├── .gitignore
├── LICENSE
├── README.md
├── data
├── data_pipeline
│ ├── Dockerfile
│ ├── build_records.py
│ ├── dataloader.py
│ └── process.py
├── interim
│ └── 01411.parquet
├── processed
│ └── fold3-1-140.tfrecords
└── raw
│ └── 01411.mp4
├── images
├── api-list.png
├── demo.gif
├── deployment-single-vm.png
├── frontend-1.png
├── frontend-2.png
├── solution-arch.png
└── technical-arch.png
├── model
├── Dockerfile
├── Pipfile
├── capy-trainer.tar.gz
├── cli.sh
├── docker-shell.sh
├── entrypoint.sh
├── package-trainer.sh
├── package
│ ├── PKG-INFO
│ ├── capy-trainer
│ │ ├── __init__.py
│ │ └── task.py
│ ├── setup.cfg
│ └── setup.py
└── requirements.txt
├── models
└── .gitkeep
├── notebooks
├── .gitkeep
├── eda.ipynb
└── model_testing.ipynb
├── preprocessing
├── csv_to_parquet.ipynb
├── gcp-upload.ipynb
└── video_to_landmark_csv.ipynb
├── references
├── .gitkeep
├── 2020.coling-main.525.pdf
├── Camgoz_Neural_Sign_Language_CVPR_2018_paper.pdf
├── methods.md
└── sign_language_transformers.pdf
├── requirements.txt
├── src
├── api-service
│ ├── .gitkeep
│ ├── Dockerfile
│ ├── Pipfile
│ ├── Pipfile.lock
│ ├── api
│ │ ├── local_model
│ │ │ └── asl_model.h5
│ │ ├── model.py
│ │ ├── service.py
│ │ ├── test.mp4
│ │ └── tracker.py
│ ├── docker-entrypoint.sh
│ ├── docker-shell.bat
│ └── docker-shell.sh
├── data-collector
│ └── .gitkeep
├── data-processor
│ ├── Dockerfile
│ ├── Pipfile
│ ├── Pipfile.lock
│ ├── cli.py
│ ├── docker-shell.sh
│ ├── entrypoint.sh
│ ├── requirements.txt
│ └── wlasl_deploy_video
│ │ ├── 60578.mp4
│ │ └── 70349.mp4
├── deployment
│ └── .gitkeep
├── frontend
│ ├── .env.development
│ ├── .env.production
│ ├── .gitignore
│ ├── .gitkeep
│ ├── Dockerfile
│ ├── Dockerfile.dev
│ ├── docker-shell.bat
│ ├── docker-shell.sh
│ ├── package-lock.json
│ ├── package.json
│ ├── public
│ │ ├── favicon.ico
│ │ ├── index.html
│ │ └── manifest.json
│ ├── src
│ │ ├── app
│ │ │ ├── App.css
│ │ │ ├── App.js
│ │ │ ├── AppRoutes.js
│ │ │ ├── Theme.js
│ │ │ ├── VideoUpload.js
│ │ │ ├── index.js
│ │ │ └── styles.css
│ │ ├── common
│ │ │ ├── Content
│ │ │ │ ├── index.js
│ │ │ │ └── styles.js
│ │ │ ├── Footer
│ │ │ │ ├── index.js
│ │ │ │ └── styles.js
│ │ │ └── Header
│ │ │ │ ├── index.js
│ │ │ │ └── styles.js
│ │ ├── components
│ │ │ ├── Currentmodel
│ │ │ │ ├── index.js
│ │ │ │ └── styles.js
│ │ │ ├── Error
│ │ │ │ └── 404.js
│ │ │ └── Home
│ │ │ │ ├── background.png
│ │ │ │ ├── index.js
│ │ │ │ └── styles.js
│ │ ├── index.css
│ │ ├── index.js
│ │ └── services
│ │ │ ├── Common.js
│ │ │ └── DataService.js
│ └── yarn.lock
├── model-deploy
│ └── .gitkeep
├── model-prediction
│ ├── Dockerfile
│ ├── Pipfile
│ ├── Pipfile.lock
│ ├── cli.py
│ ├── docker-shell.sh
│ ├── entrypoint.sh
│ ├── islr-fp16-192-8-seed42-foldall-full.h5
│ └── requirements.txt
└── workflow
│ └── .gitkeep
└── test_project.py
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | pip-wheel-metadata/
24 | share/python-wheels/
25 | *.egg-info/
26 | .installed.cfg
27 | *.egg
28 | MANIFEST
29 |
30 | # PyInstaller
31 | # Usually these files are written by a python script from a template
32 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
33 | *.manifest
34 | *.spec
35 |
36 | # Installer logs
37 | pip-log.txt
38 | pip-delete-this-directory.txt
39 |
40 | # Unit test / coverage reports
41 | htmlcov/
42 | .tox/
43 | .nox/
44 | .coverage
45 | .coverage.*
46 | .cache
47 | nosetests.xml
48 | coverage.xml
49 | *.cover
50 | *.py,cover
51 | .hypothesis/
52 | .pytest_cache/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | target/
76 |
77 | # Jupyter Notebook
78 | .ipynb_checkpoints
79 |
80 | # IPython
81 | profile_default/
82 | ipython_config.py
83 |
84 | # pyenv
85 | .python-version
86 |
87 | # pipenv
88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
91 | # install all needed dependencies.
92 | #Pipfile.lock
93 |
94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow
95 | __pypackages__/
96 |
97 | # Celery stuff
98 | celerybeat-schedule
99 | celerybeat.pid
100 |
101 | # SageMath parsed files
102 | *.sage.py
103 |
104 | # Environments
105 | .env
106 | .venv
107 | env/
108 | venv/
109 | ENV/
110 | env.bak/
111 | venv.bak/
112 |
113 | # Spyder project settings
114 | .spyderproject
115 | .spyproject
116 |
117 | # Rope project settings
118 | .ropeproject
119 |
120 | # mkdocs documentation
121 | /site
122 |
123 | # mypy
124 | .mypy_cache/
125 | .dmypy.json
126 | dmypy.json
127 |
128 | # Pyre type checker
129 | .pyre/
130 |
131 | .DS_Store
132 | src/.DS_Store
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # AI American Sign Language Translator
2 |
3 | A real-time American Sign Language (ASL) translation system that uses computer vision and machine learning to interpret hand gestures and convert them to text.
4 |
5 | ## 🚀 Features
6 |
7 | - **Real-time ASL Recognition**: Capture and interpret hand gestures in real-time
8 | - **High Accuracy**: Trained on extensive ASL datasets for reliable translations
9 | - **User-Friendly Interface**: Intuitive web application for easy interaction
10 | - **API Integration**: RESTful API for seamless integration with other applications
11 | - **Cloud Deployment**: Scalable deployment on Google Cloud Platform
12 |
13 | ## 🖥️ Application Interface
14 |
15 | Our web application provides an intuitive interface for ASL translation:
16 |
17 | 
18 |
19 | *Watch our application in action - the complete workflow from video upload to ASL translation results.*
20 |
21 | ## 📋 Prerequisites
22 |
23 | - Python 3.8+
24 | - Docker and Docker Compose
25 | - Google Cloud Platform account (for deployment)
26 | - Node.js 16+ (for frontend development)
27 |
28 | ## 🛠️ Installation
29 |
30 | ### Local Development
31 |
32 | 1. **Clone the repository**
33 | ```bash
34 | git clone
35 | cd AI_ASL_Translator
36 | ```
37 |
38 | 2. **Install Python dependencies**
39 | ```bash
40 | pip install -r requirements.txt
41 | ```
42 |
43 | 3. **Set up the frontend**
44 | ```bash
45 | cd src/frontend
46 | npm install
47 | ```
48 |
49 | ## 🏃♂️ Quick Start
50 |
51 | ### Running the API Service
52 |
53 | 1. Navigate to the API service directory:
54 | ```bash
55 | cd src/api-service
56 | ```
57 |
58 | 2. Start the API server:
59 | ```bash
60 | sh docker-shell.sh
61 | uvicorn_server
62 | ```
63 |
64 | 3. Access the API documentation at `http://localhost:9000/docs`
65 |
66 | ### Running the Frontend
67 |
68 | 1. Navigate to the frontend directory:
69 | ```bash
70 | cd src/frontend
71 | ```
72 |
73 | 2. Start the development server:
74 | ```bash
75 | sh docker-shell.sh
76 | yarn install # First time only
77 | yarn start
78 | ```
79 |
80 | 3. Access the application at `http://localhost:3000`
81 |
82 | ## 🏗️ Project Structure
83 |
84 | ```
85 | AI_ASL_Translator/
86 | ├── data/ # Data storage (not uploaded to repo)
87 | │ ├── interim/ # Intermediate preprocessed data
88 | │ ├── processed/ # Final dataset files for modeling
89 | │ └── raw/ # Original immutable input data
90 | ├── notebooks/ # Jupyter notebooks for EDA and testing
91 | ├── src/ # Source code
92 | │ ├── data-collector/ # Dataset creation scripts
93 | │ ├── data-processor/ # Data processing code
94 | │ ├── model-training/ # Model training and evaluation
95 | │ ├── model-deploy/ # Model deployment
96 | │ ├── workflow/ # Automation scripts
97 | │ ├── api-service/ # Backend API service
98 | │ ├── frontend/ # React frontend application
99 | │ └── deployment/ # GCP deployment configuration
100 | ├── reports/ # Generated reports and documentation
101 | ├── references/ # Reference materials and papers
102 | └── requirements.txt # Python dependencies
103 | ```
104 |
105 | ## 🏛️ System Architecture
106 |
107 | ### Solution Architecture
108 |
109 | Our solution architecture outlines the complete workflow from data collection to deployment:
110 |
111 | 
112 |
113 | *The solution architecture shows the three main layers: Process (People), Execution (Code), and State (Source, Data, Models).*
114 |
115 | ### Technical Architecture
116 |
117 | The technical architecture details the implementation components and their interactions:
118 |
119 | 
120 |
121 | *The technical architecture illustrates the frontend, backend, ML pipeline, and state management components.*
122 |
123 | ## 🔧 Configuration
124 |
125 | ### Environment Variables
126 |
127 | Create a `.env` file in the root directory:
128 |
129 | ```env
130 | # API Configuration
131 | API_HOST=0.0.0.0
132 | API_PORT=9000
133 | DEBUG=False
134 |
135 | # Model Configuration
136 | MODEL_PATH=./models/asl_model.pkl
137 | CONFIDENCE_THRESHOLD=0.8
138 |
139 | # Database Configuration
140 | DATABASE_URL=postgresql://user:password@localhost/asl_db
141 |
142 | # GCP Configuration (for deployment)
143 | GCP_PROJECT_ID=your-project-id
144 | GCP_ZONE=us-central1-a
145 | ```
146 |
147 | ## 🚀 Deployment
148 |
149 | ### Google Cloud Platform Deployment
150 |
151 | The application can be deployed to GCP using Ansible playbooks:
152 |
153 | 1. **Build and push Docker images to GCR:**
154 | ```bash
155 | cd src/deployment
156 | ansible-playbook deploy-docker-images.yml -i inventory.yml
157 | ```
158 |
159 | 2. **Create GCP compute instance:**
160 | ```bash
161 | ansible-playbook deploy-create-instance.yml -i inventory.yml --extra-vars cluster_state=present
162 | ```
163 |
164 | 3. **Provision the instance:**
165 | ```bash
166 | ansible-playbook deploy-provision-instance.yml -i inventory.yml
167 | ```
168 |
169 | 4. **Setup Docker containers:**
170 | ```bash
171 | ansible-playbook deploy-setup-containers.yml -i inventory.yml
172 | ```
173 |
174 | 5. **Configure webserver:**
175 | ```bash
176 | ansible-playbook deploy-setup-webserver.yml -i inventory.yml
177 | ```
178 |
179 | Access your deployed application at `http:///`
180 |
181 | 
182 |
183 | *The application is deployed on a single VM in Google Cloud Platform with containerized services.*
184 |
185 | ## 📊 API Documentation
186 |
187 | The API provides the following endpoints:
188 |
189 | - `POST /predict` - Upload an image for ASL translation
190 | - `GET /health` - Health check endpoint
191 | - `GET /model-info` - Get model information and statistics
192 | - `GET /docs` - Interactive API documentation (Swagger UI)
193 |
194 | 
195 |
196 | *Available API endpoints for the ASL translation service.*
197 |
198 | ### Example API Usage
199 |
200 | ```python
201 | import requests
202 |
203 | # Upload image for translation
204 | with open('asl_image.jpg', 'rb') as f:
205 | files = {'file': f}
206 | response = requests.post('http://localhost:9000/predict', files=files)
207 | result = response.json()
208 | print(f"Translation: {result['translation']}")
209 | ```
210 |
211 | ## 🤝 Contributing
212 |
213 | 1. Fork the repository
214 | 2. Create a feature branch (`git checkout -b feature/amazing-feature`)
215 | 3. Commit your changes (`git commit -m 'Add amazing feature'`)
216 | 4. Push to the branch (`git push origin feature/amazing-feature`)
217 | 5. Open a Pull Request
218 |
219 | ## 📝 License
220 |
221 | This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
222 |
223 | ## 🙏 Acknowledgments
224 |
225 | - ASL dataset contributors
226 | - Open source computer vision libraries
227 | - Google Cloud Platform for hosting infrastructure
228 |
229 | ## 👨💻 Author
230 |
231 | **Chuqing Zhao** - *AI American Sign Language Translator*
232 |
233 | This project was developed as part of an AI/ML initiative to create accessible technology for the deaf and hard-of-hearing community.
234 |
235 | ## 📞 Support
236 |
237 | For support and questions, please open an issue in the GitHub repository or contact the development team.
238 |
239 | ---
240 |
241 | **Note**: This application is designed for educational and research purposes. For production use in critical applications, additional testing and validation is recommended.
242 |
--------------------------------------------------------------------------------
/data/data_pipeline/Dockerfile:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/data/data_pipeline/Dockerfile
--------------------------------------------------------------------------------
/data/data_pipeline/build_records.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 |
--------------------------------------------------------------------------------
/data/data_pipeline/dataloader.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 |
--------------------------------------------------------------------------------
/data/data_pipeline/process.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 |
--------------------------------------------------------------------------------
/data/interim/01411.parquet:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/data/interim/01411.parquet
--------------------------------------------------------------------------------
/data/processed/fold3-1-140.tfrecords:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/data/processed/fold3-1-140.tfrecords
--------------------------------------------------------------------------------
/data/raw/01411.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/data/raw/01411.mp4
--------------------------------------------------------------------------------
/images/api-list.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/images/api-list.png
--------------------------------------------------------------------------------
/images/demo.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/images/demo.gif
--------------------------------------------------------------------------------
/images/deployment-single-vm.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/images/deployment-single-vm.png
--------------------------------------------------------------------------------
/images/frontend-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/images/frontend-1.png
--------------------------------------------------------------------------------
/images/frontend-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/images/frontend-2.png
--------------------------------------------------------------------------------
/images/solution-arch.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/images/solution-arch.png
--------------------------------------------------------------------------------
/images/technical-arch.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/images/technical-arch.png
--------------------------------------------------------------------------------
/model/Dockerfile:
--------------------------------------------------------------------------------
1 | # Use the official Debian-hosted Python image
2 | FROM python:3.9-slim-buster
3 |
4 | ARG DEBIAN_PACKAGES="build-essential git curl wget unzip gzip"
5 |
6 | # Prevent apt from showing prompts
7 | ENV DEBIAN_FRONTEND=noninteractive
8 |
9 | # Python wants UTF-8 locale
10 | ENV LANG=C.UTF-8
11 |
12 | # Tell pipenv where the shell is.
