, self.losses =\
55 | cmiso.miso_one_vs_rest(X, y,
56 | self.Lambda, self.max_iterations,
57 | eps=self.eps,
58 | accelerated=self.accelerated,
59 | threads=self.threads,
60 | verbose=self.verbose,
61 | seed=self.seed)
62 | self.W = self.W.astype('float32')
63 | self.iter_count = self.iter_count.astype('intc')
64 | self.primals = self.primals.astype('float32')
65 | self.losses = self.losses.astype('float32')
66 |
67 | def predict(self, X):
68 | activations = self.W.dot(X.T)
69 | predictions = np.argmax(activations, axis=0)
70 | return predictions
71 |
72 |
73 | def load_dataset():
74 | ds = sklearn.datasets.load_digits()
75 | X = ds.data.astype('float32')
76 | X -= X.mean(axis=1, keepdims=True)
77 | X /= np.linalg.norm(X, axis=1, keepdims=True)
78 | Y = ds.target.astype('float32')
79 | return X, Y
80 |
81 | if __name__=='__main__':
82 | import sklearn.datasets
83 | from sklearn import svm, model_selection, metrics
84 | from sklearn.model_selection import StratifiedShuffleSplit
85 | from datetime import datetime
86 | cv_folds = 20
87 |
88 | X, Y = load_dataset()
89 | N = Y.size
90 | splits = StratifiedShuffleSplit(cv_folds, test_size=0.2)#, random_state=1)
91 |
92 | def test_clf(clf, name):
93 | start_time = datetime.now()
94 | scores = sklearn.model_selection.cross_val_score(clf, X, Y, cv=splits.split(X,Y))
95 | time_taken = datetime.now() - start_time
96 | print('{}: {:6.2f}% in {:02}:{:07.4f} ({})'
97 | .format(name,
98 | 100*np.mean(scores),
99 | (time_taken.seconds//60)%60,
100 | (time_taken.seconds + time_taken.microseconds/1000000)%60,
101 | ', '.join(['{:6.2f}'.format(f) for f in scores])))
102 |
103 | for L in np.float(2)**np.arange(2, -15, -1):
104 | print('Lambda = {}'.format(L))
105 | clf_miso = MisoClassifier(verbose=0, Lambda=L, threads=1)
106 | clf_lsvc = svm.LinearSVC(loss='squared_hinge', C=1/(N * clf_miso.Lambda), fit_intercept=False)
107 |
108 | test_clf(clf_miso, 'MISO')
109 | test_clf(clf_lsvc, 'LSVC')
110 |
--------------------------------------------------------------------------------
/third-party/miso_svm-1.0/miso_svm/quick.py:
--------------------------------------------------------------------------------
1 | """Quick caller for Miso svm classifier"""
2 |
3 | from __future__ import absolute_import
4 | from __future__ import division
5 | from __future__ import print_function
6 |
7 | __author__ = "Ghislain Durif, THOTH TEAM INRIA Grenoble Alpes"
8 | __copyright__ = "INRIA"
9 | __credits__ = ["Alberto Bietti", "Dexiong Chen", "Ghislain Durif",
10 | "Julien Mairal", "Daan Wynen"]
11 | __license__ = "GPL"
12 | __version__ = "1.0"
13 | __maintainer__ = "Ghislain Durif"
14 | __email__ = "ghislain.durif@inria.fr"
15 | __status__ = "Development"
16 | __date__ = "2017"
17 |
18 | import logging
19 | import numpy as np
20 | from timeit import default_timer as timer
21 |
22 | import miso_svm._miso as cmiso
23 |
24 | EPS_NORM = 0.00001
25 |
26 | def quick(features_tr, features_te,
27 | labels_tr, labels_te,
28 | eps=1e-4, threads=0, start_exp=-15, end_exp=15,
29 | add_iter=3, accelerated=True,
30 | verbose=True, seed=None):
31 |
32 | labels_tr = labels_tr.astype(np.float32).squeeze()
33 | labels_te = labels_te.astype(np.float32).squeeze()
34 |
35 | logging.info('doing normalization')
36 | features_tr -= features_tr.mean(axis=1, keepdims=True)
37 | features_te -= features_te.mean(axis=1, keepdims=True)
