;
105 |
--------------------------------------------------------------------------------
/docs/concepts/llms.mdx:
--------------------------------------------------------------------------------
1 | ---
2 | title: LLMs
3 | description: Overview of supported language models, including OpenAI, Anthropic, and Google Gemini, Grok, and more.
4 | icon: "computer-classic"
5 | ---
6 |
7 | Each LLM is an adapter around a language model provider and the specific model version, eg: `gpt-4o-mini`. Each [Agent](/agents) can pick their own model and a [ZeeWorkflow](/zee-workflows) can be configured to use a specific LLM as default.
8 |
9 | ```tsx
10 | const llm = new LLM({
11 | provider: "openai",
12 | id: "gpt-4o-mini",
13 | });
14 | ```
15 |
16 | ## List of supported LLM Model IDs
17 |
18 |
19 |
20 | ```plaintext openai
21 | "gpt-4o"
22 | "gpt-4o-mini"
23 | "gpt-4o-2024-05-13"
24 | "gpt-4o-2024-08-06"
25 | "gpt-4o-2024-11-20"
26 | "gpt-4o-audio-preview"
27 | "gpt-4o-audio-preview-2024-10-01"
28 | "gpt-4o-audio-preview-2024-12-17"
29 | "gpt-4o-mini-2024-07-18"
30 | "gpt-4-turbo"
31 | "gpt-4-turbo-2024-04-09"
32 | "gpt-4-turbo-preview"
33 | "gpt-4-0125-preview"
34 | "gpt-4-1106-preview"
35 | "gpt-4"
36 | "gpt-4-0613"
37 | "gpt-3.5-turbo-0125"
38 | "gpt-3.5-turbo"
39 | "gpt-3.5-turbo-1106"
40 | ```
41 |
42 | ```plaintext anthropic
43 | "claude-3-5-sonnet-latest"
44 | "claude-3-5-sonnet-20241022"
45 | "claude-3-5-sonnet-20240620"
46 | "claude-3-5-haiku-latest"
47 | "claude-3-5-haiku-20241022"
48 | "claude-3-opus-latest"
49 | "claude-3-opus-20240229"
50 | "claude-3-sonnet-20240229"
51 | "claude-3-haiku-20240307"
52 | ```
53 |
54 | ```plaintext google
55 | "gemini-2.0-flash-001"
56 | "gemini-1.5-flash"
57 | "gemini-1.5-flash-latest"
58 | "gemini-1.5-flash-001"
59 | "gemini-1.5-flash-002"
60 | "gemini-1.5-flash-8b"
61 | "gemini-1.5-flash-8b-latest"
62 | "gemini-1.5-flash-8b-001"
63 | "gemini-1.5-pro"
64 | "gemini-1.5-pro-latest"
65 | "gemini-1.5-pro-001"
66 | "gemini-1.5-pro-002"
67 | "gemini-2.0-flash-lite-preview-02-05"
68 | "gemini-2.0-pro-exp-02-05"
69 | "gemini-2.0-flash-thinking-exp-01-21"
70 | "gemini-2.0-flash-exp"
71 | "gemini-exp-1206"
72 | "learnlm-1.5-pro-experimental"
73 | ```
74 |
75 |
76 |
77 | ## Environment Variables
78 |
79 |
80 |
81 | ```plaintext openai
82 | OPENAI_API_KEY
83 | ```
84 |
85 | ```plaintext anthropic
86 | ANTHROPIC_API_KEY
87 | ```
88 |
89 | ```plaintext google
90 | GOOGLE_GENERATIVE_AI_API_KEY
91 | ```
92 |
93 |
94 |
95 | ## Use Cases
96 |
97 | ### Image Analysis
98 |
99 | LLMs can also process images along with text using image URL messages. Here's an example of analyzing an image using the LLM:
100 |
101 | ```typescript
102 | const messages = [
103 | userMessage(
104 | "What's in this image?"
105 | ),
106 | userMessage([
107 | {
108 | type: "image",
109 | image: "https://example.com/logo.png",
110 | },
111 | ]),
112 | ],
113 |
114 | const schema = z.object({
115 | description: z.string(),
116 | colors: z.array(z.string()),
117 | text_content: z.string().optional(),
118 | improvements: z.string().optional(),
119 | });
120 |
121 | const result = await llm.generate({
122 | messages,
123 | schema,
124 | temperature: 0.8,
125 | });
126 | ```
127 |
128 | The LLM will analyze the image and return a structured response containing the description, colors used, and potential improvements. You can also use base64-encoded images by providing the data URL:
129 |
130 | ```typescript
131 | const messages = [
132 | userMessage("What's in this image?"),
133 | userMessage([
134 | {
135 | type: "image",
136 | image: "data:image/png;base64,...",
137 | },
138 | ]),
139 | ];
140 | ```
141 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 |
3 | # AI Agent SDK for TypeScript
4 |
5 | [📖 Documentation](https://cxt.build/) |
6 | [✍🏻 ZEE Use-cases](https://cxt.build/docs/use-cases/overview)
7 |
8 |
9 |
10 | [](https://www.npmjs.com/package/@covalenthq/ai-agent-sdk)
11 | [](https://www.npmjs.com/package/@covalenthq/ai-agent-sdk)
12 | [](https://github.com/covalenthq/ai-agent-sdk/blob/main/LICENSE)
13 | [](https://github.com/covalenthq/ai-agent-sdk/commits/master)
14 | [](https://github.com/covalenthq/ai-agent-sdk/graphs/contributors)
15 | [](https://github.com/covalenthq/ai-agent-sdk/issues)
16 | [](https://github.com/covalenthq/ai-agent-sdk/pulls)
17 |
18 | [](https://github.com/covalenthq/ai-agent-sdk/stargazers)
19 | [](https://github.com/covalenthq/ai-agent-sdk/network/members)
20 |
21 |
22 |
23 | Build autonomous AI agents for the Zero-Employee Enterprise (ZEE). Create intelligent, context-aware agents with unprecedented ease and functionality. The Agent SDK supports single model inference calls to multi-agent systems that use tools. The SDK provides primitives that are designed to be easily composable, extendable and flexible for advanced use cases.
24 |
25 | ## Features
26 |
27 | - LLMs - a unified interface for all LLMs
28 | - Agents - a single model with a system prompt and a set of tools
29 | - Tools - extend the capabilities of agents with external tools
30 | - ZEE Workflows - compose agents to solve complex problems
31 |
32 | ## Using the SDK (Quick Start)
33 |
34 | ### 1. Start with a template
35 |
36 | > npx @covalenthq/create-zee-app@latest
37 |
38 | This will create a new project with a basic setup.
39 |
40 | ### 2. Modify the agent
41 |
42 | ```js
43 | const agent1 = new Agent({
44 | name: "Agent1",
45 | model: {
46 | provider: "OPEN_AI",
47 | id: "gpt-4o-mini",
48 | },
49 | description: "A helpful AI assistant that can engage in conversation.",
50 | instructions: ["Interact with the user in a friendly and helpful manner"],
51 | });
52 | ```
53 |
54 | ### 3. Modify the ZEE Workflow
55 |
56 | ```js
57 | const zee = new ZeeWorkflow({
58 | goal: "A workflow of agents that do stuff together",
59 | agents: [agent1, agent2],
60 | model: {
61 | provider: "OPEN_AI",
62 | id: "gpt-4o-mini",
63 | },
64 | });
65 | ```
66 |
67 | ### 4. Run the Zee Workflow
68 |
69 | ```js
70 | (async function main() {
71 | const result = await zee.run();
72 | console.log(result);
73 | })();
74 | ```
75 |
76 | ## 🤝 Contributing
77 |
78 | Contributions, issues and feature requests are welcome!
79 | Feel free to check issues page.
80 |
81 | Or join the [AI Agent SDK Working Group](https://t.me/CXT_Agent_SDK) to get help and discuss the future of the SDK.
82 |
83 | ## Show your support
84 |
85 | Give a ⭐️ if this project helped you!
86 |
87 | ## 📝 License
88 |
89 | This project is MIT licensed.
90 |
--------------------------------------------------------------------------------
/packages/ai-agent-sdk/src/tests/agent.test.ts:
--------------------------------------------------------------------------------
1 | import { Agent, type ModelProvider, Tool, type ToolSet, userMessage } from "..";
2 | import fetch from "node-fetch";
3 | import { describe, expect, test } from "vitest";
4 | import { z } from "zod";
5 |
6 | describe("@ai-agent-sdk/agent", () => {
7 | const providers: ModelProvider[] = [
8 | {
9 | provider: "openai",
10 | id: "gpt-4o-mini",
11 | },
12 | {
13 | provider: "google",
14 | id: "gemini-1.5-flash",
15 | },
16 | {
17 | provider: "anthropic",
18 | id: "claude-3-5-sonnet-20240620",
19 | },
20 | ];
21 |
22 | providers.forEach((model) => {
23 | describe(`${model.provider}::${model.id}`, () => {
24 | test("default agent flow", async () => {
25 | const agent = new Agent({
26 | name: "research agent",
27 | model: model,
28 | description:
29 | "You are a senior New York Times researcher writing an article on a topic.",
30 | instructions: [
31 | "For a given topic, search for the top 5 links.",
32 | "Then read each URL and extract the article text, if a URL isn't available, ignore it.",
33 | "Analyze and prepare an New York Times worthy article based on the information.",
34 | ],
35 | });
36 |
37 | const result = await agent.generate({
38 | messages: [userMessage("Future of AI")],
39 | });
40 |
41 | console.log(result);
42 |
43 | expect(result.type).toBe("assistant");
44 | expect(result.value).toBeDefined();
45 | });
46 |
47 | test("agent with custom tool", async () => {
48 | const tools: ToolSet = {
49 | weather: new Tool({
50 | provider: model.provider,
51 | name: "weather",
52 | description: "Fetch the current weather in a location",
53 | parameters: z.object({
54 | location: z.string(),
55 | }),
56 | execute: async ({ location }) => {
57 | const response = await fetch(
58 | `https://api.weatherapi.com/v1/current.json?q=${location}&key=88f97127772c41a991095603230604`
59 | );
60 | const data = await response.json();
61 | return data;
62 | },
63 | }),
64 | };
65 |
66 | const agent = new Agent({
67 | name: "weather agent",
68 | model,
69 | description:
70 | "You are a senior weather analyst writing a summary on the current weather for the provided location.",
71 | instructions: [
72 | "Use the weather tool to get the current weather in Celsius.",
73 | "Elaborate on the weather.",
74 | ],
75 | tools,
76 | });
77 |
78 | const result = await agent.generate({
79 | messages: [userMessage("What is the weather in Delhi?")],
80 | });
81 |
82 | console.log(result);
83 |
84 | expect(result.type).toBe("assistant");
85 | expect(result.value).toBeDefined();
86 | });
87 | });
88 | });
89 | });
90 |
--------------------------------------------------------------------------------
/docs/get-started/overview.mdx:
--------------------------------------------------------------------------------
1 | ---
2 | title: Overview
3 | icon: "book-open"
4 | description: Overview of the AI Agent SDK, including its components, features, and how to get started with the Zero-Employee Enterprise (ZEE).
5 | ---
6 |
7 | The AI Agent SDK is a developer framework for building and running autonomous agents. It provides a set of tools and components for creating, managing, and deploying agents. These agents operate as a swarm, coordinating and collaborating to achieve complex tasks. The **[Zero-Employee Enterprise (ZEE)](/concepts/zee-workflows)** is a new business model where traditional workforces are augmented by these autonomous agents.
8 |
9 | The Agent SDK supports single model inference calls to multi-agent systems that use tools. The SDK provides primitives that are designed to be easily composable, extendable and flexible for advanced use cases.
10 |
11 | ## How the SDK works
12 |
13 | ```mermaid
14 | flowchart LR
15 | %% Styling
16 | classDef input fill:#ffffff,stroke:#000000,stroke-width:2px, color:#000
17 | classDef planner fill:#f0f0f0,stroke:#000000,stroke-width:2px, color:#000
18 | classDef agent fill:#e0e0e0,stroke:#000000,stroke-width:2px, color:#000
19 | classDef tool fill:#d0d0d0,stroke:#000000,stroke-width:2px, color:#000
20 | classDef state fill:#fafafa,stroke:#000000,stroke-width:2px,stroke-dasharray: 5 5, color:#000
21 | classDef llm fill:#ffffff,stroke:#000000,stroke-width:2px, color:#000
22 |
23 | %% Nodes
24 | inp1("🔄 Input")
25 |
26 | subgraph "Zero-Employee Enterprise"
27 | direction LR
28 | planner{"🔍 Planner Agent"}
29 | router{"🧠 Router Agent"}
30 | agent1("🤖 Primary Agent")
31 | agent2("🤖 Support Agent")
32 | agent3("🤖 Task Agent")
33 | tool1("⚡ Tool A")
34 | tool2("⚡ Tool B")
35 | tool3("⚡ Tool C")
36 | tool4("⚡ Tool D")
37 | id1[("💾 Context")]
38 | end
39 |
40 | subgraph "Language Models"
41 | direction TB
42 | llm1[["OpenAI"]]
43 | llm2[["Google"]]
44 | llm3[["Anthropic"]]
45 | end
46 |
47 | %% Connections
48 | inp1 --> planner
49 | planner --> router
50 | router <--> agent1
51 | router <--> agent2
52 | router <--> agent3
53 | agent1 <--> tool1
54 | agent2 <--> tool2
55 | agent3 <--> tool3
56 | agent3 <--> tool4
57 |
58 | %% Apply styles
59 | class inp1 input
60 | class planner planner
61 | class router router
62 | class agent1,agent2,agent3 agent
63 | class tool1,tool2,tool3,tool4 tool
64 | class id1 state
65 | class llm1,llm2,llm3 llm
66 | ```
67 |
68 | The SDK enables developers to compose simple single-agent systems or entire systems of agents that work together to form the Zero-Employee Enterprise ([ZEE](/concepts/zee-workflows)). [Agents](/concepts/agents) are the building blocks of the ZEE workflow. Each agent is backed by a language model that can be configured to use a variety of [LLMs](/concepts/llms). Agents can additionally use [Tools](/concepts/tools) to perform actions on the ZEE using outside information.
69 |
70 | ```typescript
71 | const agent = new Agent({
72 | name: "Reporting Agent",
73 | ...
74 | tools: { tool1, tool2, tool3 },
75 | });
76 |
77 | const zee = new ZeeWorkflow({
78 | goal: "The goal of this workflow is to...",
79 | ...
