├── .gitignore
├── CMakeLists.txt
├── LICENSE
├── README.md
├── aecm
├── aecm_core.cc
├── aecm_core.h
├── aecm_core_c.cc
├── aecm_core_mips.cc
├── aecm_core_neon.cc
├── aecm_defines.h
├── complex_fft.c
├── delay_estimator.cc
├── delay_estimator.h
├── delay_estimator_wrapper.cc
├── delay_estimator_wrapper.h
├── echo_control_mobile.cc
├── echo_control_mobile.h
├── real_fft.c
├── real_fft.h
├── ring_buffer.c
├── ring_buffer.h
├── signal_processing_library.cc
├── signal_processing_library.h
├── spl_inl.h
├── spl_inl_armv7.h
└── spl_inl_mips.h
├── dr_wav.h
├── main.cc
└── timing.h
/.gitignore:
--------------------------------------------------------------------------------
1 |
2 | .idea/
3 |
4 | cmake-build-debug/
5 |
--------------------------------------------------------------------------------
/CMakeLists.txt:
--------------------------------------------------------------------------------
1 | cmake_minimum_required(VERSION 2.4)
2 | project(aecm)
3 | if (MSVC)
4 | if (CMAKE_BUILD_TYPE STREQUAL "Debug")
5 | set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ")
6 | else ()
7 | set(CMAKE_BUILD_TYPE "Release")
8 | set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /fp:fast /Gy /Oi /Oy /O2 /Ot /Zi /EHsc ")
9 | endif ()
10 | ADD_DEFINITIONS(-D_CRT_SECURE_NO_WARNINGS)
11 | else ()
12 | if (CMAKE_BUILD_TYPE STREQUAL "Debug")
13 | set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -g -Wall -Wno-unused-variable")
14 | else (CMAKE_BUILD_TYPE STREQUAL "Debug")
15 | set(CMAKE_BUILD_TYPE "Release")
16 | set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -O2")
17 | endif (CMAKE_BUILD_TYPE STREQUAL "Debug")
18 | endif ()
19 |
20 | file(GLOB AECM_SRC
21 | ${CMAKE_CURRENT_LIST_DIR}/aecm/*.c
22 | ${CMAKE_CURRENT_LIST_DIR}/aecm/*.cc
23 | )
24 | #list(FILTER AECM_SRC EXCLUDE REGEX ".*aecm_core_c.cc$")
25 | list(FILTER AECM_SRC EXCLUDE REGEX ".*aecm_core_neon.cc$")
26 | list(FILTER AECM_SRC EXCLUDE REGEX ".*aecm_core_mips.cc$")
27 | set(AECM_COMPILE_CODE ${AECM_SRC})
28 |
29 | add_executable(aecm_run main.cc ${AECM_COMPILE_CODE})
30 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | ============================
2 | Copyright (c) 2011, The WebRTC project authors. All rights reserved.
3 |
4 | Redistribution and use in source and binary forms, with or without
5 | modification, are permitted provided that the following conditions are
6 | met:
7 |
8 | * Redistributions of source code must retain the above copyright
9 | notice, this list of conditions and the following disclaimer.
10 |
11 | * Redistributions in binary form must reproduce the above copyright
12 | notice, this list of conditions and the following disclaimer in
13 | the documentation and/or other materials provided with the
14 | distribution.
15 |
16 | * Neither the name of Google nor the names of its contributors may
17 | be used to endorse or promote products derived from this software
18 | without specific prior written permission.
19 |
20 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 | HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25 | SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26 | LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 | DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 | THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # WebRTC_AECM
2 | Acoustic Echo Canceller for Mobile Module Port From WebRTC
3 |
4 | # Donating
5 |
6 | If you found this project useful, consider buying me a coffee
7 |
8 |
9 |
--------------------------------------------------------------------------------
/aecm/aecm_core.h:
--------------------------------------------------------------------------------
1 | /*
2 | * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 | *
4 | * Use of this source code is governed by a BSD-style license
5 | * that can be found in the LICENSE file in the root of the source
6 | * tree. An additional intellectual property rights grant can be found
7 | * in the file PATENTS. All contributing project authors may
8 | * be found in the AUTHORS file in the root of the source tree.
9 | */
10 |
11 | // Performs echo control (suppression) with fft routines in fixed-point.
12 |
13 | #ifndef MODULES_AUDIO_PROCESSING_AECM_AECM_CORE_H_
14 | #define MODULES_AUDIO_PROCESSING_AECM_AECM_CORE_H_
15 |
16 | #include
17 |
18 | extern "C" {
19 | #include "ring_buffer.h"
20 | #include "signal_processing_library.h"
21 | }
22 |
23 | #include "aecm_defines.h"
24 |
25 | struct RealFFT;
26 |
27 |
28 | #ifdef _MSC_VER // visual c++
29 | #define ALIGN8_BEG __declspec(align(8))
30 | #define ALIGN8_END
31 | #else // gcc or icc
32 | #define ALIGN8_BEG
33 | #define ALIGN8_END __attribute__((aligned(8)))
34 | #endif
35 |
36 | typedef struct {
37 | int16_t real;
38 | int16_t imag;
39 | } ComplexInt16;
40 |
41 | typedef struct {
42 | int farBufWritePos;
43 | int farBufReadPos;
44 | int knownDelay;
45 | int lastKnownDelay;
46 | int firstVAD; // Parameter to control poorly initialized channels
47 |
48 | RingBuffer *farFrameBuf;
49 | RingBuffer *nearNoisyFrameBuf;
50 | RingBuffer *nearCleanFrameBuf;
51 | RingBuffer *outFrameBuf;
52 |
53 | int16_t farBuf[FAR_BUF_LEN];
54 |
55 | int16_t mult;
56 | uint32_t seed;
57 |
58 | // Delay estimation variables
59 | void *delay_estimator_farend;
60 | void *delay_estimator;
61 | uint16_t currentDelay;
62 | // Far end history variables
63 | // TODO(bjornv): Replace |far_history| with ring_buffer.
64 | uint16_t far_history[PART_LEN1 * MAX_DELAY];
65 | int far_history_pos;
66 | int far_q_domains[MAX_DELAY];
67 |
68 | int16_t nlpFlag;
69 | int16_t fixedDelay;
70 |
71 | uint32_t totCount;
72 |
73 | int16_t dfaCleanQDomain;
74 | int16_t dfaCleanQDomainOld;
75 | int16_t dfaNoisyQDomain;
76 | int16_t dfaNoisyQDomainOld;
77 |
78 | int16_t nearLogEnergy[MAX_BUF_LEN];
79 | int16_t farLogEnergy;
80 | int16_t echoAdaptLogEnergy[MAX_BUF_LEN];
81 | int16_t echoStoredLogEnergy[MAX_BUF_LEN];
82 |
83 | // The extra 16 or 32 bytes in the following buffers are for alignment based
84 | // Neon code.
85 | // It's designed this way since the current GCC compiler can't align a
86 | // buffer in 16 or 32 byte boundaries properly.
87 | int16_t channelStored_buf[PART_LEN1 + 8];
88 | int16_t channelAdapt16_buf[PART_LEN1 + 8];
89 | int32_t channelAdapt32_buf[PART_LEN1 + 8];
90 | int16_t xBuf_buf[PART_LEN2 + 16]; // farend
91 | int16_t dBufClean_buf[PART_LEN2 + 16]; // nearend
92 | int16_t dBufNoisy_buf[PART_LEN2 + 16]; // nearend
93 | int16_t outBuf_buf[PART_LEN + 8];
94 |
95 | // Pointers to the above buffers
96 | int16_t *channelStored;
97 | int16_t *channelAdapt16;
98 | int32_t *channelAdapt32;
99 | int16_t *xBuf;
100 | int16_t *dBufClean;
101 | int16_t *dBufNoisy;
102 | int16_t *outBuf;
103 |
104 | int32_t echoFilt[PART_LEN1];
105 | int16_t nearFilt[PART_LEN1];
106 | int32_t noiseEst[PART_LEN1];
107 | int noiseEstTooLowCtr[PART_LEN1];
108 | int noiseEstTooHighCtr[PART_LEN1];
109 | int16_t noiseEstCtr;
110 | int16_t cngMode;
111 |
112 | int32_t mseAdaptOld;
113 | int32_t mseStoredOld;
114 | int32_t mseThreshold;
115 |
116 | int16_t farEnergyMin;
117 | int16_t farEnergyMax;
118 | int16_t farEnergyMaxMin;
119 | int16_t farEnergyVAD;
120 | int16_t farEnergyMSE;
121 | int currentVADValue;
122 | int16_t vadUpdateCount;
123 |
124 | int16_t startupState;
125 | int16_t mseChannelCount;
126 | int16_t supGain;
127 | int16_t supGainOld;
128 |
129 | int16_t supGainErrParamA;
130 | int16_t supGainErrParamD;
131 | int16_t supGainErrParamDiffAB;
132 | int16_t supGainErrParamDiffBD;
133 |
134 | struct RealFFT *real_fft;
135 |
136 | #ifdef AEC_DEBUG
137 | FILE* farFile;
138 | FILE* nearFile;
139 | FILE* outFile;
140 | #endif
141 | } AecmCore;
142 |
143 | ////////////////////////////////////////////////////////////////////////////////
144 | // WebRtcAecm_CreateCore()
145 | //
146 | // Allocates the memory needed by the AECM. The memory needs to be
147 | // initialized separately using the WebRtcAecm_InitCore() function.
148 | // Returns a pointer to the instance and a nullptr at failure.
149 | AecmCore *WebRtcAecm_CreateCore();
150 |
151 | ////////////////////////////////////////////////////////////////////////////////
152 | // WebRtcAecm_InitCore(...)
153 | //
154 | // This function initializes the AECM instant created with
155 | // WebRtcAecm_CreateCore()
156 | // Input:
157 | // - aecm : Pointer to the AECM instance
158 | // - samplingFreq : Sampling Frequency
159 | //
160 | // Output:
161 | // - aecm : Initialized instance
162 | //
163 | // Return value : 0 - Ok
164 | // -1 - Error
165 | //
166 | int WebRtcAecm_InitCore(AecmCore *const aecm, int samplingFreq);
167 |
168 | ////////////////////////////////////////////////////////////////////////////////
169 | // WebRtcAecm_FreeCore(...)
170 | //
171 | // This function releases the memory allocated by WebRtcAecm_CreateCore()
172 | // Input:
173 | // - aecm : Pointer to the AECM instance
174 | //
175 | void WebRtcAecm_FreeCore(AecmCore *aecm);
176 |
177 | int WebRtcAecm_Control(AecmCore *aecm, int delay, int nlpFlag);
178 |
179 | ////////////////////////////////////////////////////////////////////////////////
180 | // WebRtcAecm_InitEchoPathCore(...)
181 | //
182 | // This function resets the echo channel adaptation with the specified channel.
183 | // Input:
184 | // - aecm : Pointer to the AECM instance
185 | // - echo_path : Pointer to the data that should initialize the echo
186 | // path
187 | //
188 | // Output:
189 | // - aecm : Initialized instance
190 | //
191 | void WebRtcAecm_InitEchoPathCore(AecmCore *aecm, const int16_t *echo_path);
192 |
193 | ////////////////////////////////////////////////////////////////////////////////
194 | // WebRtcAecm_ProcessFrame(...)
195 | //
196 | // This function processes frames and sends blocks to
197 | // WebRtcAecm_ProcessBlock(...)
198 | //
199 | // Inputs:
200 | // - aecm : Pointer to the AECM instance
201 | // - farend : In buffer containing one frame of echo signal
202 | // - nearendNoisy : In buffer containing one frame of nearend+echo signal
203 | // without NS
204 | // - nearendClean : In buffer containing one frame of nearend+echo signal
205 | // with NS
206 | //
207 | // Output:
208 | // - out : Out buffer, one frame of nearend signal :
209 | //
210 | //
211 | int WebRtcAecm_ProcessFrame(AecmCore *aecm,
212 | const int16_t *farend,
213 | const int16_t *nearendNoisy,
214 | const int16_t *nearendClean,
215 | int16_t *out);
216 |
217 | ////////////////////////////////////////////////////////////////////////////////
218 | // WebRtcAecm_ProcessBlock(...)
219 | //
220 | // This function is called for every block within one frame
221 | // This function is called by WebRtcAecm_ProcessFrame(...)
222 | //
223 | // Inputs:
224 | // - aecm : Pointer to the AECM instance
225 | // - farend : In buffer containing one block of echo signal
226 | // - nearendNoisy : In buffer containing one frame of nearend+echo signal
227 | // without NS
228 | // - nearendClean : In buffer containing one frame of nearend+echo signal
229 | // with NS
230 | //
231 | // Output:
232 | // - out : Out buffer, one block of nearend signal :
233 | //
234 | //
235 | int WebRtcAecm_ProcessBlock(AecmCore *aecm,
236 | const int16_t *farend,
237 | const int16_t *nearendNoisy,
238 | const int16_t *noisyClean,
239 | int16_t *out);
240 |
241 | ////////////////////////////////////////////////////////////////////////////////
242 | // WebRtcAecm_BufferFarFrame()
243 | //
244 | // Inserts a frame of data into farend buffer.
245 | //
246 | // Inputs:
247 | // - aecm : Pointer to the AECM instance
248 | // - farend : In buffer containing one frame of farend signal
249 | // - farLen : Length of frame
250 | //
251 | void WebRtcAecm_BufferFarFrame(AecmCore *const aecm,
252 | const int16_t *const farend,
253 | const int farLen);
254 |
255 | ////////////////////////////////////////////////////////////////////////////////
256 | // WebRtcAecm_FetchFarFrame()
257 | //
258 | // Read the farend buffer to account for known delay
259 | //
260 | // Inputs:
261 | // - aecm : Pointer to the AECM instance
262 | // - farend : In buffer containing one frame of farend signal
263 | // - farLen : Length of frame
264 | // - knownDelay : known delay
265 | //
266 | void WebRtcAecm_FetchFarFrame(AecmCore *const aecm,
267 | int16_t *const farend,
268 | const int farLen,
269 | const int knownDelay);
270 |
271 | // All the functions below are intended to be private
272 |
273 | ////////////////////////////////////////////////////////////////////////////////
274 | // WebRtcAecm_UpdateFarHistory()
275 | //
276 | // Moves the pointer to the next entry and inserts |far_spectrum| and
277 | // corresponding Q-domain in its buffer.
278 | //
279 | // Inputs:
280 | // - self : Pointer to the delay estimation instance
281 | // - far_spectrum : Pointer to the far end spectrum
282 | // - far_q : Q-domain of far end spectrum
283 | //
284 | void WebRtcAecm_UpdateFarHistory(AecmCore *self,
285 | uint16_t *far_spectrum,
286 | int far_q);
287 |
288 | ////////////////////////////////////////////////////////////////////////////////
289 | // WebRtcAecm_AlignedFarend()
290 | //
291 | // Returns a pointer to the far end spectrum aligned to current near end
292 | // spectrum. The function WebRtc_DelayEstimatorProcessFix(...) should have been
293 | // called before AlignedFarend(...). Otherwise, you get the pointer to the
294 | // previous frame. The memory is only valid until the next call of
295 | // WebRtc_DelayEstimatorProcessFix(...).
296 | //
297 | // Inputs:
298 | // - self : Pointer to the AECM instance.
299 | // - delay : Current delay estimate.
300 | //
301 | // Output:
302 | // - far_q : The Q-domain of the aligned far end spectrum
303 | //
304 | // Return value:
305 | // - far_spectrum : Pointer to the aligned far end spectrum
306 | // NULL - Error
307 | //
308 | const uint16_t *WebRtcAecm_AlignedFarend(AecmCore *self, int *far_q, int delay);
309 |
310 | ///////////////////////////////////////////////////////////////////////////////
311 | // WebRtcAecm_CalcSuppressionGain()
312 | //
313 | // This function calculates the suppression gain that is used in the
314 | // Wiener filter.
315 | //
316 | // Inputs:
317 | // - aecm : Pointer to the AECM instance.
318 | //
319 | // Return value:
320 | // - supGain : Suppression gain with which to scale the noise
321 | // level (Q14).
322 | //
323 | int16_t WebRtcAecm_CalcSuppressionGain(AecmCore *const aecm);
324 |
325 | ///////////////////////////////////////////////////////////////////////////////
326 | // WebRtcAecm_CalcEnergies()
327 | //
328 | // This function calculates the log of energies for nearend, farend and
329 | // estimated echoes. There is also an update of energy decision levels,
330 | // i.e. internal VAD.
331 | //
332 | // Inputs:
333 | // - aecm : Pointer to the AECM instance.
334 | // - far_spectrum : Pointer to farend spectrum.
335 | // - far_q : Q-domain of farend spectrum.
336 | // - nearEner : Near end energy for current block in
337 | // Q(aecm->dfaQDomain).
338 | //
339 | // Output:
340 | // - echoEst : Estimated echo in Q(xfa_q+RESOLUTION_CHANNEL16).
341 | //
342 | void WebRtcAecm_CalcEnergies(AecmCore *aecm,
343 | const uint16_t *far_spectrum,
344 | const int16_t far_q,
345 | const uint32_t nearEner,
346 | int32_t *echoEst);
347 |
348 | ///////////////////////////////////////////////////////////////////////////////
349 | // WebRtcAecm_CalcStepSize()
350 | //
351 | // This function calculates the step size used in channel estimation
352 | //
353 | // Inputs:
354 | // - aecm : Pointer to the AECM instance.
355 | //
356 | // Return value:
357 | // - mu : Stepsize in log2(), i.e. number of shifts.
358 | //
359 | int16_t WebRtcAecm_CalcStepSize(AecmCore *const aecm);
360 |
361 | ///////////////////////////////////////////////////////////////////////////////
362 | // WebRtcAecm_UpdateChannel(...)
363 | //
364 | // This function performs channel estimation.
365 | // NLMS and decision on channel storage.
366 | //
367 | // Inputs:
368 | // - aecm : Pointer to the AECM instance.
369 | // - far_spectrum : Absolute value of the farend signal in Q(far_q)
370 | // - far_q : Q-domain of the farend signal
371 | // - dfa : Absolute value of the nearend signal
372 | // (Q[aecm->dfaQDomain])
373 | // - mu : NLMS step size.
374 | // Input/Output:
375 | // - echoEst : Estimated echo in Q(far_q+RESOLUTION_CHANNEL16).
376 | //
377 | void WebRtcAecm_UpdateChannel(AecmCore *aecm,
378 | const uint16_t *far_spectrum,
379 | const int16_t far_q,
380 | const uint16_t *const dfa,
381 | const int16_t mu,
382 | int32_t *echoEst);
383 |
384 | extern const int16_t WebRtcAecm_kCosTable[];
385 | extern const int16_t WebRtcAecm_kSinTable[];
386 |
387 | ///////////////////////////////////////////////////////////////////////////////
388 | // Some function pointers, for internal functions shared by ARM NEON and
389 | // generic C code.
390 | //
391 | typedef void (*CalcLinearEnergies)(AecmCore *aecm,
392 | const uint16_t *far_spectrum,
393 | int32_t *echoEst,
394 | uint32_t *far_energy,
395 | uint32_t *echo_energy_adapt,
396 | uint32_t *echo_energy_stored);
397 |
398 | extern CalcLinearEnergies WebRtcAecm_CalcLinearEnergies;
399 |
400 | typedef void (*StoreAdaptiveChannel)(AecmCore *aecm,
401 | const uint16_t *far_spectrum,
402 | int32_t *echo_est);
403 |
404 | extern StoreAdaptiveChannel WebRtcAecm_StoreAdaptiveChannel;
405 |
406 | typedef void (*ResetAdaptiveChannel)(AecmCore *aecm);
407 |
408 | extern ResetAdaptiveChannel WebRtcAecm_ResetAdaptiveChannel;
409 |
410 | // For the above function pointers, functions for generic platforms are declared
411 | // and defined as static in file aecm_core.c, while those for ARM Neon platforms
412 | // are declared below and defined in file aecm_core_neon.c.
413 | #if defined(WEBRTC_HAS_NEON)
414 | void WebRtcAecm_CalcLinearEnergiesNeon(AecmCore* aecm,
415 | const uint16_t* far_spectrum,
416 | int32_t* echo_est,
417 | uint32_t* far_energy,
418 | uint32_t* echo_energy_adapt,
419 | uint32_t* echo_energy_stored);
420 |
421 | void WebRtcAecm_StoreAdaptiveChannelNeon(AecmCore* aecm,
422 | const uint16_t* far_spectrum,
423 | int32_t* echo_est);
424 |
425 | void WebRtcAecm_ResetAdaptiveChannelNeon(AecmCore* aecm);
426 | #endif
427 |
428 | #if defined(MIPS32_LE)
429 | void WebRtcAecm_CalcLinearEnergies_mips(AecmCore* aecm,
430 | const uint16_t* far_spectrum,
431 | int32_t* echo_est,
432 | uint32_t* far_energy,
433 | uint32_t* echo_energy_adapt,
434 | uint32_t* echo_energy_stored);
435 | #if defined(MIPS_DSP_R1_LE)
436 | void WebRtcAecm_StoreAdaptiveChannel_mips(AecmCore* aecm,
437 | const uint16_t* far_spectrum,
438 | int32_t* echo_est);
439 |
440 | void WebRtcAecm_ResetAdaptiveChannel_mips(AecmCore* aecm);
441 | #endif
442 | #endif
443 |
444 |
445 | #endif
446 |
--------------------------------------------------------------------------------
/aecm/aecm_core_c.cc:
--------------------------------------------------------------------------------
1 | /*
2 | * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
3 | *
4 | * Use of this source code is governed by a BSD-style license
5 | * that can be found in the LICENSE file in the root of the source
6 | * tree. An additional intellectual property rights grant can be found
7 | * in the file PATENTS. All contributing project authors may
8 | * be found in the AUTHORS file in the root of the source tree.
9 | */
10 |
11 | #include
12 |
13 | #include "aecm_core.h"
14 |
15 | extern "C" {
16 | #include "real_fft.h"
17 | }
18 |
19 | #include "echo_control_mobile.h"
20 | #include "delay_estimator_wrapper.h"
21 |
22 |
23 | // Square root of Hanning window in Q14.
24 | static const ALIGN8_BEG int16_t
25 | WebRtcAecm_kSqrtHanning[]
26 | ALIGN8_END = {
27 | 0, 399, 798, 1196, 1594, 1990, 2386, 2780, 3172, 3562, 3951,
28 | 4337, 4720, 5101, 5478, 5853, 6224, 6591, 6954, 7313, 7668, 8019,
29 | 8364, 8705, 9040, 9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514,
30 | 11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553, 13773, 13985, 14189,
31 | 14384, 14571, 14749, 14918, 15079, 15231, 15373, 15506, 15631, 15746, 15851,
32 | 15947, 16034, 16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384};
33 |
34 | #ifdef AECM_WITH_ABS_APPROX
35 | // Q15 alpha = 0.99439986968132 const Factor for magnitude approximation
36 | static const uint16_t kAlpha1 = 32584;
37 | // Q15 beta = 0.12967166976970 const Factor for magnitude approximation
38 | static const uint16_t kBeta1 = 4249;
39 | // Q15 alpha = 0.94234827210087 const Factor for magnitude approximation
40 | static const uint16_t kAlpha2 = 30879;
41 | // Q15 beta = 0.33787806009150 const Factor for magnitude approximation
42 | static const uint16_t kBeta2 = 11072;
43 | // Q15 alpha = 0.82247698684306 const Factor for magnitude approximation
44 | static const uint16_t kAlpha3 = 26951;
45 | // Q15 beta = 0.57762063060713 const Factor for magnitude approximation
46 | static const uint16_t kBeta3 = 18927;
47 | #endif
48 |
49 | static const int16_t kNoiseEstQDomain = 15;
50 | static const int16_t kNoiseEstIncCount = 5;
51 |
52 | static void ComfortNoise(AecmCore *aecm,
53 | const uint16_t *dfa,
54 | ComplexInt16 *out,
55 | const int16_t *lambda) {
56 | int16_t i;
57 | int16_t tmp16;
58 | int32_t tmp32;
59 |
60 | int16_t randW16[PART_LEN];
61 | int16_t uReal[PART_LEN1];
62 | int16_t uImag[PART_LEN1];
63 | int32_t outLShift32;
64 | int16_t noiseRShift16[PART_LEN1];
65 |
66 | int16_t shiftFromNearToNoise = kNoiseEstQDomain - aecm->dfaCleanQDomain;
67 | int16_t minTrackShift;
68 |
69 | RTC_DCHECK_GE(shiftFromNearToNoise, 0);
70 | RTC_DCHECK_LT(shiftFromNearToNoise, 16);
71 |
72 | if (aecm->noiseEstCtr < 100) {
73 | // Track the minimum more quickly initially.
74 | aecm->noiseEstCtr++;
75 | minTrackShift = 6;
76 | } else {
77 | minTrackShift = 9;
78 | }
79 |
80 | // Estimate noise power.
81 | for (i = 0; i < PART_LEN1; i++) {
82 | // Shift to the noise domain.
83 | tmp32 = (int32_t) dfa[i];
84 | outLShift32 = tmp32 << shiftFromNearToNoise;
85 |
86 | if (outLShift32 < aecm->noiseEst[i]) {
87 | // Reset "too low" counter
88 | aecm->noiseEstTooLowCtr[i] = 0;
89 | // Track the minimum.
90 | if (aecm->noiseEst[i] < (1 << minTrackShift)) {
91 | // For small values, decrease noiseEst[i] every
92 | // |kNoiseEstIncCount| block. The regular approach below can not
93 | // go further down due to truncation.
94 | aecm->noiseEstTooHighCtr[i]++;
95 | if (aecm->noiseEstTooHighCtr[i] >= kNoiseEstIncCount) {
96 | aecm->noiseEst[i]--;
97 | aecm->noiseEstTooHighCtr[i] = 0; // Reset the counter
98 | }
99 | } else {
100 | aecm->noiseEst[i] -=
101 | ((aecm->noiseEst[i] - outLShift32) >> minTrackShift);
102 | }
103 | } else {
104 | // Reset "too high" counter
105 | aecm->noiseEstTooHighCtr[i] = 0;
106 | // Ramp slowly upwards until we hit the minimum again.
107 | if ((aecm->noiseEst[i] >> 19) > 0) {
108 | // Avoid overflow.
109 | // Multiplication with 2049 will cause wrap around. Scale
110 | // down first and then multiply
111 | aecm->noiseEst[i] >>= 11;
112 | aecm->noiseEst[i] *= 2049;
113 | } else if ((aecm->noiseEst[i] >> 11) > 0) {
114 | // Large enough for relative increase
115 | aecm->noiseEst[i] *= 2049;
116 | aecm->noiseEst[i] >>= 11;
117 | } else {
118 | // Make incremental increases based on size every
119 | // |kNoiseEstIncCount| block
120 | aecm->noiseEstTooLowCtr[i]++;
121 | if (aecm->noiseEstTooLowCtr[i] >= kNoiseEstIncCount) {
122 | aecm->noiseEst[i] += (aecm->noiseEst[i] >> 9) + 1;
123 | aecm->noiseEstTooLowCtr[i] = 0; // Reset counter
124 | }
125 | }
126 | }
127 | }
128 |
129 | for (i = 0; i < PART_LEN1; i++) {
130 | tmp32 = aecm->noiseEst[i] >> shiftFromNearToNoise;
131 | if (tmp32 > 32767) {
132 | tmp32 = 32767;
133 | aecm->noiseEst[i] = tmp32 << shiftFromNearToNoise;
134 | }
135 | noiseRShift16[i] = (int16_t)
136 | tmp32;
137 |
138 | tmp16 = ONE_Q14 - lambda[i];
139 | noiseRShift16[i] = (int16_t) ((tmp16 * noiseRShift16[i]) >> 14);
140 | }
141 |
142 | // Generate a uniform random array on [0 2^15-1].
143 | WebRtcSpl_RandUArray(randW16, PART_LEN, &aecm->seed);
144 |
145 | // Generate noise according to estimated energy.
146 | uReal[0] = 0; // Reject LF noise.
147 | uImag[0] = 0;
148 | for (i = 1; i < PART_LEN1; i++) {
149 | // Get a random index for the cos and sin tables over [0 359].
150 | tmp16 = (int16_t) ((359 * randW16[i - 1]) >> 15);
151 |
152 | // Tables are in Q13.
153 | uReal[i] =
154 | (int16_t) ((noiseRShift16[i] * WebRtcAecm_kCosTable[tmp16]) >> 13);
155 | uImag[i] =
156 | (int16_t) ((-noiseRShift16[i] * WebRtcAecm_kSinTable[tmp16]) >> 13);
157 | }
158 | uImag[PART_LEN] = 0;
159 |
160 | for (i = 0; i < PART_LEN1; i++) {
161 | out[i].real = WebRtcSpl_AddSatW16(out[i].real, uReal[i]);
162 | out[i].imag = WebRtcSpl_AddSatW16(out[i].imag, uImag[i]);
163 | }
164 | }
165 |
166 | static void WindowAndFFT(AecmCore *aecm,
167 | int16_t *fft,
168 | const int16_t *time_signal,
169 | ComplexInt16 *freq_signal,
170 | int time_signal_scaling) {
171 | int i = 0;
172 |
173 | // FFT of signal
174 | for (i = 0; i < PART_LEN; i++) {
175 | // Window time domain signal and insert into real part of
176 | // transformation array |fft|
177 | int16_t scaled_time_signal = time_signal[i] * (1 << time_signal_scaling);
178 | fft[i] = (int16_t) ((scaled_time_signal * WebRtcAecm_kSqrtHanning[i]) >> 14);
179 | scaled_time_signal = time_signal[i + PART_LEN] * (1 << time_signal_scaling);
180 | fft[PART_LEN + i] = (int16_t) (
181 | (scaled_time_signal * WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14);
182 | }
183 |
184 | // Do forward FFT, then take only the first PART_LEN complex samples,
185 | // and change signs of the imaginary parts.
186 | WebRtcSpl_RealForwardFFT(aecm->real_fft, fft, (int16_t *)
187 | freq_signal);
188 | for (i = 0; i < PART_LEN; i++) {
189 | freq_signal[i].imag = -freq_signal[i].imag;
190 | }
191 | }
192 |
193 | static void InverseFFTAndWindow(AecmCore *aecm,
194 | int16_t *fft,
195 | ComplexInt16 *efw,
196 | int16_t *output,
197 | const int16_t *nearendClean) {
198 | int i, j, outCFFT;
199 | int32_t tmp32no1;
200 | // Reuse |efw| for the inverse FFT output after transferring
201 | // the contents to |fft|.
