├── .github
└── issue_template
│ ├── README.md
│ └── data-source-template.md
├── README.md
├── SUMMARY.md
├── adding-data.md
├── diagrams
├── CovidGraph_Skills.graphml
├── CovidGraph_Skills_white.graphml
├── CovidGraph_Systems.graphml
├── Documentation - Docusaurus.graphml
├── Documentation - Structr.graphml
├── Documentation and Issues.graphml
├── Inbound Channels.graphml
├── Pipeline.graphml
├── Schema.graphml
├── Schema_NLP.graphml
├── covidgraph_modules.drawio
└── exports
│ ├── CovidGraph_Skills_white_transparent.png
│ ├── CovidGraph_Skillsv2.png
│ ├── CovidGraph_Skillsv2_transparent.png
│ ├── CovidGraph_Skillsv3_transparent.png
│ ├── CovidGraph_Skillsv4_transparent.png
│ ├── CovidGraph_Systemsv1.0.png
│ ├── Documentation - Docusaurusv1.0.png
│ ├── Documentation - Structrv1.0.png
│ ├── Documentation and Issues.png
│ ├── Inbound Channels.png
│ ├── Pipelinev0.1.png
│ ├── Schema v0.1.png
│ ├── Schema v0.2.png
│ ├── Schema v0.3.png
│ ├── Schema v0.4.png
│ ├── Schema v0.5.png
│ ├── Schema v1.0.png
│ ├── Schema v1.0_grey_bg.png
│ ├── Schema v1.1.png
│ ├── Schema v1.1_grey_bg.png
│ ├── Schema v1.2.png
│ ├── Schema_v1.0_no_logo.png
│ ├── Schema_v1.1_no_logo.png
│ └── covidgraph_modules.png
├── helpful-queries.md
├── label-details.md
├── legal-statement.md
├── nodes_and_relationships.md
├── privacy-policy.md
├── screenshots
├── accessing-data
│ ├── connect_neo4j_browser.png
│ ├── database_information.png
│ ├── documents_neo4j.png
│ └── saved_scripts.png
└── zenhub
│ ├── cord-19-epic-detail.png
│ ├── cord-19-epic-filter-highlights.png
│ ├── cord-19-epic-filter-highlights.svg
│ ├── data-source-label-filter-highlight.png
│ ├── managing-issues.png
│ ├── new-issue-choose-repo.png
│ ├── new-issue-choose-template.png
│ ├── vge-repo-filter-highlight.png
│ ├── zenhub-default-view.png
│ ├── zenhub-tab-highlight.png
│ └── zenhub-tab.svg
├── untitled.md
└── website
├── README.md
└── content
├── English Edit - PR-03-20-Neo4j-COVID-19
├── README.md
└── datasources.md
/.github/issue_template/README.md:
--------------------------------------------------------------------------------
1 | # ISSUE\_TEMPLATE
2 |
3 |
--------------------------------------------------------------------------------
/.github/issue_template/data-source-template.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: Data Source Template
3 | about: Use this template to log new data sources.
4 | title: Data Source Name
5 | labels: 'data source, suggested'
6 | assignees: ''
7 | ---
8 |
9 | # data-source-template
10 |
11 | Please select 'Create an Epic' and NOT issue below.
12 |
13 | ## Data Source
14 |
15 | \(url to data source\)
16 |
17 | ## Note
18 |
19 | Add a description of the data source
20 |
21 | ## Script to load
22 |
23 | \(url to script to load data\)
24 |
25 | ## Idempotent
26 |
27 | Yes or No
28 |
29 | ## Dependencies
30 |
31 | None or link to related data sources
32 |
33 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # CovidGraph Wiki
2 |
3 | [Main Wiki Page](https://github.com/covidgraph/documentation/wiki)
4 |
5 |
--------------------------------------------------------------------------------
/SUMMARY.md:
--------------------------------------------------------------------------------
1 | # Table of contents
2 |
3 | * [CovidGraph Wiki](README.md)
4 | * [website](website/README.md)
5 | * [content](website/content/README.md)
6 | * [datasources](website/content/datasources.md)
7 | * [Legal Statement](legal-statement.md)
8 | * [.github](.github/README.md)
9 | * [ISSUE\_TEMPLATE](.github/issue_template/README.md)
10 | * [data-source-template](.github/issue_template/data-source-template.md)
11 | * [privacy-policy](privacy-policy.md)
12 | * [adding-data](adding-data.md)
13 | * [helpfull-queries](helpfull-queries.md)
14 | * [Untitled](untitled.md)
15 |
16 |
--------------------------------------------------------------------------------
/adding-data.md:
--------------------------------------------------------------------------------
1 | # adding-data
2 |
3 | Content moved to [https://github.com/covidgraph/documentation/wiki/Adding-your-own-data-to-the-graph](https://github.com/covidgraph/documentation/wiki/Adding-your-own-data-to-the-graph)
4 |
5 |
--------------------------------------------------------------------------------
/diagrams/Inbound Channels.graphml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 | CovidGraph.org
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 | CovidGraph.org
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 | GET IN TOUCH
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 | Folder 2
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 | SUBMIT FORM
84 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 | EMAIL
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
150 |
151 |
152 |
153 |
154 |
155 |
156 |
157 |
158 |
159 |
160 |
161 |
162 |
163 |
164 | MESSAGE
165 |
166 |
167 |
168 |
169 |
170 |
171 |
172 |
173 |
174 |
175 |
176 |
177 |
178 | NAME
179 |
180 |
181 |
182 |
183 |
184 |
185 |
186 |
187 |
188 |
189 |
190 |
191 |
192 |
193 | APPLICATIONS
194 |
195 |
196 |
197 |
198 |
199 |
200 |
201 |
202 |
203 | Folder 2
204 |
205 |
206 |
207 |
208 |
209 |
210 |
211 |
212 |
213 |
214 |
215 |
216 |
217 |
218 |
219 |
220 |
221 |
222 |
223 |
224 |
225 |
226 |
227 |
228 |
229 |
230 |
231 |
232 |
233 |
234 |
235 |
236 |
237 |
238 |
239 | FEEDBACK FORM?