80 | agents: [agent1, agent2, agent3],
81 | });
82 | ```
83 |
84 | ### Concepts
85 |
86 | - [LLMs](/concepts/llms) - a unified interface for all LLMs
87 | - [Agents](/concepts/agents) - a single model with a system prompt and a set of tools
88 | - [Tools](/concepts/tools) - extend the capabilities of agents with external tools
89 | - [ZEE Workflows](/concepts/zee-workflows) - compose agents to solve complex problems
90 |
--------------------------------------------------------------------------------
/packages/create-zee-app/src/index.ts:
--------------------------------------------------------------------------------
1 | import {
2 | cancel,
3 | intro,
4 | isCancel,
5 | outro,
6 | password,
7 | select,
8 | text,
9 | } from "@clack/prompts";
10 | import fs from "fs/promises";
11 | import { pastel } from "gradient-string";
12 | import path from "path";
13 | import picocolors from "picocolors";
14 | import { URL } from "url";
15 |
16 | const banner = [
17 | " _ ___ _ _ ____ ____ _ __",
18 | " / \\ |_ _| / \\ __ _ ___ _ __ | |_ / ___|| _ \\| |/ /",
19 | " / _ \\ | | / _ \\ / _` |/ _ \\ '_ \\| __| \\___ \\| | | | ' /",
20 | " / ___ \\ | | / ___ \\ (_| | __/ | | | |_ ___) | |_| | . \\",
21 | "/_/ \\_\\___| /_/ \\_\\__, |\\___|_| |_|\\__| |____/|____/|_|\\_\\",
22 | " |___/",
23 | ];
24 |
25 | console.log(pastel(banner.join("\n")));
26 |
27 | const { green, red, gray } = picocolors;
28 |
29 | const __dirname = path.dirname(new URL(import.meta.url).pathname);
30 | const TEMPLATES_DIR = path.resolve(__dirname, "..", "templates");
31 |
32 | const ADJECTIVES = [
33 | "adorable",
34 | "beautiful",
35 | "bright",
36 | "calm",
37 | "delightful",
38 | "enchanting",
39 | "friendly",
40 | "gorgeous",
41 | "glorious",
42 | "lovely",
43 | "perfect",
44 | "precious",
45 | "shiny",
46 | "sparkling",
47 | "super",
48 | "wicked",
49 | ];
50 |
51 | const generateAdjective = () => {
52 | const n: string = ADJECTIVES[
53 | Math.floor(Math.random() * ADJECTIVES.length)
54 | ] as string;
55 | return n;
56 | };
57 |
58 | async function main() {
59 | intro("Build autonomous AI agents for the Zero-Employee Enterprise (ZEE).");
60 |
61 | const projectName = await text({
62 | message: `What is the name of your project? ${gray("[required]")}`,
63 | initialValue: `my-${generateAdjective()}-zee`,
64 | validate: (value) => {
65 | if (value.length === 0) return "Project name is required";
66 | if (!/^[a-z0-9-]+$/.test(value))
67 | return "Project name can only contain lowercase letters, numbers, and dashes";
68 | return;
69 | },
70 | });
71 |
72 | if (isCancel(projectName)) {
73 | cancel("Operation cancelled");
74 | process.exit(0);
75 | }
76 |
77 | const openaiApiKey = await password({
78 | message: `Please input your OpenAI API key (will be stored in .env file) ${gray("[optional]")}`,
79 | });
80 |
81 | if (isCancel(openaiApiKey)) {
82 | cancel("Operation cancelled");
83 | process.exit(0);
84 | }
85 |
86 | const template = await select({
87 | message: "Choose the template you want to use",
88 | options: [
89 | {
90 | value: "001-zee-barebones",
91 | label: "Just a barebones template",
92 | },
93 | {
94 | value: "002-onchain-workflow",
95 | label: "Analyze blockchain data to get a wallet's token balances, etc.",
96 | },
97 | ],
98 | });
99 |
100 | if (isCancel(template)) {
101 | cancel("Operation cancelled");
102 | process.exit(0);
103 | }
104 |
105 | const targetDir = path.join(process.cwd(), projectName);
106 | const templateDir = path.resolve(TEMPLATES_DIR, template);
107 |
108 | try {
109 | await fs.mkdir(targetDir, { recursive: true });
110 |
111 | await copyTemplateFiles(templateDir, targetDir);
112 |
113 | const envPath = path.join(targetDir, ".env");
114 | await fs.writeFile(envPath, `OPENAI_API_KEY=${openaiApiKey}\n`, {
115 | flag: "a",
116 | });
117 |
118 | const packageJsonPath = path.join(targetDir, "package.json");
119 | const packageJson = JSON.parse(
120 | await fs.readFile(packageJsonPath, "utf-8")
121 | );
122 | packageJson.name = projectName;
123 | await fs.writeFile(
124 | packageJsonPath,
125 | JSON.stringify(packageJson, null, 2)
126 | );
127 |
128 | const indexTsPath = path.join(targetDir, "src/index.ts");
129 | const indexTsContent = await fs.readFile(indexTsPath, "utf-8");
130 | const updatedContent = indexTsContent.replace(
131 | /name: ['"].*?['"].*?\/\/ REPLACE/,
132 | `name: '${projectName}'`
133 | );
134 | await fs.writeFile(indexTsPath, updatedContent);
135 |
136 | outro(green("Project created successfully! 🎉"));
137 | console.log("\nNext steps:");
138 | console.log(` cd ${projectName}`);
139 | console.log(" npm install");
140 | console.log(" npm run dev");
141 | } catch (error) {
142 | console.error(red("Error creating project:"), error);
143 | process.exit(1);
144 | }
145 | }
146 |
147 | async function copyTemplateFiles(source: string, target: string) {
148 | const files = await fs.readdir(source, { withFileTypes: true });
149 |
150 | for (const file of files) {
151 | const sourcePath = path.join(source, file.name);
152 | const targetPath = path.join(target, file.name);
153 |
154 | if (file.isDirectory()) {
155 | await fs.mkdir(targetPath, { recursive: true });
156 | await copyTemplateFiles(sourcePath, targetPath);
157 | } else {
158 | await fs.copyFile(sourcePath, targetPath);
159 | }
160 | }
161 | }
162 |
163 | main().catch(console.error);
164 |
--------------------------------------------------------------------------------
/packages/ai-agent-sdk/src/tests/llm.test.ts:
--------------------------------------------------------------------------------
1 | import { LLM, Tool, userMessage, type ModelProvider, type ToolSet } from "..";
2 | import fetch from "node-fetch";
3 | import { describe, expect, test } from "vitest";
4 | import { z } from "zod";
5 |
6 | describe("@ai-agent-sdk/llm", () => {
7 | const providers: ModelProvider[] = [
8 | {
9 | provider: "openai",
10 | id: "gpt-4o-mini",
11 | },
12 | {
13 | provider: "google",
14 | id: "gemini-1.5-flash",
15 | },
16 | {
17 | provider: "anthropic",
18 | id: "claude-3-5-sonnet-20240620",
19 | },
20 | ];
21 |
22 | providers.forEach((model) => {
23 | describe(`${model.provider}::${model.id}`, () => {
24 | const llm = new LLM(model);
25 |
26 | test("structured output", async () => {
27 | const schema = z.object({
28 | answer: z.string(),
29 | explanation: z.string(),
30 | });
31 |
32 | const result = await llm.generate({
33 | prompt: "What is 5 plus 7?",
34 | schema,
35 | });
36 |
37 | console.log(result);
38 |
39 | if (typeof result.value !== "object") {
40 | throw new Error("Expected structured output");
41 | }
42 |
43 | expect(result.type).toBe("assistant");
44 | expect(result.value["answer"]).toBeDefined();
45 | expect(result.value["explanation"]).toBeDefined();
46 | });
47 |
48 | test("tool calling", async () => {
49 | const tools: ToolSet = {
50 | weather: new Tool({
51 | provider: model.provider,
52 | name: "weather",
53 | description: "Fetch the current weather in a location",
54 | parameters: z.object({
55 | location: z.string(),
56 | }),
57 | execute: async ({ location }) => {
58 | const response = await fetch(
59 | `https://api.weatherapi.com/v1/current.json?q=${location}&key=88f97127772c41a991095603230604`
60 | );
61 | const data = await response.json();
62 | return data;
63 | },
64 | }),
65 | };
66 |
67 | const result = await llm.generate({
68 | prompt: "What is the weather in San Francisco?",
69 | tools,
70 | });
71 |
72 | console.log(result);
73 |
74 | expect(result.type).toBe("assistant");
75 | expect(result.value).toBeDefined();
76 | });
77 |
78 | test("multimodal image url input", async () => {
79 | const schema = z.object({
80 | description: z.string(),
81 | colors: z.array(z.string()),
82 | text_content: z.string().optional(),
83 | improvements: z.string().optional(),
84 | });
85 |
86 | const result = await llm.generate({
87 | messages: [
88 | userMessage(
89 | "What's in this image? Suggest Improvements to the logo as well"
90 | ),
91 | userMessage([
92 | {
93 | type: "image",
94 | image: "https://upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Google_2015_logo.svg/1200px-Google_2015_logo.svg.png",
95 | },
96 | ]),
97 | ],
98 | schema,
99 | });
100 |
101 | console.log(result);
102 |
103 | expect(result.type).toBe("assistant");
104 | expect(result.value).toBeDefined();
105 | });
106 |
107 | test("multimodal image base64 input", async () => {
108 | const schema = z.object({
109 | description: z.string(),
110 | colors: z.array(z.string()),
111 | text_content: z.string().optional(),
112 | });
113 |
114 | const base64Image =
115 | "";
116 |
117 | const result = await llm.generate({
118 | messages: [
119 | userMessage("What's in this image?"),
120 | userMessage([
121 | {
122 | type: "image",
123 | image: base64Image,
124 | },
125 | ]),
126 | ],
127 | schema,
128 | });
129 |
130 | console.log(result);
131 |
132 | expect(result.type).toBe("assistant");
133 | expect(result.value).toBeDefined();
134 | });
135 |
136 | // TODO: add audio and file multimodal input tests
137 | });
138 | });
139 | });
140 |
--------------------------------------------------------------------------------
/packages/ai-agent-sdk/src/tests/goldrush.tools.test.ts:
--------------------------------------------------------------------------------
1 | import {
2 | Agent,
3 | HistoricalTokenPriceTool,
4 | NFTBalancesTool,
5 | TokenBalancesTool,
6 | TransactionsTool,
7 | userMessage,
8 | type ModelProvider,
9 | type ToolSet,
10 | } from "..";
11 | import "dotenv/config";
12 | import { describe, expect, test } from "vitest";
13 |
14 | describe("@ai-agent-sdk/tools/goldrush", () => {
15 | const providers: ModelProvider[] = [
16 | {
17 | provider: "openai",
18 | id: "gpt-4o-mini",
19 | },
20 | {
21 | provider: "google",
22 | id: "gemini-1.5-flash",
23 | },
24 | {
25 | provider: "anthropic",
26 | id: "claude-3-5-sonnet-20240620",
27 | },
28 | ];
29 |
30 | providers.forEach((model) => {
31 | describe(`${model.provider}::${model.id}`, () => {
32 | test("token balances tool with an agent", async () => {
33 | const tools: ToolSet = {
34 | tokenBalances: new TokenBalancesTool(model.provider),
35 | };
36 |
37 | const agent = new Agent({
38 | name: "token balances agent",
39 | model,
40 | description:
41 | "You are a senior blockchain researcher analyzing wallet activities across different chains.",
42 | instructions: [
43 | "Summarize token holdings",
44 | "Provide insights about the token holdings",
45 | ],
46 | tools,
47 | });
48 |
49 | const result = await agent.generate({
50 | messages: [
51 | userMessage(
52 | "What are the token balances for karanpargal.eth on eth-mainnet?"
53 | ),
54 | ],
55 | });
56 |
57 | console.log(result);
58 |
59 | expect(result.type).toBe("assistant");
60 | expect(result.value).toBeDefined();
61 | });
62 |
63 | test("token balances tool with an agent", async () => {
64 | const tools: ToolSet = {
65 | transactions: new TransactionsTool(model.provider),
66 | };
67 |
68 | const agent = new Agent({
69 | name: "token balances agent",
70 | model,
71 | description:
72 | "You are a senior blockchain researcher analyzing wallet activities across different chains.",
73 | instructions: [
74 | "Summarize transactions",
75 | "Provide insights about the transactions",
76 | ],
77 | tools,
78 | });
79 |
80 | const result = await agent.generate({
81 | messages: [
82 | userMessage(
83 | "What are the transactions for karanpargal.eth on eth-mainnet?"
84 | ),
85 | ],
86 | });
87 |
88 | console.log(result);
89 |
90 | expect(result.type).toBe("assistant");
91 | expect(result.value).toBeDefined();
92 | });
93 |
94 | test("nft balances tool with an agent", async () => {
95 | const tools: ToolSet = {
96 | nftBalances: new NFTBalancesTool(model.provider),
97 | };
98 |
99 | const agent = new Agent({
100 | name: "nft balances agent",
101 | model,
102 | description:
103 | "You are a senior blockchain researcher analyzing wallet activities across different chains.",
104 | instructions: [
105 | "Summarize nft holdings",
106 | "Provide insights about the nft holdings",
107 | ],
108 | tools,
109 | });
110 |
111 | const result = await agent.generate({
112 | messages: [
113 | userMessage(
114 | "What are the nft holdings for karanpargal.eth on eth-mainnet?"
115 | ),
116 | ],
117 | });
118 |
119 | console.log(result);
120 |
121 | expect(result.type).toBe("assistant");
122 | expect(result.value).toBeDefined();
123 | });
124 |
125 | test("nft balances tool with an agent", async () => {
126 | const tools: ToolSet = {
127 | historicalTokenPrice: new HistoricalTokenPriceTool(
128 | model.provider
129 | ),
130 | };
131 |
132 | const agent = new Agent({
133 | name: "historical token price agent",
134 | model,
135 | description:
136 | "You are a senior blockchain researcher analyzing activities across different chains.",
137 | instructions: [
138 | "Summarize historical token prices",
139 | "Provide insights about the historical token prices",
140 | ],
141 | tools,
142 | });
143 |
144 | const result = await agent.generate({
145 | messages: [
146 | userMessage(
147 | "What are the historical token prices for 0x7abc8a5768e6be61a6c693a6e4eacb5b60602c4d on eth-mainnet over the past week?"
148 | ),
149 | ],
150 | });
151 |
152 | console.log(result);
153 |
154 | expect(result.type).toBe("assistant");
155 | expect(result.value).toBeDefined();
156 | });
157 |
158 | test("multiple goldrush tools with an agent", async () => {
159 | const tools: ToolSet = {
160 | tokenBalances: new TokenBalancesTool(model.provider),
161 | nftBalances: new NFTBalancesTool(model.provider),
162 | transactions: new TransactionsTool(model.provider),
163 | };
164 |
165 | const agent = new Agent({
166 | name: "goldrush agent",
167 | model,
168 | description:
169 | "You are a senior blockchain researcher analyzing wallet activities across different chains.",
170 | instructions: [
171 | "Analyze wallet activities using the provided blockchain tools",
172 | "Summarize token holdings, NFT collections, and recent transactions",
173 | "Provide insights about the wallet's activity patterns",
174 | ],
175 | tools,
176 | });
177 |
178 | const result = await agent.generate({
179 | messages: [
180 | userMessage(
181 | "What is the activity of karanpargal.eth on eth-mainnet?"
182 | ),
183 | ],
184 | });
185 |
186 | console.log(result);
187 |
188 | expect(result.type).toBe("assistant");
189 | expect(result.value).toBeDefined();
190 | });
191 | });
192 | });
193 | });
194 |
--------------------------------------------------------------------------------
/docs/zee-use-cases.mdx:
--------------------------------------------------------------------------------
1 | ---
2 | title: ZEE Use Cases
3 | icon: "anchor"
4 | description: Use cases for the ZEE with the AI Agent SDK.
5 | ---
6 |
7 |
8 | Agent workflows can facilitate collaboration on specific tasks across a wide variety of use cases. Below is a list of example crypto-native use cases.
9 |
10 | ---
11 |
12 | ### 1. DeFi Investment Agent: Automated Portfolio Manager for Yield Optimization
13 |
14 | **Concept**: An autonomous agent that dynamically manages crypto portfolios by reallocating assets across DeFi protocols to maximize yield.
15 |
16 | **Features**:
17 | - Pulls real-time liquidity pool and yield farming data from the [GoldRush API tool](../tools/goldrush-onchain-data).
18 | - Uses reinforcement learning to monitor, analyze, and optimize yield strategies based on market conditions and risk profiles.
19 | - Allocates or rebalances funds automatically in lending protocols, liquidity pools, or staking platforms.
20 | - Sends notifications to users on portfolio changes, yield updates, and recommendations for optimizing returns.
21 |
22 |
23 | ---
24 |
25 | ### 2. NFT Valuation and Rarity Analyzer: Market-Pricing Model for Digital Assets
26 |
27 | **Concept**: An AI model that provides a rarity and value estimate for NFTs based on onchain data, rarity, and transaction history. NFT collectors and investors can leverage this tool to make informed decisions when buying, selling, or holding NFTs based on projected market trends.
28 |
29 | **Features**:
30 | - Analyzes data on NFT trades, transfers, and token metadata using Covalent's API.
31 | - Employs a machine learning model to predict the market value of NFTs based on rarity traits, trading volume, and past sale prices.
32 | - Provides real-time NFT pricing, rarity scoring, and market trend visualization, highlighting growth in specific NFT sectors (e.g., gaming vs. art).
33 | - Alerts users to emerging valuable collections or assets based on trading patterns.
34 | ---
35 |
36 |
37 | ### 3. Onchain Identity Scorer: Web3 Profile and Trustworthiness Model
38 |
39 | **Concept**: An AI tool that assigns trust and activity scores to wallets based on transaction patterns, DeFi participation, and social behaviors on the blockchain.
40 |
41 | **Features**:
42 | - Analyzes wallet behaviors, including transaction history, staking activities, loan repayments, and NFT holdings, using Covalent's data.
43 | - Applies clustering and classification algorithms to segment users into behavior categories, such as "DeFi power user," "whale," or "NFT collector."
44 | - Builds a “trust score” based on onchain behaviors, useful for evaluating users’ reliability in DAO governance or decentralized lending.
45 | - Integrates with DeFi platforms to offer enhanced KYC and AML (anti-money laundering) features based on users’ onchain reputation.
46 | ---
47 |
48 |
49 | ### 4. NFT Creation Agent: AI-Powered NFT Design and Deployment Assistant
50 |
51 | **Concept**: An agent that helps artists and creators design and deploy NFTs onchain, simplifying the creation process and expanding access to the NFT market.
52 |
53 | **Features**:
54 | - Integrates with the [GoldRush API tool](/tools/goldrush-onchain-data) to pull trend data on popular NFT attributes, themes, and pricing patterns.
55 | - Leverages generative AI models to create art styles and themes, allowing users to customize traits or rarity levels.
56 | - Deploys NFTs directly to blockchain networks, with metadata stored on IPFS for decentralized access.
57 | - Provides a launch strategy based on marketplace analysis, recommending listing prices, timing, and rarity settings.
58 | ---
59 |
60 |
61 | ### 5. Transaction Risk Assessment Agent: Real-Time Fraud Detection for Onchain Transactions
62 |
63 | **Concept**: An agent that analyzes real-time transactions and flags potentially risky or suspicious activity to protect users from scams.