13 | # This allows us to use "pipenv shell" as a container entry point.
14 | ENV PYENV_SHELL=/bin/bash
15 |
16 | # Tell Python to disable buffering so we don't lose any logs.
17 | ENV PYTHONUNBUFFERED=1
18 |
19 | ENV GOOGLE_APPLICATION_CREDENTIALS=secrets/data-pipeline.json
20 |
21 | # Ensure we have an up to date baseline, install dependencies
22 | RUN set -ex; \
23 | for i in $(seq 1 8); do mkdir -p "/usr/share/man/man${i}"; done && \
24 | apt-get update && \
25 | apt-get upgrade -y && \
26 | apt-get install -y --no-install-recommends $DEBIAN_PACKAGES && \
27 | apt-get install -y --no-install-recommends software-properties-common apt-transport-https ca-certificates gnupg2 gnupg-agent curl openssh-client && \
28 | curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - && \
29 | echo "deb [signed-by=/usr/share/keyrings/cloud.google.gpg] https://packages.cloud.google.com/apt cloud-sdk main" | tee -a /etc/apt/sources.list.d/google-cloud-sdk.list && \
30 | curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key --keyring /usr/share/keyrings/cloud.google.gpg add - && \
31 | apt-get update && \
32 | apt-get install -y --no-install-recommends google-cloud-sdk && \
33 | apt-get clean && \
34 | rm -rf /var/lib/apt/lists/* && \
35 | pip install --no-cache-dir --upgrade pip && \
36 | pip install pipenv && \
37 | useradd -ms /bin/bash app -d /home/app -u 1000 -p "$(openssl passwd -1 Passw0rd)" && \
38 | mkdir -p /app && \
39 | chown app:app /app
40 |
41 | # Switch to the new user
42 | USER app
43 | WORKDIR /app
44 |
45 | # # Set the working directory to /preprocessing
46 | RUN pipenv lock
47 |
48 | # Add the Pipfile, Pipfile.lock, and python code into the container
49 | ADD . /
50 |
51 | RUN pipenv sync
52 |
53 | # Make the entrypoint.sh script executable
54 | # RUN chmod +x /bin/bash/entrypoint.sh
55 |
56 | # # Set the entrypoint
57 | # ENTRYPOINT ["/bin/bash"]
58 |
59 | # # Specify the entrypoint script as the CMD
60 | # CMD ["entrypoint.sh"]
61 | # CMD ["-c", "pipenv shell"]
62 | ENTRYPOINT ["/bin/bash","./entrypoint.sh"]
--------------------------------------------------------------------------------
/model/Pipfile:
--------------------------------------------------------------------------------
1 | [[source]]
2 | name = "pypi"
3 | url = "https://pypi.org/simple"
4 | verify_ssl = true
5 |
6 | [dev-packages]
7 |
8 | [packages]
9 | google-cloud-aiplatform = "*"
10 |
11 | [requires]
12 | python_version = "3.9"
--------------------------------------------------------------------------------
/model/capy-trainer.tar.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/model/capy-trainer.tar.gz
--------------------------------------------------------------------------------
/model/cli.sh:
--------------------------------------------------------------------------------
1 | # List of prebuilt containers for training
2 | # https://cloud.google.com/vertex-ai/docs/training/pre-built-containers
3 |
4 | export GCS_BUCKET_URI="gs://capy-data/model"
5 | export UUID=$(openssl rand -hex 6)
6 | export DISPLAY_NAME="capy_training_job_$UUID"
7 | export MACHINE_TYPE="n1-standard-4"
8 | export REPLICA_COUNT=1
9 | # export EXECUTOR_IMAGE_URI="us-docker.pkg.dev/vertex-ai/training/tf-gpu.2-12.py310:latest"
10 | export PYTHON_PACKAGE_URI=$GCS_BUCKET_URI/capy-trainer.tar.gz
11 | export PYTHON_MODULE="capy-trainer.task"
12 | # export ACCELERATOR_TYPE="NVIDIA_TESLA_T4"
13 | # export ACCELERATOR_COUNT=1
14 | export GCP_REGION="us-central1" # Adjust region based on you approved quotas for GPUs
15 | export WANDB_KEY="6a862c7a22f68c00ceb59a5daf60d10ae341fb94"
16 |
17 | export CMDARGS="--wandb_key=$WANDB_KEY"
18 | #export CMDARGS="--model_name=mobilenetv2,--train_base,--epochs=30,--batch_size=32,--wandb_key=$WANDB_KEY"
19 | #export CMDARGS="--model_name=tfhub_mobilenetv2,--epochs=30,--batch_size=32,--wandb_key=$WANDB_KEY"
20 | #export CMDARGS="--model_name=tfhub_mobilenetv2,--train_base,--epochs=30,--batch_size=32,--wandb_key=$WANDB_KEY"
21 |
22 | # gcloud ai custom-jobs create \
23 | # --region=$GCP_REGION \
24 | # --display-name=$DISPLAY_NAME \
25 | # --python-package-uris=$PYTHON_PACKAGE_URI \
26 | # --worker-pool-spec=machine-type=$MACHINE_TYPE,replica-count=$REPLICA_COUNT,accelerator-type=$ACCELERATOR_TYPE,accelerator-count=$ACCELERATOR_COUNT,executor-image-uri=$EXECUTOR_IMAGE_URI,python-module=$PYTHON_MODULE \
27 | # --args=$CMDARGS
28 |
29 |
30 | # Run training with No GPU
31 | export EXECUTOR_IMAGE_URI="us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-12.py310:latest"
32 | # gcloud ai custom-jobs create \
33 | # --region=$GCP_REGION \
34 | # --display-name=$DISPLAY_NAME \
35 | # --python-package-uris=$PYTHON_PACKAGE_URI \
36 | # --worker-pool-spec=machine-type=$MACHINE_TYPE,replica-count=$REPLICA_COUNT,executor-image-uri=$EXECUTOR_IMAGE_URI,python-module=$PYTHON_MODULE \
37 | # --args=$CMDARGS
38 |
39 | gcloud ai custom-jobs create \
40 | --region=$GCP_REGION \
41 | --display-name=$DISPLAY_NAME \
42 | --python-package-uris=$PYTHON_PACKAGE_URI \
43 | --worker-pool-spec=machine-type=$MACHINE_TYPE,replica-count=$REPLICA_COUNT,executor-image-uri=$EXECUTOR_IMAGE_URI,python-module=$PYTHON_MODULE \
44 | --args=$CMDARGS
--------------------------------------------------------------------------------
/model/docker-shell.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | set -e
4 |
5 | export IMAGE_NAME="capy-model"
6 | export BASE_DIR=$(pwd)
7 | export SECRETS_DIR=$(pwd)/secrets/
8 | export GCS_BUCKET_URI="gs://capy-data"
9 | export GCP_PROJECT="psychic-bedrock-398320"
10 | export WANDB_KEY="6a862c7a22f68c00ceb59a5daf60d10ae341fb94"
11 |
12 |
13 | # Build the image based on the Dockerfile
14 | docker build -t $IMAGE_NAME -f Dockerfile .
15 | # M1/2 chip macs use this line
16 | # docker build -t $IMAGE_NAME --platform=linux/arm64/v8 -f Dockerfile .
17 |
18 | # Run Container
19 | docker run --rm --name $IMAGE_NAME -ti \
20 | -v "$BASE_DIR":/app \
21 | -v "$SECRETS_DIR":/secrets \
22 | -e GOOGLE_APPLICATION_CREDENTIALS="/secrets/data-pipeline.json" \
23 | -e GCP_PROJECT=$GCP_PROJECT \
24 | -e GCS_BUCKET_URI=$GCS_BUCKET_URI \
25 | -e WANDB_KEY=$WANDB_KEY \
26 | $IMAGE_NAME
--------------------------------------------------------------------------------
/model/entrypoint.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | echo "Container is running!!!"
4 | # Activate the Pipenv virtual environment and install dependencies
5 | # pipenv run pip install -r requirements.txt
6 |
7 | # Authenticate gcloud using service account
8 | gcloud auth activate-service-account --key-file=secrets/data-pipeline.json
9 |
10 | # Set GCP Project Details
11 | gcloud config set project $GCP_PROJECT
12 |
13 | # Run the preprocess.py script
14 | # pipenv run python model.py
15 | # pipenv run bash package-trainer.sh
16 |
17 | pipenv shell
--------------------------------------------------------------------------------
/model/package-trainer.sh:
--------------------------------------------------------------------------------
1 | rm -f capy-trainer.tar capy-trainer.tar.gz
2 | tar cvf capy-trainer.tar package
3 | gzip capy-trainer.tar
4 | gsutil cp capy-trainer.tar.gz gs://capy-data/model/capy-trainer.tar.gz
--------------------------------------------------------------------------------
/model/package/PKG-INFO:
--------------------------------------------------------------------------------
1 | Metadata-Version: 1.0
2 |
3 | Name: Mushroom App Trainer
4 |
5 | Version: 0.0.1
6 |
7 | License: Public
8 |
9 | Description: Demo
10 |
11 | Platform: Vertex
--------------------------------------------------------------------------------
/model/package/capy-trainer/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/model/package/capy-trainer/__init__.py
--------------------------------------------------------------------------------
/model/package/capy-trainer/task.py:
--------------------------------------------------------------------------------
1 | import pandas as pd
2 | import os
3 | import tqdm
4 | import numpy as np
5 | import json
6 | import tensorflow as tf
7 | import gc
8 | from os import mkdir
9 | import argparse
10 |
11 | import math
12 | import pickle
13 |
14 | # import matplotlib.pyplot as plt
15 | from keras import layers, models
16 |
17 | # import tensorflow_addons as tfa
18 | from google.cloud import storage
19 | import io
20 | import os
21 | from tensorflow.python.lib.io import file_io
22 |
23 | import wandb
24 | from wandb.keras import WandbCallback, WandbMetricsLogger
25 |
26 | parser = argparse.ArgumentParser()
27 | parser.add_argument(
28 | "--wandb_key", dest="wandb_key", default="16", type=str, help="WandB API Key"
29 | )
30 | args = parser.parse_args()
31 |
32 | wandb.login(key=args.wandb_key)
33 |
34 | client = storage.Client()
35 | bucket = client.bucket("capy-data")
36 |
37 | # blobs = bucket.list_blobs(prefix='data/preprocessed_dfs/preprocessed_dfs/')
38 |
39 | # import wandb
40 | # wandb.login()
41 |
42 | FRAME_LEN = 128 * 2
43 | # Read character to prediction index
44 | blob_json = bucket.blob(
45 | "data/preprocessed_dfs/preprocessed_dfs/character_to_prediction_index.json"
46 | )
47 | with blob_json.open("r") as f:
48 | char_to_num = json.loads(f.read())
49 |
50 | pad_token = "^"
51 | pad_token_idx = 59
52 |
53 | char_to_num[pad_token] = pad_token_idx
54 | num_to_char = {j: i for i, j in char_to_num.items()}
55 | INPUT_SHAPE = [256, 276]
56 |
57 |
58 | def load_npy_data(npy_path, npy_file):
59 | blob_df = bucket.blob(os.path.join(npy_path, npy_file))
60 | npy_data = blob_df.download_as_bytes()
61 | loaded_array = np.load(io.BytesIO(npy_data), allow_pickle=True)
62 | return loaded_array
63 |
64 |
65 | npyPath = "data/preprocessed_dfs/preprocessed_dfs/mean_std"
66 | RHM = load_npy_data(npyPath, "rh_mean.npy")
67 | LHM = load_npy_data(npyPath, "lh_mean.npy")
68 | RPM = load_npy_data(npyPath, "rp_mean.npy")
69 | LPM = load_npy_data(npyPath, "lp_mean.npy")
70 | FACEM = load_npy_data(npyPath, "face_mean.npy")
71 |
72 | RHS = load_npy_data(npyPath, "rh_std.npy")
73 | LHS = load_npy_data(npyPath, "lh_std.npy")
74 | RPS = load_npy_data(npyPath, "rp_std.npy")
75 | LPS = load_npy_data(npyPath, "lp_std.npy")
76 | FACES = load_npy_data(npyPath, "face_std.npy")
77 |
78 |
79 | @tf.function()
80 | def resize_pad(x):
81 | if tf.shape(x)[0] < FRAME_LEN:
82 | x = tf.pad(
83 | x,
84 | ([[0, FRAME_LEN - tf.shape(x)[0]], [0, 0], [0, 0]]),
85 | constant_values=float("NaN"),
86 | )
87 | else:
88 | x = tf.image.resize(x, (FRAME_LEN, tf.shape(x)[1]))
89 | return x
90 |
91 |
92 | @tf.function()
93 | def pre_process1(face, rhand, lhand, rpose, lpose):
94 | print(type(face), face.shape)
95 | face = (resize_pad(face) - FACEM) / FACES
96 | rhand = (resize_pad(rhand) - RHM) / RHS
97 | lhand = (resize_pad(lhand) - LHM) / LHS
98 | rpose = (resize_pad(rpose) - RPM) / RPS
99 | lpose = (resize_pad(lpose) - LPM) / LPS
100 |
101 | x = tf.concat([face, rhand, lhand, rpose, lpose], axis=1)
102 | s = tf.shape(x)
103 | x = tf.reshape(x, (s[0], s[1] * s[2]))
104 | x = tf.where(tf.math.is_nan(x), 0.0, x)
105 | return x
106 |
107 |
108 | # Deconde tfrecords
109 | def decode_fn(record_bytes):
110 | schema = {
111 | "face": tf.io.VarLenFeature(tf.float32),
112 | "rhand": tf.io.VarLenFeature(tf.float32),
113 | "lhand": tf.io.VarLenFeature(tf.float32),
114 | "rpose": tf.io.VarLenFeature(tf.float32),
115 | "lpose": tf.io.VarLenFeature(tf.float32),
116 | "phrase": tf.io.VarLenFeature(tf.int64),
117 | }
118 | x = tf.io.parse_single_example(record_bytes, schema)
119 |
120 | face = tf.reshape(tf.sparse.to_dense(x["face"]), (-1, 40, 3))
121 | rhand = tf.reshape(tf.sparse.to_dense(x["rhand"]), (-1, 21, 3))
122 | lhand = tf.reshape(tf.sparse.to_dense(x["lhand"]), (-1, 21, 3))
123 | rpose = tf.reshape(tf.sparse.to_dense(x["rpose"]), (-1, 5, 3))
124 | lpose = tf.reshape(tf.sparse.to_dense(x["lpose"]), (-1, 5, 3))
125 | phrase = tf.sparse.to_dense(x["phrase"])
126 |