202 | int16_t *ifft_out = (int16_t *)
203 | efw;
204 |
205 | // Synthesis
206 | for (i = 1, j = 2; i < PART_LEN; i += 1, j += 2) {
207 | fft[j] = efw[i].real;
208 | fft[j + 1] = -efw[i].imag;
209 | }
210 | fft[0] = efw[0].real;
211 | fft[1] = -efw[0].imag;
212 |
213 | fft[PART_LEN2] = efw[PART_LEN].real;
214 | fft[PART_LEN2 + 1] = -efw[PART_LEN].imag;
215 |
216 | // Inverse FFT. Keep outCFFT to scale the samples in the next block.
217 | outCFFT = WebRtcSpl_RealInverseFFT(aecm->real_fft, fft, ifft_out);
218 | for (i = 0; i < PART_LEN; i++) {
219 | ifft_out[i] = (int16_t)
220 | WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(
221 | ifft_out[i], WebRtcAecm_kSqrtHanning[i], 14);
222 | tmp32no1 = WEBRTC_SPL_SHIFT_W32((int32_t) ifft_out[i],
223 | outCFFT - aecm->dfaCleanQDomain);
224 | output[i] = (int16_t)
225 | WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
226 | tmp32no1 + aecm->outBuf[i],
227 | WEBRTC_SPL_WORD16_MIN);
228 |
229 | tmp32no1 =
230 | (ifft_out[PART_LEN + i] * WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14;
231 | tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1, outCFFT - aecm->dfaCleanQDomain);
232 | aecm->outBuf[i] = (int16_t)
233 | WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, tmp32no1,
234 | WEBRTC_SPL_WORD16_MIN);
235 | }
236 |
237 | // Copy the current block to the old position
238 | // (aecm->outBuf is shifted elsewhere)
239 | memcpy(aecm->xBuf, aecm->xBuf + PART_LEN, sizeof(int16_t) * PART_LEN);
240 | memcpy(aecm->dBufNoisy, aecm->dBufNoisy + PART_LEN,
241 | sizeof(int16_t) * PART_LEN);
242 | if (nearendClean != NULL) {
243 | memcpy(aecm->dBufClean, aecm->dBufClean + PART_LEN,
244 | sizeof(int16_t) * PART_LEN);
245 | }
246 | }
247 |
248 | // Transforms a time domain signal into the frequency domain, outputting the
249 | // complex valued signal, absolute value and sum of absolute values.
250 | //
251 | // time_signal [in] Pointer to time domain signal
252 | // freq_signal_real [out] Pointer to real part of frequency domain array
253 | // freq_signal_imag [out] Pointer to imaginary part of frequency domain
254 | // array
255 | // freq_signal_abs [out] Pointer to absolute value of frequency domain
256 | // array
257 | // freq_signal_sum_abs [out] Pointer to the sum of all absolute values in
258 | // the frequency domain array
259 | // return value The Q-domain of current frequency values
260 | //
261 | static int TimeToFrequencyDomain(AecmCore *aecm,
262 | const int16_t *time_signal,
263 | ComplexInt16 *freq_signal,
264 | uint16_t *freq_signal_abs,
265 | uint32_t *freq_signal_sum_abs) {
266 | int i = 0;
267 | int time_signal_scaling = 0;
268 |
269 | int32_t tmp32no1 = 0;
270 | int32_t tmp32no2 = 0;
271 |
272 | // In fft_buf, +16 for 32-byte alignment.
273 | int16_t fft_buf[PART_LEN4 + 16];
274 | int16_t *fft = (int16_t *) (((uintptr_t) fft_buf + 31) & ~31);
275 |
276 | int16_t tmp16no1;
277 | #ifndef WEBRTC_ARCH_ARM_V7
278 | int16_t tmp16no2;
279 | #endif
280 | #ifdef AECM_WITH_ABS_APPROX
281 | int16_t max_value = 0;
282 | int16_t min_value = 0;
283 | uint16_t alpha = 0;
284 | uint16_t beta = 0;
285 | #endif
286 |
287 | #ifdef AECM_DYNAMIC_Q
288 | tmp16no1 = WebRtcSpl_MaxAbsValueW16(time_signal, PART_LEN2);
289 | time_signal_scaling = WebRtcSpl_NormW16(tmp16no1);
290 | #endif
291 |
292 | WindowAndFFT(aecm, fft, time_signal, freq_signal, time_signal_scaling);
293 |
294 | // Extract imaginary and real part, calculate the magnitude for
295 | // all frequency bins
296 | freq_signal[0].imag = 0;
297 | freq_signal[PART_LEN].imag = 0;
298 | freq_signal_abs[0] = (uint16_t) WEBRTC_SPL_ABS_W16(freq_signal[0].real);
299 | freq_signal_abs[PART_LEN] =
300 | (uint16_t) WEBRTC_SPL_ABS_W16(freq_signal[PART_LEN].real);
301 | (*freq_signal_sum_abs) =
302 | (uint32_t) (freq_signal_abs[0]) + (uint32_t) (freq_signal_abs[PART_LEN]);
303 |
304 | for (i = 1; i < PART_LEN; i++) {
305 | if (freq_signal[i].real == 0) {
306 | freq_signal_abs[i] = (uint16_t) WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
307 | } else if (freq_signal[i].imag == 0) {
308 | freq_signal_abs[i] = (uint16_t) WEBRTC_SPL_ABS_W16(freq_signal[i].real);
309 | } else {
310 | // Approximation for magnitude of complex fft output
311 | // magn = sqrt(real^2 + imag^2)
312 | // magn ~= alpha * max(|imag|,|real|) + beta * min(|imag|,|real|)
313 | //
314 | // The parameters alpha and beta are stored in Q15
315 |
316 | #ifdef AECM_WITH_ABS_APPROX
317 | tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
318 | tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
319 |
320 | if (tmp16no1 > tmp16no2) {
321 | max_value = tmp16no1;
322 | min_value = tmp16no2;
323 | } else {
324 | max_value = tmp16no2;
325 | min_value = tmp16no1;
326 | }
327 |
328 | // Magnitude in Q(-6)
329 | if ((max_value >> 2) > min_value) {
330 | alpha = kAlpha1;
331 | beta = kBeta1;
332 | } else if ((max_value >> 1) > min_value) {
333 | alpha = kAlpha2;
334 | beta = kBeta2;
335 | } else {
336 | alpha = kAlpha3;
337 | beta = kBeta3;
338 | }
339 | tmp16no1 = (int16_t)((max_value * alpha) >> 15);
340 | tmp16no2 = (int16_t)((min_value * beta) >> 15);
341 | freq_signal_abs[i] = (uint16_t)tmp16no1 + (uint16_t)tmp16no2;
342 | #else
343 | #ifdef WEBRTC_ARCH_ARM_V7
344 | __asm __volatile(
345 | "smulbb %[tmp32no1], %[real], %[real]\n\t"
346 | "smlabb %[tmp32no2], %[imag], %[imag], %[tmp32no1]\n\t"
347 | : [tmp32no1] "+&r"(tmp32no1), [tmp32no2] "=r"(tmp32no2)
348 | : [real] "r"(freq_signal[i].real), [imag] "r"(freq_signal[i].imag));
349 | #else
350 | tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
351 | tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
352 | tmp32no1 = tmp16no1 * tmp16no1;
353 | tmp32no2 = tmp16no2 * tmp16no2;
354 | tmp32no2 = WebRtcSpl_AddSatW32(tmp32no1, tmp32no2);
355 | #endif // WEBRTC_ARCH_ARM_V7
356 | tmp32no1 = WebRtcSpl_SqrtFloor(tmp32no2);
357 |
358 | freq_signal_abs[i] = (uint16_t) tmp32no1;
359 | #endif // AECM_WITH_ABS_APPROX
360 | }
361 | (*freq_signal_sum_abs) += (uint32_t) freq_signal_abs[i];
362 | }
363 |
364 | return time_signal_scaling;
365 | }
366 |
367 | // bugs.webrtc.org/8200
368 | int WebRtcAecm_ProcessBlock(AecmCore *aecm, const int16_t *farend, const int16_t *nearendNoisy,
369 | const int16_t *nearendClean, int16_t *output) {
370 | int i;
371 |
372 | uint32_t xfaSum;
373 | uint32_t dfaNoisySum;
374 | uint32_t dfaCleanSum;
375 | uint32_t echoEst32Gained;
376 | uint32_t tmpU32;
377 |
378 | int32_t tmp32no1;
379 |
380 | uint16_t xfa[PART_LEN1];
381 | uint16_t dfaNoisy[PART_LEN1];
382 | uint16_t dfaClean[PART_LEN1];
383 | uint16_t *ptrDfaClean = dfaClean;
384 | const uint16_t *far_spectrum_ptr = NULL;
385 |
386 | // 32 byte aligned buffers (with +8 or +16).
387 | // TODO(kma): define fft with ComplexInt16.
388 | int16_t fft_buf[PART_LEN4 + 2 + 16]; // +2 to make a loop safe.
389 | int32_t echoEst32_buf[PART_LEN1 + 8];
390 | int32_t dfw_buf[PART_LEN2 + 8];
391 | int32_t efw_buf[PART_LEN2 + 8];
392 |
393 | int16_t *fft = (int16_t *) (((uintptr_t) fft_buf + 31) & ~31);
394 | int32_t *echoEst32 = (int32_t *) (((uintptr_t) echoEst32_buf + 31) & ~31);
395 | ComplexInt16 *dfw = (ComplexInt16 *) (((uintptr_t) dfw_buf + 31) & ~31);
396 | ComplexInt16 *efw = (ComplexInt16 *) (((uintptr_t) efw_buf + 31) & ~31);
397 |
398 | int16_t hnl[PART_LEN1];
399 | int16_t numPosCoef = 0;
400 | int16_t nlpGain = ONE_Q14;
401 | int delay;
402 | int16_t tmp16no1;
403 | int16_t tmp16no2;
404 | int16_t mu;
405 | int16_t supGain;
406 | int16_t zeros32, zeros16;
407 | int16_t zerosDBufNoisy, zerosDBufClean, zerosXBuf;
408 | int far_q;
409 | int16_t resolutionDiff, qDomainDiff, dfa_clean_q_domain_diff;
410 |
411 | const int kMinPrefBand = 4;
412 | const int kMaxPrefBand = 24;
413 | int32_t avgHnl32 = 0;
414 |
415 | // Determine startup state. There are three states:
416 | // (0) the first CONV_LEN blocks
417 | // (1) another CONV_LEN blocks
418 | // (2) the rest
419 |
420 | if (aecm->startupState < 2) {
421 | aecm->
422 | startupState =
423 | (aecm->totCount >= CONV_LEN) + (aecm->totCount >= CONV_LEN2);
424 | }
425 | // END: Determine startup state
426 |
427 | // Buffer near and far end signals
428 | memcpy(aecm
429 | ->xBuf + PART_LEN, farend, sizeof(int16_t) * PART_LEN);
430 | memcpy(aecm
431 | ->dBufNoisy + PART_LEN, nearendNoisy, sizeof(int16_t) * PART_LEN);
432 | if (nearendClean != NULL) {
433 | memcpy(aecm
434 | ->dBufClean + PART_LEN, nearendClean,
435 | sizeof(int16_t) * PART_LEN);
436 | }
437 |
438 | // Transform far end signal from time domain to frequency domain.
439 | far_q = TimeToFrequencyDomain(aecm, aecm->xBuf, dfw, xfa, &xfaSum);
440 |
441 | // Transform noisy near end signal from time domain to frequency domain.
442 | zerosDBufNoisy =
443 | TimeToFrequencyDomain(aecm, aecm->dBufNoisy, dfw, dfaNoisy, &dfaNoisySum);
444 | aecm->
445 | dfaNoisyQDomainOld = aecm->dfaNoisyQDomain;
446 | aecm->
447 | dfaNoisyQDomain = (int16_t) zerosDBufNoisy;
448 |
449 | if (nearendClean == NULL) {
450 | ptrDfaClean = dfaNoisy;
451 | aecm->
452 | dfaCleanQDomainOld = aecm->dfaNoisyQDomainOld;
453 | aecm->
454 | dfaCleanQDomain = aecm->dfaNoisyQDomain;
455 | dfaCleanSum = dfaNoisySum;
456 | } else {
457 | // Transform clean near end signal from time domain to frequency domain.
458 | zerosDBufClean = TimeToFrequencyDomain(aecm, aecm->dBufClean, dfw, dfaClean,
459 | &dfaCleanSum);
460 | aecm->
461 | dfaCleanQDomainOld = aecm->dfaCleanQDomain;
462 | aecm->
463 | dfaCleanQDomain = (int16_t) zerosDBufClean;
464 | }
465 |
466 | // Get the delay
467 | // Save far-end history and estimate delay
468 | WebRtcAecm_UpdateFarHistory(aecm, xfa, far_q
469 | );
470 | if (WebRtc_AddFarSpectrumFix(aecm
471 | ->delay_estimator_farend, xfa, PART_LEN1,
472 | far_q) == -1) {
473 | return -1;
474 | }
475 | delay = WebRtc_DelayEstimatorProcessFix(aecm->delay_estimator, dfaNoisy,
476 | PART_LEN1, zerosDBufNoisy);
477 | if (delay == -1) {
478 | return -1;
479 | } else if (delay == -2) {
480 | // If the delay is unknown, we assume zero.
481 | // NOTE: this will have to be adjusted if we ever add lookahead.
482 | delay = 0;
483 | }
484 |
485 | if (aecm->fixedDelay >= 0) {
486 | // Use fixed delay
487 | delay = aecm->fixedDelay;
488 | }
489 |
490 | // Get aligned far end spectrum
491 | far_spectrum_ptr = WebRtcAecm_AlignedFarend(aecm, &far_q, delay);
492 | zerosXBuf = (int16_t) far_q;
493 | if (far_spectrum_ptr == NULL) {
494 | return -1;
495 | }
496 |
497 | // Calculate log(energy) and update energy threshold levels
498 | WebRtcAecm_CalcEnergies(aecm, far_spectrum_ptr, zerosXBuf, dfaNoisySum,
499 | echoEst32
500 | );
501 |
502 | // Calculate stepsize
503 | mu = WebRtcAecm_CalcStepSize(aecm);
504 |
505 | // Update counters
506 | aecm->totCount++;
507 |
508 | // This is the channel estimation algorithm.
509 | // It is base on NLMS but has a variable step length,
510 | // which was calculated above.
511 | WebRtcAecm_UpdateChannel(aecm, far_spectrum_ptr, zerosXBuf, dfaNoisy, mu,
512 | echoEst32
513 | );
514 | supGain = WebRtcAecm_CalcSuppressionGain(aecm);
515 |
516 | // Calculate Wiener filter hnl[]
517 | for (
518 | i = 0;
519 | i < PART_LEN1;
520 | i++) {
521 | // Far end signal through channel estimate in Q8
522 | // How much can we shift right to preserve resolution
523 | tmp32no1 = echoEst32[i] - aecm->echoFilt[i];
524 | aecm->echoFilt[i] += (int32_t) ((int64_t{tmp32no1}
525 | * 50) >> 8);
526 |
527 | zeros32 = WebRtcSpl_NormW32(aecm->echoFilt[i]) + 1;
528 | zeros16 = WebRtcSpl_NormW16(supGain) + 1;
529 | if (zeros32 + zeros16 > 16) {
530 | // Multiplication is safe
531 | // Result in
532 | // Q(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN+
533 | // aecm->xfaQDomainBuf[diff])
534 | echoEst32Gained =
535 | WEBRTC_SPL_UMUL_32_16((uint32_t) aecm->echoFilt[i], (uint16_t) supGain);
536 | resolutionDiff = 14 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN;
537 | resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
538 | } else {
539 | tmp16no1 = 17 - zeros32 - zeros16;
540 | resolutionDiff =
541 | 14 + tmp16no1 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN;
542 | resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
543 | if (zeros32 > tmp16no1) {
544 | echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t) aecm->echoFilt[i],
545 | supGain >> tmp16no1);
546 | } else {
547 | // Result in Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN-16)
548 | echoEst32Gained = (aecm->echoFilt[i] >> tmp16no1) * supGain;
549 | }
550 | }
551 |
552 | zeros16 = WebRtcSpl_NormW16(aecm->nearFilt[i]);
553 | RTC_DCHECK_GE(zeros16,
554 | 0); // |zeros16| is a norm, hence non-negative.
555 | dfa_clean_q_domain_diff = aecm->dfaCleanQDomain - aecm->dfaCleanQDomainOld;
556 | if (zeros16 < dfa_clean_q_domain_diff && aecm->nearFilt[i]) {
557 | tmp16no1 = aecm->nearFilt[i] * (1 << zeros16);
558 | qDomainDiff = zeros16 - dfa_clean_q_domain_diff;
559 | tmp16no2 = ptrDfaClean[i] >> -qDomainDiff;
560 | } else {
561 | tmp16no1 = dfa_clean_q_domain_diff < 0
562 | ? aecm->nearFilt[i] >> -dfa_clean_q_domain_diff
563 | : aecm->nearFilt[i] * (1 << dfa_clean_q_domain_diff);
564 | qDomainDiff = 0;
565 | tmp16no2 = ptrDfaClean[i];
566 | }
567 | tmp32no1 = (int32_t) (tmp16no2 - tmp16no1);
568 | tmp16no2 = (int16_t) (tmp32no1 >> 4);
569 | tmp16no2 +=
570 | tmp16no1;
571 | zeros16 = WebRtcSpl_NormW16(tmp16no2);
572 | if ((tmp16no2) & (-qDomainDiff > zeros16)) {
573 | aecm->nearFilt[i] =
574 | WEBRTC_SPL_WORD16_MAX;
575 | } else {
576 | aecm->nearFilt[i] = qDomainDiff < 0 ? tmp16no2 * (1 << -qDomainDiff)
577 | : tmp16no2 >>
578 | qDomainDiff;
579 | }
580 |
581 | // Wiener filter coefficients, resulting hnl in Q14
582 | if (echoEst32Gained == 0) {
583 | hnl[i] =
584 | ONE_Q14;
585 | } else if (aecm->nearFilt[i] == 0) {
586 | hnl[i] = 0;
587 | } else {
588 | // Multiply the suppression gain
589 | // Rounding
590 | echoEst32Gained += (uint32_t) (aecm->nearFilt[i] >> 1);
591 | tmpU32 =
592 | WebRtcSpl_DivU32U16(echoEst32Gained, (uint16_t) aecm->nearFilt[i]);
593 |
594 | // Current resolution is
595 | // Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN- max(0,17-zeros16- zeros32))
596 | // Make sure we are in Q14
597 | tmp32no1 = (int32_t) WEBRTC_SPL_SHIFT_W32(tmpU32, resolutionDiff);
598 | if (tmp32no1 > ONE_Q14) {
599 | hnl[i] = 0;
600 | } else if (tmp32no1 < 0) {
601 | hnl[i] =
602 | ONE_Q14;
603 | } else {
604 | // 1-echoEst/dfa
605 | hnl[i] = ONE_Q14 - (int16_t)
606 | tmp32no1;
607 | if (hnl[i] < 0) {
608 | hnl[i] = 0;
609 | }
610 | }
611 | }
612 | if (hnl[i]) {
613 | numPosCoef++;
614 | }
615 | }
616 | // Only in wideband. Prevent the gain in upper band from being larger than
617 | // in lower band.
618 | if (aecm->mult == 2) {
619 | // TODO(bjornv): Investigate if the scaling of hnl[i] below can cause
620 | // speech distortion in double-talk.
621 | for (
622 | i = 0;
623 | i < PART_LEN1;
624 | i++) {
625 | hnl[i] = (int16_t) ((hnl[i] * hnl[i]) >> 14);
626 | }
627 |
628 | for (
629 | i = kMinPrefBand;
630 | i <=
631 | kMaxPrefBand;
632 | i++) {
633 | avgHnl32 += (int32_t) hnl[i];
634 | }
635 | RTC_DCHECK_GT(kMaxPrefBand
636 | -kMinPrefBand + 1, 0);
637 | avgHnl32 /= (kMaxPrefBand - kMinPrefBand + 1);
638 |
639 | for (
640 | i = kMaxPrefBand;
641 | i < PART_LEN1;
642 | i++) {
643 | if (hnl[i] > (int16_t) avgHnl32) {
644 | hnl[i] = (int16_t)
645 | avgHnl32;
646 | }
647 | }
648 | }
649 |
650 | // Calculate NLP gain, result is in Q14
651 | if (aecm->nlpFlag) {
652 | for (
653 | i = 0;
654 | i < PART_LEN1;
655 | i++) {
656 | // Truncate values close to zero and one.
657 | if (hnl[i] > NLP_COMP_HIGH) {
658 | hnl[i] =
659 | ONE_Q14;
660 | } else if (hnl[i] < NLP_COMP_LOW) {
661 | hnl[i] = 0;
662 | }
663 |
664 | // Remove outliers
665 | if (numPosCoef < 3) {
666 | nlpGain = 0;
667 | } else {
668 | nlpGain = ONE_Q14;
669 | }
670 |
671 | // NLP
672 | if ((hnl[i] == ONE_Q14) && (nlpGain == ONE_Q14)) {
673 | hnl[i] =
674 | ONE_Q14;
675 | } else {
676 | hnl[i] = (int16_t) ((hnl[i] * nlpGain) >> 14);
677 | }
678 |
679 | // multiply with Wiener coefficients
680 | efw[i].
681 | real = (int16_t) (
682 | WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real, hnl[i], 14));
683 | efw[i].
684 | imag = (int16_t) (
685 | WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag, hnl[i], 14));
686 | }
687 | } else {
688 | // multiply with Wiener coefficients
689 | for (
690 | i = 0;
691 | i < PART_LEN1;
692 | i++) {
693 | efw[i].
694 | real = (int16_t) (
695 | WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real, hnl[i], 14));
696 | efw[i].
697 | imag = (int16_t) (
698 | WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag, hnl[i], 14));
699 | }
700 | }
701 |
702 | if (aecm->cngMode == AecmTrue) {
703 | ComfortNoise(aecm, ptrDfaClean, efw, hnl
704 | );
705 | }
706 |
707 | InverseFFTAndWindow(aecm, fft, efw, output, nearendClean
708 | );
709 |
710 | return 0;
711 | }
712 |
--------------------------------------------------------------------------------
/aecm/aecm_core_neon.cc:
--------------------------------------------------------------------------------
1 | /*
2 | * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 | *
4 | * Use of this source code is governed by a BSD-style license
5 | * that can be found in the LICENSE file in the root of the source
6 | * tree. An additional intellectual property rights grant can be found
7 | * in the file PATENTS. All contributing project authors may
8 | * be found in the AUTHORS file in the root of the source tree.
9 | */
10 |
11 | #include
12 |
13 | #include "real_fft.h"
14 | #include "aecm_core.h"
15 | #include "signal_processing_library.h"
16 |
17 |
18 |
19 | // TODO(kma): Re-write the corresponding assembly file, the offset
20 | // generating script and makefile, to replace these C functions.
21 |
22 | static inline void AddLanes(uint32_t *ptr, uint32x4_t v) {
23 | #if defined(WEBRTC_ARCH_ARM64)
24 | *(ptr) = vaddvq_u32(v);
25 | #else
26 | uint32x2_t tmp_v;
27 | tmp_v = vadd_u32(vget_low_u32(v), vget_high_u32(v));
28 | tmp_v = vpadd_u32(tmp_v, tmp_v);
29 | *(ptr) = vget_lane_u32(tmp_v, 0);
30 | #endif
31 | }
32 |
33 |
34 | void WebRtcAecm_CalcLinearEnergiesNeon(AecmCore *aecm,
35 | const uint16_t *far_spectrum,
36 | int32_t *echo_est,
37 | uint32_t *far_energy,
38 | uint32_t *echo_energy_adapt,
39 | uint32_t *echo_energy_stored) {
40 | int16_t *start_stored_p = aecm->channelStored;
41 | int16_t *start_adapt_p = aecm->channelAdapt16;
42 | int32_t *echo_est_p = echo_est;
43 | const int16_t *end_stored_p = aecm->channelStored + PART_LEN;
44 | const uint16_t *far_spectrum_p = far_spectrum;
45 | int16x8_t store_v, adapt_v;
46 | uint16x8_t spectrum_v;
47 | uint32x4_t echo_est_v_low, echo_est_v_high;
48 | uint32x4_t far_energy_v, echo_stored_v, echo_adapt_v;
49 |
50 | far_energy_v = vdupq_n_u32(0);
51 | echo_adapt_v = vdupq_n_u32(0);
52 | echo_stored_v = vdupq_n_u32(0);
53 |
54 | // Get energy for the delayed far end signal and estimated
55 | // echo using both stored and adapted channels.
56 | // The C code:
57 | // for (i = 0; i < PART_LEN1; i++) {
58 | // echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
59 | // far_spectrum[i]);
60 | // (*far_energy) += (uint32_t)(far_spectrum[i]);
61 | // *echo_energy_adapt += aecm->channelAdapt16[i] * far_spectrum[i];
62 | // (*echo_energy_stored) += (uint32_t)echo_est[i];
63 | // }
64 | while (start_stored_p < end_stored_p) {
65 | spectrum_v = vld1q_u16(far_spectrum_p);
66 | adapt_v = vld1q_s16(start_adapt_p);
67 | store_v = vld1q_s16(start_stored_p);
68 |
69 | far_energy_v = vaddw_u16(far_energy_v, vget_low_u16(spectrum_v));
70 | far_energy_v = vaddw_u16(far_energy_v, vget_high_u16(spectrum_v));
71 |
72 | echo_est_v_low = vmull_u16(vreinterpret_u16_s16(vget_low_s16(store_v)),
73 | vget_low_u16(spectrum_v));
74 | echo_est_v_high = vmull_u16(vreinterpret_u16_s16(vget_high_s16(store_v)),
75 | vget_high_u16(spectrum_v));
76 | vst1q_s32(echo_est_p, vreinterpretq_s32_u32(echo_est_v_low));
77 | vst1q_s32(echo_est_p + 4, vreinterpretq_s32_u32(echo_est_v_high));
78 |
79 | echo_stored_v = vaddq_u32(echo_est_v_low, echo_stored_v);
80 | echo_stored_v = vaddq_u32(echo_est_v_high, echo_stored_v);
81 |
82 | echo_adapt_v =
83 | vmlal_u16(echo_adapt_v, vreinterpret_u16_s16(vget_low_s16(adapt_v)),
84 | vget_low_u16(spectrum_v));
85 | echo_adapt_v =
86 | vmlal_u16(echo_adapt_v, vreinterpret_u16_s16(vget_high_s16(adapt_v)),
87 | vget_high_u16(spectrum_v));
88 |
89 | start_stored_p += 8;
90 | start_adapt_p += 8;
91 | far_spectrum_p += 8;
92 | echo_est_p += 8;
93 | }
94 |
95 | AddLanes(far_energy, far_energy_v);
96 | AddLanes(echo_energy_stored, echo_stored_v);
97 | AddLanes(echo_energy_adapt, echo_adapt_v);
98 |
99 | echo_est[PART_LEN] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[PART_LEN],
100 | far_spectrum[PART_LEN]);
101 | *echo_energy_stored += (uint32_t) echo_est[PART_LEN];
102 | *far_energy += (uint32_t) far_spectrum[PART_LEN];
103 | *echo_energy_adapt += aecm->channelAdapt16[PART_LEN] * far_spectrum[PART_LEN];
104 | }
105 |
106 | void WebRtcAecm_StoreAdaptiveChannelNeon(AecmCore *aecm,
107 | const uint16_t *far_spectrum,
108 | int32_t *echo_est) {
109 | RTC_DCHECK_EQ(0, (uintptr_t) echo_est % 32);
110 | RTC_DCHECK_EQ(0, (uintptr_t) aecm->channelStored % 16);
111 | RTC_DCHECK_EQ(0, (uintptr_t) aecm->channelAdapt16 % 16);
112 |
113 | // This is C code of following optimized code.
114 | // During startup we store the channel every block.
115 | // memcpy(aecm->channelStored,
116 | // aecm->channelAdapt16,
117 | // sizeof(int16_t) * PART_LEN1);
118 | // Recalculate echo estimate
119 | // for (i = 0; i < PART_LEN; i += 4) {
120 | // echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
121 | // far_spectrum[i]);
122 | // echo_est[i + 1] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 1],
123 | // far_spectrum[i + 1]);
124 | // echo_est[i + 2] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 2],
125 | // far_spectrum[i + 2]);
126 | // echo_est[i + 3] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 3],
127 | // far_spectrum[i + 3]);
128 | // }
129 | // echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
130 | // far_spectrum[i]);
131 | const uint16_t *far_spectrum_p = far_spectrum;
132 | int16_t *start_adapt_p = aecm->channelAdapt16;
133 | int16_t *start_stored_p = aecm->channelStored;
134 | const int16_t *end_stored_p = aecm->channelStored + PART_LEN;
135 | int32_t *echo_est_p = echo_est;
136 |
137 | uint16x8_t far_spectrum_v;
138 | int16x8_t adapt_v;
139 | uint32x4_t echo_est_v_low, echo_est_v_high;
140 |
141 | while (start_stored_p < end_stored_p) {
142 | far_spectrum_v = vld1q_u16(far_spectrum_p);
143 | adapt_v = vld1q_s16(start_adapt_p);
144 |
145 | vst1q_s16(start_stored_p, adapt_v);
146 |
147 | echo_est_v_low = vmull_u16(vget_low_u16(far_spectrum_v),
148 | vget_low_u16(vreinterpretq_u16_s16(adapt_v)));
149 | echo_est_v_high = vmull_u16(vget_high_u16(far_spectrum_v),
150 | vget_high_u16(vreinterpretq_u16_s16(adapt_v)));
151 |
152 | vst1q_s32(echo_est_p, vreinterpretq_s32_u32(echo_est_v_low));
153 | vst1q_s32(echo_est_p + 4, vreinterpretq_s32_u32(echo_est_v_high));
154 |
155 | far_spectrum_p += 8;
156 | start_adapt_p += 8;
157 | start_stored_p += 8;
158 | echo_est_p += 8;
159 | }
160 | aecm->channelStored[PART_LEN] = aecm->channelAdapt16[PART_LEN];
161 | echo_est[PART_LEN] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[PART_LEN],
162 | far_spectrum[PART_LEN]);
163 | }
164 |
165 | void WebRtcAecm_ResetAdaptiveChannelNeon(AecmCore *aecm) {
166 | RTC_DCHECK_EQ(0, (uintptr_t) aecm->channelStored % 16);
167 | RTC_DCHECK_EQ(0, (uintptr_t) aecm->channelAdapt16 % 16);
168 | RTC_DCHECK_EQ(0, (uintptr_t) aecm->channelAdapt32 % 32);
169 |
170 | // The C code of following optimized code.