64 |
65 | **Features**:
66 | - Monitors transaction patterns, sender history, token movement, and transaction amounts using the [GoldRush API tool](../tools/goldrush-onchain-data).
67 | - Detects anomalies such as unusual transaction sizes, rapid asset movement across multiple wallets, or transactions to known scam wallets.
68 | - Uses machine learning to identify patterns associated with scams (e.g., phishing, rug pulls, and pump-and-dump schemes).
69 | - Sends real-time alerts to users, warning them of potentially fraudulent transactions and advising on preventive actions.
70 | ---
71 |
72 |
73 | ### 6. Wallet Risk Assessment Agent: AI-Powered Insurance Risk Scorer
74 |
75 | **Concept**: An AI tool that evaluates wallet activity and assigns a risk score, enabling insurance providers to assess policy eligibility and premiums for onchain users.
76 |
77 | **Features**:
78 |
79 | - Analyzes wallet transaction history, including DeFi participation, staking, borrowing, and repayment behaviors, using the [GoldRush API tool](../tools/goldrush-onchain-data).
80 | - Detects patterns associated with risky activities, such as frequent liquidations, high leverage, or interactions with suspicious wallets.
81 | - Uses clustering and classification algorithms to segment wallets into risk categories (e.g., low-risk saver, moderate-risk trader, high-risk speculator).
82 | - Assigns a comprehensive risk score based on historical activity, fund flows, and exposure to volatile assets.
83 | - Provides real-time risk assessments and insurance premium recommendations, helping users and providers manage blockchain-related risks effectively.
84 | ---
85 |
86 |
87 | ### 7. Agent to Perform Onchain Actions
88 |
89 | **Concept**: An intelligent agent that automates complex onchain transactions for DeFi users, simplifying blockchain interactions.
90 |
91 | **Features**:
92 |
93 | - Executes actions like swapping tokens, bridging assets, staking, borrowing, and repaying loans.
94 | - Optimizes transaction parameters such as gas fees and liquidity pool choices using Covalent's API data.
95 | - Uses AI to ensure transaction safety by detecting potential risks before execution.
96 | - Automates workflows, enabling multi-step operations (e.g., swapping, bridging, and staking in a single transaction).
97 | - Provides detailed transaction logs and user-friendly updates.
98 | ---
99 |
100 |
101 | ### 8. Onchain Betting Algorithm: AI-Powered Prediction Market System
102 |
103 | **Concept**: An AI-driven betting platform that leverages onchain data to offer predictions and dynamic betting markets, enabling users to engage with decentralized prediction markets.
104 |
105 | **Features**:
106 |
107 | - Pulls real-time onchain data such as token prices, transaction volumes, and protocol metrics using the [GoldRush API tool](../tools/goldrush-onchain-data).
108 | - Employs machine learning models to forecast outcomes of events, such as token price changes, governance proposal results, or market trends.
109 | - Dynamically adjusts betting odds based on real-time data and user activity to ensure accurate and fair market pricing.
110 | - Detects anomalies and potential manipulation in betting patterns using AI-powered anomaly detection algorithms.
111 | - Provides detailed insights into potential payouts and risk levels for each bet, helping users make informed decisions.
112 | - Integrates with decentralized wallets for seamless onchain betting and payout distribution.
113 | ---
114 |
115 |
116 | ### 9. AI Boiler Room: Autonomous Agents Simulating Market Dynamics Across Chains
117 |
118 | **Concept**: A network of AI agents that interact with each other in a simulated blockchain environment, mimicking market dynamics and user behaviors based on real onchain activity.
119 |
120 | **Features**:
121 |
122 | - Pulls cross-chain transaction data, token swaps, liquidity movements, and wallet interactions from the [GoldRush API tool](../tools/goldrush-onchain-data).
123 | - Creates AI agents with distinct profiles (e.g., traders, arbitrage bots, NFT collectors) to simulate various blockchain user types.
124 | - Agents analyze real onchain data to make decisions like swapping tokens, bridging assets, or participating in DeFi protocols.
125 | - Simulates market reactions and liquidity flows by enabling AI agents to interact with each other in real time.
126 | - Provides insights into potential market scenarios, such as price fluctuations, liquidity crunches, or arbitrage opportunities.
127 | - Useful for stress testing DeFi protocols, exploring economic strategies, or building predictive models for market behavior.
128 | ---
129 |
130 |
131 | ### 10. DeFi Lending Optimizer (Chaos Labs)
132 |
133 | **Concept**: An AI agent that maximizes returns for DeFi lenders by optimizing lending and borrowing activities.
134 |
135 | **Features**:
136 |
137 | - Pulls real-time interest rates, utilization rates, and collateral factors from the [GoldRush API tool](../tools/goldrush-onchain-data).
138 | - Recommends optimal platforms and lending strategies based on user preferences and market conditions.
139 | - Monitors liquidation risks and alerts users to potential threats.
140 | - Utilizes RF to test out different parameters to increase borrowing without exposing risk on the protocol
141 | - Automates rebalancing across multiple protocols for enhanced yield optimization.
142 | - Generates user-friendly reports on lending performance and opportunities.
143 | ---
144 |
145 |
146 | ### 11. Cross-Chain Arbitrage Finder
147 |
148 | **Concept**: An AI assistant that identifies profitable arbitrage opportunities across blockchains and DEXs.
149 |
150 | **Features**:
151 |
152 | - Aggregates token price and liquidity data from the [GoldRush API tool](../tools/goldrush-onchain-data) across multiple platforms.
153 | - Detects price discrepancies and suggests actionable arbitrage opportunities.
154 | - Recommends steps for executing trades, including gas fee optimization.
155 | - Tracks historical arbitrage performance to refine future recommendations.
156 | - Provides real-time alerts on emerging opportunities.
157 | ---
158 |
159 |
160 | ### 12. Meme Coin Trend Forecaster: Predictive Market Tool for Hype-Driven Tokens
161 |
162 | **Concept**: An AI-powered tool that predicts emerging trends and market movements in meme coins, enabling investors to identify high-growth opportunities early.
163 |
164 | **Features**:
165 |
166 | - Pulls real-time trading volumes, wallet activity, and token performance metrics for meme coins using the [GoldRush API tool](../tools/goldrush-onchain-data).
167 | - Incorporates social sentiment data from platforms like Twitter, Reddit, and Discord to gauge community hype and interest.
168 | - Uses machine learning models to forecast meme coin price movements and detect potential breakout tokens.
169 | - Highlights emerging meme coins based on unusual trading activity, wallet accumulation, and increased sentiment scores.
170 | - Sends alerts for trending meme coins or potential sell opportunities, helping users optimize their investments.
171 | ---
172 |
173 |
174 | ### 13. Sentiment-Based Meme Coin Trading Bot
175 |
176 | **Concept**: A trading bot that combines sentiment analysis with onchain data to automate profitable meme coin trades.
177 |
178 | **Features**:
179 |
180 | - Uses the [GoldRush API tool](../tools/goldrush-onchain-data) to monitor meme coin trading activity and floor price movements.
181 | - Integrates off-chain sentiment analysis from social media and news to predict market behavior.
182 | - Automates buy/sell actions based on predefined profit thresholds and sentiment scores.
183 | - Sends real-time updates on trade outcomes and market conditions.
184 | - Provides detailed performance summaries and optimizes strategies based on historical data.
--------------------------------------------------------------------------------
/packages/ai-agent-sdk/src/tests/zee.test.ts:
--------------------------------------------------------------------------------
1 | import {
2 | Agent,
3 | type ModelProvider,
4 | NFTBalancesTool,
5 | TokenBalancesTool,
6 | Tool,
7 | ZeeWorkflow,
8 | } from "..";
9 | import fetch from "node-fetch";
10 | import { describe, test } from "vitest";
11 | import { z } from "zod";
12 |
13 | describe("@ai-agent-sdk/zee", () => {
14 | const providers: ModelProvider[] = [
15 | {
16 | provider: "openai",
17 | id: "gpt-4o-mini",
18 | },
19 | // ! FIX: ZEE is not working with Google models (content is needed)
20 | // {
21 | // provider: "google",
22 | // id: "gemini-1.5-flash",
23 | // },
24 | {
25 | provider: "anthropic",
26 | id: "claude-3-5-sonnet-20240620",
27 | },
28 | ];
29 | providers.forEach((model) => {
30 | describe(`${model.provider}::${model.id}`, () => {
31 | test("workflow with two agents", async () => {
32 | const screenplayWriter = new Agent({
33 | name: "screenplay writer",
34 | description: "You are an expert screenplay writer",
35 | instructions: [
36 | "Write a script outline with 3-5 main characters and key plot points.",
37 | "Outline the three-act structure and suggest 2-3 twists.",
38 | "Ensure the script aligns with a genre and target audience.",
39 | ],
40 | model,
41 | });
42 |
43 | const producer = new Agent({
44 | name: "movie producer",
45 | description: "Experienced movie producer",
46 | instructions: [
47 | "Based on the script outline, plan the cast and crew for the movie.",
48 | "Summarize the budget for the movie.",
49 | "Provide a synopsis of the movie.",
50 | ],
51 | model,
52 | });
53 |
54 | const zee = new ZeeWorkflow({
55 | goal: "Plan a scene-by-scene script for a movie that is 10 minutes long and has a happy ending. Create a scene-by-scene budget for the provided script. Suggest a cast and crew for the movie.",
56 | agents: [screenplayWriter, producer],
57 | model,
58 | config: {
59 | temperature: 1,
60 | },
61 | });
62 |
63 | const result = await zee.run();
64 |
65 | console.log(result);
66 | });
67 |
68 | test("workflow with agent forced followup", async () => {
69 | const scriptWriter = new Agent({
70 | name: "script writer",
71 | description:
72 | "You are an expert screenplay writer who creates detailed scripts and character descriptions.",
73 | instructions: [
74 | "Write a brief script outline with main plot points.",
75 | "Only if you are providing the script, then start your script with 'COMPLETE:', else just provide desired response.",
76 | ],
77 | model,
78 | });
79 |
80 | const producer = new Agent({
81 | name: "movie producer",
82 | description:
83 | "Experienced movie producer who needs specific character details for casting.",
84 | instructions: [
85 | "Review the script outline.",
86 | "You MUST ask the script writer for detailed character descriptions before making casting decisions.",
87 | "Once you have character details, provide casting suggestions and budget breakdown.",
88 | "Use 'FOLLOWUP:' to ask for character details.",
89 | "Start your final plan with 'COMPLETE:'",
90 | ],
91 | model,
92 | });
93 |
94 | const zee = new ZeeWorkflow({
95 | goal: "Create a 10-minute movie script with matching cast and $500,000 budget breakdown.",
96 | agents: [scriptWriter, producer],
97 | model,
98 | });
99 |
100 | const result = await zee.run();
101 |
102 | console.log(result);
103 | });
104 |
105 | test("workflow with custom tools", async () => {
106 | const weatherAgent = new Agent({
107 | name: "weather agent",
108 | model,
109 | description:
110 | "You provided weather information for a location.",
111 | instructions: [
112 | "Call the weather tool to get the current weather information for a location.",
113 | ],
114 | tools: {
115 | weather: new Tool({
116 | provider: model.provider,
117 | name: "weather",
118 | description:
119 | "Fetch the current weather in a location",
120 | parameters: z.object({
121 | location: z.string(),
122 | }),
123 | execute: async ({ location }) => {
124 | const response = await fetch(
125 | `https://api.weatherapi.com/v1/current.json?q=${location}&key=88f97127772c41a991095603230604`
126 | );
127 | const data = await response.json();
128 | return data;
129 | },
130 | }),
131 | },
132 | });
133 |
134 | const analystAgent = new Agent({
135 | name: "analyst agent",
136 | model,
137 | description:
138 | "You are an analyst that analyzes weather information.",
139 | instructions: [
140 | "Analyze and summarize the weather information provided.",
141 | ],
142 | });
143 |
144 | const zee = new ZeeWorkflow({
145 | goal: "What's the weather in Delhi? Elaborate on the weather.",
146 | agents: [weatherAgent, analystAgent],
147 | model,
148 | });
149 |
150 | const result = await zee.run();
151 |
152 | console.log(result);
153 | });
154 |
155 | test("workflow with goldrush tools", async () => {
156 | const nftBalancesAgent = new Agent({
157 | name: "nft balances agent",
158 | model,
159 | description:
160 | "You are provide NFT balances for a wallet address for a chain.",
161 | instructions: ["Provide the nft holdings"],
162 | tools: {
163 | nftBalances: new NFTBalancesTool(model.provider),
164 | },
165 | });
166 |
167 | const tokenBalancesAgent = new Agent({
168 | name: "token balances agent",
169 | model,
170 | description:
171 | "You are provide token balances for a wallet address for a chain.",
172 | instructions: ["Provide the token holdings"],
173 | tools: {
174 | tokenBalances: new TokenBalancesTool(model.provider),
175 | },
176 | });
177 |
178 | const analystAgent = new Agent({
179 | name: "analyst agent",
180 | model,
181 | description:
182 | "You are an expert blockchain analyst that analyzes wallet activities across different chains.",
183 | instructions: [
184 | "Analyze and summarize the wallet balances.",
185 | ],
186 | });
187 |
188 | const zee = new ZeeWorkflow({
189 | goal: "Whats are the NFT and Token balances of the wallet address 'karanpargal.eth' on the chain 'eth-mainnet'? Elaborate on the balances.",
190 | agents: [
191 | nftBalancesAgent,
192 | tokenBalancesAgent,
193 | analystAgent,
194 | ],
195 | model,
196 | });
197 |
198 | const result = await zee.run();
199 |
200 | console.log(result);
201 | });
202 |
203 | test("exceeding max iterations", async () => {
204 | const strategist = new Agent({
205 | name: "campaign strategist",
206 | description:
207 | "You are an experienced political campaign strategist who specializes in message development and voter outreach strategies.",
208 | instructions: [
209 | "Analyze the campaign goal and develop key messaging points.",
210 | "Identify target voter demographics.",
211 | "Propose specific outreach strategies.",
212 | ],
213 | model,
214 | });
215 |
216 | const mediaManager = new Agent({
217 | name: "media manager",
218 | description:
219 | "You are a media and communications expert who transforms campaign strategies into actionable media plans.",
220 | instructions: [
221 | "Review the campaign strategy.",
222 | "Create a detailed media plan including social media, traditional media, and advertising.",
223 | "Suggest content themes and timing for different platforms.",
224 | ],
225 | model,
226 | });
227 |
228 | const budgetManager = new Agent({
229 | name: "budget manager",
230 | description:
231 | "You are a budget manager who manages the campaign budget.",
232 | instructions: [
233 | "Review the campaign strategy.",
234 | "Create a detailed budget plan for the campaign",
235 | "Suggest content themes and timing for different platforms.",
236 | ],
237 | model,
238 | });
239 |
240 | const zee = new ZeeWorkflow({
241 | goal: "Develop a 30-day local political campaign strategy focusing on environmental policies and community engagement. Include both traditional and digital media approaches. Summarize a budget for the provided campaign strategy.",
242 | agents: [strategist, mediaManager, budgetManager],
243 | model,
244 | config: {
245 | maxIterations: 5,
246 | },
247 | });
248 | const result = await zee.run();
249 |
250 | console.log(result);
251 | });
252 |
253 | test("workflow with image messages", async () => {
254 | const imageAnalyser = new Agent({
255 | name: "image analyser",
256 | description: "You are an expert image analyser",
257 | instructions: [
258 | "Analyze the image and provide a detailed description of the image.",
259 | ],
260 | model,
261 | });
262 |
263 | const zee = new ZeeWorkflow({
264 | goal: "Analyze the image at https://drive.usercontent.google.com/download?id=1NwUfXIVOus3mPz8EA0UIib3ZxM6hNIjx and provide a detailed analysis of what it depicts.",
265 | agents: [imageAnalyser],
266 | model,
267 | config: {
268 | temperature: 1,
269 | },
270 | });
271 |
272 | const result = await zee.run();
273 |
274 | console.log(result);
275 | });
276 | });
277 | });
278 | });
279 |
--------------------------------------------------------------------------------
/packages/ai-agent-sdk/src/core/zee/zee.ts:
--------------------------------------------------------------------------------
1 | import type {
2 | AgentAction,
3 | ContextItem,
4 | RawTask,
5 | ZEETask,
6 | ZeeWorkflowOptions,
7 | ZEEWorkflowResponse,
8 | } from ".";
9 | import { systemMessage, Tool, userMessage, ZEEActionResponseType } from "../..";
10 | import { Agent } from "../agent";
11 | import { Base } from "../base/base";
12 | import { type CoreMessage, type FilePart, type ImagePart } from "ai";
13 | import { z } from "zod";
14 |
15 | export class ZeeWorkflow extends Base {
16 | private agents: Record = {};
17 | private defaultAgents: Record = {};
18 | private addedAgents: Record = {};
19 | private context: ContextItem[] = [];
20 | private actionQueue: AgentAction[] = [];
21 | private maxIterations: number = 50;
22 | private temperature: number = 0.5;
23 | private goal: string;
24 |
25 | constructor({ agents, model, goal, config }: ZeeWorkflowOptions) {
26 | super("zee");
27 | console.log("\n╭────────────────────────────────────────");
28 | console.log("│ 🚀 Initializing ZeeWorkflow");
29 | console.log(`│ 🎯 Goal: ${goal}`);
30 | console.log("╰────────────────────────────────────────");
31 |
32 | if (config?.maxIterations) {
33 | this.maxIterations = config.maxIterations;
34 | }
35 |
36 | if (config?.temperature !== undefined) {
37 | if (config.temperature >= 0 && config.temperature <= 1) {
38 | this.temperature = config.temperature;
39 | } else {
40 | throw new Error(
41 | "Invalid temperature. Must be between 0 and 1."