240 |
241 |
242 |
243 |
244 |
245 |
246 |
247 |
248 |
249 |
250 |
251 | PUBLISH VGE EMAIL
252 |
253 |
254 |
255 |
256 |
257 |
258 |
259 |
260 |
261 |
262 |
263 | VISUAL GRAPH EXPLORER
264 |
265 |
266 |
267 |
268 |
269 |
270 |
271 |
272 |
273 |
274 |
275 |
276 |
277 |
278 |
279 |
280 |
281 | MAIL SERVER
282 |
283 |
284 |
285 |
286 |
287 |
288 |
289 |
290 |
291 | CovidGraph.org
292 |
293 |
294 |
295 |
296 |
297 |
298 |
299 |
300 |
301 |
302 |
303 |
304 |
305 |
306 |
307 |
308 | CONTACT@COVIDGRAPH.ORG
309 |
310 |
311 |
312 |
313 |
314 |
315 |
316 |
317 |
318 |
319 |
320 | VGE@COVIDGRAPH.ORG
321 |
322 |
323 |
324 |
325 |
326 |
327 |
328 |
329 |
330 |
331 |
332 |
333 |
334 | EMAILS ON CC / REDIRECT
335 |
336 |
337 |
338 |
339 |
340 |
341 |
342 |
343 |
344 |
345 |
346 | DIRECT ENQUIRIES FROM THIRD PARTIES
347 |
348 |
349 |
350 |
351 |
352 |
353 |
354 |
355 |
356 |
357 |
358 | DIRECT FEEDBACK FROM THIRD PARTIES
359 |
360 |
361 |
362 |
363 |
364 |
365 |
366 |
367 |
368 |
369 |
370 |
371 |
372 | GITHUB
373 |
374 |
375 |
376 |
377 |
378 |
379 |
380 |
381 |
382 | CovidGraph.org
383 |
384 |
385 |
386 |
387 |
388 |
389 |
390 |
391 |
392 |
393 |
394 |
395 |
396 |
397 |
398 |
399 |
400 |
401 | VGE REPO
402 |
403 |
404 |
405 |
406 |
407 |
408 |
409 |
410 |
411 | CovidGraph.org
412 |
413 |
414 |
415 |
416 |
417 |
418 |
419 |
420 |
421 |
422 |
423 |
424 |
425 |
426 |
427 |
428 | NEW ISSUE
429 |
430 |
431 |
432 |
433 |
434 |
435 |
436 |
437 |
438 |
439 |
440 | VGE@FIRE.FUNDERSCLUB.COM
441 |
442 |
443 |
444 |
445 |
446 |
447 |
448 |
449 |
450 |
451 |
452 |
453 |
454 |
455 |
456 |
457 |
458 | CRM SYSTEM
459 |
460 |
461 |
462 |
463 |
464 |
465 |
466 |
467 |
468 | CovidGraph.org
469 |
470 |
471 |
472 |
473 |
474 |
475 |
476 |
477 |
478 |
479 |
480 |
481 |
482 |
483 |
484 |
485 | NOTE - Alexander & I will be
486 | looking at FundraisingBox
487 | as an alternative CRM system
488 |
489 | For now Contact forms/email only go
490 | to contact@covidgraph.org + any
491 | notification cc's
492 |
493 |
494 |
495 |
496 |
497 |
498 |
499 |
500 |
501 |
502 |
503 |
504 |
505 |
506 |
507 |
508 |
509 |
510 |
511 |
512 |
513 |
514 |
515 |
516 |
517 |
518 |
519 |
520 |
521 |
522 |
523 |
524 |
525 |
526 |
527 |
528 |
529 |
530 |
531 |
532 |
533 |
534 |
535 |
536 |
537 |
538 |
539 |
540 |
541 |
542 |
543 |
544 |
545 |
546 |
547 |
548 |
549 |
550 |
551 |
552 |
553 |
554 |
555 |
556 |
557 |
558 |
559 |
560 |
561 |
562 |
563 |
564 |
565 |
566 |
567 |
568 |
569 |
570 |
571 |
572 |
573 |
574 |
575 |
576 |
577 |
578 |
579 |
580 |
581 |
582 |
583 |
584 |
585 |
586 |
587 |
588 |
589 |
590 |
591 | SERVER-SIDE REDIRECT
592 |
593 |
594 |
595 |
596 |
597 |
598 |
599 |
600 |
601 |
--------------------------------------------------------------------------------
/diagrams/Pipeline.graphml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 | TEXT_GENE_MATCH
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 | CREATE_FULL_TEXT_INDEXES
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 | JHU
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 | BIOBASE
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 | LENS-PATENT-DATA
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 | CORD-19
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 | TEXT_FRAGGER
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 | GitHub/CovidGraph/
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 | GitHub/CovidGraph/
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 | graph-processing_text_gene_match
139 | Matches GeneSymbol in Fragment nodes and creates an indes with custom analyser on Fragment nodes
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
150 |
151 | graph-processing_fragmentize_text
152 |
153 |
154 |
155 |
156 |
157 |
158 |
159 |
160 |
161 |
162 |
163 |
164 |
165 |
166 |
167 |
168 | Creates fragment nodes for publications
169 |
170 |
171 |
172 |
173 |
174 |
175 |
176 |
177 |
178 |
179 |
180 | data-cord19
181 | Script to transform data set from the Covid-19 Open Research Dataset (CORD)Challenge into a Neo4j graph
182 | Data Sources:
183 | - CORD-19 Research Challenge
184 |
185 |
186 |
187 |
188 |
189 |
190 |
191 |
192 |
193 |
194 |
195 | data-lens-org-covid19-patents
196 | Transforms the data set from the Lens.org Covid19 patent data set into a Neo4j graph
197 | Data Sources:
198 | - Lens.org
199 |
200 |
201 |
202 |
203 |
204 |
205 |
206 |
207 |
208 |
209 |
210 | data_biobase
211 |
212 |
213 |
214 |
215 |
216 |
217 |
218 |
219 |
220 |
221 |
222 |
223 | data_jhu_population
224 | Case statistics from JHU and UN World Population data
225 | Data Sources:
226 | - JHU Statistics
227 | - UN Statistics
228 |
229 |
230 |
231 |
232 |
233 |
234 |
235 |
236 |
237 |
238 |
239 | graph-processing-fulltext-indexes
240 | Script to create the fulltext indexes needed in CovidGraph
241 |
242 |
243 |
244 |
245 |
246 |
247 |
248 |
249 |
250 |
251 |
252 | data_hetionet
253 |
254 |
255 |
256 |
257 |
258 |
259 |
260 |
261 |
262 |
263 |
264 | data-clinical_trials_gov
265 | Transforms data from ClinicalTrials.gov into a Neo4j graph
266 | Data Sources:
267 | - ClinicalTrials.gov API
268 |
269 |
270 |
271 |
272 |
273 |
274 |
275 |
276 |
277 |
278 |
279 | data-biobert
280 | Adds subset of preprocessed data of https://bern.korea.ac.kr/ into the Covidgraph
281 |
282 |
283 |
284 |
285 |
286 |
287 |
288 |
289 |
290 |
291 |
292 |
293 |
294 | HELOMICS_HETIONET
295 |
296 |
297 |
298 |
299 |
300 |
301 |
302 |
303 |
304 |
305 |
306 | CLINICAL_TRIALS_GOV
307 |
308 |
309 |
310 |
311 |
312 |
313 |
314 |
315 |
316 |
317 |
318 | BIOBERT
319 |
320 |
321 |
322 |
323 |
324 |
325 |
326 |
327 |
328 |
329 |
330 |
331 |
332 |
333 |
334 |
335 |
336 |
337 |
338 |
339 |
340 |
341 |
342 |
343 |
344 |
345 |
346 |
347 |
348 |
349 |
350 |
351 |
352 |
353 |
354 |
355 |
356 |
357 |
358 |
359 |
360 |
361 |
362 |
363 |
364 |
365 |
366 |
367 |
368 |
369 |
370 |
371 |
372 |
373 |
374 |
375 |
376 |
377 |
378 |
379 |
380 |
381 |
382 |
383 |
384 |
385 |
386 |
