├── models ├── asset │ └── 在此放置你的模型.txt ├── decoder.yaml ├── config │ ├── decoder.yaml │ ├── dvae.yaml │ ├── path.yaml │ ├── gpt.yaml │ └── vocos.yaml ├── dvae.yaml ├── path.yaml ├── gpt.yaml └── vocos.yaml ├── ChatTTS ├── __init__.py ├── __pycache__ │ ├── core.cpython-39.pyc │ └── __init__.cpython-39.pyc ├── infer │ ├── __pycache__ │ │ └── api.cpython-39.pyc │ └── api.py ├── model │ ├── __pycache__ │ │ ├── gpt.cpython-39.pyc │ │ └── dvae.cpython-39.pyc │ ├── dvae.py │ └── gpt.py ├── utils │ ├── __pycache__ │ │ ├── io_utils.cpython-39.pyc │ │ ├── gpu_utils.cpython-39.pyc │ │ └── infer_utils.cpython-39.pyc │ ├── io_utils.py │ ├── gpu_utils.py │ └── infer_utils.py ├── experimental │ └── llm.py └── core.py ├── screenshot.png ├── .gitattributes ├── outputs ├── 20240601005412 - 4077.wav └── 20240601010526 - 3921.wav ├── requirements.txt ├── README.md ├── utils.py ├── run_webui.py ├── LICENSE └── sampled_speaker ├── jidong.csv ├── suiji.csv ├── dandan.csv ├── niuniu.csv └── wenrou_nansheng.csv /models/asset/在此放置你的模型.txt: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /ChatTTS/__init__.py: -------------------------------------------------------------------------------- 1 | from .core import Chat -------------------------------------------------------------------------------- /screenshot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/craii/ChatTTS_WebUI/HEAD/screenshot.png -------------------------------------------------------------------------------- /.gitattributes: -------------------------------------------------------------------------------- 1 | # Auto detect text files and perform LF normalization 2 | * text=auto 3 | -------------------------------------------------------------------------------- /outputs/20240601005412 - 4077.wav: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/craii/ChatTTS_WebUI/HEAD/outputs/20240601005412 - 4077.wav -------------------------------------------------------------------------------- /outputs/20240601010526 - 3921.wav: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/craii/ChatTTS_WebUI/HEAD/outputs/20240601010526 - 3921.wav -------------------------------------------------------------------------------- /ChatTTS/__pycache__/core.cpython-39.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/craii/ChatTTS_WebUI/HEAD/ChatTTS/__pycache__/core.cpython-39.pyc -------------------------------------------------------------------------------- /ChatTTS/__pycache__/__init__.cpython-39.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/craii/ChatTTS_WebUI/HEAD/ChatTTS/__pycache__/__init__.cpython-39.pyc -------------------------------------------------------------------------------- /ChatTTS/infer/__pycache__/api.cpython-39.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/craii/ChatTTS_WebUI/HEAD/ChatTTS/infer/__pycache__/api.cpython-39.pyc -------------------------------------------------------------------------------- /ChatTTS/model/__pycache__/gpt.cpython-39.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/craii/ChatTTS_WebUI/HEAD/ChatTTS/model/__pycache__/gpt.cpython-39.pyc -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | omegaconf~=2.3.0 2 | torch~=2.0 3 | tqdm 4 | einops 5 | vector_quantize_pytorch 6 | transformers~=4.41.1 7 | vocos 8 | pandas -------------------------------------------------------------------------------- /ChatTTS/model/__pycache__/dvae.cpython-39.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/craii/ChatTTS_WebUI/HEAD/ChatTTS/model/__pycache__/dvae.cpython-39.pyc -------------------------------------------------------------------------------- /ChatTTS/utils/__pycache__/io_utils.cpython-39.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/craii/ChatTTS_WebUI/HEAD/ChatTTS/utils/__pycache__/io_utils.cpython-39.pyc -------------------------------------------------------------------------------- /ChatTTS/utils/__pycache__/gpu_utils.cpython-39.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/craii/ChatTTS_WebUI/HEAD/ChatTTS/utils/__pycache__/gpu_utils.cpython-39.pyc -------------------------------------------------------------------------------- /ChatTTS/utils/__pycache__/infer_utils.cpython-39.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/craii/ChatTTS_WebUI/HEAD/ChatTTS/utils/__pycache__/infer_utils.cpython-39.pyc -------------------------------------------------------------------------------- /models/decoder.yaml: -------------------------------------------------------------------------------- 1 | 2 | 3 | dim: 384 4 | 5 | decoder_config: 6 | idim: ${dim} 7 | odim: ${dim} 8 | hidden: 512 9 | n_layer: 12 10 | bn_dim: 128 11 | 12 | vq_config: null 13 | -------------------------------------------------------------------------------- /models/config/decoder.yaml: -------------------------------------------------------------------------------- 1 | 2 | 3 | dim: 384 4 | 5 | decoder_config: 6 | idim: ${dim} 7 | odim: ${dim} 8 | hidden: 512 9 | n_layer: 12 10 | bn_dim: 128 11 | 12 | vq_config: null 13 | -------------------------------------------------------------------------------- /models/dvae.yaml: -------------------------------------------------------------------------------- 1 | 2 | 3 | dim: 512 4 | decoder_config: 5 | idim: ${dim} 6 | odim: ${dim} 7 | n_layer: 12 8 | bn_dim: 128 9 | 10 | vq_config: 11 | dim: 1024 12 | levels: [5,5,5,5] 13 | G: 2 14 | R: 2 15 | -------------------------------------------------------------------------------- /models/config/dvae.yaml: -------------------------------------------------------------------------------- 1 | 2 | 3 | dim: 512 4 | decoder_config: 5 | idim: ${dim} 6 | odim: ${dim} 7 | n_layer: 12 8 | bn_dim: 128 9 | 10 | vq_config: 11 | dim: 1024 12 | levels: [5,5,5,5] 13 | G: 2 14 | R: 2 15 | -------------------------------------------------------------------------------- /models/path.yaml: -------------------------------------------------------------------------------- 1 | 2 | 3 | vocos_config_path: config/vocos.yaml 4 | vocos_ckpt_path: asset/Vocos.pt 5 | dvae_config_path: config/dvae.yaml 6 | dvae_ckpt_path: asset/DVAE.pt 7 | gpt_config_path: config/gpt.yaml 8 | gpt_ckpt_path: asset/GPT.pt 9 | decoder_config_path: config/decoder.yaml 10 | decoder_ckpt_path: asset/Decoder.pt 11 | tokenizer_path: asset/tokenizer.pt 12 | -------------------------------------------------------------------------------- /models/config/path.yaml: -------------------------------------------------------------------------------- 1 | 2 | 3 | vocos_config_path: config/vocos.yaml 4 | vocos_ckpt_path: asset/Vocos.pt 5 | dvae_config_path: config/dvae.yaml 6 | dvae_ckpt_path: asset/DVAE.pt 7 | gpt_config_path: config/gpt.yaml 8 | gpt_ckpt_path: asset/GPT.pt 9 | decoder_config_path: config/decoder.yaml 10 | decoder_ckpt_path: asset/Decoder.pt 11 | tokenizer_path: asset/tokenizer.pt 12 | -------------------------------------------------------------------------------- /models/gpt.yaml: -------------------------------------------------------------------------------- 1 | 2 | 3 | num_audio_tokens: 626 4 | num_text_tokens: 21178 5 | 6 | gpt_config: 7 | hidden_size: 768 8 | intermediate_size: 3072 9 | num_attention_heads: 12 10 | num_hidden_layers: 20 11 | use_cache: False 12 | max_position_embeddings: 4096 13 | # attn_implementation: flash_attention_2 14 | 15 | spk_emb_dim: 192 16 | spk_KL: False 17 | num_audio_tokens: 626 18 | num_text_tokens: null 19 | num_vq: 4 20 | 21 | -------------------------------------------------------------------------------- /models/config/gpt.yaml: -------------------------------------------------------------------------------- 1 | 2 | 3 | num_audio_tokens: 626 4 | num_text_tokens: 21178 5 | 6 | gpt_config: 7 | hidden_size: 768 8 | intermediate_size: 3072 9 | num_attention_heads: 12 10 | num_hidden_layers: 20 11 | use_cache: False 12 | max_position_embeddings: 4096 13 | # attn_implementation: flash_attention_2 14 | 15 | spk_emb_dim: 192 16 | spk_KL: False 17 | num_audio_tokens: 626 18 | num_text_tokens: null 19 | num_vq: 4 20 | 21 | -------------------------------------------------------------------------------- /ChatTTS/utils/io_utils.py: -------------------------------------------------------------------------------- 1 | 2 | import os 3 | import logging 4 | 5 | def get_latest_modified_file(directory): 6 | logger = logging.getLogger(__name__) 7 | 8 | files = [os.path.join(directory, f) for f in os.listdir(directory)] 9 | if not files: 10 | logger.log(logging.WARNING, f'No files found in the directory: {directory}') 11 | return None 12 | latest_file = max(files, key=os.path.getmtime) 13 | 14 | return latest_file -------------------------------------------------------------------------------- /models/vocos.yaml: -------------------------------------------------------------------------------- 1 | feature_extractor: 2 | class_path: vocos.feature_extractors.MelSpectrogramFeatures 3 | init_args: 4 | sample_rate: 24000 5 | n_fft: 1024 6 | hop_length: 256 7 | n_mels: 100 8 | padding: center 9 | 10 | backbone: 11 | class_path: vocos.models.VocosBackbone 12 | init_args: 13 | input_channels: 100 14 | dim: 512 15 | intermediate_dim: 1536 16 | num_layers: 8 17 | 18 | head: 19 | class_path: vocos.heads.ISTFTHead 20 | init_args: 21 | dim: 512 22 | n_fft: 1024 23 | hop_length: 256 24 | padding: center -------------------------------------------------------------------------------- /models/config/vocos.yaml: -------------------------------------------------------------------------------- 1 | feature_extractor: 2 | class_path: vocos.feature_extractors.MelSpectrogramFeatures 3 | init_args: 4 | sample_rate: 24000 5 | n_fft: 1024 6 | hop_length: 256 7 | n_mels: 100 8 | padding: center 9 | 10 | backbone: 11 | class_path: vocos.models.VocosBackbone 12 | init_args: 13 | input_channels: 100 14 | dim: 512 15 | intermediate_dim: 1536 16 | num_layers: 8 17 | 18 | head: 19 | class_path: vocos.heads.ISTFTHead 20 | init_args: 21 | dim: 512 22 | n_fft: 1024 23 | hop_length: 256 24 | padding: center -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | ## 简介 2 | 项目基于: 3 | 1. [ChatTTS](https://github.com/2noise/ChatTTS) 4 | 2. [yuhaolove/ChatTTS-WebUI/](https://github.com/yuhaolove/ChatTTS-WebUI/tree/main/webui) 5 | 6 | output文件夹保存有样本输出音频 7 | sampled_speaker文件夹保存有样本音色 8 | 9 | ![](https://github.com/craii/ChatTTS_WebUI/blob/main/screenshot.png) 10 | 11 | ## 使用方法 12 | 1. 参考[ChatTTS](https://github.com/2noise/ChatTTS) 的安装方法; 13 | 2. 将[pt模型](https://huggingface.co/2Noise/ChatTTS/tree/main)放置到 models/asset 文件夹下; 14 | 3. 运行 run_webui.py 15 | 16 | ## 带有虚拟环境的版本 17 | 我用夸克网盘分享了「ChatTTS_with_win_venv.zip」,点击链接即可保存。打开「夸克APP」,无需下载在线播放视频,畅享原画5倍速,支持电视投屏。 18 | 链接:https://pan.quark.cn/s/2a62d4e752ee 19 | 提取码:sdPP 20 | -------------------------------------------------------------------------------- /ChatTTS/utils/gpu_utils.py: -------------------------------------------------------------------------------- 1 | 2 | import torch 3 | import logging 4 | 5 | def select_device(min_memory = 2048): 6 | logger = logging.getLogger(__name__) 7 | if torch.cuda.is_available(): 8 | available_gpus = [] 9 | for i in range(torch.cuda.device_count()): 10 | props = torch.cuda.get_device_properties(i) 11 | free_memory = props.total_memory - torch.cuda.memory_reserved(i) 12 | available_gpus.append((i, free_memory)) 13 | selected_gpu, max_free_memory = max(available_gpus, key=lambda x: x[1]) 14 | device = torch.device(f'cuda:{selected_gpu}') 15 | free_memory_mb = max_free_memory / (1024 * 1024) 16 | if free_memory_mb < min_memory: 17 | logger.log(logging.WARNING, f'GPU {selected_gpu} has {round(free_memory_mb, 2)} MB memory left.') 18 | device = torch.device('cpu') 19 | else: 20 | logger.log(logging.WARNING, f'No GPU found, use CPU instead') 21 | device = torch.device('cpu') 22 | 23 | return device 24 | -------------------------------------------------------------------------------- /ChatTTS/utils/infer_utils.py: -------------------------------------------------------------------------------- 1 | 2 | import torch 3 | import torch.nn.functional as F 4 | 5 | 6 | class CustomRepetitionPenaltyLogitsProcessorRepeat(): 7 | 8 | def __init__(self, penalty: float, max_input_ids, past_window): 9 | if not isinstance(penalty, float) or not (penalty > 0): 10 | raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}") 11 | 12 | self.penalty = penalty 13 | self.max_input_ids = max_input_ids 14 | self.past_window = past_window 15 | 16 | def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: 17 | 18 | input_ids = input_ids[:, -self.past_window:] 19 | freq = F.one_hot(input_ids, scores.size(1)).sum(1) 20 | freq[self.max_input_ids:] = 0 21 | alpha = self.penalty**freq 22 | scores = torch.where(scores < 0, scores*alpha, scores/alpha) 23 | 24 | return scores 25 | 26 | class CustomRepetitionPenaltyLogitsProcessor(): 27 | 28 | def __init__(self, penalty: float, max_input_ids, past_window): 29 | if not isinstance(penalty, float) or not (penalty > 0): 30 | raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}") 31 | 32 | self.penalty = penalty 33 | self.max_input_ids = max_input_ids 34 | self.past_window = past_window 35 | 36 | def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: 37 | 38 | input_ids = input_ids[:, -self.past_window:] 39 | score = torch.gather(scores, 1, input_ids) 40 | _score = score.detach().clone() 41 | score = torch.where(score < 0, score * self.penalty, score / self.penalty) 42 | score[input_ids>=self.max_input_ids] = _score[input_ids>=self.max_input_ids] 43 | scores.scatter_(1, input_ids, score) 44 | 45 | return scores -------------------------------------------------------------------------------- /ChatTTS/experimental/llm.py: -------------------------------------------------------------------------------- 1 | 2 | from openai import OpenAI 3 | 4 | prompt_dict = { 5 | 'kimi': [ {"role": "system", "content": "你是 Kimi,由 Moonshot AI 提供的人工智能助手,你更擅长中文和英文的对话。"}, 6 | {"role": "user", "content": "你好,请注意你现在生成的文字要按照人日常生活的口吻,你的回复将会后续用TTS模型转为语音,并且请把回答控制在100字以内。并且标点符号仅包含逗号和句号,将数字等转为文字回答。"}, 7 | {"role": "assistant", "content": "好的,我现在生成的文字将按照人日常生活的口吻, 并且我会把回答控制在一百字以内, 标点符号仅包含逗号和句号,将阿拉伯数字等转为中文文字回答。下面请开始对话。"},], 8 | 'deepseek': [ 9 | {"role": "system", "content": "You are a helpful assistant"}, 10 | {"role": "user", "content": "你好,请注意你现在生成的文字要按照人日常生活的口吻,你的回复将会后续用TTS模型转为语音,并且请把回答控制在100字以内。并且标点符号仅包含逗号和句号,将数字等转为文字回答。"}, 11 | {"role": "assistant", "content": "好的,我现在生成的文字将按照人日常生活的口吻, 并且我会把回答控制在一百字以内, 标点符号仅包含逗号和句号,将阿拉伯数字等转为中文文字回答。下面请开始对话。"},], 12 | 'deepseek_TN': [ 13 | {"role": "system", "content": "You are a helpful assistant"}, 14 | {"role": "user", "content": "你好,现在我们在处理TTS的文本输入,下面将会给你输入一段文本,请你将其中的阿拉伯数字等等转为文字表达,并且输出的文本里仅包含逗号和句号这两个标点符号"}, 15 | {"role": "assistant", "content": "好的,我现在对TTS的文本输入进行处理。这一般叫做text normalization。下面请输入"}, 16 | {"role": "user", "content": "We paid $123 for this desk."}, 17 | {"role": "assistant", "content": "We paid one hundred and twenty three dollars for this desk."}, 18 | {"role": "user", "content": "详询请拨打010-724654"}, 19 | {"role": "assistant", "content": "详询请拨打零幺零,七二四六五四"}, 20 | {"role": "user", "content": "罗森宣布将于7月24日退市,在华门店超6000家!"}, 21 | {"role": "assistant", "content": "罗森宣布将于七月二十四日退市,在华门店超过六千家。"}, 22 | ], 23 | } 24 | 25 | class llm_api: 26 | def __init__(self, api_key, base_url, model): 27 | self.client = OpenAI( 28 | api_key = api_key, 29 | base_url = base_url, 30 | ) 31 | self.model = model 32 | def call(self, user_question, temperature = 0.3, prompt_version='kimi', **kwargs): 33 | 34 | completion = self.client.chat.completions.create( 35 | model = self.model, 36 | messages = prompt_dict[prompt_version]+[{"role": "user", "content": user_question},], 37 | temperature = temperature, 38 | **kwargs 39 | ) 40 | return completion.choices[0].message.content 41 | -------------------------------------------------------------------------------- /utils.py: -------------------------------------------------------------------------------- 1 | import os 2 | import sys 3 | from pathlib import Path 4 | 5 | import torch 6 | import pandas as pd 7 | 8 | 9 | sys.path.append(f"{Path(__file__).resolve().parent}") 10 | 11 | 12 | def check_speaker_dir() -> list: 13 | msg = ["空(随机)"] 14 | 15 | current_dir = f"{Path(__file__).resolve().parent}" 16 | if not os.path.exists(f"{current_dir}/sampled_speaker"): 17 | os.makedirs(f"{current_dir}/sampled_speaker") 18 | 19 | if f"{current_dir}/sampled_speaker" not in sys.path: 20 | sys.path.append(f"{current_dir}/sampled_speaker") 21 | 22 | files = [file for file in os.listdir(f"{current_dir}/sampled_speaker") if file.endswith("csv")] 23 | msg.extend(list(map(lambda x: Path(x).resolve().stem, files))) 24 | return msg 25 | 26 | 27 | def generate_speaker_tensor(mean: float = 0.0, std: float = 15.247) -> torch.Tensor: 28 | return torch.normal(mean, std, size=(768,)) 29 | 30 | 31 | def generate_speaker_tensor_a() -> torch.Tensor: 32 | std, mean = torch.load(f'{Path(__file__).resolve().parent}/models/asset/spk_stat.pt').chunk(2) 33 | rand_spk = torch.randn(768) * std + mean 34 | return rand_spk 35 | 36 | 37 | def save_speaker_tensor_to_csv(speaker_name: str, tensor: torch.Tensor) -> str: 38 | msg = "succeed" 39 | speaker_path = f"{Path(__file__).resolve().parent}/sampled_speaker" 40 | try: 41 | df = pd.DataFrame({"speaker": [float(i) for i in tensor]}) 42 | df.to_csv(f"{speaker_path}/{speaker_name}.csv", index=False, header=False) 43 | except Exception as e: 44 | print(f"存储 speaker_tensor 时发生错误:{e}") 45 | msg = "fail" 46 | finally: 47 | return msg 48 | 49 | 50 | def load_speaker_tensor_from_csv(speaker_name: str) -> torch.Tensor: 51 | speaker_path = f"{Path(__file__).resolve().parent}/sampled_speaker" 52 | d_s = pd.read_csv(f"{speaker_path}/{speaker_name}.csv", header=None).iloc[:, 0] 53 | _speaker_tensor = torch.tensor(d_s.values) 54 | return _speaker_tensor 55 | 56 | 57 | if __name__ in "__main__": 58 | # y = check_speaker_dir() 59 | # print(y) 60 | # speaker_tensor = generate_speaker_tensor() 61 | # speaker_tensor = generate_speaker_tensor_a() 62 | # print(speaker_tensor) 