42 | );
43 | }
44 | }
45 |
46 | this.goal = goal;
47 |
48 | this.context.push(userMessage(goal));
49 |
50 | const plannerAgent = new Agent({
51 | name: "planner",
52 | description: `You are a task planner that wants to complete the user's goal - "${goal}".`,
53 | instructions: [
54 | "Plan the user's goal into smaller sequential tasks.",
55 | "Do NOT create a task that is not directly related to the user's goal.",
56 | "Do NOT create a final compilation task.",
57 | `Return a JSON array of tasks, where each task has:
58 | - instructions: array of instructions for completing the task
59 | - attachments: array of attachments items, each being an array of objects with {type: 'image', image: url} or {type: 'file', data: url, mimeType: mimeType}
60 | - dependencies: array of strings describing what this task needs from other tasks
61 | Example response format:
62 | ${JSON.stringify(
63 | [
64 | {
65 | instructions: ["Analyze the logo design"],
66 | attachments: [
67 | [
68 | {
69 | type: "image",
70 | image: "https://example.com/logo.png",
71 | },
72 | ],
73 | ],
74 | dependencies: [],
75 | },
76 | {
77 | instructions: [
78 | "Write brand guidelines based on logo analysis",
79 | ],
80 | attachments: [],
81 | dependencies: [
82 | "Needs logo analysis to write guidelines",
83 | ],
84 | },
85 | ],
86 | null,
87 | 2
88 | )}`,
89 | "Return ONLY the JSON array, no other text",
90 | ],
91 | model,
92 | temperature: this.temperature,
93 | });
94 |
95 | const routerAgent = new Agent({
96 | name: "router",
97 | description:
98 | "You coordinate information flow between agents and assign tasks to achieve the user's goal.",
99 | instructions: [],
100 | model,
101 | tools: {
102 | executeAgent: new Tool({
103 | name: "execute agent",
104 | description: "Get information from a single agent",
105 | parameters: z.object({
106 | agentName: z.string(),
107 | tasks: z.array(
108 | z.union([
109 | z.string(),
110 | z.array(
111 | z.union([
112 | z.object({
113 | type: z.literal("image"),
114 | image: z.string(),
115 | mimeType: z.string().optional(),
116 | }),
117 | z.object({
118 | type: z.literal("file"),
119 | data: z.string(),
120 | mimeType: z.string(),
121 | }),
122 | ])
123 | ),
124 | ])
125 | ),
126 | }),
127 | execute: async ({ agentName, tasks }) => {
128 | const agent = this.getAgent(agentName);
129 | if (!agent) {
130 | throw new Error(
131 | `Agent '${agentName}' not found. Available agents: '${Object.keys(this.addedAgents).join("', '")}'.`
132 | );
133 | }
134 |
135 | const response = await agent.generate({
136 | messages: tasks.map(userMessage),
137 | });
138 |
139 | return response.value;
140 | },
141 | provider: model.provider,
142 | }),
143 | },
144 | temperature: this.temperature,
145 | });
146 |
147 | const endgameAgent = new Agent({
148 | name: "endgame",
149 | description:
150 | "You conclude the workflow based on all completed tasks.",
151 | instructions: [
152 | "Review all completed tasks and compile in a single response.",
153 | "Ensure the response addresses the original goal.",
154 | ],
155 | model,
156 | temperature: this.temperature,
157 | });
158 |
159 | [plannerAgent, routerAgent, endgameAgent].forEach((agent) => {
160 | if (!this.defaultAgents[agent.name]) {
161 | this.defaultAgents[agent.name] = agent;
162 | } else {
163 | throw new Error(`Agent '${agent.name}' already exists`);
164 | }
165 | });
166 |
167 | agents.forEach((agent) => {
168 | if (!this.addedAgents[agent.name]) {
169 | this.addedAgents[agent.name] = agent;
170 | } else {
171 | throw new Error(`Agent '${agent.name}' already exists`);
172 | }
173 | });
174 |
175 | [
176 | ...Object.values(this.defaultAgents),
177 | ...Object.values(this.addedAgents),
178 | ].forEach((agent) => {
179 | if (!this.agents[agent.name]) {
180 | this.agents[agent.name] = agent;
181 | } else {
182 | throw new Error(`Agent '${agent.name}' already exists`);
183 | }
184 | });
185 | }
186 |
187 | private getAgent(agentName: string): Agent {
188 | const maybeAgent = this.agents[agentName];
189 | if (maybeAgent) {
190 | return maybeAgent;
191 | }
192 |
193 | throw new Error(
194 | `Agent '${agentName}' not found. Available agents: ${Object.keys(this.agents).join(", ")}.`
195 | );
196 | }
197 |
198 | private parseTasks(response: string): ZEETask[] {
199 | console.log("\n📝 Parsed Tasks");
200 |
201 | try {
202 | const tasks = JSON.parse(response) as ZEETask[];
203 |
204 | if (!Array.isArray(tasks)) {
205 | throw new Error("'planner' response must be an array");
206 | }
207 |
208 | console.log(`\n🔍 Found ${tasks.length} tasks to process\n`);
209 |
210 | tasks.forEach((task, index) => {
211 | if (!task.agentName || !Array.isArray(task.instructions)) {
212 | throw new Error(`Invalid task format at index ${index}`);
213 | }
214 |
215 | console.log(`\n╭────────────────────────────────────────`);
216 | console.log(
217 | `│ 📋 TASK ${index + 1} of ${tasks.length}: Assigned to '${task.agentName}'`
218 | );
219 | console.log(`├────────────────────────────────────────`);
220 |
221 | console.log(`│ 📝 Instructions:`);
222 | task.instructions.forEach((instruction, i) => {
223 | console.log(`│ ${i + 1}. ${instruction}`);
224 | });
225 |
226 | if (task.dependencies.length) {
227 | console.log(`│ 🔄 Dependencies:`);
228 | task.dependencies.forEach((dep, i) => {
229 | console.log(
230 | `│ ${i + 1}. Needs input from '${dep.agentName}': "${dep.task}"`
231 | );
232 | });
233 | }
234 |
235 | if (task.attachments.length) {
236 | console.log(`│ 📎 Attachments:`);
237 | task.attachments.forEach((items, i) => {
238 | items.forEach((item, j) => {
239 | const typeStr = item.type;
240 | const contentStr =
241 | (item as ImagePart).image ||
242 | (item as FilePart).data;
243 | const contentPreview = String(contentStr).substring(
244 | 0,
245 | 60
246 | );
247 | console.log(
248 | `│ ${i + 1}.${j + 1} ${typeStr}: ${contentPreview}${String(contentStr).length > 60 ? "..." : ""}`
249 | );
250 | });
251 | });
252 | }
253 |
254 | console.log(`╰────────────────────────────────────────`);
255 |
256 | if (task.attachments && !Array.isArray(task.attachments)) {
257 | throw new Error(
258 | `Invalid attachments format at index ${index}`
259 | );
260 | }
261 | });
262 |
263 | return tasks;
264 | } catch (error) {
265 | console.error("\n❌ Error parsing 'planner' response:", error);
266 | console.log("Raw response:", response);
267 | throw new Error(
268 | `Failed to parse 'planner' response: ${error instanceof Error ? error.message : String(error)}`
269 | );
270 | }
271 | }
272 |
273 | private async processActionItem(action: AgentAction) {
274 | console.log("\n📨 Processing action:", {
275 | type: action.type,
276 | from: action.from,
277 | to: action.to,
278 | });
279 |
280 | if (action.metadata?.isTaskComplete) {
281 | switch (action.type) {
282 | case "complete": {
283 | console.log(`\n✅ Task completed by: '${action.from}'`);
284 | break;
285 | }
286 | case "response": {
287 | console.log(
288 | `\n☑️ Followup task completed by: '${action.from}'`
289 | );
290 | break;
291 | }
292 | }
293 | this.context.push({
294 | role: action.from,
295 | content: action.content,
296 | });
297 | console.log("\n📝 Added to context");
298 |
299 | return;
300 | }
301 |
302 | try {
303 | const targetAgent = this.getAgent(action.to);
304 |
305 | console.log("\n📦 Current context:", this.context.length);
306 |
307 | const relevantContext: string | null =
308 | (action.to === "router"
309 | ? action.type === "followup"
310 | ? this.context
311 | .map((ctx) => `${ctx.role}: ${ctx.content}`)
312 | .join("\n")
313 | : this.context
314 | .filter((ctx) => ctx.role !== "user")
315 | .map((ctx) => `${ctx.role}: ${ctx.content}`)
316 | .join("\n")
317 | : this.context
318 | .filter(
319 | (ctx) =>
320 | (action.metadata?.dependencies || []).some(
321 | (dep) => dep.agentName === ctx.role
322 | ) || ctx.role === "user"
323 | )
324 | .map((ctx) => `${ctx.role}: ${ctx.content}`)
325 | .join("\n")) || null;
326 |
327 | console.log(`\n🔍 Filtered relevant context for '${action.to}'`);
328 | console.log("\n📤 Sending information:", {
329 | relevantContext,
330 | content: action.content,
331 | });
332 | console.log(`\n💭 '${action.to}' thinking...`);
333 |
334 | const messages: CoreMessage[] = [];
335 |
336 | if (action.to !== "router") {
337 | messages.push(
338 | systemMessage(
339 | `You have to:
340 | 1. Complete your task by providing an answer ONLY for the 'Current task' from the context.
341 | 2. If the answer in not in the context, try to avoid asking for more information.
342 | 3. If you ABSOLUTELY need additional information to complete your task, request more information by asking a question
343 |
344 | Instructions for responding:
345 | - If you need more information, start with "${ZEEActionResponseType.FOLLOWUP}" followed by your question
346 | - If this is your answer, start with "${ZEEActionResponseType.COMPLETE}" followed by your response.`
347 | )
348 | );
349 | } else if (action.type === "followup") {
350 | messages.push(
351 | systemMessage(
352 | `You're handling a followup question from an agent who needs more information to complete their task.
353 |
354 | ${action.metadata?.originalFrom ? `Question from: '${action.metadata.originalFrom}'` : ""}
355 | ${action.metadata?.originalTask ? `\nOriginal task: ${action.metadata.originalTask}` : ""}
356 |
357 | You have access to the COMPLETE context of all previous communications between agents.
358 | Use this full context to provide the most accurate and helpful answer.
359 |
360 | Your job is to provide a direct, helpful answer based on the complete context and your knowledge.
361 | Be specific and thorough in your response, as the agent is relying on your expertise.
362 |
363 | Start your response with "${ZEEActionResponseType.ANSWER}" followed by your answer.
364 | Example: "${ZEEActionResponseType.ANSWER} The script should use standard screenplay format."
365 | `
366 | )
367 | );
368 | }
369 |
370 | messages.push(
371 | userMessage(
372 | `${relevantContext ? `Relevant context -> ${relevantContext}` : ""}
373 | \nCurrent task -> ${action.content}`
374 | )
375 | );
376 |
377 | if (action.metadata?.attachments?.length) {
378 | messages.push(...action.metadata.attachments.map(userMessage));
379 | }
380 |
381 | const response = await targetAgent.generate({ messages });
382 |
383 | const responseContent = response.value;
384 |
385 | this.processAgentResponse(responseContent, action);
386 | } catch (error) {
387 | console.error(`\n❌ Error processing action:`, error);
388 |
389 | if (error instanceof Error && error.message.includes("not found")) {
390 | console.error(
391 | `\n❌ Agent '${action.to}' not found. Available agents: ${Object.keys(this.agents).join(", ")}`
392 | );
393 |
394 | if (action.type === "followup" && action.to !== "router") {
395 | console.log(
396 | `\n⚠️ Redirecting followup to router instead of invalid agent '${action.to}'`
397 | );
398 | const redirectAction: AgentAction = {
399 | ...action,
400 | to: "router",
401 | content: `${action.content}\n\nNOTE: This was originally directed to '${action.to}' but that agent doesn't exist. Please handle this followup request.`,
402 | };
403 | this.actionQueue.unshift(redirectAction);
404 | return;
405 | }
406 | }
407 |
408 | this.context.push({
409 | role: "error",
410 | content: `Error in communication between ${action.from} -> ${action.to}: ${error instanceof Error ? error.message : String(error)}`,
411 | });
412 | }
413 | }
414 |
415 | private processAgentResponse(responseContent: string, action: AgentAction) {
416 | // * INFO: 1. Agent needs more information
417 | if (responseContent.startsWith(ZEEActionResponseType.FOLLOWUP)) {
418 | const infoContent = responseContent
419 | .replace(ZEEActionResponseType.FOLLOWUP, "")
420 | .trim();
421 |
422 | console.log(`\n╭────────────────────────────────────────`);
423 | console.log(`│ ❓ '${action.to}' asked a followup:`);
424 | console.log(`│ 🔍 "${infoContent}"`);
425 | console.log(`╰────────────────────────────────────────`);
426 |
427 | const dependencyInfo = action.metadata?.dependencies
428 | ? `\n\nContext: Agent has dependencies on: ${action.metadata.dependencies.map((d) => d.agentName).join(", ")}`
429 | : "\n\nContext: Agent has no explicit dependencies";
430 |
431 | const enrichedContent = `${infoContent}${dependencyInfo}`;
432 |
433 | const infoResponse: AgentAction = {
434 | type: "followup",