387 |
388 |
389 |
390 |
391 |
392 |
393 |
394 |
395 |
396 |
397 |
398 |
399 |
400 |
401 |
402 |
403 |
404 |
405 |
406 |
407 |
408 |
409 |
410 |
411 |
412 |
413 |
414 |
415 |
416 |
417 |
418 |
419 |
420 |
421 |
422 |
423 |
424 |
425 |
426 |
427 |
428 |
429 |
430 |
431 |
432 |
433 |
434 |
435 |
436 |
437 |
438 |
439 |
440 |
441 |
442 |
443 |
444 |
445 |
446 |
447 |
448 |
449 |
450 |
451 |
452 |
453 |
454 |
455 |
456 |
457 |
458 |
459 |
460 |
461 |
462 |
463 |
464 |
465 |
466 |
467 |
468 |
469 |
470 |
471 |
472 |
473 |
474 |
475 |
476 |
477 |
478 |
479 |
480 |
481 |
482 |
483 |
484 |
485 |
486 |
487 |
488 |
489 |
490 |
491 |
492 |
493 |
494 |
495 |
496 |
497 |
498 |
499 |
500 |
501 |
502 |
503 |
504 |
505 |
506 |
507 |
508 |
509 |
510 |
511 |
512 |
513 |
514 |
515 |
516 |
517 |
518 |
519 |
520 |
521 |
522 |
523 |
524 |
525 |
526 |
527 |
528 |
529 |
530 |
531 |
532 |
--------------------------------------------------------------------------------
/diagrams/covidgraph_modules.drawio:
--------------------------------------------------------------------------------
1 | 7Vxbc9o4GP01PC7ju81jEkh3Z7Jbpul0233pCFsYNbblkUWA/vqVbBlfZBKSYAQJnUmxPktC+o7P0aeLGZg38foTAenibxzAaGBowXpgjgeGoZu2zj64ZVNYRq4whAQFIlNluEe/oTBqwrpEAcwaGSnGEUVp0+jjJIE+bdgAIXjVzDbHUfNbUxBCyXDvg0i2/osCuiisnuFW9j8hChflN+vOqLgTgzKz6Em2AAFe1UzmZGDeEIxpcRWvb2DEnVf6pSh3u+PutmEEJnSfAlfgIQi+Bp/B+tPt9GZtWdmD90dZTUY3ZY9hwBwgkpjQBQ5xAqJJZb0meJkEkFersVSV5w7jlBl1ZvwFKd0INMGSYmZa0DgSd1mLyeY7Lz+0y+QPUV2eGK8bqY1IZRQQesVRZYYEJ7C03aIoEnnmOKHii3VeedE/3qmdfit9gJfEh085Szx/gISQPpHP3aLLaAFxDFkfWDkCI0DRY7MdQDyf4TZfBSG7ECi+BFHrvSEagGyRt00/DXh1TSm+Rb2PIFqWnZn+JUHeBHS1QBTepyDv/ooJdRO8OfP1DY4wycuagQ29wMqBIPgB1u54xsx0nA4UQgICxBxe5hVIiqZCQuH6aXhkb4oChmUXRcT4YXlCTleVGuulxC5qSmxrPQFgeedEsDw1hQSxzkNyGjrq7Em0AnpVRLNNtTg3UK5AP82hcV9IlQ6NjiSd31DGDHnoyj4n65TJF2PJIdV0Pp8bvt+lpoEzc+wuNT2AbDpN1bTdPVXT6Us1Dfts2eRHIMuQ3yKUfsTIxD2LyMQaXQbG4+BsOSpxdiUZvadk6VOmm9pXMGOwGto3BFfvQEbb0ad6HS3D2gvJXkuycmXpeZYpDVbKZtZo9v3Hf++AU5Z9apzSHRWc6vMR33cpQ+k4Yhgq3K5affaFxlAKjZK57yktBu6Nk9qYu2xmbZSYfvnMPpyINfp6xmIyJ+RXY0AByyc2aG7/gdj6ddDBJADQm3cOJo7vwdm8pwDNbC0Pah2DiXXUAM09pwBN9Y7KvjMe21Iqh/KUR/DpDoMAJSG7mqIURijhkx8wfBiCYc42uoAkYpw7bNzm+bA7bpt5tmXvxuygcyHDUh23mUq2ulRTZrRvAKF0+mIrCe7OdPXc8I6FaV6UdRRsahlSjBKa1WqeckPFfN0xhy3uu1rrCSnqrJ6XbePeoLreLtWdApLxZXpNPr3wFl2FemBDt0tXR45rgp7mw7rW9q5uK1fWjzg1OxdlVXJk5zXYbNVYf5kaHxBT0zyqskrSyZSjRW7TaJG2aJooVz0bLxVpy2p/01FEunTwEyItryWcn0ibXtu76kW61KsnXC/L+Pm5vj3vUO9462RXx14/Oj4vkKN+BFJroau3UCskXpLHg+mXTCIJXBTnh4TrYERgBqNr4D+EOa7NTRX2j2URpcYoDlnLIjRj//sRSn8yyPgljtMlhYRJ+i2n7Qxk8KdueGv2N0yTcLDzVF0fHHO99jAlk8zr4JjXG8cUzx9PaRnteW56vXBTnvcdm52WvAn6Admpm+5pcfMdrrs9y7Ei0D04x+Sw/egc0y8cYziUEeSpcMx+HhWQpcUrT3O05sy6zueIkEweIZ8qCtqUrx01dk+1NrfqAb3wco7wFGeIIpwwsw+T/BDPNXc08hl1WxlmmFIc1zJcRSjkNyin+DUQqW09remFpumeNy6anPIuxuuQn8wdgt9LAofLrCjUxwqc0cDecWTwLVcGv79XDOSTyhfwewLf8PSWAKuHX95uvMDfE/zW6OTgt8/qHLXiRXvb2jN+K07KKFu0tyRKjyffPtAxnVZ0ZXSs4dkd8VVvJHPkmWVr8bTldNZ5uodw1t0tTJL2tSUyRkGQk7gLyibYNWy4v4u0aKR+AKBcrQlU12JrVxzc3tQ4HE7y7KTEaXvg5oIUR8B2FCNl7EJKqNkFJq585Zt5ymCSN+yuZszzwM8jOUO7A5uL/JXvJpQnTJShJccNV2kaMfdxtLILTEXIrqnWPnkXiYneMoL89eI5c7OhfcEgiJmvTh8xtwfEHL2JWMfZ0e1P/rwRMZasflSnWCStfprInPwP
--------------------------------------------------------------------------------
/diagrams/exports/CovidGraph_Skills_white_transparent.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/CovidGraph_Skills_white_transparent.png
--------------------------------------------------------------------------------
/diagrams/exports/CovidGraph_Skillsv2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/CovidGraph_Skillsv2.png
--------------------------------------------------------------------------------
/diagrams/exports/CovidGraph_Skillsv2_transparent.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/CovidGraph_Skillsv2_transparent.png
--------------------------------------------------------------------------------
/diagrams/exports/CovidGraph_Skillsv3_transparent.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/CovidGraph_Skillsv3_transparent.png
--------------------------------------------------------------------------------
/diagrams/exports/CovidGraph_Skillsv4_transparent.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/CovidGraph_Skillsv4_transparent.png
--------------------------------------------------------------------------------
/diagrams/exports/CovidGraph_Systemsv1.0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/CovidGraph_Systemsv1.0.png
--------------------------------------------------------------------------------
/diagrams/exports/Documentation - Docusaurusv1.0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/Documentation - Docusaurusv1.0.png
--------------------------------------------------------------------------------
/diagrams/exports/Documentation - Structrv1.0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/Documentation - Structrv1.0.png
--------------------------------------------------------------------------------
/diagrams/exports/Documentation and Issues.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/Documentation and Issues.png
--------------------------------------------------------------------------------
/diagrams/exports/Inbound Channels.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/Inbound Channels.png
--------------------------------------------------------------------------------
/diagrams/exports/Pipelinev0.1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/Pipelinev0.1.png
--------------------------------------------------------------------------------
/diagrams/exports/Schema v0.1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/Schema v0.1.png
--------------------------------------------------------------------------------
/diagrams/exports/Schema v0.2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/Schema v0.2.png
--------------------------------------------------------------------------------
/diagrams/exports/Schema v0.3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/Schema v0.3.png