63 | # sm = save_speaker_tensor_to_csv("niuniu", speaker_tensor) 64 | # print(sm) 65 | # lm = load_speaker_tensor_from_csv("niuniu") 66 | # print(lm) 67 | pass 68 | -------------------------------------------------------------------------------- /ChatTTS/infer/api.py: -------------------------------------------------------------------------------- 1 | 2 | import torch 3 | import torch.nn.functional as F 4 | from transformers.generation import TopKLogitsWarper, TopPLogitsWarper 5 | from ..utils.infer_utils import CustomRepetitionPenaltyLogitsProcessorRepeat 6 | 7 | def infer_code( 8 | models, 9 | text, 10 | spk_emb = None, 11 | top_P = 0.7, 12 | top_K = 20, 13 | temperature = 0.3, 14 | repetition_penalty = 1.05, 15 | max_new_token = 2048, 16 | **kwargs 17 | ): 18 | 19 | device = next(models['gpt'].parameters()).device 20 | 21 | if not isinstance(text, list): 22 | text = [text] 23 | 24 | if not isinstance(temperature, list): 25 | temperature = [temperature] * models['gpt'].num_vq 26 | 27 | if spk_emb is not None: 28 | text = [f'[Stts][spk_emb]{i}[uv_break][Ptts]' for i in text] 29 | else: 30 | text = [f'[Stts][empty_spk]{i}[uv_break][Ptts]' for i in text] 31 | 32 | text_token = models['tokenizer'](text, return_tensors='pt', add_special_tokens=False, padding=True).to(device) 33 | input_ids = text_token['input_ids'][...,None].expand(-1, -1, models['gpt'].num_vq) 34 | text_mask = torch.ones(text_token['input_ids'].shape, dtype=bool, device=device) 35 | 36 | inputs = { 37 | 'input_ids': input_ids, 38 | 'text_mask': text_mask, 39 | 'attention_mask': text_token['attention_mask'], 40 | } 41 | 42 | emb = models['gpt'].get_emb(**inputs) 43 | if spk_emb is not None: 44 | emb[inputs['input_ids'][..., 0] == models['tokenizer'].convert_tokens_to_ids('[spk_emb]')] = \ 45 | F.normalize(spk_emb.to(device).to(emb.dtype)[None].expand(len(text), -1), p=2.0, dim=1, eps=1e-12) 46 | 47 | num_code = models['gpt'].emb_code[0].num_embeddings - 1 48 | 49 | LogitsWarpers = [] 50 | if top_P is not None: 51 | LogitsWarpers.append(TopPLogitsWarper(top_P, min_tokens_to_keep=3)) 52 | if top_K is not None: 53 | LogitsWarpers.append(TopKLogitsWarper(top_K, min_tokens_to_keep=3)) 54 | 55 | LogitsProcessors = [] 56 | if repetition_penalty is not None and repetition_penalty != 1: 57 | LogitsProcessors.append(CustomRepetitionPenaltyLogitsProcessorRepeat(\ 58 | repetition_penalty, num_code, 16)) 59 | 60 | result = models['gpt'].generate( 61 | emb, inputs['input_ids'], 62 | temperature = torch.tensor(temperature, device=device), 63 | attention_mask = inputs['attention_mask'], 64 | LogitsWarpers = LogitsWarpers, 65 | LogitsProcessors = LogitsProcessors, 66 | eos_token = num_code, 67 | max_new_token = max_new_token, 68 | infer_text = False, 69 | **kwargs 70 | ) 71 | 72 | return result 73 | 74 | 75 | def refine_text( 76 | models, 77 | text, 78 | top_P = 0.7, 79 | top_K = 20, 80 | temperature = 0.7, 81 | repetition_penalty = 1.0, 82 | max_new_token = 384, 83 | prompt = '', 84 | **kwargs 85 | ): 86 | 87 | device = next(models['gpt'].parameters()).device 88 | 89 | if not isinstance(text, list): 90 | text = [text] 91 | 92 | assert len(text), 'text should not be empty' 93 | 94 | text = [f"[Sbreak]{i}[Pbreak]{prompt}" for i in text] 95 | text_token = models['tokenizer'](text, return_tensors='pt', add_special_tokens=False, padding=True).to(device) 96 | text_mask = torch.ones(text_token['input_ids'].shape, dtype=bool, device=device) 97 | 98 | inputs = { 99 | 'input_ids': text_token['input_ids'][...,None].expand(-1, -1, models['gpt'].num_vq), 100 | 'text_mask': text_mask, 101 | 'attention_mask': text_token['attention_mask'], 102 | } 103 | 104 | LogitsWarpers = [] 105 | if top_P is not None: 106 | LogitsWarpers.append(TopPLogitsWarper(top_P, min_tokens_to_keep=3)) 107 | if top_K is not None: 108 | LogitsWarpers.append(TopKLogitsWarper(top_K, min_tokens_to_keep=3)) 109 | 110 | LogitsProcessors = [] 111 | if repetition_penalty is not None and repetition_penalty != 1: 112 | LogitsProcessors.append(CustomRepetitionPenaltyLogitsProcessorRepeat(repetition_penalty, len(models['tokenizer']), 16)) 113 | 114 | result = models['gpt'].generate( 115 | models['gpt'].get_emb(**inputs), inputs['input_ids'], 116 | temperature = torch.tensor([temperature,], device=device), 117 | attention_mask = inputs['attention_mask'], 118 | LogitsWarpers = LogitsWarpers, 119 | LogitsProcessors = LogitsProcessors, 120 | eos_token = torch.tensor(models['tokenizer'].convert_tokens_to_ids('[Ebreak]'), device=device)[None], 121 | max_new_token = max_new_token, 122 | infer_text = True, 123 | **kwargs 124 | ) 125 | return result -------------------------------------------------------------------------------- /ChatTTS/model/dvae.py: -------------------------------------------------------------------------------- 1 | import math 2 | from einops import rearrange 3 | from vector_quantize_pytorch import GroupedResidualFSQ 4 | 5 | import torch 6 | import torch.nn as nn 7 | import torch.nn.functional as F 8 | 9 | class ConvNeXtBlock(nn.Module): 10 | def __init__( 11 | self, 12 | dim: int, 13 | intermediate_dim: int, 14 | kernel, dilation, 15 | layer_scale_init_value: float = 1e-6, 16 | ): 17 | # ConvNeXt Block copied from Vocos. 18 | super().__init__() 19 | self.dwconv = nn.Conv1d(dim, dim, 20 | kernel_size=kernel, padding=dilation*(kernel//2), 21 | dilation=dilation, groups=dim 22 | ) # depthwise conv 23 | 24 | self.norm = nn.LayerNorm(dim, eps=1e-6) 25 | self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers 26 | self.act = nn.GELU() 27 | self.pwconv2 = nn.Linear(intermediate_dim, dim) 28 | self.gamma = ( 29 | nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) 30 | if layer_scale_init_value > 0 31 | else None 32 | ) 33 | 34 | def forward(self, x: torch.Tensor, cond = None) -> torch.Tensor: 35 | residual = x 36 | x = self.dwconv(x) 37 | x = x.transpose(1, 2) # (B, C, T) -> (B, T, C) 38 | x = self.norm(x) 39 | x = self.pwconv1(x) 40 | x = self.act(x) 41 | x = self.pwconv2(x) 42 | if self.gamma is not None: 43 | x = self.gamma * x 44 | x = x.transpose(1, 2) # (B, T, C) -> (B, C, T) 45 | 46 | x = residual + x 47 | return x 48 | 49 | 50 | 51 | class GFSQ(nn.Module): 52 | 53 | def __init__(self, 54 | dim, levels, G, R, eps=1e-5, transpose = True 55 | ): 56 | super(GFSQ, self).__init__() 57 | self.quantizer = GroupedResidualFSQ( 58 | dim=dim, 59 | levels=levels, 60 | num_quantizers=R, 61 | groups=G, 62 | ) 63 | self.n_ind = math.prod(levels) 64 | self.eps = eps 65 | self.transpose = transpose 66 | self.G = G 67 | self.R = R 68 | 69 | def _embed(self, x): 70 | if self.transpose: 71 | x = x.transpose(1,2) 72 | x = rearrange( 73 | x, "b t (g r) -> g b t r", g = self.G, r = self.R, 74 | ) 75 | feat = self.quantizer.get_output_from_indices(x) 76 | return feat.transpose(1,2) if self.transpose else feat 77 | 78 | def forward(self, x,): 79 | if self.transpose: 80 | x = x.transpose(1,2) 81 | feat, ind = self.quantizer(x) 82 | ind = rearrange( 83 | ind, "g b t r ->b t (g r)", 84 | ) 85 | embed_onehot = F.one_hot(ind.long(), self.n_ind).to(x.dtype) 86 | e_mean = torch.mean(embed_onehot, dim=[0,1]) 87 | e_mean = e_mean / (e_mean.sum(dim=1) + self.eps).unsqueeze(1) 88 | perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + self.eps), dim=1)) 89 | 90 | return ( 91 | torch.zeros(perplexity.shape, dtype=x.dtype, device=x.device), 92 | feat.transpose(1,2) if self.transpose else feat, 93 | perplexity, 94 | None, 95 | ind.transpose(1,2) if self.transpose else ind, 96 | ) 97 | 98 | class DVAEDecoder(nn.Module): 99 | def __init__(self, idim, odim, 100 | n_layer = 12, bn_dim = 64, hidden = 256, 101 | kernel = 7, dilation = 2, up = False 102 | ): 103 | super().__init__() 104 | self.up = up 105 | self.conv_in = nn.Sequential( 106 | nn.Conv1d(idim, bn_dim, 3, 1, 1), nn.GELU(), 107 | nn.Conv1d(bn_dim, hidden, 3, 1, 1) 108 | ) 109 | self.decoder_block = nn.ModuleList([ 110 | ConvNeXtBlock(hidden, hidden* 4, kernel, dilation,) 111 | for _ in range(n_layer)]) 112 | self.conv_out = nn.Conv1d(hidden, odim, kernel_size=1, bias=False) 113 | 114 | def forward(self, input, conditioning=None): 115 | # B, T, C 116 | x = input.transpose(1, 2) 117 | x = self.conv_in(x) 118 | for f in self.decoder_block: 119 | x = f(x, conditioning) 120 | 121 | x = self.conv_out(x) 122 | return x.transpose(1, 2) 123 | 124 | 125 | class DVAE(nn.Module): 126 | def __init__( 127 | self, decoder_config, vq_config, dim=512 128 | ): 129 | super().__init__() 130 | self.register_buffer('coef', torch.randn(1, 100, 1)) 131 | 132 | self.decoder = DVAEDecoder(**decoder_config) 133 | self.out_conv = nn.Conv1d(dim, 100, 3, 1, 1, bias=False) 134 | if vq_config is not None: 135 | self.vq_layer = GFSQ(**vq_config) 136 | else: 137 | self.vq_layer = None 138 | 139 | def forward(self, inp): 140 | 141 | if self.vq_layer is not None: 142 | vq_feats = self.vq_layer._embed(inp) 143 | else: 144 | vq_feats = inp.detach().clone() 145 | 146 | temp = torch.chunk(vq_feats, 2, dim=1) # flatten trick :) 147 | temp = torch.stack(temp, -1) 148 | vq_feats = temp.reshape(*temp.shape[:2], -1) 149 | 150 | vq_feats = vq_feats.transpose(1, 2) 151 | dec_out = self.decoder(input=vq_feats) 152 | dec_out = self.out_conv(dec_out.transpose(1, 2)) 153 | mel = dec_out * self.coef 154 | 155 | return mel 156 | -------------------------------------------------------------------------------- /run_webui.py: -------------------------------------------------------------------------------- 1 | import gradio as gr 2 | import numpy as np 3 | import pandas as pd 4 | import soundfile as sf 5 | 6 | import sys 7 | import os 8 | import random 9 | import datetime 10 | import torch 11 | 12 | from typing import Optional 13 | from utils import (check_speaker_dir, 14 | save_speaker_tensor_to_csv, 15 | generate_speaker_tensor_a, 16 | generate_speaker_tensor, 17 | load_speaker_tensor_from_csv) 18 | 19 | sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '../ChatTTS'))) 20 | 21 | import ChatTTS 22 | 23 | chat = ChatTTS.Chat() 24 | 25 | # load models from local path or snapshot 26 | CURRENT_SPEAKER = None 27 | 28 | required_files = [ 29 | 'models/asset/Decoder.pt', 30 | 'models/asset/DVAE.pt', 31 | 'models/asset/GPT.pt', 32 | 'models/asset/spk_stat.pt', 33 | 'models/asset/tokenizer.pt', 34 | 'models/asset/Vocos.pt', 35 | 'models/config/decoder.yaml', 36 | 'models/config/dvae.yaml', 37 | 'models/config/gpt.yaml', 38 | 'models/config/path.yaml', 39 | 'models/config/vocos.yaml' 40 | ] 41 | 42 | # 检查所有文件是否存在 43 | all_files_exist = all(os.path.exists(file_path) for file_path in required_files) 44 | 45 | if all_files_exist: 46 | print('Load models from local path.') 47 | chat.load_models(source='local', local_path='models') 48 | else: 49 | print('Load models from snapshot.') 50 | chat.load_models() 51 | 52 | 53 | def text_to_speech(text: str, 54 | speaker: Optional[str] = None, 55 | temperature: float = .3, 56 | top_P: float = 0.7, 57 | top_K: float = 20, 58 | sample_method: str = "基于模型(spk_stat.pt)采样") -> str: 59 | """ 60 | :param text: 61 | :param speaker: 62 | :param temperature: 63 | :param top_P: 64 | :param top_K: 65 | :return: 66 | """ 67 | sampler = {"随机采样": generate_speaker_tensor, 68 | "基于模型(spk_stat.pt)采样": generate_speaker_tensor_a}[sample_method] 69 | 70 | if speaker not in (None, "空(随机)"): 71 | rand_spk = load_speaker_tensor_from_csv(speaker) 72 | else: 73 | # std, mean = torch.load('./models/asset/spk_stat.pt').chunk(2) 74 | # rand_spk = torch.randn(768) * std + mean 75 | rand_spk = sampler() 76 | 77 | global CURRENT_SPEAKER 78 | CURRENT_SPEAKER = rand_spk 79 | 80 | params_infer_code = { 81 | 'spk_emb': rand_spk, # add sampled speaker 82 | 'temperature': temperature, # using custom temperature 83 | 'top_P': top_P, # top P decode 84 | 'top_K': top_K, # top K decode 85 | } 86 | 87 | print(text, speaker, temperature, top_P, top_K, sampler.__name__) 88 | 89 | wavs = chat.infer([text], params_infer_code=params_infer_code, use_decoder=True) 90 | audio_data = np.array(wavs[0]) 91 | if audio_data.ndim == 1: 92 | audio_data = np.expand_dims(audio_data, axis=0) 93 | if not os.path.exists('outputs'): 94 | os.makedirs('outputs') 95 | output_file = f'outputs/{datetime.datetime.now().strftime("%Y%m%d%H%M%S")} - {random.randint(1000, 9999)}.wav' 96 | sf.write(output_file, audio_data.T, 24000) 97 | return output_file 98 | 99 | 100 | def save_voice(name: str) -> str: 101 | global CURRENT_SPEAKER 102 | voice = CURRENT_SPEAKER 103 | try: 104 | save_speaker_tensor_to_csv(speaker_name=name, tensor=voice) 105 | return f"音色 {name} 保存成功" 106 | except Exception as e: 107 | return f"音色保存失败:{e}" 108 | 109 | 110 | # examples 111 | examples = [ 112 | ["你先去做,哪怕做成屎一样,在慢慢改[laugh],不要整天犹犹豫豫[uv_break],一个粗糙的开始,就是最好的开始,什么也别管,先去做,然后你就会发现,用不了多久,你几十万就没了[laugh]"], 113 | ["生活就像一盒巧克力,你永远不知道你会得到什么。"], 114 | ["每一天都是新的开始,每一个梦想都值得被追寻。"], 115 | ["教授正直播,忽然一阵香风飘过,一女子突然闯入,搂着教授猛亲,教授猛然一惊,他回过神来,想起自己正在直播,骤然转过身去,脸色陡然变红,看着这尴尬的场面,真想猝然而亡!"] 116 | ] 117 | 118 | choices = check_speaker_dir() 119 | 120 | # create a block 121 | block = gr.Blocks(css="footer.svelte-mpyp5e {display: none !important;}", title='文本转语音').queue() 122 | 123 | with block: 124 | with gr.Row(): 125 | gr.Markdown("## ChatTTS-WebUI ") 126 | 127 | with gr.Row(): 128 | gr.Markdown( 129 | """ 130 | ### 说明 131 | - 输入一段文本,点击“生成”按钮。 132 | - 程序会生成对应的语音文件并显示在右侧。 133 | - 你可以下载生成的音频文件。 134 | - 也可以选择一些示例文本进行测试。 135 | """ 136 | ) 137 | 138 | with gr.Row(): 139 | with gr.Column(): 140 | input_text = gr.Textbox(label='输入文本', lines=2, placeholder='请输入文本...') 141 | example = gr.Examples( 142 | label="示例文本", 143 | inputs=input_text, 144 | examples=examples, 145 | examples_per_page=3, 146 | ) 147 | check_box = gr.Dropdown(label="选择音色", value=choices[0], choices=choices, interactive=True) 148 | input_temperature = gr.Slider(label="temperature", minimum=0.1, maximum=1.0, value=0.3, interactive=True) 149 | input_top_P = gr.Slider(label="top_P", minimum=0.0, maximum=1.0, value=0.7, interactive=True) 150 | input_top_K = gr.Slider(label="top_K", minimum=0.0, maximum=100.0, value=20.0, interactive=True) 151 | sample_method = gr.Dropdown(label="音色为空时的随机方法", value="随机采样", choices=["随机采样", "基于模型(spk_stat.pt)采样"], interactive=True) 152 | 153 | with gr.Column(): 154 | output_audio = gr.Audio(label='生成的音频', type='filepath', show_download_button=True) 155 | with gr.Row(): 156 | speaker_name = gr.Textbox(label='将当前音色保存', lines=1, placeholder='请输入音色名称...') 157 | save_button = gr.Button(value="保存音色") 158 | save_result = gr.TextArea(label="音色保存结果(重启服务后可用)", ) 159 | 160 | 161 | with gr.Column(): 162 | run_button = gr.Button(value="生成") 163 | 164 | run_button.click(fn=text_to_speech, inputs=[input_text, check_box, input_temperature, input_top_P, input_top_K, sample_method], outputs=output_audio) 165 | save_button.click(fn=save_voice, inputs=[speaker_name], outputs=save_result) 166 | 167 | # launch 168 | block.launch(server_name='127.0.0.1', server_port=9527, share=True) -------------------------------------------------------------------------------- /ChatTTS/core.py: -------------------------------------------------------------------------------- 1 | 2 | import os 3 | import logging 4 | from omegaconf import OmegaConf 5 | 6 | import torch 7 | from vocos import Vocos 8 | from .model.dvae import DVAE 9 | from .model.gpt import GPT_warpper 10 | from .utils.gpu_utils import select_device 11 | from .utils.io_utils import get_latest_modified_file 12 | from .infer.api import refine_text, infer_code 13 | 14 | from huggingface_hub import snapshot_download 15 | 16 | logging.basicConfig(level = logging.INFO) 17 | 18 | 19 | class Chat: 20 | def __init__(self, ): 21 | self.pretrain_models = {} 22 | self.logger = logging.getLogger(__name__) 23 | 24 | def check_model(self, level = logging.INFO, use_decoder = False): 25 | not_finish = False 26 | check_list = ['vocos', 'gpt', 'tokenizer'] 27 | # check_list = ['vocos', 'gpt', 'tokenizer'] 28 | 29 | if use_decoder: 30 | check_list.append('decoder') 31 | else: 32 | check_list.append('dvae') 33 | 34 | for module in check_list: 35 | if module not in self.pretrain_models: 36 | self.logger.log(logging.WARNING, f'{module} not initialized.') 37 | not_finish = True 38 | 39 | if not not_finish: 40 | self.logger.log(level, f'All initialized.') 41 | 42 | return not not_finish 43 | 44 | def load_models(self, source='huggingface', force_redownload=False, local_path=''): 45 | if source == 'huggingface': 46 | hf_home = os.getenv('HF_HOME', os.path.expanduser("~/.cache/huggingface")) 47 | try: 48 | download_path = get_latest_modified_file(os.path.join(hf_home, 'hub/models--2Noise--ChatTTS/snapshots')) 49 | except: 50 | download_path = None 51 | if download_path is None or force_redownload: 52 | self.logger.log(logging.INFO, f'Download from HF: https://huggingface.co/2Noise/ChatTTS') 53 | download_path = snapshot_download(repo_id="2Noise/ChatTTS", allow_patterns=["*.pt", "*.yaml"]) 54 | else: 55 | self.logger.log(logging.INFO, f'Load from cache: {download_path}') 56 | self._load(**{k: os.path.join(download_path, v) for k, v in OmegaConf.load(os.path.join(download_path, 'config', 'path.yaml')).items()}) 57 | elif source == 'local': 58 | self.logger.log(logging.INFO, f'Load from local: {local_path}') 59 | self._load(**{k: os.path.join(local_path, v) for k, v in OmegaConf.load(os.path.join(local_path, 'config', 'path.yaml')).items()}) 60 | 61 | def _load( 62 | self, 63 | vocos_config_path: str = None, 64 | vocos_ckpt_path: str = None, 65 | dvae_config_path: str = None, 66 | dvae_ckpt_path: str = None, 67 | gpt_config_path: str = None, 68 | gpt_ckpt_path: str = None, 69 | decoder_config_path: str = None, 70 | decoder_ckpt_path: str = None, 71 | tokenizer_path: str = None, 72 | device: str = None 73 | ): 74 | if not device: 75 | device = select_device(4096) 76 | self.logger.log(logging.INFO, f'use {device}') 77 | 78 | if vocos_config_path: 79 | vocos = Vocos.from_hparams(vocos_config_path).to(device).eval() 80 | assert vocos_ckpt_path, 'vocos_ckpt_path should not be None' 81 | vocos.load_state_dict(torch.load(vocos_ckpt_path)) 82 | self.pretrain_models['vocos'] = vocos 83 | self.logger.log(logging.INFO, 'vocos loaded.') 