171 | // for (i = 0; i < PART_LEN1; i++) {
172 | // aecm->channelAdapt16[i] = aecm->channelStored[i];
173 | // aecm->channelAdapt32[i] = WEBRTC_SPL_LSHIFT_W32(
174 | // (int32_t)aecm->channelStored[i], 16);
175 | // }
176 |
177 | int16_t *start_stored_p = aecm->channelStored;
178 | int16_t *start_adapt16_p = aecm->channelAdapt16;
179 | int32_t *start_adapt32_p = aecm->channelAdapt32;
180 | const int16_t *end_stored_p = start_stored_p + PART_LEN;
181 |
182 | int16x8_t stored_v;
183 | int32x4_t adapt32_v_low, adapt32_v_high;
184 |
185 | while (start_stored_p < end_stored_p) {
186 | stored_v = vld1q_s16(start_stored_p);
187 | vst1q_s16(start_adapt16_p, stored_v);
188 |
189 | adapt32_v_low = vshll_n_s16(vget_low_s16(stored_v), 16);
190 | adapt32_v_high = vshll_n_s16(vget_high_s16(stored_v), 16);
191 |
192 | vst1q_s32(start_adapt32_p, adapt32_v_low);
193 | vst1q_s32(start_adapt32_p + 4, adapt32_v_high);
194 |
195 | start_stored_p += 8;
196 | start_adapt16_p += 8;
197 | start_adapt32_p += 8;
198 | }
199 | aecm->channelAdapt16[PART_LEN] = aecm->channelStored[PART_LEN];
200 | aecm->channelAdapt32[PART_LEN] = (int32_t) aecm->channelStored[PART_LEN] << 16;
201 | }
202 |
--------------------------------------------------------------------------------
/aecm/aecm_defines.h:
--------------------------------------------------------------------------------
1 | /*
2 | * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 | *
4 | * Use of this source code is governed by a BSD-style license
5 | * that can be found in the LICENSE file in the root of the source
6 | * tree. An additional intellectual property rights grant can be found
7 | * in the file PATENTS. All contributing project authors may
8 | * be found in the AUTHORS file in the root of the source tree.
9 | */
10 |
11 | #ifndef MODULES_AUDIO_PROCESSING_AECM_AECM_DEFINES_H_
12 | #define MODULES_AUDIO_PROCESSING_AECM_AECM_DEFINES_H_
13 |
14 | #define AECM_DYNAMIC_Q /* Turn on/off dynamic Q-domain. */
15 |
16 | /* Algorithm parameters */
17 | #define FRAME_LEN 80 /* Total frame length, 10 ms. */
18 |
19 | #define PART_LEN 64 /* Length of partition. */
20 | #define PART_LEN_SHIFT 7 /* Length of (PART_LEN * 2) in base 2. */
21 |
22 | #define PART_LEN1 (PART_LEN + 1) /* Unique fft coefficients. */
23 | #define PART_LEN2 (PART_LEN << 1) /* Length of partition * 2. */
24 | #define PART_LEN4 (PART_LEN << 2) /* Length of partition * 4. */
25 | #define FAR_BUF_LEN PART_LEN4 /* Length of buffers. */
26 | #define MAX_DELAY 100
27 |
28 | /* Counter parameters */
29 | #define CONV_LEN 512 /* Convergence length used at startup. */
30 | #define CONV_LEN2 (CONV_LEN << 1) /* Used at startup. */
31 |
32 | /* Energy parameters */
33 | #define MAX_BUF_LEN 64 /* History length of energy signals. */
34 | #define FAR_ENERGY_MIN 1025 /* Lowest Far energy level: At least 2 */
35 | /* in energy. */
36 | #define FAR_ENERGY_DIFF 929 /* Allowed difference between max */
37 | /* and min. */
38 | #define ENERGY_DEV_OFFSET 0 /* The energy error offset in Q8. */
39 | #define ENERGY_DEV_TOL 400 /* The energy estimation tolerance (Q8). */
40 | #define FAR_ENERGY_VAD_REGION 230 /* Far VAD tolerance region. */
41 |
42 | /* Stepsize parameters */
43 | #define MU_MIN 10 /* Min stepsize 2^-MU_MIN (far end energy */
44 | /* dependent). */
45 | #define MU_MAX 1 /* Max stepsize 2^-MU_MAX (far end energy */
46 | /* dependent). */
47 | #define MU_DIFF 9 /* MU_MIN - MU_MAX */
48 |
49 | /* Channel parameters */
50 | #define MIN_MSE_COUNT 20 /* Min number of consecutive blocks with enough */
51 | /* far end energy to compare channel estimates. */
52 | #define MIN_MSE_DIFF 29 /* The ratio between adapted and stored channel to */
53 | /* accept a new storage (0.8 in Q-MSE_RESOLUTION). */
54 | #define MSE_RESOLUTION 5 /* MSE parameter resolution. */
55 | #define RESOLUTION_CHANNEL16 12 /* W16 Channel in Q-RESOLUTION_CHANNEL16. */
56 | #define RESOLUTION_CHANNEL32 28 /* W32 Channel in Q-RESOLUTION_CHANNEL. */
57 | #define CHANNEL_VAD 16 /* Minimum energy in frequency band */
58 | /* to update channel. */
59 |
60 | /* Suppression gain parameters: SUPGAIN parameters in Q-(RESOLUTION_SUPGAIN). */
61 | #define RESOLUTION_SUPGAIN 8 /* Channel in Q-(RESOLUTION_SUPGAIN). */
62 | #define SUPGAIN_DEFAULT (1 << RESOLUTION_SUPGAIN) /* Default. */
63 | #define SUPGAIN_ERROR_PARAM_A 3072 /* Estimation error parameter */
64 | /* (Maximum gain) (8 in Q8). */
65 | #define SUPGAIN_ERROR_PARAM_B 1536 /* Estimation error parameter */
66 | /* (Gain before going down). */
67 | #define SUPGAIN_ERROR_PARAM_D SUPGAIN_DEFAULT /* Estimation error parameter */
68 | /* (Should be the same as Default) (1 in Q8). */
69 | #define SUPGAIN_EPC_DT 200 /* SUPGAIN_ERROR_PARAM_C * ENERGY_DEV_TOL */
70 |
71 | /* Defines for "check delay estimation" */
72 | #define CORR_WIDTH 31 /* Number of samples to correlate over. */
73 | #define CORR_MAX 16 /* Maximum correlation offset. */
74 | #define CORR_MAX_BUF 63
75 | #define CORR_DEV 4
76 | #define CORR_MAX_LEVEL 20
77 | #define CORR_MAX_LOW 4
78 | #define CORR_BUF_LEN (CORR_MAX << 1) + 1
79 | /* Note that CORR_WIDTH + 2*CORR_MAX <= MAX_BUF_LEN. */
80 |
81 | #define ONE_Q14 (1 << 14)
82 |
83 | /* NLP defines */
84 | #define NLP_COMP_LOW 3277 /* 0.2 in Q14 */
85 | #define NLP_COMP_HIGH ONE_Q14 /* 1 in Q14 */
86 |
87 | #endif
88 |
--------------------------------------------------------------------------------
/aecm/complex_fft.c:
--------------------------------------------------------------------------------
1 | /*
2 | * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3 | *
4 | * Use of this source code is governed by a BSD-style license
5 | * that can be found in the LICENSE file in the root of the source
6 | * tree. An additional intellectual property rights grant can be found
7 | * in the file PATENTS. All contributing project authors may
8 | * be found in the AUTHORS file in the root of the source tree.
9 | */
10 |
11 |
12 | /*
13 | * This file contains the function WebRtcSpl_ComplexFFT().
14 | * The description header can be found in signal_processing_library.h
15 | *
16 | */
17 |
18 | #include "signal_processing_library.h"
19 |
20 | #define CFFTSFT 14
21 | #define CFFTRND 1
22 | #define CFFTRND2 16384
23 |
24 | #define CIFFTSFT 14
25 | #define CIFFTRND 1
26 |
27 |
28 | static const int16_t kSinTable1024[] = {
29 | 0, 201, 402, 603, 804, 1005, 1206, 1406, 1607,
30 | 1808, 2009, 2209, 2410, 2610, 2811, 3011, 3211, 3411,
31 | 3611, 3811, 4011, 4210, 4409, 4608, 4807, 5006, 5205,
32 | 5403, 5601, 5799, 5997, 6195, 6392, 6589, 6786, 6982,
33 | 7179, 7375, 7571, 7766, 7961, 8156, 8351, 8545, 8739,
34 | 8932, 9126, 9319, 9511, 9703, 9895, 10087, 10278, 10469,
35 | 10659, 10849, 11038, 11227, 11416, 11604, 11792, 11980, 12166,
36 | 12353, 12539, 12724, 12909, 13094, 13278, 13462, 13645, 13827,
37 | 14009, 14191, 14372, 14552, 14732, 14911, 15090, 15268, 15446,
38 | 15623, 15799, 15975, 16150, 16325, 16499, 16672, 16845, 17017,
39 | 17189, 17360, 17530, 17699, 17868, 18036, 18204, 18371, 18537,
40 | 18702, 18867, 19031, 19194, 19357, 19519, 19680, 19840, 20000,
41 | 20159, 20317, 20474, 20631, 20787, 20942, 21096, 21249, 21402,
42 | 21554, 21705, 21855, 22004, 22153, 22301, 22448, 22594, 22739,
43 | 22883, 23027, 23169, 23311, 23452, 23592, 23731, 23869, 24006,
44 | 24143, 24278, 24413, 24546, 24679, 24811, 24942, 25072, 25201,
45 | 25329, 25456, 25582, 25707, 25831, 25954, 26077, 26198, 26318,
46 | 26437, 26556, 26673, 26789, 26905, 27019, 27132, 27244, 27355,
47 | 27466, 27575, 27683, 27790, 27896, 28001, 28105, 28208, 28309,
48 | 28410, 28510, 28608, 28706, 28802, 28897, 28992, 29085, 29177,
49 | 29268, 29358, 29446, 29534, 29621, 29706, 29790, 29873, 29955,
50 | 30036, 30116, 30195, 30272, 30349, 30424, 30498, 30571, 30643,
51 | 30713, 30783, 30851, 30918, 30984, 31049, 31113, 31175, 31236,
52 | 31297, 31356, 31413, 31470, 31525, 31580, 31633, 31684, 31735,
53 | 31785, 31833, 31880, 31926, 31970, 32014, 32056, 32097, 32137,
54 | 32176, 32213, 32249, 32284, 32318, 32350, 32382, 32412, 32441,
55 | 32468, 32495, 32520, 32544, 32567, 32588, 32609, 32628, 32646,
56 | 32662, 32678, 32692, 32705, 32717, 32727, 32736, 32744, 32751,
57 | 32757, 32761, 32764, 32766, 32767, 32766, 32764, 32761, 32757,
58 | 32751, 32744, 32736, 32727, 32717, 32705, 32692, 32678, 32662,
59 | 32646, 32628, 32609, 32588, 32567, 32544, 32520, 32495, 32468,
60 | 32441, 32412, 32382, 32350, 32318, 32284, 32249, 32213, 32176,
61 | 32137, 32097, 32056, 32014, 31970, 31926, 31880, 31833, 31785,
62 | 31735, 31684, 31633, 31580, 31525, 31470, 31413, 31356, 31297,
63 | 31236, 31175, 31113, 31049, 30984, 30918, 30851, 30783, 30713,
64 | 30643, 30571, 30498, 30424, 30349, 30272, 30195, 30116, 30036,
65 | 29955, 29873, 29790, 29706, 29621, 29534, 29446, 29358, 29268,
66 | 29177, 29085, 28992, 28897, 28802, 28706, 28608, 28510, 28410,
67 | 28309, 28208, 28105, 28001, 27896, 27790, 27683, 27575, 27466,
68 | 27355, 27244, 27132, 27019, 26905, 26789, 26673, 26556, 26437,
69 | 26318, 26198, 26077, 25954, 25831, 25707, 25582, 25456, 25329,
70 | 25201, 25072, 24942, 24811, 24679, 24546, 24413, 24278, 24143,
71 | 24006, 23869, 23731, 23592, 23452, 23311, 23169, 23027, 22883,
72 | 22739, 22594, 22448, 22301, 22153, 22004, 21855, 21705, 21554,
73 | 21402, 21249, 21096, 20942, 20787, 20631, 20474, 20317, 20159,
74 | 20000, 19840, 19680, 19519, 19357, 19194, 19031, 18867, 18702,
75 | 18537, 18371, 18204, 18036, 17868, 17699, 17530, 17360, 17189,
76 | 17017, 16845, 16672, 16499, 16325, 16150, 15975, 15799, 15623,
77 | 15446, 15268, 15090, 14911, 14732, 14552, 14372, 14191, 14009,
78 | 13827, 13645, 13462, 13278, 13094, 12909, 12724, 12539, 12353,
79 | 12166, 11980, 11792, 11604, 11416, 11227, 11038, 10849, 10659,
80 | 10469, 10278, 10087, 9895, 9703, 9511, 9319, 9126, 8932,
81 | 8739, 8545, 8351, 8156, 7961, 7766, 7571, 7375, 7179,
82 | 6982, 6786, 6589, 6392, 6195, 5997, 5799, 5601, 5403,
83 | 5205, 5006, 4807, 4608, 4409, 4210, 4011, 3811, 3611,
84 | 3411, 3211, 3011, 2811, 2610, 2410, 2209, 2009, 1808,
85 | 1607, 1406, 1206, 1005, 804, 603, 402, 201, 0,
86 | -201, -402, -603, -804, -1005, -1206, -1406, -1607, -1808,
87 | -2009, -2209, -2410, -2610, -2811, -3011, -3211, -3411, -3611,
88 | -3811, -4011, -4210, -4409, -4608, -4807, -5006, -5205, -5403,
89 | -5601, -5799, -5997, -6195, -6392, -6589, -6786, -6982, -7179,
90 | -7375, -7571, -7766, -7961, -8156, -8351, -8545, -8739, -8932,
91 | -9126, -9319, -9511, -9703, -9895, -10087, -10278, -10469, -10659,
92 | -10849, -11038, -11227, -11416, -11604, -11792, -11980, -12166, -12353,
93 | -12539, -12724, -12909, -13094, -13278, -13462, -13645, -13827, -14009,
94 | -14191, -14372, -14552, -14732, -14911, -15090, -15268, -15446, -15623,
95 | -15799, -15975, -16150, -16325, -16499, -16672, -16845, -17017, -17189,
96 | -17360, -17530, -17699, -17868, -18036, -18204, -18371, -18537, -18702,
97 | -18867, -19031, -19194, -19357, -19519, -19680, -19840, -20000, -20159,
98 | -20317, -20474, -20631, -20787, -20942, -21096, -21249, -21402, -21554,
99 | -21705, -21855, -22004, -22153, -22301, -22448, -22594, -22739, -22883,
100 | -23027, -23169, -23311, -23452, -23592, -23731, -23869, -24006, -24143,
101 | -24278, -24413, -24546, -24679, -24811, -24942, -25072, -25201, -25329,
102 | -25456, -25582, -25707, -25831, -25954, -26077, -26198, -26318, -26437,
103 | -26556, -26673, -26789, -26905, -27019, -27132, -27244, -27355, -27466,
104 | -27575, -27683, -27790, -27896, -28001, -28105, -28208, -28309, -28410,
105 | -28510, -28608, -28706, -28802, -28897, -28992, -29085, -29177, -29268,
106 | -29358, -29446, -29534, -29621, -29706, -29790, -29873, -29955, -30036,
107 | -30116, -30195, -30272, -30349, -30424, -30498, -30571, -30643, -30713,
108 | -30783, -30851, -30918, -30984, -31049, -31113, -31175, -31236, -31297,
109 | -31356, -31413, -31470, -31525, -31580, -31633, -31684, -31735, -31785,
110 | -31833, -31880, -31926, -31970, -32014, -32056, -32097, -32137, -32176,
111 | -32213, -32249, -32284, -32318, -32350, -32382, -32412, -32441, -32468,
112 | -32495, -32520, -32544, -32567, -32588, -32609, -32628, -32646, -32662,
113 | -32678, -32692, -32705, -32717, -32727, -32736, -32744, -32751, -32757,
114 | -32761, -32764, -32766, -32767, -32766, -32764, -32761, -32757, -32751,
115 | -32744, -32736, -32727, -32717, -32705, -32692, -32678, -32662, -32646,
116 | -32628, -32609, -32588, -32567, -32544, -32520, -32495, -32468, -32441,
117 | -32412, -32382, -32350, -32318, -32284, -32249, -32213, -32176, -32137,
118 | -32097, -32056, -32014, -31970, -31926, -31880, -31833, -31785, -31735,
119 | -31684, -31633, -31580, -31525, -31470, -31413, -31356, -31297, -31236,
120 | -31175, -31113, -31049, -30984, -30918, -30851, -30783, -30713, -30643,
121 | -30571, -30498, -30424, -30349, -30272, -30195, -30116, -30036, -29955,
122 | -29873, -29790, -29706, -29621, -29534, -29446, -29358, -29268, -29177,
123 | -29085, -28992, -28897, -28802, -28706, -28608, -28510, -28410, -28309,
124 | -28208, -28105, -28001, -27896, -27790, -27683, -27575, -27466, -27355,
125 | -27244, -27132, -27019, -26905, -26789, -26673, -26556, -26437, -26318,
126 | -26198, -26077, -25954, -25831, -25707, -25582, -25456, -25329, -25201,
127 | -25072, -24942, -24811, -24679, -24546, -24413, -24278, -24143, -24006,
128 | -23869, -23731, -23592, -23452, -23311, -23169, -23027, -22883, -22739,
129 | -22594, -22448, -22301, -22153, -22004, -21855, -21705, -21554, -21402,
130 | -21249, -21096, -20942, -20787, -20631, -20474, -20317, -20159, -20000,
131 | -19840, -19680, -19519, -19357, -19194, -19031, -18867, -18702, -18537,
132 | -18371, -18204, -18036, -17868, -17699, -17530, -17360, -17189, -17017,
133 | -16845, -16672, -16499, -16325, -16150, -15975, -15799, -15623, -15446,
134 | -15268, -15090, -14911, -14732, -14552, -14372, -14191, -14009, -13827,
135 | -13645, -13462, -13278, -13094, -12909, -12724, -12539, -12353, -12166,
136 | -11980, -11792, -11604, -11416, -11227, -11038, -10849, -10659, -10469,
137 | -10278, -10087, -9895, -9703, -9511, -9319, -9126, -8932, -8739,
138 | -8545, -8351, -8156, -7961, -7766, -7571, -7375, -7179, -6982,
139 | -6786, -6589, -6392, -6195, -5997, -5799, -5601, -5403, -5205,
140 | -5006, -4807, -4608, -4409, -4210, -4011, -3811, -3611, -3411,
141 | -3211, -3011, -2811, -2610, -2410, -2209, -2009, -1808, -1607,
142 | -1406, -1206, -1005, -804, -603, -402, -201};
143 |
144 |
145 | /* Tables for data buffer indexes that are bit reversed and thus need to be
146 | * swapped. Note that, index_7[{0, 2, 4, ...}] are for the left side of the swap
147 | * operations, while index_7[{1, 3, 5, ...}] are for the right side of the
148 | * operation. Same for index_8.
149 | */
150 |
151 | /* Indexes for the case of stages == 7. */
152 | static const int16_t index_7[112] = {
153 | 1, 64, 2, 32, 3, 96, 4, 16, 5, 80, 6, 48, 7, 112, 9, 72, 10, 40, 11, 104,
154 | 12, 24, 13, 88, 14, 56, 15, 120, 17, 68, 18, 36, 19, 100, 21, 84, 22, 52,
155 | 23, 116, 25, 76, 26, 44, 27, 108, 29, 92, 30, 60, 31, 124, 33, 66, 35, 98,
156 | 37, 82, 38, 50, 39, 114, 41, 74, 43, 106, 45, 90, 46, 58, 47, 122, 49, 70,
157 | 51, 102, 53, 86, 55, 118, 57, 78, 59, 110, 61, 94, 63, 126, 67, 97, 69,
158 | 81, 71, 113, 75, 105, 77, 89, 79, 121, 83, 101, 87, 117, 91, 109, 95, 125,
159 | 103, 115, 111, 123
160 | };
161 |
162 | /* Indexes for the case of stages == 8. */
163 | static const int16_t index_8[240] = {
164 | 1, 128, 2, 64, 3, 192, 4, 32, 5, 160, 6, 96, 7, 224, 8, 16, 9, 144, 10, 80,
165 | 11, 208, 12, 48, 13, 176, 14, 112, 15, 240, 17, 136, 18, 72, 19, 200, 20,
166 | 40, 21, 168, 22, 104, 23, 232, 25, 152, 26, 88, 27, 216, 28, 56, 29, 184,
167 | 30, 120, 31, 248, 33, 132, 34, 68, 35, 196, 37, 164, 38, 100, 39, 228, 41,
168 | 148, 42, 84, 43, 212, 44, 52, 45, 180, 46, 116, 47, 244, 49, 140, 50, 76,
169 | 51, 204, 53, 172, 54, 108, 55, 236, 57, 156, 58, 92, 59, 220, 61, 188, 62,
170 | 124, 63, 252, 65, 130, 67, 194, 69, 162, 70, 98, 71, 226, 73, 146, 74, 82,
171 | 75, 210, 77, 178, 78, 114, 79, 242, 81, 138, 83, 202, 85, 170, 86, 106, 87,
172 | 234, 89, 154, 91, 218, 93, 186, 94, 122, 95, 250, 97, 134, 99, 198, 101,
173 | 166, 103, 230, 105, 150, 107, 214, 109, 182, 110, 118, 111, 246, 113, 142,
174 | 115, 206, 117, 174, 119, 238, 121, 158, 123, 222, 125, 190, 127, 254, 131,
175 | 193, 133, 161, 135, 225, 137, 145, 139, 209, 141, 177, 143, 241, 147, 201,
176 | 149, 169, 151, 233, 155, 217, 157, 185, 159, 249, 163, 197, 167, 229, 171,
177 | 213, 173, 181, 175, 245, 179, 205, 183, 237, 187, 221, 191, 253, 199, 227,
178 | 203, 211, 207, 243, 215, 235, 223, 251, 239, 247
179 | };
180 |
181 | void WebRtcSpl_ComplexBitReverse(int16_t *__restrict complex_data, int stages) {
182 | /* For any specific value of stages, we know exactly the indexes that are
183 | * bit reversed. Currently (Feb. 2012) in WebRTC the only possible values of
184 | * stages are 7 and 8, so we use tables to save unnecessary iterations and
185 | * calculations for these two cases.
186 | */
187 | if (stages == 7 || stages == 8) {
188 | int m = 0;
189 | int length = 112;
190 | const int16_t *index = index_7;
191 |
192 | if (stages == 8) {
193 | length = 240;
194 | index = index_8;
195 | }
196 |
197 | /* Decimation in time. Swap the elements with bit-reversed indexes. */
198 | for (m = 0; m < length; m += 2) {
199 | /* We declare a int32_t* type pointer, to load both the 16-bit real
200 | * and imaginary elements from complex_data in one instruction, reducing
201 | * complexity.
202 | */
203 | int32_t *complex_data_ptr = (int32_t *) complex_data;
204 | int32_t temp = 0;
205 |
206 | temp = complex_data_ptr[index[m]]; /* Real and imaginary */
207 | complex_data_ptr[index[m]] = complex_data_ptr[index[m + 1]];
208 | complex_data_ptr[index[m + 1]] = temp;
209 | }
210 | } else {
211 | int m = 0, mr = 0, l = 0;
212 | int n = 1 << stages;
213 | int nn = n - 1;
214 |
215 | /* Decimation in time - re-order data */
216 | for (m = 1; m <= nn; ++m) {
217 | int32_t *complex_data_ptr = (int32_t *) complex_data;
218 | int32_t temp = 0;
219 |
220 | /* Find out indexes that are bit-reversed. */
221 | l = n;
222 | do {
223 | l >>= 1;
224 | } while (l > nn - mr);
225 | mr = (mr & (l - 1)) + l;
226 |
227 | if (mr <= m) {
228 | continue;
229 | }
230 |
231 | /* Swap the elements with bit-reversed indexes.
232 | * This is similar to the loop in the stages == 7 or 8 cases.
233 | */
234 | temp = complex_data_ptr[m]; /* Real and imaginary */
235 | complex_data_ptr[m] = complex_data_ptr[mr];
236 | complex_data_ptr[mr] = temp;
237 | }
238 | }
239 | }
240 |
241 | int WebRtcSpl_ComplexFFT(int16_t frfi[], int stages, int mode) {
242 | int i, j, l, k, istep, n, m;
243 | int16_t wr, wi;
244 | int32_t tr32, ti32, qr32, qi32;
245 |
246 | /* The 1024-value is a constant given from the size of kSinTable1024[],
247 | * and should not be changed depending on the input parameter 'stages'
248 | */
249 | n = 1 << stages;
250 | if (n > 1024)
251 | return -1;
252 |
253 | l = 1;
254 | k = 10 - 1; /* Constant for given kSinTable1024[]. Do not change
255 | depending on the input parameter 'stages' */
256 |
257 | if (mode == 0) {
258 | // mode==0: Low-complexity and Low-accuracy mode
259 | while (l < n) {
260 | istep = l << 1;
261 |
262 | for (m = 0; m < l; ++m) {
263 | j = m << k;
264 |
265 | /* The 256-value is a constant given as 1/4 of the size of
266 | * kSinTable1024[], and should not be changed depending on the input
267 | * parameter 'stages'. It will result in 0 <= j < N_SINE_WAVE/2
268 | */
269 | wr = kSinTable1024[j + 256];
270 | wi = -kSinTable1024[j];
271 |
272 | for (i = m; i < n; i += istep) {
273 | j = i + l;
274 |
275 | tr32 = (wr * frfi[2 * j] - wi * frfi[2 * j + 1]) >> 15;
276 |
277 | ti32 = (wr * frfi[2 * j + 1] + wi * frfi[2 * j]) >> 15;
278 |
279 | qr32 = (int32_t) frfi[2 * i];
280 | qi32 = (int32_t) frfi[2 * i + 1];
281 | frfi[2 * j] = (int16_t) ((qr32 - tr32) >> 1);
282 | frfi[2 * j + 1] = (int16_t) ((qi32 - ti32) >> 1);
283 | frfi[2 * i] = (int16_t) ((qr32 + tr32) >> 1);
284 | frfi[2 * i + 1] = (int16_t) ((qi32 + ti32) >> 1);
285 | }
286 | }
287 |
288 | --k;
289 | l = istep;
290 |
291 | }
292 |
293 | } else {
294 | // mode==1: High-complexity and High-accuracy mode
295 | while (l < n) {
296 | istep = l << 1;
297 |
298 | for (m = 0; m < l; ++m) {
299 | j = m << k;
300 |
301 | /* The 256-value is a constant given as 1/4 of the size of
302 | * kSinTable1024[], and should not be changed depending on the input
303 | * parameter 'stages'. It will result in 0 <= j < N_SINE_WAVE/2
304 | */
305 | wr = kSinTable1024[j + 256];
306 | wi = -kSinTable1024[j];
307 |
308 | #ifdef WEBRTC_ARCH_ARM_V7
309 | int32_t wri = 0;
310 | __asm __volatile("pkhbt %0, %1, %2, lsl #16" : "=r"(wri) :
311 | "r"((int32_t)wr), "r"((int32_t)wi));
312 | #endif
313 |
314 | for (i = m; i < n; i += istep) {
315 | j = i + l;
316 |
317 | #ifdef WEBRTC_ARCH_ARM_V7
318 | register int32_t frfi_r;
319 | __asm __volatile(
320 | "pkhbt %[frfi_r], %[frfi_even], %[frfi_odd],"
321 | " lsl #16\n\t"
322 | "smlsd %[tr32], %[wri], %[frfi_r], %[cfftrnd]\n\t"
323 | "smladx %[ti32], %[wri], %[frfi_r], %[cfftrnd]\n\t"
324 | :[frfi_r]"=&r"(frfi_r),
325 | [tr32]"=&r"(tr32),
326 | [ti32]"=r"(ti32)
327 | :[frfi_even]"r"((int32_t)frfi[2*j]),
328 | [frfi_odd]"r"((int32_t)frfi[2*j +1]),
329 | [wri]"r"(wri),
330 | [cfftrnd]"r"(CFFTRND));
331 | #else
332 | tr32 = wr * frfi[2 * j] - wi * frfi[2 * j + 1] + CFFTRND;
333 |
334 | ti32 = wr * frfi[2 * j + 1] + wi * frfi[2 * j] + CFFTRND;
335 | #endif
336 |
337 | tr32 >>= 15 - CFFTSFT;
338 | ti32 >>= 15 - CFFTSFT;
339 |
340 | qr32 = ((int32_t) frfi[2 * i]) * (1 << CFFTSFT);
341 | qi32 = ((int32_t) frfi[2 * i + 1]) * (1 << CFFTSFT);
342 |
343 | frfi[2 * j] = (int16_t) (
344 | (qr32 - tr32 + CFFTRND2) >> (1 + CFFTSFT));
345 | frfi[2 * j + 1] = (int16_t) (
346 | (qi32 - ti32 + CFFTRND2) >> (1 + CFFTSFT));
347 | frfi[2 * i] = (int16_t) (
348 | (qr32 + tr32 + CFFTRND2) >> (1 + CFFTSFT));
349 | frfi[2 * i + 1] = (int16_t) (
350 | (qi32 + ti32 + CFFTRND2) >> (1 + CFFTSFT));
351 | }
352 | }
353 |
354 | --k;
355 | l = istep;
356 | }
357 | }
358 | return 0;
359 | }
360 |
361 | int WebRtcSpl_ComplexIFFT(int16_t frfi[], int stages, int mode) {
362 | size_t i, j, l, istep, n, m;
363 | int k, scale, shift;
364 | int16_t wr, wi;
365 | int32_t tr32, ti32, qr32, qi32;
366 | int32_t tmp32, round2;
367 |
368 | /* The 1024-value is a constant given from the size of kSinTable1024[],
369 | * and should not be changed depending on the input parameter 'stages'
370 | */
371 | n = ((size_t) 1) << stages;
372 | if (n > 1024)
373 | return -1;
374 |
375 | scale = 0;
376 |
377 | l = 1;
378 | k = 10 - 1; /* Constant for given kSinTable1024[]. Do not change
379 | depending on the input parameter 'stages' */
380 |
381 | while (l < n) {
382 | // variable scaling, depending upon data
383 | shift = 0;
384 | round2 = 8192;
385 |
386 | tmp32 = WebRtcSpl_MaxAbsValueW16(frfi, 2 * n);
387 | if (tmp32 > 13573) {
388 | shift++;
389 | scale++;
390 | round2 <<= 1;
391 | }
392 | if (tmp32 > 27146) {
393 | shift++;
394 | scale++;
395 | round2 <<= 1;
396 | }
397 |
398 | istep = l << 1;
399 |
400 | if (mode == 0) {
401 | // mode==0: Low-complexity and Low-accuracy mode
402 | for (m = 0; m < l; ++m) {
403 | j = m << k;
404 |
405 | /* The 256-value is a constant given as 1/4 of the size of
406 | * kSinTable1024[], and should not be changed depending on the input
407 | * parameter 'stages'. It will result in 0 <= j < N_SINE_WAVE/2
408 | */
409 | wr = kSinTable1024[j + 256];
410 | wi = kSinTable1024[j];
411 |
412 | for (i = m; i < n; i += istep) {
413 | j = i + l;
414 |
415 | tr32 = (wr * frfi[2 * j] - wi * frfi[2 * j + 1]) >> 15;
416 |
417 | ti32 = (wr * frfi[2 * j + 1] + wi * frfi[2 * j]) >> 15;
418 |
419 | qr32 = (int32_t) frfi[2 * i];
420 | qi32 = (int32_t) frfi[2 * i + 1];
421 | frfi[2 * j] = (int16_t) ((qr32 - tr32) >> shift);
422 | frfi[2 * j + 1] = (int16_t) ((qi32 - ti32) >> shift);
423 | frfi[2 * i] = (int16_t) ((qr32 + tr32) >> shift);
424 | frfi[2 * i + 1] = (int16_t) ((qi32 + ti32) >> shift);
425 | }
426 | }
427 | } else {
428 | // mode==1: High-complexity and High-accuracy mode
429 |
430 | for (m = 0; m < l; ++m) {
431 | j = m << k;
432 |
433 | /* The 256-value is a constant given as 1/4 of the size of
434 | * kSinTable1024[], and should not be changed depending on the input
435 | * parameter 'stages'. It will result in 0 <= j < N_SINE_WAVE/2
436 | */
437 | wr = kSinTable1024[j + 256];
438 | wi = kSinTable1024[j];
439 |
440 | #ifdef WEBRTC_ARCH_ARM_V7
441 | int32_t wri = 0;
442 | __asm __volatile("pkhbt %0, %1, %2, lsl #16" : "=r"(wri) :
443 | "r"((int32_t)wr), "r"((int32_t)wi));
444 | #endif
445 |
446 | for (i = m; i < n; i += istep) {
447 | j = i + l;
448 |
449 | #ifdef WEBRTC_ARCH_ARM_V7
450 | register int32_t frfi_r;
451 | __asm __volatile(
452 | "pkhbt %[frfi_r], %[frfi_even], %[frfi_odd], lsl #16\n\t"
453 | "smlsd %[tr32], %[wri], %[frfi_r], %[cifftrnd]\n\t"
454 | "smladx %[ti32], %[wri], %[frfi_r], %[cifftrnd]\n\t"
455 | :[frfi_r]"=&r"(frfi_r),
456 | [tr32]"=&r"(tr32),
457 | [ti32]"=r"(ti32)
458 | :[frfi_even]"r"((int32_t)frfi[2*j]),
459 | [frfi_odd]"r"((int32_t)frfi[2*j +1]),
460 | [wri]"r"(wri),
461 | [cifftrnd]"r"(CIFFTRND)
462 | );
463 | #else
464 |
465 | tr32 = wr * frfi[2 * j] - wi * frfi[2 * j + 1] + CIFFTRND;
466 |
467 | ti32 = wr * frfi[2 * j + 1] + wi * frfi[2 * j] + CIFFTRND;
468 | #endif
469 | tr32 >>= 15 - CIFFTSFT;
470 | ti32 >>= 15 - CIFFTSFT;
471 |
472 | qr32 = ((int32_t) frfi[2 * i]) * (1 << CIFFTSFT);
473 | qi32 = ((int32_t) frfi[2 * i + 1]) * (1 << CIFFTSFT);
474 |
475 | frfi[2 * j] = (int16_t) (
476 | (qr32 - tr32 + round2) >> (shift + CIFFTSFT));
477 | frfi[2 * j + 1] = (int16_t) (
478 | (qi32 - ti32 + round2) >> (shift + CIFFTSFT));
479 | frfi[2 * i] = (int16_t) (
480 | (qr32 + tr32 + round2) >> (shift + CIFFTSFT));
481 | frfi[2 * i + 1] = (int16_t) (
482 | (qi32 + ti32 + round2) >> (shift + CIFFTSFT));
483 | }
484 | }
485 |
486 | }
487 | --k;
488 | l = istep;
489 | }
490 | return scale;
491 | }
492 |
--------------------------------------------------------------------------------
/aecm/delay_estimator.h:
--------------------------------------------------------------------------------
1 | /*
2 | * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 | *
4 | * Use of this source code is governed by a BSD-style license
5 | * that can be found in the LICENSE file in the root of the source
6 | * tree. An additional intellectual property rights grant can be found
7 | * in the file PATENTS. All contributing project authors may
8 | * be found in the AUTHORS file in the root of the source tree.