--------------------------------------------------------------------------------
/diagrams/exports/Schema v0.4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/Schema v0.4.png
--------------------------------------------------------------------------------
/diagrams/exports/Schema v0.5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/Schema v0.5.png
--------------------------------------------------------------------------------
/diagrams/exports/Schema v1.0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/Schema v1.0.png
--------------------------------------------------------------------------------
/diagrams/exports/Schema v1.0_grey_bg.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/Schema v1.0_grey_bg.png
--------------------------------------------------------------------------------
/diagrams/exports/Schema v1.1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/Schema v1.1.png
--------------------------------------------------------------------------------
/diagrams/exports/Schema v1.1_grey_bg.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/Schema v1.1_grey_bg.png
--------------------------------------------------------------------------------
/diagrams/exports/Schema v1.2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/Schema v1.2.png
--------------------------------------------------------------------------------
/diagrams/exports/Schema_v1.0_no_logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/Schema_v1.0_no_logo.png
--------------------------------------------------------------------------------
/diagrams/exports/Schema_v1.1_no_logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/Schema_v1.1_no_logo.png
--------------------------------------------------------------------------------
/diagrams/exports/covidgraph_modules.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/diagrams/exports/covidgraph_modules.png
--------------------------------------------------------------------------------
/helpful-queries.md:
--------------------------------------------------------------------------------
1 | # helpful-queries
2 |
3 | [Back to CovidGraph Wiki](https://github.com/covidgraph/documentation/wiki)
4 |
5 | ## Helpful queries on the CovidGraph
6 |
7 |
8 | Queries marked with a ⛔ need a review by its maintainer
9 |
10 | ### Data model
11 |
12 | ```cypher
13 | call db.schema.visualization() yield nodes, relationships
14 | return
15 | [x in nodes where apoc.any.properties(x).name in ['Abstract', 'AbstractCollection', 'Affiliation', 'AgeGroup', 'Author', 'AuthorCollection', 'BodyText', 'BodyTextCollection', 'Citation', 'City', 'ClinicalTrial', 'Country', 'DailyReport', 'Entity', 'ExclusionCriteria', 'Facility', 'GOTerm', 'Gene', 'GeneSymbol', 'GtexDetailedTissue', 'GtexTissue', 'InclusionCriteria', 'Location', 'Paper', 'Patent', 'PatentAbstract', 'PatentClaim', 'PatentDescription', 'PatentLiteratureCitation', 'PatentNumber', 'PatentTitle', 'Pathway', 'Phase', 'Protein', 'Province', 'Reference', 'ReferenceCollection', 'Transcript','Fragment']],
16 | [x in relationships where not type(x) in ['INVENTOR']]
17 | ```
18 |
19 | ### Papers
20 |
21 | * Fulltext search in papers
22 | CALL db.index.fulltext.queryNodes("textOfPapersAndPatents", $1) YIELD node
23 | match (node)<-[:HAS_FRAGMENT]-(ab:Abstract)<-[:ABSTRACTCOLLECTION_HAS_ABSTRACT]-(abc:AbstractCollection)<-[:PAPER_HAS_ABSTRACTCOLLECTION]-(paper:Paper)
24 | RETURN paper
25 |
26 | * List Fulltext papers with title
27 |
28 | ```cypher
29 | MATCH (p:Paper)-[pr:PAPER_HAS_BODYTEXTCOLLECTION]->(c:BodyTextCollection)-[r:BODYTEXTCOLLECTION_HAS_BODYTEXT]->(t:BodyText)
30 | WITH p.title as title,collect({txt:t.text, pos:r.position}) as text
31 | UNWIND text as t
32 | WITH title, t
33 | order by t.pos
34 | RETURN title, collect(t.txt)
35 | limit 4
36 | ```
37 |
38 | * Get Papers and Authors
39 |
40 | ```cypher
41 | MATCH (a:Author)<-[:AUTHORCOLLECTION_HAS_AUTHOR]-(:AuthorCollection)<-[:PAPER_HAS_AUTHORCOLLECTION]-(p:Paper)
42 | RETURN a, p, apoc.create.vRelationship(a, 'AUTHORED',{}, p) as vrel
43 | limit 100
44 | ```
45 |
46 | * Genes connected to papers
47 |
48 |
49 | ```cypher
50 | MATCH (p:Paper)
51 | MATCH (p)-[:PAPER_HAS_BODYTEXTCOLLECTION]->(:BodyTextCollection)-[:BODYTEXTCOLLECTION_HAS_BODYTEXT]->(:BodyText)-[:HAS_FRAGMENT]->(f:Fragment)-[:MENTIONS]->(g:GeneSymbol)
52 | RETURN p,g, apoc.create.vRelationship(p,"MENTIONS",{},g) as rel
53 | limit 50
54 | ```
55 |
56 | * Number of authors by location/region
57 |
58 |
59 | ```cypher
60 | MATCH (loc:Location)<-[:AFFILIATION_HAS_LOCATION]-(aff:Affiliation)-[:AUTHOR_HAS_AFFILIATION]-(a:Author)
61 | WHERE loc.country IS NOT NULL
62 | RETURN loc.country as country, loc.region as region, count(distinct a.email) AS NbrOfAuthors
63 | ORDER BY count(distinct a.email) DESC
64 | ```
65 |
66 | * Titles of papers with a specific keyword \(e.g. Virus\), ordered by date of publication.
67 |
68 | ```cypher
69 | MATCH (p:Paper)
70 | WHERE p.title IS NOT NULL AND p.title CONTAINS("Virus")
71 | RETURN p.title, p.publish_time
72 | ORDER BY p.publish_time DESC
73 | LIMIT 20
74 | ```
75 |
76 | * Number of papers whose Title text contains a user-specified keyword \(e.g. Virus\).
77 |
78 | ```cypher
79 | MATCH (p:Paper)
80 | WHERE p.title IS NOT NULL AND p.title CONTAINS("Virus")
81 | RETURN count(p)
82 | LIMIT 20
83 | ```
84 |
85 | ### Patents
86 |
87 | * Find genes and proteins that are mentioned in patents
88 |
89 |
90 | ⛔ Not working atm
91 |
92 | ```cypher
93 | match path=(e:Entity)<-[x:APPLICANT]-(p:Patent)-[y:PATENT_HAS_PATENTCLAIM|:PATENT_HAS_PATENTABSTRACT|:PATENT_HAS_PATENTTITLE]->(pa)-[z:HAS_FRAGMENT]->(ff:Fragment)-[m:MENTIONS]->(syn:GeneSymbol)-[:SYNONYM]->(gs:GeneSymbol)<-[:MAPS]-(g:Gene)-[:CODES]->(tc:Transcript)-[:CODES]->(pro:Protein)
94 | where e.idLower starts with $company and exists(pro.name)
95 | return path limit 100
96 | ```
97 |
98 | * Does company xyz work on protein xxx?
