└── README.md
/README.md:
--------------------------------------------------------------------------------
1 | # Awesome-Julia-List
2 | [](https://github.com/sindresorhus/awesome)
3 |
4 | 🔥🔥🔥 This repository lists some awesome public Julia programming language projects.
5 |
6 | ## Contents
7 | - [Awesome-Julia-List](#awesome-julia-list)
8 | - [Summary](#summary)
9 | - [Official Julia](#official-Julia)
10 | - [Awesome List](#awesome-list)
11 | - [Community](#community)
12 | - [Learning Resources](#learning-resources)
13 | - [Data Structure and Algorithm](#data-structure-and-algorithm)
14 | - [Package Manager](#package-manager)
15 | - [FFI Bindings](#ffi-bindings)
16 | - [GPU Computing](#gpu-computing)
17 | - [Scientific Computation](#scientific-computation)
18 | - [Numerical Calculation](#numerical-calculation)
19 | - [Linear Algebra](#linear-algebra)
20 | - [Optimization Engine](#optimization-engine)
21 | - [Data Analysis and Visualization](#data-analysis-and-visualization)
22 | - [Machine Learning](#machine-learning)
23 | - [Machine Learning Framework](#machine-learning-framework)
24 | - [Object Detection](#object-detection)
25 | - [Image and Video Processing](#image-and-video-processing)
26 | - [Web Framework](#web-framework)
27 | - [Performance Benchmark](#performance-benchmark)
28 | - [GUI](#gui)
29 | - [Blogs](#blogs)
30 |
31 |
32 |
33 | ## Summary
34 |
35 | - ### Official Julia
36 |
37 | - [Julia](https://github.com/JuliaLang/julia)
: Julia is a high-level, high-performance dynamic language for technical computing. [ julialang.org/](https://julialang.org/).
38 |
39 | - [Julia Documentation](https://docs.julialang.org/en/v1/) : Welcome to the documentation for Julia.
40 |
41 |
42 | - ### Awesome List
43 |
44 | - [greister/Awesome-Julia](https://github.com/greister/Awesome-Julia)
: A curated list of awesome julia libraries, softwares and tutorials.
45 |
46 | - [old-julia-codes/awesomeJulia](https://github.com/old-julia-codes/awesomeJulia)
: awesome Julia.
47 |
48 | - [widged/awesome-julia-datasciences](https://github.com/widged/awesome-julia-datasciences)
: Resources about Julia for DataSciences / Machine Learning.
49 |
50 |
51 |
52 | - ### Community
53 |
54 | - [JuliaCN](https://github.com/JuliaCN) : [Julia 中文社区](https://cn.julialang.org/)。社区驱动,致力于 Julia 编程语言中文支持的开源组织。
55 |
56 |
57 | - ### Learning Resources
58 |
59 | - [Julia Documentation](https://docs.julialang.org/en/v1/) : Welcome to the documentation for Julia.
60 |
61 | - [JuliaCN/JuliaZH.jl](https://github.com/JuliaCN/JuliaZH.jl)
: Julia语言中文文档。[docs.juliacn.com](https://docs.juliacn.com/latest/)
62 |
63 | - [JuliaCN/JuliaDataScience](https://github.com/JuliaCN/JuliaDataScience)
: Julia Data Science 中文版。[cn.julialang.org/JuliaDataScience/](https://cn.julialang.org/JuliaDataScience/)
64 |
65 |
66 |
67 |
68 | ## Data Structure and Algorithm
69 |
70 | - [TheAlgorithms/Julia](https://github.com/TheAlgorithms/Julia)
: Algorithms implemented in Julia (for educational purposes).
71 |
72 | - [mossr/BeautifulAlgorithms.jl](https://github.com/mossr/BeautifulAlgorithms.jl)
: Concise and beautiful algorithms written in Julia.