84 | 85 | if dvae_config_path: 86 | cfg = OmegaConf.load(dvae_config_path) 87 | dvae = DVAE(**cfg).to(device).eval() 88 | assert dvae_ckpt_path, 'dvae_ckpt_path should not be None' 89 | dvae.load_state_dict(torch.load(dvae_ckpt_path, map_location='cpu')) 90 | self.pretrain_models['dvae'] = dvae 91 | self.logger.log(logging.INFO, 'dvae loaded.') 92 | 93 | if gpt_config_path: 94 | cfg = OmegaConf.load(gpt_config_path) 95 | gpt = GPT_warpper(**cfg).to(device).eval() 96 | assert gpt_ckpt_path, 'gpt_ckpt_path should not be None' 97 | gpt.load_state_dict(torch.load(gpt_ckpt_path, map_location='cpu')) 98 | self.pretrain_models['gpt'] = gpt 99 | spk_stat_path = os.path.join(os.path.dirname(gpt_ckpt_path), 'spk_stat.pt') 100 | assert os.path.exists(spk_stat_path), f'Missing spk_stat.pt: {spk_stat_path}' 101 | self.pretrain_models['spk_stat'] = torch.load(spk_stat_path).to(device) 102 | self.logger.log(logging.INFO, 'gpt loaded.') 103 | 104 | if decoder_config_path: 105 | cfg = OmegaConf.load(decoder_config_path) 106 | decoder = DVAE(**cfg).to(device).eval() 107 | assert decoder_ckpt_path, 'decoder_ckpt_path should not be None' 108 | decoder.load_state_dict(torch.load(decoder_ckpt_path, map_location='cpu')) 109 | self.pretrain_models['decoder'] = decoder 110 | self.logger.log(logging.INFO, 'decoder loaded.') 111 | 112 | if tokenizer_path: 113 | tokenizer = torch.load(tokenizer_path, map_location='cpu') 114 | tokenizer.padding_side = 'left' 115 | self.pretrain_models['tokenizer'] = tokenizer 116 | self.logger.log(logging.INFO, 'tokenizer loaded.') 117 | 118 | self.check_model() 119 | 120 | def infer( 121 | self, 122 | text, 123 | skip_refine_text=False, 124 | refine_text_only=False, 125 | params_refine_text={}, 126 | params_infer_code={}, 127 | use_decoder=False 128 | ): 129 | 130 | assert self.check_model(use_decoder=use_decoder) 131 | 132 | if not skip_refine_text: 133 | text_tokens = refine_text(self.pretrain_models, text, **params_refine_text)['ids'] 134 | text_tokens = [i[i < self.pretrain_models['tokenizer'].convert_tokens_to_ids('[break_0]')] for i in text_tokens] 135 | text = self.pretrain_models['tokenizer'].batch_decode(text_tokens) 136 | if refine_text_only: 137 | return text 138 | 139 | text = [params_infer_code.get('prompt', '') + i for i in text] 140 | params_infer_code.pop('prompt', '') 141 | result = infer_code(self.pretrain_models, text, **params_infer_code, return_hidden=use_decoder) 142 | 143 | if use_decoder: 144 | mel_spec = [self.pretrain_models['decoder'](i[None].permute(0,2,1)) for i in result['hiddens']] 145 | else: 146 | mel_spec = [self.pretrain_models['dvae'](i[None].permute(0,2,1)) for i in result['ids']] 147 | 148 | wav = [self.pretrain_models['vocos'].decode(i).cpu().numpy() for i in mel_spec] 149 | 150 | return wav 151 | 152 | def sample_random_speaker(self, ): 153 | 154 | dim = self.pretrain_models['gpt'].gpt.layers[0].mlp.gate_proj.in_features 155 | std, mean = self.pretrain_models['spk_stat'].chunk(2) 156 | return torch.randn(dim, device=std.device) * std + mean 157 | 158 | 159 | -------------------------------------------------------------------------------- /ChatTTS/model/gpt.py: -------------------------------------------------------------------------------- 1 | import os 2 | os.environ["TOKENIZERS_PARALLELISM"] = "false" 3 | 4 | import logging 5 | from tqdm import tqdm 6 | from einops import rearrange 7 | from transformers.cache_utils import Cache 8 | 9 | import torch 10 | import torch.nn as nn 11 | import torch.nn.functional as F 12 | import torch.nn.utils.parametrize as P 13 | from torch.nn.utils.parametrizations import weight_norm 14 | from transformers import LlamaModel, LlamaConfig 15 | 16 | 17 | class LlamaMLP(nn.Module): 18 | def __init__(self, hidden_size, intermediate_size): 19 | super().__init__() 20 | self.hidden_size = hidden_size 21 | self.intermediate_size = intermediate_size 22 | self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) 23 | self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) 24 | self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) 25 | self.act_fn = F.silu 26 | 27 | def forward(self, x): 28 | down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) 29 | return down_proj 30 | 31 | 32 | class GPT_warpper(nn.Module): 33 | def __init__( 34 | self, 35 | gpt_config, 36 | num_audio_tokens, 37 | num_text_tokens, 38 | num_vq=4, 39 | **kwargs, 40 | ): 41 | super().__init__() 42 | 43 | self.logger = logging.getLogger(__name__) 44 | self.gpt = self.build_model(gpt_config) 45 | self.model_dim = self.gpt.config.hidden_size 46 | 47 | self.num_vq = num_vq 48 | self.emb_code = nn.ModuleList([nn.Embedding(num_audio_tokens, self.model_dim) for i in range(self.num_vq)]) 49 | self.emb_text = nn.Embedding(num_text_tokens, self.model_dim) 50 | self.head_text = weight_norm(nn.Linear(self.model_dim, num_text_tokens, bias=False), name='weight') 51 | self.head_code = nn.ModuleList([weight_norm(nn.Linear(self.model_dim, num_audio_tokens, bias=False), name='weight') for i in range(self.num_vq)]) 52 | 53 | def build_model(self, config): 54 | 55 | configuration = LlamaConfig(**config) 56 | model = LlamaModel(configuration) 57 | del model.embed_tokens 58 | 59 | return model 60 | 61 | def get_emb(self, input_ids, text_mask, **kwargs): 62 | 63 | emb_text = self.emb_text(input_ids[text_mask][:, 0]) 64 | 65 | emb_code = [self.emb_code[i](input_ids[~text_mask][:, i]) for i in range(self.num_vq)] 66 | emb_code = torch.stack(emb_code, 2).sum(2) 67 | 68 | emb = torch.zeros((input_ids.shape[:-1])+(emb_text.shape[-1],), device=emb_text.device, dtype=emb_text.dtype) 69 | emb[text_mask] = emb_text 70 | emb[~text_mask] = emb_code.to(emb.dtype) 71 | 72 | return emb 73 | 74 | def prepare_inputs_for_generation( 75 | self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs 76 | ): 77 | # With static cache, the `past_key_values` is None 78 | # TODO joao: standardize interface for the different Cache classes and remove of this if 79 | has_static_cache = False 80 | if past_key_values is None: 81 | past_key_values = getattr(self.gpt.layers[0].self_attn, "past_key_value", None) 82 | has_static_cache = past_key_values is not None 83 | 84 | past_length = 0 85 | if past_key_values is not None: 86 | if isinstance(past_key_values, Cache): 87 | past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() 88 | max_cache_length = ( 89 | torch.tensor(past_key_values.get_max_length(), device=input_ids.device) 90 | if past_key_values.get_max_length() is not None 91 | else None 92 | ) 93 | cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length) 94 | # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects 95 | else: 96 | cache_length = past_length = past_key_values[0][0].shape[2] 97 | max_cache_length = None 98 | 99 | # Keep only the unprocessed tokens: 100 | # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where 101 | # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as 102 | # input) 103 | if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: 104 | input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] 105 | # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard 106 | # input_ids based on the past_length. 107 | elif past_length < input_ids.shape[1]: 108 | input_ids = input_ids[:, past_length:] 109 | # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. 110 | 111 | # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. 112 | if ( 113 | max_cache_length is not None 114 | and attention_mask is not None 115 | and cache_length + input_ids.shape[1] > max_cache_length 116 | ): 117 | attention_mask = attention_mask[:, -max_cache_length:] 118 | 119 | position_ids = kwargs.get("position_ids", None) 120 | if attention_mask is not None and position_ids is None: 121 | # create position_ids on the fly for batch generation 122 | position_ids = attention_mask.long().cumsum(-1) - 1 123 | position_ids.masked_fill_(attention_mask == 0, 1) 124 | if past_key_values: 125 | position_ids = position_ids[:, -input_ids.shape[1] :] 126 | 127 | # if `inputs_embeds` are passed, we only want to use them in the 1st generation step 128 | if inputs_embeds is not None and past_key_values is None: 129 | model_inputs = {"inputs_embeds": inputs_embeds} 130 | else: 131 | # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise 132 | # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114 133 | # TODO: use `next_tokens` directly instead. 134 | model_inputs = {"input_ids": input_ids.contiguous()} 135 | 136 | input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1] 137 | if cache_position is None: 138 | cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device) 139 | else: 140 | cache_position = cache_position[-input_length:] 141 | 142 | if has_static_cache: 143 | past_key_values = None 144 | 145 | model_inputs.update( 146 | { 147 | "position_ids": position_ids, 148 | "cache_position": cache_position, 149 | "past_key_values": past_key_values, 150 | "use_cache": kwargs.get("use_cache"), 151 | "attention_mask": attention_mask, 152 | } 153 | ) 154 | return model_inputs 155 | 156 | def generate( 157 | self, 158 | emb, 159 | inputs_ids, 160 | temperature, 161 | eos_token, 162 | attention_mask = None, 163 | max_new_token = 2048, 164 | min_new_token = 0, 165 | LogitsWarpers = [], 166 | LogitsProcessors = [], 167 | infer_text=False, 168 | return_attn=False, 169 | return_hidden=False, 170 | ): 171 | 172 | with torch.no_grad(): 173 | 174 | attentions = [] 175 | hiddens = [] 176 | 177 | start_idx, end_idx = inputs_ids.shape[1], torch.zeros(inputs_ids.shape[0], device=inputs_ids.device, dtype=torch.long) 178 | finish = torch.zeros(inputs_ids.shape[0], device=inputs_ids.device).bool() 179 | 180 | temperature = temperature[None].expand(inputs_ids.shape[0], -1) 181 | temperature = rearrange(temperature, "b n -> (b n) 1") 182 | 183 | attention_mask_cache = torch.ones((inputs_ids.shape[0], inputs_ids.shape[1]+max_new_token,), dtype=torch.bool, device=inputs_ids.device) 184 | if attention_mask is not None: 185 | attention_mask_cache[:, :attention_mask.shape[1]] = attention_mask 186 | 187 | for i in tqdm(range(max_new_token)): 188 | 189 | model_input = self.prepare_inputs_for_generation(inputs_ids, 190 | outputs.past_key_values if i!=0 else None, 191 | attention_mask_cache[:, :inputs_ids.shape[1]], use_cache=True) 192 | 193 | if i == 0: 194 | model_input['inputs_embeds'] = emb 195 | else: 196 | if infer_text: 197 | model_input['inputs_embeds'] = self.emb_text(model_input['input_ids'][:,:,0]) 198 | else: 199 | code_emb = [self.emb_code[i](model_input['input_ids'][:,:,i]) for i in range(self.num_vq)] 200 | model_input['inputs_embeds'] = torch.stack(code_emb, 3).sum(3) 201 | 202 | model_input['input_ids'] = None 203 | outputs = self.gpt.forward(**model_input, output_attentions=return_attn) 204 | attentions.append(outputs.attentions) 205 | hidden_states = outputs[0] # 🐻 206 | if return_hidden: 207 | hiddens.append(hidden_states[:, -1]) 208 | 209 | with P.cached(): 210 | if infer_text: 211 | logits = self.head_text(hidden_states) 212 | else: 213 | logits = torch.stack([self.head_code[i](hidden_states) for i in range(self.num_vq)], 3) 214 | 215 | logits = logits[:, -1].float() 216 | 217 | if not infer_text: 218 | logits = rearrange(logits, "b c n -> (b n) c") 219 | logits_token = rearrange(inputs_ids[:, start_idx:], "b c n -> (b n) c") 220 | else: 221 | logits_token = inputs_ids[:, start_idx:, 0] 222 | 223 | logits = logits / temperature 224 | 225 | for logitsProcessors in LogitsProcessors: 226 | logits = logitsProcessors(logits_token, logits) 227 | 228 | for logitsWarpers in LogitsWarpers: 229 | logits = logitsWarpers(logits_token, logits) 230 | 231 | if i < min_new_token: 232 | logits[:, eos_token] = -torch.inf 233 | 234 | scores = F.softmax(logits, dim=-1) 235 | 236 | idx_next = torch.multinomial(scores, num_samples=1) 237 | 238 | if not infer_text: 239 | idx_next = rearrange(idx_next, "(b n) 1 -> b n", n=self.num_vq) 240 | finish = finish | (idx_next == eos_token).any(1) 241 | inputs_ids = torch.cat([inputs_ids, idx_next.unsqueeze(1)], 1) 242 | else: 243 | finish = finish | (idx_next == eos_token).any(1) 244 | inputs_ids = torch.cat([inputs_ids, idx_next.unsqueeze(-1).expand(-1, -1, self.num_vq)], 1) 245 | 246 | end_idx = end_idx + (~finish).int() 247 | 248 | if finish.all(): 249 | break 250 | 251 | inputs_ids = [inputs_ids[idx, start_idx: start_idx+i] for idx, i in enumerate(end_idx.int())] 252 | inputs_ids = [i[:, 0] for i in inputs_ids] if infer_text else inputs_ids 253 | 254 | if return_hidden: 255 | hiddens = torch.stack(hiddens, 1) 256 | hiddens = [hiddens[idx, :i] for idx, i in enumerate(end_idx.int())] 257 | 258 | if not finish.all(): 259 | self.logger.warn(f'Incomplete result. hit max_new_token: {max_new_token}') 260 | 261 | return { 262 | 'ids': inputs_ids, 263 | 'attentions': attentions, 264 | 'hiddens':hiddens, 265 | } -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | # Attribution-NonCommercial-NoDerivatives 4.0 International 2 | 3 | > *Creative Commons Corporation (“Creative Commons”) is not a law firm and does not provide legal services or legal advice. Distribution of Creative Commons public licenses does not create a lawyer-client or other relationship. Creative Commons makes its licenses and related information available on an “as-is” basis. Creative Commons gives no warranties regarding its licenses, any material licensed under their terms and conditions, or any related information. Creative Commons disclaims all liability for damages resulting from their use to the fullest extent possible.* 4 | > 5 | > ### Using Creative Commons Public Licenses 6 | > 7 | > Creative Commons public licenses provide a standard set of terms and conditions that creators and other rights holders may use to share original works of authorship and other material subject to copyright and certain other rights specified in the public license below. The following considerations are for informational purposes only, are not exhaustive, and do not form part of our licenses. 8 | > 9 | > * __Considerations for licensors:__ Our public licenses are intended for use by those authorized to give the public permission to use material in ways otherwise restricted by copyright and certain other rights. Our licenses are irrevocable. Licensors should read and understand the terms and conditions of the license they choose before applying it. Licensors should also secure all rights necessary before applying our licenses so that the public can reuse the material as expected. Licensors should clearly mark any material not subject to the license. This includes other CC-licensed material, or material used under an exception or limitation to copyright. [More considerations for licensors](http://wiki.creativecommons.org/Considerations_for_licensors_and_licensees#Considerations_for_licensors). 10 | > 11 | > * __Considerations for the public:__ By using one of our public licenses, a licensor grants the public permission to use the licensed material under specified terms and conditions. If the licensor’s permission is not necessary for any reason–for example, because of any applicable exception or limitation to copyright–then that use is not regulated by the license. Our licenses grant only permissions under copyright and certain other rights that a licensor has authority to grant. Use of the licensed material may still be restricted for other reasons, including because others have copyright or other rights in the material. A licensor may make special requests, such as asking that all changes be marked or described. Although not required by our licenses, you are encouraged to respect those requests where reasonable. [More considerations for the public](http://wiki.creativecommons.org/Considerations_for_licensors_and_licensees#Considerations_for_licensees). 12 | 13 | ## Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License 14 | 15 | By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions of this Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License ("Public License"). To the extent this Public License may be interpreted as a contract, You are granted the Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor grants You such rights in consideration of benefits the Licensor receives from making the Licensed Material available under these terms and conditions. 16 | 17 | ### Section 1 – Definitions. 18 | 19 | a. __Adapted Material__ means material subject to Copyright and Similar Rights that is derived from or based upon the Licensed Material and in which the Licensed Material is translated, altered, arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed Material is a musical work, performance, or sound recording, Adapted Material is always produced where the Licensed Material is synched in timed relation with a moving image. 20 | 21 | b. __Copyright and Similar Rights__ means copyright and/or similar rights closely related to copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis Database Rights, without regard to how the rights are labeled or categorized. For purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights. 22 | 23 | e. __Effective Technological Measures__ means those measures that, in the absence of proper authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international agreements. 24 | 25 | f. __Exceptions and Limitations__ means fair use, fair dealing, and/or any other exception or limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material. 26 | 27 | h. __Licensed Material__ means the artistic or literary work, database, or other material to which the Licensor applied this Public License. 28 | 29 | i. __Licensed Rights__ means the rights granted to You subject to the terms and conditions of this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed Material and that the Licensor has authority to license. 