99 |
100 |
101 | ⛔ Not working atm
102 |
103 | ```cypher
104 | match path=(e:Entity)<-[x:APPLICANT]-(p:Patent)-[y:PATENT_HAS_PATENTCLAIM|:PATENT_HAS_PATENTABSTRACT|:PATENT_HAS_PATENTTITLE]->(pa)-[z:HAS_FRAGMENT]->(ff:Fragment)-[m:MENTIONS]->(syn:GeneSymbol)-[:SYNONYM]->(gs:GeneSymbol)<-[:MAPS]-(g:Gene)-[:CODES]->(tc:Transcript)-[:CODES]->(pro:Protein)
105 | where e.idLower starts with $company and pro.name contains $protein
106 | return path limit 40
107 | ```
108 |
109 | * Find gene names mentioned in patents
110 |
111 |
112 | ```cypher
113 | match (p:Patent)-[x:PATENT_HAS_PATENTCLAIM|:PATENT_HAS_PATENTABSTRACT|:PATENT_HAS_PATENTTITLE]-(pct)-[:HAS_FRAGMENT]->(f2:Fragment)-[:MENTIONS]->(gs2:GeneSymbol) return p,x,pct,gs2 limit 300
114 | ```
115 |
116 | * Search patents with string against a textindex and get a hit score
117 |
118 | ```cypher
119 | call db.index.fulltext.queryNodes("PatentsFulltextIndex","Corona")
120 | yield node,score match (node)--(p:Patent)--(pt:PatentTitle)
121 | return distinct(p.id) as id, collect(pt.text) as titles, labels(node)[0] as found_type, node.lang as found_in_lang ,score
122 | order by score
123 | desc limit 10
124 | ```
125 |
126 | ⛔ Freezes atm
127 |
128 | ```cypher
129 | call db.index.fulltext.queryNodes("fragmentGeneSymbol","corona and virus")
130 | yield node as f,score match (f)--(px)--(p:Patent)
131 | match (fp:Fragment)-[:NEXT]->(f),(f)-[:NEXT]->(fn:Fragment)
132 | return f.kind,[fp.text,f.text,fn.text],p.id,score
133 | order by score desc
134 | limit 10
135 | ```
136 |
137 | * Find matching fragments in patent text
138 |
139 | ⛔ Freezes atm
140 |
141 | ```cypher
142 | call db.index.fulltext.queryNodes("fragmentGeneSymbol","corona and virus")
143 | yield node as f,score match (f)--(px)--(p:Patent)
144 | return f.kind,f.text,p.id,score
145 | order by score desc
146 | limit 10
147 | ```
148 |
149 | * This shows the previous and next fragment in the result
150 |
151 |
152 | ⛔ Freezes atm
153 |
154 | ```cypher
155 | call db.index.fulltext.queryNodes("fragmentGeneSymbol","corona and virus")
156 | yield node as f,score match (f)--(px)--(p:Patent)
157 | match (fp:Fragment)-[:NEXT]->(f),(f)-[:NEXT]->(fn:Fragment)
158 | return f.kind,fp.text,f.text,fn.text,p.id,score
159 | order by score desc
160 | limit 10
161 | ```
162 |
163 | ### Authors
164 |
165 | * Ranking authors. First create a projection on the graph, then call the PageRank algorithm:
166 |
167 | ```cypher
168 | CALL gds.graph.create.cypher(
169 | 'Authors_Influence',
170 | 'MATCH (n:Author) RETURN id(n) AS id',
171 | 'MATCH (a:Author)-[:AUTHOR_HAS_AUTHOR]->(b:Author) RETURN id(a) AS source, id(b) AS target'
172 | )
173 | YIELD graphName, nodeCount, relationshipCount, createMillis;
174 | ```
175 |
176 | ```cypher
177 | CALL gds.pageRank.stream('Authors_Influence') YIELD nodeId, score RETURN gds.util.asNode(nodeId).first, gds.util.asNode(nodeId).last, score ORDER BY score DESC
178 | ```
179 |
180 | ```cypher
181 | CALL db.index.fulltext.queryNodes("AuthorFullTextIndex", $word) YIELD node
182 | RETURN node
183 | ```
184 |
185 | ### Bloom queries
186 |
187 | * Look for patents
188 |
189 | ```cypher
190 | CALL db.index.fulltext.queryNodes("textOfPapersAndPatents", $1) YIELD node
191 | with node
192 | where node:Patent
193 | return node
194 | ```
195 |
196 | * Look for papers
197 |
198 | ```cypher
199 | CALL db.index.fulltext.queryNodes("textOfPapersAndPatents", $1) YIELD node
200 | match (node)<-[:HAS_FRAGMENT]-(ab:Abstract)<-[:ABSTRACTCOLLECTION_HAS_ABSTRACT]-(abc:AbstractCollection)<-[:PAPER_HAS_ABSTRACTCOLLECTION]-(paper:Paper)
201 | RETURN paper
202 | ```
203 |
204 | * Look for authors
205 |
206 | ```cypher
207 | CALL db.index.fulltext.queryNodes("AuthorFullTextIndex", $word) YIELD node
208 | RETURN node
209 | ```
210 |
211 | * Text containing keywords x and y
212 |
213 | ```cypher
214 | CALL db.index.fulltext.queryNodes("textOfPapersAndPatents", '$1 AND $2') YIELD node
215 | match (node)<-[:HAS_FRAGMENT]-()<-[:ABSTRACTCOLLECTION_HAS_ABSTRACT|PAPER_HAS_ABSTRACTCOLLECTION|PATENT_HAS_PATENTTITLE|PATENT_HAS_PATENTCLAIM|PATENT_HAS_PATENTABSTRACT*1..2]-(pp) where node:Fragment and not node:AbstractCollection
216 | and not node:BodyText
217 | RETURN pp limit 50
218 | ```
219 |
220 | ### NLP BERN Entities
221 |
222 | * List entity types with count and if they are linked (external ids)
223 |
224 | ```cypher
225 | MATCH (n:NamedEntity)
226 | RETURN n.type as type, exists(n.external_ids) as external_ids, count(*)
227 | ```
228 |
--------------------------------------------------------------------------------
/label-details.md:
--------------------------------------------------------------------------------
1 |
2 | Priority: High
3 | Label name
4 | Priority: High
5 | Description
6 | This issue should be dealt with as soon as possible
7 | Color
8 | 212529
9 |
10 | Priority: Low
11 | Label name
12 | Priority: Low
13 | Description
14 | This issue can be dealt with in long term or is on hold
15 | Color
16 | e9ecef
17 |
18 | Priority: Normal
19 | Label name
20 | Priority: Normal
21 | Description
22 | This issue can be dealt with when possible
23 | Color
24 | adb5bd
25 |
26 | Status: Clarification Needed
27 | Label name
28 | Status: Clarification Needed
29 | Description
30 | Additional information is needed to deal with this issue
31 | Color
32 | c77dff
33 |
34 | Status: In Dev
35 | Label name
36 | Status: In Dev
37 | Description
38 | This issue has been moved to the Dev environment for testing
39 | Color
40 | 7b2cbf
41 |
42 | Status: In Prod
43 | Label name
44 | Status: In Prod
45 | Description
46 | This issue is live in the Production environment
47 | Color
48 | 240046
49 |
50 | Status: Suggested
51 | Label name
52 | Status: Suggested
53 | Description
54 | This issue is a suggestion for doing something new or different in CovidGraph
55 | Color
56 | e0aaff
57 |
58 | Tag: Documentation
59 | Label name
60 | Tag: Documentation
61 | Description
62 | About CovidGraph Documentation
63 | Color
64 | ffffff
65 |
66 | Tag: Duplicate
67 | Label name
68 | Tag: Duplicate
69 | Description
70 | This issue or pull request already exists
71 | Color
72 | ffffff
73 |
74 | Tag: Good First Issue
75 | Label name
76 | Tag: Good First Issue
77 | Description
78 | Good for newcomers
79 | Color
80 | ffffff
81 |
82 | Tag: Help Wanted
83 | Label name
84 | Tag: Help Wanted
85 | Description
86 | Extra attention is needed
87 | Color
88 | ffffff
89 |
90 | Tag: Infrastructure
91 | Label name
92 | Tag: Infrastructure
93 | Description
94 | This issue is about infrastructure
95 | Color
96 | ffffff
97 |
98 | Tag: Numeric
99 | Label name
100 | Tag: Numeric
101 | Description
102 | This data source contains numeric or statistical data
103 | Color
104 | ffffff
105 |
106 | Tag: Patient Data
107 | Label name
108 | Tag: Patient Data
109 | Description
110 | This data source contains patient data
111 | Color
112 | ffffff
113 |
114 | Type: Bug
115 | Label name
116 | Typ: Bug
117 | Description
118 | Something isn't working
119 | Color
120 | 1b4332
121 |
122 | Type: Data Analysis
123 | Label name
124 | Type: Data Analysis
125 | Description
126 | To identify an issue as data analysis
127 | Color
128 | 2d6a4f
129 |
130 | Type: Data Source
131 | Label name
132 | Type: Data Source
133 | Description
134 | To identify an issue as a data source
135 | Color
136 | 1b4332
137 |
138 | Type: Feature
139 | Label name
140 | Type: Feature
141 | Description
142 | To identify an issue as a feature
143 | Color
144 | 52b788
145 |
146 | Type: Question
147 | Label name
148 | Type: Question
149 | Description
150 | This issue raises a question for discussion
151 | Color
152 | d8f3dc
153 |
154 | Type: Use Case
155 | Label name
156 | Type: Use Case
157 | Description
158 | To identify an issue as a use case
159 | Color
160 | 95d5b2
161 |
--------------------------------------------------------------------------------
/legal-statement.md:
--------------------------------------------------------------------------------
1 | # Legal Statement
2 |
3 | ## Responsible Party
4 |
5 | ```text
6 | Kaiser & Preusse
7 | Schwabentorring 10
8 | 79098 Freiburg
9 | Germany
10 |
11 | Phone: +49 163 77 39 234
12 | E-Mail: impressum@kaiser-preusse.com
13 | USt-ID: DE815832263
14 | ```
15 |
16 | ## Responsible Person
17 |
18 | Responsible in the terms of § 6 MDStV: Martin Preusse
19 |
20 | ## Disclaimer of Liability
21 |
22 | Despite careful control we do not accept any liability for the content of external links. The content of linked web pages is subject to the sole responsibility of their respective operators.