127 | return face, rhand, lhand, rpose, lpose, phrase
128 |
129 |
130 | def pre_process_fn(lip, rhand, lhand, rpose, lpose, phrase):
131 | phrase = tf.pad(
132 | phrase,
133 | [[0, MAX_PHRASE_LENGTH - tf.shape(phrase)[0]]],
134 | constant_values=pad_token_idx,
135 | )
136 | return pre_process1(lip, rhand, lhand, rpose, lpose), phrase
137 |
138 |
139 | MAX_PHRASE_LENGTH = 500
140 | tffiles_dir = [
141 | file.name
142 | for file in bucket.list_blobs(
143 | prefix="data/preprocessed_dfs/preprocessed_dfs/test_tfrecords"
144 | )
145 | ]
146 | tffiles = [
147 | os.path.join("gs://capy-data", tffile)
148 | for tffile in tffiles_dir
149 | if ".tfrecord" in tffile
150 | ]
151 | print("path", tffiles[:2])
152 | # tffiles = [f"C:/Users/chuqi/ac215/capy_data_test/test_tfds/{file_id}.tfrecord" for file_id in os.listdir('C:/Users/chuqi/ac215/capy_data_test/test_npy')]
153 | val_len = 1
154 | train_batch_size = 32
155 | val_batch_size = 32
156 | #
157 | # tffiles = ['gs://capy-data/data/preprocessed_dfs/preprocessed_dfs/test_tfrecords/preprocessed__fZbAxSSbX4_1-5-rgb_front.npy.tfrecord',
158 | # 'gs://capy-data/data/preprocessed_dfs/preprocessed_dfs/test_tfrecords/preprocessed__fZbAxSSbX4_2-5-rgb_front.npy.tfrecord']
159 |
160 | train_dataset = (
161 | tf.data.TFRecordDataset(tffiles[val_len:])
162 | .prefetch(tf.data.AUTOTUNE)
163 | .shuffle(5000)
164 | .map(decode_fn, num_parallel_calls=tf.data.AUTOTUNE)
165 | .map(pre_process_fn, num_parallel_calls=tf.data.AUTOTUNE)
166 | .batch(train_batch_size)
167 | .prefetch(tf.data.AUTOTUNE)
168 | )
169 | val_dataset = (
170 | tf.data.TFRecordDataset(tffiles[:val_len])
171 | .prefetch(tf.data.AUTOTUNE)
172 | .map(decode_fn, num_parallel_calls=tf.data.AUTOTUNE)
173 | .map(pre_process_fn, num_parallel_calls=tf.data.AUTOTUNE)
174 | .batch(val_batch_size)
175 | .prefetch(tf.data.AUTOTUNE)
176 | )
177 |
178 |
179 | print("train:", train_dataset)
180 | print("train type:", type(train_dataset))
181 |
182 | print("val:", val_dataset)
183 | print("val type:", type(val_dataset))
184 |
185 | val = next(iter(val_dataset))
186 | print(val[0].shape)
187 |
188 | train = next(iter(train_dataset))
189 | print(train[0].shape)
190 |
191 |
192 | #%%Build model
193 | class ECA(tf.keras.layers.Layer):
194 | def __init__(self, kernel_size=5, **kwargs):
195 | super().__init__(**kwargs)
196 | self.supports_masking = True
197 | self.kernel_size = kernel_size
198 | self.conv = tf.keras.layers.Conv1D(
199 | 1, kernel_size=kernel_size, strides=1, padding="same", use_bias=False
200 | )
201 |
202 | def call(self, inputs, mask=None):
203 | nn = tf.keras.layers.GlobalAveragePooling1D()(inputs, mask=mask)
204 | nn = tf.expand_dims(nn, -1)
205 | nn = self.conv(nn)
206 | nn = tf.squeeze(nn, -1)
207 | nn = tf.nn.sigmoid(nn)
208 | nn = nn[:, None, :]
209 | return inputs * nn
210 |
211 |
212 | class CausalDWConv1D(tf.keras.layers.Layer):
213 | def __init__(
214 | self,
215 | kernel_size=17,
216 | dilation_rate=1,
217 | use_bias=False,
218 | depthwise_initializer="glorot_uniform",
219 | name="",
220 | **kwargs,
221 | ):
222 | super().__init__(name=name, **kwargs)
223 | self.causal_pad = tf.keras.layers.ZeroPadding1D(
224 | (dilation_rate * (kernel_size - 1), 0), name=name + "_pad"
225 | )
226 | self.dw_conv = tf.keras.layers.DepthwiseConv1D(
227 | kernel_size,
228 | strides=1,
229 | dilation_rate=dilation_rate,
230 | padding="valid",
231 | use_bias=use_bias,
232 | depthwise_initializer=depthwise_initializer,
233 | name=name + "_dwconv",
234 | )
235 | self.supports_masking = True
236 |
237 | def call(self, inputs):
238 | x = self.causal_pad(inputs)
239 | x = self.dw_conv(x)
240 | return x
241 |
242 |
243 | def Conv1DBlock(
244 | channel_size,
245 | kernel_size,
246 | dilation_rate=1,
247 | drop_rate=0.0,
248 | expand_ratio=2,
249 | se_ratio=0.25,
250 | activation="swish",
251 | name=None,
252 | ):
253 | """
254 | efficient conv1d block, @hoyso48
255 | """
256 | if name is None:
257 | name = str(tf.keras.backend.get_uid("mbblock"))
258 | # Expansion phase
259 | def apply(inputs):
260 | channels_in = tf.keras.backend.int_shape(inputs)[-1]
261 | channels_expand = channels_in * expand_ratio
262 |
263 | skip = inputs
264 |
265 | x = tf.keras.layers.Dense(
266 | channels_expand,
267 | use_bias=True,
268 | activation=activation,
269 | name=name + "_expand_conv",
270 | )(inputs)
271 |
272 | # Depthwise Convolution
273 | x = CausalDWConv1D(
274 | kernel_size,
275 | dilation_rate=dilation_rate,
276 | use_bias=False,
277 | name=name + "_dwconv",
278 | )(x)
279 |
280 | x = tf.keras.layers.BatchNormalization(momentum=0.95, name=name + "_bn")(x)
281 |
282 | x = ECA()(x)
283 |
284 | x = tf.keras.layers.Dense(
285 | channel_size, use_bias=True, name=name + "_project_conv"
286 | )(x)
287 |
288 | if drop_rate > 0:
289 | x = tf.keras.layers.Dropout(
290 | drop_rate, noise_shape=(None, 1, 1), name=name + "_drop"
291 | )(x)
292 |
293 | if channels_in == channel_size:
294 | x = tf.keras.layers.add([x, skip], name=name + "_add")
295 | return x
296 |
297 | return apply
298 |
299 |
300 | class MultiHeadSelfAttention(tf.keras.layers.Layer):
301 | def __init__(self, dim=256, num_heads=4, dropout=0, **kwargs):
302 | super().__init__(**kwargs)
303 | self.dim = dim
304 | self.scale = self.dim**-0.5
305 | self.num_heads = num_heads
306 | self.qkv = tf.keras.layers.Dense(3 * dim, use_bias=False)
307 | self.drop1 = tf.keras.layers.Dropout(dropout)
308 | self.proj = tf.keras.layers.Dense(dim, use_bias=False)
309 | self.supports_masking = True
310 |
311 | def call(self, inputs, mask=None):
312 | qkv = self.qkv(inputs)
313 | qkv = tf.keras.layers.Permute((2, 1, 3))(
314 | tf.keras.layers.Reshape(
315 | (-1, self.num_heads, self.dim * 3 // self.num_heads)
316 | )(qkv)
317 | )
318 | q, k, v = tf.split(qkv, [self.dim // self.num_heads] * 3, axis=-1)
319 |
320 | attn = tf.matmul(q, k, transpose_b=True) * self.scale
321 |
322 | if mask is not None:
323 | mask = mask[:, None, None, :]
324 |
325 | attn = tf.keras.layers.Softmax(axis=-1)(attn, mask=mask)
326 | attn = self.drop1(attn)
327 |
328 | x = attn @ v
329 | x = tf.keras.layers.Reshape((-1, self.dim))(
330 | tf.keras.layers.Permute((2, 1, 3))(x)
331 | )
332 | x = self.proj(x)
333 | return x
334 |
335 |
336 | def TransformerBlock(
337 | dim=256, num_heads=6, expand=4, attn_dropout=0.2, drop_rate=0.2, activation="swish"
338 | ):
339 | def apply(inputs):
340 | x = inputs
341 | x = tf.keras.layers.LayerNormalization(epsilon=1e-6)(x)
342 | x = MultiHeadSelfAttention(dim=dim, num_heads=num_heads, dropout=attn_dropout)(
343 | x
344 | )
345 | x = tf.keras.layers.Dropout(drop_rate, noise_shape=(None, 1, 1))(x)
346 | x = tf.keras.layers.Add()([inputs, x])
347 | attn_out = x
348 |
349 | x = tf.keras.layers.LayerNormalization(epsilon=1e-6)(x)
350 | x = tf.keras.layers.Dense(dim * expand, use_bias=False, activation=activation)(
351 | x
352 | )
353 | x = tf.keras.layers.Dense(dim, use_bias=False)(x)
354 | x = tf.keras.layers.Dropout(drop_rate, noise_shape=(None, 1, 1))(x)
355 | x = tf.keras.layers.Add()([attn_out, x])
356 | return x
357 |
358 | return apply
359 |
360 |
361 | def positional_encoding(maxlen, num_hid):
362 | depth = num_hid / 2
363 | positions = tf.range(maxlen, dtype=tf.float32)[..., tf.newaxis]
364 | depths = tf.range(depth, dtype=tf.float32)[np.newaxis, :] / depth
365 | angle_rates = tf.math.divide(1, tf.math.pow(tf.cast(10000, tf.float32), depths))
366 | angle_rads = tf.linalg.matmul(positions, angle_rates)
367 | pos_encoding = tf.concat(
368 | [tf.math.sin(angle_rads), tf.math.cos(angle_rads)], axis=-1
369 | )
370 | return pos_encoding
371 |
372 |
373 | def positional_encoding2(maxlen, num_hid):
374 | depth = num_hid / 2
375 | positions = tf.range(maxlen, dtype=tf.float32)[..., tf.newaxis]
376 | depths = tf.range(depth, dtype=tf.float32)[np.newaxis, :] / depth
377 | angle_rates = tf.math.divide(1, tf.math.pow(tf.cast(10000, tf.float32), depths))
378 | angle_rads = tf.linalg.matmul(positions, angle_rates)
379 | pos_encoding = np.zeros((maxlen, num_hid))
380 | pos_encoding[:, 0::2] = np.sin(angle_rads)
381 | pos_encoding[:, 1::2] = np.cos(angle_rads)
382 | return pos_encoding
383 |
384 |
385 | # %% Build Loss function
386 | def CTCLoss(labels, logits):
387 | label_length = tf.reduce_sum(tf.cast(labels != pad_token_idx, tf.int32), axis=-1)
388 | logit_length = tf.ones(tf.shape(logits)[0], dtype=tf.int32) * tf.shape(logits)[1]
389 | loss = tf.nn.ctc_loss(
390 | labels=labels,
391 | logits=logits,
392 | label_length=label_length,
393 | logit_length=logit_length,
394 | blank_index=pad_token_idx,
395 | logits_time_major=False,
396 | )
397 | loss = tf.reduce_mean(loss)
398 | return loss
399 |
400 |
401 | def get_model(dim=384):
402 | inp = tf.keras.Input(INPUT_SHAPE)
403 | x = tf.keras.layers.Masking(mask_value=0.0)(inp)
404 | x = tf.keras.layers.Dense(dim, use_bias=False, name="stem_conv")(x)
405 | pe = tf.cast(positional_encoding(INPUT_SHAPE[0], dim), dtype=x.dtype)
406 | x = x + pe
407 | x = tf.keras.layers.BatchNormalization(momentum=0.95, name="stem_bn")(x)
408 | num_blocks = 6
409 | drop_rate = 0.4
410 | for i in range(num_blocks):
411 | x = Conv1DBlock(dim, 11, drop_rate=drop_rate)(x)
412 | x = Conv1DBlock(dim, 5, drop_rate=drop_rate)(x)
413 | x = Conv1DBlock(dim, 3, drop_rate=drop_rate)(x)
414 | x = TransformerBlock(dim, expand=2)(x)
415 |
416 | x = tf.keras.layers.Dense(dim * 2, activation="relu", name="top_conv")(x)
417 | x = tf.keras.layers.Dropout(0.4)(x)
418 | # x = LateDropout(0.7)(x)
419 | x = tf.keras.layers.Dense(len(char_to_num), name="classifier")(x)
420 |
421 | model = tf.keras.Model(inp, x)
422 |
423 | loss = CTCLoss
424 |
425 | # Adam Optimizer
426 | optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
427 | # optimizer = tf.optimizers.RectifiedAdam(sma_threshold=4)
428 | # optimizer = tfa.optimizers.Lookahead(optimizer, sync_period=5)
429 |
430 | model.compile(loss=loss, optimizer=optimizer)
431 |
432 | return model
433 |
434 |
435 | tf.keras.backend.clear_session()
436 | model = get_model()
437 | # model(batch[0])
438 |
439 |
440 | def num_to_char_fn(y):
441 | return [num_to_char.get(x, "") for x in y]
442 |
443 |
444 | @tf.function()
445 | def decode_phrase(pred):
446 | x = tf.argmax(pred, axis=1)
447 | diff = tf.not_equal(x[:-1], x[1:])
448 | adjacent_indices = tf.where(diff)[:, 0]
449 | x = tf.gather(x, adjacent_indices)
450 | mask = x != pad_token_idx
451 | x = tf.boolean_mask(x, mask, axis=0)
452 | return x
453 |
454 |
455 | # A utility function to decode the output of the network
456 | def decode_batch_predictions(pred):
457 | output_text = []
458 | for result in pred:
459 | result = "".join(num_to_char_fn(decode_phrase(result).numpy()))
460 | output_text.append(result)
461 | return output_text
462 |
463 |
464 | # A callback class to output a few transcriptions during training
465 | class CallbackEval(tf.keras.callbacks.Callback):
466 | """Displays a batch of outputs after every epoch."""
467 |
468 | def __init__(self, dataset):
469 | super().__init__()
470 | self.dataset = dataset
471 |
472 | def on_epoch_end(self, epoch: int, logs=None):
473 | # model.save_weights("model.keras")
474 | predictions = []
475 | targets = []
476 | for batch in self.dataset:
477 | X, y = batch
478 | batch_predictions = model(X)
479 | batch_predictions = decode_batch_predictions(batch_predictions)
480 | predictions.extend(batch_predictions)
481 | for label in y:
482 | label = "".join(num_to_char_fn(label.numpy()))
483 | targets.append(label)
484 | print("-" * 100)
485 | # for i in np.random.randint(0, len(predictions), 2):
486 | print(f"Target : {targets}")
487 | print(f"Prediction: {predictions}, len: {len(predictions)}")
488 | print("-" * 100)
489 |
490 |
491 | # for i in range(32):
492 | # print(f"Target : {targets[i]}")
493 | # print(f"Prediction: {predictions[i]}, len: {len(predictions[i])}")
494 | # print("-" * 100)
495 |
496 | # Callback function to check transcription on the val set.