9 | */
10 |
11 | // Performs delay estimation on binary converted spectra.
12 | // The return value is 0 - OK and -1 - Error, unless otherwise stated.
13 |
14 | #ifndef MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_H_
15 | #define MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_H_
16 |
17 | #include
18 |
19 |
20 | static const int32_t kMaxBitCountsQ9 = (32 << 9); // 32 matching bits in Q9.
21 |
22 | typedef struct {
23 | // Pointer to bit counts.
24 | int *far_bit_counts;
25 | // Binary history variables.
26 | uint32_t *binary_far_history;
27 | int history_size;
28 | } BinaryDelayEstimatorFarend;
29 |
30 | typedef struct {
31 | // Pointer to bit counts.
32 | int32_t *mean_bit_counts;
33 | // Array only used locally in ProcessBinarySpectrum() but whose size is
34 | // determined at run-time.
35 | int32_t *bit_counts;
36 |
37 | // Binary history variables.
38 | uint32_t *binary_near_history;
39 | int near_history_size;
40 | int history_size;
41 |
42 | // Delay estimation variables.
43 | int32_t minimum_probability;
44 | int last_delay_probability;
45 |
46 | // Delay memory.
47 | int last_delay;
48 |
49 | // Robust validation
50 | int robust_validation_enabled;
51 | int allowed_offset;
52 | int last_candidate_delay;
53 | int compare_delay;
54 | int candidate_hits;
55 | float *histogram;
56 | float last_delay_histogram;
57 |
58 | // For dynamically changing the lookahead when using SoftReset...().
59 | int lookahead;
60 |
61 | // Far-end binary spectrum history buffer etc.
62 | BinaryDelayEstimatorFarend *farend;
63 | } BinaryDelayEstimator;
64 |
65 | // Releases the memory allocated by
66 | // WebRtc_CreateBinaryDelayEstimatorFarend(...).
67 | // Input:
68 | // - self : Pointer to the binary delay estimation far-end
69 | // instance which is the return value of
70 | // WebRtc_CreateBinaryDelayEstimatorFarend().
71 | //
72 | void WebRtc_FreeBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend *self);
73 |
74 | // Allocates the memory needed by the far-end part of the binary delay
75 | // estimation. The memory needs to be initialized separately through
76 | // WebRtc_InitBinaryDelayEstimatorFarend(...).
77 | //
78 | // Inputs:
79 | // - history_size : Size of the far-end binary spectrum history.
80 | //
81 | // Return value:
82 | // - BinaryDelayEstimatorFarend*
83 | // : Created |handle|. If the memory can't be allocated
84 | // or if any of the input parameters are invalid NULL
85 | // is returned.
86 | //
87 | BinaryDelayEstimatorFarend *WebRtc_CreateBinaryDelayEstimatorFarend(
88 | int history_size);
89 |
90 | // Re-allocates the buffers.
91 | //
92 | // Inputs:
93 | // - self : Pointer to the binary estimation far-end instance
94 | // which is the return value of
95 | // WebRtc_CreateBinaryDelayEstimatorFarend().
96 | // - history_size : Size of the far-end binary spectrum history.
97 | //
98 | // Return value:
99 | // - history_size : The history size allocated.
100 | int WebRtc_AllocateFarendBufferMemory(BinaryDelayEstimatorFarend *self,
101 | int history_size);
102 |
103 | // Initializes the delay estimation far-end instance created with
104 | // WebRtc_CreateBinaryDelayEstimatorFarend(...).
105 | //
106 | // Input:
107 | // - self : Pointer to the delay estimation far-end instance.
108 | //
109 | // Output:
110 | // - self : Initialized far-end instance.
111 | //
112 | void WebRtc_InitBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend *self);
113 |
114 | // Soft resets the delay estimation far-end instance created with
115 | // WebRtc_CreateBinaryDelayEstimatorFarend(...).
116 | //
117 | // Input:
118 | // - delay_shift : The amount of blocks to shift history buffers.
119 | //
120 | void WebRtc_SoftResetBinaryDelayEstimatorFarend(
121 | BinaryDelayEstimatorFarend *self,
122 | int delay_shift);
123 |
124 | // Adds the binary far-end spectrum to the internal far-end history buffer. This
125 | // spectrum is used as reference when calculating the delay using
126 | // WebRtc_ProcessBinarySpectrum().
127 | //
128 | // Inputs:
129 | // - self : Pointer to the delay estimation far-end
130 | // instance.
131 | // - binary_far_spectrum : Far-end binary spectrum.
132 | //
133 | // Output:
134 | // - self : Updated far-end instance.
135 | //
136 | void WebRtc_AddBinaryFarSpectrum(BinaryDelayEstimatorFarend *self,
137 | uint32_t binary_far_spectrum);
138 |
139 | // Releases the memory allocated by WebRtc_CreateBinaryDelayEstimator(...).
140 | //
141 | // Note that BinaryDelayEstimator utilizes BinaryDelayEstimatorFarend, but does
142 | // not take ownership of it, hence the BinaryDelayEstimator has to be torn down
143 | // before the far-end.
144 | //
145 | // Input:
146 | // - self : Pointer to the binary delay estimation instance
147 | // which is the return value of
148 | // WebRtc_CreateBinaryDelayEstimator().
149 | //
150 | void WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator *self);
151 |
152 | // Allocates the memory needed by the binary delay estimation. The memory needs
153 | // to be initialized separately through WebRtc_InitBinaryDelayEstimator(...).
154 | //
155 | // See WebRtc_CreateDelayEstimator(..) in delay_estimator_wrapper.c for detailed
156 | // description.
157 | BinaryDelayEstimator *WebRtc_CreateBinaryDelayEstimator(
158 | BinaryDelayEstimatorFarend *farend,
159 | int max_lookahead);
160 |
161 | // Re-allocates |history_size| dependent buffers. The far-end buffers will be
162 | // updated at the same time if needed.
163 | //
164 | // Input:
165 | // - self : Pointer to the binary estimation instance which is
166 | // the return value of
167 | // WebRtc_CreateBinaryDelayEstimator().
168 | // - history_size : Size of the history buffers.
169 | //
170 | // Return value:
171 | // - history_size : The history size allocated.
172 | int WebRtc_AllocateHistoryBufferMemory(BinaryDelayEstimator *self,
173 | int history_size);
174 |
175 | // Initializes the delay estimation instance created with
176 | // WebRtc_CreateBinaryDelayEstimator(...).
177 | //
178 | // Input:
179 | // - self : Pointer to the delay estimation instance.
180 | //
181 | // Output:
182 | // - self : Initialized instance.
183 | //
184 | void WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator *self);
185 |
186 | // Soft resets the delay estimation instance created with
187 | // WebRtc_CreateBinaryDelayEstimator(...).
188 | //
189 | // Input:
190 | // - delay_shift : The amount of blocks to shift history buffers.
191 | //
192 | // Return value:
193 | // - actual_shifts : The actual number of shifts performed.
194 | //
195 | int WebRtc_SoftResetBinaryDelayEstimator(BinaryDelayEstimator *self,
196 | int delay_shift);
197 |
198 | // Estimates and returns the delay between the binary far-end and binary near-
199 | // end spectra. It is assumed the binary far-end spectrum has been added using
200 | // WebRtc_AddBinaryFarSpectrum() prior to this call. The value will be offset by
201 | // the lookahead (i.e. the lookahead should be subtracted from the returned
202 | // value).
203 | //
204 | // Inputs:
205 | // - self : Pointer to the delay estimation instance.
206 | // - binary_near_spectrum : Near-end binary spectrum of the current block.
207 | //
208 | // Output:
209 | // - self : Updated instance.
210 | //
211 | // Return value:
212 | // - delay : >= 0 - Calculated delay value.
213 | // -2 - Insufficient data for estimation.
214 | //
215 | int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator *self,
216 | uint32_t binary_near_spectrum);
217 |
218 | // Returns the last calculated delay updated by the function
219 | // WebRtc_ProcessBinarySpectrum(...).
220 | //
221 | // Input:
222 | // - self : Pointer to the delay estimation instance.
223 | //
224 | // Return value:
225 | // - delay : >= 0 - Last calculated delay value
226 | // -2 - Insufficient data for estimation.
227 | //
228 | int WebRtc_binary_last_delay(BinaryDelayEstimator *self);
229 |
230 | // Returns the estimation quality of the last calculated delay updated by the
231 | // function WebRtc_ProcessBinarySpectrum(...). The estimation quality is a value
232 | // in the interval [0, 1]. The higher the value, the better the quality.
233 | //
234 | // Return value:
235 | // - delay_quality : >= 0 - Estimation quality of last calculated
236 | // delay value.
237 | float WebRtc_binary_last_delay_quality(BinaryDelayEstimator *self);
238 |
239 | // Updates the |mean_value| recursively with a step size of 2^-|factor|. This
240 | // function is used internally in the Binary Delay Estimator as well as the
241 | // Fixed point wrapper.
242 | //
243 | // Inputs:
244 | // - new_value : The new value the mean should be updated with.
245 | // - factor : The step size, in number of right shifts.
246 | //
247 | // Input/Output:
248 | // - mean_value : Pointer to the mean value.
249 | //
250 | void WebRtc_MeanEstimatorFix(int32_t new_value,
251 | int factor,
252 | int32_t *mean_value);
253 |
254 |
255 | #endif // MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_H_
256 |
--------------------------------------------------------------------------------
/aecm/delay_estimator_wrapper.cc:
--------------------------------------------------------------------------------
1 | /*
2 | * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 | *
4 | * Use of this source code is governed by a BSD-style license
5 | * that can be found in the LICENSE file in the root of the source
6 | * tree. An additional intellectual property rights grant can be found
7 | * in the file PATENTS. All contributing project authors may
8 | * be found in the AUTHORS file in the root of the source tree.
9 | */
10 |
11 | #include "delay_estimator_wrapper.h"
12 |
13 | #include
14 | #include
15 |
16 | #include "delay_estimator.h"
17 |
18 | #include "signal_processing_library.h"
19 |
20 | typedef union {
21 | float float_;
22 | int32_t int32_;
23 | } SpectrumType;
24 |
25 | typedef struct {
26 | // Pointers to mean values of spectrum.
27 | SpectrumType *mean_far_spectrum;
28 | // |mean_far_spectrum| initialization indicator.
29 | int far_spectrum_initialized;
30 |
31 | int spectrum_size;
32 |
33 | // Far-end part of binary spectrum based delay estimation.
34 | BinaryDelayEstimatorFarend *binary_farend;
35 | } DelayEstimatorFarend;
36 |
37 | typedef struct {
38 | // Pointers to mean values of spectrum.
39 | SpectrumType *mean_near_spectrum;
40 | // |mean_near_spectrum| initialization indicator.
41 | int near_spectrum_initialized;
42 |
43 | int spectrum_size;
44 |
45 | // Binary spectrum based delay estimator
46 | BinaryDelayEstimator *binary_handle;
47 | } DelayEstimator;
48 | // Only bit |kBandFirst| through bit |kBandLast| are processed and
49 | // |kBandFirst| - |kBandLast| must be < 32.
50 | enum {
51 | kBandFirst = 12
52 | };
53 | enum {
54 | kBandLast = 43
55 | };
56 |
57 | static __inline uint32_t SetBit(uint32_t in, int pos) {
58 | uint32_t mask = (1 << pos);
59 | uint32_t out = (in | mask);
60 |
61 | return out;
62 | }
63 |
64 | // Calculates the mean recursively. Same version as WebRtc_MeanEstimatorFix(),
65 | // but for float.
66 | //
67 | // Inputs:
68 | // - new_value : New additional value.
69 | // - scale : Scale for smoothing (should be less than 1.0).
70 | //
71 | // Input/Output:
72 | // - mean_value : Pointer to the mean value for updating.
73 | //
74 | static void MeanEstimatorFloat(float new_value,
75 | float scale,
76 | float *mean_value) {
77 | RTC_DCHECK_LT(scale, 1.0f);
78 | *mean_value += (new_value - *mean_value) * scale;
79 | }
80 |
81 | // Computes the binary spectrum by comparing the input |spectrum| with a
82 | // |threshold_spectrum|. Float and fixed point versions.
83 | //
84 | // Inputs:
85 | // - spectrum : Spectrum of which the binary spectrum should be
86 | // calculated.
87 | // - threshold_spectrum : Threshold spectrum with which the input
88 | // spectrum is compared.
89 | // Return:
90 | // - out : Binary spectrum.
91 | //
92 | static uint32_t BinarySpectrumFix(const uint16_t *spectrum,
93 | SpectrumType *threshold_spectrum,
94 | int q_domain,
95 | int *threshold_initialized) {
96 | int i = kBandFirst;
97 | uint32_t out = 0;
98 |
99 | RTC_DCHECK_LT(q_domain, 16);
100 |
101 | if (!(*threshold_initialized)) {
102 | // Set the |threshold_spectrum| to half the input |spectrum| as starting
103 | // value. This speeds up the convergence.
104 | for (i = kBandFirst; i <= kBandLast; i++) {
105 | if (spectrum[i] > 0) {
106 | // Convert input spectrum from Q(|q_domain|) to Q15.
107 | int32_t spectrum_q15 = ((int32_t) spectrum[i]) << (15 - q_domain);
108 | threshold_spectrum[i].int32_ = (spectrum_q15 >> 1);
109 | *threshold_initialized = 1;
110 | }
111 | }
112 | }
113 | for (i = kBandFirst; i <= kBandLast; i++) {
114 | // Convert input spectrum from Q(|q_domain|) to Q15.
115 | int32_t spectrum_q15 = ((int32_t) spectrum[i]) << (15 - q_domain);
116 | // Update the |threshold_spectrum|.
117 | WebRtc_MeanEstimatorFix(spectrum_q15, 6, &(threshold_spectrum[i].int32_));
118 | // Convert |spectrum| at current frequency bin to a binary value.
119 | if (spectrum_q15 > threshold_spectrum[i].int32_) {
120 | out = SetBit(out, i - kBandFirst);
121 | }
122 | }
123 |
124 | return out;
125 | }
126 |
127 | static uint32_t BinarySpectrumFloat(const float *spectrum,
128 | SpectrumType *threshold_spectrum,
129 | int *threshold_initialized) {
130 | int i = kBandFirst;
131 | uint32_t out = 0;
132 | const float kScale = 1 / 64.0;
133 |
134 | if (!(*threshold_initialized)) {
135 | // Set the |threshold_spectrum| to half the input |spectrum| as starting
136 | // value. This speeds up the convergence.
137 | for (i = kBandFirst; i <= kBandLast; i++) {
138 | if (spectrum[i] > 0.0f) {
139 | threshold_spectrum[i].float_ = (spectrum[i] / 2);
140 | *threshold_initialized = 1;
141 | }
142 | }
143 | }
144 |
145 | for (i = kBandFirst; i <= kBandLast; i++) {
146 | // Update the |threshold_spectrum|.
147 | MeanEstimatorFloat(spectrum[i], kScale, &(threshold_spectrum[i].float_));
148 | // Convert |spectrum| at current frequency bin to a binary value.
149 | if (spectrum[i] > threshold_spectrum[i].float_) {
150 | out = SetBit(out, i - kBandFirst);
151 | }
152 | }
153 |
154 | return out;
155 | }
156 |
157 | void WebRtc_FreeDelayEstimatorFarend(void *handle) {
158 | DelayEstimatorFarend *self = (DelayEstimatorFarend *) handle;
159 |
160 | if (handle == NULL) {
161 | return;
162 | }
163 |
164 | free(self->mean_far_spectrum);
165 | self->mean_far_spectrum = NULL;
166 |
167 | WebRtc_FreeBinaryDelayEstimatorFarend(self->binary_farend);
168 | self->binary_farend = NULL;
169 |
170 | free(self);
171 | }
172 |
173 | void *WebRtc_CreateDelayEstimatorFarend(int spectrum_size, int history_size) {
174 | DelayEstimatorFarend *self = NULL;
175 |
176 | // Check if the sub band used in the delay estimation is small enough to fit
177 | // the binary spectra in a uint32_t.
178 | static_assert(kBandLast - kBandFirst < 32, "");
179 |
180 | if (spectrum_size >= kBandLast) {
181 | self = static_cast(
182 | malloc(sizeof(DelayEstimatorFarend)));
183 | }
184 |
185 | if (self != NULL) {
186 | int memory_fail = 0;
187 |
188 | // Allocate memory for the binary far-end spectrum handling.
189 | self->binary_farend = WebRtc_CreateBinaryDelayEstimatorFarend(history_size);
190 | memory_fail |= (self->binary_farend == NULL);
191 |
192 | // Allocate memory for spectrum buffers.
193 | self->mean_far_spectrum = static_cast(
194 | malloc(spectrum_size * sizeof(SpectrumType)));
195 | memory_fail |= (self->mean_far_spectrum == NULL);
196 |
197 | self->spectrum_size = spectrum_size;
198 |
199 | if (memory_fail) {
200 | WebRtc_FreeDelayEstimatorFarend(self);
201 | self = NULL;
202 | }
203 | }
204 |
205 | return self;
206 | }
207 |
208 | int WebRtc_InitDelayEstimatorFarend(void *handle) {
209 | DelayEstimatorFarend *self = (DelayEstimatorFarend *) handle;
210 |
211 | if (self == NULL) {
212 | return -1;
213 | }
214 |
215 | // Initialize far-end part of binary delay estimator.
216 | WebRtc_InitBinaryDelayEstimatorFarend(self->binary_farend);
217 |
218 | // Set averaged far and near end spectra to zero.
219 | memset(self->mean_far_spectrum, 0,
220 | sizeof(SpectrumType) * self->spectrum_size);
221 | // Reset initialization indicators.
222 | self->far_spectrum_initialized = 0;
223 |
224 | return 0;
225 | }
226 |
227 | void WebRtc_SoftResetDelayEstimatorFarend(void *handle, int delay_shift) {
228 | DelayEstimatorFarend *self = (DelayEstimatorFarend *) handle;
229 | RTC_DCHECK(self);
230 | WebRtc_SoftResetBinaryDelayEstimatorFarend(self->binary_farend, delay_shift);
231 | }
232 |
233 | int WebRtc_AddFarSpectrumFix(void *handle,
234 | const uint16_t *far_spectrum,
235 | int spectrum_size,
236 | int far_q) {
237 | DelayEstimatorFarend *self = (DelayEstimatorFarend *) handle;
238 | uint32_t binary_spectrum = 0;
239 |
240 | if (self == NULL) {
241 | return -1;
242 | }
243 | if (far_spectrum == NULL) {
244 | // Empty far end spectrum.
245 | return -1;
246 | }
247 | if (spectrum_size != self->spectrum_size) {
248 | // Data sizes don't match.
249 | return -1;
250 | }
251 | if (far_q > 15) {
252 | // If |far_q| is larger than 15 we cannot guarantee no wrap around.
253 | return -1;
254 | }
255 |
256 | // Get binary spectrum.
257 | binary_spectrum = BinarySpectrumFix(far_spectrum, self->mean_far_spectrum,
258 | far_q, &(self->far_spectrum_initialized));
259 | WebRtc_AddBinaryFarSpectrum(self->binary_farend, binary_spectrum);
260 |
261 | return 0;
262 | }
263 |
264 | int WebRtc_AddFarSpectrumFloat(void *handle,
265 | const float *far_spectrum,
266 | int spectrum_size) {
267 | DelayEstimatorFarend *self = (DelayEstimatorFarend *) handle;
268 | uint32_t binary_spectrum = 0;
269 |
270 | if (self == NULL) {
271 | return -1;
272 | }
273 | if (far_spectrum == NULL) {
274 | // Empty far end spectrum.
275 | return -1;
276 | }
277 | if (spectrum_size != self->spectrum_size) {
278 | // Data sizes don't match.
279 | return -1;
280 | }
281 |
282 | // Get binary spectrum.
283 | binary_spectrum = BinarySpectrumFloat(far_spectrum, self->mean_far_spectrum,
284 | &(self->far_spectrum_initialized));
285 | WebRtc_AddBinaryFarSpectrum(self->binary_farend, binary_spectrum);
286 |
287 | return 0;
288 | }
289 |
290 | void WebRtc_FreeDelayEstimator(void *handle) {
291 | DelayEstimator *self = (DelayEstimator *) handle;
292 |
293 | if (handle == NULL) {
294 | return;
295 | }
296 |
297 | free(self->mean_near_spectrum);
298 | self->mean_near_spectrum = NULL;
299 |
300 | WebRtc_FreeBinaryDelayEstimator(self->binary_handle);
301 | self->binary_handle = NULL;
302 |
303 | free(self);
304 | }
305 |
306 | void *WebRtc_CreateDelayEstimator(void *farend_handle, int max_lookahead) {
307 | DelayEstimator *self = NULL;
308 | DelayEstimatorFarend *farend = (DelayEstimatorFarend *) farend_handle;
309 |
310 | if (farend_handle != NULL) {
311 | self = static_cast(malloc(sizeof(DelayEstimator)));
312 | }
313 |
314 | if (self != NULL) {
315 | int memory_fail = 0;
316 |
317 | // Allocate memory for the farend spectrum handling.
318 | self->binary_handle =
319 | WebRtc_CreateBinaryDelayEstimator(farend->binary_farend, max_lookahead);
320 | memory_fail |= (self->binary_handle == NULL);
321 |
322 | // Allocate memory for spectrum buffers.
323 | self->mean_near_spectrum = static_cast(
324 | malloc(farend->spectrum_size * sizeof(SpectrumType)));
325 | memory_fail |= (self->mean_near_spectrum == NULL);
326 |
327 | self->spectrum_size = farend->spectrum_size;
328 |
329 | if (memory_fail) {
330 | WebRtc_FreeDelayEstimator(self);
331 | self = NULL;
332 | }
333 | }
334 |
335 | return self;
336 | }
337 |
338 | int WebRtc_InitDelayEstimator(void *handle) {
339 | DelayEstimator *self = (DelayEstimator *) handle;
340 |
341 | if (self == NULL) {
342 | return -1;
343 | }
344 |
345 | // Initialize binary delay estimator.
346 | WebRtc_InitBinaryDelayEstimator(self->binary_handle);
347 |
348 | // Set averaged far and near end spectra to zero.
349 | memset(self->mean_near_spectrum, 0,
350 | sizeof(SpectrumType) * self->spectrum_size);
351 | // Reset initialization indicators.
352 | self->near_spectrum_initialized = 0;
353 |
354 | return 0;
355 | }
356 |
357 | int WebRtc_SoftResetDelayEstimator(void *handle, int delay_shift) {
358 | DelayEstimator *self = (DelayEstimator *) handle;
359 | RTC_DCHECK(self);
360 | return WebRtc_SoftResetBinaryDelayEstimator(self->binary_handle, delay_shift);
361 | }
362 |
363 | int WebRtc_set_history_size(void *handle, int history_size) {
364 | DelayEstimator *self = static_cast(handle);
365 |
366 | if ((self == NULL) || (history_size <= 1)) {
367 | return -1;
368 | }
369 | return WebRtc_AllocateHistoryBufferMemory(self->binary_handle, history_size);
370 | }
371 |
372 | int WebRtc_history_size(const void *handle) {
373 | const DelayEstimator *self = static_cast(handle);
374 |
375 | if (self == NULL) {
376 | return -1;
377 | }
378 | if (self->binary_handle->farend->history_size !=
379 | self->binary_handle->history_size) {
380 | // Non matching history sizes.
381 | return -1;
382 | }
383 | return self->binary_handle->history_size;
384 | }
385 |
386 | int WebRtc_set_lookahead(void *handle, int lookahead) {
387 | DelayEstimator *self = (DelayEstimator *) handle;
388 | RTC_DCHECK(self);
389 | RTC_DCHECK(self->binary_handle);
390 | if ((lookahead > self->binary_handle->near_history_size - 1) ||
391 | (lookahead < 0)) {
392 | return -1;
393 | }
394 | self->binary_handle->lookahead = lookahead;
395 | return self->binary_handle->lookahead;
396 | }
397 |
398 | int WebRtc_lookahead(void *handle) {
399 | DelayEstimator *self = (DelayEstimator *) handle;
400 | RTC_DCHECK(self);
401 | RTC_DCHECK(self->binary_handle);
402 | return self->binary_handle->lookahead;
403 | }
404 |
405 | int WebRtc_set_allowed_offset(void *handle, int allowed_offset) {
406 | DelayEstimator *self = (DelayEstimator *) handle;
407 |
408 | if ((self == NULL) || (allowed_offset < 0)) {
409 | return -1;
410 | }
411 | self->binary_handle->allowed_offset = allowed_offset;
412 | return 0;
413 | }
414 |
415 | int WebRtc_get_allowed_offset(const void *handle) {
416 | const DelayEstimator *self = (const DelayEstimator *) handle;
417 |
418 | if (self == NULL) {
419 | return -1;
420 | }
421 | return self->binary_handle->allowed_offset;
422 | }
423 |
424 | int WebRtc_enable_robust_validation(void *handle, int enable) {
425 | DelayEstimator *self = (DelayEstimator *) handle;
426 |
427 | if (self == NULL) {
428 | return -1;
429 | }
430 | if ((enable < 0) || (enable > 1)) {
431 | return -1;
432 | }
433 | RTC_DCHECK(self->binary_handle);
434 | self->binary_handle->robust_validation_enabled = enable;
435 | return 0;
436 | }
437 |
438 | int WebRtc_is_robust_validation_enabled(const void *handle) {
439 | const DelayEstimator *self = (const DelayEstimator *) handle;
440 |
441 | if (self == NULL) {
442 | return -1;
443 | }
444 | return self->binary_handle->robust_validation_enabled;
445 | }
446 |
447 | int WebRtc_DelayEstimatorProcessFix(void *handle,
448 | const uint16_t *near_spectrum,
449 | int spectrum_size,
450 | int near_q) {
451 | DelayEstimator *self = (DelayEstimator *) handle;
452 | uint32_t binary_spectrum = 0;
453 |
454 | if (self == NULL) {
455 | return -1;
456 | }
457 | if (near_spectrum == NULL) {
458 | // Empty near end spectrum.