38 | features_tr /= np.maximum(EPS_NORM, np.linalg.norm(features_tr, axis=1, keepdims=True))
39 | features_te /= np.maximum(EPS_NORM, np.linalg.norm(features_te, axis=1, keepdims=True))
40 |
41 | Ctab = np.arange(start_exp, end_exp)
42 | N = labels_tr.shape[0]
43 | max_iterations=1000*N
44 |
45 | Lambdas = []
46 | accuracys = []
47 |
48 | best_acc = 0
49 | best_acc_i = -1
50 |
51 | for i,exp in enumerate(Ctab):
52 | if seed is None:
53 | seed = np.random.randint(np.iinfo(np.int32).min, np.iinfo(np.int32).max)
54 |
55 | Lambda = 1 / (2 * N * 2.0**exp)
56 | start = timer()
57 | W, iter_count, primals, losses =\
58 | cmiso.miso_one_vs_rest(features_tr, labels_tr,
59 | Lambda,
60 | max_iterations,
61 | eps=eps,
62 | accelerated=accelerated,
63 | threads=threads,
64 | verbose=verbose,
65 | seed=seed)
66 | end = timer()
67 |
68 | activations = W.dot(features_te.T)
69 | predictions = np.argmax(activations, axis=0)
70 |
71 | Lambdas.append(Lambda)
72 | accuracy = 1 - (np.count_nonzero(predictions - labels_te) / labels_te.shape[0])
73 | accuracys.append(accuracy)
74 |
75 | logging.info("Lambda = {} / acc = {:.4%} / training in {:.4f} sec"
76 | .format(Lambda, accuracy, end-start))
77 |
78 | if accuracy > best_acc:
79 | best_acc = accuracy
80 | best_acc_i = i
81 | if i>=10 and best_acc_i <= i-4:
82 | break
83 |
84 | print("\n### Best accuracy = {:.4%} for Lambda = {}\n"
85 | .format(accuracys[best_acc_i], Lambdas[best_acc_i]))
86 |
87 | return accuracys[best_acc_i], Lambdas[best_acc_i]
88 |
89 |
90 | if __name__=='__main__':
91 | import sklearn.datasets
92 | import sys
93 |
94 | logging.basicConfig(stream=sys.stdout,
95 | format='%(levelname)s:%(message)s',
96 | level=logging.DEBUG)
97 |
98 | def load_dataset():
99 | ds = sklearn.datasets.load_digits()
100 | X = ds.data.astype('float32')
101 | X -= X.mean(axis=1, keepdims=True)
102 | X /= np.linalg.norm(X, axis=1, keepdims=True)
103 | Y = ds.target.astype('float32')
104 | return X, Y
105 |
106 | X, Y = load_dataset()
107 | N = Y.size
108 |
109 | mask = np.random.choice([False, True], N, p=[0.8, 0.2])
110 |
111 | Xtr = X[np.logical_not(mask),]
112 | Xte = X[mask,]
113 |
114 | Ytr = Y[np.logical_not(mask),]
115 | Yte = Y[mask,]
116 |
117 | start = timer()
118 | acc, lamb = quick(Xtr.reshape(Xtr.shape[0], -1),
119 | Xte.reshape(Xte.shape[0], -1),
120 | Ytr, Yte,
121 | eps=1e-4, threads=0, start_exp=-15, end_exp=15,
122 | add_iter=3, accelerated=True,
123 | verbose=False, seed=None)
124 | end = timer()
125 | logging.info("Training MISOS SVM in {:.4f} sec"
126 | .format(end - start))
127 |
--------------------------------------------------------------------------------
/third-party/miso_svm-1.0/setup.py:
--------------------------------------------------------------------------------
1 | import os
2 |
3 | from distutils.core import setup, Extension
4 | from distutils.sysconfig import get_python_inc
5 | import distutils.util
6 | import numpy
7 | from numpy.distutils.system_info import blas_info
8 |
9 | # includes numpy : package numpy.distutils , numpy.get_include()
10 | # python setup.py build
11 | # python setup.py install --prefix=dist,
12 | incs = ['.'] + [numpy.get_include(), get_python_inc()] + blas_info().get_include_dirs()
13 |
14 | osname = distutils.util.get_platform()
15 | # cc_flags = ['-fPIC', '-fopenmp', '-Wunused-variable', '-m64']
16 | cc_flags = ['-fPIC', '-Wall', '-fopenmp', '-std=c++11', '-lm', '-Wfatal-errors']
17 | for _ in numpy.__config__.blas_opt_info.get("extra_compile_args", []):