497 | validation_callback = CallbackEval(val_dataset.take(1))
498 |
499 |
500 | N_EPOCHS = 51
501 | N_WARMUP_EPOCHS = 10
502 | LR_MAX = 1e-3
503 | WD_RATIO = 0.05
504 | WARMUP_METHOD = "exp"
505 |
506 |
507 | def lrfn(
508 | current_step, num_warmup_steps, lr_max, num_cycles=0.50, num_training_steps=N_EPOCHS
509 | ):
510 |
511 | if current_step < num_warmup_steps:
512 | if WARMUP_METHOD == "log":
513 | return lr_max * 0.10 ** (num_warmup_steps - current_step)
514 | else:
515 | return lr_max * 2 ** -(num_warmup_steps - current_step)
516 | else:
517 | progress = float(current_step - num_warmup_steps) / float(
518 | max(1, num_training_steps - num_warmup_steps)
519 | )
520 |
521 | return (
522 | max(
523 | 0.0,
524 | 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)),
525 | )
526 | * lr_max
527 | )
528 |
529 |
530 | # Learning rate for encoder
531 | LR_SCHEDULE = [
532 | lrfn(step, num_warmup_steps=N_WARMUP_EPOCHS, lr_max=LR_MAX, num_cycles=0.50)
533 | for step in range(N_EPOCHS)
534 | ]
535 | # Learning Rate Callback
536 | lr_callback = tf.keras.callbacks.LearningRateScheduler(
537 | lambda step: LR_SCHEDULE[step], verbose=0
538 | )
539 |
540 | # Custom callback to update weight decay with learning rate
541 | class WeightDecayCallback(tf.keras.callbacks.Callback):
542 | def __init__(self, wd_ratio=WD_RATIO):
543 | self.step_counter = 0
544 | self.wd_ratio = wd_ratio
545 |
546 | def on_epoch_begin(self, epoch, logs=None):
547 | model.optimizer.weight_decay = model.optimizer.learning_rate * self.wd_ratio
548 | print(
549 | f"learning rate: {model.optimizer.learning_rate.numpy():.2e}, weight decay: {model.optimizer.weight_decay.numpy():.2e}"
550 | )
551 |
552 |
553 | checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
554 | filepath="code/baseline2/out2/model.{epoch:05d}.keras",
555 | save_weights_only=True,
556 | period=50,
557 | )
558 |
559 |
560 | # load weight
561 | weight_path = (
562 | "gs://capy-data/data/preprocessed_dfs/preprocessed_dfs/model_weights/model.h5"
563 | )
564 | print(
565 | "model weight",
566 | [
567 | file.name
568 | for file in bucket.list_blobs(
569 | prefix="data/preprocessed_dfs/preprocessed_dfs/model_weights"
570 | )
571 | ],
572 | )
573 | blob = bucket.blob("data/preprocessed_dfs/preprocessed_dfs/model_weights/model.h5")
574 | # model.load_weights(weight_path, by_name=False)
575 |
576 | # Training
577 | history = model.fit(
578 | train_dataset,
579 | validation_data=val_dataset,
580 | # epochs=N_EPOCHS,
581 | epochs=1,
582 | callbacks=[
583 | checkpoint_callback,
584 | validation_callback,
585 | lr_callback,
586 | WeightDecayCallback(),
587 | ],
588 | )
589 | model.save("basemodel.keras")
590 |
591 | # Initialize a W&B run
592 | wandb.init(
593 | project="capy-train",
594 | config={
595 | "learning_rate": LR_MAX,
596 | "epochs": 1,
597 | "batch_size": 32,
598 | "model_name": model.name,
599 | },
600 | name=model.name,
601 | )
602 |
603 | # Wandb training
604 | training_results = model.fit(
605 | train_dataset,
606 | validation_data=val_dataset,
607 | epochs=5,
608 | callbacks=[WandbMetricsLogger()],
609 | # callbacks = [WandbMetricsLogger(log_freq=1)],
610 | verbose=1,
611 | )
612 |
613 | wandb.run.finish()
614 |
--------------------------------------------------------------------------------
/model/package/setup.cfg:
--------------------------------------------------------------------------------
1 | [egg_info]
2 |
3 | tag_build =
4 |
5 | tag_date = 0
--------------------------------------------------------------------------------
/model/package/setup.py:
--------------------------------------------------------------------------------
1 | from setuptools import find_packages
2 | from setuptools import setup
3 |
4 |
5 | REQUIRED_PACKAGES = [
6 | "wandb",
7 | "tensorflow==2.13.0",
8 | "pandas",
9 | "numpy",
10 | "tqdm",
11 | "python-json-logger",
12 | ]
13 |
14 | setup(
15 | name="capy-trainer",
16 | version="0.0.1",
17 | install_requires=REQUIRED_PACKAGES,
18 | packages=find_packages(),
19 | description="Capy Trainer Application",
20 | )
21 |
--------------------------------------------------------------------------------
/model/requirements.txt:
--------------------------------------------------------------------------------
1 | pandas
2 | numpy
3 | tqdm
4 | tensorflow==2.13.0
5 | wandb
6 | google-cloud-storage
7 | wandb
--------------------------------------------------------------------------------
/models/.gitkeep:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/models/.gitkeep
--------------------------------------------------------------------------------
/notebooks/.gitkeep:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/notebooks/.gitkeep
--------------------------------------------------------------------------------
/notebooks/eda.ipynb:
--------------------------------------------------------------------------------
1 | # Blank file showing how and where you might use a notebook in your project.
2 |
--------------------------------------------------------------------------------
/preprocessing/gcp-upload.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 9,
6 | "id": "d67e69df",
7 | "metadata": {},
8 | "outputs": [
9 | {
10 | "name": "stderr",
11 | "output_type": "stream",
12 | "text": [
13 | "100%|██████████████████████████████████████████████████████████████████████████████| 2811/2811 [47:28<00:00, 1.01s/it]\n"
14 | ]
15 | }
16 | ],
17 | "source": [
18 | "from google.cloud import storage\n",
19 | "import os\n",
20 | "import glob\n",
21 | "import tqdm\n",
22 | "\n",
23 | "\n",
24 | "# GCS bucket information\n",
25 | "gcs_bucket_name = 'capy-data'\n",
26 | "gcs_prefix = 'data/WLASL-data/wlasl_parquet_update/'\n",
27 | "\n",
28 | "storage_client = storage.Client.from_service_account_json(\"./psychic-bedrock-398320-e41cc1b33701.json\")\n",
29 | "bucket = storage_client.get_bucket(\"capy-data\")\n",
30 | "\n",
31 | "# Upload the TFRecord file to the GCS bucket\n",
32 | "\n",
33 | "for input_file in tqdm.tqdm(glob.glob(os.path.join(\"wlasl/wlasl_parquet_update\", '*.parquet'))):\n",
34 | "# print(input_file)\n",
35 | " gcs_object_name = os.path.join(gcs_prefix, os.path.basename(input_file))\n",
36 | " blob = bucket.blob(gcs_object_name)\n",
37 | " blob.upload_from_filename(input_file)\n"
38 | ]
39 | },
40 | {
41 | "cell_type": "code",
42 | "execution_count": null,
43 | "id": "c1e2411e",
44 | "metadata": {},
45 | "outputs": [],
46 | "source": []
47 | }
48 | ],
49 | "metadata": {
50 | "kernelspec": {
51 | "display_name": "Python 3 (ipykernel)",
52 | "language": "python",
53 | "name": "python3"
54 | },
55 | "language_info": {
56 | "codemirror_mode": {
57 | "name": "ipython",
58 | "version": 3
59 | },
60 | "file_extension": ".py",
61 | "mimetype": "text/x-python",
62 | "name": "python",
63 | "nbconvert_exporter": "python",
64 | "pygments_lexer": "ipython3",
65 | "version": "3.10.6"
66 | }
67 | },
68 | "nbformat": 4,
69 | "nbformat_minor": 5
70 | }
71 |
--------------------------------------------------------------------------------
/references/.gitkeep:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/references/.gitkeep
--------------------------------------------------------------------------------
/references/2020.coling-main.525.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/references/2020.coling-main.525.pdf
--------------------------------------------------------------------------------
/references/Camgoz_Neural_Sign_Language_CVPR_2018_paper.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/references/Camgoz_Neural_Sign_Language_CVPR_2018_paper.pdf
--------------------------------------------------------------------------------
/references/methods.md:
--------------------------------------------------------------------------------
1 | # Sign Language Translation
2 |
3 | ## Method papers
4 |
5 |
6 | ### Better Sign Language Translation with STMC-Transformer
7 |
8 | * Coling'20 Paper
9 | * Model: STMC-Transformer
10 | * Dataset: HPHOENIX-Weather 2014T dataset & ASLG-PC12 corpus
11 | * STMC-Transformer model performing video-to-text translation that surpasses
12 | translation of ground truth glosses, which reveals that glosses are an inefficient representation of sign language.
13 |
14 | [GitHub](https://github.com/kayoyin/transformer-slt)
15 |
16 |
17 | ### Sign Language Transformers
18 |
19 | * CVPR'20 paper: Sign Language Transformers: Joint End-to-end Sign Language Recognition and Translation.
20 |
21 | [GitHub](https://github.com/neccam/slt)
22 |
23 |
24 | ### Neural Sign Language Translation
25 |
26 | * Baseline model, Camgoz et al. (2018) formalized the SLT.
27 | * CVPR'18 Paper: https://openaccess.thecvf.com/content_cvpr_2018/papers/Camgoz_Neural_Sign_Language_CVPR_2018_paper.pdf
28 |
29 |
30 | ### Google - ASL Fingerspelling Recognition 1st place solution
31 |
32 | * kaggle: https://www.kaggle.com/competitions/asl-fingerspelling
33 |
34 | [GitHub](https://github.com/ChristofHenkel/kaggle-asl-fingerspelling-1st-place-solution)
35 |
36 |
37 | ### MyVoice: Machine Translation for American Sign Language
38 |
39 | * Model based on Camgoz et al’s work on using Transformers for jointly learning both Sign Language Recognition and Translation tasks.
40 | * Dataset: How2Sign; Use English transcript as the intermediary representation gloss.
41 | * https://www.ischool.berkeley.edu/projects/2022/myvoice-machine-translation-american-sign-language#:~:text=MyVoice%20is%20an%20American%20Sign,generate%20captions%20for%20short%20paragraphs.
42 |
43 | [GitHub](https://github.com/sign2text/myvoice)
44 |
45 |
46 |
47 | ## Dataset
48 |
49 | ### English-ASL Gloss Parallel Corpus 2012: ASLG-PC12
50 |
51 | * https://achrafothman.net/site/english-asl-gloss-parallel-corpus-2012-aslg-pc12/
52 |
53 |
54 | ### MS-ASL American Sign Language Dataset
55 |
56 | * https://microsoft.github.io/data-for-society/dataset?d=MS-ASL-American-Sign-Language-Dataset
57 |
58 |
59 | ### How2Sign: A Large-Scale Multimodal Dataset for Continuous American Sign Language
60 |
61 | * https://how2sign.github.io/
62 |
--------------------------------------------------------------------------------
/references/sign_language_transformers.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/references/sign_language_transformers.pdf
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | # external requirements
2 | click
3 | Sphinx
4 | coverage
5 | awscli
6 | flake8
7 | python-dotenv>=0.5.1
8 | black
9 | pytest
10 |
--------------------------------------------------------------------------------
/src/api-service/.gitkeep:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/src/api-service/.gitkeep
--------------------------------------------------------------------------------
/src/api-service/Dockerfile:
--------------------------------------------------------------------------------
1 | # Use the official Debian-hosted Python image
2 | FROM python:3.9-slim-buster
3 |
4 | ARG DEBIAN_PACKAGES="build-essential git"
5 |
6 | # Prevent apt from showing prompts
7 | ENV DEBIAN_FRONTEND=noninteractive
8 |
9 | # Python wants UTF-8 locale
10 | ENV LANG=C.UTF-8
11 |
12 | # Tell pipenv where the shell is. This allows us to use "pipenv shell" as a
13 | # container entry point.
14 | ENV PYENV_SHELL=/bin/bash
15 |
16 | # Tell Python to disable buffering so we don't lose any logs.
17 | ENV PYTHONUNBUFFERED=1
18 |
19 | # Ensure we have an up to date baseline, install dependencies and
20 | # create a user so we don't run the app as root
21 | RUN set -ex; \
22 | for i in $(seq 1 8); do mkdir -p "/usr/share/man/man${i}"; done && \
23 | apt-get update && \
24 | apt-get upgrade -y && \
25 | apt install -y ca-certificates && \
26 | apt install -y libglib2.0-0 && \
27 | apt-get install -y libgl1-mesa-glx && \
28 | apt-get install -y ca-certificates && \
29 | apt-get install -y --no-install-recommends $DEBIAN_PACKAGES && \
30 | apt-get clean && \
31 | rm -rf /var/lib/apt/lists/* && \
32 | pip install --no-cache-dir --upgrade pip && \
33 | pip install pipenv && \
34 | useradd -ms /bin/bash app -d /home/app -u 1000 -p "$(openssl passwd -1 Passw0rd)" && \
35 | mkdir -p /app && \
36 | mkdir -p /persistent && \
37 | chown app:app /persistent && \
38 | chown app:app /app
39 |
40 | RUN mkdir /local_model && chmod 777 /local_model
41 |
42 |
43 | # Expose port of API service
44 | EXPOSE 9000
45 |
46 | # Switch to the new user
47 | USER app
48 | WORKDIR /app
49 |
50 | # Install python packages
51 | ADD --chown=app:app Pipfile Pipfile.lock /app/
52 |
53 | RUN pipenv sync
54 |
55 | # Add the rest of the source code. This is done last so we don't invalidate all
56 | # layers when we change a line of code.
57 | ADD --chown=app:app . /app
58 |
59 | # Entry point
60 | ENTRYPOINT ["/bin/bash","./docker-entrypoint.sh"]
--------------------------------------------------------------------------------
/src/api-service/Pipfile:
--------------------------------------------------------------------------------
1 | [[source]]
2 | name = "pypi"
3 | url = "https://pypi.org/simple"
4 | verify_ssl = true
5 |
6 | [dev-packages]
7 |
8 | [packages]
9 | uvicorn = "*"
10 | fastapi = "*"
11 | pandas = "*"
12 | google-cloud-storage = "*"
13 | tensorflow-hub = "*"
14 | python-multipart = "*"
15 | google-cloud-aiplatform = "*"
16 | numpy = "*"
17 | tensorflow = "==2.13.0"
18 | opencv-python = "*"
19 | keras = "*"
20 | mediapipe = "*"
21 | importlib_resources = '*'
22 | zipp = '*'
23 |
24 | [requires]
25 | python_version = "3.9"
--------------------------------------------------------------------------------
/src/api-service/api/local_model/asl_model.h5:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/src/api-service/api/local_model/asl_model.h5
--------------------------------------------------------------------------------
/src/api-service/api/model.py:
--------------------------------------------------------------------------------
1 | import os
2 | import numpy as np
3 | import tensorflow as tf
4 | from tensorflow.python.keras import backend as K
5 | from tensorflow.keras.models import Model
6 | #import tensorflow_hub as hub
7 | #from google.cloud import aiplatform
8 | #import base64
9 |
10 | import mediapipe as mp
11 | import pandas as pd
12 | import json
13 | import cv2
14 | import keras
15 |
16 | ROWS_PER_FRAME = 543
17 | MAX_LEN = 384
18 | CROP_LEN = MAX_LEN
19 | NUM_CLASSES = 250
20 | PAD = -100.