435 | from: action.to!,
436 | to: "router",
437 | content: enrichedContent,
438 | metadata: {
439 | originalTask: action.content,
440 | originalFrom: action.from,
441 | },
442 | };
443 |
444 | this.actionQueue.unshift(infoResponse);
445 |
446 | console.log(
447 | `\n🔄 Followup chain: '${action.to}' → router → '${action.to}'`
448 | );
449 | }
450 |
451 | // * INFO: 2. 'Router' providing an answer to a followup
452 | else if (action.to === "router" && action.type === "followup") {
453 | let answerContent = responseContent;
454 |
455 | if (!responseContent.startsWith(ZEEActionResponseType.ANSWER)) {
456 | console.log(
457 | `\n⚠️ 'Router' response missing ${ZEEActionResponseType.ANSWER} prefix, treating as direct answer`
458 | );
459 | } else {
460 | answerContent = responseContent
461 | .replace(ZEEActionResponseType.ANSWER, "")
462 | .trim();
463 | }
464 |
465 | console.log(`\n╭────────────────────────────────────────`);
466 | console.log(`│ 📝 'Router' answered:`);
467 | console.log(
468 | `│ 💬 "${answerContent.substring(0, 100)}${answerContent.length > 100 ? "..." : ""}"`
469 | );
470 | console.log(`╰────────────────────────────────────────`);
471 |
472 | const answerResponse: AgentAction = {
473 | type: "response",
474 | from: "router",
475 | to: action.from,
476 | content: answerContent,
477 | metadata: {
478 | isTaskComplete: true,
479 | },
480 | };
481 |
482 | if (
483 | action.metadata?.originalFrom &&
484 | action.metadata?.originalTask
485 | ) {
486 | const originalQuestion =
487 | action.content?.split("\n\nContext:")?.[0]?.trim() ||
488 | "details about characters";
489 |
490 | const originalTask: AgentAction = {
491 | type: "request",
492 | from: "router",
493 | to: action.from,
494 | content: `${action.metadata.originalTask}\n\nYou previously asked: "${originalQuestion}"\n\nAnswer from router: ${answerContent}\n\nPlease complete your task with this information.`,
495 | metadata: {
496 | dependencies: action.metadata.dependencies,
497 | attachments: action.metadata.attachments,
498 | },
499 | };
500 | this.actionQueue.unshift(originalTask);
501 | }
502 |
503 | this.actionQueue.unshift(answerResponse);
504 |
505 | console.log(`\n🔄 Answer being sent: 'router' → '${action.from}'`);
506 | }
507 |
508 | // * INFO 3. Agent completed its task
509 | else if (responseContent.startsWith(ZEEActionResponseType.COMPLETE)) {
510 | const completeContent = responseContent
511 | .replace(ZEEActionResponseType.COMPLETE, "")
512 | .trim();
513 |
514 | console.log(`\n╭────────────────────────────────────────`);
515 | console.log(`│ ✅ '${action.to}' completed task:`);
516 | console.log(`╰────────────────────────────────────────`);
517 |
518 | const completeAction: AgentAction = {
519 | type: "complete",
520 | from: action.to!,
521 | to: action.from,
522 | content: completeContent,
523 | metadata: {
524 | isTaskComplete: true,
525 | },
526 | };
527 | this.actionQueue.unshift(completeAction);
528 | }
529 |
530 | // * INFO 4. Handle unformatted responses gracefully
531 | else {
532 | console.log(`\n╭────────────────────────────────────────`);
533 | console.log(
534 | `│ ⚠️ Response from '${action.to}' doesn't use expected format:`
535 | );
536 | console.log(
537 | `│ 🔍 "${responseContent.substring(0, 100)}${responseContent.length > 100 ? "..." : ""}"`
538 | );
539 | console.log(`│ 📌 Treating as complete response`);
540 | console.log(`╰────────────────────────────────────────`);
541 |
542 | const completeAction: AgentAction = {
543 | type: "complete",
544 | from: action.to!,
545 | to: action.from,
546 | content: responseContent,
547 | metadata: {
548 | isTaskComplete: true,
549 | },
550 | };
551 | this.actionQueue.unshift(completeAction);
552 | }
553 | }
554 |
555 | public async run(): Promise {
556 | console.log("\n╭────────────────────────────────────────");
557 | console.log("│ 🎬 Starting workflow execution");
558 | console.log("╰────────────────────────────────────────");
559 |
560 | console.log("\n📋 Getting tasks from 'planner'...");
561 | const plannerResponse = await this.getAgent("planner").generate({
562 | messages: [userMessage(this.goal)],
563 | });
564 |
565 | const rawTasks = JSON.parse(plannerResponse.value) as RawTask[];
566 |
567 | console.log("\n📋 Assigning agents to tasks via 'router'...");
568 | const routerResponse = await this.getAgent("router").generate({
569 | messages: [
570 | systemMessage(
571 | `The available agents are: ${JSON.stringify(
572 | Object.values(this.addedAgents).map(
573 | ({ name, description, instructions }) => ({
574 | name,
575 | description,
576 | instructions,
577 | })
578 | )
579 | )}
580 | For each task:
581 | 1. Analyze the task requirements
582 | 2. Select the most suitable agent based on their name, description, and instructions
583 | 3. Convert the dependencies from string[] to {agentName: string, task: string}[]:
584 | - For each dependency, determine which agent should handle it
585 | - Create objects with "agentName" and "task" fields instead of string dependencies
586 | 4. Return a JSON array where each item includes the original task data plus:
587 | - agentName: string (the name of the chosen agent)
588 | - dependencies: the restructured dependencies array with objects
589 | 5. Reorder the tasks based on the dependencies for easier processing
590 |
591 | IMPORTANT: Return ONLY the JSON array, no other text`
592 | ),
593 | userMessage(JSON.stringify(rawTasks)),
594 | ],
595 | });
596 |
597 | const tasks = this.parseTasks(routerResponse.value);
598 |
599 | tasks.forEach((task) => {
600 | this.actionQueue.push({
601 | type: "request",
602 | from: "router",
603 | to: task.agentName,
604 | content: task.instructions.join("\n"),
605 | metadata: {
606 | dependencies: task.dependencies,
607 | attachments: task.attachments,
608 | },
609 | });
610 | });
611 |
612 | let iterationCount = 0;
613 | while (
614 | this.actionQueue.length > 0 &&
615 | iterationCount < this.maxIterations
616 | ) {
617 | if (iterationCount >= this.maxIterations) {
618 | console.warn("\n⚠️ Reached maximum iterations limit");
619 | }
620 |
621 | iterationCount++;
622 | const nextAction = this.actionQueue[0];
623 |
624 | console.log("\n╭────────────────────────────────────────");
625 | console.log(
626 | `│ 🔄 ITERATION ${iterationCount} of max ${this.maxIterations}`
627 | );
628 | console.log(`│ 📊 Queue size: ${this.actionQueue.length} actions`);
629 | console.log(
630 | `│ 📑 Next action: ${nextAction?.type} from '${nextAction?.from}' to '${nextAction?.to}'`
631 | );
632 | console.log("╰────────────────────────────────────────");
633 |
634 | const action = this.actionQueue.shift()!;
635 |
636 | try {
637 | await this.processActionItem(action);
638 | } catch (error) {
639 | console.error(
640 | `\n❌ Error processing action from ${action.from}:`,
641 | error
642 | );
643 | this.context.push({
644 | role: "error",
645 | content: `Error in communication between ${action.from} -> ${action.to}: ${error instanceof Error ? error.message : String(error)}`,
646 | });
647 | }
648 | }
649 |
650 | if (iterationCount >= this.maxIterations) {
651 | console.warn("\n⚠️ Reached maximum iterations limit");
652 | } else {
653 | console.log("\n╭────────────────────────────────────────");
654 | console.log("│ ✨ All agents have completed their tasks");
655 | console.log("╰────────────────────────────────────────");
656 | }
657 |
658 | console.log("\n📋 Getting final compilation from endgame agent...");
659 | const endgameResponse = await this.getAgent("endgame").generate({
660 | messages: [userMessage(JSON.stringify(this.context))],
661 | });
662 |
663 | console.log("\n╭────────────────────────────────────────");
664 | console.log(`│ 🟢 Workflow completed in ${iterationCount} iterations!`);
665 | console.log("╰────────────────────────────────────────");
666 |
667 | return {
668 | content: endgameResponse.value,
669 | context: this.context,
670 | };
671 | }
672 | }
673 |
--------------------------------------------------------------------------------
/packages/create-zee-app/templates/001-zee-barebones/package-lock.json:
--------------------------------------------------------------------------------
1 | {
2 | "name": "create-zee-app-template",
3 | "version": "0.3.0",
4 | "lockfileVersion": 3,
5 | "requires": true,
6 | "packages": {
7 | "": {
8 | "name": "create-zee-app-template",
9 | "version": "0.3.0",
10 | "license": "MIT",
11 | "dependencies": {
12 | "@covalenthq/ai-agent-sdk": "^0.3.0",
13 | "dotenv": "^16.4.7"
14 | },
15 | "devDependencies": {
16 | "ts-node": "^10.9.2",
17 | "typescript": "^5.7.3"
18 | }
19 | },
20 | "node_modules/@ai-sdk/anthropic": {
21 | "version": "1.1.11",
22 | "resolved": "https://registry.npmjs.org/@ai-sdk/anthropic/-/anthropic-1.1.11.tgz",
23 | "integrity": "sha512-FsjF+Qdy4c56dbXyUcec+UDOOnYayL1gd3Mysu1rSZ4RTAPuvsDewNJeSObqhJ7kMXnuHHLmDA5CcM4WvbSD/g==",
24 | "dependencies": {
25 | "@ai-sdk/provider": "1.0.9",
26 | "@ai-sdk/provider-utils": "2.1.10"
27 | },
28 | "engines": {
29 | "node": ">=18"
30 | },
31 | "peerDependencies": {
32 | "zod": "^3.0.0"
33 | }
34 | },
35 | "node_modules/@ai-sdk/google": {
36 | "version": "1.1.17",
37 | "resolved": "https://registry.npmjs.org/@ai-sdk/google/-/google-1.1.17.tgz",
38 | "integrity": "sha512-LFdRO+BMUagDplhZExOSr0cfmnoeV1s/gxpIsqt/AWCYnqY/dYGT74nhjbQ+rILeoE8vwnwUu/7OOZexhccm9A==",
39 | "dependencies": {
40 | "@ai-sdk/provider": "1.0.9",
41 | "@ai-sdk/provider-utils": "2.1.10"
42 | },
43 | "engines": {
44 | "node": ">=18"
45 | },
46 | "peerDependencies": {
47 | "zod": "^3.0.0"
48 | }
49 | },
50 | "node_modules/@ai-sdk/openai": {
51 | "version": "1.1.14",
52 | "resolved": "https://registry.npmjs.org/@ai-sdk/openai/-/openai-1.1.14.tgz",
53 | "integrity": "sha512-r5oD+Sz7z8kfxnXfqR53fYQ1xbT/BeUGhQ26FWzs5gO4j52pGUpzCt0SBm3SH1ZSjFY5O/zoKRnsbrPeBe1sNA==",
54 | "dependencies": {
55 | "@ai-sdk/provider": "1.0.9",
56 | "@ai-sdk/provider-utils": "2.1.10"
57 | },
58 | "engines": {
59 | "node": ">=18"
60 | },
61 | "peerDependencies": {
62 | "zod": "^3.0.0"
63 | }
64 | },
65 | "node_modules/@ai-sdk/provider": {
66 | "version": "1.0.9",
67 | "resolved": "https://registry.npmjs.org/@ai-sdk/provider/-/provider-1.0.9.tgz",
68 | "integrity": "sha512-jie6ZJT2ZR0uVOVCDc9R2xCX5I/Dum/wEK28lx21PJx6ZnFAN9EzD2WsPhcDWfCgGx3OAZZ0GyM3CEobXpa9LA==",
69 | "dependencies": {
70 | "json-schema": "^0.4.0"
71 | },
72 | "engines": {
73 | "node": ">=18"
74 | }
75 | },
76 | "node_modules/@ai-sdk/provider-utils": {
77 | "version": "2.1.10",
78 | "resolved": "https://registry.npmjs.org/@ai-sdk/provider-utils/-/provider-utils-2.1.10.tgz",
79 | "integrity": "sha512-4GZ8GHjOFxePFzkl3q42AU0DQOtTQ5w09vmaWUf/pKFXJPizlnzKSUkF0f+VkapIUfDugyMqPMT1ge8XQzVI7Q==",
80 | "dependencies": {
81 | "@ai-sdk/provider": "1.0.9",
82 | "eventsource-parser": "^3.0.0",
83 | "nanoid": "^3.3.8",
84 | "secure-json-parse": "^2.7.0"
85 | },
86 | "engines": {
87 | "node": ">=18"
88 | },
89 | "peerDependencies": {
90 | "zod": "^3.0.0"
91 | },
92 | "peerDependenciesMeta": {
93 | "zod": {
94 | "optional": true
95 | }
96 | }
97 | },
98 | "node_modules/@ai-sdk/react": {
99 | "version": "1.1.18",
100 | "resolved": "https://registry.npmjs.org/@ai-sdk/react/-/react-1.1.18.tgz",
101 | "integrity": "sha512-2wlWug6NVAc8zh3pgqtvwPkSNTdA6Q4x9CmrNXCeHcXfJkJ+MuHFQz/I7Wb7mLRajf0DAxsFLIhHyBCEuTkDNw==",
102 | "dependencies": {
103 | "@ai-sdk/provider-utils": "2.1.10",
104 | "@ai-sdk/ui-utils": "1.1.16",
105 | "swr": "^2.2.5",
106 | "throttleit": "2.1.0"
107 | },
108 | "engines": {
109 | "node": ">=18"
110 | },
111 | "peerDependencies": {
112 | "react": "^18 || ^19 || ^19.0.0-rc",
113 | "zod": "^3.0.0"
114 | },
115 | "peerDependenciesMeta": {
116 | "react": {
117 | "optional": true
118 | },
119 | "zod": {
120 | "optional": true
121 | }
122 | }
123 | },
124 | "node_modules/@ai-sdk/ui-utils": {
125 | "version": "1.1.16",
126 | "resolved": "https://registry.npmjs.org/@ai-sdk/ui-utils/-/ui-utils-1.1.16.tgz",
127 | "integrity": "sha512-jfblR2yZVISmNK2zyNzJZFtkgX57WDAUQXcmn3XUBJyo8LFsADu+/vYMn5AOyBi9qJT0RBk11PEtIxIqvByw3Q==",
128 | "dependencies": {
129 | "@ai-sdk/provider": "1.0.9",
130 | "@ai-sdk/provider-utils": "2.1.10",
131 | "zod-to-json-schema": "^3.24.1"
132 | },
133 | "engines": {
134 | "node": ">=18"
135 | },
136 | "peerDependencies": {
137 | "zod": "^3.0.0"
138 | },
139 | "peerDependenciesMeta": {
140 | "zod": {
141 | "optional": true
142 | }
143 | }