459 | return -1;
460 | }
461 | if (spectrum_size != self->spectrum_size) {
462 | // Data sizes don't match.
463 | return -1;
464 | }
465 | if (near_q > 15) {
466 | // If |near_q| is larger than 15 we cannot guarantee no wrap around.
467 | return -1;
468 | }
469 |
470 | // Get binary spectra.
471 | binary_spectrum =
472 | BinarySpectrumFix(near_spectrum, self->mean_near_spectrum, near_q,
473 | &(self->near_spectrum_initialized));
474 |
475 | return WebRtc_ProcessBinarySpectrum(self->binary_handle, binary_spectrum);
476 | }
477 |
478 | int WebRtc_DelayEstimatorProcessFloat(void *handle,
479 | const float *near_spectrum,
480 | int spectrum_size) {
481 | DelayEstimator *self = (DelayEstimator *) handle;
482 | uint32_t binary_spectrum = 0;
483 |
484 | if (self == NULL) {
485 | return -1;
486 | }
487 | if (near_spectrum == NULL) {
488 | // Empty near end spectrum.
489 | return -1;
490 | }
491 | if (spectrum_size != self->spectrum_size) {
492 | // Data sizes don't match.
493 | return -1;
494 | }
495 |
496 | // Get binary spectrum.
497 | binary_spectrum = BinarySpectrumFloat(near_spectrum, self->mean_near_spectrum,
498 | &(self->near_spectrum_initialized));
499 |
500 | return WebRtc_ProcessBinarySpectrum(self->binary_handle, binary_spectrum);
501 | }
502 |
503 | int WebRtc_last_delay(void *handle) {
504 | DelayEstimator *self = (DelayEstimator *) handle;
505 |
506 | if (self == NULL) {
507 | return -1;
508 | }
509 |
510 | return WebRtc_binary_last_delay(self->binary_handle);
511 | }
512 |
513 | float WebRtc_last_delay_quality(void *handle) {
514 | DelayEstimator *self = (DelayEstimator *) handle;
515 | RTC_DCHECK(self);
516 | return WebRtc_binary_last_delay_quality(self->binary_handle);
517 | }
518 |
--------------------------------------------------------------------------------
/aecm/delay_estimator_wrapper.h:
--------------------------------------------------------------------------------
1 | /*
2 | * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 | *
4 | * Use of this source code is governed by a BSD-style license
5 | * that can be found in the LICENSE file in the root of the source
6 | * tree. An additional intellectual property rights grant can be found
7 | * in the file PATENTS. All contributing project authors may
8 | * be found in the AUTHORS file in the root of the source tree.
9 | */
10 |
11 | // Performs delay estimation on block by block basis.
12 | // The return value is 0 - OK and -1 - Error, unless otherwise stated.
13 |
14 | #ifndef MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_WRAPPER_H_
15 | #define MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_WRAPPER_H_
16 |
17 | #include
18 |
19 |
20 | // Releases the memory allocated by WebRtc_CreateDelayEstimatorFarend(...)
21 | void WebRtc_FreeDelayEstimatorFarend(void *handle);
22 |
23 | // Allocates the memory needed by the far-end part of the delay estimation. The
24 | // memory needs to be initialized separately through
25 | // WebRtc_InitDelayEstimatorFarend(...).
26 | //
27 | // Inputs:
28 | // - spectrum_size : Size of the spectrum used both in far-end and
29 | // near-end. Used to allocate memory for spectrum
30 | // specific buffers.
31 | // - history_size : The far-end history buffer size. A change in buffer
32 | // size can be forced with WebRtc_set_history_size().
33 | // Note that the maximum delay which can be estimated is
34 | // determined together with WebRtc_set_lookahead().
35 | //
36 | // Return value:
37 | // - void* : Created |handle|. If the memory can't be allocated or
38 | // if any of the input parameters are invalid NULL is
39 | // returned.
40 | void *WebRtc_CreateDelayEstimatorFarend(int spectrum_size, int history_size);
41 |
42 | // Initializes the far-end part of the delay estimation instance returned by
43 | // WebRtc_CreateDelayEstimatorFarend(...)
44 | int WebRtc_InitDelayEstimatorFarend(void *handle);
45 |
46 | // Soft resets the far-end part of the delay estimation instance returned by
47 | // WebRtc_CreateDelayEstimatorFarend(...).
48 | // Input:
49 | // - delay_shift : The amount of blocks to shift history buffers.
50 | void WebRtc_SoftResetDelayEstimatorFarend(void *handle, int delay_shift);
51 |
52 | // Adds the far-end spectrum to the far-end history buffer. This spectrum is
53 | // used as reference when calculating the delay using
54 | // WebRtc_ProcessSpectrum().
55 | //
56 | // Inputs:
57 | // - far_spectrum : Far-end spectrum.
58 | // - spectrum_size : The size of the data arrays (same for both far- and
59 | // near-end).
60 | // - far_q : The Q-domain of the far-end data.
61 | //
62 | // Output:
63 | // - handle : Updated far-end instance.
64 | //
65 | int WebRtc_AddFarSpectrumFix(void *handle,
66 | const uint16_t *far_spectrum,
67 | int spectrum_size,
68 | int far_q);
69 |
70 | // See WebRtc_AddFarSpectrumFix() for description.
71 | int WebRtc_AddFarSpectrumFloat(void *handle,
72 | const float *far_spectrum,
73 | int spectrum_size);
74 |
75 | // Releases the memory allocated by WebRtc_CreateDelayEstimator(...)
76 | void WebRtc_FreeDelayEstimator(void *handle);
77 |
78 | // Allocates the memory needed by the delay estimation. The memory needs to be
79 | // initialized separately through WebRtc_InitDelayEstimator(...).
80 | //
81 | // Inputs:
82 | // - farend_handle : Pointer to the far-end part of the delay estimation
83 | // instance created prior to this call using
84 | // WebRtc_CreateDelayEstimatorFarend().
85 | //
86 | // Note that WebRtc_CreateDelayEstimator does not take
87 | // ownership of |farend_handle|, which has to be torn
88 | // down properly after this instance.
89 | //
90 | // - max_lookahead : Maximum amount of non-causal lookahead allowed. The
91 | // actual amount of lookahead used can be controlled by
92 | // WebRtc_set_lookahead(...). The default |lookahead| is
93 | // set to |max_lookahead| at create time. Use
94 | // WebRtc_set_lookahead(...) before start if a different
95 | // value is desired.
96 | //
97 | // Using lookahead can detect cases in which a near-end
98 | // signal occurs before the corresponding far-end signal.
99 | // It will delay the estimate for the current block by an
100 | // equal amount, and the returned values will be offset
101 | // by it.
102 | //
103 | // A value of zero is the typical no-lookahead case.
104 | // This also represents the minimum delay which can be
105 | // estimated.
106 | //
107 | // Note that the effective range of delay estimates is
108 | // [-|lookahead|,... ,|history_size|-|lookahead|)
109 | // where |history_size| is set through
110 | // WebRtc_set_history_size().
111 | //
112 | // Return value:
113 | // - void* : Created |handle|. If the memory can't be allocated or
114 | // if any of the input parameters are invalid NULL is
115 | // returned.
116 | void *WebRtc_CreateDelayEstimator(void *farend_handle, int max_lookahead);
117 |
118 | // Initializes the delay estimation instance returned by
119 | // WebRtc_CreateDelayEstimator(...)
120 | int WebRtc_InitDelayEstimator(void *handle);
121 |
122 | // Soft resets the delay estimation instance returned by
123 | // WebRtc_CreateDelayEstimator(...)
124 | // Input:
125 | // - delay_shift : The amount of blocks to shift history buffers.
126 | //
127 | // Return value:
128 | // - actual_shifts : The actual number of shifts performed.
129 | int WebRtc_SoftResetDelayEstimator(void *handle, int delay_shift);
130 |
131 | // Sets the effective |history_size| used. Valid values from 2. We simply need
132 | // at least two delays to compare to perform an estimate. If |history_size| is
133 | // changed, buffers are reallocated filling in with zeros if necessary.
134 | // Note that changing the |history_size| affects both buffers in far-end and
135 | // near-end. Hence it is important to change all DelayEstimators that use the
136 | // same reference far-end, to the same |history_size| value.
137 | // Inputs:
138 | // - handle : Pointer to the delay estimation instance.
139 | // - history_size : Effective history size to be used.
140 | // Return value:
141 | // - new_history_size : The new history size used. If the memory was not able
142 | // to be allocated 0 is returned.
143 | int WebRtc_set_history_size(void *handle, int history_size);
144 |
145 | // Returns the history_size currently used.
146 | // Input:
147 | // - handle : Pointer to the delay estimation instance.
148 | int WebRtc_history_size(const void *handle);
149 |
150 | // Sets the amount of |lookahead| to use. Valid values are [0, max_lookahead]
151 | // where |max_lookahead| was set at create time through
152 | // WebRtc_CreateDelayEstimator(...).
153 | //
154 | // Input:
155 | // - handle : Pointer to the delay estimation instance.
156 | // - lookahead : The amount of lookahead to be used.
157 | //
158 | // Return value:
159 | // - new_lookahead : The actual amount of lookahead set, unless |handle| is
160 | // a NULL pointer or |lookahead| is invalid, for which an
161 | // error is returned.
162 | int WebRtc_set_lookahead(void *handle, int lookahead);
163 |
164 | // Returns the amount of lookahead we currently use.
165 | // Input:
166 | // - handle : Pointer to the delay estimation instance.
167 | int WebRtc_lookahead(void *handle);
168 |
169 | // Sets the |allowed_offset| used in the robust validation scheme. If the
170 | // delay estimator is used in an echo control component, this parameter is
171 | // related to the filter length. In principle |allowed_offset| should be set to
172 | // the echo control filter length minus the expected echo duration, i.e., the
173 | // delay offset the echo control can handle without quality regression. The
174 | // default value, used if not set manually, is zero. Note that |allowed_offset|
175 | // has to be non-negative.
176 | // Inputs:
177 | // - handle : Pointer to the delay estimation instance.
178 | // - allowed_offset : The amount of delay offset, measured in partitions,
179 | // the echo control filter can handle.
180 | int WebRtc_set_allowed_offset(void *handle, int allowed_offset);
181 |
182 | // Returns the |allowed_offset| in number of partitions.
183 | int WebRtc_get_allowed_offset(const void *handle);
184 |
185 | // Enables/Disables a robust validation functionality in the delay estimation.
186 | // This is by default set to disabled at create time. The state is preserved
187 | // over a reset.
188 | // Inputs:
189 | // - handle : Pointer to the delay estimation instance.
190 | // - enable : Enable (1) or disable (0) this feature.
191 | int WebRtc_enable_robust_validation(void *handle, int enable);
192 |
193 | // Returns 1 if robust validation is enabled and 0 if disabled.
194 | int WebRtc_is_robust_validation_enabled(const void *handle);
195 |
196 | // Estimates and returns the delay between the far-end and near-end blocks. The
197 | // value will be offset by the lookahead (i.e. the lookahead should be
198 | // subtracted from the returned value).
199 | // Inputs:
200 | // - handle : Pointer to the delay estimation instance.
201 | // - near_spectrum : Pointer to the near-end spectrum data of the current
202 | // block.
203 | // - spectrum_size : The size of the data arrays (same for both far- and
204 | // near-end).
205 | // - near_q : The Q-domain of the near-end data.
206 | //
207 | // Output:
208 | // - handle : Updated instance.
209 | //
210 | // Return value:
211 | // - delay : >= 0 - Calculated delay value.
212 | // -1 - Error.
213 | // -2 - Insufficient data for estimation.
214 | int WebRtc_DelayEstimatorProcessFix(void *handle,
215 | const uint16_t *near_spectrum,
216 | int spectrum_size,
217 | int near_q);
218 |
219 | // See WebRtc_DelayEstimatorProcessFix() for description.
220 | int WebRtc_DelayEstimatorProcessFloat(void *handle,
221 | const float *near_spectrum,
222 | int spectrum_size);
223 |
224 | // Returns the last calculated delay updated by the function
225 | // WebRtc_DelayEstimatorProcess(...).
226 | //
227 | // Input:
228 | // - handle : Pointer to the delay estimation instance.
229 | //
230 | // Return value:
231 | // - delay : >= 0 - Last calculated delay value.
232 | // -1 - Error.
233 | // -2 - Insufficient data for estimation.
234 | int WebRtc_last_delay(void *handle);
235 |
236 | // Returns the estimation quality/probability of the last calculated delay
237 | // updated by the function WebRtc_DelayEstimatorProcess(...). The estimation
238 | // quality is a value in the interval [0, 1]. The higher the value, the better
239 | // the quality.
240 | //
241 | // Return value:
242 | // - delay_quality : >= 0 - Estimation quality of last calculated delay.
243 | float WebRtc_last_delay_quality(void *handle);
244 |
245 |
246 | #endif // MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_WRAPPER_H_
247 |
--------------------------------------------------------------------------------
/aecm/echo_control_mobile.cc:
--------------------------------------------------------------------------------
1 | /*
2 | * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 | *
4 | * Use of this source code is governed by a BSD-style license
5 | * that can be found in the LICENSE file in the root of the source
6 | * tree. An additional intellectual property rights grant can be found
7 | * in the file PATENTS. All contributing project authors may
8 | * be found in the AUTHORS file in the root of the source tree.
9 | */
10 |
11 | #include "echo_control_mobile.h"
12 |
13 | #ifdef AEC_DEBUG
14 | #include
15 | #endif
16 |
17 | #include
18 | #include
19 |
20 | extern "C" {
21 | #include "ring_buffer.h"
22 | #include "signal_processing_library.h"
23 | #include "aecm_defines.h"
24 | }
25 |
26 | #include "aecm_core.h"
27 |
28 |
29 | #define BUF_SIZE_FRAMES 50 // buffer size (frames)
30 | // Maximum length of resampled signal. Must be an integer multiple of frames
31 | // (ceil(1/(1 + MIN_SKEW)*2) + 1)*FRAME_LEN
32 | // The factor of 2 handles wb, and the + 1 is as a safety margin
33 | #define MAX_RESAMP_LEN (5 * FRAME_LEN)
34 |
35 | static const size_t kBufSizeSamp =
36 | BUF_SIZE_FRAMES * FRAME_LEN; // buffer size (samples)
37 | static const int kSampMsNb = 8; // samples per ms in nb
38 | // Target suppression levels for nlp modes
39 | // log{0.001, 0.00001, 0.00000001}
40 | static const int kInitCheck = 42;
41 |
42 | typedef struct {
43 | int sampFreq;
44 | int scSampFreq;
45 | short bufSizeStart;
46 | int knownDelay;
47 |
48 | // Stores the last frame added to the farend buffer
49 | short farendOld[2][FRAME_LEN];
50 | short initFlag; // indicates if AEC has been initialized
51 |
52 | // Variables used for averaging far end buffer size
53 | short counter;
54 | short sum;
55 | short firstVal;
56 | short checkBufSizeCtr;
57 |
58 | // Variables used for delay shifts
59 | short msInSndCardBuf;
60 | short filtDelay;
61 | int timeForDelayChange;
62 | int ECstartup;
63 | int checkBuffSize;
64 | int delayChange;
65 | short lastDelayDiff;
66 |
67 | int16_t echoMode;
68 |
69 | #ifdef AEC_DEBUG
70 | FILE* bufFile;
71 | FILE* delayFile;
72 | FILE* preCompFile;
73 | FILE* postCompFile;
74 | #endif // AEC_DEBUG
75 | // Structures
76 | RingBuffer *farendBuf;
77 |
78 | AecmCore *aecmCore;
79 | } AecMobile;
80 |
81 |
82 | // Estimates delay to set the position of the farend buffer read pointer
83 | // (controlled by knownDelay)
84 | static int WebRtcAecm_EstBufDelay(AecMobile *aecm, short msInSndCardBuf);
85 |
86 | // Stuffs the farend buffer if the estimated delay is too large
87 | static int WebRtcAecm_DelayComp(AecMobile *aecm);
88 |
89 | void *WebRtcAecm_Create() {
90 | // Allocate zero-filled memory.
91 | AecMobile *aecm = static_cast(calloc(1, sizeof(AecMobile)));
92 |
93 | aecm->aecmCore = WebRtcAecm_CreateCore();
94 | if (!aecm->aecmCore) {
95 | WebRtcAecm_Free(aecm);
96 | return NULL;
97 | }
98 |
99 | aecm->farendBuf = WebRtc_CreateBuffer(kBufSizeSamp, sizeof(int16_t));
100 | if (!aecm->farendBuf) {
101 | WebRtcAecm_Free(aecm);
102 | return NULL;
103 | }
104 |
105 | #ifdef AEC_DEBUG
106 | aecm->aecmCore->farFile = fopen("aecFar.pcm", "wb");
107 | aecm->aecmCore->nearFile = fopen("aecNear.pcm", "wb");
108 | aecm->aecmCore->outFile = fopen("aecOut.pcm", "wb");
109 | // aecm->aecmCore->outLpFile = fopen("aecOutLp.pcm","wb");
110 |
111 | aecm->bufFile = fopen("aecBuf.dat", "wb");
112 | aecm->delayFile = fopen("aecDelay.dat", "wb");
113 | aecm->preCompFile = fopen("preComp.pcm", "wb");
114 | aecm->postCompFile = fopen("postComp.pcm", "wb");
115 | #endif // AEC_DEBUG
116 | return aecm;
117 | }
118 |
119 | void WebRtcAecm_Free(void *aecmInst) {
120 | AecMobile *aecm = static_cast(aecmInst);
121 |
122 | if (aecm == NULL) {
123 | return;
124 | }
125 |
126 | #ifdef AEC_DEBUG
127 | fclose(aecm->aecmCore->farFile);
128 | fclose(aecm->aecmCore->nearFile);
129 | fclose(aecm->aecmCore->outFile);
130 | // fclose(aecm->aecmCore->outLpFile);
131 |
132 | fclose(aecm->bufFile);
133 | fclose(aecm->delayFile);
134 | fclose(aecm->preCompFile);
135 | fclose(aecm->postCompFile);
136 | #endif // AEC_DEBUG
137 | WebRtcAecm_FreeCore(aecm->aecmCore);
138 | WebRtc_FreeBuffer(aecm->farendBuf);
139 | free(aecm);
140 | }
141 |
142 | int32_t WebRtcAecm_Init(void *aecmInst, int32_t sampFreq) {
143 | AecMobile *aecm = static_cast(aecmInst);
144 | AecmConfig aecConfig;
145 |
146 | if (aecm == NULL) {
147 | return -1;
148 | }
149 |
150 | if (sampFreq != 8000 && sampFreq != 16000) {
151 | return AECM_BAD_PARAMETER_ERROR;
152 | }
153 | aecm->sampFreq = sampFreq;
154 |
155 | // Initialize AECM core
156 | if (WebRtcAecm_InitCore(aecm->aecmCore, aecm->sampFreq) == -1) {
157 | return AECM_UNSPECIFIED_ERROR;
158 | }
159 |
160 | // Initialize farend buffer
161 | WebRtc_InitBuffer(aecm->farendBuf);
162 |
163 | aecm->initFlag = kInitCheck; // indicates that initialization has been done
164 |
165 | aecm->delayChange = 1;
166 |
167 | aecm->sum = 0;
168 | aecm->counter = 0;
169 | aecm->checkBuffSize = 1;
170 | aecm->firstVal = 0;
171 |
172 | aecm->ECstartup = 1;
173 | aecm->bufSizeStart = 0;
174 | aecm->checkBufSizeCtr = 0;
175 | aecm->filtDelay = 0;
176 | aecm->timeForDelayChange = 0;
177 | aecm->knownDelay = 0;
178 | aecm->lastDelayDiff = 0;
179 |
180 | memset(&aecm->farendOld, 0, sizeof(aecm->farendOld));
181 |
182 | // Default settings.
183 | aecConfig.cngMode = AecmTrue;
184 | aecConfig.echoMode = 3;
185 |
186 | if (WebRtcAecm_set_config(aecm, aecConfig) == -1) {
187 | return AECM_UNSPECIFIED_ERROR;
188 | }
189 |
190 | return 0;
191 | }
192 |
193 | // Returns any error that is caused when buffering the
194 | // farend signal.
195 | int32_t WebRtcAecm_GetBufferFarendError(void *aecmInst,
196 | const int16_t *farend,
197 | size_t nrOfSamples) {
198 | AecMobile *aecm = static_cast(aecmInst);
199 |
200 | if (aecm == NULL)
201 | return -1;
202 |
203 | if (farend == NULL)
204 | return AECM_NULL_POINTER_ERROR;
205 |
206 | if (aecm->initFlag != kInitCheck)
207 | return AECM_UNINITIALIZED_ERROR;
208 |
209 | if (nrOfSamples != 80 && nrOfSamples != 160)
210 | return AECM_BAD_PARAMETER_ERROR;
211 |
212 | return 0;
213 | }
214 |
215 | int32_t WebRtcAecm_BufferFarend(void *aecmInst,
216 | const int16_t *farend,
217 | size_t nrOfSamples) {
218 | AecMobile *aecm = static_cast(aecmInst);
219 |
220 | const int32_t err =
221 | WebRtcAecm_GetBufferFarendError(aecmInst, farend, nrOfSamples);
222 |
223 | if (err != 0)
224 | return err;
225 |
226 | // TODO(unknown): Is this really a good idea?
227 | if (!aecm->ECstartup) {
228 | WebRtcAecm_DelayComp(aecm);
229 | }
230 |
231 | WebRtc_WriteBuffer(aecm->farendBuf, farend, nrOfSamples);
232 |
233 | return 0;
234 | }
235 |
236 | int32_t WebRtcAecm_Process(void *aecmInst,
237 | const int16_t *nearendNoisy,
238 | const int16_t *nearendClean,
239 | int16_t *out,
240 | size_t nrOfSamples,
241 | int16_t msInSndCardBuf) {
242 | AecMobile *aecm = static_cast(aecmInst);
243 | int32_t retVal = 0;
244 | size_t i;
245 | short nmbrOfFilledBuffers;
246 | size_t nBlocks10ms;
247 | size_t nFrames;
248 | #ifdef AEC_DEBUG
249 | short msInAECBuf;
250 | #endif
251 |
252 | if (aecm == NULL) {
253 | return -1;
254 | }
255 |
256 | if (nearendNoisy == NULL) {
257 | return AECM_NULL_POINTER_ERROR;
258 | }
259 |
260 | if (out == NULL) {
261 | return AECM_NULL_POINTER_ERROR;
262 | }
263 |
264 | if (aecm->initFlag != kInitCheck) {
265 | return AECM_UNINITIALIZED_ERROR;
266 | }
267 |
268 | if (nrOfSamples != 80 && nrOfSamples != 160) {
269 | return AECM_BAD_PARAMETER_ERROR;
270 | }
271 |
272 | if (msInSndCardBuf < 0) {
273 | msInSndCardBuf = 0;
274 | retVal = AECM_BAD_PARAMETER_WARNING;
275 | } else if (msInSndCardBuf > 500) {
276 | msInSndCardBuf = 500;
277 | retVal = AECM_BAD_PARAMETER_WARNING;
278 | }
279 | msInSndCardBuf += 10;
280 | aecm->msInSndCardBuf = msInSndCardBuf;
281 |
282 | nFrames = nrOfSamples / FRAME_LEN;
283 | nBlocks10ms = nFrames / aecm->aecmCore->mult;
284 |
285 | if (aecm->ECstartup) {
286 | if (nearendClean == NULL) {
287 | if (out != nearendNoisy) {
288 | memcpy(out, nearendNoisy, sizeof(short) * nrOfSamples);
289 | }
290 | } else if (out != nearendClean) {
291 | memcpy(out, nearendClean, sizeof(short) * nrOfSamples);
292 | }
293 |
294 | nmbrOfFilledBuffers =
295 | (short) WebRtc_available_read(aecm->farendBuf) / FRAME_LEN;
296 | // The AECM is in the start up mode
297 | // AECM is disabled until the soundcard buffer and farend buffers are OK
298 |
299 | // Mechanism to ensure that the soundcard buffer is reasonably stable.
300 | if (aecm->checkBuffSize) {
301 | aecm->checkBufSizeCtr++;
302 | // Before we fill up the far end buffer we require the amount of data on
303 | // the sound card to be stable (+/-8 ms) compared to the first value. This
304 | // comparison is made during the following 4 consecutive frames. If it
305 | // seems to be stable then we start to fill up the far end buffer.
306 |
307 | if (aecm->counter == 0) {
308 | aecm->firstVal = aecm->msInSndCardBuf;
309 | aecm->sum = 0;
310 | }
311 |
312 | if (abs(aecm->firstVal - aecm->msInSndCardBuf) <
313 | WEBRTC_SPL_MAX(0.2 * aecm->msInSndCardBuf, kSampMsNb)) {
314 | aecm->sum += aecm->msInSndCardBuf;
315 | aecm->counter++;
316 | } else {
317 | aecm->counter = 0;
318 | }
319 |
320 | if (aecm->counter * nBlocks10ms >= 6) {
321 | // The farend buffer size is determined in blocks of 80 samples
322 | // Use 75% of the average value of the soundcard buffer
323 | aecm->bufSizeStart = WEBRTC_SPL_MIN(
324 | (3 * aecm->sum * aecm->aecmCore->mult) / (aecm->counter * 40),
325 | BUF_SIZE_FRAMES);
326 | // buffersize has now been determined
327 | aecm->checkBuffSize = 0;
328 | }
329 |
330 | if (aecm->checkBufSizeCtr * nBlocks10ms > 50) {
331 | // for really bad sound cards, don't disable echocanceller for more than
332 | // 0.5 sec
333 | aecm->bufSizeStart = WEBRTC_SPL_MIN(
334 | (3 * aecm->msInSndCardBuf * aecm->aecmCore->mult) / 40,
335 | BUF_SIZE_FRAMES);
336 | aecm->checkBuffSize = 0;
337 | }
338 | }
339 |
340 | // if checkBuffSize changed in the if-statement above
341 | if (!aecm->checkBuffSize) {
342 | // soundcard buffer is now reasonably stable
343 | // When the far end buffer is filled with approximately the same amount of
344 | // data as the amount on the sound card we end the start up phase and
345 | // start to cancel echoes.