21 | NOSE=[
22 | 1,2,98,327
23 | ]
24 | LNOSE = [98]
25 | RNOSE = [327]
26 | LIP = [ 0,
27 | 61, 185, 40, 39, 37, 267, 269, 270, 409,
28 | 291, 146, 91, 181, 84, 17, 314, 405, 321, 375,
29 | 78, 191, 80, 81, 82, 13, 312, 311, 310, 415,
30 | 95, 88, 178, 87, 14, 317, 402, 318, 324, 308,
31 | ]
32 | LLIP = [84,181,91,146,61,185,40,39,37,87,178,88,95,78,191,80,81,82]
33 | RLIP = [314,405,321,375,291,409,270,269,267,317,402,318,324,308,415,310,311,312]
34 |
35 | POSE = [500, 502, 504, 501, 503, 505, 512, 513]
36 | LPOSE = [513,505,503,501]
37 | RPOSE = [512,504,502,500]
38 |
39 | REYE = [
40 | 33, 7, 163, 144, 145, 153, 154, 155, 133,
41 | 246, 161, 160, 159, 158, 157, 173,
42 | ]
43 | LEYE = [
44 | 263, 249, 390, 373, 374, 380, 381, 382, 362,
45 | 466, 388, 387, 386, 385, 384, 398,
46 | ]
47 |
48 | LHAND = np.arange(468, 489).tolist()
49 | RHAND = np.arange(522, 543).tolist()
50 |
51 | POINT_LANDMARKS = LIP + LHAND + RHAND + NOSE + REYE + LEYE #+POSE
52 |
53 | NUM_NODES = len(POINT_LANDMARKS)
54 | CHANNELS = 6*NUM_NODES
55 |
56 | print(NUM_NODES)
57 | print(CHANNELS)
58 |
59 | def tf_nan_mean(x, axis=0, keepdims=False):
60 | return tf.reduce_sum(tf.where(tf.math.is_nan(x), tf.zeros_like(x), x), axis=axis, keepdims=keepdims) / tf.reduce_sum(tf.where(tf.math.is_nan(x), tf.zeros_like(x), tf.ones_like(x)), axis=axis, keepdims=keepdims)
61 |
62 | def tf_nan_std(x, center=None, axis=0, keepdims=False):
63 | if center is None:
64 | center = tf_nan_mean(x, axis=axis, keepdims=True)
65 | d = x - center
66 | return tf.math.sqrt(tf_nan_mean(d * d, axis=axis, keepdims=keepdims))
67 |
68 | class Preprocess(tf.keras.layers.Layer):
69 | def __init__(self, max_len=MAX_LEN, point_landmarks=POINT_LANDMARKS, **kwargs):
70 | super().__init__(**kwargs)
71 | self.max_len = max_len
72 | self.point_landmarks = point_landmarks
73 |
74 | def call(self, inputs):
75 | if tf.rank(inputs) == 3:
76 | x = inputs[None,...]
77 | else:
78 | x = inputs
79 |
80 | mean = tf_nan_mean(tf.gather(x, [17], axis=2), axis=[1,2], keepdims=True)
81 | mean = tf.where(tf.math.is_nan(mean), tf.constant(0.5,x.dtype), mean)
82 | x = tf.gather(x, self.point_landmarks, axis=2) #N,T,P,C
83 | std = tf_nan_std(x, center=mean, axis=[1,2], keepdims=True)
84 |
85 | x = (x - mean)/std
86 |
87 | if self.max_len is not None:
88 | x = x[:,:self.max_len]
89 | length = tf.shape(x)[1]
90 | x = x[...,:2]
91 |
92 | dx = tf.cond(tf.shape(x)[1]>1,lambda:tf.pad(x[:,1:] - x[:,:-1], [[0,0],[0,1],[0,0],[0,0]]),lambda:tf.zeros_like(x))
93 |
94 | dx2 = tf.cond(tf.shape(x)[1]>2,lambda:tf.pad(x[:,2:] - x[:,:-2], [[0,0],[0,2],[0,0],[0,0]]),lambda:tf.zeros_like(x))
95 |
96 | x = tf.concat([
97 | tf.reshape(x, (-1,length,2*len(self.point_landmarks))),
98 | tf.reshape(dx, (-1,length,2*len(self.point_landmarks))),
99 | tf.reshape(dx2, (-1,length,2*len(self.point_landmarks))),
100 | ], axis = -1)
101 |
102 | x = tf.where(tf.math.is_nan(x),tf.constant(0.,x.dtype),x)
103 |
104 | return x
105 |
106 | @keras.saving.register_keras_serializable()
107 | class ECA(tf.keras.layers.Layer):
108 | def __init__(self, kernel_size=5, **kwargs):
109 | super().__init__(**kwargs)
110 | self.supports_masking = True
111 | self.kernel_size = kernel_size
112 | self.conv = tf.keras.layers.Conv1D(1, kernel_size=kernel_size, strides=1, padding="same", use_bias=False)
113 |
114 | def call(self, inputs, mask=None):
115 | nn = tf.keras.layers.GlobalAveragePooling1D()(inputs, mask=mask)
116 | nn = tf.expand_dims(nn, -1)
117 | nn = self.conv(nn)
118 | nn = tf.squeeze(nn, -1)
119 | nn = tf.nn.sigmoid(nn)
120 | nn = nn[:,None,:]
121 | return inputs * nn
122 |
123 | @keras.saving.register_keras_serializable()
124 | class LateDropout(tf.keras.layers.Layer):
125 | def __init__(self, rate, noise_shape=None, start_step=0, **kwargs):
126 | super().__init__(**kwargs)
127 | # self.supports_masking = True
128 | self.rate = rate
129 | self.start_step = start_step
130 | self.dropout = tf.keras.layers.Dropout(rate, noise_shape=noise_shape)
131 |
132 | def build(self, input_shape):
133 | super().build(input_shape)
134 | agg = tf.VariableAggregation.ONLY_FIRST_REPLICA
135 | self._train_counter = tf.Variable(0, dtype="int64", aggregation=agg, trainable=False)
136 |
137 | def call(self, inputs, training=False):
138 | x = tf.cond(self._train_counter < self.start_step, lambda:inputs, lambda:self.dropout(inputs, training=training))
139 | if training:
140 | self._train_counter.assign_add(1)
141 | return x
142 |
143 | @keras.saving.register_keras_serializable()
144 | class CausalDWConv1D(tf.keras.layers.Layer):
145 | def __init__(self,
146 | kernel_size=17,
147 | dilation_rate=1,
148 | use_bias=False,
149 | depthwise_initializer='glorot_uniform',
150 | name='', **kwargs):
151 | super().__init__(name=name,**kwargs)
152 | self.causal_pad = tf.keras.layers.ZeroPadding1D((dilation_rate*(kernel_size-1),0),name=name + '_pad')
153 | self.dw_conv = tf.keras.layers.DepthwiseConv1D(
154 | kernel_size,
155 | strides=1,
156 | dilation_rate=dilation_rate,
157 | padding='valid',
158 | use_bias=use_bias,
159 | depthwise_initializer=depthwise_initializer,
160 | name=name + '_dwconv')
161 | self.supports_masking = True
162 |
163 | def call(self, inputs):
164 | x = self.causal_pad(inputs)
165 | x = self.dw_conv(x)
166 | return x
167 |
168 | def Conv1DBlock(channel_size,
169 | kernel_size,
170 | dilation_rate=1,
171 | drop_rate=0.0,
172 | expand_ratio=2,
173 | se_ratio=0.25,
174 | activation='swish',
175 | name=None):
176 | '''
177 | efficient conv1d block, @hoyso48
178 | '''
179 | if name is None:
180 | name = str(tf.keras.backend.get_uid("mbblock"))
181 | # Expansion phase
182 | def apply(inputs):
183 | channels_in = tf.keras.backend.int_shape(inputs)[-1]
184 | channels_expand = channels_in * expand_ratio
185 |
186 | skip = inputs
187 |
188 | x = tf.keras.layers.Dense(
189 | channels_expand,
190 | use_bias=True,
191 | activation=activation,
192 | name=name + '_expand_conv')(inputs)
193 |
194 | # Depthwise Convolution
195 | x = CausalDWConv1D(kernel_size,
196 | dilation_rate=dilation_rate,
197 | use_bias=False,
198 | name=name + '_dwconv')(x)
199 |
200 | x = tf.keras.layers.BatchNormalization(momentum=0.95, name=name + '_bn')(x)
201 |
202 | x = ECA()(x)
203 |
204 | x = tf.keras.layers.Dense(
205 | channel_size,
206 | use_bias=True,
207 | name=name + '_project_conv')(x)
208 |
209 | if drop_rate > 0:
210 | x = tf.keras.layers.Dropout(drop_rate, noise_shape=(None,1,1), name=name + '_drop')(x)
211 |
212 | if (channels_in == channel_size):
213 | x = tf.keras.layers.add([x, skip], name=name + '_add')
214 | return x
215 |
216 | return apply
217 |
218 |
219 | @keras.saving.register_keras_serializable()
220 | class MultiHeadSelfAttention(tf.keras.layers.Layer):
221 | def __init__(self, dim=256, num_heads=4, dropout=0, **kwargs):
222 | super().__init__(**kwargs)
223 | self.dim = dim
224 | self.scale = self.dim ** -0.5
225 | self.num_heads = num_heads
226 | self.qkv = tf.keras.layers.Dense(3 * dim, use_bias=False)
227 | self.drop1 = tf.keras.layers.Dropout(dropout)
228 | self.proj = tf.keras.layers.Dense(dim, use_bias=False)
229 | self.supports_masking = True
230 |
231 | def call(self, inputs, mask=None):
232 | qkv = self.qkv(inputs)
233 | qkv = tf.keras.layers.Permute((2, 1, 3))(tf.keras.layers.Reshape((-1, self.num_heads, self.dim * 3 // self.num_heads))(qkv))
234 | q, k, v = tf.split(qkv, [self.dim // self.num_heads] * 3, axis=-1)
235 |
236 | attn = tf.matmul(q, k, transpose_b=True) * self.scale
237 |
238 | if mask is not None:
239 | mask = mask[:, None, None, :]
240 |
241 | attn = tf.keras.layers.Softmax(axis=-1)(attn, mask=mask)
242 | attn = self.drop1(attn)
243 |
244 | x = attn @ v
245 | x = tf.keras.layers.Reshape((-1, self.dim))(tf.keras.layers.Permute((2, 1, 3))(x))
246 | x = self.proj(x)
247 | return x
248 |
249 |
250 | def TransformerBlock(dim=256, num_heads=4, expand=4, attn_dropout=0.2, drop_rate=0.2, activation='swish'):
251 | def apply(inputs):
252 | x = inputs
253 | x = tf.keras.layers.BatchNormalization(momentum=0.95)(x)
254 | x = MultiHeadSelfAttention(dim=dim,num_heads=num_heads,dropout=attn_dropout)(x)
255 | x = tf.keras.layers.Dropout(drop_rate, noise_shape=(None,1,1))(x)
256 | x = tf.keras.layers.Add()([inputs, x])
257 | attn_out = x
258 |
259 | x = tf.keras.layers.BatchNormalization(momentum=0.95)(x)
260 | x = tf.keras.layers.Dense(dim*expand, use_bias=False, activation=activation)(x)
261 | x = tf.keras.layers.Dense(dim, use_bias=False)(x)
262 | x = tf.keras.layers.Dropout(drop_rate, noise_shape=(None,1,1))(x)
263 | x = tf.keras.layers.Add()([attn_out, x])
264 | return x
265 | return apply
266 |
267 | def get_model(max_len=MAX_LEN, dropout_step=0, dim=192):
268 | inp = tf.keras.Input((max_len,CHANNELS))
269 | #x = tf.keras.layers.Masking(mask_value=PAD,input_shape=(max_len,CHANNELS))(inp) #we don't need masking layer with inference
270 | x = inp
271 | ksize = 17
272 | x = tf.keras.layers.Dense(dim, use_bias=False,name='stem_conv')(x)
273 | x = tf.keras.layers.BatchNormalization(momentum=0.95,name='stem_bn')(x)
274 |
275 | x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
276 | x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
277 | x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
278 | x = TransformerBlock(dim,expand=2)(x)
279 |
280 | x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
281 | x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
282 | x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
283 | x = TransformerBlock(dim,expand=2)(x)
284 |
285 | if dim == 384: #for the 4x sized model
286 | x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
287 | x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
288 | x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
289 | x = TransformerBlock(dim,expand=2)(x)
290 |
291 | x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
292 | x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
293 | x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
294 | x = TransformerBlock(dim,expand=2)(x)
295 |
296 | x = tf.keras.layers.Dense(dim*2,activation=None,name='top_conv')(x)
297 | x = tf.keras.layers.GlobalAveragePooling1D()(x)
298 | x = LateDropout(0.8, start_step=dropout_step)(x)
299 | x = tf.keras.layers.Dense(NUM_CLASSES,name='classifier')(x)
300 | return tf.keras.Model(inp, x)
301 |
302 | def load_prediction_model():
303 |
304 | print("Loading Model...")
305 |
306 | global prediction_model
307 |
308 | # model_path = "/local_model/asl_model2.keras"
309 | model_path = "/local_model/asl_model2.h5"
310 |
311 |
312 | print("model_path:", model_path)
313 |
314 | custom_objects = {'CausalDWConv1D': CausalDWConv1D,'ECA':ECA, 'MultiHeadSelfAttention': MultiHeadSelfAttention, 'LateDropout':LateDropout}
315 | prediction_model = keras.models.load_model(model_path,
316 | custom_objects = custom_objects)
317 |
318 |
319 | # with keras.saving.custom_object_scope(custom_objects):
320 | # prediction_model = keras.models.load_model(model_path)
321 |
322 | print(prediction_model.summary())
323 |
324 | return prediction_model
325 |
326 | '''
327 | data_details_path = os.path.join(
328 | local_experiments_path, best_model["experiment"], "data_details.json"
329 | )
330 |
331 | # Load data details
332 | with open(data_details_path, "r") as json_file:
333 | data_details = json.load(json_file)
334 |
335 | def check_model_change():
336 | global best_model, best_model_id
337 | best_model_json = os.path.join(local_experiments_path, "best_model.json")
338 | if os.path.exists(best_model_json):
339 | with open(best_model_json) as json_file:
340 | best_model = json.load(json_file)
341 |
342 | if best_model_id != best_model["experiment"]:
343 | load_prediction_model()
344 | best_model_id = best_model["experiment"]
345 | '''
346 |
347 | def transform_video(video_path):
348 | cap = cv2.VideoCapture(video_path)
349 | mp_holistic = mp.solutions.holistic
350 | holistic = mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.1)
351 |
352 | video_df = []
353 | frame_no=0
354 | while cap.isOpened():
355 | print('\r',frame_no,end='')
356 | success, image = cap.read()
357 |
358 | if not success: break
359 | image = cv2.resize(image, dsize=None, fx=4, fy=4)
360 | height,width,_ = image.shape
361 |
362 | #print(image.shape)
363 | image.flags.writeable = False
364 | image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
365 | result = holistic.process(image)
366 |
367 | #---
368 | data = []
369 | fy = height/width
370 |
371 | # -----------------------------------------------------
372 | if result.face_landmarks is None:
373 | for i in range(468): #
374 | data.append({
375 | 'type' : 'face',
376 | 'landmark_index' : i,
377 | 'x' : np.nan,
378 | 'y' : np.nan,
379 | 'z' : np.nan,
380 | })
381 | else:
382 | assert(len(result.face_landmarks.landmark)==468)
383 | for i in range(468): #
384 | xyz = result.face_landmarks.landmark[i]
385 | data.append({
386 | 'type' : 'face',
387 | 'landmark_index' : i,
388 | 'x' : xyz.x,
389 | 'y' : xyz.y *fy,
390 | 'z' : xyz.z,
391 | })
392 |
393 | # -----------------------------------------------------
394 | if result.left_hand_landmarks is None:
395 | for i in range(21): #
396 | data.append({
397 | 'type': 'left_hand',
398 | 'landmark_index': i,
399 | 'x': np.nan,
400 | 'y': np.nan,
401 | 'z': np.nan,
402 | })
403 | else:
404 | assert (len(result.left_hand_landmarks.landmark) == 21)
405 | for i in range(21): #
406 | xyz = result.left_hand_landmarks.landmark[i]
407 | data.append({
408 | 'type': 'left_hand',
409 | 'landmark_index': i,
410 | 'x': xyz.x,
411 | 'y': xyz.y *fy,
412 | 'z': xyz.z,
413 | })
414 |
415 | # -----------------------------------------------------
416 | #if result.pose_world_landmarks is None:
417 | if result.pose_landmarks is None:
418 | for i in range(33): #
419 | data.append({
420 | 'type': 'pose',
421 | 'landmark_index': i,
422 | 'x': np.nan,
423 | 'y': np.nan,
424 | 'z': np.nan,
425 | })
426 | else:
427 | assert (len(result.pose_landmarks.landmark) == 33)
428 | for i in range(33): #
429 | xyz = result.pose_landmarks.landmark[i]
430 | data.append({
431 | 'type': 'pose',
432 | 'landmark_index': i,
433 | 'x': xyz.x,
434 | 'y': xyz.y *fy,
435 | 'z': xyz.z,
436 | })
437 |
438 | # -----------------------------------------------------
439 | if result.right_hand_landmarks is None:
440 | for i in range(21): #
441 | data.append({
442 | 'type': 'right_hand',
443 | 'landmark_index': i,
444 | 'x': np.nan,
445 | 'y': np.nan,
446 | 'z': np.nan,
447 | })
448 | else:
449 | assert (len(result.right_hand_landmarks.landmark) == 21)
450 | for i in range(21): #
451 | xyz = result.right_hand_landmarks.landmark[i]
452 | data.append({
453 | 'type': 'right_hand',
454 | 'landmark_index': i,
455 | 'x': xyz.x,
456 | 'y': xyz.y *fy,
457 | 'z': xyz.z,
458 | })
459 | zz=0
460 |
461 | frame_df = pd.DataFrame(data)
462 | frame_df.loc[:,'frame'] = frame_no
463 | frame_df.loc[:, 'height'] = height/width
464 | frame_df.loc[:, 'width'] = width/width
465 | video_df.append(frame_df)
466 |
467 |
468 | #=========================
469 | frame_no +=1
470 |
471 | # print(video_df)
472 | video_df = pd.concat(video_df)
473 |
474 | video_df['row_id'] = video_df['frame'].astype('str')+'-'+video_df['type']+'-'+video_df['landmark_index'].astype('str')
475 | try:
476 | video_df.drop(['Unnamed: 0', 'height', 'width'], axis=1, inplace=True)
477 | except:
478 | video_df.drop(['height', 'width'], axis=1, inplace=True)
479 |
480 | video_df.to_numpy()
481 |
482 | data_columns = ['x', 'y', 'z']
483 |
484 | video_df = video_df[data_columns]
485 |
486 | n_frames = int(len(video_df) / ROWS_PER_FRAME)
487 | data = video_df.values.reshape(n_frames, ROWS_PER_FRAME, len(data_columns))
488 |
489 | return data
490 |
491 | class TFModel(tf.Module):
492 | """
493 | TensorFlow Lite model that takes input tensors and applies:
494 | – a preprocessing model
495 | – the ISLR model
496 | """
497 | def __init__(self, islr_models):
498 | """
499 | Initializes the TFLiteModel with the specified preprocessing model and ISLR model.