30 | 31 | h. __Licensor__ means the individual(s) or entity(ies) granting rights under this Public License. 32 | 33 | i. __NonCommercial__ means not primarily intended for or directed towards commercial advantage or monetary compensation. For purposes of this Public License, the exchange of the Licensed Material for other material subject to Copyright and Similar Rights by digital file-sharing or similar means is NonCommercial provided there is no payment of monetary compensation in connection with the exchange. 34 | 35 | j. __Share__ means to provide material to the public by any means or process that requires permission under the Licensed Rights, such as reproduction, public display, public performance, distribution, dissemination, communication, or importation, and to make material available to the public including in ways that members of the public may access the material from a place and at a time individually chosen by them. 36 | 37 | k. __Sui Generis Database Rights__ means rights other than copyright resulting from Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere in the world. 38 | 39 | l. __You__ means the individual or entity exercising the Licensed Rights under this Public License. Your has a corresponding meaning. 40 | 41 | ### Section 2 – Scope. 42 | 43 | a. ___License grant.___ 44 | 45 | 1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed Rights in the Licensed Material to: 46 | 47 | A. reproduce and Share the Licensed Material, in whole or in part, for NonCommercial purposes only; and 48 | 49 | B. produce and reproduce, but not Share, Adapted Material for NonCommercial purposes only. 50 | 51 | 2. __Exceptions and Limitations.__ For the avoidance of doubt, where Exceptions and Limitations apply to Your use, this Public License does not apply, and You do not need to comply with its terms and conditions. 52 | 53 | 3. __Term.__ The term of this Public License is specified in Section 6(a). 54 | 55 | 4. __Media and formats; technical modifications allowed.__ The Licensor authorizes You to exercise the Licensed Rights in all media and formats whether now known or hereafter created, and to make technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right or authority to forbid You from making technical modifications necessary to exercise the Licensed Rights, including technical modifications necessary to circumvent Effective Technological Measures. For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4) never produces Adapted Material. 56 | 57 | 5. __Downstream recipients.__ 58 | 59 | A. __Offer from the Licensor – Licensed Material.__ Every recipient of the Licensed Material automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms and conditions of this Public License. 60 | 61 | B. __No downstream restrictions.__ You may not offer or impose any additional or different terms or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing so restricts exercise of the Licensed Rights by any recipient of the Licensed Material. 62 | 63 | 6. __No endorsement.__ Nothing in this Public License constitutes or may be construed as permission to assert or imply that You are, or that Your use of the Licensed Material is, connected with, or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive attribution as provided in Section 3(a)(1)(A)(i). 64 | 65 | b. ___Other rights.___ 66 | 67 | 1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent necessary to allow You to exercise the Licensed Rights, but not otherwise. 68 | 69 | 2. Patent and trademark rights are not licensed under this Public License. 70 | 71 | 3. To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly reserves any right to collect such royalties, including when the Licensed Material is used other than for NonCommercial purposes. 72 | 73 | ### Section 3 – License Conditions. 74 | 75 | Your exercise of the Licensed Rights is expressly made subject to the following conditions. 76 | 77 | a. ___Attribution.___ 78 | 79 | 1. If You Share the Licensed Material, You must: 80 | 81 | A. retain the following if it is supplied by the Licensor with the Licensed Material: 82 | 83 | i. identification of the creator(s) of the Licensed Material and any others designated to receive attribution, in any reasonable manner requested by the Licensor (including by pseudonym if designated); 84 | 85 | ii. a copyright notice; 86 | 87 | iii. a notice that refers to this Public License; 88 | 89 | iv. a notice that refers to the disclaimer of warranties; 90 | 91 | v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable; 92 | 93 | B. indicate if You modified the Licensed Material and retain an indication of any previous modifications; and 94 | 95 | C. indicate the Licensed Material is licensed under this Public License, and include the text of, or the URI or hyperlink to, this Public License. 96 | 97 | For the avoidance of doubt, You do not have permission under this Public License to Share Adapted Material. 98 | 99 | 2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium, means, and context in which You Share the Licensed Material. For example, it may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the required information. 100 | 101 | 3. If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A) to the extent reasonably practicable. 102 | 103 | ### Section 4 – Sui Generis Database Rights. 104 | 105 | Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material: 106 | 107 | a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all or a substantial portion of the contents of the database for NonCommercial purposes only and provided You do not Share Adapted Material; 108 | 109 | b. if You include all or a substantial portion of the database contents in a database in which You have Sui Generis Database Rights, then the database in which You have Sui Generis Database Rights (but not its individual contents) is Adapted Material; and 110 | 111 | c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the contents of the database. 112 | 113 | For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public License where the Licensed Rights include other Copyright and Similar Rights. 114 | 115 | ### Section 5 – Disclaimer of Warranties and Limitation of Liability. 116 | 117 | a. __Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers the Licensed Material as-is and as-available, and makes no representations or warranties of any kind concerning the Licensed Material, whether express, implied, statutory, or other. This includes, without limitation, warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors, whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in part, this disclaimer may not apply to You.__ 118 | 119 | b. __To the extent possible, in no event will the Licensor be liable to You on any legal theory (including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or in part, this limitation may not apply to You.__ 120 | 121 | c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver of all liability. 122 | 123 | ### Section 6 – Term and Termination. 124 | 125 | a. This Public License applies for the term of the Copyright and Similar Rights licensed here. However, if You fail to comply with this Public License, then Your rights under this Public License terminate automatically. 126 | 127 | b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates: 128 | 129 | 1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your discovery of the violation; or 130 | 131 | 2. upon express reinstatement by the Licensor. 132 | 133 | For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek remedies for Your violations of this Public License. 134 | 135 | c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms or conditions or stop distributing the Licensed Material at any time; however, doing so will not terminate this Public License. 136 | 137 | d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License. 138 | 139 | ### Section 7 – Other Terms and Conditions. 140 | 141 | a. The Licensor shall not be bound by any additional or different terms or conditions communicated by You unless expressly agreed. 142 | 143 | b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein are separate from and independent of the terms and conditions of this Public License. 144 | 145 | ### Section 8 – Interpretation. 146 | 147 | a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully be made without permission under this Public License. 148 | 149 | b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be automatically reformed to the minimum extent necessary to make it enforceable. If the provision cannot be reformed, it shall be severed from this Public License without affecting the enforceability of the remaining terms and conditions. 150 | 151 | c. No term or condition of this Public License will be waived and no failure to comply consented to unless expressly agreed to by the Licensor. 152 | 153 | d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal processes of any jurisdiction or authority. 154 | 155 | > Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect to apply one of its public licenses to material it publishes and in those instances will be considered the “Licensor.” Except for the limited purpose of indicating that material is shared under a Creative Commons public license or as otherwise permitted by the Creative Commons policies published at [creativecommons.org/policies](http://creativecommons.org/policies), Creative Commons does not authorize the use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons without its prior written consent including, without limitation, in connection with any unauthorized modifications to any of its public licenses or any other arrangements, understandings, or agreements concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part of the public licenses. 156 | > 157 | > Creative Commons may be contacted at [creativecommons.org](http://creativecommons.org). 158 | -------------------------------------------------------------------------------- /sampled_speaker/jidong.csv: -------------------------------------------------------------------------------- 1 | 3.7936673164367676 2 | 3.728569984436035 3 | 12.650328636169434 4 | 5.563755989074707 5 | 1.5919339656829834 6 | 3.4696643352508545 7 | -1.5330392122268677 8 | 2.7658567428588867 9 | 1.6120041608810425 10 | -14.178129196166992 11 | 0.35902827978134155 12 | -0.9380728006362915 13 | 0.9394299983978271 14 | 0.30636969208717346 15 | -0.12373754382133484 16 | 3.1166787147521973 17 | 2.130946397781372 18 | 0.20748019218444824 19 | 0.07943785190582275 20 | -2.158203125 21 | -11.458989143371582 22 | -0.7983209490776062 23 | 2.7497193813323975 24 | -9.029943466186523 25 | -1.1959748268127441 26 | 1.7610194683074951 27 | -4.554196357727051 28 | -8.584640502929688 29 | -2.5766820907592773 30 | 3.3135979175567627 31 | -13.73615837097168 32 | -0.34723174571990967 33 | -6.233789920806885 34 | -3.598585844039917 35 | 1.572967529296875 36 | 0.688788652420044 37 | -0.27623996138572693 38 | -6.243807792663574 39 | -6.04430627822876 40 | -2.7119510173797607 41 | -4.732726097106934 42 | 0.5518141984939575 43 | 2.6399483680725098 44 | 2.2485837936401367 45 | 11.53194522857666 46 | -1.2419203519821167 47 | -1.5270479917526245 48 | -0.9981008768081665 49 | -1.270131230354309 50 | 3.3350725173950195 51 | 3.153852939605713 52 | -0.1858922243118286 53 | 0.29252445697784424 54 | 1.1502047777175903 55 | 0.82472825050354 56 | -5.416120529174805 57 | 0.6640682220458984 58 | 3.2889764308929443 59 | 1.4285303354263306 60 | 3.9561502933502197 61 | 3.87746000289917 62 | -1.4342727661132812 63 | 1.801473617553711 64 | -0.10908514261245728 65 | -1.3973755836486816 66 | -1.8068777322769165 67 | -1.9808653593063354 68 | 10.601089477539062 69 | -0.6250859498977661 70 | 2.510472297668457 71 | 2.589975357055664 72 | 1.4075870513916016 73 | -1.3477654457092285 74 | -0.1909705549478531 75 | -12.830952644348145 76 | 1.2401999235153198 77 | -1.9758086204528809 78 | -4.588741302490234 79 | 0.1289670765399933 80 | 3.7282724380493164 81 | 1.2987897396087646 82 | -2.540583610534668 83 | -0.8010770082473755 84 | 2.509352684020996 85 | 3.4765610694885254 86 | -3.168698310852051 87 | 2.2225847244262695 88 | -2.0864880084991455 89 | 0.16686610877513885 90 | 4.402217388153076 91 | -15.162604331970215 92 | 1.294337272644043 93 | 4.356902122497559 94 | 7.952981948852539 95 | 8.18032455444336 96 | -8.41067123413086 97 | 2.602030038833618 98 | -2.3679585456848145 99 | 0.6341518759727478 100 | 5.614912986755371 101 | -7.862110137939453 102 | 3.0182342529296875 103 | 8.095870971679688 104 | 0.6707924604415894 105 | 5.101545810699463 106 | -1.8116241693496704 107 | 3.4070885181427 108 | -1.2379727363586426 109 | 12.459135055541992 110 | 1.6159499883651733 111 | -1.3546135425567627 112 | -5.923154354095459 113 | 4.4214887619018555 114 | 1.2172728776931763 115 | 1.1960649490356445 116 | -1.4536352157592773 117 | -3.499049425125122 118 | -0.968116044998169 119 | -2.1004722118377686 120 | 3.1901326179504395 121 | -5.969097137451172 122 | 1.4545364379882812 123 | -1.467421531677246 124 | 0.688691258430481 125 | 0.11943155527114868 126 | 6.492716312408447 127 | -2.8278729915618896 128 | 2.1784520149230957 129 | -2.463862895965576 130 | 4.670230865478516 131 | -0.3347521424293518 132 | -1.122201681137085 133 | 0.4464893937110901 134 | 0.7052266597747803 135 | -21.71575927734375 136 | 2.677680492401123 137 | -3.523247241973877 138 | -5.010002136230469 139 | 7.449202537536621 140 | 2.3611700534820557 141 | -0.8149459362030029 142 | 2.588757276535034 143 | -1.6038528680801392 144 | 5.0088629722595215 145 | 2.4354000091552734 146 | 1.3676342964172363 147 | 2.339237928390503 148 | -4.339262008666992 149 | -1.8564165830612183 150 | -1.0971075296401978 151 | 5.29525089263916 152 | -1.568253755569458 153 | 4.034445762634277 154 | -8.547229766845703 155 | 1.5614666938781738 156 | -0.6745887398719788 157 | -9.901320457458496 158 | -2.7358765602111816 159 | -5.01828670501709 160 | -0.8111822009086609 161 | 1.2575215101242065 162 | -0.5389038324356079 163 | -0.6311457753181458 164 | -14.785140037536621 165 | 4.622537612915039 166 | 5.4807281494140625 167 | 4.250870704650879 168 | -2.469606399536133 169 | 0.026154756546020508 170 | -3.7506799697875977 171 | -0.09138607978820801 172 | -4.420942306518555 173 | 1.949131727218628 174 | 0.4452521800994873 175 | 1.207005262374878 176 | -0.27256739139556885 177 | 0.32926616072654724 178 | -2.1481332778930664 179 | -0.3850254714488983 180 | -2.2566447257995605 181 | 3.4879519939422607 182 | 2.0504698753356934 183 | 0.43942201137542725 184 | -0.2512850761413574 185 | -1.1838126182556152 186 | -1.669299602508545 187 | 1.2770624160766602 188 | 5.048642635345459 189 | -7.674966812133789 190 | 3.4619975090026855 191 | 1.3645117282867432 192 | 3.4814367294311523 193 | 5.53824520111084 194 | -1.7048213481903076 195 | 3.030369281768799 196 | 5.329056739807129 197 | -6.228837013244629 198 | -0.563696563243866 199 | -5.740933895111084 200 | -3.2859749794006348 201 | -8.96525764465332 202 | 2.882784605026245 203 | 0.47541379928588867 204 | 4.020074367523193 205 | 0.9657496809959412 206 | -5.227413654327393 207 | -4.3376569747924805 208 | 21.03594207763672 209 | -3.9198663234710693 210 | 3.1591827869415283 211 | 3.994727373123169 212 | 0.014481127262115479 213 | 0.4074629545211792 214 | 2.750702381134033 215 | -1.061702013015747 216 | 0.24747255444526672 217 | -0.27114254236221313 218 | 2.132556438446045 219 | 3.147857904434204 220 | 10.589024543762207 221 | -1.792535662651062 222 | 3.9309725761413574 223 | -0.5801751613616943 224 | 15.91894817352295 225 | 2.7264037132263184 226 | 5.478511810302734 227 | -2.82094144821167 228 | -0.8411300182342529 229 | 1.6348206996917725 230 | 0.7211884260177612 231 | -0.3749896287918091 232 | 0.16505157947540283 233 | 1.485232949256897 234 | -1.6930407285690308 235 | 0.32934099435806274 236 | 7.923586845397949 237 | -2.165370225906372 238 | 12.824202537536621 239 | 3.5879998207092285 240 | -1.4853668212890625 241 | 0.5584274530410767 242 | 3.609851598739624 243 | -4.821535110473633 244 | 3.2184269428253174 245 | -2.3562464714050293 246 | 0.5121387243270874 247 | 1.5311758518218994 248 | 1.9632585048675537 249 | 19.824827194213867 250 | -1.612107515335083 251 | 0.2495288848876953 252 | -3.350153684616089 253 | -0.7480205297470093 254 | -1.2467488050460815 255 | -0.9993185997009277 256 | -0.491552472114563 257 | -1.8404052257537842 258 | -0.3395965099334717 259 | -2.7099835872650146 260 | -5.63854455947876 261 | -3.0260508060455322 262 | 3.972620725631714 263 | -2.1348581314086914 264 | 3.5386545658111572 265 | -0.7297800183296204 266 | 2.6851401329040527 267 | -0.5917438268661499 268 | 5.623452186584473 269 | 1.4819145202636719 270 | 1.8526628017425537 271 | -0.18925046920776367 272 | 2.932252883911133 273 | -6.584856986999512 274 | 5.001935005187988 275 | -1.4701695442199707 276 | 0.05027329921722412 277 | -1.9989500045776367 278 | 2.1894445419311523 279 | -1.7277657985687256 280 | 2.7775020599365234 281 | 1.4071437120437622 282 | -3.17508602142334 283 | -2.8925161361694336 284 | -8.299367904663086 285 | -2.595848321914673 286 | -1.0201746225357056 287 | -0.29443854093551636 288 | -0.4698774516582489 289 | -4.435555458068848 290 | -1.9067562818527222 291 | -4.765429973602295 292 | -4.62695837020874 293 | -0.9072365760803223 294 | 3.0179455280303955 295 | -2.165929079055786 296 | 6.9921488761901855 297 | 2.5447986125946045 298 | 7.076272964477539 299 | -1.7137774229049683 300 | -3.5005383491516113 301 | -5.935829162597656 302 | -3.401514768600464 303 | 3.7867133617401123 304 | -1.095070719718933 305 | -1.5856140851974487 306 | -1.771662950515747 307 | 10.804128646850586 308 | -2.3536980152130127 309 | -6.016090393066406 310 | 0.37265440821647644 311 | -3.55942440032959 312 | 0.37779030203819275 313 | 4.71103048324585 314 | -1.6690775156021118 315 | 2.924116373062134 316 | 2.9649620056152344 317 | -6.364617824554443 318 | -0.13585340976715088 