├── README.md
└── 01_Probabilidade_e_Estatística_para_Investimentos_com_Python.ipynb
/README.md:
--------------------------------------------------------------------------------
1 | # probabilidade_para_investimentos
2 | Estatística e Probabilidade para Investimentos com Python
3 |
--------------------------------------------------------------------------------
/01_Probabilidade_e_Estatística_para_Investimentos_com_Python.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 0,
4 | "metadata": {
5 | "kernelspec": {
6 | "display_name": "Python 3",
7 | "language": "python",
8 | "name": "python3"
9 | },
10 | "language_info": {
11 | "codemirror_mode": {
12 | "name": "ipython",
13 | "version": 3
14 | },
15 | "file_extension": ".py",
16 | "mimetype": "text/x-python",
17 | "name": "python",
18 | "nbconvert_exporter": "python",
19 | "pygments_lexer": "ipython3",
20 | "version": "3.6.2"
21 | },
22 | "colab": {
23 | "name": "01 - Probabilidade e Estatística para Investimentos com Python",
24 | "provenance": [],
25 | "include_colab_link": true
26 | }
27 | },
28 | "cells": [
29 | {
30 | "cell_type": "markdown",
31 | "metadata": {
32 | "id": "view-in-github",
33 | "colab_type": "text"
34 | },
35 | "source": [
36 | ""
37 | ]
38 | },
39 | {
40 | "cell_type": "markdown",
41 | "metadata": {
42 | "id": "sv3bOY-o-6_b",
43 | "colab_type": "text"
44 | },
45 | "source": [
46 | "# Probabilidade e Estatística para Investimentos com Python - Simulando um jogo de dados"
47 | ]
48 | },
49 | {
50 | "cell_type": "code",
51 | "metadata": {
52 | "id": "qaOfcbWO-6_V",
53 | "colab_type": "code",
54 | "colab": {}
55 | },
56 | "source": [
57 | "import pandas as pd"
58 | ],
59 | "execution_count": null,
60 | "outputs": []
61 | },
62 | {
63 | "cell_type": "markdown",
64 | "metadata": {
65 | "id": "Wfv7lvV3-6_U",
66 | "colab_type": "text"
67 | },
68 | "source": [
69 | "## Jogando dois dados e somando os valores das faces"
70 | ]
71 | },
72 | {
73 | "cell_type": "markdown",
74 | "metadata": {
75 | "id": "QHoRW2Bs_w_v",
76 | "colab_type": "text"
77 | },
78 | "source": [
79 | ""
80 | ]
81 | },
82 | {
83 | "cell_type": "markdown",
84 | "metadata": {
85 | "id": "OrqRJPJOG0HC",
86 | "colab_type": "text"
87 | },
88 | "source": [
89 | "## Criando os Dados"
90 | ]
91 | },
92 | {
93 | "cell_type": "code",
94 | "metadata": {
95 | "id": "z_YFitWb-6_c",
96 | "colab_type": "code",
97 | "colab": {
98 | "base_uri": "https://localhost:8080/",
99 | "height": 233
100 | },
101 | "outputId": "6f55de1a-7f0d-408f-d7c7-f5ab4ebdac4f"
102 | },
103 | "source": [
104 | "dado = pd.DataFrame([1,2,3,4,5,6], columns=['face'])\n",
105 | "dado"
106 | ],
107 | "execution_count": null,
108 | "outputs": [
109 | {
110 | "output_type": "execute_result",
111 | "data": {
112 | "text/html": [
113 | "
| \n", 131 | " | face | \n", 132 | "
|---|---|
| 0 | \n", 137 | "1 | \n", 138 | "
| 1 | \n", 141 | "2 | \n", 142 | "
| 2 | \n", 145 | "3 | \n", 146 | "
| 3 | \n", 149 | "4 | \n", 150 | "
| 4 | \n", 153 | "5 | \n", 154 | "
| 5 | \n", 157 | "6 | \n", 158 | "