18 | if _ not in cc_flags:
19 | cc_flags.append(_)
20 | for _ in numpy.__config__.lapack_opt_info.get("extra_compile_args", []):
21 | if _ not in cc_flags:
22 | cc_flags.append(_)
23 |
24 | link_flags = ['-fopenmp']
25 | for _ in numpy.__config__.blas_opt_info.get("extra_link_args", []):
26 | if _ not in link_flags:
27 | link_flags.append(_)
28 | for _ in numpy.__config__.lapack_opt_info.get("extra_link_args", []):
29 | if _ not in link_flags:
30 | link_flags.append(_)
31 |
32 | libs = ['stdc++', 'mkl_rt', 'iomp5']
33 | libdirs = numpy.distutils.system_info.blas_info().get_lib_dirs()
34 |
35 | miso = Extension(
36 | 'miso_svm._miso',
37 | sources = ['miso.cpp'],
38 | include_dirs = incs,
39 | extra_compile_args = ['-DINT_64BITS', '-DAXPBY', '-DHAVE_MKL'] + cc_flags,
40 | library_dirs = libdirs,
41 | libraries = libs,
42 | extra_link_args = link_flags,
43 | language = 'c++',
44 | depends = ['cblas_alt_template.h', 'cblas_defvar.h',
45 | 'common.h', 'ctypes_utils.h', 'linalg.h',
46 | 'list.h', 'misc.h', 'svm.h', 'utils.h'],
47 | )
48 |
49 |
50 | setup ( name = 'miso_svm',
51 | version= '1.0',
52 | description='Python interface for MISO SVM classifier',
53 | author = 'Ghislain Durif',
54 | author_email = 'ckn.dev@inria.fr',
55 | url = None,
56 | license='GPLv3',
57 | ext_modules = [miso,],
58 | packages = ['miso_svm'],
59 |
60 | classifiers=[
61 | # How mature is this project? Common values are
62 | # 3 - Alpha
63 | # 4 - Beta
64 | # 5 - Production/Stable
65 | 'Development Status :: 4 - Beta',
66 |
67 | # Indicate who your project is intended for
68 | 'Intended Audience :: Science/Research',
69 | 'Topic :: Scientific/Engineering :: Mathematics',
70 |
71 | # Pick your license as you wish (should match "license" above)
72 | 'License :: OSI Approved :: GNU General Public License v3 (GPLv3)',
73 |
74 | # Specify the Python versions you support here. In particular, ensure
75 | # that you indicate whether you support Python 2, Python 3 or both.
76 | 'Programming Language :: Python :: 3',
77 | 'Programming Language :: Python :: 3.2',
78 | 'Programming Language :: Python :: 3.3',
79 | 'Programming Language :: Python :: 3.4',
80 | 'Programming Language :: Python :: 3.5',
81 | 'Programming Language :: Python :: 3.6',
82 | ],
83 |
84 | # keywords='optimization',
85 | # install_requires=['numpy', 'scipy', 'scikit-learn'],
86 | )
87 |
--------------------------------------------------------------------------------
/third-party/miso_svm-1.0/svm.h:
--------------------------------------------------------------------------------
1 | #ifndef SVM_H
2 | #define SVM_H
3 |
4 | #include "linalg.h"
5 |
6 | template
7 | T normsq(const Vector& x, const Vector& y) {
8 | return x.nrm2sq()+y.nrm2sq()-2*y.dot(x);
9 | }
10 |
11 | template
12 | void miso_svm_multiclass_accelerated_aux(const Vector& y, const Matrix& X, Matrix& W, Matrix& alpha, Vector& C, const T lambda, const T kappa, const int max_iter, const int loss = 1) {
13 | /// assumes the right relation holds for W
14 | const int n = X.n();
15 | const int nclasses = W.n();
16 | Vector xi;
17 | Vector alphai;
18 | Vector diff_alpha;
19 | Vector beta;
20 | for (int ii=0; ii
52 | void miso_svm_multiclass_accelerated(const Vector& y, const Matrix& X, Matrix& W, const T lambda, const T eps, const int epochs, const T L, const int loss = 1) {
53 | Timer time1;
54 | Timer time2;
55 | const int n = X.n();