144 | },
145 | "node_modules/@covalenthq/ai-agent-sdk": {
146 | "version": "0.3.0",
147 | "resolved": "https://registry.npmjs.org/@covalenthq/ai-agent-sdk/-/ai-agent-sdk-0.3.0.tgz",
148 | "integrity": "sha512-HN5ru9EZMkJ1Y+4bTetUlPKsXLrlG6HZVQCJJw7lvGk5SEPEXBallc2Y5e3xeBjmzLD+edHUIgXlOofBDBaWTA==",
149 | "dependencies": {
150 | "@ai-sdk/anthropic": "^1.1.6",
151 | "@ai-sdk/google": "^1.1.11",
152 | "@ai-sdk/openai": "^1.1.9",
153 | "@covalenthq/client-sdk": "^2.2.3",
154 | "ai": "^4.1.41",
155 | "commander": "^13.1.0",
156 | "dotenv": "^16.4.7",
157 | "openai": "^4.79.1",
158 | "pino": "^9.6.0",
159 | "pino-pretty": "^13.0.0",
160 | "typescript": "^5.7.3",
161 | "zod": "^3.24.1",
162 | "zod-to-json-schema": "^3.24.1"
163 | }
164 | },
165 | "node_modules/@covalenthq/client-sdk": {
166 | "version": "2.2.3",
167 | "resolved": "https://registry.npmjs.org/@covalenthq/client-sdk/-/client-sdk-2.2.3.tgz",
168 | "integrity": "sha512-FwvlYpx5+Cr2f2aNNtfE8VYRn5Fr8I8SdY1Oq37tm5NSam0am8r1+zeC0Y2LVs9N/2vKJHoeOA+ivwf/uE6XSQ==",
169 | "license": "Apache-2.0",
170 | "dependencies": {
171 | "big.js": "^6.2.1"
172 | }
173 | },
174 | "node_modules/@cspotcode/source-map-support": {
175 | "version": "0.8.1",
176 | "resolved": "https://registry.npmjs.org/@cspotcode/source-map-support/-/source-map-support-0.8.1.tgz",
177 | "integrity": "sha512-IchNf6dN4tHoMFIn/7OE8LWZ19Y6q/67Bmf6vnGREv8RSbBVb9LPJxEcnwrcwX6ixSvaiGoomAUvu4YSxXrVgw==",
178 | "dev": true,
179 | "license": "MIT",
180 | "dependencies": {
181 | "@jridgewell/trace-mapping": "0.3.9"
182 | },
183 | "engines": {
184 | "node": ">=12"
185 | }
186 | },
187 | "node_modules/@jridgewell/resolve-uri": {
188 | "version": "3.1.2",
189 | "resolved": "https://registry.npmjs.org/@jridgewell/resolve-uri/-/resolve-uri-3.1.2.tgz",
190 | "integrity": "sha512-bRISgCIjP20/tbWSPWMEi54QVPRZExkuD9lJL+UIxUKtwVJA8wW1Trb1jMs1RFXo1CBTNZ/5hpC9QvmKWdopKw==",
191 | "dev": true,
192 | "license": "MIT",
193 | "engines": {
194 | "node": ">=6.0.0"
195 | }
196 | },
197 | "node_modules/@jridgewell/sourcemap-codec": {
198 | "version": "1.5.0",
199 | "resolved": "https://registry.npmjs.org/@jridgewell/sourcemap-codec/-/sourcemap-codec-1.5.0.tgz",
200 | "integrity": "sha512-gv3ZRaISU3fjPAgNsriBRqGWQL6quFx04YMPW/zD8XMLsU32mhCCbfbO6KZFLjvYpCZ8zyDEgqsgf+PwPaM7GQ==",
201 | "dev": true,
202 | "license": "MIT"
203 | },
204 | "node_modules/@jridgewell/trace-mapping": {
205 | "version": "0.3.9",
206 | "resolved": "https://registry.npmjs.org/@jridgewell/trace-mapping/-/trace-mapping-0.3.9.tgz",
207 | "integrity": "sha512-3Belt6tdc8bPgAtbcmdtNJlirVoTmEb5e2gC94PnkwEW9jI6CAHUeoG85tjWP5WquqfavoMtMwiG4P926ZKKuQ==",
208 | "dev": true,
209 | "license": "MIT",
210 | "dependencies": {
211 | "@jridgewell/resolve-uri": "^3.0.3",
212 | "@jridgewell/sourcemap-codec": "^1.4.10"
213 | }
214 | },
215 | "node_modules/@opentelemetry/api": {
216 | "version": "1.9.0",
217 | "resolved": "https://registry.npmjs.org/@opentelemetry/api/-/api-1.9.0.tgz",
218 | "integrity": "sha512-3giAOQvZiH5F9bMlMiv8+GSPMeqg0dbaeo58/0SlA9sxSqZhnUtxzX9/2FzyhS9sWQf5S0GJE0AKBrFqjpeYcg==",
219 | "engines": {
220 | "node": ">=8.0.0"
221 | }
222 | },
223 | "node_modules/@tsconfig/node10": {
224 | "version": "1.0.11",
225 | "resolved": "https://registry.npmjs.org/@tsconfig/node10/-/node10-1.0.11.tgz",
226 | "integrity": "sha512-DcRjDCujK/kCk/cUe8Xz8ZSpm8mS3mNNpta+jGCA6USEDfktlNvm1+IuZ9eTcDbNk41BHwpHHeW+N1lKCz4zOw==",
227 | "dev": true,
228 | "license": "MIT"
229 | },
230 | "node_modules/@tsconfig/node12": {
231 | "version": "1.0.11",
232 | "resolved": "https://registry.npmjs.org/@tsconfig/node12/-/node12-1.0.11.tgz",
233 | "integrity": "sha512-cqefuRsh12pWyGsIoBKJA9luFu3mRxCA+ORZvA4ktLSzIuCUtWVxGIuXigEwO5/ywWFMZ2QEGKWvkZG1zDMTag==",
234 | "dev": true,
235 | "license": "MIT"
236 | },
237 | "node_modules/@tsconfig/node14": {
238 | "version": "1.0.3",
239 | "resolved": "https://registry.npmjs.org/@tsconfig/node14/-/node14-1.0.3.tgz",
240 | "integrity": "sha512-ysT8mhdixWK6Hw3i1V2AeRqZ5WfXg1G43mqoYlM2nc6388Fq5jcXyr5mRsqViLx/GJYdoL0bfXD8nmF+Zn/Iow==",
241 | "dev": true,
242 | "license": "MIT"
243 | },
244 | "node_modules/@tsconfig/node16": {
245 | "version": "1.0.4",
246 | "resolved": "https://registry.npmjs.org/@tsconfig/node16/-/node16-1.0.4.tgz",
247 | "integrity": "sha512-vxhUy4J8lyeyinH7Azl1pdd43GJhZH/tP2weN8TntQblOY+A0XbT8DJk1/oCPuOOyg/Ja757rG0CgHcWC8OfMA==",
248 | "dev": true,
249 | "license": "MIT"
250 | },
251 | "node_modules/@types/diff-match-patch": {
252 | "version": "1.0.36",
253 | "resolved": "https://registry.npmjs.org/@types/diff-match-patch/-/diff-match-patch-1.0.36.tgz",
254 | "integrity": "sha512-xFdR6tkm0MWvBfO8xXCSsinYxHcqkQUlcHeSpMC2ukzOb6lwQAfDmW+Qt0AvlGd8HpsS28qKsB+oPeJn9I39jg=="
255 | },
256 | "node_modules/@types/node": {
257 | "version": "22.10.9",
258 | "resolved": "https://registry.npmjs.org/@types/node/-/node-22.10.9.tgz",
259 | "integrity": "sha512-Ir6hwgsKyNESl/gLOcEz3krR4CBGgliDqBQ2ma4wIhEx0w+xnoeTq3tdrNw15kU3SxogDjOgv9sqdtLW8mIHaw==",
260 | "license": "MIT",
261 | "dependencies": {
262 | "undici-types": "~6.20.0"
263 | }
264 | },
265 | "node_modules/@types/node-fetch": {
266 | "version": "2.6.12",
267 | "resolved": "https://registry.npmjs.org/@types/node-fetch/-/node-fetch-2.6.12.tgz",
268 | "integrity": "sha512-8nneRWKCg3rMtF69nLQJnOYUcbafYeFSjqkw3jCRLsqkWFlHaoQrr5mXmofFGOx3DKn7UfmBMyov8ySvLRVldA==",
269 | "license": "MIT",
270 | "dependencies": {
271 | "@types/node": "*",
272 | "form-data": "^4.0.0"
273 | }
274 | },
275 | "node_modules/abort-controller": {
276 | "version": "3.0.0",
277 | "resolved": "https://registry.npmjs.org/abort-controller/-/abort-controller-3.0.0.tgz",
278 | "integrity": "sha512-h8lQ8tacZYnR3vNQTgibj+tODHI5/+l06Au2Pcriv/Gmet0eaj4TwWH41sO9wnHDiQsEj19q0drzdWdeAHtweg==",
279 | "license": "MIT",
280 | "dependencies": {
281 | "event-target-shim": "^5.0.0"
282 | },
283 | "engines": {
284 | "node": ">=6.5"
285 | }
286 | },
287 | "node_modules/acorn": {
288 | "version": "8.14.0",
289 | "resolved": "https://registry.npmjs.org/acorn/-/acorn-8.14.0.tgz",
290 | "integrity": "sha512-cl669nCJTZBsL97OF4kUQm5g5hC2uihk0NxY3WENAC0TYdILVkAyHymAntgxGkl7K+t0cXIrH5siy5S4XkFycA==",
291 | "dev": true,
292 | "license": "MIT",
293 | "bin": {
294 | "acorn": "bin/acorn"
295 | },
296 | "engines": {
297 | "node": ">=0.4.0"
298 | }
299 | },
300 | "node_modules/acorn-walk": {
301 | "version": "8.3.4",
302 | "resolved": "https://registry.npmjs.org/acorn-walk/-/acorn-walk-8.3.4.tgz",
303 | "integrity": "sha512-ueEepnujpqee2o5aIYnvHU6C0A42MNdsIDeqy5BydrkuC5R1ZuUFnm27EeFJGoEHJQgn3uleRvmTXaJgfXbt4g==",
304 | "dev": true,
305 | "license": "MIT",
306 | "dependencies": {
307 | "acorn": "^8.11.0"
308 | },
309 | "engines": {
310 | "node": ">=0.4.0"
311 | }
312 | },
313 | "node_modules/agentkeepalive": {
314 | "version": "4.6.0",
315 | "resolved": "https://registry.npmjs.org/agentkeepalive/-/agentkeepalive-4.6.0.tgz",
316 | "integrity": "sha512-kja8j7PjmncONqaTsB8fQ+wE2mSU2DJ9D4XKoJ5PFWIdRMa6SLSN1ff4mOr4jCbfRSsxR4keIiySJU0N9T5hIQ==",
317 | "license": "MIT",
318 | "dependencies": {
319 | "humanize-ms": "^1.2.1"
320 | },
321 | "engines": {
322 | "node": ">= 8.0.0"
323 | }
324 | },
325 | "node_modules/ai": {
326 | "version": "4.1.46",
327 | "resolved": "https://registry.npmjs.org/ai/-/ai-4.1.46.tgz",
328 | "integrity": "sha512-VTvAktT69IN1qcNAv7OlcOuR0q4HqUlhkVacrWmMlEoprYykF9EL5RY8IECD5d036Wqg0walwbSKZlA2noHm1A==",
329 | "dependencies": {
330 | "@ai-sdk/provider": "1.0.9",
331 | "@ai-sdk/provider-utils": "2.1.10",
332 | "@ai-sdk/react": "1.1.18",
333 | "@ai-sdk/ui-utils": "1.1.16",
334 | "@opentelemetry/api": "1.9.0",
335 | "jsondiffpatch": "0.6.0"
336 | },
337 | "engines": {
338 | "node": ">=18"
339 | },
340 | "peerDependencies": {
341 | "react": "^18 || ^19 || ^19.0.0-rc",
342 | "zod": "^3.0.0"
343 | },
344 | "peerDependenciesMeta": {
345 | "react": {
346 | "optional": true
347 | },
348 | "zod": {
349 | "optional": true
350 | }
351 | }
352 | },
353 | "node_modules/arg": {
354 | "version": "4.1.3",
355 | "resolved": "https://registry.npmjs.org/arg/-/arg-4.1.3.tgz",
356 | "integrity": "sha512-58S9QDqG0Xx27YwPSt9fJxivjYl432YCwfDMfZ+71RAqUrZef7LrKQZ3LHLOwCS4FLNBplP533Zx895SeOCHvA==",
357 | "dev": true,
358 | "license": "MIT"
359 | },
360 | "node_modules/asynckit": {
361 | "version": "0.4.0",
362 | "resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
363 | "integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==",
364 | "license": "MIT"
365 | },
366 | "node_modules/atomic-sleep": {
367 | "version": "1.0.0",
368 | "resolved": "https://registry.npmjs.org/atomic-sleep/-/atomic-sleep-1.0.0.tgz",
369 | "integrity": "sha512-kNOjDqAh7px0XWNI+4QbzoiR/nTkHAWNud2uvnJquD1/x5a7EQZMJT0AczqK0Qn67oY/TTQ1LbUKajZpp3I9tQ==",
370 | "license": "MIT",
371 | "engines": {
372 | "node": ">=8.0.0"
373 | }
374 | },
375 | "node_modules/big.js": {
376 | "version": "6.2.2",
377 | "resolved": "https://registry.npmjs.org/big.js/-/big.js-6.2.2.tgz",
378 | "integrity": "sha512-y/ie+Faknx7sZA5MfGA2xKlu0GDv8RWrXGsmlteyJQ2lvoKv9GBK/fpRMc2qlSoBAgNxrixICFCBefIq8WCQpQ==",
379 | "license": "MIT",
380 | "engines": {
381 | "node": "*"
382 | },
383 | "funding": {
384 | "type": "opencollective",
385 | "url": "https://opencollective.com/bigjs"
386 | }
387 | },
388 | "node_modules/chalk": {
389 | "version": "5.4.1",
390 | "resolved": "https://registry.npmjs.org/chalk/-/chalk-5.4.1.tgz",
391 | "integrity": "sha512-zgVZuo2WcZgfUEmsn6eO3kINexW8RAE4maiQ8QNs8CtpPCSyMiYsULR3HQYkm3w8FIA3SberyMJMSldGsW+U3w==",
392 | "engines": {
393 | "node": "^12.17.0 || ^14.13 || >=16.0.0"
394 | },
395 | "funding": {
396 | "url": "https://github.com/chalk/chalk?sponsor=1"
397 | }
398 | },
399 | "node_modules/colorette": {
400 | "version": "2.0.20",
401 | "resolved": "https://registry.npmjs.org/colorette/-/colorette-2.0.20.tgz",
402 | "integrity": "sha512-IfEDxwoWIjkeXL1eXcDiow4UbKjhLdq6/EuSVR9GMN7KVH3r9gQ83e73hsz1Nd1T3ijd5xv1wcWRYO+D6kCI2w==",
403 | "license": "MIT"
404 | },
405 | "node_modules/combined-stream": {
406 | "version": "1.0.8",
407 | "resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
408 | "integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
409 | "license": "MIT",
410 | "dependencies": {
411 | "delayed-stream": "~1.0.0"
412 | },
413 | "engines": {
414 | "node": ">= 0.8"
415 | }
416 | },
417 | "node_modules/commander": {
418 | "version": "13.1.0",
419 | "resolved": "https://registry.npmjs.org/commander/-/commander-13.1.0.tgz",
420 | "integrity": "sha512-/rFeCpNJQbhSZjGVwO9RFV3xPqbnERS8MmIQzCtD/zl6gpJuV/bMLuN92oG3F7d8oDEHHRrujSXNUr8fpjntKw==",
421 | "license": "MIT",
422 | "engines": {
423 | "node": ">=18"
424 | }
425 | },
426 | "node_modules/create-require": {
427 | "version": "1.1.1",
428 | "resolved": "https://registry.npmjs.org/create-require/-/create-require-1.1.1.tgz",
429 | "integrity": "sha512-dcKFX3jn0MpIaXjisoRvexIJVEKzaq7z2rZKxf+MSr9TkdmHmsU4m2lcLojrj/FHl8mk5VxMmYA+ftRkP/3oKQ==",
430 | "dev": true,
431 | "license": "MIT"
432 | },
433 | "node_modules/dateformat": {
434 | "version": "4.6.3",
435 | "resolved": "https://registry.npmjs.org/dateformat/-/dateformat-4.6.3.tgz",
436 | "integrity": "sha512-2P0p0pFGzHS5EMnhdxQi7aJN+iMheud0UhG4dlE1DLAlvL8JHjJJTX/CSm4JXwV0Ka5nGk3zC5mcb5bUQUxxMA==",
437 | "license": "MIT",
438 | "engines": {
439 | "node": "*"
440 | }
441 | },
442 | "node_modules/delayed-stream": {
443 | "version": "1.0.0",
444 | "resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
445 | "integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
446 | "license": "MIT",
447 | "engines": {
448 | "node": ">=0.4.0"
449 | }
450 | },
451 | "node_modules/dequal": {
452 | "version": "2.0.3",
453 | "resolved": "https://registry.npmjs.org/dequal/-/dequal-2.0.3.tgz",
454 | "integrity": "sha512-0je+qPKHEMohvfRTCEo3CrPG6cAzAYgmzKyxRiYSSDkS6eGJdyVJm7WaYA5ECaAD9wLB2T4EEeymA5aFVcYXCA==",
455 | "engines": {
456 | "node": ">=6"
457 | }
458 | },
459 | "node_modules/diff": {
460 | "version": "4.0.2",
461 | "resolved": "https://registry.npmjs.org/diff/-/diff-4.0.2.tgz",
462 | "integrity": "sha512-58lmxKSA4BNyLz+HHMUzlOEpg09FV+ev6ZMe3vJihgdxzgcwZ8VoEEPmALCZG9LmqfVoNMMKpttIYTVG6uDY7A==",
463 | "dev": true,
464 | "license": "BSD-3-Clause",
465 | "engines": {
466 | "node": ">=0.3.1"
467 | }
468 | },
469 | "node_modules/diff-match-patch": {
470 | "version": "1.0.5",
471 | "resolved": "https://registry.npmjs.org/diff-match-patch/-/diff-match-patch-1.0.5.tgz",