346 |
347 | if (nmbrOfFilledBuffers == aecm->bufSizeStart) {
348 | aecm->ECstartup = 0; // Enable the AECM
349 | } else if (nmbrOfFilledBuffers > aecm->bufSizeStart) {
350 | WebRtc_MoveReadPtr(aecm->farendBuf,
351 | (int) WebRtc_available_read(aecm->farendBuf) -
352 | (int) aecm->bufSizeStart * FRAME_LEN);
353 | aecm->ECstartup = 0;
354 | }
355 | }
356 |
357 | } else {
358 | // AECM is enabled
359 |
360 | // Note only 1 block supported for nb and 2 blocks for wb
361 | for (i = 0; i < nFrames; i++) {
362 | int16_t farend[FRAME_LEN];
363 | const int16_t *farend_ptr = NULL;
364 |
365 | nmbrOfFilledBuffers =
366 | (short) WebRtc_available_read(aecm->farendBuf) / FRAME_LEN;
367 |
368 | // Check that there is data in the far end buffer
369 | if (nmbrOfFilledBuffers > 0) {
370 | // Get the next 80 samples from the farend buffer
371 | WebRtc_ReadBuffer(aecm->farendBuf, (void **) &farend_ptr, farend,
372 | FRAME_LEN);
373 |
374 | // Always store the last frame for use when we run out of data
375 | memcpy(&(aecm->farendOld[i][0]), farend_ptr, FRAME_LEN * sizeof(short));
376 | } else {
377 | // We have no data so we use the last played frame
378 | memcpy(farend, &(aecm->farendOld[i][0]), FRAME_LEN * sizeof(short));
379 | farend_ptr = farend;
380 | }
381 |
382 | // Call buffer delay estimator when all data is extracted,
383 | // i,e. i = 0 for NB and i = 1 for WB
384 | if ((i == 0 && aecm->sampFreq == 8000) ||
385 | (i == 1 && aecm->sampFreq == 16000)) {
386 | WebRtcAecm_EstBufDelay(aecm, aecm->msInSndCardBuf);
387 | }
388 |
389 | // Call the AECM
390 | /*WebRtcAecm_ProcessFrame(aecm->aecmCore, farend, &nearend[FRAME_LEN * i],
391 | &out[FRAME_LEN * i], aecm->knownDelay);*/
392 | if (WebRtcAecm_ProcessFrame(
393 | aecm->aecmCore, farend_ptr, &nearendNoisy[FRAME_LEN * i],
394 | (nearendClean ? &nearendClean[FRAME_LEN * i] : NULL),
395 | &out[FRAME_LEN * i]) == -1)
396 | return -1;
397 | }
398 | }
399 |
400 | #ifdef AEC_DEBUG
401 | msInAECBuf = (short)WebRtc_available_read(aecm->farendBuf) /
402 | (kSampMsNb * aecm->aecmCore->mult);
403 | fwrite(&msInAECBuf, 2, 1, aecm->bufFile);
404 | fwrite(&(aecm->knownDelay), sizeof(aecm->knownDelay), 1, aecm->delayFile);
405 | #endif
406 |
407 | return retVal;
408 | }
409 |
410 | int32_t WebRtcAecm_set_config(void *aecmInst, AecmConfig config) {
411 | AecMobile *aecm = static_cast(aecmInst);
412 |
413 | if (aecm == NULL) {
414 | return -1;
415 | }
416 |
417 | if (aecm->initFlag != kInitCheck) {
418 | return AECM_UNINITIALIZED_ERROR;
419 | }
420 |
421 | if (config.cngMode != AecmFalse && config.cngMode != AecmTrue) {
422 | return AECM_BAD_PARAMETER_ERROR;
423 | }
424 | aecm->aecmCore->cngMode = config.cngMode;
425 |
426 | if (config.echoMode < 0 || config.echoMode > 4) {
427 | return AECM_BAD_PARAMETER_ERROR;
428 | }
429 | aecm->echoMode = config.echoMode;
430 |
431 | if (aecm->echoMode == 0) {
432 | aecm->aecmCore->supGain = SUPGAIN_DEFAULT >> 3;
433 | aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT >> 3;
434 | aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A >> 3;
435 | aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D >> 3;
436 | aecm->aecmCore->supGainErrParamDiffAB =
437 | (SUPGAIN_ERROR_PARAM_A >> 3) - (SUPGAIN_ERROR_PARAM_B >> 3);
438 | aecm->aecmCore->supGainErrParamDiffBD =
439 | (SUPGAIN_ERROR_PARAM_B >> 3) - (SUPGAIN_ERROR_PARAM_D >> 3);
440 | } else if (aecm->echoMode == 1) {
441 | aecm->aecmCore->supGain = SUPGAIN_DEFAULT >> 2;
442 | aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT >> 2;
443 | aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A >> 2;
444 | aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D >> 2;
445 | aecm->aecmCore->supGainErrParamDiffAB =
446 | (SUPGAIN_ERROR_PARAM_A >> 2) - (SUPGAIN_ERROR_PARAM_B >> 2);
447 | aecm->aecmCore->supGainErrParamDiffBD =
448 | (SUPGAIN_ERROR_PARAM_B >> 2) - (SUPGAIN_ERROR_PARAM_D >> 2);
449 | } else if (aecm->echoMode == 2) {
450 | aecm->aecmCore->supGain = SUPGAIN_DEFAULT >> 1;
451 | aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT >> 1;
452 | aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A >> 1;
453 | aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D >> 1;
454 | aecm->aecmCore->supGainErrParamDiffAB =
455 | (SUPGAIN_ERROR_PARAM_A >> 1) - (SUPGAIN_ERROR_PARAM_B >> 1);
456 | aecm->aecmCore->supGainErrParamDiffBD =
457 | (SUPGAIN_ERROR_PARAM_B >> 1) - (SUPGAIN_ERROR_PARAM_D >> 1);
458 | } else if (aecm->echoMode == 3) {
459 | aecm->aecmCore->supGain = SUPGAIN_DEFAULT;
460 | aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT;
461 | aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A;
462 | aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D;
463 | aecm->aecmCore->supGainErrParamDiffAB =
464 | SUPGAIN_ERROR_PARAM_A - SUPGAIN_ERROR_PARAM_B;
465 | aecm->aecmCore->supGainErrParamDiffBD =
466 | SUPGAIN_ERROR_PARAM_B - SUPGAIN_ERROR_PARAM_D;
467 | } else if (aecm->echoMode == 4) {
468 | aecm->aecmCore->supGain = SUPGAIN_DEFAULT << 1;
469 | aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT << 1;
470 | aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A << 1;
471 | aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D << 1;
472 | aecm->aecmCore->supGainErrParamDiffAB =
473 | (SUPGAIN_ERROR_PARAM_A << 1) - (SUPGAIN_ERROR_PARAM_B << 1);
474 | aecm->aecmCore->supGainErrParamDiffBD =
475 | (SUPGAIN_ERROR_PARAM_B << 1) - (SUPGAIN_ERROR_PARAM_D << 1);
476 | }
477 |
478 | return 0;
479 | }
480 |
481 | int32_t WebRtcAecm_InitEchoPath(void *aecmInst,
482 | const void *echo_path,
483 | size_t size_bytes) {
484 | AecMobile *aecm = static_cast(aecmInst);
485 | const int16_t *echo_path_ptr = static_cast(echo_path);
486 |
487 | if (aecmInst == NULL) {
488 | return -1;
489 | }
490 | if (echo_path == NULL) {
491 | return AECM_NULL_POINTER_ERROR;
492 | }
493 | if (size_bytes != WebRtcAecm_echo_path_size_bytes()) {
494 | // Input channel size does not match the size of AECM
495 | return AECM_BAD_PARAMETER_ERROR;
496 | }
497 | if (aecm->initFlag != kInitCheck) {
498 | return AECM_UNINITIALIZED_ERROR;
499 | }
500 |
501 | WebRtcAecm_InitEchoPathCore(aecm->aecmCore, echo_path_ptr);
502 |
503 | return 0;
504 | }
505 |
506 | int32_t WebRtcAecm_GetEchoPath(void *aecmInst,
507 | void *echo_path,
508 | size_t size_bytes) {
509 | AecMobile *aecm = static_cast(aecmInst);
510 | int16_t *echo_path_ptr = static_cast(echo_path);
511 |
512 | if (aecmInst == NULL) {
513 | return -1;
514 | }
515 | if (echo_path == NULL) {
516 | return AECM_NULL_POINTER_ERROR;
517 | }
518 | if (size_bytes != WebRtcAecm_echo_path_size_bytes()) {
519 | // Input channel size does not match the size of AECM
520 | return AECM_BAD_PARAMETER_ERROR;
521 | }
522 | if (aecm->initFlag != kInitCheck) {
523 | return AECM_UNINITIALIZED_ERROR;
524 | }
525 |
526 | memcpy(echo_path_ptr, aecm->aecmCore->channelStored, size_bytes);
527 | return 0;
528 | }
529 |
530 | size_t WebRtcAecm_echo_path_size_bytes() {
531 | return (PART_LEN1 * sizeof(int16_t));
532 | }
533 |
534 | static int WebRtcAecm_EstBufDelay(AecMobile *aecm, short msInSndCardBuf) {
535 | short delayNew, nSampSndCard;
536 | short nSampFar = (short) WebRtc_available_read(aecm->farendBuf);
537 | short diff;
538 |
539 | nSampSndCard = msInSndCardBuf * kSampMsNb * aecm->aecmCore->mult;
540 |
541 | delayNew = nSampSndCard - nSampFar;
542 |
543 | if (delayNew < FRAME_LEN) {
544 | WebRtc_MoveReadPtr(aecm->farendBuf, FRAME_LEN);
545 | delayNew += FRAME_LEN;
546 | }
547 |
548 | aecm->filtDelay =
549 | WEBRTC_SPL_MAX(0, (8 * aecm->filtDelay + 2 * delayNew) / 10);
550 |
551 | diff = aecm->filtDelay - aecm->knownDelay;
552 | if (diff > 224) {
553 | if (aecm->lastDelayDiff < 96) {
554 | aecm->timeForDelayChange = 0;
555 | } else {
556 | aecm->timeForDelayChange++;
557 | }
558 | } else if (diff < 96 && aecm->knownDelay > 0) {
559 | if (aecm->lastDelayDiff > 224) {
560 | aecm->timeForDelayChange = 0;
561 | } else {
562 | aecm->timeForDelayChange++;
563 | }
564 | } else {
565 | aecm->timeForDelayChange = 0;
566 | }
567 | aecm->lastDelayDiff = diff;
568 |
569 | if (aecm->timeForDelayChange > 25) {
570 | aecm->knownDelay = WEBRTC_SPL_MAX((int) aecm->filtDelay - 160, 0);
571 | }
572 | return 0;
573 | }
574 |
575 | static int WebRtcAecm_DelayComp(AecMobile *aecm) {
576 | int nSampFar = (int) WebRtc_available_read(aecm->farendBuf);
577 | int nSampSndCard, delayNew, nSampAdd;
578 | const int maxStuffSamp = 10 * FRAME_LEN;
579 |
580 | nSampSndCard = aecm->msInSndCardBuf * kSampMsNb * aecm->aecmCore->mult;
581 | delayNew = nSampSndCard - nSampFar;
582 |
583 | if (delayNew > FAR_BUF_LEN - FRAME_LEN * aecm->aecmCore->mult) {
584 | // The difference of the buffer sizes is larger than the maximum
585 | // allowed known delay. Compensate by stuffing the buffer.
586 | nSampAdd = (WEBRTC_SPL_MAX(((nSampSndCard >> 1) - nSampFar), FRAME_LEN));
587 | nSampAdd = WEBRTC_SPL_MIN(nSampAdd, maxStuffSamp);
588 |
589 | WebRtc_MoveReadPtr(aecm->farendBuf, -nSampAdd);
590 | aecm->delayChange = 1; // the delay needs to be updated
591 | }
592 |
593 | return 0;
594 | }
595 |
--------------------------------------------------------------------------------
/aecm/echo_control_mobile.h:
--------------------------------------------------------------------------------
1 | /*
2 | * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 | *
4 | * Use of this source code is governed by a BSD-style license
5 | * that can be found in the LICENSE file in the root of the source
6 | * tree. An additional intellectual property rights grant can be found
7 | * in the file PATENTS. All contributing project authors may
8 | * be found in the AUTHORS file in the root of the source tree.
9 | */
10 |
11 | #ifndef MODULES_AUDIO_PROCESSING_AECM_ECHO_CONTROL_MOBILE_H_
12 | #define MODULES_AUDIO_PROCESSING_AECM_ECHO_CONTROL_MOBILE_H_
13 |
14 | #include
15 | #include
16 |
17 |
18 | enum {
19 | AecmFalse = 0, AecmTrue
20 | };
21 |
22 | // Errors
23 | #define AECM_UNSPECIFIED_ERROR 12000
24 | #define AECM_UNSUPPORTED_FUNCTION_ERROR 12001
25 | #define AECM_UNINITIALIZED_ERROR 12002
26 | #define AECM_NULL_POINTER_ERROR 12003
27 | #define AECM_BAD_PARAMETER_ERROR 12004
28 |
29 | // Warnings
30 | #define AECM_BAD_PARAMETER_WARNING 12100
31 |
32 | typedef struct {
33 | int16_t cngMode; // AECM_FALSE, AECM_TRUE (default)
34 | int16_t echoMode; // 0, 1, 2, 3 (default), 4
35 | } AecmConfig;
36 |
37 | #ifdef __cplusplus
38 | extern "C" {
39 | #endif
40 |
41 | /*
42 | * Allocates the memory needed by the AECM. The memory needs to be
43 | * initialized separately using the WebRtcAecm_Init() function.
44 | * Returns a pointer to the instance and a nullptr at failure.
45 | */
46 | void *WebRtcAecm_Create();
47 |
48 | /*
49 | * This function releases the memory allocated by WebRtcAecm_Create()
50 | *
51 | * Inputs Description
52 | * -------------------------------------------------------------------
53 | * void* aecmInst Pointer to the AECM instance
54 | */
55 | void WebRtcAecm_Free(void *aecmInst);
56 |
57 | /*
58 | * Initializes an AECM instance.
59 | *
60 | * Inputs Description
61 | * -------------------------------------------------------------------
62 | * void* aecmInst Pointer to the AECM instance
63 | * int32_t sampFreq Sampling frequency of data
64 | *
65 | * Outputs Description
66 | * -------------------------------------------------------------------
67 | * int32_t return 0: OK
68 | * 1200-12004,12100: error/warning
69 | */
70 | int32_t WebRtcAecm_Init(void *aecmInst, int32_t sampFreq);
71 |
72 | /*
73 | * Inserts an 80 or 160 sample block of data into the farend buffer.
74 | *
75 | * Inputs Description
76 | * -------------------------------------------------------------------
77 | * void* aecmInst Pointer to the AECM instance
78 | * int16_t* farend In buffer containing one frame of
79 | * farend signal
80 | * int16_t nrOfSamples Number of samples in farend buffer
81 | *
82 | * Outputs Description
83 | * -------------------------------------------------------------------
84 | * int32_t return 0: OK
85 | * 1200-12004,12100: error/warning
86 | */
87 | int32_t WebRtcAecm_BufferFarend(void *aecmInst,
88 | const int16_t *farend,
89 | size_t nrOfSamples);
90 |
91 | /*
92 | * Reports any errors that would arise when buffering a farend buffer.
93 | *
94 | * Inputs Description
95 | * -------------------------------------------------------------------
96 | * void* aecmInst Pointer to the AECM instance
97 | * int16_t* farend In buffer containing one frame of
98 | * farend signal
99 | * int16_t nrOfSamples Number of samples in farend buffer
100 | *
101 | * Outputs Description
102 | * -------------------------------------------------------------------
103 | * int32_t return 0: OK
104 | * 1200-12004,12100: error/warning
105 | */
106 | int32_t WebRtcAecm_GetBufferFarendError(void *aecmInst,
107 | const int16_t *farend,
108 | size_t nrOfSamples);
109 |
110 | /*
111 | * Runs the AECM on an 80 or 160 sample blocks of data.
112 | *
113 | * Inputs Description
114 | * -------------------------------------------------------------------
115 | * void* aecmInst Pointer to the AECM instance
116 | * int16_t* nearendNoisy In buffer containing one frame of
117 | * reference nearend+echo signal. If
118 | * noise reduction is active, provide
119 | * the noisy signal here.
120 | * int16_t* nearendClean In buffer containing one frame of
121 | * nearend+echo signal. If noise
122 | * reduction is active, provide the
123 | * clean signal here. Otherwise pass a
124 | * NULL pointer.
125 | * int16_t nrOfSamples Number of samples in nearend buffer
126 | * int16_t msInSndCardBuf Delay estimate for sound card and
127 | * system buffers
128 | *
129 | * Outputs Description
130 | * -------------------------------------------------------------------
131 | * int16_t* out Out buffer, one frame of processed nearend
132 | * int32_t return 0: OK
133 | * 1200-12004,12100: error/warning
134 | */
135 | int32_t WebRtcAecm_Process(void *aecmInst,
136 | const int16_t *nearendNoisy,
137 | const int16_t *nearendClean,
138 | int16_t *out,
139 | size_t nrOfSamples,
140 | int16_t msInSndCardBuf);
141 |
142 | /*
143 | * This function enables the user to set certain parameters on-the-fly
144 | *
145 | * Inputs Description
146 | * -------------------------------------------------------------------
147 | * void* aecmInst Pointer to the AECM instance
148 | * AecmConfig config Config instance that contains all
149 | * properties to be set
150 | *
151 | * Outputs Description
152 | * -------------------------------------------------------------------
153 | * int32_t return 0: OK
154 | * 1200-12004,12100: error/warning
155 | */
156 | int32_t WebRtcAecm_set_config(void *aecmInst, AecmConfig config);
157 |
158 | /*
159 | * This function enables the user to set the echo path on-the-fly.
160 | *
161 | * Inputs Description
162 | * -------------------------------------------------------------------
163 | * void* aecmInst Pointer to the AECM instance
164 | * void* echo_path Pointer to the echo path to be set
165 | * size_t size_bytes Size in bytes of the echo path
166 | *
167 | * Outputs Description
168 | * -------------------------------------------------------------------
169 | * int32_t return 0: OK
170 | * 1200-12004,12100: error/warning
171 | */
172 | int32_t WebRtcAecm_InitEchoPath(void *aecmInst,
173 | const void *echo_path,
174 | size_t size_bytes);
175 |
176 | /*
177 | * This function enables the user to get the currently used echo path
178 | * on-the-fly
179 | *
180 | * Inputs Description
181 | * -------------------------------------------------------------------
182 | * void* aecmInst Pointer to the AECM instance
183 | * void* echo_path Pointer to echo path
184 | * size_t size_bytes Size in bytes of the echo path
185 | *
186 | * Outputs Description
187 | * -------------------------------------------------------------------
188 | * int32_t return 0: OK
189 | * 1200-12004,12100: error/warning
190 | */
191 | int32_t WebRtcAecm_GetEchoPath(void *aecmInst,
192 | void *echo_path,
193 | size_t size_bytes);
194 |
195 | /*
196 | * This function enables the user to get the echo path size in bytes
197 | *
198 | * Outputs Description
199 | * -------------------------------------------------------------------
200 | * size_t return Size in bytes
201 | */
202 | size_t WebRtcAecm_echo_path_size_bytes();
203 |
204 | #ifdef __cplusplus
205 | }
206 | #endif
207 |
208 |
209 | #endif // MODULES_AUDIO_PROCESSING_AECM_ECHO_CONTROL_MOBILE_H_
210 |
--------------------------------------------------------------------------------
/aecm/real_fft.c:
--------------------------------------------------------------------------------
1 | /*
2 | * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 | *
4 | * Use of this source code is governed by a BSD-style license
5 | * that can be found in the LICENSE file in the root of the source
6 | * tree. An additional intellectual property rights grant can be found
7 | * in the file PATENTS. All contributing project authors may
8 | * be found in the AUTHORS file in the root of the source tree.
9 | */
10 |
11 | #include "real_fft.h"
12 |
13 | #include
14 |
15 | #include "signal_processing_library.h"
16 |
17 | struct RealFFT {
18 | int order;
19 | };
20 |
21 | struct RealFFT *WebRtcSpl_CreateRealFFT(int order) {
22 | struct RealFFT *self = NULL;
23 |
24 | if (order > kMaxFFTOrder || order < 0) {
25 | return NULL;
26 | }
27 |
28 | self = malloc(sizeof(struct RealFFT));
29 | if (self == NULL) {
30 | return NULL;
31 | }
32 | self->order = order;
33 |
34 | return self;
35 | }
36 |
37 | void WebRtcSpl_FreeRealFFT(struct RealFFT *self) {
38 | if (self != NULL) {
39 | free(self);
40 | }
41 | }
42 |
43 | // The C version FFT functions (i.e. WebRtcSpl_RealForwardFFT and
44 | // WebRtcSpl_RealInverseFFT) are real-valued FFT wrappers for complex-valued
45 | // FFT implementation in SPL.
46 |
47 | int WebRtcSpl_RealForwardFFT(struct RealFFT *self,
48 | const int16_t *real_data_in,
49 | int16_t *complex_data_out) {
50 | int i = 0;
51 | int j = 0;
52 | int result = 0;
53 | int n = 1 << self->order;
54 | // The complex-value FFT implementation needs a buffer to hold 2^order
55 | // 16-bit COMPLEX numbers, for both time and frequency data.
56 | int16_t complex_buffer[2 << kMaxFFTOrder];
57 |
58 | // Insert zeros to the imaginary parts for complex forward FFT input.
59 | for (i = 0, j = 0; i < n; i += 1, j += 2) {
60 | complex_buffer[j] = real_data_in[i];
61 | complex_buffer[j + 1] = 0;
62 | }
63 |
64 | WebRtcSpl_ComplexBitReverse(complex_buffer, self->order);
65 | result = WebRtcSpl_ComplexFFT(complex_buffer, self->order, 1);
66 |
67 | // For real FFT output, use only the first N + 2 elements from
68 | // complex forward FFT.
69 | memcpy(complex_data_out, complex_buffer, sizeof(int16_t) * (n + 2));
70 |
71 | return result;
72 | }
73 |
74 | int WebRtcSpl_RealInverseFFT(struct RealFFT *self,
75 | const int16_t *complex_data_in,
76 | int16_t *real_data_out) {
77 | int i = 0;
78 | int j = 0;
79 | int result = 0;
80 | int n = 1 << self->order;
81 | // Create the buffer specific to complex-valued FFT implementation.
82 | int16_t complex_buffer[2 << kMaxFFTOrder];
83 |
84 | // For n-point FFT, first copy the first n + 2 elements into complex
85 | // FFT, then construct the remaining n - 2 elements by real FFT's
86 | // conjugate-symmetric properties.
87 | memcpy(complex_buffer, complex_data_in, sizeof(int16_t) * (n + 2));
88 | for (i = n + 2; i < 2 * n; i += 2) {
89 | complex_buffer[i] = complex_data_in[2 * n - i];
90 | complex_buffer[i + 1] = -complex_data_in[2 * n - i + 1];
91 | }
92 |
93 | WebRtcSpl_ComplexBitReverse(complex_buffer, self->order);
94 | result = WebRtcSpl_ComplexIFFT(complex_buffer, self->order, 1);
95 |
96 | // Strip out the imaginary parts of the complex inverse FFT output.
97 | for (i = 0, j = 0; i < n; i += 1, j += 2) {
98 | real_data_out[i] = complex_buffer[j];
99 | }
100 |
101 | return result;
102 | }
103 |
--------------------------------------------------------------------------------
/aecm/real_fft.h:
--------------------------------------------------------------------------------
1 | /*
2 | * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 | *
4 | * Use of this source code is governed by a BSD-style license
5 | * that can be found in the LICENSE file in the root of the source
6 | * tree. An additional intellectual property rights grant can be found
7 | * in the file PATENTS. All contributing project authors may
8 | * be found in the AUTHORS file in the root of the source tree.
9 | */
10 |
11 | #ifndef COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_REAL_FFT_H_
12 | #define COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_REAL_FFT_H_
13 |
14 | #include
15 |
16 | // For ComplexFFT(), the maximum fft order is 10;
17 | // WebRTC APM uses orders of only 7 and 8.
18 | enum {
19 | kMaxFFTOrder = 10
20 | };
21 |
22 | struct RealFFT;
23 |
24 | #ifdef __cplusplus
25 | extern "C" {
26 | #endif
27 |
28 | struct RealFFT *WebRtcSpl_CreateRealFFT(int order);
29 |
30 | void WebRtcSpl_FreeRealFFT(struct RealFFT *self);
31 |
32 | // Compute an FFT for a real-valued signal of length of 2^order,
33 | // where 1 < order <= MAX_FFT_ORDER. Transform length is determined by the
34 | // specification structure, which must be initialized prior to calling the FFT
35 | // function with WebRtcSpl_CreateRealFFT().
36 | // The relationship between the input and output sequences can
37 | // be expressed in terms of the DFT, i.e.:
38 | // x[n] = (2^(-scalefactor)/N) . SUM[k=0,...,N-1] X[k].e^(jnk.2.pi/N)
39 | // n=0,1,2,...N-1
40 | // N=2^order.
41 | // The conjugate-symmetric output sequence is represented using a CCS vector,
42 | // which is of length N+2, and is organized as follows:
43 | // Index: 0 1 2 3 4 5 . . . N-2 N-1 N N+1
44 | // Component: R0 0 R1 I1 R2 I2 . . . R[N/2-1] I[N/2-1] R[N/2] 0
45 | // where R[n] and I[n], respectively, denote the real and imaginary components
46 | // for FFT bin 'n'. Bins are numbered from 0 to N/2, where N is the FFT length.
47 | // Bin index 0 corresponds to the DC component, and bin index N/2 corresponds to
48 | // the foldover frequency.
49 | //
50 | // Input Arguments:
51 | // self - pointer to preallocated and initialized FFT specification structure.
52 | // real_data_in - the input signal. For an ARM Neon platform, it must be
53 | // aligned on a 32-byte boundary.
54 | //
55 | // Output Arguments:
56 | // complex_data_out - the output complex signal with (2^order + 2) 16-bit
57 | // elements. For an ARM Neon platform, it must be different
58 | // from real_data_in, and aligned on a 32-byte boundary.
59 | //
60 | // Return Value:
61 | // 0 - FFT calculation is successful.
62 | // -1 - Error with bad arguments (null pointers).
63 | int WebRtcSpl_RealForwardFFT(struct RealFFT *self,
64 | const int16_t *real_data_in,
65 | int16_t *complex_data_out);
66 |
67 | // Compute the inverse FFT for a conjugate-symmetric input sequence of length of
68 | // 2^order, where 1 < order <= MAX_FFT_ORDER. Transform length is determined by
69 | // the specification structure, which must be initialized prior to calling the
70 | // FFT function with WebRtcSpl_CreateRealFFT().
71 | // For a transform of length M, the input sequence is represented using a packed
72 | // CCS vector of length M+2, which is explained in the comments for
73 | // WebRtcSpl_RealForwardFFTC above.
74 | //
75 | // Input Arguments:
76 | // self - pointer to preallocated and initialized FFT specification structure.
77 | // complex_data_in - the input complex signal with (2^order + 2) 16-bit
78 | // elements. For an ARM Neon platform, it must be aligned on
79 | // a 32-byte boundary.
80 | //
81 | // Output Arguments:
82 | // real_data_out - the output real signal. For an ARM Neon platform, it must
83 | // be different to complex_data_in, and aligned on a 32-byte
84 | // boundary.
85 | //
86 | // Return Value:
87 | // 0 or a positive number - a value that the elements in the |real_data_out|
88 | // should be shifted left with in order to get
89 | // correct physical values.
90 | // -1 - Error with bad arguments (null pointers).
91 | int WebRtcSpl_RealInverseFFT(struct RealFFT *self,
92 | const int16_t *complex_data_in,
93 | int16_t *real_data_out);
94 |
95 | #ifdef __cplusplus
96 | }
97 | #endif
98 |
99 | #endif // COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_REAL_FFT_H_
100 |
--------------------------------------------------------------------------------
/aecm/ring_buffer.c:
--------------------------------------------------------------------------------
1 | /*
2 | * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3 | *
4 | * Use of this source code is governed by a BSD-style license
5 | * that can be found in the LICENSE file in the root of the source
6 | * tree. An additional intellectual property rights grant can be found
7 | * in the file PATENTS. All contributing project authors may
8 | * be found in the AUTHORS file in the root of the source tree.
9 | */
10 |
11 | // A ring buffer to hold arbitrary data. Provides no thread safety. Unless
12 | // otherwise specified, functions return 0 on success and -1 on error.
13 |
14 | #include "ring_buffer.h"
15 |
16 | #include
17 | #include
18 |
19 | // Get address of region(s) from which we can read data.
20 | // If the region is contiguous, |data_ptr_bytes_2| will be zero.
21 | // If non-contiguous, |data_ptr_bytes_2| will be the size in bytes of the second
22 | // region. Returns room available to be read or |element_count|, whichever is
23 | // smaller.
24 | static size_t GetBufferReadRegions(RingBuffer *buf,
25 | size_t element_count,
26 | void **data_ptr_1,
27 | size_t *data_ptr_bytes_1,
28 | void **data_ptr_2,
29 | size_t *data_ptr_bytes_2) {
30 |
31 | const size_t readable_elements = WebRtc_available_read(buf);
32 | const size_t read_elements = (readable_elements < element_count ?
33 | readable_elements : element_count);
34 | const size_t margin = buf->element_count - buf->read_pos;
35 |
36 | // Check to see if read is not contiguous.
37 | if (read_elements > margin) {
38 | // Write data in two blocks that wrap the buffer.
39 | *data_ptr_1 = buf->data + buf->read_pos * buf->element_size;
40 | *data_ptr_bytes_1 = margin * buf->element_size;
41 | *data_ptr_2 = buf->data;
42 | *data_ptr_bytes_2 = (read_elements - margin) * buf->element_size;
43 | } else {
44 | *data_ptr_1 = buf->data + buf->read_pos * buf->element_size;
45 | *data_ptr_bytes_1 = read_elements * buf->element_size;
46 | *data_ptr_2 = NULL;
47 | *data_ptr_bytes_2 = 0;
48 | }
49 |
50 | return read_elements;
51 | }
52 |
53 | RingBuffer *WebRtc_CreateBuffer(size_t element_count, size_t element_size) {
54 | RingBuffer *self = NULL;
55 | if (element_count == 0 || element_size == 0) {
56 | return NULL;
57 | }
58 |
59 | self = malloc(sizeof(RingBuffer));
60 | if (!self) {
61 | return NULL;
62 | }
63 |
64 | self->data = malloc(element_count * element_size);
65 | if (!self->data) {
66 | free(self);
67 | self = NULL;
68 | return NULL;
69 | }
70 |
71 | self->element_count = element_count;
72 | self->element_size = element_size;
73 | WebRtc_InitBuffer(self);
74 |
75 | return self;
76 | }
77 |
78 | void WebRtc_InitBuffer(RingBuffer *self) {
79 | self->read_pos = 0;
80 | self->write_pos = 0;
81 | self->rw_wrap = SAME_WRAP;
82 |
83 | // Initialize buffer to zeros
84 | memset(self->data, 0, self->element_count * self->element_size);
85 | }
86 |
87 | void WebRtc_FreeBuffer(void *handle) {
88 | RingBuffer *self = (RingBuffer *) handle;
89 | if (!self) {
90 | return;
91 | }
92 |
93 | free(self->data);
94 | free(self);
95 | }
96 |
97 | size_t WebRtc_ReadBuffer(RingBuffer *self,
98 | void **data_ptr,
99 | void *data,
100 | size_t element_count) {
101 |
102 | if (self == NULL) {
103 | return 0;
104 | }
105 | if (data == NULL) {
106 | return 0;
107 | }
108 |
109 | {
110 | void *buf_ptr_1 = NULL;
111 | void *buf_ptr_2 = NULL;
112 | size_t buf_ptr_bytes_1 = 0;
113 | size_t buf_ptr_bytes_2 = 0;
114 | const size_t read_count = GetBufferReadRegions(self,
115 | element_count,
116 | &buf_ptr_1,
117 | &buf_ptr_bytes_1,
118 | &buf_ptr_2,
119 | &buf_ptr_bytes_2);
120 | if (buf_ptr_bytes_2 > 0) {
121 | // We have a wrap around when reading the buffer. Copy the buffer data to
122 | // |data| and point to it.
123 | memcpy(data, buf_ptr_1, buf_ptr_bytes_1);
124 | memcpy(((char *) data) + buf_ptr_bytes_1, buf_ptr_2, buf_ptr_bytes_2);
125 | buf_ptr_1 = data;
126 | } else if (!data_ptr) {
127 | // No wrap, but a memcpy was requested.
128 | memcpy(data, buf_ptr_1, buf_ptr_bytes_1);
129 | }
130 | if (data_ptr) {
131 | // |buf_ptr_1| == |data| in the case of a wrap.
132 | *data_ptr = read_count == 0 ? NULL : buf_ptr_1;
133 | }
134 |
135 | // Update read position
136 | WebRtc_MoveReadPtr(self, (int) read_count);
137 |
138 | return read_count;
139 | }
140 | }
141 |
142 | size_t WebRtc_WriteBuffer(RingBuffer *self,
143 | const void *data,
144 | size_t element_count) {
145 | if (!self) {
146 | return 0;
147 | }
148 | if (!data) {
149 | return 0;
150 | }
151 |
152 | {
153 | const size_t free_elements = WebRtc_available_write(self);
154 | const size_t write_elements = (free_elements < element_count ? free_elements
155 | : element_count);
156 | size_t n = write_elements;
157 | const size_t margin = self->element_count - self->write_pos;
158 |
159 | if (write_elements > margin) {
160 | // Buffer wrap around when writing.
161 | memcpy(self->data + self->write_pos * self->element_size,
162 | data, margin * self->element_size);
163 | self->write_pos = 0;
164 | n -= margin;
165 | self->rw_wrap = DIFF_WRAP;
166 | }
167 | memcpy(self->data + self->write_pos * self->element_size,
168 | ((const char *) data) + ((write_elements - n) * self->element_size),
169 | n * self->element_size);
170 | self->write_pos += n;
171 |
172 | return write_elements;
173 | }
174 | }
175 |
176 | int WebRtc_MoveReadPtr(RingBuffer *self, int element_count) {
177 | if (!self) {
178 | return 0;
179 | }
180 |
181 | {
182 | // We need to be able to take care of negative changes, hence use "int"
183 | // instead of "size_t".