56 | const int m = X.m();
57 | const int nclasses = W.n();
58 | Vector C(n);
59 | Matrix alpha(nclasses,n);
60 | Matrix Z(m,nclasses);
61 | Matrix diffZ(m,nclasses);
62 | Matrix diffW(m,nclasses);
63 | Z.setZeros();
64 | diffZ.setZeros();
65 | diffW.setZeros();
66 | alpha.setZeros();
67 | C.setZeros();
68 | W.setZeros();
69 | const T kappa = L/n - lambda;
70 | std::cout << "kappa: " << kappa << std::endl;
71 | const T q = lambda/(lambda+kappa);
72 | const T qp = T(0.9)*sqrt(q);
73 | const T alphak = sqrt(q);
74 | const T betak=(T(1.0)-alphak)/(T(1.0)+alphak);
75 |
76 | time2.start();
77 | for (int ii=0; ii 0 && ii % (10) == 0) {
81 | Matrix tmp2;
82 | W.mult(X,tmp2,true,false);
83 | T los = 0;
84 | if (loss == 1) {
85 | for (int jj=0; jj 0)
90 | los += rjk*rjk;
91 | }
92 | }
93 | }
94 | los /= 2;
95 | } else if (loss==2) {
96 | Vector beta;
97 | for (int jj=0; jj
140 | void miso_svm_multiclass_aux(const Vector& y, const Matrix& X, Matrix& W, const T lambda, const T eps, const int epochs, const int loss = 1) {
141 | const int n = X.n();
142 | const int nclasses = W.n();
143 | Vector C(n);
144 | Matrix alpha(nclasses,n);
145 | alpha.setZeros();
146 | C.setZeros();
147 | W.setZeros();
148 |
149 | Vector xi;
150 | Vector alphai;
151 | Vector diff_alpha;
152 | Vector beta;
153 | const int max_iter=n*epochs;
154 | for (int ii=0; ii 0 && ii % (10*n) == 0) {
157 | X.mult(alpha,W,false,true,-T(1.0)/(lambda*n)); // to improve numerical stability
158 | Matrix tmp2;
159 | W.mult(X,tmp2,true,false);
160 | T los = 0;
161 | if (loss == 1) {
162 | for (int jj=0; jj 0)
167 | los += rjk*rjk;
168 | }
169 | }
170 | }
171 | los /= 2;
172 | } else if (loss==2) {
173 | Vector beta;
174 | for (int jj=0; jj
220 | void miso_svm_multiclass(const Vector& y, const Matrix& X, Matrix& W, const T lambda, const T eps, const int max_iter, const bool accelerated = false, const int loss = 1) {
221 | const int n = y.n();
222 | const int p = X.m();
223 | const int nclasses=y.maxval()+1;
224 | W.resize(p,nclasses);
225 | Vector normX;
226 | X.norm_2sq_cols(normX);
227 | const T R = normX.mean();
228 | //const T L = 4*normX.mean();
229 | const T L = 2*(1+sqrt(nclasses))*normX.mean();
230 | std::cout << "Value of R: " << R << std::endl;
231 | std::cout << "Value of L/mu: " << L/lambda << std::endl;
232 | std::cout << "Problem size: p x n: " << p << " " << n << std::endl;
233 | std::cout << "*********************" << std::endl;
234 | std::cout << "Processes Lambda " << lambda << std::endl;
235 | std::cout << "Eps " << eps << std::endl;
236 | std::cout << "Loss " << loss << std::endl;
237 | if (accelerated && n < L/lambda) {
238 | std::cout << "Accelerated algorithm" << std::endl;
239 | miso_svm_multiclass_accelerated(y,X,W,lambda,eps,max_iter,L,loss);
240 | } else {
241 | miso_svm_multiclass_aux(y,X,W,lambda,eps,max_iter,loss);
242 | }
243 | }
244 |
245 | template
246 | void mult(const Matrix& X, const Vector& ind, const Vector& alpha, Vector& w, const T a, const T b = 0.0) {
247 | w.resize(X.m());
248 | w.scal(b);
249 | Vector col;
250 | for (int ii=0; ii
257 | void multTrans(const Matrix& X, const Vector& ind, const Vector& w, Vector& tmp) {
258 | tmp.resize(ind.n());
259 | tmp.setZeros();
260 | Vector col;
261 | for (int ii=0; ii
268 | void miso_svm_aux(const Vector& y, const Matrix& X, const Vector& indices, Vector& w, const T R, const T lambda, const T eps, const int max_iter, int& num_it,T& primal,T& loss, const int verbose=0) {