500 | """
501 | super(TFModel, self).__init__()
502 |
503 | # Load the feature generation and main models
504 | self.prep_inputs = Preprocess()
505 | self.islr_models = islr_models
506 |
507 | @tf.function(input_signature=[tf.TensorSpec(shape=[None, 543, 3], dtype=tf.float32, name='inputs')])
508 | def __call__(self, inputs):
509 | """
510 | Applies the feature generation model and main model to the input tensors.
511 |
512 | Args:
513 | inputs: Input tensor with shape [batch_size, 543, 3].
514 |
515 | Returns:
516 | A dictionary with a single key 'outputs' and corresponding output tensor.
517 | """
518 | x = self.prep_inputs(inputs)
519 | # x = self.prep_inputs(tf.cast(inputs, dtype=tf.float32))
520 | outputs = [model(x) for model in self.islr_models]
521 | outputs = tf.keras.layers.Average()(outputs)[0]
522 | return {'outputs': outputs}
523 |
524 | def make_prediction(video_path):
525 |
526 | # Load & preprocess
527 | data = transform_video(video_path)
528 |
529 | prediction_model = load_prediction_model()
530 | tflite_keras_model = TFModel(islr_models=[prediction_model])
531 | p2s_map = {"TV": 0, "after": 1, "airplane": 2, "all": 3, "alligator": 4, "animal": 5, "another": 6, "any": 7, "apple": 8, "arm": 9, "aunt": 10, "awake": 11, "backyard": 12, "bad": 13, "balloon": 14, "bath": 15, "because": 16, "bed": 17, "bedroom": 18, "bee": 19, "before": 20, "beside": 21, "better": 22, "bird": 23, "black": 24, "blow": 25, "blue": 26, "boat": 27, "book": 28, "boy": 29, "brother": 30, "brown": 31, "bug": 32, "bye": 33, "callonphone": 34, "can": 35, "car": 36, "carrot": 37, "cat": 38, "cereal": 39, "chair": 40, "cheek": 41, "child": 42, "chin": 43, "chocolate": 44, "clean": 45, "close": 46, "closet": 47, "cloud": 48, "clown": 49, "cow": 50, "cowboy": 51, "cry": 52, "cut": 53, "cute": 54, "dad": 55, "dance": 56, "dirty": 57, "dog": 58, "doll": 59, "donkey": 60, "down": 61, "drawer": 62, "drink": 63, "drop": 64, "dry": 65, "dryer": 66, "duck": 67, "ear": 68, "elephant": 69, "empty": 70, "every": 71, "eye": 72, "face": 73, "fall": 74, "farm": 75, "fast": 76, "feet": 77, "find": 78, "fine": 79, "finger": 80, "finish": 81, "fireman": 82, "first": 83, "fish": 84, "flag": 85, "flower": 86, "food": 87, "for": 88, "frenchfries": 89, "frog": 90, "garbage": 91, "gift": 92, "giraffe": 93, "girl": 94, "give": 95, "glasswindow": 96, "go": 97, "goose": 98, "grandma": 99, "grandpa": 100, "grass": 101, "green": 102, "gum": 103, "hair": 104, "happy": 105, "hat": 106, "hate": 107, "have": 108, "haveto": 109, "head": 110, "hear": 111, "helicopter": 112, "hello": 113, "hen": 114, "hesheit": 115, "hide": 116, "high": 117, "home": 118, "horse": 119, "hot": 120, "hungry": 121, "icecream": 122, "if": 123, "into": 124, "jacket": 125, "jeans": 126, "jump": 127, "kiss": 128, "kitty": 129, "lamp": 130, "later": 131, "like": 132, "lion": 133, "lips": 134, "listen": 135, "look": 136, "loud": 137, "mad": 138, "make": 139, "man": 140, "many": 141, "milk": 142, "minemy": 143, "mitten": 144, "mom": 145, "moon": 146, "morning": 147, "mouse": 148, "mouth": 149, "nap": 150, "napkin": 151, "night": 152, "no": 153, "noisy": 154, "nose": 155, "not": 156, "now": 157, "nuts": 158, "old": 159, "on": 160, "open": 161, "orange": 162, "outside": 163, "owie": 164, "owl": 165, "pajamas": 166, "pen": 167, "pencil": 168, "penny": 169, "person": 170, "pig": 171, "pizza": 172, "please": 173, "police": 174, "pool": 175, "potty": 176, "pretend": 177, "pretty": 178, "puppy": 179, "puzzle": 180, "quiet": 181, "radio": 182, "rain": 183, "read": 184, "red": 185, "refrigerator": 186, "ride": 187, "room": 188, "sad": 189, "same": 190, "say": 191, "scissors": 192, "see": 193, "shhh": 194, "shirt": 195, "shoe": 196, "shower": 197, "sick": 198, "sleep": 199, "sleepy": 200, "smile": 201, "snack": 202, "snow": 203, "stairs": 204, "stay": 205, "sticky": 206, "store": 207, "story": 208, "stuck": 209, "sun": 210, "table": 211, "talk": 212, "taste": 213, "thankyou": 214, "that": 215, "there": 216, "think": 217, "thirsty": 218, "tiger": 219, "time": 220, "tomorrow": 221, "tongue": 222, "tooth": 223, "toothbrush": 224, "touch": 225, "toy": 226, "tree": 227, "uncle": 228, "underwear": 229, "up": 230, "vacuum": 231, "wait": 232, "wake": 233, "water": 234, "wet": 235, "weus": 236, "where": 237, "white": 238, "who": 239, "why": 240, "will": 241, "wolf": 242, "yellow": 243, "yes": 244, "yesterday": 245, "yourself": 246, "yucky": 247, "zebra": 248, "zipper": 249}
532 | #decoder = lambda x: p2s_map.get(x)
533 | demo_output = tflite_keras_model(data)["outputs"]
534 | v_output = np.argmax(demo_output.numpy(), axis = -1)
535 | for k,v in p2s_map.items():
536 | if v == v_output:
537 | pred_value = k
538 | #pred_value = decoder(np.argmax(demo_output.numpy(), axis=-1))
539 |
540 | return {"prediction_label":pred_value,
541 | "poisonous": False}
542 |
543 |
--------------------------------------------------------------------------------
/src/api-service/api/service.py:
--------------------------------------------------------------------------------
1 | from fastapi import FastAPI
2 | from starlette.middleware.cors import CORSMiddleware
3 | import asyncio
4 | from api.tracker import TrackerService
5 | import pandas as pd
6 | import os
7 | from fastapi import File
8 | from tempfile import TemporaryDirectory
9 | from api import model
10 |
11 | # Initialize Tracker Service
12 | tracker_service = TrackerService()
13 |
14 | # Setup FastAPI app
15 | app = FastAPI(title="API Server", description="API Server", version="v1")
16 |
17 | # Enable CORSMiddleware
18 | app.add_middleware(
19 | CORSMiddleware,
20 | allow_credentials=False,
21 | allow_origins=["*"],
22 | allow_methods=["*"],
23 | allow_headers=["*"],
24 | )
25 |
26 |
27 | @app.on_event("startup")
28 | async def startup():
29 | print("Startup tasks")
30 | # Start the tracker service
31 | asyncio.create_task(tracker_service.track())
32 |
33 |
34 | # Routes
35 | @app.get("/")
36 | async def get_index():
37 | return {"message": "Welcome to the API Service"}
38 |
39 |
40 | @app.post("/predict")
41 | async def predict(file: bytes = File(...)):
42 | print("predict file:", len(file), type(file))
43 |
44 | self_host_model = True
45 |
46 | # # Save the test video
47 | with TemporaryDirectory() as video_dir:
48 | video_path = os.path.join(video_dir, "test.mp4")
49 | with open(video_path, "wb") as output:
50 | output.write(file)
51 |
52 | # Make prediction
53 | prediction_results = {}
54 | if self_host_model:
55 | prediction_results = model.make_prediction(video_path)
56 | # else:
57 | # prediction_results = model.make_prediction_vertexai(video_path)
58 |
59 | print(prediction_results)
60 | return prediction_results
61 |
--------------------------------------------------------------------------------
/src/api-service/api/test.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/src/api-service/api/test.mp4
--------------------------------------------------------------------------------
/src/api-service/api/tracker.py:
--------------------------------------------------------------------------------
1 | import os
2 | import traceback
3 | import asyncio
4 | from glob import glob
5 | import json
6 | import pandas as pd
7 |
8 | import tensorflow as tf
9 | from google.cloud import storage
10 |
11 |
12 | # bucket_name = os.environ["GCS_BUCKET_NAME"]
13 | bucket_name = 'capy-data'
14 | local_model_path = "/local_model"
15 | secret_path = '/secrets/capy-key.json'
16 |
17 | with open('/secrets/capy-key.json') as json_file:
18 | key_info = json.load(json_file)
19 |
20 | # print(key_info)
21 |
22 | # Setup experiments folder
23 | if not os.path.exists(local_model_path):
24 | os.mkdir(local_model_path)
25 |
26 |
27 | def download_blob(bucket_name, source_blob_name, destination_file_name):
28 | """Downloads a blob from the bucket."""
29 | storage_client = storage.Client.from_service_account_info(key_info)
30 |
31 | # crediental
32 | # storage_client = storage.Client.from_service_account_json("C:/Users/chuqi/ac215/kaggle-data/aslfr-isolated/psychic-bedrock-398320-e41cc1b33701.json")
33 |
34 | bucket = storage_client.bucket(bucket_name)
35 | blob = bucket.blob(source_blob_name)
36 | blob.download_to_filename(destination_file_name)
37 |
38 |
39 | def download_best_model():
40 | print("Download best model")
41 | try:
42 | download_file = 'asl_model2.h5'
43 | download_blob(
44 | bucket_name,
45 | download_file,
46 | os.path.join(local_model_path, download_file),
47 | )
48 |
49 | except:
50 | print("Error in download_best_model")
51 | traceback.print_exc()
52 |
53 |
54 | class TrackerService:
55 | def __init__(self):
56 | self.timestamp = 0
57 |
58 | async def track(self):
59 | # while True:
60 | await asyncio.sleep(10)
61 | print("Download Model...")
62 |
63 | download_best_model()
--------------------------------------------------------------------------------
/src/api-service/docker-entrypoint.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | echo "Container is running!!!"
4 |
5 | # this will run the api/service.py file with the instantiated app FastAPI
6 | uvicorn_server() {
7 | uvicorn api.service:app --host 0.0.0.0 --port 9000 --log-level debug --reload --reload-dir api/ "$@"
8 | }
9 |
10 | uvicorn_server_production() {
11 | pipenv run uvicorn api.service:app --host 0.0.0.0 --port 9000 --lifespan on
12 | }
13 |
14 | export -f uvicorn_server
15 | export -f uvicorn_server_production
16 |
17 | echo -en "\033[92m
18 | The following commands are available:
19 | uvicorn_server
20 | Run the Uvicorn Server
21 | \033[0m
22 | "
23 |
24 | if [ "${DEV}" = 1 ]; then
25 | pipenv shell
26 | else
27 | uvicorn_server_production
28 | fi
29 |
--------------------------------------------------------------------------------
/src/api-service/docker-shell.bat:
--------------------------------------------------------------------------------
1 | REM Define some environment variables
2 | SET IMAGE_NAME="capy-app-api-service"
3 |
4 | REM Build the image based on the Dockerfile
5 | docker build -t %IMAGE_NAME% -f Dockerfile .
6 |
7 | REM Run the container
8 | cd ..
9 | docker run --rm --name %IMAGE_NAME% -ti ^
10 | --mount type=bind,source="%cd%\api-service",target=/app ^
11 | --mount type=bind,source="%cd%\..\..\local_model",target=/local_model ^
12 | --mount type=bind,source="%cd%\..\..\secrets",target=/secrets ^
13 | -p 9000:9000 -e DEV=1 %IMAGE_NAME%
--------------------------------------------------------------------------------
/src/api-service/docker-shell.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # exit immediately if a command exits with a non-zero status
4 | set -e
5 |
6 | # Define some environment variables
7 | export IMAGE_NAME="capy-app-api-service"
8 | export BASE_DIR=$(pwd)
9 | export SECRETS_DIR=$(pwd)/../../../secrets/
10 | export PERSISTENT_DIR=$(pwd)/../../../local_model/
11 | export GCS_BUCKET_NAME="capy-app-models"
12 |
13 | # Build the image based on the Dockerfile
14 | docker build -t $IMAGE_NAME -f Dockerfile .
15 | # M1/2 chip macs use this line
16 | # docker build -t $IMAGE_NAME --platform=linux/arm64/v8 -f Dockerfile .