184 | const int free_elements = (int) WebRtc_available_write(self);
185 | const int readable_elements = (int) WebRtc_available_read(self);
186 | int read_pos = (int) self->read_pos;
187 |
188 | if (element_count > readable_elements) {
189 | element_count = readable_elements;
190 | }
191 | if (element_count < -free_elements) {
192 | element_count = -free_elements;
193 | }
194 |
195 | read_pos += element_count;
196 | if (read_pos > (int) self->element_count) {
197 | // Buffer wrap around. Restart read position and wrap indicator.
198 | read_pos -= (int) self->element_count;
199 | self->rw_wrap = SAME_WRAP;
200 | }
201 | if (read_pos < 0) {
202 | // Buffer wrap around. Restart read position and wrap indicator.
203 | read_pos += (int) self->element_count;
204 | self->rw_wrap = DIFF_WRAP;
205 | }
206 |
207 | self->read_pos = (size_t) read_pos;
208 |
209 | return element_count;
210 | }
211 | }
212 |
213 | size_t WebRtc_available_read(const RingBuffer *self) {
214 | if (!self) {
215 | return 0;
216 | }
217 |
218 | if (self->rw_wrap == SAME_WRAP) {
219 | return self->write_pos - self->read_pos;
220 | } else {
221 | return self->element_count - self->read_pos + self->write_pos;
222 | }
223 | }
224 |
225 | size_t WebRtc_available_write(const RingBuffer *self) {
226 | if (!self) {
227 | return 0;
228 | }
229 |
230 | return self->element_count - WebRtc_available_read(self);
231 | }
232 |
--------------------------------------------------------------------------------
/aecm/ring_buffer.h:
--------------------------------------------------------------------------------
1 | /*
2 | * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3 | *
4 | * Use of this source code is governed by a BSD-style license
5 | * that can be found in the LICENSE file in the root of the source
6 | * tree. An additional intellectual property rights grant can be found
7 | * in the file PATENTS. All contributing project authors may
8 | * be found in the AUTHORS file in the root of the source tree.
9 | */
10 |
11 | // A ring buffer to hold arbitrary data. Provides no thread safety. Unless
12 | // otherwise specified, functions return 0 on success and -1 on error.
13 |
14 | #ifndef COMMON_AUDIO_RING_BUFFER_H_
15 | #define COMMON_AUDIO_RING_BUFFER_H_
16 |
17 | // TODO(alessiob): Used by AEC, AECm and AudioRingBuffer. Remove when possible.
18 |
19 | #ifdef __cplusplus
20 | extern "C" {
21 | #endif
22 |
23 | #include // size_t
24 |
25 | enum Wrap {
26 | SAME_WRAP, DIFF_WRAP
27 | };
28 |
29 | typedef struct RingBuffer {
30 | size_t read_pos;
31 | size_t write_pos;
32 | size_t element_count;
33 | size_t element_size;
34 | enum Wrap rw_wrap;
35 | char *data;
36 | } RingBuffer;
37 |
38 | // Creates and initializes the buffer. Returns null on failure.
39 | RingBuffer *WebRtc_CreateBuffer(size_t element_count, size_t element_size);
40 |
41 | void WebRtc_InitBuffer(RingBuffer *handle);
42 |
43 | void WebRtc_FreeBuffer(void *handle);
44 |
45 | // Reads data from the buffer. Returns the number of elements that were read.
46 | // The |data_ptr| will point to the address where the read data is located.
47 | // If no data can be read, |data_ptr| is set to |NULL|. If all data can be read
48 | // without buffer wrap around then |data_ptr| will point to the location in the
49 | // buffer. Otherwise, the data will be copied to |data| (memory allocation done
50 | // by the user) and |data_ptr| points to the address of |data|. |data_ptr| is
51 | // only guaranteed to be valid until the next call to WebRtc_WriteBuffer().
52 | //
53 | // To force a copying to |data|, pass a null |data_ptr|.
54 | //
55 | // Returns number of elements read.
56 | size_t WebRtc_ReadBuffer(RingBuffer *handle,
57 | void **data_ptr,
58 | void *data,
59 | size_t element_count);
60 |
61 | // Writes |data| to buffer and returns the number of elements written.
62 | size_t WebRtc_WriteBuffer(RingBuffer *handle,
63 | const void *data,
64 | size_t element_count);
65 |
66 | // Moves the buffer read position and returns the number of elements moved.
67 | // Positive |element_count| moves the read position towards the write position,
68 | // that is, flushing the buffer. Negative |element_count| moves the read
69 | // position away from the the write position, that is, stuffing the buffer.
70 | // Returns number of elements moved.
71 | int WebRtc_MoveReadPtr(RingBuffer *handle, int element_count);
72 |
73 | // Returns number of available elements to read.
74 | size_t WebRtc_available_read(const RingBuffer *handle);
75 |
76 | // Returns number of available elements for write.
77 | size_t WebRtc_available_write(const RingBuffer *handle);
78 |
79 | #ifdef __cplusplus
80 | }
81 | #endif
82 |
83 | #endif // COMMON_AUDIO_RING_BUFFER_H_
84 |
--------------------------------------------------------------------------------
/aecm/signal_processing_library.cc:
--------------------------------------------------------------------------------
1 | /*
2 | * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 | *
4 | * Use of this source code is governed by a BSD-style license
5 | * that can be found in the LICENSE file in the root of the source
6 | * tree. An additional intellectual property rights grant can be found
7 | * in the file PATENTS. All contributing project authors may
8 | * be found in the AUTHORS file in the root of the source tree.
9 | */
10 | #include "signal_processing_library.h"
11 |
12 | // TODO(bugs.webrtc.org/9553): These function pointers are useless. Refactor
13 | // things so that we simply have a bunch of regular functions with different
14 | // implementations for different platforms.
15 |
16 | #if defined(WEBRTC_HAS_NEON)
17 |
18 | const MaxAbsValueW16 WebRtcSpl_MaxAbsValueW16 = WebRtcSpl_MaxAbsValueW16Neon;
19 | const MaxAbsValueW32 WebRtcSpl_MaxAbsValueW32 = WebRtcSpl_MaxAbsValueW32Neon;
20 | const MaxValueW16 WebRtcSpl_MaxValueW16 = WebRtcSpl_MaxValueW16Neon;
21 | const MaxValueW32 WebRtcSpl_MaxValueW32 = WebRtcSpl_MaxValueW32Neon;
22 | const MinValueW16 WebRtcSpl_MinValueW16 = WebRtcSpl_MinValueW16Neon;
23 | const MinValueW32 WebRtcSpl_MinValueW32 = WebRtcSpl_MinValueW32Neon;
24 |
25 |
26 | #elif defined(MIPS32_LE)
27 |
28 | const MaxAbsValueW16 WebRtcSpl_MaxAbsValueW16 = WebRtcSpl_MaxAbsValueW16_mips;
29 | const MaxAbsValueW32 WebRtcSpl_MaxAbsValueW32 =
30 | #ifdef MIPS_DSP_R1_LE
31 | WebRtcSpl_MaxAbsValueW32_mips;
32 | #else
33 | WebRtcSpl_MaxAbsValueW32C;
34 | #endif
35 | const MaxValueW16 WebRtcSpl_MaxValueW16 = WebRtcSpl_MaxValueW16_mips;
36 | const MaxValueW32 WebRtcSpl_MaxValueW32 = WebRtcSpl_MaxValueW32_mips;
37 | const MinValueW16 WebRtcSpl_MinValueW16 = WebRtcSpl_MinValueW16_mips;
38 | const MinValueW32 WebRtcSpl_MinValueW32 = WebRtcSpl_MinValueW32_mips;
39 |
40 |
41 | #else
42 |
43 | const MaxAbsValueW16 WebRtcSpl_MaxAbsValueW16 = WebRtcSpl_MaxAbsValueW16C;
44 | const MaxAbsValueW32 WebRtcSpl_MaxAbsValueW32 = WebRtcSpl_MaxAbsValueW32C;
45 | const MaxValueW16 WebRtcSpl_MaxValueW16 = WebRtcSpl_MaxValueW16C;
46 | const MaxValueW32 WebRtcSpl_MaxValueW32 = WebRtcSpl_MaxValueW32C;
47 | const MinValueW16 WebRtcSpl_MinValueW16 = WebRtcSpl_MinValueW16C;
48 | const MinValueW32 WebRtcSpl_MinValueW32 = WebRtcSpl_MinValueW32C;
49 |
50 | #endif
51 |
52 | // Table used by WebRtcSpl_CountLeadingZeros32_NotBuiltin. For each uint32_t n
53 | // that's a sequence of 0 bits followed by a sequence of 1 bits, the entry at
54 | // index (n * 0x8c0b2891) >> 26 in this table gives the number of zero bits in
55 | // n.
56 | const int8_t kWebRtcSpl_CountLeadingZeros32_Table[64] = {
57 | 32, 8, 17, -1, -1, 14, -1, -1, -1, 20, -1, -1, -1, 28, -1, 18,
58 | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 26, 25, 24,
59 | 4, 11, 23, 31, 3, 7, 10, 16, 22, 30, -1, -1, 2, 6, 13, 9,
60 | -1, 15, -1, 21, -1, 29, 19, -1, -1, -1, -1, -1, 1, 27, 5, 12,
61 | };
62 | /*
63 | * Algorithm:
64 | * Successive approximation of the equation (root + delta) ^ 2 = N
65 | * until delta < 1. If delta < 1 we have the integer part of SQRT (N).
66 | * Use delta = 2^i for i = 15 .. 0.
67 | *
68 | * Output precision is 16 bits. Note for large input values (close to
69 | * 0x7FFFFFFF), bit 15 (the highest bit of the low 16-bit half word)
70 | * contains the MSB information (a non-sign value). Do with caution
71 | * if you need to cast the output to int16_t type.
72 | *
73 | * If the input value is negative, it returns 0.
74 | */
75 |
76 | #define WEBRTC_SPL_SQRT_ITER(N) \
77 | try1 = root + (1 << (N)); \
78 | if (value >= try1 << (N)) \
79 | { \
80 | value -= try1 << (N); \
81 | root |= 2 << (N); \
82 | }
83 |
84 | int32_t WebRtcSpl_SqrtFloor(int32_t value) {
85 | int32_t root = 0, try1;
86 |
87 | WEBRTC_SPL_SQRT_ITER (15);
88 | WEBRTC_SPL_SQRT_ITER (14);
89 | WEBRTC_SPL_SQRT_ITER (13);
90 | WEBRTC_SPL_SQRT_ITER (12);
91 | WEBRTC_SPL_SQRT_ITER (11);
92 | WEBRTC_SPL_SQRT_ITER (10);
93 | WEBRTC_SPL_SQRT_ITER (9);
94 | WEBRTC_SPL_SQRT_ITER (8);
95 | WEBRTC_SPL_SQRT_ITER (7);
96 | WEBRTC_SPL_SQRT_ITER (6);
97 | WEBRTC_SPL_SQRT_ITER (5);
98 | WEBRTC_SPL_SQRT_ITER (4);
99 | WEBRTC_SPL_SQRT_ITER (3);
100 | WEBRTC_SPL_SQRT_ITER (2);
101 | WEBRTC_SPL_SQRT_ITER (1);
102 | WEBRTC_SPL_SQRT_ITER (0);
103 |
104 | return root >> 1;
105 | }
106 |
107 | uint32_t WebRtcSpl_DivU32U16(uint32_t num, uint16_t den) {
108 | // Guard against division with 0
109 | if (den != 0) {
110 | return (uint32_t) (num / den);
111 | } else {
112 | return (uint32_t) 0xFFFFFFFF;
113 | }
114 | }
115 |
116 | int32_t WebRtcSpl_DivW32W16(int32_t num, int16_t den) {
117 | // Guard against division with 0
118 | if (den != 0) {
119 | return (int32_t) (num / den);
120 | } else {
121 | return (int32_t) 0x7FFFFFFF;
122 | }
123 | }
124 |
125 |
126 | static const uint32_t kMaxSeedUsed = 0x80000000;
127 |
128 |
129 | static uint32_t IncreaseSeed(uint32_t *seed) {
130 | seed[0] = (seed[0] * ((int32_t) 69069) + 1) & (kMaxSeedUsed - 1);
131 | return seed[0];
132 | }
133 |
134 | int16_t WebRtcSpl_RandU(uint32_t *seed) {
135 | return (int16_t) (IncreaseSeed(seed) >> 16);
136 | }
137 |
138 | // Creates an array of uniformly distributed variables.
139 | int16_t WebRtcSpl_RandUArray(int16_t *vector,
140 | int16_t vector_length,
141 | uint32_t *seed) {
142 | int i;
143 | for (i = 0; i < vector_length; i++) {
144 | vector[i] = WebRtcSpl_RandU(seed);
145 | }
146 | return vector_length;
147 | }
148 |
149 | // TODO(bjorn/kma): Consolidate function pairs (e.g. combine
150 | // WebRtcSpl_MaxAbsValueW16C and WebRtcSpl_MaxAbsIndexW16 into a single one.)
151 | // TODO(kma): Move the next six functions into min_max_operations_c.c.
152 |
153 | // Maximum absolute value of word16 vector. C version for generic platforms.
154 | int16_t WebRtcSpl_MaxAbsValueW16C(const int16_t *vector, size_t length) {
155 | size_t i = 0;
156 | int absolute = 0, maximum = 0;
157 |
158 | RTC_DCHECK_GT(length, 0);
159 |
160 | for (i = 0; i < length; i++) {
161 | absolute = abs((int) vector[i]);
162 |
163 | if (absolute > maximum) {
164 | maximum = absolute;
165 | }
166 | }
167 |
168 | // Guard the case for abs(-32768).
169 | if (maximum > WEBRTC_SPL_WORD16_MAX) {
170 | maximum = WEBRTC_SPL_WORD16_MAX;
171 | }
172 |
173 | return (int16_t) maximum;
174 | }
175 |
176 | // Maximum absolute value of word32 vector. C version for generic platforms.
177 | int32_t WebRtcSpl_MaxAbsValueW32C(const int32_t *vector, size_t length) {
178 | // Use uint32_t for the local variables, to accommodate the return value
179 | // of abs(0x80000000), which is 0x80000000.
180 |
181 | uint32_t absolute = 0, maximum = 0;
182 | size_t i = 0;
183 |
184 | RTC_DCHECK_GT(length, 0);
185 |
186 | for (i = 0; i < length; i++) {
187 | absolute = abs((int) vector[i]);
188 | if (absolute > maximum) {
189 | maximum = absolute;
190 | }
191 | }
192 |
193 | maximum = WEBRTC_SPL_MIN(maximum, WEBRTC_SPL_WORD32_MAX);
194 |
195 | return (int32_t) maximum;
196 | }
197 |
198 | // Maximum value of word16 vector. C version for generic platforms.
199 | int16_t WebRtcSpl_MaxValueW16C(const int16_t *vector, size_t length) {
200 | int16_t maximum = WEBRTC_SPL_WORD16_MIN;
201 | size_t i = 0;
202 |
203 | RTC_DCHECK_GT(length, 0);
204 |
205 | for (i = 0; i < length; i++) {
206 | if (vector[i] > maximum)
207 | maximum = vector[i];
208 | }
209 | return maximum;
210 | }
211 |
212 | // Maximum value of word32 vector. C version for generic platforms.
213 | int32_t WebRtcSpl_MaxValueW32C(const int32_t *vector, size_t length) {
214 | int32_t maximum = WEBRTC_SPL_WORD32_MIN;
215 | size_t i = 0;
216 |
217 | RTC_DCHECK_GT(length, 0);
218 |
219 | for (i = 0; i < length; i++) {
220 | if (vector[i] > maximum)
221 | maximum = vector[i];
222 | }
223 | return maximum;
224 | }
225 |
226 | // Minimum value of word16 vector. C version for generic platforms.
227 | int16_t WebRtcSpl_MinValueW16C(const int16_t *vector, size_t length) {
228 | int16_t minimum = WEBRTC_SPL_WORD16_MAX;
229 | size_t i = 0;
230 |
231 | RTC_DCHECK_GT(length, 0);
232 |
233 | for (i = 0; i < length; i++) {
234 | if (vector[i] < minimum)
235 | minimum = vector[i];
236 | }
237 | return minimum;
238 | }
239 |
240 | // Minimum value of word32 vector. C version for generic platforms.
241 | int32_t WebRtcSpl_MinValueW32C(const int32_t *vector, size_t length) {
242 | int32_t minimum = WEBRTC_SPL_WORD32_MAX;
243 | size_t i = 0;
244 |
245 | RTC_DCHECK_GT(length, 0);
246 |
247 | for (i = 0; i < length; i++) {
248 | if (vector[i] < minimum)
249 | minimum = vector[i];
250 | }
251 | return minimum;
252 | }
253 |
--------------------------------------------------------------------------------
/aecm/signal_processing_library.h:
--------------------------------------------------------------------------------
1 | /*
2 | * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 | *
4 | * Use of this source code is governed by a BSD-style license
5 | * that can be found in the LICENSE file in the root of the source
6 | * tree. An additional intellectual property rights grant can be found
7 | * in the file PATENTS. All contributing project authors may
8 | * be found in the AUTHORS file in the root of the source tree.
9 | */
10 |
11 | /*
12 | * This header file includes all of the fix point signal processing library
13 | * (SPL) function descriptions and declarations. For specific function calls,
14 | * see bottom of file.
15 | */
16 |
17 | #ifndef COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_SIGNAL_PROCESSING_LIBRARY_H_
18 | #define COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_SIGNAL_PROCESSING_LIBRARY_H_
19 |
20 | #include
21 | #include
22 |
23 | #include
24 |
25 | #include
26 | // If you for some reson need to know if DCHECKs are on, test the value of
27 | // RTC_DCHECK_IS_ON. (Test its value, not if it's defined; it'll always be
28 | // defined, to either a true or a false value.)
29 | #if !defined(NDEBUG) || defined(DCHECK_ALWAYS_ON)
30 | #define RTC_DCHECK_IS_ON 1
31 | #else
32 | #define RTC_DCHECK_IS_ON 0
33 | #endif
34 |
35 |
36 | #define RTC_DCHECK(condition) \
37 | do { \
38 | if (RTC_DCHECK_IS_ON) { \
39 | assert(condition); \
40 | } \
41 | } while (0)
42 |
43 | #define RTC_DCHECK_EQ(a, b) RTC_DCHECK((a) == (b))
44 | #define RTC_DCHECK_NE(a, b) RTC_DCHECK((a) != (b))
45 | #define RTC_DCHECK_LE(a, b) RTC_DCHECK((a) <= (b))
46 | #define RTC_DCHECK_LT(a, b) RTC_DCHECK((a) < (b))
47 | #define RTC_DCHECK_GE(a, b) RTC_DCHECK((a) >= (b))
48 | #define RTC_DCHECK_GT(a, b) RTC_DCHECK((a) > (b))
49 |
50 | // Processor architecture detection. For more info on what's defined, see:
51 | // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
52 | // http://www.agner.org/optimize/calling_conventions.pdf
53 | // or with gcc, run: "echo | gcc -E -dM -"
54 | #if defined(_M_X64) || defined(__x86_64__)
55 | #define WEBRTC_ARCH_X86_FAMILY
56 | #define WEBRTC_ARCH_X86_64
57 | #define WEBRTC_ARCH_64_BITS
58 | #define WEBRTC_ARCH_LITTLE_ENDIAN
59 | #elif defined(_M_ARM64) || defined(__aarch64__)
60 | #define WEBRTC_ARCH_ARM_FAMILY
61 | #define WEBRTC_ARCH_64_BITS
62 | #define WEBRTC_ARCH_LITTLE_ENDIAN
63 | #elif defined(_M_IX86) || defined(__i386__)
64 | #define WEBRTC_ARCH_X86_FAMILY
65 | #define WEBRTC_ARCH_X86
66 | #define WEBRTC_ARCH_32_BITS
67 | #define WEBRTC_ARCH_LITTLE_ENDIAN
68 | #elif defined(__ARMEL__)
69 | #define WEBRTC_ARCH_ARM_FAMILY
70 | #define WEBRTC_ARCH_32_BITS
71 | #define WEBRTC_ARCH_LITTLE_ENDIAN
72 | #elif defined(__MIPSEL__)
73 | #define WEBRTC_ARCH_MIPS_FAMILY
74 | #if defined(__LP64__)
75 | #define WEBRTC_ARCH_64_BITS
76 | #else
77 | #define WEBRTC_ARCH_32_BITS
78 | #endif
79 | #define WEBRTC_ARCH_LITTLE_ENDIAN
80 | #elif defined(__pnacl__)
81 | #define WEBRTC_ARCH_32_BITS
82 | #define WEBRTC_ARCH_LITTLE_ENDIAN
83 | #elif defined(__EMSCRIPTEN__)
84 | #define WEBRTC_ARCH_32_BITS
85 | #define WEBRTC_ARCH_LITTLE_ENDIAN
86 | #else
87 | #error Please add support for your architecture in rtc_base/system/arch.h
88 | #endif
89 |
90 | #if !(defined(WEBRTC_ARCH_LITTLE_ENDIAN) ^ defined(WEBRTC_ARCH_BIG_ENDIAN))
91 | #error Define either WEBRTC_ARCH_LITTLE_ENDIAN or WEBRTC_ARCH_BIG_ENDIAN
92 | #endif
93 | // Macros specific for the fixed point implementation
94 | #define WEBRTC_SPL_WORD16_MAX 32767
95 | #define WEBRTC_SPL_WORD16_MIN -32768
96 | #define WEBRTC_SPL_WORD32_MAX (int32_t)0x7fffffff
97 | #define WEBRTC_SPL_WORD32_MIN (int32_t)0x80000000
98 | #define WEBRTC_SPL_MIN(A, B) (A < B ? A : B) // Get min value
99 | #define WEBRTC_SPL_MAX(A, B) (A > B ? A : B) // Get max value
100 | // TODO(kma/bjorn): For the next two macros, investigate how to correct the code
101 | // for inputs of a = WEBRTC_SPL_WORD16_MIN or WEBRTC_SPL_WORD32_MIN.
102 | #define WEBRTC_SPL_ABS_W16(a) (((int16_t)a >= 0) ? ((int16_t)a) : -((int16_t)a))
103 | #define WEBRTC_SPL_ABS_W32(a) (((int32_t)a >= 0) ? ((int32_t)a) : -((int32_t)a))
104 |
105 | #define WEBRTC_SPL_UMUL_32_16(a, b) ((uint32_t)((uint32_t)(a) * (uint16_t)(b)))
106 | #define WEBRTC_SPL_MUL_16_U16(a, b) ((int32_t)(int16_t)(a) * (uint16_t)(b))
107 |
108 | // clang-format off
109 | // clang-format would choose some identation
110 | // leading to presubmit error (cpplint.py)
111 | #ifndef WEBRTC_ARCH_ARM_V7
112 | // For ARMv7 platforms, these are inline functions in spl_inl_armv7.h
113 | #ifndef MIPS32_LE
114 | // For MIPS platforms, these are inline functions in spl_inl_mips.h
115 | #define WEBRTC_SPL_MUL_16_16(a, b) ((int32_t)(((int16_t)(a)) * ((int16_t)(b))))
116 | #endif
117 | #endif
118 |
119 | // clang-format on
120 |
121 | #define WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(a, b, c) \
122 | ((WEBRTC_SPL_MUL_16_16(a, b) + ((int32_t)(((int32_t)1) << ((c)-1)))) >> (c))
123 |
124 | // C + the 32 most significant bits of A * B
125 |
126 | #define WEBRTC_SPL_SAT(a, b, c) (b > a ? a : b < c ? c : b)
127 |
128 | // Shifting with negative numbers allowed
129 | // Positive means left shift
130 | #define WEBRTC_SPL_SHIFT_W32(x, c) ((c) >= 0 ? (x) * (1 << (c)) : (x) >> -(c))
131 |
132 | // Shifting with negative numbers not allowed
133 | // We cannot do casting here due to signed/unsigned problem
134 | #define WEBRTC_SPL_LSHIFT_W32(x, c) ((x) << (c))
135 |
136 | #ifdef __cplusplus
137 | extern "C" {
138 | #endif
139 |
140 | // inline functions:
141 | #include "spl_inl.h"
142 |
143 |
144 | //
145 | // WebRtcSpl_SqrtFloor(...)
146 | //
147 | // Returns the square root of the input value |value|. The precision of this
148 | // function is rounding down integer precision, i.e., sqrt(8) gives 2 as answer.
149 | // If |value| is a negative number then 0 is returned.
150 | //
151 | // Algorithm:
152 | //
153 | // An iterative 4 cylce/bit routine
154 | //
155 | // Input:
156 | // - value : Value to calculate sqrt of
157 | //
158 | // Return value : Result of the sqrt calculation
159 | //
160 | int32_t WebRtcSpl_SqrtFloor(int32_t value);
161 |
162 |
163 |
164 | // Minimum and maximum operation functions and their pointers.
165 | // Implementation in min_max_operations.c.
166 |
167 | // Returns the largest absolute value in a signed 16-bit vector.
168 | //
169 | // Input:
170 | // - vector : 16-bit input vector.
171 | // - length : Number of samples in vector.
172 | //
173 | // Return value : Maximum absolute value in vector.
174 | typedef int16_t (*MaxAbsValueW16)(const int16_t *vector, size_t length);
175 | extern const MaxAbsValueW16 WebRtcSpl_MaxAbsValueW16;
176 | int16_t WebRtcSpl_MaxAbsValueW16C(const int16_t *vector, size_t length);
177 | #if defined(WEBRTC_HAS_NEON)
178 | int16_t WebRtcSpl_MaxAbsValueW16Neon(const int16_t* vector, size_t length);
179 | #endif
180 | #if defined(MIPS32_LE)
181 | int16_t WebRtcSpl_MaxAbsValueW16_mips(const int16_t* vector, size_t length);
182 | #endif
183 |
184 | // Returns the largest absolute value in a signed 32-bit vector.
185 | //
186 | // Input:
187 | // - vector : 32-bit input vector.
188 | // - length : Number of samples in vector.
189 | //
190 | // Return value : Maximum absolute value in vector.
191 | typedef int32_t (*MaxAbsValueW32)(const int32_t *vector, size_t length);
192 | extern const MaxAbsValueW32 WebRtcSpl_MaxAbsValueW32;
193 | int32_t WebRtcSpl_MaxAbsValueW32C(const int32_t *vector, size_t length);
194 | #if defined(WEBRTC_HAS_NEON)
195 | int32_t WebRtcSpl_MaxAbsValueW32Neon(const int32_t* vector, size_t length);
196 | #endif
197 | #if defined(MIPS_DSP_R1_LE)
198 | int32_t WebRtcSpl_MaxAbsValueW32_mips(const int32_t* vector, size_t length);
199 | #endif
200 |
201 | // Returns the maximum value of a 16-bit vector.
202 | //
203 | // Input:
204 | // - vector : 16-bit input vector.
205 | // - length : Number of samples in vector.
206 | //
207 | // Return value : Maximum sample value in |vector|.
208 | typedef int16_t (*MaxValueW16)(const int16_t *vector, size_t length);
209 | extern const MaxValueW16 WebRtcSpl_MaxValueW16;
210 | int16_t WebRtcSpl_MaxValueW16C(const int16_t *vector, size_t length);
211 | #if defined(WEBRTC_HAS_NEON)
212 | int16_t WebRtcSpl_MaxValueW16Neon(const int16_t* vector, size_t length);
213 | #endif
214 | #if defined(MIPS32_LE)
215 | int16_t WebRtcSpl_MaxValueW16_mips(const int16_t* vector, size_t length);
216 | #endif
217 |
218 | // Returns the maximum value of a 32-bit vector.
219 | //
220 | // Input:
221 | // - vector : 32-bit input vector.
222 | // - length : Number of samples in vector.
223 | //
224 | // Return value : Maximum sample value in |vector|.
225 | typedef int32_t (*MaxValueW32)(const int32_t *vector, size_t length);
226 | extern const MaxValueW32 WebRtcSpl_MaxValueW32;
227 | int32_t WebRtcSpl_MaxValueW32C(const int32_t *vector, size_t length);
228 | #if defined(WEBRTC_HAS_NEON)
229 | int32_t WebRtcSpl_MaxValueW32Neon(const int32_t* vector, size_t length);
230 | #endif
231 | #if defined(MIPS32_LE)
232 | int32_t WebRtcSpl_MaxValueW32_mips(const int32_t* vector, size_t length);
233 | #endif
234 |
235 | // Returns the minimum value of a 16-bit vector.
236 | //
237 | // Input:
238 | // - vector : 16-bit input vector.
239 | // - length : Number of samples in vector.
240 | //
241 | // Return value : Minimum sample value in |vector|.
242 | typedef int16_t (*MinValueW16)(const int16_t *vector, size_t length);
243 | extern const MinValueW16 WebRtcSpl_MinValueW16;
244 | int16_t WebRtcSpl_MinValueW16C(const int16_t *vector, size_t length);
245 | #if defined(WEBRTC_HAS_NEON)
246 | int16_t WebRtcSpl_MinValueW16Neon(const int16_t* vector, size_t length);
247 | #endif
248 | #if defined(MIPS32_LE)
249 | int16_t WebRtcSpl_MinValueW16_mips(const int16_t* vector, size_t length);
250 | #endif
251 |
252 | // Returns the minimum value of a 32-bit vector.
253 | //
254 | // Input:
255 | // - vector : 32-bit input vector.
256 | // - length : Number of samples in vector.
257 | //
258 | // Return value : Minimum sample value in |vector|.
259 | typedef int32_t (*MinValueW32)(const int32_t *vector, size_t length);
260 | extern const MinValueW32 WebRtcSpl_MinValueW32;
261 | int32_t WebRtcSpl_MinValueW32C(const int32_t *vector, size_t length);
262 | #if defined(WEBRTC_HAS_NEON)
263 | int32_t WebRtcSpl_MinValueW32Neon(const int32_t* vector, size_t length);
264 | #endif
265 | #if defined(MIPS32_LE)
266 | int32_t WebRtcSpl_MinValueW32_mips(const int32_t* vector, size_t length);
267 | #endif
268 |
269 | // Signal processing operations.
270 |
271 |
272 | // End: Signal processing operations.
273 |
274 | // Randomization functions. Implementations collected in
275 | // randomization_functions.c and descriptions at bottom of this file.