472 | "integrity": "sha512-IayShXAgj/QMXgB0IWmKx+rOPuGMhqm5w6jvFxmVenXKIzRqTAAsbBPT3kWQeGANj3jGgvcvv4yK6SxqYmikgw=="
473 | },
474 | "node_modules/dotenv": {
475 | "version": "16.4.7",
476 | "resolved": "https://registry.npmjs.org/dotenv/-/dotenv-16.4.7.tgz",
477 | "integrity": "sha512-47qPchRCykZC03FhkYAhrvwU4xDBFIj1QPqaarj6mdM/hgUzfPHcpkHJOn3mJAufFeeAxAzeGsr5X0M4k6fLZQ==",
478 | "engines": {
479 | "node": ">=12"
480 | },
481 | "funding": {
482 | "url": "https://dotenvx.com"
483 | }
484 | },
485 | "node_modules/end-of-stream": {
486 | "version": "1.4.4",
487 | "resolved": "https://registry.npmjs.org/end-of-stream/-/end-of-stream-1.4.4.tgz",
488 | "integrity": "sha512-+uw1inIHVPQoaVuHzRyXd21icM+cnt4CzD5rW+NC1wjOUSTOs+Te7FOv7AhN7vS9x/oIyhLP5PR1H+phQAHu5Q==",
489 | "license": "MIT",
490 | "dependencies": {
491 | "once": "^1.4.0"
492 | }
493 | },
494 | "node_modules/event-target-shim": {
495 | "version": "5.0.1",
496 | "resolved": "https://registry.npmjs.org/event-target-shim/-/event-target-shim-5.0.1.tgz",
497 | "integrity": "sha512-i/2XbnSz/uxRCU6+NdVJgKWDTM427+MqYbkQzD321DuCQJUqOuJKIA0IM2+W2xtYHdKOmZ4dR6fExsd4SXL+WQ==",
498 | "license": "MIT",
499 | "engines": {
500 | "node": ">=6"
501 | }
502 | },
503 | "node_modules/eventsource-parser": {
504 | "version": "3.0.0",
505 | "resolved": "https://registry.npmjs.org/eventsource-parser/-/eventsource-parser-3.0.0.tgz",
506 | "integrity": "sha512-T1C0XCUimhxVQzW4zFipdx0SficT651NnkR0ZSH3yQwh+mFMdLfgjABVi4YtMTtaL4s168593DaoaRLMqryavA==",
507 | "engines": {
508 | "node": ">=18.0.0"
509 | }
510 | },
511 | "node_modules/es-set-tostringtag": {
512 | "version": "2.1.0",
513 | "resolved": "https://registry.npmjs.org/es-set-tostringtag/-/es-set-tostringtag-2.1.0.tgz",
514 | "integrity": "sha512-j6vWzfrGVfyXxge+O0x5sh6cvxAog0a/4Rdd2K36zCMV5eJ+/+tOAngRO8cODMNWbVRdVlmGZQL2YS3yR8bIUA==",
515 | "license": "MIT",
516 | "engines": {
517 | "node": ">= 0.4"
518 | }
519 | },
520 | "node_modules/fast-copy": {
521 | "version": "3.0.2",
522 | "resolved": "https://registry.npmjs.org/fast-copy/-/fast-copy-3.0.2.tgz",
523 | "integrity": "sha512-dl0O9Vhju8IrcLndv2eU4ldt1ftXMqqfgN4H1cpmGV7P6jeB9FwpN9a2c8DPGE1Ys88rNUJVYDHq73CGAGOPfQ==",
524 | "license": "MIT"
525 | },
526 | "node_modules/fast-redact": {
527 | "version": "3.5.0",
528 | "resolved": "https://registry.npmjs.org/fast-redact/-/fast-redact-3.5.0.tgz",
529 | "integrity": "sha512-dwsoQlS7h9hMeYUq1W++23NDcBLV4KqONnITDV9DjfS3q1SgDGVrBdvvTLUotWtPSD7asWDV9/CmsZPy8Hf70A==",
530 | "license": "MIT",
531 | "engines": {
532 | "node": ">=6"
533 | }
534 | },
535 | "node_modules/fast-safe-stringify": {
536 | "version": "2.1.1",
537 | "resolved": "https://registry.npmjs.org/fast-safe-stringify/-/fast-safe-stringify-2.1.1.tgz",
538 | "integrity": "sha512-W+KJc2dmILlPplD/H4K9l9LcAHAfPtP6BY84uVLXQ6Evcz9Lcg33Y2z1IVblT6xdY54PXYVHEv+0Wpq8Io6zkA==",
539 | "license": "MIT"
540 | },
541 | "node_modules/form-data": {
542 | "version": "4.0.5",
543 | "resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.5.tgz",
544 | "integrity": "sha512-8RipRLol37bNs2bhoV67fiTEvdTrbMUYcFTiy3+wuuOnUog2QBHCZWXDRijWQfAkhBj2Uf5UnVaiWwA5vdd82w==",
545 | "license": "MIT",
546 | "dependencies": {
547 | "asynckit": "^0.4.0",
548 | "combined-stream": "^1.0.8",
549 | "es-set-tostringtag": "^2.1.0",
550 | "hasown": "^2.0.2",
551 | "mime-types": "^2.1.12"
552 | },
553 | "engines": {
554 | "node": ">= 6"
555 | }
556 | },
557 | "node_modules/form-data-encoder": {
558 | "version": "1.7.2",
559 | "resolved": "https://registry.npmjs.org/form-data-encoder/-/form-data-encoder-1.7.2.tgz",
560 | "integrity": "sha512-qfqtYan3rxrnCk1VYaA4H+Ms9xdpPqvLZa6xmMgFvhO32x7/3J/ExcTd6qpxM0vH2GdMI+poehyBZvqfMTto8A==",
561 | "license": "MIT"
562 | },
563 | "node_modules/hasown": {
564 | "version": "2.0.2",
565 | "resolved": "https://registry.npmjs.org/hasown/-/hasown-2.0.2.tgz",
566 | "integrity": "sha512-0hJU9SCPvmMzIBdZFqNPXWa6dqh7WdH0cII9y+CyS8rG3nL48Bclra9HmKhVVUHyPWNH5Y7xDwAB7bfgSjkUMQ==",
567 | "license": "MIT",
568 | "engines": {
569 | "node": ">= 0.4"
570 | }
571 | },
572 | "node_modules/formdata-node": {
573 | "version": "4.4.1",
574 | "resolved": "https://registry.npmjs.org/formdata-node/-/formdata-node-4.4.1.tgz",
575 | "integrity": "sha512-0iirZp3uVDjVGt9p49aTaqjk84TrglENEDuqfdlZQ1roC9CWlPk6Avf8EEnZNcAqPonwkG35x4n3ww/1THYAeQ==",
576 | "license": "MIT",
577 | "dependencies": {
578 | "node-domexception": "1.0.0",
579 | "web-streams-polyfill": "4.0.0-beta.3"
580 | },
581 | "engines": {
582 | "node": ">= 12.20"
583 | }
584 | },
585 | "node_modules/help-me": {
586 | "version": "5.0.0",
587 | "resolved": "https://registry.npmjs.org/help-me/-/help-me-5.0.0.tgz",
588 | "integrity": "sha512-7xgomUX6ADmcYzFik0HzAxh/73YlKR9bmFzf51CZwR+b6YtzU2m0u49hQCqV6SvlqIqsaxovfwdvbnsw3b/zpg==",
589 | "license": "MIT"
590 | },
591 | "node_modules/humanize-ms": {
592 | "version": "1.2.1",
593 | "resolved": "https://registry.npmjs.org/humanize-ms/-/humanize-ms-1.2.1.tgz",
594 | "integrity": "sha512-Fl70vYtsAFb/C06PTS9dZBo7ihau+Tu/DNCk/OyHhea07S+aeMWpFFkUaXRa8fI+ScZbEI8dfSxwY7gxZ9SAVQ==",
595 | "license": "MIT",
596 | "dependencies": {
597 | "ms": "^2.0.0"
598 | }
599 | },
600 | "node_modules/joycon": {
601 | "version": "3.1.1",
602 | "resolved": "https://registry.npmjs.org/joycon/-/joycon-3.1.1.tgz",
603 | "integrity": "sha512-34wB/Y7MW7bzjKRjUKTa46I2Z7eV62Rkhva+KkopW7Qvv/OSWBqvkSY7vusOPrNuZcUG3tApvdVgNB8POj3SPw==",
604 | "license": "MIT",
605 | "engines": {
606 | "node": ">=10"
607 | }
608 | },
609 | "node_modules/json-schema": {
610 | "version": "0.4.0",
611 | "resolved": "https://registry.npmjs.org/json-schema/-/json-schema-0.4.0.tgz",
612 | "integrity": "sha512-es94M3nTIfsEPisRafak+HDLfHXnKBhV3vU5eqPcS3flIWqcxJWgXHXiey3YrpaNsanY5ei1VoYEbOzijuq9BA=="
613 | },
614 | "node_modules/jsondiffpatch": {
615 | "version": "0.6.0",
616 | "resolved": "https://registry.npmjs.org/jsondiffpatch/-/jsondiffpatch-0.6.0.tgz",
617 | "integrity": "sha512-3QItJOXp2AP1uv7waBkao5nCvhEv+QmJAd38Ybq7wNI74Q+BBmnLn4EDKz6yI9xGAIQoUF87qHt+kc1IVxB4zQ==",
618 | "dependencies": {
619 | "@types/diff-match-patch": "^1.0.36",
620 | "chalk": "^5.3.0",
621 | "diff-match-patch": "^1.0.5"
622 | },
623 | "bin": {
624 | "jsondiffpatch": "bin/jsondiffpatch.js"
625 | },
626 | "engines": {
627 | "node": "^18.0.0 || >=20.0.0"
628 | }
629 | },
630 | "node_modules/make-error": {
631 | "version": "1.3.6",
632 | "resolved": "https://registry.npmjs.org/make-error/-/make-error-1.3.6.tgz",
633 | "integrity": "sha512-s8UhlNe7vPKomQhC1qFelMokr/Sc3AgNbso3n74mVPA5LTZwkB9NlXf4XPamLxJE8h0gh73rM94xvwRT2CVInw==",
634 | "dev": true,
635 | "license": "ISC"
636 | },
637 | "node_modules/mime-db": {
638 | "version": "1.52.0",
639 | "resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
640 | "integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
641 | "license": "MIT",
642 | "engines": {
643 | "node": ">= 0.6"
644 | }
645 | },
646 | "node_modules/mime-types": {
647 | "version": "2.1.35",
648 | "resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
649 | "integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
650 | "license": "MIT",
651 | "dependencies": {
652 | "mime-db": "1.52.0"
653 | },
654 | "engines": {
655 | "node": ">= 0.6"
656 | }
657 | },
658 | "node_modules/minimist": {
659 | "version": "1.2.8",
660 | "resolved": "https://registry.npmjs.org/minimist/-/minimist-1.2.8.tgz",
661 | "integrity": "sha512-2yyAR8qBkN3YuheJanUpWC5U3bb5osDywNB8RzDVlDwDHbocAJveqqj1u8+SVD7jkWT4yvsHCpWqqWqAxb0zCA==",
662 | "license": "MIT",
663 | "funding": {
664 | "url": "https://github.com/sponsors/ljharb"
665 | }
666 | },
667 | "node_modules/ms": {
668 | "version": "2.1.3",
669 | "resolved": "https://registry.npmjs.org/ms/-/ms-2.1.3.tgz",
670 | "integrity": "sha512-6FlzubTLZG3J2a/NVCAleEhjzq5oxgHyaCU9yYXvcLsvoVaHJq/s5xXI6/XXP6tz7R9xAOtHnSO/tXtF3WRTlA==",
671 | "license": "MIT"
672 | },
673 | "node_modules/nanoid": {
674 | "version": "3.3.8",
675 | "resolved": "https://registry.npmjs.org/nanoid/-/nanoid-3.3.8.tgz",
676 | "integrity": "sha512-WNLf5Sd8oZxOm+TzppcYk8gVOgP+l58xNy58D0nbUnOxOWRWvlcCV4kUF7ltmI6PsrLl/BgKEyS4mqsGChFN0w==",
677 | "funding": [
678 | {
679 | "type": "github",
680 | "url": "https://github.com/sponsors/ai"
681 | }
682 | ],
683 | "bin": {
684 | "nanoid": "bin/nanoid.cjs"
685 | },
686 | "engines": {
687 | "node": "^10 || ^12 || ^13.7 || ^14 || >=15.0.1"
688 | }
689 | },
690 | "node_modules/node-domexception": {
691 | "version": "1.0.0",
692 | "resolved": "https://registry.npmjs.org/node-domexception/-/node-domexception-1.0.0.tgz",
693 | "integrity": "sha512-/jKZoMpw0F8GRwl4/eLROPA3cfcXtLApP0QzLmUT/HuPCZWyB7IY9ZrMeKw2O/nFIqPQB3PVM9aYm0F312AXDQ==",
694 | "funding": [
695 | {
696 | "type": "github",
697 | "url": "https://github.com/sponsors/jimmywarting"
698 | },
699 | {
700 | "type": "github",
701 | "url": "https://paypal.me/jimmywarting"
702 | }
703 | ],
704 | "license": "MIT",
705 | "engines": {
706 | "node": ">=10.5.0"
707 | }
708 | },
709 | "node_modules/node-fetch": {
710 | "version": "2.7.0",
711 | "resolved": "https://registry.npmjs.org/node-fetch/-/node-fetch-2.7.0.tgz",
712 | "integrity": "sha512-c4FRfUm/dbcWZ7U+1Wq0AwCyFL+3nt2bEw05wfxSz+DWpWsitgmSgYmy2dQdWyKC1694ELPqMs/YzUSNozLt8A==",
713 | "license": "MIT",
714 | "dependencies": {
715 | "whatwg-url": "^5.0.0"
716 | },
717 | "engines": {
718 | "node": "4.x || >=6.0.0"
719 | },
720 | "peerDependencies": {
721 | "encoding": "^0.1.0"
722 | },
723 | "peerDependenciesMeta": {
724 | "encoding": {
725 | "optional": true
726 | }
727 | }
728 | },
729 | "node_modules/on-exit-leak-free": {
730 | "version": "2.1.2",
731 | "resolved": "https://registry.npmjs.org/on-exit-leak-free/-/on-exit-leak-free-2.1.2.tgz",
732 | "integrity": "sha512-0eJJY6hXLGf1udHwfNftBqH+g73EU4B504nZeKpz1sYRKafAghwxEJunB2O7rDZkL4PGfsMVnTXZ2EjibbqcsA==",
733 | "license": "MIT",
734 | "engines": {
735 | "node": ">=14.0.0"
736 | }
737 | },
738 | "node_modules/once": {
739 | "version": "1.4.0",
740 | "resolved": "https://registry.npmjs.org/once/-/once-1.4.0.tgz",
741 | "integrity": "sha512-lNaJgI+2Q5URQBkccEKHTQOPaXdUxnZZElQTZY0MFUAuaEqe1E+Nyvgdz/aIyNi6Z9MzO5dv1H8n58/GELp3+w==",
742 | "license": "ISC",
743 | "dependencies": {
744 | "wrappy": "1"
745 | }
746 | },
747 | "node_modules/openai": {
748 | "version": "4.83.0",
749 | "resolved": "https://registry.npmjs.org/openai/-/openai-4.83.0.tgz",
750 | "integrity": "sha512-fmTsqud0uTtRKsPC7L8Lu55dkaTwYucqncDHzVvO64DKOpNTuiYwjbR/nVgpapXuYy8xSnhQQPUm+3jQaxICgw==",
751 | "license": "Apache-2.0",
752 | "dependencies": {
753 | "@types/node": "^18.11.18",
754 | "@types/node-fetch": "^2.6.4",
755 | "abort-controller": "^3.0.0",
756 | "agentkeepalive": "^4.2.1",
757 | "form-data-encoder": "1.7.2",
758 | "formdata-node": "^4.3.2",
759 | "node-fetch": "^2.6.7"
760 | },
761 | "bin": {
762 | "openai": "bin/cli"
763 | },
764 | "peerDependencies": {
765 | "ws": "^8.18.0",
766 | "zod": "^3.23.8"
767 | },
768 | "peerDependenciesMeta": {
769 | "ws": {
770 | "optional": true
771 | },
772 | "zod": {
773 | "optional": true
774 | }
775 | }
776 | },
777 | "node_modules/openai/node_modules/@types/node": {
778 | "version": "18.19.75",
779 | "resolved": "https://registry.npmjs.org/@types/node/-/node-18.19.75.tgz",
780 | "integrity": "sha512-UIksWtThob6ZVSyxcOqCLOUNg/dyO1Qvx4McgeuhrEtHTLFTf7BBhEazaE4K806FGTPtzd/2sE90qn4fVr7cyw==",
781 | "license": "MIT",
782 | "dependencies": {
783 | "undici-types": "~5.26.4"
784 | }
785 | },
786 | "node_modules/openai/node_modules/undici-types": {
787 | "version": "5.26.5",
788 | "resolved": "https://registry.npmjs.org/undici-types/-/undici-types-5.26.5.tgz",
789 | "integrity": "sha512-JlCMO+ehdEIKqlFxk6IfVoAUVmgz7cU7zD/h9XZ0qzeosSHmUJVOzSQvvYSYWXkFXC+IfLKSIffhv0sVZup6pA==",
790 | "license": "MIT"
791 | },
792 | "node_modules/pino": {
793 | "version": "9.6.0",
794 | "resolved": "https://registry.npmjs.org/pino/-/pino-9.6.0.tgz",
795 | "integrity": "sha512-i85pKRCt4qMjZ1+L7sy2Ag4t1atFcdbEt76+7iRJn1g2BvsnRMGu9p8pivl9fs63M2kF/A0OacFZhTub+m/qMg==",
796 | "license": "MIT",
797 | "dependencies": {
798 | "atomic-sleep": "^1.0.0",
799 | "fast-redact": "^3.1.1",
800 | "on-exit-leak-free": "^2.1.0",
801 | "pino-abstract-transport": "^2.0.0",
802 | "pino-std-serializers": "^7.0.0",
803 | "process-warning": "^4.0.0",
804 | "quick-format-unescaped": "^4.0.3",
805 | "real-require": "^0.2.0",