23 |
24 |
--------------------------------------------------------------------------------
/nodes_and_relationships.md:
--------------------------------------------------------------------------------
1 | # Nodes and Relationships in CovidGraph
2 | ## Format of this document
3 | - **Nodes** are declared as `:Nodelabel` (starting with ":" colon followed by a capital letter)
4 | - **Realtationships** are declared as `:RELATIONSHIP_NAME` (all capital letters)
5 | - **Properties** are declared as `propertyName` (starting with small letter)
6 | - Graph patterns are presented in Cypher query language style
7 | -- Example 1: node1 connected to node2 via relationship,
8 | **(node1:Nodelabel)-[relationship:RELATIONSHIP_TYPE]->(node2:Nodelabel)**
9 | -- Example 2: node connected to itself
10 | **(node1)-[r:RELATIONSHIP]->(node1)**
11 |
12 |
13 | ## Node labels in CovidGraph
14 |
15 | ### Literature information
16 | - `:PubMedArticle` represents a scientific article in the PubMed database.
17 | - `ArticleTitle`
18 | - `PMID`
19 | - `PublicationType`
20 | - `:ArticleId` of a PubMedArticle
21 | - `ArticleId.ID`
22 | - `:Abstract` of a PubMedArticle
23 | - `:AbstractText` stores text of an `:Abstract` as String
24 | - `text`
25 | - `:Author` of one or many PubMedArticle
26 | - `ForeName`
27 | - `Initials`
28 | - `LastName`
29 | - `:Affiliation` `Affiliation` of an authors
30 | - `Affiliation`
31 | - `:Contribution` is the link between combination of author, PubMedArticle and the author's affiliations
32 | - `:Journal` that published one or many PubMedArticle
33 | - `Title`
34 | - `ISOAbbreviation`
35 | - `:DZDPubMedArticle` Second label on `PubMedArticle` which for DZD article
36 | - `ArticleTitle`
37 | - `PMID`
38 | - `PublicationType`
39 | - `:DZDAuthor` Second label on `Author` for DZD scientists
40 | - `ForeName`
41 | - `Initials`
42 | - `LastName`
43 | - `:DZDAuthorNotationsHub` standardized names for DZDAuthor connecting all
44 | author spellings
45 | - `ForeName`
46 | - `Initials`
47 | - `LastName`
48 | - `:DZDAcademy` academy of the DZD, self explanary
49 | - `AcademyName`
50 | - `:DZDInstitute` institutes of the DZD, self explanary
51 | - `InstituteName`
52 | - `:DZDAffiliation` affiliations of the DZD, self explanary
53 | - `Affiliation`
54 | - `:DZDContribution` Second label on `:Contribution`
55 | - `:MeshQualifier` stores MeSH-Term
56 | - `text`
57 | - `:MeshDescriptor` stores MeSH-Term
58 | - `text`
59 | - `:MeshHeading` connects MeshQualifier and MeshDescriptor
60 | - `:MeshHeadingList` list of MeSH headings
61 | - `:Keyword` stores keyword of a PubMedArticle
62 | - `Keyword`
63 | - `:KeywordList`
64 | - `:Date` of a PubMedArticle
65 | - `Day`
66 | - `Month`
67 | - `Year`
68 | - `:MedlineJournalInfo` stores the iso abbreviation of a Journal
69 | - `MedlineTA`
70 | - `:Reference` of a PubMedArticle
71 | - `Citation`
72 | - `:ChemicalList` list of chemicals in a PubMedArticle
73 | - `:ReferenceList` list of references of a PubMedArticle
74 | - `:ISSN` of a PubMedArticle
75 | - `:JournalIssue` of a scientific journal
76 | - `Issue`
77 | - `Volume`
78 | - `:Identifier` from `source`: ORCID, ISNI, GRID and RINGGOLD
79 | - `ID`
80 | - `Source`
81 | - `:GrantList` list of grants of a PubMedArticle
82 | - `:Grant` of a PubMedArticle
83 | - `:PersonalNameSubjectList` self explanary
84 | - `:PersonalNameSubject` PubMedArticles that are Autobiographies
85 | - `:Investigator` PI of a PubMedArticle
86 | - `:GeneralNote` not yet investigated
87 | - `:Chemical` used in a PubMedArticle
88 | ### Molecular entities information
89 | - `:Gene` from Ensembl holds information of a gene in `sid` and `name`
90 | - `source`
91 | - `sid`
92 | - `name`
93 | - `taxid`
94 | - `:Transcript` are RNAs from coding genes, from `source`=RefSeq
95 | - `source`
96 | - `sid`
97 | - `taxid`
98 | - `:Protein` from `source`=Uniprot, RefSeq, Swissprot stores protein information
99 | - `source`
100 | - `sid`
101 | - `taxid`
102 | - `:Lipid` from `source`=SwissLipid
103 | - `:Metabolite` from `source`=HNGC
104 | - `name`
105 | - `definition`
106 | - `sid`
107 | - `taxid`
108 | - `source`
109 | - `:Pathway` molecular pathway from `source`=Reactome
110 | - `name`
111 | - `sid`
112 | - `taxid`
113 | - `source`
114 | - `org` Organism
115 | - `:SNP` SingleNucleotidePolymorphism/gene varition from `source`=GWAS which is associated with a `:Trait` and a `:Gene`
116 | - `snp_id`
117 | - `taxid`
118 | - `:Study` associated with a `:Trait` and a `:SNP`
119 | - `title`
120 | - `pubmedId`
121 | - `reported_genes`
122 | - `:Association` between `:Trait`, a `:SNP` and `:Study`
123 | - `:SNP_Interaction` of two or more `:SNP`s
124 | - `snp_id`
125 | - `taxid`
126 | - `:Trait` `name`is a feature or phenotype or disease which is connected to a gene variation `:SNP`
127 | - `name`
128 | - `:Phenotype` which is connected to a `:Gene`
129 | - `name`
130 | - `:GtexSample` specific sample of a `:GtexTissue` with raw data
131 | - `:GtexTissue` human tissue
132 | - `name`
133 | - `:GtexDetailedTissue` sub tissue of `:GtexTissue` and connected `:Gene`
134 | - `name`
135 | - `:MgiDescription` mouse gene description from `source`=MGI
136 | - `:GeneSymbolList` self explanatory
137 |
138 |
139 | ### Ontology information
140 | - `:Term` with `name` holds a term and is connected to its `:Ontology`
141 | - `name`
142 | - `definition`
143 | - `sid`
144 | - `:Disease` currently empty
145 | - `:Ontology` with `name`, connected to `:Term` and `source`=Obo FoundryCurrently from *Disease Ontology*, *GeneOntology*, *Mouse Phenotype Ontology*
146 | - `sid`
147 | - `:OntologySubset` self explanatory
148 | - `:SynonymTerm`
149 |
150 | ### Technical information
151 | - `:_FulltextLookUpDone_Label_property` Second label for node label. Combination of label and property was looked up on the fulltext index in abstracts
152 | - `:_FulltextLookUpDone_Protein_name`
153 | - `:_FulltextLookUpDone_Protein_sid`
154 | - `:OmitInMatch` second label for genes, and proteins that are omitted for text search
155 | - `:OmitSpecialChar` second label for genes and proteins because of special characters in name
156 | - `:OmitLengthOne` second label for genes and proteins because the name is only one character
157 | - `:OmitWord` second label for genes and proteins, because the name is an English word
158 | - `:_PipelineLogNode` technical information to one pipeline module
159 | - `:_PubMedXmlLoadingLog` technical information for data integration of one XML file from PubMed
160 | - `:_PipelineLogRun` technical information of the central pipeline run
161 | - `:ProteinSearch` intermediate label for proteins that need preprocessing steps before search
162 | - `:Word` list of words that are omitted in text search
163 |
164 |
--------------------------------------------------------------------------------
/privacy-policy.md:
--------------------------------------------------------------------------------
1 | # privacy-policy
2 |
3 | CovidGraph is a non-profit collaboration of researchers, software developers, data scientists and medical professionals. This privacy policy will explain how our organization uses the personal data we collect from you when you use our website.