73 |
74 |
75 |
76 | ## Package Manager
77 |
78 | - [JuliaCN/Julia2Nix.jl](https://github.com/JuliaCN/Julia2Nix.jl)
: The Nix interface to Julia Ecosystem [maintainer=@GTrunSec]. [cn.julialang.org/Julia2Nix.jl/](http://cn.julialang.org/Julia2Nix.jl/).
79 |
80 |
81 |
82 |
83 |
84 | ## FFI Bindings
85 |
86 | - [PyCall](https://github.com/JuliaPy/PyCall.jl)
: Calling Python functions from the Julia language.
87 |
88 | - [jlrs](https://github.com/Taaitaaiger/jlrs)
: Julia bindings for Rust.
89 |
90 |
91 |
92 |
93 |
94 | ## GPU Computing
95 |
96 | - [CUDA.jl](https://github.com/JuliaGPU/CUDA.jl)
: CUDA programming in Julia. [juliagpu.org/](https://juliagpu.org/)
97 |
98 | - [AMDGPU.jl](https://github.com/JuliaGPU/AMDGPU.jl)
: AMD GPU (ROCm) programming in Julia.
99 |
100 |
101 |
102 |
103 | ## Scientific Computation
104 |
105 | - ### Numerical Calculation
106 |
107 | - [DifferentialEquations.jl](https://github.com/SciML/DifferentialEquations.jl)
: Multi-language suite for high-performance solvers of differential equations and scientific machine learning (SciML) components. Ordinary differential equations (ODEs), stochastic differential equations (SDEs), delay differential equations (DDEs), differential-algebraic equations (DAEs), and more in Julia. [docs.sciml.ai/DiffEqDocs/stable/](https://github.com/SciML/DifferentialEquations.jl)
108 |
109 | - [ModelingToolkit.jl](https://github.com/SciML/ModelingToolkit.jl)
: An acausal modeling framework for automatically parallelized scientific machine learning (SciML) in Julia. A computer algebra system for integrated symbolics for physics-informed machine learning and automated transformations of differential equations. [mtk.sciml.ai/dev/](https://docs.sciml.ai/ModelingToolkit/dev/)
110 |
111 |
112 |
113 |
114 |
115 | - ### Linear Algebra
116 |
117 | - [GenericLinearAlgebra.jl](https://github.com/JuliaLinearAlgebra/GenericLinearAlgebra.jl)
: Generic numerical linear algebra in Julia.
118 |
119 | - [JuliaArrays/LazyArrays.jl](https://github.com/JuliaArrays/LazyArrays.jl)
: Lazy arrays and linear algebra in Julia.
120 |
121 |
122 |
123 |
124 |
125 | - ### Optimization Engine
126 |
127 | - [JuMP](https://github.com/jump-dev/JuMP.jl)
: Modeling language for Mathematical Optimization (linear, mixed-integer, conic, semidefinite, nonlinear). [jump.dev/](https://jump.dev/)
128 |
129 | - [EAGO](https://github.com/PSORLab/EAGO.jl)
: EAGO: Easy-Advanced Global Optimization. EAGO is an open-source development environment for robust and global optimization in Julia.
130 |
131 |
132 |
133 |
134 |
135 | - ### Data Analysis and Visualization
136 |
137 | - [Makie.jl](https://github.com/MakieOrg/Makie.jl)
: Visualizations and plotting in Julia. [docs.makie.org/stable](https://docs.makie.org/stable/)
138 |
139 | - [Plots.jl](https://github.com/JuliaPlots/Plots.jl)
: Powerful convenience for Julia visualizations and data analysis. [docs.juliaplots.org](https://docs.juliaplots.org/stable/)
140 |
141 | - [DataFrames.jl](https://github.com/JuliaData/DataFrames.jl)
: In-memory tabular data in Julia. [dataframes.juliadata.org/stable/](https://dataframes.juliadata.org/stable/)
142 |
143 |
144 |
145 |
146 |
147 |
148 | ## Machine Learning
149 |
150 | - ### Machine Learning Framework
151 |
152 |
153 | - [Flux](https://github.com/FluxML/Flux.jl)
: Relax! Flux is the ML library that doesn't make you tensor. [fluxml.ai/](https://fluxml.ai/)
154 |
155 | - [MLJ](https://github.com/alan-turing-institute/MLJ.jl)
: A Machine Learning Framework for Julia. MLJ (Machine Learning in Julia) is a toolbox written in Julia providing a common interface and meta-algorithms for selecting, tuning, evaluating, composing and comparing about [200 machine learning models](https://alan-turing-institute.github.io/MLJ.jl/dev/model_browser/#Model-Browser) written in Julia and other languages.
