├── LICENSE
├── README.md
├── bgs
└── bg5.png
├── main.py
├── model
├── labels.txt
└── pneumonia_classifier.h5
├── requirements.txt
└── util.py
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2023 Computer vision engineer
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # pneumonia-classification-web-app-python-streamlit
2 |
3 |
4 |
5 |
6 |
7 | Watch on YouTube: Pneumonia classification web app with Python and Streamlit !
8 |
9 |
10 |
11 | ## model
12 |
13 | A pneumonia classifier was used to classify X-RAY images into {PNEUMONIA, NORMAL}.
14 |
15 | The model was trained using the data provided in the next section and following [this step by step tutorial on how to train an image classifier with Teachable Machine](https://youtu.be/ybh9p3QOYrs).
16 |
17 | The trained model is available in my [Patreon](https://www.patreon.com/ComputerVisionEngineer).
18 |
19 | ## data
20 |
21 | - Data: https://data.mendeley.com/datasets/rscbjbr9sj/2
22 | - License: CC BY 4.0
23 | - Citation: http://www.cell.com/cell/fulltext/S0092-8674(18)30154-5
24 |
--------------------------------------------------------------------------------
/bgs/bg5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/computervisioneng/pneumonia-classification-web-app-python-streamlit/16ced15a382fe2befada1b238b130ed702add3d7/bgs/bg5.png
--------------------------------------------------------------------------------
/main.py:
--------------------------------------------------------------------------------
1 | import streamlit as st
2 | from keras.models import load_model
3 | from PIL import Image
4 | import numpy as np
5 |
6 | from util import classify, set_background
7 |
8 |
9 | set_background('./bgs/bg5.png')
10 |
11 | # set title
12 | st.title('Pneumonia classification')
13 |
14 | # set header
15 | st.header('Please upload a chest X-ray image')
16 |
17 | # upload file
18 | file = st.file_uploader('', type=['jpeg', 'jpg', 'png'])
19 |
20 | # load classifier
21 | model = load_model('./model/pneumonia_classifier.h5')
22 |
23 | # load class names
24 | with open('./model/labels.txt', 'r') as f:
25 | class_names = [a[:-1].split(' ')[1] for a in f.readlines()]
26 | f.close()
27 |
28 | # display image
29 | if file is not None:
30 | image = Image.open(file).convert('RGB')
31 | st.image(image, use_column_width=True)
32 |
33 | # classify image
34 | class_name, conf_score = classify(image, model, class_names)
35 |
36 | # write classification
37 | st.write("## {}".format(class_name))
38 | st.write("### score: {}%".format(int(conf_score * 1000) / 10))
39 |
--------------------------------------------------------------------------------
/model/labels.txt:
--------------------------------------------------------------------------------
1 | 0 PNEUMONIA
2 | 1 NORMAL
3 |
--------------------------------------------------------------------------------
/model/pneumonia_classifier.h5:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/computervisioneng/pneumonia-classification-web-app-python-streamlit/16ced15a382fe2befada1b238b130ed702add3d7/model/pneumonia_classifier.h5
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | numpy==1.23.5
2 | streamlit==1.22.0
3 | Pillow==9.5.0
4 | keras==2.12.0
5 | tensorflow==2.12.0
6 |
--------------------------------------------------------------------------------
/util.py:
--------------------------------------------------------------------------------
1 | import base64
2 |
3 | import streamlit as st
4 | from PIL import ImageOps, Image
5 | import numpy as np
6 |
7 |
8 | def set_background(image_file):
9 | """
10 | This function sets the background of a Streamlit app to an image specified by the given image file.
11 |
12 | Parameters:
13 | image_file (str): The path to the image file to be used as the background.
14 |
15 | Returns:
16 | None
17 | """
18 | with open(image_file, "rb") as f:
19 | img_data = f.read()
20 | b64_encoded = base64.b64encode(img_data).decode()
21 | style = f"""
22 |
28 | """
29 | st.markdown(style, unsafe_allow_html=True)
30 |
31 |
32 | def classify(image, model, class_names):
33 | """
34 | This function takes an image, a model, and a list of class names and returns the predicted class and confidence
35 | score of the image.
36 |
37 | Parameters:
38 | image (PIL.Image.Image): An image to be classified.
39 | model (tensorflow.keras.Model): A trained machine learning model for image classification.
40 | class_names (list): A list of class names corresponding to the classes that the model can predict.
41 |
42 | Returns:
43 | A tuple of the predicted class name and the confidence score for that prediction.
44 | """
45 | # convert image to (224, 224)
46 | image = ImageOps.fit(image, (224, 224), Image.Resampling.LANCZOS)
47 |
48 | # convert image to numpy array
49 | image_array = np.asarray(image)
50 |
51 | # normalize image
52 | normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1
53 |
54 | # set model input
55 | data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
56 | data[0] = normalized_image_array
57 |
58 | # make prediction
59 | prediction = model.predict(data)
60 | # index = np.argmax(prediction)
61 | index = 0 if prediction[0][0] > 0.95 else 1
62 | class_name = class_names[index]
63 | confidence_score = prediction[0][index]
64 |
65 | return class_name, confidence_score
66 |
--------------------------------------------------------------------------------