319 | -4.833519458770752 320 | -1.702152967453003 321 | 0.5525355935096741 322 | 2.487588405609131 323 | 5.1860222816467285 324 | 4.653720855712891 325 | 0.33319705724716187 326 | 3.5602784156799316 327 | 0.23540902137756348 328 | -1.8302702903747559 329 | -1.8752901554107666 330 | -0.26340198516845703 331 | -3.1982243061065674 332 | 19.19955062866211 333 | 3.239985942840576 334 | -0.04010140895843506 335 | -0.4857465922832489 336 | 2.6424121856689453 337 | 8.458839416503906 338 | 19.560619354248047 339 | 9.484195709228516 340 | -1.2076395750045776 341 | 6.82568359375 342 | -2.5940067768096924 343 | -4.28366231918335 344 | 1.8355023860931396 345 | 1.374812126159668 346 | 13.152467727661133 347 | -0.7252789735794067 348 | -0.6059522032737732 349 | -5.2346978187561035 350 | -3.5637197494506836 351 | 5.303111553192139 352 | 4.274020195007324 353 | -3.668731689453125 354 | -2.775763750076294 355 | 1.085017204284668 356 | 0.9072000980377197 357 | 1.028080701828003 358 | 2.1822478771209717 359 | -5.765645980834961 360 | 3.7155532836914062 361 | -5.2149658203125 362 | -1.699224829673767 363 | 4.188720703125 364 | 0.05851900577545166 365 | 0.2454061508178711 366 | -16.839588165283203 367 | 3.269340753555298 368 | 2.615363121032715 369 | -1.7589324712753296 370 | -6.03325080871582 371 | 2.521084785461426 372 | -3.138780355453491 373 | 0.18415984511375427 374 | -1.5813813209533691 375 | -14.139870643615723 376 | 0.10127770900726318 377 | -1.7694309949874878 378 | 0.3315885066986084 379 | -8.770101547241211 380 | 0.6139640212059021 381 | -2.3571338653564453 382 | 2.7610676288604736 383 | -1.6557191610336304 384 | -10.511931419372559 385 | 5.054128170013428 386 | 5.500720024108887 387 | 4.639270305633545 388 | -7.6733293533325195 389 | -1.9732182025909424 390 | -1.6912157535552979 391 | 0.307016521692276 392 | 3.2085113525390625 393 | 1.2435519695281982 394 | -1.7627856731414795 395 | -1.5103824138641357 396 | -0.06851556897163391 397 | -2.3863205909729004 398 | -0.9805980920791626 399 | -1.8230013847351074 400 | -0.8861333131790161 401 | -1.631744146347046 402 | 1.9397926330566406 403 | -0.9813957214355469 404 | -3.2266969680786133 405 | -2.38504958152771 406 | -0.6958737969398499 407 | -1.922438383102417 408 | 4.276126861572266 409 | 9.640910148620605 410 | -2.4795656204223633 411 | -4.310983657836914 412 | -3.1865508556365967 413 | -5.125565528869629 414 | 5.376930236816406 415 | -4.706075668334961 416 | -1.9515225887298584 417 | -10.430269241333008 418 | 0.8483549952507019 419 | -0.5997791290283203 420 | 2.39424467086792 421 | -4.3246283531188965 422 | 5.270153522491455 423 | -0.05887395143508911 424 | -5.610496997833252 425 | 1.493807077407837 426 | -0.02224498987197876 427 | 3.8456788063049316 428 | 10.471821784973145 429 | 2.566802740097046 430 | 4.957968235015869 431 | 1.2716615200042725 432 | 1.518052577972412 433 | 0.5827003717422485 434 | 1.6315932273864746 435 | -3.5673470497131348 436 | 0.5255362391471863 437 | -1.2302242517471313 438 | 3.4631879329681396 439 | 3.7387659549713135 440 | 1.6712696552276611 441 | 3.559584140777588 442 | 0.491931676864624 443 | 2.8767945766448975 444 | 0.6141854524612427 445 | 4.476684093475342 446 | 2.5212700366973877 447 | -11.536705017089844 448 | 6.701764106750488 449 | 1.5398151874542236 450 | -1.0274717807769775 451 | -0.6241106986999512 452 | 1.2740800380706787 453 | 9.260510444641113 454 | -0.07599735260009766 455 | 0.15110108256340027 456 | -1.1886048316955566 457 | -3.2588539123535156 458 | 2.7458882331848145 459 | -5.295082092285156 460 | 3.1508378982543945 461 | -0.1333935260772705 462 | -6.775470733642578 463 | -6.647056579589844 464 | -0.36111941933631897 465 | 0.6212186813354492 466 | 3.345435380935669 467 | -0.9244873523712158 468 | 13.993489265441895 469 | 1.4199373722076416 470 | 0.8912760019302368 471 | -1.1086866855621338 472 | 5.915426254272461 473 | 0.11504107713699341 474 | -2.74638295173645 475 | -0.6882827877998352 476 | -3.092482566833496 477 | 2.617630958557129 478 | -6.165031433105469 479 | -1.597594976425171 480 | -6.657697677612305 481 | 1.442688226699829 482 | 4.435525894165039 483 | 6.721107006072998 484 | 1.267147183418274 485 | 2.9843530654907227 486 | 3.4453299045562744 487 | -4.0967116355896 488 | -1.0583686828613281 489 | -8.707447052001953 490 | 0.9936404228210449 491 | 3.31331729888916 492 | 1.285251498222351 493 | 1.0514509677886963 494 | -5.615561485290527 495 | 6.927208423614502 496 | -7.843029975891113 497 | 1.054128885269165 498 | 1.6628751754760742 499 | 2.43890643119812 500 | 2.4594969749450684 501 | 2.6050686836242676 502 | -6.151167392730713 503 | 2.283945322036743 504 | 1.348642349243164 505 | -16.92657470703125 506 | -9.517613410949707 507 | 0.6286441683769226 508 | 5.910276889801025 509 | -3.80955171585083 510 | -4.0212483406066895 511 | 0.8145663142204285 512 | 0.8017678260803223 513 | -1.0087687969207764 514 | -1.7055836915969849 515 | -11.53584098815918 516 | 0.21833348274230957 517 | -1.2812036275863647 518 | 1.4646087884902954 519 | -4.798403263092041 520 | -7.445712089538574 521 | -9.327160835266113 522 | -2.0490286350250244 523 | -2.55367374420166 524 | 2.696427345275879 525 | 0.6865619421005249 526 | 1.3604958057403564 527 | -5.111103057861328 528 | -0.7210435271263123 529 | -3.156101942062378 530 | 1.7918986082077026 531 | 0.500120997428894 532 | 2.4578781127929688 533 | -1.2309885025024414 534 | 3.389530658721924 535 | -3.4346485137939453 536 | 1.3776495456695557 537 | 0.8824317455291748 538 | 14.764095306396484 539 | -0.7849886417388916 540 | -0.29055577516555786 541 | 3.847158432006836 542 | -2.8242931365966797 543 | -4.16998291015625 544 | -2.388361692428589 545 | -2.6543242931365967 546 | 0.33740541338920593 547 | -17.919042587280273 548 | 0.7509257793426514 549 | 0.26720839738845825 550 | 0.806614100933075 551 | -3.901890754699707 552 | 6.6661882400512695 553 | -9.037735939025879 554 | -0.708615779876709 555 | -2.3562722206115723 556 | -3.3386569023132324 557 | 3.7697792053222656 558 | 5.8339009284973145 559 | -1.300870656967163 560 | -0.04300487041473389 561 | -2.675089120864868 562 | -9.10778522491455 563 | -0.37100258469581604 564 | -3.9978036880493164 565 | -0.2389245629310608 566 | 8.955245971679688 567 | 4.557186603546143 568 | -0.09062856435775757 569 | -0.13936054706573486 570 | -2.8185112476348877 571 | -7.505850791931152 572 | 1.8394802808761597 573 | 0.8707087635993958 574 | -2.9613542556762695 575 | -3.9689183235168457 576 | 1.475084662437439 577 | -1.9871892929077148 578 | 1.65561044216156 579 | -0.9708389043807983 580 | -0.3094160258769989 581 | 0.6473826169967651 582 | 0.3675088882446289 583 | -1.2274866104125977 584 | -1.2718077898025513 585 | -2.261587619781494 586 | 1.9561361074447632 587 | 2.752578020095825 588 | -3.4701716899871826 589 | 1.1241440773010254 590 | 1.96224045753479 591 | 0.3506581783294678 592 | -2.862901449203491 593 | -0.15242016315460205 594 | 4.8494038581848145 595 | -0.1219160333275795 596 | -0.19938181340694427 597 | -0.8195697069168091 598 | 1.15504789352417 599 | -1.84428071975708 600 | 9.667484283447266 601 | -0.7416492700576782 602 | 1.0495530366897583 603 | 0.5514336228370667 604 | 0.9185915589332581 605 | 0.08359293639659882 606 | -1.5937166213989258 607 | -1.18454909324646 608 | 3.649371385574341 609 | 7.247281074523926 610 | -4.00306510925293 611 | 6.593286037445068 612 | -2.84720516204834 613 | 4.052644729614258 614 | 1.0803292989730835 615 | 0.28227245807647705 616 | 3.201280355453491 617 | 1.4723832607269287 618 | 3.8655123710632324 619 | 1.5774204730987549 620 | -2.0647435188293457 621 | 2.4449496269226074 622 | -3.745553493499756 623 | 0.1713266372680664 624 | -1.682403326034546 625 | 0.33482053875923157 626 | 0.10536336898803711 627 | -3.823253870010376 628 | 0.9702374935150146 629 | -5.174874305725098 630 | -7.707967281341553 631 | 0.8006627559661865 632 | 2.4975228309631348 633 | -1.7049225568771362 634 | 1.0133326053619385 635 | -5.895505905151367 636 | -2.2466518878936768 637 | 10.731560707092285 638 | -1.3635234832763672 639 | -6.040794372558594 640 | -1.7060215473175049 641 | 0.7248574495315552 642 | 0.7314443588256836 643 | 0.6813900470733643 644 | -0.5599619746208191 645 | -0.6464627981185913 646 | 6.233367919921875 647 | -2.3071978092193604 648 | 2.179427146911621 649 | 11.05140209197998 650 | -1.10779869556427 651 | -1.2058433294296265 652 | -2.0864205360412598 653 | 3.875175714492798 654 | -12.166791915893555 655 | 1.0955064296722412 656 | -9.395623207092285 657 | 2.0545949935913086 658 | 1.707780361175537 659 | -0.941973090171814 660 | -5.612087726593018 661 | 4.834059238433838 662 | -4.387779235839844 663 | 1.5285601615905762 664 | -3.891463279724121 665 | -4.901797294616699 666 | -0.066780686378479 667 | -1.2511532306671143 668 | -0.37770402431488037 669 | -16.075302124023438 670 | 2.2070791721343994 671 | 3.4722537994384766 672 | 1.1244785785675049 673 | -0.10680282115936279 674 | -0.2614498734474182 675 | 4.533886432647705 676 | 1.8251426219940186 677 | 6.41457986831665 678 | -0.7410872578620911 679 | -4.269443511962891 680 | -1.7450380325317383 681 | -3.889766216278076 682 | -3.72542142868042 683 | 2.5201268196105957 684 | 0.5782778859138489 685 | 0.9366909861564636 686 | 4.765671253204346 687 | -11.194644927978516 688 | -3.964719772338867 689 | 6.571825981140137 690 | -8.22944450378418 691 | 2.2100980281829834 692 | -2.704589366912842 693 | 3.565112590789795 694 | -0.04380917549133301 695 | -3.7337822914123535 696 | 3.131608486175537 697 | 6.891961097717285 698 | -8.383713722229004 699 | -2.3474068641662598 700 | 2.3256001472473145 701 | -0.6732964515686035 702 | 0.31255078315734863 703 | 3.11686635017395 704 | -0.5352228879928589 705 | -3.8264076709747314 706 | 2.5155763626098633 707 | 5.1121721267700195 708 | 0.15193265676498413 709 | -0.9998273253440857 710 | -3.4685001373291016 711 | -3.9379067420959473 712 | 4.056238651275635 713 | -0.09960976243019104 714 | 4.928740501403809 715 | -4.665186882019043 716 | -1.5454927682876587 717 | 1.0078755617141724 718 | 1.7821484804153442 719 | -5.29939603805542 720 | 5.733755588531494 721 | 11.510316848754883 722 | -0.2533656060695648 723 | -0.5332709550857544 724 | 2.0291748046875 725 | 2.394489049911499 726 | 2.323220729827881 727 | -2.825850009918213 728 | -1.7394585609436035 729 | -5.743311405181885 730 | -5.196483612060547 731 | 4.448519229888916 732 | 1.349411964416504 733 | -5.9827880859375 734 | -0.5108665227890015 735 | -6.611700057983398 736 | 0.12985444068908691 737 | 3.311370611190796 738 | 3.8246266841888428 739 | 4.926580429077148 740 | 1.6819134950637817 741 | 5.541012287139893 742 | 0.17781773209571838 743 | 0.822661280632019 744 | 2.050842046737671 745 | -4.464343070983887 746 | -3.14878511428833 747 | -3.1720781326293945 748 | 1.5834201574325562 749 | -2.0859196186065674 750 | -1.4012433290481567 751 | -2.5393950939178467 752 | -1.5126886367797852 753 | 1.1795520782470703 754 | -0.4433560073375702 755 | -3.834843635559082 756 | 0.06581437587738037 757 | 0.362244188785553 758 | 1.9710028171539307 759 | 1.4174336194992065 760 | 3.118905544281006 761 | -0.19114136695861816 762 | 2.0710134506225586 763 | -1.1406807899475098 764 | 0.4042525291442871 765 | -0.4678890109062195 766 | 1.544208288192749 767 | -7.870110988616943 768 | -6.052628517150879 769 | -------------------------------------------------------------------------------- /sampled_speaker/suiji.csv: -------------------------------------------------------------------------------- 1 | 0.5920109748840332 2 | -8.356558799743652 3 | 2.1029422283172607 4 | 0.6247060894966125 5 | -3.145813465118408 6 | -3.47432541847229 7 | -7.717238426208496 8 | -3.47904896736145 9 | -3.1264493465423584 10 | -10.539483070373535 11 | 2.9913418292999268 12 | 4.690536022186279 13 | -1.2964463233947754 14 | 2.3408401012420654 15 | 2.76212739944458 16 | -0.8749438524246216 17 | 5.424830913543701 18 | -5.358668804168701 19 | -8.519980430603027 20 | -1.752210021018982 21 | 4.766153335571289 22 | -5.491333961486816 23 | 1.8171507120132446 24 | 31.7508544921875 25 | 0.8307625651359558 26 | -3.5098702907562256 27 | -4.926693439483643 28 | -1.093940258026123 29 | 1.6030592918395996 30 | 1.3653161525726318 31 | 3.332247257232666 32 | -0.7293833494186401 33 | 2.515399217605591 34 | -2.8560876846313477 35 | 4.00189733505249 36 | 1.4122190475463867 37 | -0.7768312692642212 38 | 7.066980361938477 39 | -4.244531631469727 40 | 2.1078410148620605 41 | -0.1365310698747635 42 | -0.07147574424743652 43 | 4.851849555969238 44 | 5.357725620269775 45 | -12.047005653381348 46 | 3.617932081222534 47 | 0.5479501485824585 48 | -6.959105014801025 49 | -3.000847816467285 50 | -2.2273714542388916 51 | 3.622056722640991 52 | 1.28347647190094 53 | -4.789793968200684 54 | -0.9177432060241699 55 | 1.7647970914840698 56 | 1.0486985445022583 57 | -1.9659688472747803 58 | 2.354099750518799 59 | -5.537582874298096 60 | -3.6422808170318604 61 | -4.055800437927246 62 | 0.37413936853408813 63 | 3.2273478507995605 64 | -5.962545871734619 65 | -0.39229297637939453 66 | -1.2685480117797852 67 | 0.08507567644119263 68 | -8.293229103088379 69 | 4.5206499099731445 70 | -0.49125635623931885 71 | -1.857947587966919 72 | -0.21542295813560486 73 | -0.5423760414123535 74 | -4.345266342163086 75 | 2.835049629211426 76 | 0.07808837294578552 77 | 2.269577741622925 78 | -9.865488052368164 79 | 0.882379412651062 80 | 0.8185648322105408 81 | 3.2282416820526123 82 | -7.158186912536621 83 | -3.4807190895080566 84 | -2.9512858390808105 85 | 3.869637966156006 86 | 2.732083797454834 87 | 0.09201228618621826 88 | -4.399163722991943 89 | 0.9493193626403809 90 | -0.7992810010910034 91 | 2.0494043827056885 92 | 0.35745230317115784 93 | -4.578701019287109 94 | 0.2733430564403534 95 | 3.10965895652771 96 | -11.92564582824707 97 | -2.392679214477539 98 | -1.5503640174865723 99 | 2.070176601409912 100 | -1.1248481273651123 101 | -2.214736223220825 102 | 1.6901963949203491 103 | -0.34409642219543457 104 | -3.4094252586364746 105 | 3.3079981803894043 106 | -1.8035143613815308 107 | -1.696352481842041 108 | 3.82114315032959 109 | 9.562506675720215 110 | -0.8987652063369751 111 | 4.749528884887695 112 | 1.0585377216339111 113 | -0.892179012298584 114 | -2.446207284927368 115 | 0.7834478616714478 116 | -3.441693067550659 117 | 1.5008466243743896 118 | -0.2116631269454956 119 | 7.408458709716797 120 | 0.25808823108673096 121 | 2.05639910697937 122 | -2.954807996749878 123 | -1.5010679960250854 124 | -2.0582427978515625 125 | -8.760773658752441 126 | -1.473057508468628 127 | -3.1622886657714844 128 | 1.7429574728012085 129 | -0.494899719953537 130 | -1.9892066717147827 131 | 3.4514317512512207 132 | 7.427417278289795 133 | 4.076526641845703 134 | -3.287655830383301 135 | 12.221821784973145 136 | 2.2901628017425537 137 | -5.126609802246094 138 | -4.806379318237305 139 | 8.269479751586914 140 | 0.9346970319747925 141 | 1.042921543121338 142 | 2.8398849964141846 143 | 4.298099517822266 144 | -0.15980444848537445 145 | 2.3002142906188965 146 | 3.2732491493225098 147 | -2.5408926010131836 148 | -6.843415260314941 149 | -1.1084791421890259 150 | -2.0009050369262695 151 | -2.787773370742798 152 | -1.3830293416976929 153 | -0.4218367636203766 154 | 7.938013076782227 155 | 0.9319480061531067 156 | -0.93876713514328 157 | -0.5562717318534851 158 | -0.36039793491363525 159 | -1.5475834608078003 160 | -6.173575401306152 161 | 3.783013105392456 162 | 1.5486620664596558 163 | 1.5112091302871704 164 | -8.316350936889648 165 | -1.3680241107940674 166 | 0.6586236953735352 167 | -1.1860429048538208 168 | 0.31141772866249084 169 | 3.788620948791504 170 | -1.249663233757019 171 | 10.527039527893066 172 | -1.6050982475280762 173 | -2.442417860031128 174 | -1.5613319873809814 175 | 0.22394061088562012 176 | 2.03705096244812 177 | -1.3221286535263062 178 | -2.5137012004852295 179 | 0.5130822658538818 180 | 3.4783434867858887 181 | 2.4804699420928955 182 | 1.6530728340148926 183 | 2.4527087211608887 184 | -4.9326581954956055 185 | 0.7683396339416504 186 | 0.4985167980194092 187 | -13.69064998626709 188 | 2.685404062271118 189 | 7.379525661468506 190 | 2.588120460510254 191 | 1.484963297843933 192 | -1.383169174194336 193 | -5.526226997375488 194 | -8.265524864196777 195 | -1.5523806810379028 196 | 3.7506818771362305 197 | 1.7617511749267578 198 | -2.0563814640045166 199 | 0.3096466064453125 200 | -2.6590065956115723 201 | 3.8857340812683105 202 | 7.859636306762695 203 | 0.6463710069656372 204 | -1.5749900341033936 205 | 4.461972713470459 206 | 0.39854252338409424 207 | 2.8178679943084717 208 | 9.968759536743164 209 | 11.955235481262207 210 | 1.2820481061935425 211 | -0.06319335103034973 212 | -2.0380282402038574 213 | -1.0677111148834229 214 | 8.877265930175781 215 | -0.8384557366371155 216 | -0.2882300615310669 217 | 2.187650203704834 218 | 16.50308609008789 219 | 1.4334725141525269 220 | 6.821673393249512 221 | 1.8989319801330566 222 | 2.9754228591918945 223 | 0.25042474269866943 224 | 5.503454685211182 225 | 5.561670303344727 226 | -0.6201561689376831 227 | 0.34610748291015625 228 | 1.4482526779174805 229 | 0.16664499044418335 230 | -0.7606756687164307 231 | -2.3581056594848633 232 | -4.802084922790527 233 | 3.923072338104248 234 | -1.985419511795044 235 | 0.7274741530418396 236 | 3.558548927307129 237 | -1.0436811447143555 238 | 2.421586513519287 239 | 1.358381748199463 240 | 0.47802555561065674 241 | 3.1276967525482178 242 | 5.114646911621094 243 | -3.7480297088623047 244 | 1.8315520286560059 245 | 1.7029821872711182 246 | 1.3777308464050293 247 | -1.60862398147583 248 | 1.4626562595367432 249 | 5.285638809204102 250 | -3.6304664611816406 251 | 0.8203223347663879 252 | 1.4302579164505005 253 | 3.5831663608551025 254 | 3.3655436038970947 255 | -2.996664524078369 256 | -1.0920205116271973 257 | 10.581308364868164 258 | -4.498768329620361 259 | -3.0897252559661865 260 | -5.237630844116211 261 | 0.9584587216377258 262 | 1.7727378606796265 263 | -2.164867877960205 264 | 2.260038137435913 265 | -2.64558744430542 