4 |
5 | ## Topics:
6 |
7 | * What data do we collect?
8 | * How do we collect your data?
9 | * How will we use your data?
10 | * How do we store your data?
11 | * Marketing
12 | * What are your data protection rights?
13 | * What are cookies?
14 | * How do we use cookies?
15 | * What types of cookies do we use?
16 | * How to manage your cookies
17 | * Privacy policies of other websites
18 | * Changes to our privacy policy
19 | * How to contact us
20 | * How to contact the appropriate authorities
21 |
22 | ## What data do we collect?
23 |
24 | CovidGraph collects the following data:
25 |
26 | * Personal identification information \(Name, email address, interest/profession group\)
27 |
28 | ## How do we collect your data?
29 |
30 | You directly provide CovidGraph with most of the data we collect. We collect data and process data when you:
31 |
32 | * Register online for any of our products or services.
33 | * Voluntarily use a contact form or provide feedback on any of our message boards or via email.
34 | * Use or view our website via your browser’s cookies.
35 |
36 | CovidGraph may also receive your data indirectly from the following sources:
37 |
38 | * LinkedIn
39 | * Twitter
40 |
41 | ## How will we use your data?
42 |
43 | CovidGraph collects your data so that we can:
44 |
45 | * Process your contact request.
46 | * Email you further information about the project.
47 |
48 | If you agree, CovidGraph will share your data with our partner companies so that they may offer you their products and services.
49 |
50 | * Kaiser & Preusse, German Center of Diabetes Research, Neo4j, PRODYNA, Structr GmbH and others. See [https://covidgraph.org/\#who-we-are](https://covidgraph.org/#who-we-are) for the full list of CovidGraph partners.
51 |
52 | When CovidGraph processes your contact request, it may send your data to a server.
53 |
54 | ## How do we store your data?
55 |
56 | CovidGraph securely stores your data in a database with the sole purpose of processing your contact request.
57 |
58 | CovidGraph will keep your personal data for 30 days. Once this time period has expired, we will delete your data by deleting your contact request from the database.
59 |
60 | If you no longer wish to be contacted for marketing purposes, please click here. What are your data protection rights?
61 |
62 | CovidGraph would like to make sure you are fully aware of all of your data protection rights. Every user is entitled to the following:
63 |
64 | The right to access – You have the right to request copies of your personal data from CovidGraph. We may charge you a small fee for this service.
65 |
66 | The right to rectification – You have the right to request that CovidGraph correct any information you believe is inaccurate. You also have the right to request that CovidGraph update the information you believe is incomplete.
67 |
68 | The right to erasure – You have the right to request that CovidGraph erase your personal data, under certain conditions.
69 |
70 | The right to restrict processing – You have the right to request that CovidGraph restricts the processing of your personal data, under certain conditions.
71 |
72 | The right to object to processing – You have the right to object to CovidGraph’s processing of your personal data, under certain conditions.
73 |
74 | The right to data portability – You have the right to request that CovidGraph transfer the data that we have collected to another organization, or directly to you, under certain conditions.
75 |
76 | If you make a request, we have one month to respond to you. If you would like to exercise any of these rights, please contact us at our email:
77 |
78 | ## Cookies
79 |
80 | Cookies are small files containing specific information relating to the way you view our website. These are downloaded onto the device used for that purpose. Depending on the type of cookie, they can be read, updated or deleted by the same servers. Some cookies are session specific and get deleted automatically when you leave the website. Others, such as those used for tracking or authentication, may be saved for longer. Some of these cookies are put in place by us whilst others are put in place by third parties.
81 |
82 | For further information, including how to disable and/or remove cookies visit allaboutcookies.org.
83 |
84 | ## How do we use cookies?
85 |
86 | CovidGraph uses cookies in a range of ways to improve your experience on our website, including:
87 |
88 | * Keeping you signed in
89 | * Understanding how you use our website
90 |
91 | What types of cookies do we use?
92 |
93 | There are a number of different types of cookies, however, our website uses:
94 |
95 | * Functionality – CovidGraph uses these cookies so that we recognize you on our website and remember your previously selected preferences. These could include what language you prefer and location you are in. A mix of first-party and third-party cookies are used.
96 | * Advertising – CovidGraph uses these cookies to collect information about your visit to our website, the content you viewed, the links you followed and information about your browser, device, and your IP address. CovidGraph sometimes shares some limited aspects of this data with third parties for advertising purposes. We may also share online data collected through cookies with our advertising partners. This means that when you visit another website, you may be shown advertising based on your browsing patterns on our website.
97 |
98 | ## How to manage cookies
99 |
100 | You can set your browser not to accept cookies, and allaboutcookies.org tells you how to remove cookies from your browser. However, in a few cases, some of our website features may not function as a result. Privacy policies of other websites
101 |
102 | The CovidGraph website contains links to other websites. Our privacy policy applies only to our website, so if you click on a link to another website, you should read their privacy policy. Changes to our privacy policy
103 |
104 | CovidGraph keeps its privacy policy under regular review and places any updates on this web page. This privacy policy was last updated on 28 April 2020. How to contact us
105 |
106 | If you have any questions about CovidGraph’s privacy policy, the data we hold on you, or you would like to exercise one of your data protection rights, please do not hesitate to contact us.
107 |
108 | Email us at: impressum@kaiser-preusse.com
109 |
110 | Call us: +49 1637739234
111 |
112 | Or write to us at:
113 |
114 | Kaiser & Preusse Schwabentorring 10 79098 Freiburg Germany
115 |
116 | ## How to contact the appropriate authority
117 |
118 | Should you wish to report a complaint or if you feel that CovidGraph has not addressed your concern in a satisfactory manner, you may contact the Information Commissioner’s Office.