269 | const int n = y.n();
270 | w.setZeros();
271 | const T L = R+lambda;
272 | const T deltaT = n*MIN(T(1.0)/n,lambda/(2*L));
273 | Vector xi;
274 | Vector alpha(n);
275 | alpha.setZeros();
276 | Vector C(n);
277 | C.setZeros();
278 | Vector tmp;
279 | T dualold=0;
280 | T dual=0;
281 | num_it=0;
282 | for (int ii = 0; ii 0 && (ii % (10*n)) == 0) {
284 | num_it+=10;
285 | if (indices.n() > 0) {
286 | mult(X,indices,alpha,w,T(1.0)/n);
287 | multTrans(X,indices,w,tmp);
288 | } else {
289 | X.mult(alpha,w,T(1.0)/n); // to improve numerical stability
290 | X.multTrans(w,tmp);
291 | }
292 | primal=0;
293 | for (int kk=0; kk 0) {
316 | X.refCol(indices[ind],xi);
317 | } else {
318 | X.refCol(ind,xi);
319 | }
320 | const T beta = yi*xi.dot(w);
321 | const T gamma=MAX(T(1.0)-beta,0);
322 | T newalpha;
323 | C[ind]=(T(1.0)-deltaT)*C[ind]+deltaT*(T(0.5)*gamma*gamma+beta*gamma);
324 | newalpha=(T(1.0)-deltaT)*(alpha[ind])+deltaT*yi*gamma/lambda;
325 | w.add(xi,(newalpha-alpha[ind])/n);
326 | alpha[ind]=newalpha;
327 | }
328 | };
329 |
330 | template
331 | void miso_svm_onevsrest(const Vector& yAll, const Matrix& X,
332 | Matrix& W, Vector& info, Vector& primals, Vector& losses,
333 | const T lambda, const T eps, const int max_iter,
334 | const bool accelerated = false, const int reweighted = 0, const bool non_uniform=true, const int verbose=0) {
335 | const int n = yAll.n();
336 | const int p = X.m();
337 | const int nclasses=yAll.maxval()+1;
338 |
339 | info.resize(nclasses);
340 | primals.resize(nclasses);
341 | losses.resize(nclasses);
342 | W.resize(p,nclasses);
343 |
344 | Vector normX;
345 | X.norm_2sq_cols(normX);
346 | const T R = normX.maxval();
347 | if (verbose) {
348 | if (reweighted)
349 | std::cout << "Reweighted algorithm" << std::endl;
350 | if (non_uniform)
351 | std::cout << "Non-uniform sampling" << std::endl;
352 | std::cout << "Value of R: " << R << std::endl;
353 |
354 | std::cout << "Problem size: p x n: " << p << " " << n << std::endl;
355 | std::cout << "*********************" << std::endl;
356 | std::cout << "Processes Lambda " << lambda << std::endl;
357 | std::cout << "Eps " << eps << std::endl;
358 | }
359 | int jj;
360 | #pragma omp parallel for private(jj)
361 | for (jj = 0; jj w;
363 | W.refCol(jj,w);
364 | int num_it;
365 | T primal;
366 | T loss;
367 | if (non_uniform) {
368 | Vector y(n);
369 | Vector ind;
370 | for (int ii = 0; ii((yAll[ii] - T(jj))) < T(0.1) ? T(1.0) : -T(1.0);
372 | if (accelerated && T(2.0)*normX.mean()/n > lambda) {
373 | nonu_accelerated_miso_svm_aux(y,X,w,normX,lambda,eps,max_iter,num_it,primal,loss, verbose);
374 | } else {
375 | nonu_miso_svm_aux(y,X,w,normX,lambda,eps,max_iter,num_it,primal,loss, verbose);
376 | }
377 | } else {
378 | if (reweighted) {
379 | int npos=0;
380 | for (int ii = 0; ii((yAll[ii] - T(jj))) < T(0.1)) npos++;
382 | const int beta= reweighted==1 ? nclasses-2 : static_cast(floor(sqrt(nclasses-2)));
383 | int nn = n + npos*(beta);
384 | Vector ind(nn);
385 | Vector y(nn);
386 | int counter=0;
387 | for (int ii = 0; ii((yAll[ii] - T(jj))) < T(0.1)) {
389 | for (int kk=0; kk lambda) {
399 | accelerated_miso_svm_aux(y,X,ind,w,R,lambda,eps,max_iter,num_it,primal,loss, verbose);
400 | } else {
401 | miso_svm_aux(y,X,ind,w,R,lambda,eps,max_iter,num_it,primal,loss, verbose);
402 | }
403 | } else {
404 | Vector y(n);
405 | Vector ind;
406 | for (int ii = 0; ii