266 | 0.07938823103904724 267 | 0.6753538846969604 268 | 14.670580863952637 269 | 2.548156261444092 270 | -0.26498591899871826 271 | -3.493743896484375 272 | 2.1692111492156982 273 | -0.36620187759399414 274 | 3.053539276123047 275 | -1.1615427732467651 276 | -2.753415107727051 277 | -1.1465444564819336 278 | -4.159585475921631 279 | 1.0034008026123047 280 | -0.7977761030197144 281 | -3.2329697608947754 282 | -0.15659117698669434 283 | -0.6595458984375 284 | -0.17365992069244385 285 | 1.1548887491226196 286 | -2.0910751819610596 287 | 6.326791763305664 288 | 1.7070506811141968 289 | -6.881896018981934 290 | -0.34313783049583435 291 | 3.5319087505340576 292 | -3.3657045364379883 293 | -0.19801998138427734 294 | -2.1340372562408447 295 | 3.9652066230773926 296 | 1.2369362115859985 297 | -2.203533887863159 298 | 6.933150291442871 299 | 1.6759533882141113 300 | -1.6583112478256226 301 | 1.0771605968475342 302 | 0.8757951855659485 303 | 4.630723476409912 304 | 0.05472517013549805 305 | 1.6614545583724976 306 | -1.2933917045593262 307 | 16.108823776245117 308 | -2.3552565574645996 309 | 2.083526134490967 310 | 1.4662244319915771 311 | 10.551721572875977 312 | 1.0526758432388306 313 | -4.422740936279297 314 | -2.526203155517578 315 | 3.7745230197906494 316 | 2.59535551071167 317 | 4.017430782318115 318 | -1.9965579509735107 319 | -2.0111117362976074 320 | 1.3401368856430054 321 | -1.0839860439300537 322 | -0.32268619537353516 323 | 0.8679430484771729 324 | -1.9782626628875732 325 | -7.003688812255859 326 | -3.176637649536133 327 | 3.705911159515381 328 | -6.878616809844971 329 | 1.337254285812378 330 | -2.957324743270874 331 | 2.5124707221984863 332 | 9.49307918548584 333 | 1.255842924118042 334 | 7.458822250366211 335 | 0.3395211696624756 336 | -4.551534652709961 337 | 6.845952987670898 338 | 2.482156991958618 339 | -2.3655433654785156 340 | -4.016130447387695 341 | -4.286137104034424 342 | -4.122256278991699 343 | 3.38397216796875 344 | 3.049164295196533 345 | -1.8560287952423096 346 | -16.080053329467773 347 | 3.3858063220977783 348 | 0.08407458662986755 349 | 3.2425689697265625 350 | 2.805255889892578 351 | 1.0577939748764038 352 | -0.950042724609375 353 | 1.676797866821289 354 | 4.85474967956543 355 | -0.9136860370635986 356 | -0.12171792984008789 357 | -3.459104299545288 358 | 0.09763014316558838 359 | -3.1131813526153564 360 | 4.499687194824219 361 | 1.3953747749328613 362 | -0.5306179523468018 363 | 6.617455005645752 364 | 2.910092353820801 365 | 6.439974308013916 366 | -10.546661376953125 367 | 1.0970745086669922 368 | -1.532029151916504 369 | 0.11556831002235413 370 | 4.581216335296631 371 | -3.10391902923584 372 | 0.35588568449020386 373 | 0.1611093282699585 374 | 1.936476230621338 375 | 4.133114814758301 376 | -0.6651550531387329 377 | -0.7038186192512512 378 | -0.09700298309326172 379 | 3.245072364807129 380 | 0.987983226776123 381 | -18.517141342163086 382 | 0.15516233444213867 383 | -4.533130645751953 384 | -14.442718505859375 385 | -1.0750548839569092 386 | -7.586962699890137 387 | 0.6587420105934143 388 | -0.8867313861846924 389 | 2.2235732078552246 390 | 0.7866066694259644 391 | 1.8902130126953125 392 | 3.3451032638549805 393 | -3.417325258255005 394 | 0.7870688438415527 395 | 0.5593892931938171 396 | 1.8417091369628906 397 | 6.915794372558594 398 | -0.9516341686248779 399 | 4.715278148651123 400 | -0.35917454957962036 401 | -0.31317269802093506 402 | -4.109536647796631 403 | -1.0018168687820435 404 | 2.611830711364746 405 | -2.4167606830596924 406 | 2.1632659435272217 407 | 14.976027488708496 408 | 2.3677215576171875 409 | 6.740421772003174 410 | 1.1493597030639648 411 | -2.5353007316589355 412 | -0.5282204151153564 413 | 5.228378772735596 414 | 0.10174962878227234 415 | 1.1698429584503174 416 | -2.4514594078063965 417 | -6.144498825073242 418 | 1.145355224609375 419 | 4.3749494552612305 420 | 2.052717447280884 421 | -1.0791844129562378 422 | -7.370429992675781 423 | -1.0182149410247803 424 | -6.389021396636963 425 | 1.7504467964172363 426 | -1.8583569526672363 427 | 4.668797016143799 428 | 3.5170860290527344 429 | -1.90803062915802 430 | -1.5707197189331055 431 | 0.45557886362075806 432 | 2.2260046005249023 433 | -3.260117769241333 434 | -4.814145088195801 435 | -1.3851124048233032 436 | 2.484577178955078 437 | 2.3892884254455566 438 | 2.5309643745422363 439 | 0.09366998076438904 440 | 0.14977234601974487 441 | 1.5546232461929321 442 | -0.003760010004043579 443 | 1.4592071771621704 444 | -2.3874258995056152 445 | 0.16046977043151855 446 | 1.209385871887207 447 | -13.510082244873047 448 | -1.7939343452453613 449 | 1.118086576461792 450 | -4.212174415588379 451 | 4.445499897003174 452 | 0.5455719828605652 453 | 0.41136693954467773 454 | -3.4040675163269043 455 | 4.155801296234131 456 | 2.350713014602661 457 | -0.5321106910705566 458 | 1.6144301891326904 459 | -1.7058193683624268 460 | 1.8228390216827393 461 | 3.884265899658203 462 | -2.61047625541687 463 | 1.3941489458084106 464 | 0.012036621570587158 465 | 3.317959785461426 466 | 0.6366463899612427 467 | 1.433513879776001 468 | 8.44719123840332 469 | 2.1142818927764893 470 | 2.566412925720215 471 | 0.7556767463684082 472 | 16.220458984375 473 | -2.4228038787841797 474 | 5.503085613250732 475 | 0.5623524188995361 476 | -1.5436251163482666 477 | 0.17326538264751434 478 | -6.542375087738037 479 | 2.049346446990967 480 | 4.17482328414917 481 | 1.0741562843322754 482 | -1.4427814483642578 483 | -2.021223545074463 484 | 1.5604252815246582 485 | -0.8757669925689697 486 | 1.8026255369186401 487 | 0.440338671207428 488 | 1.3884844779968262 489 | -1.4299089908599854 490 | 2.655376434326172 491 | 0.14680853486061096 492 | 0.760388970375061 493 | -12.481118202209473 494 | 0.11927139759063721 495 | 9.800241470336914 496 | 1.582478642463684 497 | 3.1771013736724854 498 | -1.0754776000976562 499 | 0.13463953137397766 500 | 4.0656890869140625 501 | 1.9359102249145508 502 | -3.6815431118011475 503 | -2.0307157039642334 504 | -6.283841609954834 505 | -12.051713943481445 506 | -1.1412348747253418 507 | -2.0982019901275635 508 | 5.227266311645508 509 | -1.5600601434707642 510 | -2.992335557937622 511 | -1.2979055643081665 512 | -0.6480834484100342 513 | -0.10925054550170898 514 | -3.380784749984741 515 | 3.373775005340576 516 | -8.918474197387695 517 | -3.380016803741455 518 | 0.31280359625816345 519 | -0.21801072359085083 520 | -9.076207160949707 521 | -1.0681068897247314 522 | 3.2602274417877197 523 | -4.083377838134766 524 | 5.395449638366699 525 | -5.106943607330322 526 | -0.9551703333854675 527 | 6.925763130187988 528 | 0.6310569643974304 529 | -2.7016265392303467 530 | 0.6095573306083679 531 | 1.2178168296813965 532 | 2.8397769927978516 533 | -5.383357048034668 534 | 3.0664403438568115 535 | 0.09109002351760864 536 | 1.3146218061447144 537 | 5.564245223999023 538 | 6.408173561096191 539 | -3.0986616611480713 540 | 0.22629189491271973 541 | -3.113330364227295 542 | 5.379151344299316 543 | -1.1135088205337524 544 | 2.3226847648620605 545 | -1.8034782409667969 546 | 0.9540268182754517 547 | -4.181864261627197 548 | -1.7373533248901367 549 | 6.385668754577637 550 | 1.8123530149459839 551 | 0.18408960103988647 552 | 0.30330273509025574 553 | -1.148310661315918 554 | 1.7058616876602173 555 | 5.060648441314697 556 | 5.4568281173706055 557 | 2.196174383163452 558 | -5.191104888916016 559 | 5.432793140411377 560 | 1.9792962074279785 561 | -4.122020721435547 562 | -7.550651550292969 563 | -3.121525526046753 564 | 3.488406181335449 565 | 0.015595614910125732 566 | 2.735623359680176 567 | 2.0156490802764893 568 | 2.4059696197509766 569 | 1.3198747634887695 570 | 2.3024611473083496 571 | 1.678558349609375 572 | -1.4948408603668213 573 | 1.2450257539749146 574 | 0.5425224304199219 575 | -2.946662664413452 576 | 3.057223081588745 577 | 1.8298912048339844 578 | 5.1304850578308105 579 | -0.11839011311531067 580 | 0.7645485401153564 581 | 0.38394051790237427 582 | -2.6466758251190186 583 | 5.2512640953063965 584 | -0.056252479553222656 585 | -2.4718618392944336 586 | -4.210948467254639 587 | -1.402132272720337 588 | -3.957695245742798 589 | 3.6337385177612305 590 | -3.978464365005493 591 | -1.951561689376831 592 | 0.8582184314727783 593 | -4.531126022338867 594 | 6.534613609313965 595 | -2.288059711456299 596 | -2.7568302154541016 597 | -0.13646847009658813 598 | -2.1634366512298584 599 | 0.8335269689559937 600 | -5.155355453491211 601 | 4.738046646118164 602 | 1.297861933708191 603 | 1.825976014137268 604 | 0.6155923008918762 605 | -3.986691951751709 606 | 3.2571828365325928 607 | -2.3961710929870605 608 | 1.2763218879699707 609 | 1.8907909393310547 610 | -5.6397905349731445 611 | 2.890435218811035 612 | 0.1317910999059677 613 | 2.2044665813446045 614 | 3.718853235244751 615 | -2.648561477661133 616 | 2.790114641189575 617 | -2.8270933628082275 618 | 2.761806011199951 619 | 5.119067668914795 620 | -2.5491573810577393 621 | 0.3652752637863159 622 | 0.5474076271057129 623 | 4.3783063888549805 624 | -1.6987154483795166 625 | -1.0658777952194214 626 | -0.15131884813308716 627 | 0.3943656086921692 628 | -3.468524694442749 629 | 0.9917062520980835 630 | -11.55723762512207 631 | 2.201292037963867 632 | -4.271396160125732 633 | -1.0315171480178833 634 | -1.8424055576324463 635 | 4.12102746963501 636 | 3.0896763801574707 637 | -3.403139591217041 638 | 1.4156938791275024 639 | -3.3695309162139893 640 | 3.356867790222168 641 | -0.3171691298484802 642 | 0.6594138741493225 643 | 3.8863816261291504 644 | -2.896554470062256 645 | 2.3534975051879883 646 | -2.7879998683929443 647 | 4.652414321899414 648 | -1.8710191249847412 649 | -14.031679153442383 650 | 0.1108967661857605 651 | 1.432839035987854 652 | 1.721998691558838 653 | -2.6417195796966553 654 | -18.26001739501953 655 | -1.3742825984954834 656 | 2.602182149887085 657 | -1.2999584674835205 658 | -1.4655070304870605 659 | -3.6633200645446777 660 | 0.6537480354309082 661 | 1.1739153861999512 662 | -2.7891647815704346 663 | 0.3648185729980469 664 | 4.155414581298828 665 | -1.966710090637207 666 | -6.4386796951293945 667 | -3.3883254528045654 668 | -3.6174161434173584 669 | -2.7632551193237305 670 | -3.355532169342041 671 | -4.969804763793945 672 | 1.5412930250167847 673 | 0.785057544708252 674 | 1.4291719198226929 675 | 0.8586138486862183 676 | -0.7090252637863159 677 | -3.029264450073242 678 | 0.19044101238250732 679 | 3.572174072265625 680 | -1.247819423675537 681 | 3.6380558013916016 682 | -1.0575230121612549 683 | -6.054408073425293 684 | -0.35490310192108154 685 | 0.9202510118484497 686 | 0.669387698173523 687 | 3.0355401039123535 688 | 2.5976316928863525 689 | 3.2449796199798584 690 | -5.7418975830078125 691 | 6.765839099884033 692 | -4.353302001953125 693 | -0.41422533988952637 694 | -1.6831098794937134 695 | -0.12715935707092285 696 | -5.374617576599121 697 | 1.7202417850494385 698 | 14.934329986572266 699 | 0.3009243607521057 700 | 7.725457191467285 701 | -0.3257738947868347 702 | -1.0698692798614502 703 | 0.6774613261222839 704 | 1.6118650436401367 705 | -3.8896126747131348 706 | 0.06592148542404175 707 | 3.721916675567627 708 | 1.3486520051956177 709 | 1.3850975036621094 710 | -2.898083448410034 711 | 2.8211140632629395 712 | -1.3458313941955566 713 | -2.0356438159942627 714 | -4.783629417419434 715 | 1.056495189666748 716 | -4.145668029785156 717 | -0.7469007968902588 718 | -1.4621756076812744 719 | 1.0875240564346313 720 | -1.5625168085098267 721 | 2.8118650913238525 722 | -2.7064125537872314 723 | 2.265354871749878 724 | 2.654254674911499 725 | 2.6702308654785156 726 | 0.5709097385406494 727 | -0.6660075783729553 728 | -1.5231521129608154 729 | 1.1006319522857666 730 | 4.5873236656188965 731 | -1.6745216846466064 732 | 0.483699232339859 733 | 5.99331521987915 734 | -4.055852890014648 735 | 1.1083221435546875 736 | 2.554715871810913 737 | -1.3082722425460815 738 | 3.3194456100463867 739 | 7.9916462898254395 740 | -2.899339199066162 741 | 0.6798713803291321 742 | 1.529923677444458 743 | -1.303325891494751 744 | 4.4920549392700195 745 | -15.150467872619629 746 | -3.541322708129883 747 | 2.324556589126587 748 | -0.8632797002792358 749 | 1.063955307006836 750 | -2.064652919769287 751 | 7.6288251876831055 752 | 2.6340532302856445 753 | -1.5831080675125122 754 | -1.2376201152801514 755 | 1.1151484251022339 756 | -3.434563398361206 757 | 3.000248908996582 758 | 2.4088354110717773 759 | -2.8339476585388184 760 | -1.7130482196807861 761 | -1.478147029876709 762 | -2.534714698791504 763 | -2.5903491973876953 764 | -10.331425666809082 765 | -1.0189390182495117 766 | 7.2272257804870605 767 | -3.126521587371826 768 | -3.778455972671509 769 | -------------------------------------------------------------------------------- /sampled_speaker/dandan.csv: -------------------------------------------------------------------------------- 1 | 2.6674633026123047 2 | 2.2531280517578125 3 | 1.154491662979126 4 | -2.9843173027038574 5 | 2.3905768394470215 6 | 1.6792938709259033 7 | 0.5765748023986816 8 | -0.18212994933128357 9 | 3.740081787109375 10 | -9.492572784423828 11 | -0.6815184354782104 12 | -7.708632469177246 13 | -0.49460119009017944 14 | 3.065093517303467 15 | 2.9717235565185547 16 | 1.5753300189971924 17 | -2.012336254119873 18 | 1.5713038444519043 19 | 2.064885139465332 20 | -0.9510554075241089 21 | 7.40687894821167 22 | -1.3293715715408325 23 | 2.2543184757232666 24 | 10.272348403930664 25 | -2.7053260803222656 26 | -2.3169896602630615 27 | -5.412390232086182 28 | -0.8001918792724609 29 | 0.8481831550598145 30 | -1.243939757347107 31 | 12.445282936096191 32 | -5.269032001495361 33 | -3.97060227394104 34 | 0.18991447985172272 35 | 2.3391780853271484 36 | -1.81908118724823 37 | 1.8460912704467773 38 | 2.0363447666168213 39 | -2.4745264053344727 40 | 0.7379356622695923 41 | -4.378749370574951 42 | 3.3247413635253906 43 | 4.371796607971191 44 | 1.5170397758483887 45 | -30.851884841918945 46 | 2.718883991241455 47 | -0.8958210945129395 48 | 5.536241054534912 49 | 1.598595380783081 50 | -1.1191110610961914 51 | -1.4817185401916504 52 | -3.0219335556030273 53 | 2.572497844696045 54 | -3.870755910873413 55 | 2.0075511932373047 56 | 4.925685882568359 57 | 0.51924067735672 58 | 3.172724485397339 59 | 1.766450047492981 60 | 0.02470242977142334 61 | -1.1138031482696533 62 | 3.496222972869873 63 | 2.0861976146698 64 | -2.6859211921691895 65 | 1.20535147190094 66 | 0.802508533000946 67 | -2.2802791595458984 68 | 0.0395970344543457 69 | 0.5298426151275635 70 | 3.0418286323547363 71 | 1.2718658447265625 72 | 3.155579090118408 73 | -0.36195430159568787 74 | 5.555687427520752 75 | -1.0115513801574707 76 | 3.3239858150482178 77 | 10.02521800994873 78 | 1.1316065788269043 79 | -3.248414993286133 80 | 0.7640273571014404 81 | 4.329006195068359 82 | -0.37831854820251465 83 | 0.5717623829841614 84 | 3.0464015007019043 85 | 4.201277732849121 86 | 2.55478835105896 87 | -7.1075849533081055 88 | -1.6021121740341187 89 | 0.802436113357544 90 | -5.07959508895874 91 | -5.015750885009766 92 | -2.381510019302368 93 | 1.3807721138000488 94 | -0.25549331307411194 95 | 6.29587984085083 96 | -11.268556594848633 97 | 1.0757451057434082 98 | -0.015262186527252197 99 | -1.2661490440368652 100 | 4.5417704582214355 101 | -2.8621017932891846 102 | 1.6577463150024414 103 | -6.597447872161865 104 | 0.6270993947982788 105 | -1.7608582973480225 106 | -0.035192862153053284 107 | -1.1725038290023804 108 | -2.3211233615875244 109 | 6.453834533691406 110 | 0.07827866077423096 111 | 3.0787861347198486 112 | 6.538235187530518 113 | -16.243118286132812 114 | -0.9740853905677795 115 | 4.284988880157471 116 | 4.10754919052124 117 | 1.8845210075378418 118 | 4.517495155334473 119 | -0.48455333709716797 120 | 3.410001754760742 121 | 0.4844130277633667 122 | -2.691342353820801 123 | -0.36142632365226746 124 | 1.7018953561782837 125 | -14.82030963897705 126 | 10.023066520690918 127 | 0.17483073472976685 128 | -2.2744765281677246 129 | -0.6583390235900879 130 | -1.8046244382858276 131 | 1.6674153804779053 132 | -1.2046823501586914 133 | -0.12808381021022797 134 | -1.0936323404312134 135 | 4.636568069458008 136 | 3.2281157970428467 137 | -7.896249771118164 138 | 2.0704703330993652 139 | -25.137439727783203 140 | -1.4197556972503662 141 | -1.4571030139923096 142 | 0.9643652439117432 143 | -1.8200578689575195 144 | 0.7370849847793579 145 | 3.6978204250335693 146 | 1.1619830131530762 147 | 0.035902202129364014 148 | -3.59445858001709 149 | 1.8344768285751343 150 | -6.104096412658691 151 | 0.764178991317749 152 | 0.39625656604766846 153 | -1.1055595874786377 154 | -3.6119327545166016 155 | 2.018400192260742 156 | 2.8272616863250732 157 | -2.9063966274261475 158 | 1.6279077529907227 159 | 2.395750045776367 160 | -3.5605015754699707 161 | 1.7590564489364624 162 | 0.5044639110565186 163 | 0.4386507272720337 164 | -4.029755592346191 165 | 1.9977043867111206 166 | 2.025391101837158 167 | -2.1606321334838867 168 | 3.815056562423706 169 | 2.4548442363739014 170 | 3.9975900650024414 171 | 3.7537829875946045 172 | 3.157602548599243 173 | -10.573131561279297 174 | -1.7289036512374878 175 | -1.729327917098999 176 | 0.19354407489299774 177 | -2.691479444503784 178 | 1.6238988637924194 179 | -0.5678989887237549 180 | 2.6375479698181152 181 | 0.24903790652751923 182 | 4.004009246826172 183 | 0.13232780992984772 184 | -0.14222073554992676 185 | -0.3660317361354828 186 | 2.760190010070801 187 | 1.529862880706787 188 | -1.9785571098327637 189 | 6.2864484786987305 190 | -0.05359303951263428 191 | 2.1690118312835693 192 | 1.4001322984695435 193 | -1.6203969717025757 194 | 2.2599363327026367 195 | 0.3590203523635864 196 | -1.8247780799865723 197 | -3.193277597427368 198 | 0.019993126392364502 199 | -3.2221078872680664 200 | 0.9197138547897339 201 | -3.3318002223968506 202 | -0.2729792594909668 203 | -1.7203309535980225 204 | -6.4817986488342285 205 | 5.0406341552734375 206 | 0.9178295731544495 207 | -6.271799564361572 208 | 5.8488922119140625 209 | 10.582717895507812 210 | 