119 |
120 | Email: impressum@kaiser-preusse.com
121 |
122 | Address:
123 |
124 | Kaiser & Preusse Schwabentorring 10 79098 Freiburg Germany
125 |
126 |
--------------------------------------------------------------------------------
/screenshots/accessing-data/connect_neo4j_browser.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/screenshots/accessing-data/connect_neo4j_browser.png
--------------------------------------------------------------------------------
/screenshots/accessing-data/database_information.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/screenshots/accessing-data/database_information.png
--------------------------------------------------------------------------------
/screenshots/accessing-data/documents_neo4j.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/screenshots/accessing-data/documents_neo4j.png
--------------------------------------------------------------------------------
/screenshots/accessing-data/saved_scripts.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/screenshots/accessing-data/saved_scripts.png
--------------------------------------------------------------------------------
/screenshots/zenhub/cord-19-epic-detail.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/screenshots/zenhub/cord-19-epic-detail.png
--------------------------------------------------------------------------------
/screenshots/zenhub/cord-19-epic-filter-highlights.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/screenshots/zenhub/cord-19-epic-filter-highlights.png
--------------------------------------------------------------------------------
/screenshots/zenhub/data-source-label-filter-highlight.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/screenshots/zenhub/data-source-label-filter-highlight.png
--------------------------------------------------------------------------------
/screenshots/zenhub/managing-issues.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/screenshots/zenhub/managing-issues.png
--------------------------------------------------------------------------------
/screenshots/zenhub/new-issue-choose-repo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/screenshots/zenhub/new-issue-choose-repo.png
--------------------------------------------------------------------------------
/screenshots/zenhub/new-issue-choose-template.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/screenshots/zenhub/new-issue-choose-template.png
--------------------------------------------------------------------------------
/screenshots/zenhub/vge-repo-filter-highlight.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/screenshots/zenhub/vge-repo-filter-highlight.png
--------------------------------------------------------------------------------
/screenshots/zenhub/zenhub-default-view.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/screenshots/zenhub/zenhub-default-view.png
--------------------------------------------------------------------------------
/screenshots/zenhub/zenhub-tab-highlight.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/covidgraph/documentation/7a3c7f03caadac8b7b732fd13162bbeb38485358/screenshots/zenhub/zenhub-tab-highlight.png
--------------------------------------------------------------------------------
/untitled.md:
--------------------------------------------------------------------------------
1 | # Untitled
2 |
3 |
--------------------------------------------------------------------------------
/website/README.md:
--------------------------------------------------------------------------------
1 | # website
2 |
3 |
--------------------------------------------------------------------------------
/website/content/English Edit - PR-03-20-Neo4j-COVID-19:
--------------------------------------------------------------------------------
1 | COVID*Graph provides researchers with the latest scientific data in a Knowledge Graph
2 |
3 | Munich, April 3, 2020 - Scientists, developers and data scientists are becoming increasingly involved in the fight against the COVID-19 pandemic. The COVID*Graph project is actively developing a Knowledge Graph to provide researchers with free and easy access to the latest research data. The aim is to gain important insights into the spread and course of the coronavirus as quickly as possible, and thus come one step closer to developing a vaccine.
4 |
5 | The not-for-profit project was launched in early March with the support of the German Center for Diabetes Research (DZD), Kaiser&Preusse, PRODYNA, Structr and yWorks, among others. The COVID*Graph team uses the graph database Neo4j to bundle scientific publications and research work in a central COVID-19 knowledge hub. Publicly available data sources on the coronavirus are linked with current and existing relevant patent specifications as well as data sets from genome and molecular biology databases. Currently, the Knowledge Graph comprises more than 16 million nodes and over 65 million edges, with the database growing each day.
6 |
7 | "In recent months, a great deal has been published very quickly about the coronavirus. The COVID-19 Open Research Database (CORD-19) alone stands at 44,000 scientific articles. It is difficult for medical research to keep an overview - especially since there hasn't been time to validate the work in the usual way," explains Dr. Alexander Jarasch, Head of Bioinformatics and Data Management at the German Center for Diabetes Research and co-initiator of COVID*Graph. "With our project we want to help researchers and scientists to find a quick and uncomplicated way through the vast amount of information. Therefore we are also happy about every form of support and cooperation".
8 |
9 | Knowledge graphs are semantic knowledge databases in which a large amount of heterogeneous data from different sources can be stored, linked and queried. The intuitive model consisting of nodes and edges makes it possible to illuminate collected knowledge clearly, to uncover connections and to recognize patterns. "The COVID*Graph provides the data basis for understanding the processes involved in a coronavirus infection. Why is this virus so contagious? And why do such severe complications occur? Linking large data sets and evaluating them provides new insights and provides researchers with approaches and hypotheses for their further research work," explains Dr. Martin Preusse, founder of Kaiser&Preusse, who co-initiated the COVID*Graph project.
10 |
11 | Invitation to the Neo4j initiative "Graphs4Good"
12 |
13 | Graph databases are widely used in data analysis - in medical research and drug development as well as in supply chain management and logistics. In the fight against COVID-19, graph analytics can be used, for example, to detect contacts of infected people (clusters). Shortest path algorithms can also be used to trace infection paths across multiple contact points, and to determine optimal supply chains and transport routes. The number of graph-based projects in the graph community has increased significantly since the outbreak of the pandemic. In addition to scientific projects such as COVID*Graph, these include smaller initiatives that, for example, help risk groups at a local level or help businesses and companies.
14 |
15 | For this reason, Neo4j has included all COVID-19 relevant graph projects in its "Graphs4Good" program. Users who use graph technology in the fight against the corona virus will receive free access to the enterprise version of the Neo4j database on request. In addition, Neo4j offers help in finding mentors, sharing datasets and exchanging information within the community. Data scientists, developers, researchers, graph enthusiasts and tech-interested people are also invited to participate in the virtual Graphs4Good Hackathon.
16 |
--------------------------------------------------------------------------------
/website/content/README.md:
--------------------------------------------------------------------------------
1 | # content
2 |
3 |
--------------------------------------------------------------------------------
/website/content/datasources.md:
--------------------------------------------------------------------------------
1 | # datasources
2 |
3 | ## COVID-19 Open Research Dataset \(CORD-19\)
4 |
5 | Collection of COVID-19 related scientific papers with metadata like authors, affiliations, references.
6 |
7 | Source of the dataset: [https://pages.semanticscholar.org/coronavirus-research](https://pages.semanticscholar.org/coronavirus-research)
8 |
9 | Kaggle challenge: [https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge](https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge)
10 |
11 | ## Covid-19 cases from John Hopkins University
12 |
13 | John Hopkins University \(JHU\) aggregates data from WHO and other health organizations in a daily report. It contains the number of confirmed cases, deaths and recovered patients.
14 |
15 | Dashboard: [https://coronavirus.jhu.edu/map.html](https://coronavirus.jhu.edu/map.html)
16 |
17 | Data: [https://github.com/CSSEGISandData/COVID-19](https://github.com/CSSEGISandData/COVID-19)
18 |
19 | ## Population data from the UN
20 |
21 | The UN gathers data on world population statistics and publishes the world population prospects: [https://population.un.org/wpp/](https://population.un.org/wpp/)
22 |
23 | The latest data set in CSV format can be found here: [https://population.un.org/wpp/Download/Standard/CSV/](https://population.un.org/wpp/Download/Standard/CSV/)
24 |
25 |
--------------------------------------------------------------------------------