17 |
18 | # Run the container
19 | docker run --rm --name $IMAGE_NAME -ti \
20 | -v "$BASE_DIR":/app \
21 | -v "$SECRETS_DIR":/secrets \
22 | -v "$PERSISTENT_DIR":/local_model \
23 | -p 9000:9000 \
24 | -e DEV=1 \
25 | -e GOOGLE_APPLICATION_CREDENTIALS=/secrets/capy-key.json \
26 | -e GCS_BUCKET_NAME=$GCS_BUCKET_NAME \
27 | $IMAGE_NAME
--------------------------------------------------------------------------------
/src/data-collector/.gitkeep:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/src/data-collector/.gitkeep
--------------------------------------------------------------------------------
/src/data-processor/Dockerfile:
--------------------------------------------------------------------------------
1 | # Use the official Debian-hosted Python image
2 | FROM python:3.9-slim-buster
3 |
4 | ARG DEBIAN_PACKAGES="build-essential git curl wget unzip gzip"
5 |
6 | # Prevent apt from showing prompts
7 | ENV DEBIAN_FRONTEND=noninteractive
8 |
9 | # Python wants UTF-8 locale
10 | ENV LANG=C.UTF-8
11 |
12 | # Tell pipenv where the shell is.
13 | # This allows us to use "pipenv shell" as a container entry point.
14 | ENV PYENV_SHELL=/bin/bash
15 |
16 | # Tell Python to disable buffering so we don't lose any logs.
17 | ENV PYTHONUNBUFFERED=1
18 |
19 | #ENV GOOGLE_APPLICATION_CREDENTIALS=secrets/data-pipeline.json
20 |
21 | # Ensure we have an up to date baseline, install dependencies
22 | RUN set -ex; \
23 | for i in $(seq 1 8); do mkdir -p "/usr/share/man/man${i}"; done && \
24 | apt-get update && \
25 | apt-get upgrade -y && \
26 | apt-get install -y --no-install-recommends $DEBIAN_PACKAGES && \
27 | apt-get install -y --no-install-recommends software-properties-common apt-transport-https ca-certificates gnupg2 gnupg-agent curl openssh-client && \
28 | curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - && \
29 | echo "deb [signed-by=/usr/share/keyrings/cloud.google.gpg] https://packages.cloud.google.com/apt cloud-sdk main" | tee -a /etc/apt/sources.list.d/google-cloud-sdk.list && \
30 | curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key --keyring /usr/share/keyrings/cloud.google.gpg add - && \
31 | apt-get update && \
32 | apt-get install -y --no-install-recommends google-cloud-sdk && \
33 | apt-get clean && \
34 | rm -rf /var/lib/apt/lists/* && \
35 | pip install --no-cache-dir --upgrade pip && \
36 | pip install pipenv && \
37 | useradd -ms /bin/bash app -d /home/app -u 1000 -p "$(openssl passwd -1 Passw0rd)" && \
38 | mkdir -p /app && \
39 | chown app:app /app
40 |
41 | # Switch to the new user
42 | USER app
43 | WORKDIR /app
44 |
45 | # # # Set the working directory to /preprocessing
46 | # RUN pipenv lock
47 |
48 | # # Add the Pipfile, Pipfile.lock, and python code into the container
49 | # ADD . /
50 |
51 | # RUN pipenv sync
52 |
53 | # Install python packages
54 | ADD --chown=app:app Pipfile Pipfile.lock /app/
55 |
56 | RUN pipenv sync
57 |
58 | # Make the entrypoint.sh script executable
59 | # RUN chmod +x /bin/bash/entrypoint.sh
60 | # Add the rest of the source code. This is done last so we don't invalidate all
61 | # layers when we change a line of code.
62 | ADD --chown=app:app . /app
63 |
64 | # Make the entrypoint.sh script executable
65 | # RUN chmod +x /bin/bash/entrypoint.sh
66 |
67 | # # Set the entrypoint
68 | # ENTRYPOINT ["/bin/bash"]
69 |
70 | # # Specify the entrypoint script as the CMD
71 | # CMD ["entrypoint.sh"]
72 | # CMD ["-c", "pipenv shell"]
73 | ENTRYPOINT ["/bin/bash","./entrypoint.sh"]
74 |
--------------------------------------------------------------------------------
/src/data-processor/Pipfile:
--------------------------------------------------------------------------------
1 | [[source]]
2 | name = "pypi"
3 | url = "https://pypi.org/simple"
4 | verify_ssl = true
5 |
6 | [dev-packages]
7 |
8 | [packages]
9 | opencv-python = "*"
10 | google-cloud-aiplatform = "*"
11 | pandas = "*"
12 | numpy = "*"
13 | tqdm = "*"
14 | tensorflow = "*"
15 | google-cloud-storage = "*"
16 | pyarrow = "*"
17 | mediapipe = "*"
18 | glob = "*"
19 |
20 | [requires]
21 | python_version = "3.9"
--------------------------------------------------------------------------------
/src/data-processor/cli.py:
--------------------------------------------------------------------------------
1 | import mediapipe as mp
2 | import numpy as np
3 | import pandas as pd
4 | import json
5 | import cv2
6 | from google.cloud import storage
7 | import os
8 | import glob
9 | import tqdm
10 | import argparse
11 |
12 |
13 | def transform_video(video_file):
14 | cap = cv2.VideoCapture(video_file)
15 | mp_holistic = mp.solutions.holistic
16 | holistic = mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.1)
17 |
18 | video_df = []
19 | frame_no=0
20 |
21 | while cap.isOpened():
22 | print('\r',frame_no,end='')
23 | success, image = cap.read()
24 |
25 | if not success: break
26 | image = cv2.resize(image, dsize=None, fx=4, fy=4)
27 | height,width,_ = image.shape
28 |
29 | #print(image.shape)
30 | image.flags.writeable = False
31 | image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
32 | result = holistic.process(image)
33 |
34 | data = []
35 | fy = height/width
36 |
37 | if result.face_landmarks is None:
38 | for i in range(468): #
39 | data.append({
40 | 'type' : 'face',
41 | 'landmark_index' : i,
42 | 'x' : np.nan,
43 | 'y' : np.nan,
44 | 'z' : np.nan,
45 | })
46 | else:
47 | assert(len(result.face_landmarks.landmark)==468)
48 | for i in range(468): #
49 | xyz = result.face_landmarks.landmark[i]
50 | data.append({
51 | 'type' : 'face',
52 | 'landmark_index' : i,
53 | 'x' : xyz.x,
54 | 'y' : xyz.y *fy,
55 | 'z' : xyz.z,
56 | })
57 |
58 | if result.left_hand_landmarks is None:
59 | for i in range(21): #
60 | data.append({
61 | 'type': 'left_hand',
62 | 'landmark_index': i,
63 | 'x': np.nan,
64 | 'y': np.nan,
65 | 'z': np.nan,
66 | })
67 | else:
68 | assert (len(result.left_hand_landmarks.landmark) == 21)
69 | for i in range(21): #
70 | xyz = result.left_hand_landmarks.landmark[i]
71 | data.append({
72 | 'type': 'left_hand',
73 | 'landmark_index': i,
74 | 'x': xyz.x,
75 | 'y': xyz.y *fy,
76 | 'z': xyz.z,
77 | })
78 |
79 | #if result.pose_world_landmarks is None:
80 | if result.pose_landmarks is None:
81 | for i in range(33): #
82 | data.append({
83 | 'type': 'pose',
84 | 'landmark_index': i,
85 | 'x': np.nan,
86 | 'y': np.nan,
87 | 'z': np.nan,
88 | })
89 | else:
90 | assert (len(result.pose_landmarks.landmark) == 33)
91 | for i in range(33): #
92 | xyz = result.pose_landmarks.landmark[i]
93 | data.append({
94 | 'type': 'pose',
95 | 'landmark_index': i,
96 | 'x': xyz.x,
97 | 'y': xyz.y *fy,
98 | 'z': xyz.z,
99 | })
100 |
101 | if result.right_hand_landmarks is None:
102 | for i in range(21): #
103 | data.append({
104 | 'type': 'right_hand',
105 | 'landmark_index': i,
106 | 'x': np.nan,
107 | 'y': np.nan,
108 | 'z': np.nan,
109 | })
110 | else:
111 | assert (len(result.right_hand_landmarks.landmark) == 21)
112 | for i in range(21): #
113 | xyz = result.right_hand_landmarks.landmark[i]
114 | data.append({
115 | 'type': 'right_hand',
116 | 'landmark_index': i,
117 | 'x': xyz.x,
118 | 'y': xyz.y *fy,
119 | 'z': xyz.z,
120 | })
121 | zz=0
122 |
123 | frame_df = pd.DataFrame(data)
124 | frame_df.loc[:,'frame'] = frame_no
125 | frame_df.loc[:, 'height'] = height/width
126 | frame_df.loc[:, 'width'] = width/width
127 | #print(frame_df)
128 | video_df.append(frame_df)
129 | frame_no +=1
130 |
131 | video_df = pd.concat(video_df)
132 | holistic.close()
133 | return video_df
134 |
135 | def clean_format(video_df):
136 | #print(video_df)
137 | video_df['row_id'] = video_df['frame'].astype('str')+'-'+video_df['type']+'-'+video_df['landmark_index'].astype('str')
138 | video_df.drop(['height', 'width'], axis=1, inplace=True)
139 | return video_df
140 |
141 |
142 |
143 | def main(args):
144 |
145 | print("========Processing Data=========")
146 |
147 | client = storage.Client()
148 | bucket = client.bucket('capy-data')
149 | # videofile_dir = [file.name for file in bucket.list_blobs(prefix="data/WLASL-data/wlasl_videos/") if '.mp4' in file.name]
150 | # videofiles = [os.path.join('gs://capy-data',videofile) for videofile in videofile_dir if '.mp4' in videofile]
151 | # video_filenames = videofiles
152 |
153 | item = args.file
154 |
155 | if not os.path.exists('wlasl_deploy_video'):
156 | os.makedirs('wlasl_deploy_video')
157 | if not os.path.exists('wlasl_deploy_parquet'):
158 | os.makedirs('wlasl_deploy_parquet')
159 |
160 | bucket_train_filename = f'data/WLASL-data/wlasl_videos/{item}.mp4'
161 | blob = bucket.blob(bucket_train_filename)
162 | train_filename = f'./wlasl_deploy_video/{item}.mp4'
163 | blob.download_to_filename(train_filename)
164 | print('transform_video')
165 | train_video_df = transform_video(train_filename)
166 | print('clean_format')
167 | cleaned_train_vdf = clean_format(train_video_df)
168 | print('to_parquet')
169 | cleaned_train_vdf.to_parquet(f'./wlasl_deploy_parquet/{item}.parquet')
170 |
171 | gcs_new_prefix = 'data/WLASL-data/wlasl_parquet_deploy/'
172 |
173 | storage_client = storage.Client.from_service_account_json("../secrets/model-deployment.json")
174 | bucket = storage_client.get_bucket("capy-data")
175 |
176 | print('upload')
177 | for input_file in tqdm.tqdm(glob.glob(os.path.join("./wlasl_deploy_parquet", '*.parquet'))):
178 | print(input_file)
179 | gcs_object_name = os.path.join(gcs_new_prefix, os.path.basename(input_file))
180 | blob = bucket.blob(gcs_object_name)
181 | blob.upload_from_filename(input_file)
182 |
183 |
184 | # blob_df = bucket.blob("data/WLASL-data/wlasl_train_new.csv")
185 | # train_df = pd.read_csv(blob_df.open(), dtype='str')
186 | # train_videos_id = list(train_df['sequence_id'])
187 |
188 | # blob_df = bucket.blob("data/WLASL-data/wlasl_test_new.csv")
189 | # test_df = pd.read_csv(blob_df.open(), dtype='str')
190 | # test_videos_id = list(test_df['sequence_id'])
191 |
192 | # if not os.path.exists('wlasl_train_video'):
193 | # os.makedirs('wlasl_train_video')
194 | # if not os.path.exists('wlasl_train_parquet'):
195 | # os.makedirs('wlasl_train_parquet')
196 | # for item in train_videos_id:
197 | # print(item)
198 | # bucket_train_filename = f'data/WLASL-data/wlasl_videos/{item}.mp4'
199 | # blob = bucket.blob(bucket_train_filename)
200 | # train_filename = f'./wlasl_train_video/{item}.mp4'
201 | # # blob.download_to_filename(train_filename)
202 | # print(1)
203 | # train_video_df = transform_video(train_filename)
204 | # print(2)
205 | # cleaned_train_vdf = clean_format(train_video_df)
206 | # print(3)
207 | # cleaned_train_vdf.to_parquet(f'./wlasl_train_parquet/{item}_olivia.parquet')
208 | # print("Success 1")
209 | # break
210 |
211 | # if not os.path.exists('wlasl_test_video'):
212 | # os.makedirs('wlasl_test_video')
213 | # if not os.path.exists('wlasl_test_parquet'):
214 | # os.makedirs('wlasl_test_parquet')
215 | # for item in test_videos_id:
216 | # print(item)
217 | # bucket_test_filename = f'data/WLASL-data/wlasl_videos/{item}.mp4'
218 | # blob = bucket.blob(bucket_test_filename)
219 | # test_filename = f'./wlasl_test_video/{item}.mp4'
220 | # blob.download_to_filename(test_filename)
221 | # test_video_df = transform_video(test_filename)
222 | # cleaned_test_vdf = clean_format(test_video_df)
223 | # cleaned_test_vdf.to_parquet(f'./wlasl_test_parquet/{item}_olivia.parquet')
224 | # print("Success 2")
225 | # break
226 |
227 | # # gcs_bucket_name = 'capy-data'
228 | # gcs_train_prefix = 'data/WLASL-data/wlasl_parquet_train/'
229 | # gcs_test_prefix = 'data/WLASL-data/wlasl_parquet_test/'
230 |
231 | # storage_client = storage.Client.from_service_account_json("./psychic-bedrock-398320-e41cc1b33701.json")
232 | # bucket = storage_client.get_bucket("capy-data")
233 |
234 | # print("========Connect to bucket=========")
235 |
236 | # for input_file in tqdm.tqdm(glob.glob(os.path.join("./wlasl_train_parquet", '*_olivia.parquet'))):
237 | # print(input_file)
238 | # gcs_object_name = os.path.join(gcs_train_prefix, os.path.basename(input_file))
239 | # blob = bucket.blob(gcs_object_name)
240 | # blob.upload_from_filename(input_file)
241 | # print("Success 3")
242 | # break
243 |
244 | # for input_file in tqdm.tqdm(glob.glob(os.path.join("./wlasl_test_parquet", '*_olivia.parquet'))):
245 | # print(input_file)
246 | # gcs_object_name = os.path.join(gcs_test_prefix, os.path.basename(input_file))
247 | # blob = bucket.blob(gcs_object_name)
248 | # blob.upload_from_filename(input_file)
249 | # print("Success 4")
250 | # break
251 |
252 | # def main_():
253 | # print("========Processing Data=========")
254 | # print("========Connect to bucket=========")
255 | # print("========Done=========")
256 |
257 |
258 | if __name__ == "__main__":
259 | parser = argparse.ArgumentParser(description="Data Collector CLI")
260 |
261 | parser.add_argument(
262 | "-f",
263 | "--file",
264 | default='70349',
265 | help="Video file name",
266 | )
267 |
268 | args = parser.parse_args()
269 |
270 | main(args)
--------------------------------------------------------------------------------
/src/data-processor/docker-shell.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # exit immediately if a command exits with a non-zero status
4 | set -e
5 |
6 | # Define some environment variables
7 | export IMAGE_NAME="capy-data-preprocess"
8 | export BASE_DIR=$(pwd)
9 | export SECRETS_DIR=$(pwd)/../../../secrets/ # make sure it matches your directory of secrets
10 | export GCS_BUCKET_URI="gs://capy-data"
11 | export GCP_PROJECT="psychic-bedrock-398320"
12 |
13 | # Build the image based on the Dockerfile
14 | # docker build -t $IMAGE_NAME -f Dockerfile .