1.0682368278503418 211 | 0.5296005010604858 212 | 0.8525440692901611 213 | 1.8871374130249023 214 | 5.2848358154296875 215 | 3.601158618927002 216 | 0.21337571740150452 217 | 0.015972167253494263 218 | -12.13685131072998 219 | 2.381321430206299 220 | -2.4611520767211914 221 | 1.0576168298721313 222 | 12.555159568786621 223 | 1.1173882484436035 224 | 8.20029354095459 225 | 3.1485588550567627 226 | -5.4622273445129395 227 | -0.3232485055923462 228 | 0.8889050483703613 229 | 0.9995589256286621 230 | 1.8578073978424072 231 | 3.592376232147217 232 | -4.46443510055542 233 | -1.9583075046539307 234 | 5.594040870666504 235 | -0.16424483060836792 236 | 0.8941236138343811 237 | -0.7470650672912598 238 | 7.143184661865234 239 | 0.3800889253616333 240 | -2.8536834716796875 241 | 0.24143916368484497 242 | -4.858044147491455 243 | 0.9886832237243652 244 | 0.23546910285949707 245 | 1.1619466543197632 246 | 3.340938091278076 247 | -3.6435909271240234 248 | 2.255441188812256 249 | 16.2349853515625 250 | -0.13444262742996216 251 | -1.8954365253448486 252 | 2.313093662261963 253 | -3.989403009414673 254 | 0.22449353337287903 255 | 2.7209033966064453 256 | 2.4766528606414795 257 | -4.071735382080078 258 | 8.394478797912598 259 | 0.5194309949874878 260 | -0.8284069895744324 261 | 0.2736506164073944 262 | 3.453572988510132 263 | 0.7363368272781372 264 | 1.3640177249908447 265 | -1.5944972038269043 266 | -1.2546141147613525 267 | -7.944281578063965 268 | 1.2252517938613892 269 | -1.2180695533752441 270 | 1.8555026054382324 271 | 3.4209461212158203 272 | 1.9264354705810547 273 | -0.9475917816162109 274 | 1.3369017839431763 275 | 0.7910926938056946 276 | -2.603079319000244 277 | 2.3441858291625977 278 | 2.283184766769409 279 | -5.742457866668701 280 | 0.020736277103424072 281 | 1.733351230621338 282 | -3.040735960006714 283 | 1.2234463691711426 284 | 1.3943856954574585 285 | 5.012721538543701 286 | 0.6654954552650452 287 | -2.5652565956115723 288 | 5.55180025100708 289 | 1.185389757156372 290 | -2.347059726715088 291 | -3.894948959350586 292 | 0.33947688341140747 293 | 3.3624653816223145 294 | 1.2813732624053955 295 | -4.246044158935547 296 | 3.185852527618408 297 | 2.0221657752990723 298 | -5.726799964904785 299 | -2.6670312881469727 300 | 1.566762089729309 301 | 0.025139451026916504 302 | 0.09540200233459473 303 | -0.19986508786678314 304 | -5.36708402633667 305 | -0.6776993870735168 306 | -1.4231112003326416 307 | 15.55052375793457 308 | -0.6266605854034424 309 | 3.795650005340576 310 | -2.7236130237579346 311 | 0.5217351913452148 312 | 2.0088071823120117 313 | 1.4345204830169678 314 | -0.19211417436599731 315 | 0.3799513876438141 316 | 3.539105176925659 317 | -0.6189848184585571 318 | 4.6010942459106445 319 | -0.19880369305610657 320 | 1.258942723274231 321 | 4.646316051483154 322 | 0.39660727977752686 323 | 0.20219483971595764 324 | 0.5263579487800598 325 | 2.643312454223633 326 | 7.329010009765625 327 | -6.805924415588379 328 | 6.045206546783447 329 | -0.9854012727737427 330 | 1.6559083461761475 331 | -1.1038076877593994 332 | -26.082767486572266 333 | -2.136462450027466 334 | 5.549230098724365 335 | -0.8281438946723938 336 | 4.995815277099609 337 | 7.292372226715088 338 | 14.159123420715332 339 | 2.28875994682312 340 | 3.410399913787842 341 | -4.179664134979248 342 | 0.3193541169166565 343 | -4.9304375648498535 344 | -2.6802079677581787 345 | -2.6896281242370605 346 | 1.4988079071044922 347 | -4.622317790985107 348 | -4.268378257751465 349 | 4.037214279174805 350 | -8.14259147644043 351 | 2.1297919750213623 352 | 3.279498815536499 353 | 4.564212799072266 354 | 1.6421310901641846 355 | 2.3755643367767334 356 | -0.3951328992843628 357 | -2.2960007190704346 358 | 0.4636603593826294 359 | -2.191490650177002 360 | 3.245724678039551 361 | -2.27683687210083 362 | 2.4205973148345947 363 | -1.2746601104736328 364 | -0.7799416780471802 365 | 6.826228618621826 366 | -11.19239616394043 367 | -2.150583028793335 368 | -0.03180193901062012 369 | 1.7145277261734009 370 | -1.803415298461914 371 | 3.4343855381011963 372 | 0.8619351387023926 373 | 3.835503101348877 374 | 1.622393012046814 375 | -0.581472635269165 376 | 0.04330188035964966 377 | 3.5427892208099365 378 | -0.8990774154663086 379 | -3.431206226348877 380 | -0.7693212032318115 381 | 2.0020949840545654 382 | 6.708508491516113 383 | 3.474454164505005 384 | 7.8586883544921875 385 | 2.1803455352783203 386 | -3.504051923751831 387 | -1.9605635404586792 388 | 0.7200745344161987 389 | 1.7799131870269775 390 | -0.5019965171813965 391 | -0.13781213760375977 392 | -3.945669174194336 393 | 3.1400539875030518 394 | -1.1330311298370361 395 | -3.139509677886963 396 | 0.5197253227233887 397 | 1.4302537441253662 398 | -1.6477587223052979 399 | -7.809582710266113 400 | -1.8776911497116089 401 | 0.5257923007011414 402 | -3.517225503921509 403 | 1.6447668075561523 404 | 1.2950055599212646 405 | 9.729517936706543 406 | -2.856646776199341 407 | 0.10881704092025757 408 | -1.189030647277832 409 | -1.370523452758789 410 | -9.157720565795898 411 | -4.902443885803223 412 | -0.4229968786239624 413 | -0.4992656707763672 414 | 2.1209936141967773 415 | -1.9501502513885498 416 | -1.3077272176742554 417 | 3.3582613468170166 418 | 2.190727710723877 419 | -1.9571905136108398 420 | -5.410820007324219 421 | -1.0989316701889038 422 | -4.131218433380127 423 | 2.919550657272339 424 | -3.0826871395111084 425 | -1.1951038837432861 426 | 0.36937081813812256 427 | 4.520992279052734 428 | 7.165037155151367 429 | 3.605348825454712 430 | 0.2530088424682617 431 | -4.259512901306152 432 | 0.1285644769668579 433 | 0.4528322219848633 434 | 3.467532157897949 435 | 1.3992655277252197 436 | -3.5806267261505127 437 | -4.300141334533691 438 | 1.6978676319122314 439 | -3.560145616531372 440 | 6.282211780548096 441 | 3.433159828186035 442 | 0.466535747051239 443 | -0.695731520652771 444 | -0.08348053693771362 445 | -3.1386303901672363 446 | -0.7416026592254639 447 | 11.473892211914062 448 | 6.491176128387451 449 | 2.862739324569702 450 | 3.982276439666748 451 | 5.7789154052734375 452 | 1.6029400825500488 453 | -4.0963335037231445 454 | -1.8156250715255737 455 | 1.3599411249160767 456 | 0.2417813539505005 457 | -1.0704973936080933 458 | -0.034694015979766846 459 | 1.084235668182373 460 | -4.643760681152344 461 | 2.877912998199463 462 | -0.5126171112060547 463 | -0.9174494743347168 464 | 0.2824059724807739 465 | -0.023704737424850464 466 | 0.6430321931838989 467 | 4.358736515045166 468 | -4.625250339508057 469 | -19.53321075439453 470 | 1.6187944412231445 471 | -0.6133151054382324 472 | 18.22225570678711 473 | 2.603501796722412 474 | 7.474050521850586 475 | 1.2043938636779785 476 | 0.05247190222144127 477 | 1.5681507587432861 478 | 3.4293277263641357 479 | -0.8641891479492188 480 | 1.0884993076324463 481 | -1.4418110847473145 482 | -0.8270680904388428 483 | 1.3728917837142944 484 | 1.7099690437316895 485 | -0.14346377551555634 486 | 0.7568540573120117 487 | 0.6999799013137817 488 | 4.994623184204102 489 | -5.975836753845215 490 | -4.203258514404297 491 | -0.1729399710893631 492 | -1.5939091444015503 493 | -9.125710487365723 494 | -15.10827350616455 495 | -3.6862664222717285 496 | -3.3554494380950928 497 | 0.3471924066543579 498 | 0.17097824811935425 499 | 0.5733816027641296 500 | 1.2357382774353027 501 | -3.0748398303985596 502 | 1.9629137516021729 503 | 5.852046966552734 504 | 1.5999314785003662 505 | -10.797124862670898 506 | -6.519282341003418 507 | -1.0438703298568726 508 | 1.1298776865005493 509 | 0.9358358979225159 510 | -2.0671019554138184 511 | 2.031255006790161 512 | 0.10482326149940491 513 | -1.2386255264282227 514 | -3.3089427947998047 515 | 1.183176875114441 516 | -0.12671828269958496 517 | 0.1220855712890625 518 | -2.808020830154419 519 | -6.67585563659668 520 | 7.153763294219971 521 | 0.01175546646118164 522 | 1.403917670249939 523 | -2.2230632305145264 524 | 2.2737679481506348 525 | -4.455179214477539 526 | 0.5491564273834229 527 | 8.941503524780273 528 | 0.2481767237186432 529 | -0.5891736149787903 530 | -0.9141769409179688 531 | -3.405705213546753 532 | 1.874808430671692 533 | -2.2969250679016113 534 | -1.4321119785308838 535 | -2.2198100090026855 536 | 0.8508254289627075 537 | -4.2692790031433105 538 | -8.89480972290039 539 | -6.359705924987793 540 | -9.33238697052002 541 | 1.121602177619934 542 | -11.50041675567627 543 | -5.45845890045166 544 | -0.9768919944763184 545 | 6.882225036621094 546 | -6.10317325592041 547 | 11.702295303344727 548 | 5.012721538543701 549 | -1.6074774265289307 550 | -1.2102471590042114 551 | 3.375311851501465 552 | 6.291982650756836 553 | 3.1793737411499023 554 | 1.182809829711914 555 | 2.997889518737793 556 | -2.8048551082611084 557 | 0.9684234857559204 558 | 1.5968780517578125 559 | 1.8281333446502686 560 | 2.8711023330688477 561 | 2.215824604034424 562 | -2.080109119415283 563 | 0.3732854723930359 564 | 2.0006892681121826 565 | 7.299366474151611 566 | 1.3523335456848145 567 | -2.323866605758667 568 | 3.270796060562134 569 | -1.0759984254837036 570 | -2.69981050491333 571 | -0.09264826774597168 572 | 2.003620147705078 573 | 2.9176297187805176 574 | 1.7509779930114746 575 | -7.843372344970703 576 | -6.357914447784424 577 | -2.171970844268799 578 | -4.235386848449707 579 | -1.6707948446273804 580 | 0.18178969621658325 581 | -3.4926955699920654 582 | -3.933187484741211 583 | -4.354260444641113 584 | -4.265830993652344 585 | -0.7254225611686707 586 | -7.259115219116211 587 | 2.9839046001434326 588 | -3.0152225494384766 589 | 3.338984727859497 590 | 1.054062843322754 591 | -1.6890422105789185 592 | 2.410997152328491 593 | 2.1618990898132324 594 | 4.267936706542969 595 | 0.5840625166893005 596 | 2.549147605895996 597 | 0.11818289756774902 598 | 1.7107223272323608 599 | -3.3367929458618164 600 | 4.526564598083496 601 | 3.1524722576141357 602 | -0.8604379892349243 603 | 2.8121159076690674 604 | -2.8152027130126953 605 | 1.997963547706604 606 | 0.9162880778312683 607 | 3.2788100242614746 608 | 2.3276724815368652 609 | 6.14490270614624 610 | -3.6595993041992188 611 | 15.28886604309082 612 | -2.3650786876678467 613 | 2.61251163482666 614 | 0.3516254723072052 615 | 1.6932786703109741 616 | 2.0831751823425293 617 | -1.9119279384613037 618 | 0.28310686349868774 619 | -1.612470269203186 620 | -1.725110650062561 621 | -0.17598474025726318 622 | -2.584764242172241 623 | 0.28930041193962097 624 | -0.9188140630722046 625 | -0.20037031173706055 626 | 6.228382587432861 627 | -2.695748805999756 628 | -4.99582052230835 629 | 3.3683342933654785 630 | -5.0434112548828125 631 | -0.24300435185432434 632 | -7.090396404266357 633 | -2.9156413078308105 634 | 4.22404146194458 635 | -3.009871006011963 636 | -3.186256170272827 637 | 4.829489707946777 638 | 0.10148793458938599 639 | -5.685910224914551 640 | -1.1289215087890625 641 | -3.6828184127807617 642 | 1.4473615884780884 643 | -9.295588493347168 644 | 3.124666213989258 645 | 1.7820160388946533 646 | -6.886987686157227 647 | 0.39556747674942017 648 | 7.232456684112549 649 | 10.8524169921875 650 | -2.1495211124420166 651 | 0.7900110483169556 652 | -2.6834073066711426 653 | 1.0309371948242188 654 | -8.989949226379395 655 | -0.6157994866371155 656 | 0.5211247801780701 657 | 2.6013431549072266 658 | -14.135608673095703 659 | -0.586644172668457 660 | -3.8746914863586426 661 | 6.0084733963012695 662 | -1.6048649549484253 663 | 0.9034559726715088 664 | 0.892180860042572 665 | 4.806579113006592 666 | -0.07218456268310547 667 | -1.574048399925232 668 | 3.2410390377044678 669 | 4.91038179397583 670 | 1.9585154056549072 671 | -3.318228244781494 672 | -0.8231003880500793 673 | 0.15035337209701538 674 | 2.4683218002319336 675 | 0.38304877281188965 676 | 1.376604437828064 677 | -1.2379218339920044 678 | -1.3027541637420654 679 | -1.1360048055648804 680 | 5.759879112243652 681 | -1.5019214153289795 682 | -0.09949140250682831 683 | 1.9071272611618042 684 | -1.359257459640503 685 | -1.2225244045257568 686 | 1.2596157789230347 687 | 5.638211250305176 688 | -1.564598560333252 689 | 4.364488124847412 690 | -11.88062572479248 691 | -2.8873977661132812 692 | -7.102072238922119 693 | 0.2544589042663574 694 | -8.927560806274414 695 | 17.341264724731445 696 | -0.45808473229408264 697 | 6.523803234100342 698 | -6.565556049346924 699 | -1.37649405002594 700 | -7.779207706451416 701 | -2.7752363681793213 702 | -1.383070707321167 703 | 2.128391981124878 704 | 0.1283876597881317 705 | 0.6074132919311523 706 | 4.740054130554199 707 | 4.0340800285339355 708 | -2.5688607692718506 709 | -3.9349544048309326 710 | 1.892280101776123 711 | 3.687161445617676 712 | 0.6211713552474976 713 | 1.4280328750610352 714 | 0.8632500171661377 715 | 1.2939962148666382 716 | -3.902682065963745 717 | -2.4340012073516846 718 | 0.004142839461565018 719 | -0.40350961685180664 720 | -3.980384349822998 721 | 2.196615695953369 722 | -1.632461667060852 723 | 4.877889156341553 724 | -1.5502363443374634 725 | 3.70512318611145 726 | 2.0144572257995605 727 | -2.1241953372955322 728 | -3.574537754058838 729 | -2.1114330291748047 730 | -3.520392656326294 731 | -4.796000957489014 732 | -0.19472211599349976 733 | -1.5272960662841797 734 | -3.2377405166625977 735 | -5.478363513946533 736 | 0.580843448638916 737 | -1.3235656023025513 738 | 2.8285973072052 739 | 3.3379533290863037 740 | 2.3995471000671387 741 | -0.014876872301101685 742 | 2.64314866065979 743 | -1.1436302661895752 744 | 2.755319118499756 745 | 1.0690078735351562 746 | -1.7783607244491577 747 | 1.8152024745941162 748 | -6.917562961578369 749 | -4.415398597717285 750 | 2.9963431358337402 751 | -2.8276636600494385 752 | 1.0675313472747803 753 | 0.8066263198852539 754 | 1.4075802564620972 755 | 2.652411460876465 756 | -1.357138991355896 757 | -0.5265822410583496 758 | 0.9143129587173462 759 | -0.9219915866851807 760 | 3.713731050491333 761 | 2.169952154159546 762 | 4.241998195648193 763 | -3.816326141357422 764 | -0.47824740409851074 765 | -0.07066985964775085 766 | 4.001088619232178 767 | 1.8120498657226562 768 | 1.2665355205535889 769 | -------------------------------------------------------------------------------- /sampled_speaker/niuniu.csv: -------------------------------------------------------------------------------- 1 | 3.7898154258728027 2 | 9.050782203674316 3 | -1.6839244365692139 4 | 9.152838706970215 5 | 3.2660884857177734 6 | 0.3532963693141937 7 | -4.819451332092285 8 | -1.234500527381897 9 | 0.18513450026512146 10 | -2.5440962314605713 11 | 0.05666834115982056 12 | 3.0266027450561523 13 | 5.717358112335205 14 | 1.6517137289047241 15 | 2.3053557872772217 16 | 4.3424224853515625 17 | 3.540154457092285 18 | -4.027687072753906 19 | 0.10951370000839233 20 | -0.37695014476776123 21 | 25.908061981201172 22 | -0.15862935781478882 23 | 4.213372230529785 24 | 16.06392478942871 25 | 0.5766270160675049 26 | -0.38630759716033936 27 | -15.280630111694336 28 | 3.262711524963379 29 | 0.712088406085968 30 | -4.1723151206970215 31 | -0.35258305072784424 32 | 1.1171401739120483 33 | 4.813625335693359 34 | -2.631195306777954 35 | 1.4657979011535645 36 | 2.7197694778442383 37 | -3.9267444610595703 38 | -0.5638993978500366 39 | -4.310454368591309 40 | 2.915811777114868 41 | 3.2963435649871826 42 | 2.1175055503845215 43 | 6.003845691680908 44 | 3.077981472015381 45 | -6.993849754333496 46 | 0.8451758623123169 47 | 3.2206881046295166 48 | -4.204288482666016 49 | 2.7657384872436523 50 | -5.892745494842529 51 | 0.24629467725753784 52 | 1.675389289855957 53 | 1.8789267539978027 54 | 0.704391360282898 55 | 0.49144381284713745 56 | 1.6567240953445435 57 | -0.7379127144813538 58 | 0.2602093815803528 59 | -1.419560432434082 60 | -5.458359718322754 61 | -1.4600446224212646 62 | -0.17836877703666687 63 | 4.670119285583496 64 | 5.085412979125977 65 | 1.4810763597488403 66 | -0.6178367733955383 67 | 4.494208335876465 68 | -7.344106674194336 69 | 3.7783684730529785 70 | 3.3432328701019287 71 | 0.27916234731674194 72 | -0.4117313027381897 73 | 4.720891952514648 74 | 1.753172755241394 75 | -3.598809003829956 76 | -0.7815408706665039 77 | -3.3732590675354004 78 | 5.530499458312988 79 | -0.8730193972587585 80 | -4.732973098754883 81 | 4.407744407653809 82 | -0.6548510789871216 83 | 0.04143989086151123 84 | 6.564359664916992 85 | 6.267295837402344 86 | -0.8829813599586487 87 | 0.9909172654151917 88 | -5.1926984786987305 89 | -3.457939386367798 90 | -2.433021068572998 91 | -11.534990310668945 92 | -4.36163854598999 93 | 0.718783438205719 94 | -3.454880475997925 95 | -2.2889766693115234 96 | -5.008780479431152 97 | 1.0507228374481201 98 | -0.5098220109939575 99 | 2.9098942279815674 100 | 1.7566750049591064 101 | 1.0502161979675293 102 | 2.286102533340454 103 | -1.1778783798217773 104 | 0.9168586134910583 105 | -7.076545238494873 106 | 1.0931601524353027 107 | 3.3361003398895264 108 | -0.6222763061523438 109 | 3.361103057861328 110 | 2.8764915466308594 111 | -3.1651687622070312 112 | 21.711334228515625 113 | -2.0503487586975098 114 | 0.35420340299606323 115 | 1.3948909044265747 116 | 1.4538651704788208 117 | -0.7720696926116943 118 | 3.100344181060791 119 | 1.3816421031951904 120 | 2.0388333797454834 121 | -5.810705661773682 122 | -2.500065326690674 123 | -1.2384569644927979 124 | -1.1855666637420654 125 | 5.811046600341797 126 | -1.1888480186462402 127 | 2.277707815170288 128 | -2.1689600944519043 129 | -0.12833285331726074 130 | -3.4123356342315674 131 | -4.3584136962890625 132 | 1.927666187286377 133 | 0.670846164226532 134 | 2.0179312229156494 135 | 3.1436283588409424 136 | 2.1824564933776855 137 | -8.977899551391602 138 | -0.22732436656951904 139 | -3.2265357971191406 140 | -3.623558521270752 141 | -0.9322651028633118 142 | -2.6683783531188965 143 | 3.906747341156006 144 | 4.9283857345581055 145 | 2.1609561443328857 146 | -7.724826335906982 147 | 1.1054086685180664 148 | -2.107835292816162 149 | -1.4355770349502563 150 | -2.0087997913360596 151 | 1.78519606590271 152 | -3.929936408996582 153 | 4.208196640014648 154 | -1.5792465209960938 155 | -7.730506896972656 