806 | "safe-stable-stringify": "^2.3.1",
807 | "sonic-boom": "^4.0.1",
808 | "thread-stream": "^3.0.0"
809 | },
810 | "bin": {
811 | "pino": "bin.js"
812 | }
813 | },
814 | "node_modules/pino-abstract-transport": {
815 | "version": "2.0.0",
816 | "resolved": "https://registry.npmjs.org/pino-abstract-transport/-/pino-abstract-transport-2.0.0.tgz",
817 | "integrity": "sha512-F63x5tizV6WCh4R6RHyi2Ml+M70DNRXt/+HANowMflpgGFMAym/VKm6G7ZOQRjqN7XbGxK1Lg9t6ZrtzOaivMw==",
818 | "license": "MIT",
819 | "dependencies": {
820 | "split2": "^4.0.0"
821 | }
822 | },
823 | "node_modules/pino-pretty": {
824 | "version": "13.0.0",
825 | "resolved": "https://registry.npmjs.org/pino-pretty/-/pino-pretty-13.0.0.tgz",
826 | "integrity": "sha512-cQBBIVG3YajgoUjo1FdKVRX6t9XPxwB9lcNJVD5GCnNM4Y6T12YYx8c6zEejxQsU0wrg9TwmDulcE9LR7qcJqA==",
827 | "license": "MIT",
828 | "dependencies": {
829 | "colorette": "^2.0.7",
830 | "dateformat": "^4.6.3",
831 | "fast-copy": "^3.0.2",
832 | "fast-safe-stringify": "^2.1.1",
833 | "help-me": "^5.0.0",
834 | "joycon": "^3.1.1",
835 | "minimist": "^1.2.6",
836 | "on-exit-leak-free": "^2.1.0",
837 | "pino-abstract-transport": "^2.0.0",
838 | "pump": "^3.0.0",
839 | "secure-json-parse": "^2.4.0",
840 | "sonic-boom": "^4.0.1",
841 | "strip-json-comments": "^3.1.1"
842 | },
843 | "bin": {
844 | "pino-pretty": "bin.js"
845 | }
846 | },
847 | "node_modules/pino-std-serializers": {
848 | "version": "7.0.0",
849 | "resolved": "https://registry.npmjs.org/pino-std-serializers/-/pino-std-serializers-7.0.0.tgz",
850 | "integrity": "sha512-e906FRY0+tV27iq4juKzSYPbUj2do2X2JX4EzSca1631EB2QJQUqGbDuERal7LCtOpxl6x3+nvo9NPZcmjkiFA==",
851 | "license": "MIT"
852 | },
853 | "node_modules/process-warning": {
854 | "version": "4.0.1",
855 | "resolved": "https://registry.npmjs.org/process-warning/-/process-warning-4.0.1.tgz",
856 | "integrity": "sha512-3c2LzQ3rY9d0hc1emcsHhfT9Jwz0cChib/QN89oME2R451w5fy3f0afAhERFZAwrbDU43wk12d0ORBpDVME50Q==",
857 | "funding": [
858 | {
859 | "type": "github",
860 | "url": "https://github.com/sponsors/fastify"
861 | },
862 | {
863 | "type": "opencollective",
864 | "url": "https://opencollective.com/fastify"
865 | }
866 | ],
867 | "license": "MIT"
868 | },
869 | "node_modules/pump": {
870 | "version": "3.0.2",
871 | "resolved": "https://registry.npmjs.org/pump/-/pump-3.0.2.tgz",
872 | "integrity": "sha512-tUPXtzlGM8FE3P0ZL6DVs/3P58k9nk8/jZeQCurTJylQA8qFYzHFfhBJkuqyE0FifOsQ0uKWekiZ5g8wtr28cw==",
873 | "license": "MIT",
874 | "dependencies": {
875 | "end-of-stream": "^1.1.0",
876 | "once": "^1.3.1"
877 | }
878 | },
879 | "node_modules/quick-format-unescaped": {
880 | "version": "4.0.4",
881 | "resolved": "https://registry.npmjs.org/quick-format-unescaped/-/quick-format-unescaped-4.0.4.tgz",
882 | "integrity": "sha512-tYC1Q1hgyRuHgloV/YXs2w15unPVh8qfu/qCTfhTYamaw7fyhumKa2yGpdSo87vY32rIclj+4fWYQXUMs9EHvg==",
883 | "license": "MIT"
884 | },
885 | "node_modules/react": {
886 | "version": "19.0.0",
887 | "resolved": "https://registry.npmjs.org/react/-/react-19.0.0.tgz",
888 | "integrity": "sha512-V8AVnmPIICiWpGfm6GLzCR/W5FXLchHop40W4nXBmdlEceh16rCN8O8LNWm5bh5XUX91fh7KpA+W0TgMKmgTpQ==",
889 | "peer": true,
890 | "engines": {
891 | "node": ">=0.10.0"
892 | }
893 | },
894 | "node_modules/real-require": {
895 | "version": "0.2.0",
896 | "resolved": "https://registry.npmjs.org/real-require/-/real-require-0.2.0.tgz",
897 | "integrity": "sha512-57frrGM/OCTLqLOAh0mhVA9VBMHd+9U7Zb2THMGdBUoZVOtGbJzjxsYGDJ3A9AYYCP4hn6y1TVbaOfzWtm5GFg==",
898 | "license": "MIT",
899 | "engines": {
900 | "node": ">= 12.13.0"
901 | }
902 | },
903 | "node_modules/safe-stable-stringify": {
904 | "version": "2.5.0",
905 | "resolved": "https://registry.npmjs.org/safe-stable-stringify/-/safe-stable-stringify-2.5.0.tgz",
906 | "integrity": "sha512-b3rppTKm9T+PsVCBEOUR46GWI7fdOs00VKZ1+9c1EWDaDMvjQc6tUwuFyIprgGgTcWoVHSKrU8H31ZHA2e0RHA==",
907 | "license": "MIT",
908 | "engines": {
909 | "node": ">=10"
910 | }
911 | },
912 | "node_modules/secure-json-parse": {
913 | "version": "2.7.0",
914 | "resolved": "https://registry.npmjs.org/secure-json-parse/-/secure-json-parse-2.7.0.tgz",
915 | "integrity": "sha512-6aU+Rwsezw7VR8/nyvKTx8QpWH9FrcYiXXlqC4z5d5XQBDRqtbfsRjnwGyqbi3gddNtWHuEk9OANUotL26qKUw==",
916 | "license": "BSD-3-Clause"
917 | },
918 | "node_modules/sonic-boom": {
919 | "version": "4.2.0",
920 | "resolved": "https://registry.npmjs.org/sonic-boom/-/sonic-boom-4.2.0.tgz",
921 | "integrity": "sha512-INb7TM37/mAcsGmc9hyyI6+QR3rR1zVRu36B0NeGXKnOOLiZOfER5SA+N7X7k3yUYRzLWafduTDvJAfDswwEww==",
922 | "license": "MIT",
923 | "dependencies": {
924 | "atomic-sleep": "^1.0.0"
925 | }
926 | },
927 | "node_modules/split2": {
928 | "version": "4.2.0",
929 | "resolved": "https://registry.npmjs.org/split2/-/split2-4.2.0.tgz",
930 | "integrity": "sha512-UcjcJOWknrNkF6PLX83qcHM6KHgVKNkV62Y8a5uYDVv9ydGQVwAHMKqHdJje1VTWpljG0WYpCDhrCdAOYH4TWg==",
931 | "license": "ISC",
932 | "engines": {
933 | "node": ">= 10.x"
934 | }
935 | },
936 | "node_modules/strip-json-comments": {
937 | "version": "3.1.1",
938 | "resolved": "https://registry.npmjs.org/strip-json-comments/-/strip-json-comments-3.1.1.tgz",
939 | "integrity": "sha512-6fPc+R4ihwqP6N/aIv2f1gMH8lOVtWQHoqC4yK6oSDVVocumAsfCqjkXnqiYMhmMwS/mEHLp7Vehlt3ql6lEig==",
940 | "license": "MIT",
941 | "engines": {
942 | "node": ">=8"
943 | },
944 | "funding": {
945 | "url": "https://github.com/sponsors/sindresorhus"
946 | }
947 | },
948 | "node_modules/swr": {
949 | "version": "2.3.2",
950 | "resolved": "https://registry.npmjs.org/swr/-/swr-2.3.2.tgz",
951 | "integrity": "sha512-RosxFpiabojs75IwQ316DGoDRmOqtiAj0tg8wCcbEu4CiLZBs/a9QNtHV7TUfDXmmlgqij/NqzKq/eLelyv9xA==",
952 | "dependencies": {
953 | "dequal": "^2.0.3",
954 | "use-sync-external-store": "^1.4.0"
955 | },
956 | "peerDependencies": {
957 | "react": "^16.11.0 || ^17.0.0 || ^18.0.0 || ^19.0.0"
958 | }
959 | },
960 | "node_modules/thread-stream": {
961 | "version": "3.1.0",
962 | "resolved": "https://registry.npmjs.org/thread-stream/-/thread-stream-3.1.0.tgz",
963 | "integrity": "sha512-OqyPZ9u96VohAyMfJykzmivOrY2wfMSf3C5TtFJVgN+Hm6aj+voFhlK+kZEIv2FBh1X6Xp3DlnCOfEQ3B2J86A==",
964 | "license": "MIT",
965 | "dependencies": {
966 | "real-require": "^0.2.0"
967 | }
968 | },
969 | "node_modules/throttleit": {
970 | "version": "2.1.0",
971 | "resolved": "https://registry.npmjs.org/throttleit/-/throttleit-2.1.0.tgz",
972 | "integrity": "sha512-nt6AMGKW1p/70DF/hGBdJB57B8Tspmbp5gfJ8ilhLnt7kkr2ye7hzD6NVG8GGErk2HWF34igrL2CXmNIkzKqKw==",
973 | "engines": {
974 | "node": ">=18"
975 | },
976 | "funding": {
977 | "url": "https://github.com/sponsors/sindresorhus"
978 | }
979 | },
980 | "node_modules/tr46": {
981 | "version": "0.0.3",
982 | "resolved": "https://registry.npmjs.org/tr46/-/tr46-0.0.3.tgz",
983 | "integrity": "sha512-N3WMsuqV66lT30CrXNbEjx4GEwlow3v6rr4mCcv6prnfwhS01rkgyFdjPNBYd9br7LpXV1+Emh01fHnq2Gdgrw==",
984 | "license": "MIT"
985 | },
986 | "node_modules/ts-node": {
987 | "version": "10.9.2",
988 | "resolved": "https://registry.npmjs.org/ts-node/-/ts-node-10.9.2.tgz",
989 | "integrity": "sha512-f0FFpIdcHgn8zcPSbf1dRevwt047YMnaiJM3u2w2RewrB+fob/zePZcrOyQoLMMO7aBIddLcQIEK5dYjkLnGrQ==",
990 | "dev": true,
991 | "license": "MIT",
992 | "dependencies": {
993 | "@cspotcode/source-map-support": "^0.8.0",
994 | "@tsconfig/node10": "^1.0.7",
995 | "@tsconfig/node12": "^1.0.7",
996 | "@tsconfig/node14": "^1.0.0",
997 | "@tsconfig/node16": "^1.0.2",
998 | "acorn": "^8.4.1",
999 | "acorn-walk": "^8.1.1",
1000 | "arg": "^4.1.0",
1001 | "create-require": "^1.1.0",
1002 | "diff": "^4.0.1",
1003 | "make-error": "^1.1.1",
1004 | "v8-compile-cache-lib": "^3.0.1",
1005 | "yn": "3.1.1"
1006 | },
1007 | "bin": {
1008 | "ts-node": "dist/bin.js",
1009 | "ts-node-cwd": "dist/bin-cwd.js",
1010 | "ts-node-esm": "dist/bin-esm.js",
1011 | "ts-node-script": "dist/bin-script.js",
1012 | "ts-node-transpile-only": "dist/bin-transpile.js",
1013 | "ts-script": "dist/bin-script-deprecated.js"
1014 | },
1015 | "peerDependencies": {
1016 | "@swc/core": ">=1.2.50",
1017 | "@swc/wasm": ">=1.2.50",
1018 | "@types/node": "*",
1019 | "typescript": ">=2.7"
1020 | },
1021 | "peerDependenciesMeta": {
1022 | "@swc/core": {
1023 | "optional": true
1024 | },
1025 | "@swc/wasm": {
1026 | "optional": true
1027 | }
1028 | }
1029 | },
1030 | "node_modules/typescript": {
1031 | "version": "5.7.3",
1032 | "resolved": "https://registry.npmjs.org/typescript/-/typescript-5.7.3.tgz",
1033 | "integrity": "sha512-84MVSjMEHP+FQRPy3pX9sTVV/INIex71s9TL2Gm5FG/WG1SqXeKyZ0k7/blY/4FdOzI12CBy1vGc4og/eus0fw==",
1034 | "license": "Apache-2.0",
1035 | "bin": {
1036 | "tsc": "bin/tsc",
1037 | "tsserver": "bin/tsserver"
1038 | },
1039 | "engines": {
1040 | "node": ">=14.17"
1041 | }
1042 | },
1043 | "node_modules/undici-types": {
1044 | "version": "6.20.0",
1045 | "resolved": "https://registry.npmjs.org/undici-types/-/undici-types-6.20.0.tgz",
1046 | "integrity": "sha512-Ny6QZ2Nju20vw1SRHe3d9jVu6gJ+4e3+MMpqu7pqE5HT6WsTSlce++GQmK5UXS8mzV8DSYHrQH+Xrf2jVcuKNg==",
1047 | "license": "MIT"
1048 | },
1049 | "node_modules/use-sync-external-store": {
1050 | "version": "1.4.0",
1051 | "resolved": "https://registry.npmjs.org/use-sync-external-store/-/use-sync-external-store-1.4.0.tgz",
1052 | "integrity": "sha512-9WXSPC5fMv61vaupRkCKCxsPxBocVnwakBEkMIHHpkTTg6icbJtg6jzgtLDm4bl3cSHAca52rYWih0k4K3PfHw==",
1053 | "peerDependencies": {
1054 | "react": "^16.8.0 || ^17.0.0 || ^18.0.0 || ^19.0.0"
1055 | }
1056 | },
1057 | "node_modules/v8-compile-cache-lib": {
1058 | "version": "3.0.1",
1059 | "resolved": "https://registry.npmjs.org/v8-compile-cache-lib/-/v8-compile-cache-lib-3.0.1.tgz",
1060 | "integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==",
1061 | "dev": true,
1062 | "license": "MIT"
1063 | },
1064 | "node_modules/web-streams-polyfill": {
1065 | "version": "4.0.0-beta.3",
1066 | "resolved": "https://registry.npmjs.org/web-streams-polyfill/-/web-streams-polyfill-4.0.0-beta.3.tgz",
1067 | "integrity": "sha512-QW95TCTaHmsYfHDybGMwO5IJIM93I/6vTRk+daHTWFPhwh+C8Cg7j7XyKrwrj8Ib6vYXe0ocYNrmzY4xAAN6ug==",
1068 | "license": "MIT",
1069 | "engines": {
1070 | "node": ">= 14"
1071 | }
1072 | },
1073 | "node_modules/webidl-conversions": {
1074 | "version": "3.0.1",
1075 | "resolved": "https://registry.npmjs.org/webidl-conversions/-/webidl-conversions-3.0.1.tgz",
1076 | "integrity": "sha512-2JAn3z8AR6rjK8Sm8orRC0h/bcl/DqL7tRPdGZ4I1CjdF+EaMLmYxBHyXuKL849eucPFhvBoxMsflfOb8kxaeQ==",
1077 | "license": "BSD-2-Clause"
1078 | },
1079 | "node_modules/whatwg-url": {
1080 | "version": "5.0.0",
1081 | "resolved": "https://registry.npmjs.org/whatwg-url/-/whatwg-url-5.0.0.tgz",
1082 | "integrity": "sha512-saE57nupxk6v3HY35+jzBwYa0rKSy0XR8JSxZPwgLr7ys0IBzhGviA1/TUGJLmSVqs8pb9AnvICXEuOHLprYTw==",
1083 | "license": "MIT",
1084 | "dependencies": {
1085 | "tr46": "~0.0.3",
1086 | "webidl-conversions": "^3.0.0"
1087 | }
1088 | },
1089 | "node_modules/wrappy": {
1090 | "version": "1.0.2",
1091 | "resolved": "https://registry.npmjs.org/wrappy/-/wrappy-1.0.2.tgz",
1092 | "integrity": "sha512-l4Sp/DRseor9wL6EvV2+TuQn63dMkPjZ/sp9XkghTEbV9KlPS1xUsZ3u7/IQO4wxtcFB4bgpQPRcR3QCvezPcQ==",
1093 | "license": "ISC"
1094 | },
1095 | "node_modules/yn": {
1096 | "version": "3.1.1",
1097 | "resolved": "https://registry.npmjs.org/yn/-/yn-3.1.1.tgz",
1098 | "integrity": "sha512-Ux4ygGWsu2c7isFWe8Yu1YluJmqVhxqK2cLXNQA5AcC3QfbGNpM7fu0Y8b/z16pXLnFxZYvWhd3fhBY9DLmC6Q==",
1099 | "dev": true,
1100 | "license": "MIT",
1101 | "engines": {
1102 | "node": ">=6"
1103 | }
1104 | },
1105 | "node_modules/zod": {
1106 | "version": "3.24.1",
1107 | "resolved": "https://registry.npmjs.org/zod/-/zod-3.24.1.tgz",
1108 | "integrity": "sha512-muH7gBL9sI1nciMZV67X5fTKKBLtwpZ5VBp1vsOQzj1MhrBZ4wlVCm3gedKZWLp0Oyel8sIGfeiz54Su+OVT+A==",
1109 | "license": "MIT",
1110 | "funding": {
1111 | "url": "https://github.com/sponsors/colinhacks"
1112 | }
1113 | },
1114 | "node_modules/zod-to-json-schema": {
1115 | "version": "3.24.1",
1116 | "resolved": "https://registry.npmjs.org/zod-to-json-schema/-/zod-to-json-schema-3.24.1.tgz",
1117 | "integrity": "sha512-3h08nf3Vw3Wl3PK+q3ow/lIil81IT2Oa7YpQyUUDsEWbXveMesdfK1xBd2RhCkynwZndAxixji/7SYJJowr62w==",
1118 | "license": "ISC",
1119 | "peerDependencies": {
1120 | "zod": "^3.24.1"
1121 | }
1122 | }
1123 | }
1124 | }
1125 |
--------------------------------------------------------------------------------