276 | int16_t WebRtcSpl_RandU(uint32_t *seed);
277 | int16_t WebRtcSpl_RandUArray(int16_t *vector,
278 | int16_t vector_length,
279 | uint32_t *seed);
280 | // End: Randomization functions.
281 |
282 |
283 | // Divisions. Implementations collected in division_operations.c and
284 | // descriptions at bottom of this file.
285 | uint32_t WebRtcSpl_DivU32U16(uint32_t num, uint16_t den);
286 | int32_t WebRtcSpl_DivW32W16(int32_t num, int16_t den);
287 | // End: Divisions.
288 |
289 |
290 | // FFT operations
291 |
292 | int WebRtcSpl_ComplexFFT(int16_t vector[], int stages, int mode);
293 | int WebRtcSpl_ComplexIFFT(int16_t vector[], int stages, int mode);
294 |
295 | // Treat a 16-bit complex data buffer |complex_data| as an array of 32-bit
296 | // values, and swap elements whose indexes are bit-reverses of each other.
297 | //
298 | // Input:
299 | // - complex_data : Complex data buffer containing 2^|stages| real
300 | // elements interleaved with 2^|stages| imaginary
301 | // elements: [Re Im Re Im Re Im....]
302 | // - stages : Number of FFT stages. Must be at least 3 and at most
303 | // 10, since the table WebRtcSpl_kSinTable1024[] is 1024
304 | // elements long.
305 | //
306 | // Output:
307 | // - complex_data : The complex data buffer.
308 |
309 | void WebRtcSpl_ComplexBitReverse(int16_t *__restrict complex_data, int stages);
310 |
311 | // End: FFT operations
312 |
313 |
314 | #ifdef __cplusplus
315 | }
316 | #endif // __cplusplus
317 | #endif // COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_SIGNAL_PROCESSING_LIBRARY_H_
--------------------------------------------------------------------------------
/aecm/spl_inl.h:
--------------------------------------------------------------------------------
1 | /*
2 | * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3 | *
4 | * Use of this source code is governed by a BSD-style license
5 | * that can be found in the LICENSE file in the root of the source
6 | * tree. An additional intellectual property rights grant can be found
7 | * in the file PATENTS. All contributing project authors may
8 | * be found in the AUTHORS file in the root of the source tree.
9 | */
10 |
11 | // This header file includes the inline functions in
12 | // the fix point signal processing library.
13 |
14 | #ifndef COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_SPL_INL_H_
15 | #define COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_SPL_INL_H_
16 |
17 | #include "signal_processing_library.h"
18 |
19 | extern const int8_t kWebRtcSpl_CountLeadingZeros32_Table[64];
20 |
21 | // Don't call this directly except in tests!
22 | static __inline int WebRtcSpl_CountLeadingZeros32_NotBuiltin(uint32_t n) {
23 | // Normalize n by rounding up to the nearest number that is a sequence of 0
24 | // bits followed by a sequence of 1 bits. This number has the same number of
25 | // leading zeros as the original n. There are exactly 33 such values.
26 | n |= n >> 1;
27 | n |= n >> 2;
28 | n |= n >> 4;
29 | n |= n >> 8;
30 | n |= n >> 16;
31 |
32 | // Multiply the modified n with a constant selected (by exhaustive search)
33 | // such that each of the 33 possible values of n give a product whose 6 most
34 | // significant bits are unique. Then look up the answer in the table.
35 | return kWebRtcSpl_CountLeadingZeros32_Table[(n * 0x8c0b2891) >> 26];
36 | }
37 |
38 |
39 | // Returns the number of leading zero bits in the argument.
40 | static __inline int WebRtcSpl_CountLeadingZeros32(uint32_t n) {
41 | #ifdef __GNUC__
42 | assert(sizeof(unsigned int) == sizeof(uint32_t));
43 | return n == 0 ? 32 : __builtin_clz(n);
44 | #else
45 | return WebRtcSpl_CountLeadingZeros32_NotBuiltin(n);
46 | #endif
47 | }
48 |
49 | #ifdef WEBRTC_ARCH_ARM_V7
50 | #include "spl_inl_armv7.h"
51 | #else
52 |
53 | #if defined(MIPS32_LE)
54 | #include "spl_inl_mips.h"
55 | #endif
56 |
57 | #if !defined(MIPS_DSP_R1_LE)
58 |
59 | static __inline int16_t WebRtcSpl_SatW32ToW16(int32_t value32) {
60 | int16_t out16 = (int16_t) value32;
61 |
62 | if (value32 > 32767)
63 | out16 = 32767;
64 | else if (value32 < -32768)
65 | out16 = -32768;
66 |
67 | return out16;
68 | }
69 |
70 | static __inline int32_t WebRtcSpl_AddSatW32(int32_t a, int32_t b) {
71 | // Do the addition in unsigned numbers, since signed overflow is undefined
72 | // behavior.
73 | const int32_t sum = (int32_t) ((uint32_t) a + (uint32_t) b);
74 |
75 | // a + b can't overflow if a and b have different signs. If they have the
76 | // same sign, a + b also has the same sign iff it didn't overflow.
77 | if ((a < 0) == (b < 0) && (a < 0) != (sum < 0)) {
78 | // The direction of the overflow is obvious from the sign of a + b.
79 | return sum < 0 ? INT32_MAX : INT32_MIN;
80 | }
81 | return sum;
82 | }
83 |
84 | static __inline int16_t WebRtcSpl_AddSatW16(int16_t a, int16_t b) {
85 | return WebRtcSpl_SatW32ToW16((int32_t) a + (int32_t) b);
86 | }
87 |
88 |
89 | #endif // #if !defined(MIPS_DSP_R1_LE)
90 |
91 | #if !defined(MIPS32_LE)
92 |
93 |
94 | // Return the number of steps a can be left-shifted without overflow,
95 | // or 0 if a == 0.
96 | static __inline int16_t WebRtcSpl_NormW32(int32_t a) {
97 | return a == 0 ? 0 : WebRtcSpl_CountLeadingZeros32(a < 0 ? ~a : a) - 1;
98 | }
99 |
100 | // Return the number of steps a can be left-shifted without overflow,
101 | // or 0 if a == 0.
102 | static __inline int16_t WebRtcSpl_NormU32(uint32_t a) {
103 | return a == 0 ? 0 : WebRtcSpl_CountLeadingZeros32(a);
104 | }
105 |
106 | // Return the number of steps a can be left-shifted without overflow,
107 | // or 0 if a == 0.
108 | static __inline int16_t WebRtcSpl_NormW16(int16_t a) {
109 | const int32_t a32 = a;
110 | return a == 0 ? 0 : WebRtcSpl_CountLeadingZeros32(a < 0 ? ~a32 : a32) - 17;
111 | }
112 |
113 | #endif // #if !defined(MIPS32_LE)
114 |
115 | #endif // WEBRTC_ARCH_ARM_V7
116 |
117 | #endif // COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_SPL_INL_H_
118 |
--------------------------------------------------------------------------------
/aecm/spl_inl_armv7.h:
--------------------------------------------------------------------------------
1 | /*
2 | * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 | *
4 | * Use of this source code is governed by a BSD-style license
5 | * that can be found in the LICENSE file in the root of the source
6 | * tree. An additional intellectual property rights grant can be found
7 | * in the file PATENTS. All contributing project authors may
8 | * be found in the AUTHORS file in the root of the source tree.
9 | */
10 |
11 | /* This header file includes the inline functions for ARM processors in
12 | * the fix point signal processing library.
13 | */
14 |
15 | #ifndef COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_SPL_INL_ARMV7_H_
16 | #define COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_SPL_INL_ARMV7_H_
17 |
18 | /* TODO(kma): Replace some assembly code with GCC intrinsics
19 | * (e.g. __builtin_clz).
20 | */
21 |
22 | /* This function produces result that is not bit exact with that by the generic
23 | * C version in some cases, although the former is at least as accurate as the
24 | * later.
25 | */
26 | static __inline int32_t WEBRTC_SPL_MUL_16_32_RSFT16(int16_t a, int32_t b) {
27 | int32_t tmp = 0;
28 | __asm __volatile("smulwb %0, %1, %2" : "=r"(tmp) : "r"(b), "r"(a));
29 | return tmp;
30 | }
31 |
32 | static __inline int32_t WEBRTC_SPL_MUL_16_16(int16_t a, int16_t b) {
33 | int32_t tmp = 0;
34 | __asm __volatile("smulbb %0, %1, %2" : "=r"(tmp) : "r"(a), "r"(b));
35 | return tmp;
36 | }
37 |
38 | // TODO(kma): add unit test.
39 | static __inline int32_t WebRtc_MulAccumW16(int16_t a, int16_t b, int32_t c) {
40 | int32_t tmp = 0;
41 | __asm __volatile("smlabb %0, %1, %2, %3"
42 | : "=r"(tmp)
43 | : "r"(a), "r"(b), "r"(c));
44 | return tmp;
45 | }
46 |
47 | static __inline int16_t WebRtcSpl_AddSatW16(int16_t a, int16_t b) {
48 | int32_t s_sum = 0;
49 |
50 | __asm __volatile("qadd16 %0, %1, %2" : "=r"(s_sum) : "r"(a), "r"(b));
51 |
52 | return (int16_t) s_sum;
53 | }
54 |
55 | static __inline int32_t WebRtcSpl_AddSatW32(int32_t l_var1, int32_t l_var2) {
56 | int32_t l_sum = 0;
57 |
58 | __asm __volatile("qadd %0, %1, %2" : "=r"(l_sum) : "r"(l_var1), "r"(l_var2));
59 |
60 | return l_sum;
61 | }
62 |
63 | static __inline int32_t WebRtcSpl_SubSatW32(int32_t l_var1, int32_t l_var2) {
64 | int32_t l_sub = 0;
65 |
66 | __asm __volatile("qsub %0, %1, %2" : "=r"(l_sub) : "r"(l_var1), "r"(l_var2));
67 |
68 | return l_sub;
69 | }
70 |
71 | static __inline int16_t WebRtcSpl_SubSatW16(int16_t var1, int16_t var2) {
72 | int32_t s_sub = 0;
73 |
74 | __asm __volatile("qsub16 %0, %1, %2" : "=r"(s_sub) : "r"(var1), "r"(var2));
75 |
76 | return (int16_t) s_sub;
77 | }
78 |
79 | static __inline int16_t WebRtcSpl_GetSizeInBits(uint32_t n) {
80 | int32_t tmp = 0;
81 |
82 | __asm __volatile("clz %0, %1" : "=r"(tmp) : "r"(n));
83 |
84 | return (int16_t)(32 - tmp);
85 | }
86 |
87 | static __inline int16_t WebRtcSpl_NormW32(int32_t a) {
88 | int32_t tmp = 0;
89 |
90 | if (a == 0) {
91 | return 0;
92 | } else if (a < 0) {
93 | a ^= 0xFFFFFFFF;
94 | }
95 |
96 | __asm __volatile("clz %0, %1" : "=r"(tmp) : "r"(a));
97 |
98 | return (int16_t)(tmp - 1);
99 | }
100 |
101 | static __inline int16_t WebRtcSpl_NormU32(uint32_t a) {
102 | int tmp = 0;
103 |
104 | if (a == 0)
105 | return 0;
106 |
107 | __asm __volatile("clz %0, %1" : "=r"(tmp) : "r"(a));
108 |
109 | return (int16_t) tmp;
110 | }
111 |
112 | static __inline int16_t WebRtcSpl_NormW16(int16_t a) {
113 | int32_t tmp = 0;
114 | int32_t a_32 = a;
115 |
116 | if (a_32 == 0) {
117 | return 0;
118 | } else if (a_32 < 0) {
119 | a_32 ^= 0xFFFFFFFF;
120 | }
121 |
122 | __asm __volatile("clz %0, %1" : "=r"(tmp) : "r"(a_32));
123 |
124 | return (int16_t)(tmp - 17);
125 | }
126 |
127 | // TODO(kma): add unit test.
128 | static __inline int16_t WebRtcSpl_SatW32ToW16(int32_t value32) {
129 | int32_t out = 0;
130 |
131 | __asm __volatile("ssat %0, #16, %1" : "=r"(out) : "r"(value32));
132 |
133 | return (int16_t) out;
134 | }
135 |
136 | #endif // COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_SPL_INL_ARMV7_H_
137 |
--------------------------------------------------------------------------------
/aecm/spl_inl_mips.h:
--------------------------------------------------------------------------------
1 | /*
2 | * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
3 | *
4 | * Use of this source code is governed by a BSD-style license
5 | * that can be found in the LICENSE file in the root of the source
6 | * tree. An additional intellectual property rights grant can be found
7 | * in the file PATENTS. All contributing project authors may
8 | * be found in the AUTHORS file in the root of the source tree.
9 | */
10 |
11 | // This header file includes the inline functions in
12 | // the fix point signal processing library.
13 |
14 | #ifndef COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_SPL_INL_MIPS_H_
15 | #define COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_SPL_INL_MIPS_H_
16 |
17 | static __inline int32_t WEBRTC_SPL_MUL_16_16(int32_t a, int32_t b) {
18 | int32_t value32 = 0;
19 | int32_t a1 = 0, b1 = 0;
20 |
21 | __asm __volatile(
22 | #if defined(MIPS32_R2_LE)
23 | "seh %[a1], %[a] \n\t"
24 | "seh %[b1], %[b] \n\t"
25 | #else
26 | "sll %[a1], %[a], 16 \n\t"
27 | "sll %[b1], %[b], 16 \n\t"
28 | "sra %[a1], %[a1], 16 \n\t"
29 | "sra %[b1], %[b1], 16 \n\t"
30 | #endif
31 | "mul %[value32], %[a1], %[b1] \n\t"
32 | : [value32] "=r"(value32), [a1] "=&r"(a1), [b1] "=&r"(b1)
33 | : [a] "r"(a), [b] "r"(b)
34 | : "hi", "lo");
35 | return value32;
36 | }
37 |
38 | static __inline int32_t WEBRTC_SPL_MUL_16_32_RSFT16(int16_t a, int32_t b) {
39 | int32_t value32 = 0, b1 = 0, b2 = 0;
40 | int32_t a1 = 0;
41 |
42 | __asm __volatile(
43 | #if defined(MIPS32_R2_LE)
44 | "seh %[a1], %[a] \n\t"
45 | #else
46 | "sll %[a1], %[a], 16 \n\t"
47 | "sra %[a1], %[a1], 16 \n\t"
48 | #endif
49 | "andi %[b2], %[b], 0xFFFF \n\t"
50 | "sra %[b1], %[b], 16 \n\t"
51 | "sra %[b2], %[b2], 1 \n\t"
52 | "mul %[value32], %[a1], %[b1] \n\t"
53 | "mul %[b2], %[a1], %[b2] \n\t"
54 | "addiu %[b2], %[b2], 0x4000 \n\t"
55 | "sra %[b2], %[b2], 15 \n\t"
56 | "addu %[value32], %[value32], %[b2] \n\t"
57 | : [value32] "=&r"(value32), [b1] "=&r"(b1), [b2] "=&r"(b2), [a1] "=&r"(a1)
58 | : [a] "r"(a), [b] "r"(b)
59 | : "hi", "lo");
60 | return value32;
61 | }
62 |
63 | #if defined(MIPS_DSP_R1_LE)
64 | static __inline int16_t WebRtcSpl_SatW32ToW16(int32_t value32) {
65 | __asm __volatile(
66 | "shll_s.w %[value32], %[value32], 16 \n\t"
67 | "sra %[value32], %[value32], 16 \n\t"
68 | : [value32] "+r"(value32)
69 | :);
70 | int16_t out16 = (int16_t)value32;
71 | return out16;
72 | }
73 |
74 | static __inline int16_t WebRtcSpl_AddSatW16(int16_t a, int16_t b) {
75 | int32_t value32 = 0;
76 |
77 | __asm __volatile("addq_s.ph %[value32], %[a], %[b] \n\t"
78 | : [value32] "=r"(value32)
79 | : [a] "r"(a), [b] "r"(b));
80 | return (int16_t)value32;
81 | }
82 |
83 | static __inline int32_t WebRtcSpl_AddSatW32(int32_t l_var1, int32_t l_var2) {
84 | int32_t l_sum;
85 |
86 | __asm __volatile(
87 | "addq_s.w %[l_sum], %[l_var1], %[l_var2] \n\t"
88 | : [l_sum] "=r"(l_sum)
89 | : [l_var1] "r"(l_var1), [l_var2] "r"(l_var2));
90 |
91 | return l_sum;
92 | }
93 |
94 | static __inline int16_t WebRtcSpl_SubSatW16(int16_t var1, int16_t var2) {
95 | int32_t value32;
96 |
97 | __asm __volatile("subq_s.ph %[value32], %[var1], %[var2] \n\t"
98 | : [value32] "=r"(value32)
99 | : [var1] "r"(var1), [var2] "r"(var2));
100 |
101 | return (int16_t)value32;
102 | }
103 |
104 | static __inline int32_t WebRtcSpl_SubSatW32(int32_t l_var1, int32_t l_var2) {
105 | int32_t l_diff;
106 |
107 | __asm __volatile(
108 | "subq_s.w %[l_diff], %[l_var1], %[l_var2] \n\t"
109 | : [l_diff] "=r"(l_diff)
110 | : [l_var1] "r"(l_var1), [l_var2] "r"(l_var2));
111 |
112 | return l_diff;
113 | }
114 | #endif
115 |
116 | static __inline int16_t WebRtcSpl_GetSizeInBits(uint32_t n) {
117 | int bits = 0;
118 | int i32 = 32;
119 |
120 | __asm __volatile(
121 | "clz %[bits], %[n] \n\t"
122 | "subu %[bits], %[i32], %[bits] \n\t"
123 | : [bits] "=&r"(bits)
124 | : [n] "r"(n), [i32] "r"(i32));
125 |
126 | return (int16_t) bits;
127 | }
128 |
129 | static __inline int16_t WebRtcSpl_NormW32(int32_t a) {
130 | int zeros = 0;
131 |
132 | __asm __volatile(
133 | ".set push \n\t"
134 | ".set noreorder \n\t"
135 | "bnez %[a], 1f \n\t"
136 | " sra %[zeros], %[a], 31 \n\t"
137 | "b 2f \n\t"
138 | " move %[zeros], $zero \n\t"
139 | "1: \n\t"
140 | "xor %[zeros], %[a], %[zeros] \n\t"
141 | "clz %[zeros], %[zeros] \n\t"
142 | "addiu %[zeros], %[zeros], -1 \n\t"
143 | "2: \n\t"
144 | ".set pop \n\t"
145 | : [zeros] "=&r"(zeros)
146 | : [a] "r"(a));
147 |
148 | return (int16_t) zeros;
149 | }
150 |
151 | static __inline int16_t WebRtcSpl_NormU32(uint32_t a) {
152 | int zeros = 0;
153 |
154 | __asm __volatile("clz %[zeros], %[a] \n\t"
155 | : [zeros] "=r"(zeros)
156 | : [a] "r"(a));
157 |
158 | return (int16_t)(zeros & 0x1f);
159 | }
160 |
161 | static __inline int16_t WebRtcSpl_NormW16(int16_t a) {
162 | int zeros = 0;
163 | int a0 = a << 16;
164 |
165 | __asm __volatile(
166 | ".set push \n\t"
167 | ".set noreorder \n\t"
168 | "bnez %[a0], 1f \n\t"
169 | " sra %[zeros], %[a0], 31 \n\t"
170 | "b 2f \n\t"
171 | " move %[zeros], $zero \n\t"
172 | "1: \n\t"
173 | "xor %[zeros], %[a0], %[zeros] \n\t"
174 | "clz %[zeros], %[zeros] \n\t"
175 | "addiu %[zeros], %[zeros], -1 \n\t"
176 | "2: \n\t"
177 | ".set pop \n\t"
178 | : [zeros] "=&r"(zeros)
179 | : [a0] "r"(a0));
180 |
181 | return (int16_t) zeros;
182 | }
183 |
184 | static __inline int32_t WebRtc_MulAccumW16(int16_t a, int16_t b, int32_t c) {
185 | int32_t res = 0, c1 = 0;
186 | __asm __volatile(
187 | #if defined(MIPS32_R2_LE)
188 | "seh %[a], %[a] \n\t"
189 | "seh %[b], %[b] \n\t"
190 | #else
191 | "sll %[a], %[a], 16 \n\t"
192 | "sll %[b], %[b], 16 \n\t"
193 | "sra %[a], %[a], 16 \n\t"
194 | "sra %[b], %[b], 16 \n\t"
195 | #endif
196 | "mul %[res], %[a], %[b] \n\t"
197 | "addu %[c1], %[c], %[res] \n\t"
198 | : [c1] "=r"(c1), [res] "=&r"(res)
199 | : [a] "r"(a), [b] "r"(b), [c] "r"(c)
200 | : "hi", "lo");
201 | return (c1);
202 | }
203 |
204 | #endif // COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_SPL_INL_MIPS_H_
205 |
--------------------------------------------------------------------------------
/main.cc:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 | #include
4 |
5 | #define DR_WAV_IMPLEMENTATION
6 |
7 | #include "dr_wav.h"
8 | #include "timing.h"
9 |
10 | #ifndef nullptr
11 | #define nullptr 0
12 | #endif
13 |
14 | #ifndef MIN
15 | #define MIN(A, B) ((A) < (B) ? (A) : (B))
16 | #endif
17 |
18 | #include "aecm/echo_control_mobile.h"
19 |
20 |
21 | //写wav文件
22 | void wavWrite_int16(char *filename, int16_t *buffer, size_t sampleRate, size_t totalSampleCount) {
23 | drwav wav;
24 | drwav_data_format format = {};
25 | format.container = drwav_container_riff; // <-- drwav_container_riff = normal WAV files, drwav_container_w64 = Sony Wave64.
26 | format.format = DR_WAVE_FORMAT_PCM; // <-- Any of the DR_WAVE_FORMAT_* codes.
27 | format.channels = 1;
28 | format.sampleRate = sampleRate;
29 | format.bitsPerSample = 16;
30 | drwav_init_file_write(&wav, filename, &format, NULL);
31 | drwav_uint64 framesWritten = drwav_write_pcm_frames(&wav, totalSampleCount, buffer);
32 | drwav_uninit(&wav);
33 | if (framesWritten != totalSampleCount) {
34 | fprintf(stderr, "ERROR\n");
35 | exit(1);
36 | }
37 | }
38 |
39 | //读取wav文件
40 | int16_t *wavRead_int16(char *filename, uint32_t *sampleRate, uint64_t *totalSampleCount) {
41 | unsigned int channels;
42 | int16_t *buffer = drwav_open_file_and_read_pcm_frames_s16(filename, &channels, sampleRate, totalSampleCount, NULL);
43 | if (buffer == nullptr) {
44 | printf("读取wav文件失败.");
45 | }
46 | //仅仅处理单通道音频
47 | if (channels != 1) {
48 | drwav_free(buffer, NULL);
49 | buffer = nullptr;
50 | *sampleRate = 0;
51 | *totalSampleCount = 0;
52 | }
53 | return buffer;
54 | }
55 |
56 | //分割路径函数
57 | void splitpath(const char *path, char *drv, char *dir, char *name, char *ext) {
58 | const char *end;
59 | const char *p;
60 | const char *s;
61 | if (path[0] && path[1] == ':') {
62 | if (drv) {
63 | *drv++ = *path++;
64 | *drv++ = *path++;
65 | *drv = '\0';
66 | }
67 | } else if (drv)
68 | *drv = '\0';
69 | for (end = path; *end && *end != ':';)
70 | end++;
71 | for (p = end; p > path && *--p != '\\' && *p != '/';)
72 | if (*p == '.') {
73 | end = p;
74 | break;
75 | }
76 | if (ext)
77 | for (s = end; (*ext = *s++);)
78 | ext++;
79 | for (p = end; p > path;)
80 | if (*--p == '\\' || *p == '/') {
81 | p++;
82 | break;
83 | }
84 | if (name) {
85 | for (s = p; s < end;)
86 | *name++ = *s++;
87 | *name = '\0';
88 | }
89 | if (dir) {
90 | for (s = path; s < p;)
91 | *dir++ = *s++;
92 | *dir = '\0';
93 | }
94 | }
95 |
96 |
97 | int aecProcess(int16_t *far_frame, int16_t *near_frame, uint32_t sampleRate, size_t samplesCount, int16_t nMode,
98 | int16_t msInSndCardBuf) {
99 | if (near_frame == nullptr) return -1;
100 | if (far_frame == nullptr) return -1;
101 | if (samplesCount == 0) return -1;
102 | AecmConfig config;
103 | config.cngMode = AecmTrue;
104 | config.echoMode = nMode;// 0, 1, 2, 3 (default), 4
105 | size_t samples = MIN(160, sampleRate / 100);
106 | if (samples == 0)
107 | return -1;
108 | const int maxSamples = 160;
109 | int16_t *near_input = near_frame;
110 | int16_t *far_input = far_frame;
111 | size_t nCount = (samplesCount / samples);
112 | void *aecmInst = WebRtcAecm_Create();
113 | if (aecmInst == NULL) return -1;
114 | int status = WebRtcAecm_Init(aecmInst, sampleRate);//8000 or 16000 Sample rate
115 | if (status != 0) {
116 | printf("WebRtcAecm_Init fail\n");
117 | WebRtcAecm_Free(aecmInst);
118 | return -1;
119 | }
120 | status = WebRtcAecm_set_config(aecmInst, config);
121 | if (status != 0) {
122 | printf("WebRtcAecm_set_config fail\n");
123 | WebRtcAecm_Free(aecmInst);
124 | return -1;
125 | }
126 |
127 | int16_t out_buffer[maxSamples];
128 | for (size_t i = 0; i < nCount; i++) {
129 | if (WebRtcAecm_BufferFarend(aecmInst, far_input, samples) != 0) {
130 | printf("WebRtcAecm_BufferFarend() failed.");
131 | WebRtcAecm_Free(aecmInst);
132 | return -1;
133 | }
134 | int nRet = WebRtcAecm_Process(aecmInst, near_input, NULL, out_buffer, samples, msInSndCardBuf);
135 |
136 | if (nRet != 0) {
137 | printf("failed in WebRtcAecm_Process\n");
138 | WebRtcAecm_Free(aecmInst);
139 | return -1;
140 | }
141 | memcpy(near_input, out_buffer, samples * sizeof(int16_t));
142 | near_input += samples;
143 | far_input += samples;
144 | }
145 | WebRtcAecm_Free(aecmInst);
146 | return 1;
147 | }
148 |
149 | void AECM(char *near_file, char *far_file, char *out_file) {
150 | //音频采样率
151 | uint32_t sampleRate = 0;
152 | uint64_t inSampleCount = 0;
153 | uint32_t ref_sampleRate = 0;
154 | uint64_t ref_inSampleCount = 0;
155 | int16_t *near_frame = wavRead_int16(near_file, &sampleRate, &inSampleCount);
156 | int16_t *far_frame = wavRead_int16(far_file, &ref_sampleRate, &ref_inSampleCount);
157 | if ((near_frame == nullptr || far_frame == nullptr)) {
158 | if (near_frame) free(near_frame);
159 | if (far_frame) free(far_frame);
160 | return;
161 | }
162 | //如果加载成功
163 | int16_t echoMode = 1;// 0, 1, 2, 3 (default), 4
164 | int16_t msInSndCardBuf = 40;
165 | double startTime = now();
166 | aecProcess(far_frame, near_frame, sampleRate, inSampleCount, echoMode, msInSndCardBuf);
167 | double elapsed_time = calcElapsed(startTime, now());
168 | printf("time interval: %d ms\n ", (int) (elapsed_time * 1000));
169 | wavWrite_int16(out_file, near_frame, sampleRate, inSampleCount);
170 | free(near_frame);
171 | free(far_frame);
172 | }
173 |
174 | int main(int argc, char *argv[]) {
175 | printf("WebRTC Acoustic Echo Canceller for Mobile\n");
176 | printf("blog:http://cpuimage.cnblogs.com/\n");
177 | printf("usage : aecm far_file.wav near_file.wav\n");
178 | if (argc < 3)
179 | return -1;
180 | // echo file
181 | char *far_file = argv[1];
182 | // mixed file
183 | char *near_file = argv[2];
184 | char drive[3];
185 | char dir[256];
186 | char fname[256];
187 | char ext[256];
188 | char out_file[1024];
189 | splitpath(near_file, drive, dir, fname, ext);
190 | snprintf(out_file, sizeof(out_file), "%s%s%s_out%s", drive, dir, fname, ext);
191 | AECM(near_file, far_file, out_file);
192 | printf("press any key to exit. \n");
193 | getchar();
194 | return 0;
195 | }
196 |
--------------------------------------------------------------------------------
/timing.h:
--------------------------------------------------------------------------------
1 |
2 | #include
3 |
4 | #if defined(__APPLE__)
5 | # include
6 | #elif defined(_WIN32)
7 | # define WIN32_LEAN_AND_MEAN
8 |
9 | # include
10 |
11 | #else // __linux
12 |
13 | # include
14 |
15 | # ifndef CLOCK_MONOTONIC //_RAW
16 | # define CLOCK_MONOTONIC CLOCK_REALTIME
17 | # endif
18 | #endif
19 |
20 | static
21 | uint64_t nanotimer() {
22 | static int ever = 0;
23 | #if defined(__APPLE__)
24 | return clock_gettime_nsec_np(CLOCK_MONOTONIC);
25 | #elif defined(_WIN32)
26 | static LARGE_INTEGER frequency;
27 | if (!ever) {
28 | QueryPerformanceFrequency(&frequency);
29 | ever = 1;
30 | }
31 | LARGE_INTEGER t;
32 | QueryPerformanceCounter(&t);
33 | return (t.QuadPart * (uint64_t) 1e9) / frequency.QuadPart;
34 | #else // __linux
35 | struct timespec t;
36 | if (!ever) {
37 | if (clock_gettime(CLOCK_MONOTONIC, &t) != 0) {
38 | return 0;
39 | }
40 | ever = 1;
41 | }
42 | clock_gettime(CLOCK_MONOTONIC, &t);
43 | return (t.tv_sec * (uint64_t) 1e9) + t.tv_nsec;
44 | #endif
45 | }
46 |
47 |
48 | static double now() {
49 | static uint64_t epoch = 0;
50 | if (!epoch) {
51 | epoch = nanotimer();
52 | }
53 | return (nanotimer() - epoch) / 1e9;
54 | }
55 |
56 | double calcElapsed(double start, double end) {
57 | double took = -start;
58 | return took + end;
59 | }
--------------------------------------------------------------------------------