156 |
157 | - [ITensor](https://github.com/ITensor/ITensors.jl)
: A Julia library for efficient tensor computations and tensor network calculations. [itensor.org](https://itensor.org/)
158 |
159 | - [TensorOperations.jl](https://github.com/Jutho/TensorOperations.jl)
: Julia package for tensor contractions and related operations. [jutho.github.io/TensorOperations.jl/stable/](about:blank)
160 |
161 | - [TensorKit.jl](https://github.com/Jutho/TensorKit.jl)
: A Julia package for large-scale tensor computations, with a hint of category theory.
162 |
163 |
164 |
165 |
166 | - ### Object Detection
167 |
168 | - [ObjectDetector.jl](https://github.com/r3tex/ObjectDetector.jl)
: Pure Julia implementations of single-pass object detection neural networks.
169 |
170 | - [AndreyGermanov/yolov8_onnx_julia](https://github.com/AndreyGermanov/yolov8_onnx_julia)
: YOLOv8 inference using Julia.
171 |
172 | - [IanButterworth/YOLO.jl](https://github.com/IanButterworth/YOLO.jl)
: YOLO Object Detection in Julia.
173 |
174 |
175 |
176 |
177 |
178 | ## Image and Video Processing
179 |
180 | - [JuliaImages/Images.jl](https://github.com/JuliaImages/Images.jl)
: An image library for Julia. [juliaimages.org/](https://juliaimages.org/latest/)
181 |
182 | - [JuliaImages/OpenCV.jl](https://github.com/JuliaImages/OpenCV.jl)
: Use OpenCV in Julia!! 🚀. [juliaimages.org/OpenCV.jl/dev/](https://juliaimages.org/OpenCV.jl/dev/)
183 |
184 |
185 |
186 | ## Web Framework
187 |
188 | - [Genie.jl](https://github.com/GenieFramework/Genie.jl)
: 🧞The highly productive Julia web framework. [genieframework.com](https://genieframework.com/)
189 |
190 |
191 |
192 |
193 | ## Performance Benchmark
194 |
195 | - [mdmaas/julia-numpy-fortran-test](https://github.com/mdmaas/julia-numpy-fortran-test)
: Comparing Julia vs Numpy vs Fortran for performance and code simplicity.
196 |
197 |
198 |
199 |
200 | ## GUI
201 |
202 | - [JuliaGizmos/Blink.jl](https://github.com/JuliaGizmos/Blink.jl)
: Web-based GUIs for Julia.
203 |
204 |
205 |
206 | ## Blogs
207 |
208 | - [MatecDev](https://www.matecdev.com/)
209 | - [2021-09-20,Testing Julia: Fast as Fortran, Versatile as Python](https://www.matecdev.com/posts/numpy-julia-fortran.html)
210 | - [2022-01-17,Julia vs Numba and Cython: Looking Beyond Microbenchmarks](https://www.matecdev.com/posts/julia-python-numba-cython.html)
211 | - [2023-06-02,Julia: 17X Faster than Python's Scipy, and Easier Too!](https://www.matecdev.com/posts/julia-17x-faster-vs-python-scipy.html)
--------------------------------------------------------------------------------