15 | # M1/2 chip macs use this line
16 | docker build -t $IMAGE_NAME --platform=linux/arm64/v8 -f Dockerfile .
17 |
18 | # Run Container
19 | docker run --rm --name $IMAGE_NAME -ti \
20 | -v "$BASE_DIR":/app \
21 | -v "$SECRETS_DIR":/secrets \
22 | -e GOOGLE_APPLICATION_CREDENTIALS=/secrets/model-training.json \
23 | -e GCP_PROJECT=$GCP_PROJECT \
24 | -e GCS_BUCKET_URI=$GCS_BUCKET_URI \
25 | $IMAGE_NAME
--------------------------------------------------------------------------------
/src/data-processor/entrypoint.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | echo "Preprocess container is running!!!"
4 | # Activate the Pipenv virtual environment and install dependencies
5 | # pipenv run pip install -r requirements.txt
6 |
7 | # pipenv run pip install --force-reinstall opencv-python-headless
8 |
9 | # Authenticate gcloud using service account
10 | # gcloud auth activate-service-account --key-file=secrets/ml-workflow.json
11 |
12 | # Set GCP Project Details
13 | gcloud config set project $GCP_PROJECT
14 |
15 | # Run the preprocess.py script
16 | # pipenv run python model.py
17 | # pipenv run bash package-trainer.sh
18 |
19 | # pipenv run python cli.py
20 |
21 | pipenv shell
22 |
--------------------------------------------------------------------------------
/src/data-processor/requirements.txt:
--------------------------------------------------------------------------------
1 | opencv-python
2 | mediapipe
3 | google-cloud-aiplatform
4 | pandas
5 | numpy
6 | tqdm
7 | google-cloud-storage
--------------------------------------------------------------------------------
/src/data-processor/wlasl_deploy_video/60578.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/src/data-processor/wlasl_deploy_video/60578.mp4
--------------------------------------------------------------------------------
/src/data-processor/wlasl_deploy_video/70349.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/src/data-processor/wlasl_deploy_video/70349.mp4
--------------------------------------------------------------------------------
/src/deployment/.gitkeep:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/src/deployment/.gitkeep
--------------------------------------------------------------------------------
/src/frontend/.env.development:
--------------------------------------------------------------------------------
1 | REACT_APP_BASE_API_URL=http://localhost:9000
2 | CHOKIDAR_USEPOLLING=true
--------------------------------------------------------------------------------
/src/frontend/.env.production:
--------------------------------------------------------------------------------
1 | REACT_APP_BASE_API_URL=/api
--------------------------------------------------------------------------------
/src/frontend/.gitignore:
--------------------------------------------------------------------------------
1 | node_modules/
2 |
3 | # misc
4 | .DS_Store
5 | env.local
6 | .eslintcache
--------------------------------------------------------------------------------
/src/frontend/.gitkeep:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/src/frontend/.gitkeep
--------------------------------------------------------------------------------
/src/frontend/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM node:14.5.0-alpine as build
2 |
3 | WORKDIR /app
4 | ENV PATH /app/node_modules/.bin:$PATH
5 | ENV PUBLIC_URL /
6 |
7 | COPY package.json ./
8 | COPY yarn.lock ./
9 | RUN yarn install
10 |
11 | COPY . ./
12 | RUN yarn run build
13 |
14 | # Nginx wrapper to serve static files
15 | FROM nginx:stable
16 | COPY --from=build /app/build /usr/share/nginx/html
17 | EXPOSE 80
18 | CMD ["nginx", "-g", "daemon off;"]
--------------------------------------------------------------------------------
/src/frontend/Dockerfile.dev:
--------------------------------------------------------------------------------
1 | FROM node:14.9.0-buster-slim
2 |
3 | # Ensure we don't run the app as root.
4 | RUN set -ex; \
5 | apt-get update && \
6 | apt-get upgrade -y && \
7 | apt-get install -y --no-install-recommends openssl && \
8 | useradd -ms /bin/bash app -d /home/app -G sudo -u 2000 -p "$(openssl passwd -1 Passw0rd)" && \
9 | mkdir -p /app && \
10 | chown app:app /app
11 |
12 | EXPOSE 3000
13 |
14 | # Switch to the new user
15 | USER app
16 | WORKDIR /app
17 |
18 | ENTRYPOINT ["/bin/bash"]
--------------------------------------------------------------------------------
/src/frontend/docker-shell.bat:
--------------------------------------------------------------------------------
1 | SET IMAGE_NAME=capy-app-frontend-react
2 | SET BASE_DIR=%cd%
3 |
4 | docker build -t %IMAGE_NAME% -f Dockerfile.dev .
5 | docker run --rm --name %IMAGE_NAME% -ti --mount type=bind,source="%cd%",target=/app -p 3000:3000 %IMAGE_NAME%
--------------------------------------------------------------------------------
/src/frontend/docker-shell.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | set -e
4 |
5 | export IMAGE_NAME="capy-app-frontend-react"
6 |
7 | docker build -t $IMAGE_NAME -f Dockerfile.dev .
8 | docker run --rm --name $IMAGE_NAME -ti -v "$(pwd)/:/app/" -p 3000:3000 $IMAGE_NAME
--------------------------------------------------------------------------------
/src/frontend/package.json:
--------------------------------------------------------------------------------
1 | {
2 | "name": "frontend1",
3 | "version": "0.1.0",
4 | "private": true,
5 | "dependencies": {
6 | "@material-ui/core": "^4.11.3",
7 | "@material-ui/icons": "^4.11.2",
8 | "@material-ui/lab": "^4.0.0-alpha.57",
9 | "@testing-library/jest-dom": "^5.11.4",
10 | "@testing-library/react": "^11.1.0",
11 | "@testing-library/user-event": "^12.1.10",
12 | "axios": "^0.21.1",
13 | "react": "^17.0.1",
14 | "react-dom": "^17.0.1",
15 | "react-number-format": "^4.7.3",
16 | "react-router-dom": "^5.2.0",
17 | "react-scripts": "^4.0.1",
18 | "web-vitals": "^0.2.4"
19 | },
20 | "scripts": {
21 | "start": "react-scripts start",
22 | "build": "react-scripts build",
23 | "test": "react-scripts test",
24 | "eject": "react-scripts eject"
25 | },
26 | "eslintConfig": {
27 | "extends": [
28 | "react-app",
29 | "react-app/jest"
30 | ]
31 | },
32 | "browserslist": {
33 | "production": [
34 | ">0.2%",
35 | "not dead",
36 | "not op_mini all"
37 | ],
38 | "development": [
39 | "last 1 chrome version",
40 | "last 1 firefox version",
41 | "last 1 safari version"
42 | ]
43 | },
44 | "resolutions": {
45 | "react-scripts/eslint-webpack-plugin": "2.3.0"
46 | }
47 | }
48 |
--------------------------------------------------------------------------------
/src/frontend/public/favicon.ico:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cqzhao918/AI_ASL_Translator/429a795a6b587d489a55a0451ae270040aa079e4/src/frontend/public/favicon.ico
--------------------------------------------------------------------------------
/src/frontend/public/index.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
13 |
14 |
15 |
24 | ✋American Sign Language Translator
25 |
26 |
27 |
28 |
29 |
30 |
40 |
41 |
42 |
--------------------------------------------------------------------------------
/src/frontend/public/manifest.json:
--------------------------------------------------------------------------------
1 | {
2 | "short_name": "React App",
3 | "name": "Create React App Sample",
4 | "icons": [
5 | {
6 | "src": "favicon.ico",
7 | "sizes": "64x64 32x32 24x24 16x16",
8 | "type": "image/x-icon"
9 | }
10 | ],
11 | "start_url": ".",
12 | "display": "standalone",
13 | "theme_color": "#000000",
14 | "background_color": "#ffffff"
15 | }
16 |
--------------------------------------------------------------------------------
/src/frontend/src/app/App.css:
--------------------------------------------------------------------------------
1 | .App {
2 | text-align: center;
3 | }
4 |
5 | .App-logo {
6 | height: 40vmin;
7 | pointer-events: none;
8 | }
9 |
10 | @media (prefers-reduced-motion: no-preference) {
11 | .App-logo {
12 | animation: App-logo-spin infinite 20s linear;
13 | }
14 | }
15 |
16 | .App-header {
17 | background-color: #10a480;
18 | min-height: 100vh;
19 | display: flex;
20 | flex-direction: column;
21 | align-items: center;
22 | justify-content: center;
23 | font-size: calc(10px + 2vmin);
24 | color: white;
25 | }
26 |
27 | .App-link {
28 | color: #61dafb;
29 | }
30 |
31 | @keyframes App-logo-spin {
32 | from {
33 | transform: rotate(0deg);
34 | }
35 | to {
36 | transform: rotate(360deg);
37 | }
38 | }
39 |
40 | pre {
41 | font-size: inherit;
42 | font-family: inherit;
43 | line-height: 1.66667;
44 | padding: 8px;
45 | background-color: #dedede;
46 | }
47 |
48 |
--------------------------------------------------------------------------------
/src/frontend/src/app/App.js:
--------------------------------------------------------------------------------
1 | import React from 'react';
2 | import { BrowserRouter as Router } from 'react-router-dom';
3 | import {
4 | ThemeProvider,
5 | CssBaseline
6 | } from '@material-ui/core';
7 | import './App.css';
8 | import Theme from "./Theme";
9 | import AppRoutes from "./AppRoutes";
10 | import Content from "../common/Content";
11 | import Header from "../common/Header";
12 | import Footer from "../common/Footer";
13 | import DataService from '../services/DataService';
14 | // import VideoUpload from './VideoUpload';
15 |
16 |
17 | const App = (props) => {
18 |
19 | console.log("================================== App ======================================");
20 |
21 | // Init Data Service
22 | DataService.Init();
23 |
24 | // Build App
25 | let view = (
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 | )
39 |
40 | // Return View
41 | return view
42 | }
43 |
44 | export default App;
45 |
--------------------------------------------------------------------------------
/src/frontend/src/app/AppRoutes.js:
--------------------------------------------------------------------------------
1 | import React from "react";
2 | import { Route, Switch, Redirect } from 'react-router-dom';
3 | import Home from "../components/Home";
4 | import Error404 from '../components/Error/404';
5 | import Currentmodel from '../components/Currentmodel';
6 |
7 | const AppRouter = (props) => {
8 |
9 | console.log("================================== AppRouter ======================================");
10 |
11 | return (
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 | );
20 | }
21 |
22 | export default AppRouter;
--------------------------------------------------------------------------------
/src/frontend/src/app/Theme.js:
--------------------------------------------------------------------------------
1 | import {
2 | createMuiTheme,
3 | } from '@material-ui/core';
4 |
5 | const Theme = createMuiTheme({
6 | palette: {
7 | type: 'light',
8 | primary: {
9 | // light: will be calculated from palette.primary.main,
10 | main: '#10a480',
11 | // dark: will be calculated from palette.primary.main,
12 | // contrastText: will be calculated to contrast with palette.primary.main
13 | },
14 | secondary: {
15 | light: '#0066ff',
16 | main: '#A41034',
17 | // dark: will be calculated from palette.secondary.main,
18 | contrastText: '#ffffff',
19 | },
20 | // error: will use the default color
21 | info: {
22 | light: '#AF5454',
23 | main: '#AF5454',
24 | // dark: will be calculated from palette.secondary.main,
25 | contrastText: '#ffffff',
26 | },
27 | },
28 | typography: {
29 | useNextVariants: true,
30 | h6: {
31 | color: "#15d2a4",
32 | fontSize: "1.1rem",
33 | fontFamily: "Roboto, Helvetica, Arial, sans-serif",
34 | fontWeight: 800
35 | },
36 | h5: {
37 | color: "#18e8b6",
38 | fontSize: "1.2rem",
39 | fontFamily: "Roboto, Helvetica, Arial, sans-serif",
40 | fontWeight: 800
41 | },
42 | h4: {
43 | color: "#15d2a4",
44 | fontSize: "1.8rem",
45 | fontFamily: "Roboto, Helvetica, Arial, sans-serif",
46 | fontWeight: 900
47 | },
48 | },
49 | overrides: {
50 | MuiOutlinedInput: {
51 | root: {
52 | backgroundColor: "#ffffff",
53 | position: "relative",
54 | borderRadius: "4px",
55 | }
56 | },
57 | }
58 | });
59 |
60 | export default Theme;
--------------------------------------------------------------------------------
/src/frontend/src/app/VideoUpload.js:
--------------------------------------------------------------------------------
1 | import React from "react";
2 | import "./styles.css";
3 |
4 | import Card from "@material-ui/core/Card";
5 | import Grid from "@material-ui/core/Grid";
6 | import Input from "@material-ui/core/Input";
7 | import Typography from "@material-ui/core/Typography";
8 |
9 | import LocalForage from "localforage/dist/localforage.js";
10 | const videoStore = LocalForage.createInstance({ name: "VideoStore" });
11 |
12 | export default function App() {
13 | setVideo();
14 |
15 | return (
16 |
17 |
18 |
19 | Video Upload
20 |
21 |
22 |
23 | Save the video to indexDB, load from indexDB, then play.
24 |
25 |
26 |
27 | {
33 | let file = document.getElementById("input").files[0];
34 | if (file instanceof File) {
35 | file = new Blob([file], { type: file.type });
36 | videoStore
37 | .setItem("video", file)
38 | .then(() => {
39 | setVideo();
40 | })
41 | .catch(err => console.error("Unable to store video", err));
42 | }
43 | }}
44 | />
45 |
46 |
47 |
48 |
49 |
50 |
51 | );
52 | }
53 |
54 | function setVideo() {
55 | videoStore
56 | .getItem("video")
57 | .then(val => {
58 | if (val) {
59 | let vid = document.createElement("video");
60 | vid.src = URL.createObjectURL(val);
61 | vid.muted = true;
62 | vid.style = { maxWidth: "400px", maxHeight: "400px" };
63 | vid.autoPlay = true;
64 | vid.controls = true;
65 | vid.playsInline = true;
66 |
67 | // creating and adding the element appears to be
68 | // the issue... When just setting the source of
69 | // an element it seems to work for a while. But
70 | // if left alone, the video will eventually stop
71 | // playing or allowing time scrubbing/seeking.
72 | let elem = document.getElementById("video");
73 | while (elem.children.length > 0) {
74 | if (elem.firstChild.src) {
75 | URL.revokeObjectURL(elem.firstChild.src);
76 | }
77 | elem.removeChild(elem.firstChild);
78 | }
79 | elem.appendChild(vid);
80 | }
81 | })
82 | .catch(err => {
83 | console.error("Unable to retrieve video", err);
84 | });
85 | }
86 |
--------------------------------------------------------------------------------
/src/frontend/src/app/index.js:
--------------------------------------------------------------------------------
1 | import React from "react";
2 | import ReactDOM from "react-dom";
3 |
4 | import App from "./App";
5 |
6 | const rootElement = document.getElementById("root");
7 | ReactDOM.render(, rootElement);
--------------------------------------------------------------------------------
/src/frontend/src/app/styles.css:
--------------------------------------------------------------------------------
1 | .App {
2 | font-family: sans-serif;
3 | text-align: center;
4 | }
5 |
--------------------------------------------------------------------------------
/src/frontend/src/common/Content/index.js:
--------------------------------------------------------------------------------
1 | import React from 'react';
2 | import { withStyles } from '@material-ui/core';
3 | import styles from './styles';
4 |
5 | const Content = props => {
6 | const classes = props.classes;
7 | const children = props.children;
8 |
9 | return (
10 |