156 | 0.730587363243103 157 | 2.165804624557495 158 | -0.2271944284439087 159 | -0.6016408205032349 160 | -1.8798089027404785 161 | 0.8083226680755615 162 | 2.380302906036377 163 | -3.550255060195923 164 | 14.362411499023438 165 | 2.036114454269409 166 | 1.9844752550125122 167 | 1.5168417692184448 168 | -3.3485541343688965 169 | -2.5606446266174316 170 | 5.105024814605713 171 | 7.018777847290039 172 | 1.1665343046188354 173 | -9.197965621948242 174 | -2.6963188648223877 175 | -0.03767910599708557 176 | -0.235377237200737 177 | 1.6085788011550903 178 | 1.5886540412902832 179 | -1.4253114461898804 180 | -4.979179382324219 181 | 1.5296742916107178 182 | -1.7162666320800781 183 | -3.264474868774414 184 | 6.772907733917236 185 | -0.23690426349639893 186 | 3.927341938018799 187 | -11.63296890258789 188 | -5.35978889465332 189 | 5.316818714141846 190 | -5.413902282714844 191 | 0.7226393818855286 192 | 2.333289623260498 193 | -3.3614258766174316 194 | -2.8365888595581055 195 | -6.691900253295898 196 | -8.974486351013184 197 | -0.6583238840103149 198 | -1.9964574575424194 199 | -6.683687210083008 200 | -4.376349449157715 201 | -2.847045421600342 202 | -2.4081380367279053 203 | -4.542289733886719 204 | -1.613044261932373 205 | 3.676589250564575 206 | 0.06317844986915588 207 | 2.6347689628601074 208 | -3.0591516494750977 209 | -24.371437072753906 210 | 3.3642220497131348 211 | 4.319626808166504 212 | 1.0542277097702026 213 | 0.9964265823364258 214 | 1.7538385391235352 215 | -6.432480812072754 216 | 1.9132086038589478 217 | 2.2531096935272217 218 | 10.208650588989258 219 | 2.1644842624664307 220 | 6.516425132751465 221 | -1.4417145252227783 222 | -8.315176010131836 223 | 1.114661693572998 224 | -0.8882112503051758 225 | 1.5172462463378906 226 | 1.8723888397216797 227 | -2.3578033447265625 228 | 1.2471224069595337 229 | -3.423975706100464 230 | 0.059076547622680664 231 | -0.0031005144119262695 232 | -4.789953708648682 233 | 3.1162960529327393 234 | -0.8209086656570435 235 | 1.234304666519165 236 | 2.3770864009857178 237 | 6.599557876586914 238 | 2.6768136024475098 239 | 0.8660100698471069 240 | -3.259758949279785 241 | -1.994722604751587 242 | -0.8009986877441406 243 | -0.2202000617980957 244 | 0.777642011642456 245 | 0.9589918255805969 246 | 1.1071064472198486 247 | -1.5712060928344727 248 | 0.14066123962402344 249 | 3.0396628379821777 250 | -2.079843759536743 251 | 7.423654556274414 252 | 0.9744457006454468 253 | 0.3257189095020294 254 | 4.555947303771973 255 | -24.92643928527832 256 | 0.6815370321273804 257 | -3.1471171379089355 258 | -13.65478515625 259 | -0.5714966058731079 260 | -0.08819633722305298 261 | -1.6459805965423584 262 | 4.851980686187744 263 | 6.087656021118164 264 | 1.7634546756744385 265 | 0.06075344979763031 266 | 1.5764182806015015 267 | -2.9991140365600586 268 | 7.233907222747803 269 | -1.1898770332336426 270 | 1.9147446155548096 271 | 0.7047709226608276 272 | 2.972973346710205 273 | -10.08407211303711 274 | -0.2859959602355957 275 | 0.6852440237998962 276 | 2.6508235931396484 277 | -1.520158052444458 278 | 0.7799928784370422 279 | -2.2272591590881348 280 | 0.08628389239311218 281 | -3.6476919651031494 282 | 1.0849891901016235 283 | 1.1561799049377441 284 | -0.6526622176170349 285 | 6.667848110198975 286 | 0.41329070925712585 287 | -2.7062320709228516 288 | -0.931647002696991 289 | -6.842403888702393 290 | -0.26058828830718994 291 | -3.9060721397399902 292 | -3.9933557510375977 293 | 5.507383346557617 294 | 2.4149932861328125 295 | -3.4131903648376465 296 | 2.0662145614624023 297 | 0.6135920286178589 298 | 13.332197189331055 299 | 4.387911319732666 300 | 3.40649676322937 301 | 1.04591703414917 302 | -1.2233004570007324 303 | 2.5396602153778076 304 | -2.3612184524536133 305 | 0.8726359009742737 306 | -1.6699098348617554 307 | 10.306543350219727 308 | -2.6132521629333496 309 | 1.502734661102295 310 | -2.037104606628418 311 | 1.0844998359680176 312 | 2.3051183223724365 313 | -0.7152488231658936 314 | 1.3440074920654297 315 | -3.737058639526367 316 | -6.692233085632324 317 | 2.6202728748321533 318 | 3.318373680114746 319 | 0.9657354354858398 320 | 2.4858312606811523 321 | 0.0439283549785614 322 | 4.20327091217041 323 | -0.5065921545028687 324 | -0.9948761463165283 325 | -0.6028093099594116 326 | -12.189123153686523 327 | 1.403518557548523 328 | -9.29985523223877 329 | -2.0659608840942383 330 | 0.2130962610244751 331 | -0.19273525476455688 332 | -22.085718154907227 333 | -7.496208190917969 334 | -6.966835975646973 335 | 0.46836113929748535 336 | 4.767322063446045 337 | 15.81705379486084 338 | 6.874507427215576 339 | -0.6827595233917236 340 | -2.8477699756622314 341 | 0.5984734892845154 342 | 1.3096004724502563 343 | 1.005368709564209 344 | 2.102341413497925 345 | 3.5373692512512207 346 | 1.7200284004211426 347 | 2.3606441020965576 348 | -0.7892431616783142 349 | 5.6343584060668945 350 | -10.115967750549316 351 | -5.626162052154541 352 | 0.8164820671081543 353 | 5.145562648773193 354 | -1.9355629682540894 355 | -1.9431332349777222 356 | -2.456686019897461 357 | -4.018393516540527 358 | 8.219532012939453 359 | 2.8697965145111084 360 | 7.4737443923950195 361 | -1.6807605028152466 362 | -0.417111337184906 363 | -4.163774013519287 364 | 2.1832492351531982 365 | 2.471773386001587 366 | -15.058979034423828 367 | -0.9452983140945435 368 | 3.509906768798828 369 | -5.783753395080566 370 | 6.849687576293945 371 | -2.4241092205047607 372 | 0.48681533336639404 373 | -4.743428707122803 374 | -8.432639122009277 375 | 0.9788922071456909 376 | -5.495955467224121 377 | 3.081752300262451 378 | -0.914132297039032 379 | -2.7332756519317627 380 | -0.18847547471523285 381 | -8.930168151855469 382 | -2.5890917778015137 383 | 1.027505874633789 384 | -12.534448623657227 385 | -3.1772000789642334 386 | 2.938424587249756 387 | -2.7294771671295166 388 | 2.24245548248291 389 | 0.30803966522216797 390 | 2.5840368270874023 391 | -5.7871599197387695 392 | 1.589721441268921 393 | 0.2694697380065918 394 | 1.4948980808258057 395 | -0.593254804611206 396 | 0.6531766653060913 397 | 8.223503112792969 398 | 1.2046058177947998 399 | -0.3008584976196289 400 | -4.053394317626953 401 | 1.374669075012207 402 | -1.1013424396514893 403 | 0.17617416381835938 404 | 4.401438236236572 405 | -16.61326026916504 406 | 3.050159215927124 407 | 7.239127159118652 408 | -1.5700944662094116 409 | 1.9084019660949707 410 | -5.035458087921143 411 | 0.9318690299987793 412 | 5.48840856552124 413 | -3.0181663036346436 414 | 6.2855916023254395 415 | 1.5430057048797607 416 | 7.336994171142578 417 | -7.028558731079102 418 | -0.15328919887542725 419 | 1.0589427947998047 420 | 6.679201126098633 421 | 0.6224033832550049 422 | -2.920870304107666 423 | -2.49133563041687 424 | 1.8975439071655273 425 | -0.37519875168800354 426 | -2.0345892906188965 427 | -0.9709889888763428 428 | 9.28260612487793 429 | 2.7232213020324707 430 | 1.790061116218567 431 | 2.149660348892212 432 | 0.2352777123451233 433 | -3.1829323768615723 434 | -1.1343982219696045 435 | -4.590274810791016 436 | -12.948477745056152 437 | 3.588745594024658 438 | 0.8198525905609131 439 | -0.727353572845459 440 | -2.542464017868042 441 | -5.624921798706055 442 | -2.4422390460968018 443 | 1.9440462589263916 444 | -1.2170584201812744 445 | -7.154613018035889 446 | -5.144239902496338 447 | 18.44317054748535 448 | 2.300248861312866 449 | -0.9889262318611145 450 | 6.529319763183594 451 | 6.876326084136963 452 | 1.0943182706832886 453 | 5.971215724945068 454 | -2.375105857849121 455 | -0.4257141351699829 456 | 7.132959842681885 457 | -4.333734035491943 458 | 2.443230628967285 459 | -2.756561517715454 460 | -3.2275872230529785 461 | 4.060237407684326 462 | -1.2330536842346191 463 | 0.29129207134246826 464 | -2.719028949737549 465 | 4.086155891418457 466 | -3.2323527336120605 467 | 1.507219910621643 468 | 14.748045921325684 469 | 5.982842922210693 470 | -0.810330867767334 471 | 0.20416414737701416 472 | 0.8110148906707764 473 | -1.7624603509902954 474 | -0.05860424041748047 475 | 0.5388674736022949 476 | 0.4816368520259857 477 | 2.317549467086792 478 | -14.08511734008789 479 | -4.467073917388916 480 | -6.475837707519531 481 | 1.2224009037017822 482 | -4.12687873840332 483 | 2.937776803970337 484 | -1.677497386932373 485 | -6.863963603973389 486 | 4.0942063331604 487 | 3.0298285484313965 488 | 1.442290186882019 489 | -2.5815134048461914 490 | -0.29572129249572754 491 | 2.994202136993408 492 | 0.11787921190261841 493 | 15.64169979095459 494 | -5.885467052459717 495 | 10.98379135131836 496 | 3.5955684185028076 497 | 3.1704132556915283 498 | 4.574789047241211 499 | -2.2726199626922607 500 | 0.41220176219940186 501 | 0.2664874494075775 502 | 4.180679798126221 503 | -0.01760578155517578 504 | -1.881833791732788 505 | -5.054157257080078 506 | -15.403958320617676 507 | 2.1496191024780273 508 | -5.303447723388672 509 | 1.614220142364502 510 | -1.1561321020126343 511 | -0.5838683247566223 512 | -0.030792444944381714 513 | -9.547131538391113 514 | -0.5952502489089966 515 | 3.7699027061462402 516 | -3.0975537300109863 517 | 1.4482754468917847 518 | 2.043008804321289 519 | 1.6908890008926392 520 | 1.581253170967102 521 | -5.211352825164795 522 | 2.604302167892456 523 | 0.011622607707977295 524 | 2.1291162967681885 525 | -3.6367712020874023 526 | -1.2179092168807983 527 | -3.7500319480895996 528 | -1.2696698904037476 529 | -0.4231615662574768 530 | -0.9652990102767944 531 | 1.1623523235321045 532 | 0.6454325914382935 533 | -10.272026062011719 534 | -2.387425422668457 535 | -2.6175568103790283 536 | -3.115490436553955 537 | 1.3251371383666992 538 | -13.405938148498535 539 | 0.6774545907974243 540 | -1.341965913772583 541 | 1.6386101245880127 542 | 0.28009772300720215 543 | -2.211808919906616 544 | 1.8173494338989258 545 | 2.3564701080322266 546 | -2.434243679046631 547 | -18.178234100341797 548 | 0.22874921560287476 549 | -7.604060173034668 550 | -2.211678981781006 551 | 0.6660101413726807 552 | 3.70686936378479 553 | 18.126678466796875 554 | 0.4282008409500122 555 | 1.9102306365966797 556 | -4.684333324432373 557 | 4.148894309997559 558 | 2.3643784523010254 559 | 1.553929328918457 560 | -0.12401804327964783 561 | 4.76679801940918 562 | -11.659883499145508 563 | -1.1989096403121948 564 | 3.3687925338745117 565 | 1.083615779876709 566 | -4.994688034057617 567 | 0.204598069190979 568 | -3.783635139465332 569 | -3.431079626083374 570 | -0.2520085573196411 571 | -3.020291328430176 572 | 4.409842014312744 573 | 2.1980395317077637 574 | -4.948468208312988 575 | 4.12003755569458 576 | 7.1730451583862305 577 | -8.191291809082031 578 | -0.7781716585159302 579 | -1.4515290260314941 580 | 0.28229057788848877 581 | 1.3713479042053223 582 | -5.330479621887207 583 | -0.7725234031677246 584 | 3.4397497177124023 585 | 3.7864670753479004 586 | 5.388514995574951 587 | -2.0870048999786377 588 | -3.0861148834228516 589 | -4.179708480834961 590 | -2.1952733993530273 591 | -1.506400227546692 592 | -4.3142876625061035 593 | 2.4103968143463135 594 | -0.03473532199859619 595 | -4.367639541625977 596 | 3.1868536472320557 597 | -4.731825351715088 598 | -1.0851303339004517 599 | 0.4512217342853546 600 | 12.661447525024414 601 | 2.9599289894104004 602 | -3.5333635807037354 603 | 1.124724268913269 604 | 1.022831678390503 605 | 5.11005973815918 606 | -2.6203041076660156 607 | -5.453351974487305 608 | -1.0127054452896118 609 | -3.4669551849365234 610 | -0.5375056266784668 611 | -15.086214065551758 612 | 1.3444982767105103 613 | 1.4758119583129883 614 | -1.2108964920043945 615 | -0.30772554874420166 616 | 0.4528053104877472 617 | -5.219579219818115 618 | -2.686216115951538 619 | -0.972610592842102 620 | 2.087341070175171 621 | 1.4625928401947021 622 | -1.8912261724472046 623 | 2.430426836013794 624 | -0.06466418504714966 625 | 1.359662652015686 626 | 0.6030933856964111 627 | -0.5713432431221008 628 | 4.150594234466553 629 | 4.740601539611816 630 | 1.8360447883605957 631 | -1.2737947702407837 632 | 2.9159860610961914 633 | -1.7017631530761719 634 | 0.04371613264083862 635 | -3.599386215209961 636 | -0.8074721693992615 637 | 3.7954728603363037 638 | -2.036362648010254 639 | -1.3728469610214233 640 | -2.1009268760681152 641 | 0.5082193613052368 642 | -0.09710332751274109 643 | 3.303736448287964 644 | 0.35657650232315063 645 | 3.9297211170196533 646 | -0.5622529983520508 647 | -2.457333564758301 648 | 0.35406291484832764 649 | -5.862068176269531 650 | -1.1082502603530884 651 | 1.8021373748779297 652 | -2.203986644744873 653 | -2.1732394695281982 654 | -1.4110851287841797 655 | 3.1236259937286377 656 | 5.464812278747559 657 | 3.5182271003723145 658 | -4.305025100708008 659 | -3.152413845062256 660 | -0.7224169969558716 661 | -1.1463274955749512 662 | 3.720412254333496 663 | -1.454244613647461 664 | -3.014648199081421 665 | -3.1126837730407715 666 | -2.1118905544281006 667 | 3.506463050842285 668 | -1.600632905960083 669 | -2.767035484313965 670 | 0.8486512899398804 671 | -0.08609127998352051 672 | -1.5173442363739014 673 | 1.446845293045044 674 | -4.997870922088623 675 | 3.4025306701660156 676 | -3.5238037109375 677 | 2.228421449661255 678 | -3.2136096954345703 679 | -2.5419747829437256 680 | 3.624964952468872 681 | 5.003712177276611 682 | -2.5533671379089355 683 | 10.268157005310059 684 | -2.4957644939422607 685 | 0.5140572786331177 686 | 1.7027168273925781 687 | 6.5684733390808105 688 | -2.063802719116211 689 | 5.345518112182617 690 | 0.06109774112701416 691 | -0.9458558559417725 692 | -8.103363037109375 693 | 3.2054572105407715 694 | -1.419277548789978 695 | 3.9096577167510986 696 | 0.9213404655456543 697 | 3.289656639099121 698 | 0.726447343826294 699 | -3.2161383628845215 700 | -14.22390365600586 701 | -4.874043941497803 702 | 6.543941020965576 703 | 0.09972810745239258 704 | -6.720571994781494 705 | -1.125098466873169 706 | 1.9864375591278076 707 | -6.330575466156006 708 | -1.8645222187042236 709 | 1.103850245475769 710 | 2.723663806915283 711 | 6.527170181274414 712 | 2.397648334503174 713 | 3.850041151046753 714 | -1.1269967555999756 715 | 1.4526818990707397 716 | -3.5612940788269043 717 | 2.23563551902771 718 | -2.927644968032837 719 | 1.4294304847717285 720 | 1.5802252292633057 721 | -3.7294232845306396 722 | -2.979586124420166 723 | 6.274807929992676 724 | -1.3559564352035522 725 | 1.3982293605804443 726 | 2.746555805206299 727 | -1.1798920631408691 728 | 1.5649526119232178 729 | -0.2508200407028198 730 | 0.5910488367080688 731 | -0.7501188516616821 732 | 3.979774236679077 733 | 1.0744483470916748 734 | -1.6453081369400024 735 | 1.0833282470703125 736 | -0.06474056839942932 737 | 0.4190881550312042 738 | -0.16894608736038208 739 | 6.911827564239502 740 | -0.4237174987792969 741 | 3.861431837081909 742 | 0.2459426075220108 743 | 1.154906988143921 744 | -0.3299068212509155 745 | -7.662776947021484 746 | 1.4893314838409424 747 | -6.049004554748535 748 | -1.8714457750320435 749 | -3.7141032218933105 750 | -1.516177773475647 751 | -5.590501308441162 752 | 0.5043789148330688 753 | -0.22902663052082062 754 | -0.542688250541687 755 | 0.33668068051338196 756 | -2.32401180267334 757 | -2.1579058170318604 758 | 2.0966575145721436 759 | -1.9918498992919922 760 | -1.6734881401062012 761 | -2.078507661819458 762 | 1.5275850296020508 763 | 2.870853900909424 764 | -5.678981781005859 765 | 1.145603895187378 766 | 2.539885997772217 767 | 0.7537635564804077 768 | 1.6817781925201416 769 | -------------------------------------------------------------------------------- /sampled_speaker/wenrou_nansheng.csv: -------------------------------------------------------------------------------- 1 | 3.9253363609313965 2 | 6.958266735076904 3 | -4.3787522315979 4 | -3.9854650497436523 5 | 3.14373779296875 6 | 0.8107840418815613 7 | -0.562664270401001 8 | 0.9065726399421692 9 | -4.915673732757568 10 | 5.444836139678955 11 | 2.9862334728240967 12 | -5.308183670043945 13 | -2.7350587844848633 14 | -3.6054017543792725 15 | -5.691981315612793 16 | 3.599473714828491 17 | 3.4267916679382324 18 | -2.4738025665283203 19 | 10.428287506103516 20 | 2.0368759632110596 21 | 1.3125286102294922 22 | 3.0230400562286377 23 | -3.32302188873291 24 | 3.3226728439331055 25 | -0.4483488202095032 26 | -0.39685142040252686 27 | -1.8501625061035156 28 | 2.4663076400756836 29 | 1.315131664276123 30 | -1.598233699798584 31 | -11.232089042663574 32 | -0.5061923265457153 33 | -5.915317535400391 34 | 1.8678410053253174 35 | 0.20718806982040405 36 | -6.520060062408447 37 | -4.480561256408691 38 | -3.494011402130127 39 | -1.3340554237365723 40 | 2.3201820850372314 41 | 4.479475021362305 42 | -0.9462260007858276 43 | 5.8389387130737305 44 | 0.21139425039291382 45 | 5.767847061157227 46 | 0.8235679864883423 47 | -2.0589590072631836 48 | -0.3799569606781006 49 | -4.1884565353393555 50 | -0.9514986872673035 51 | 3.821242094039917 52 | 1.1150591373443604 53 | 6.4072957038879395 54 | -1.0311729907989502 55 | -2.0681090354919434 56 | 4.955578327178955 57 | -0.07609100639820099 58 | -2.4177136421203613 59 | 0.2439848929643631 60 | 3.364675283432007 61 | -3.6981070041656494 62 | -1.229383945465088 63 | -3.881606101989746 64 | 0.5523824691772461 65 | 1.44778573513031 66 | 0.2678295969963074 67 | 0.4073939323425293 68 | -1.7401232719421387 69 | 1.776975154876709 70 | -0.4153093099594116 71 | -0.6745774745941162 72 | 0.3620702624320984 73 | -2.4871726036071777 74 | 1.5981801748275757 75 | -0.682010293006897 76 | -0.6317158341407776 77 | -0.08588564395904541 78 | -7.016421794891357 79 | -1.6790815591812134 80 | -0.523120641708374 81 | 1.130874752998352 82 | 2.4307074546813965 83 | -1.7563307285308838 84 | -2.001871347427368 85 | 1.9858427047729492 86 | -6.163475513458252 87 | 6.0457916259765625 88 | -0.20429056882858276 89 | 3.6445486545562744 90 | -0.46326184272766113 91 | -6.826389312744141 92 | -1.1095695495605469 93 | 0.7403743267059326 94 | 3.709172010421753 95 | 0.7175872325897217 96 | -18.710403442382812 97 | 6.081387042999268 98 | 1.689657211303711 99 | 0.4132012128829956 100 | -0.8512430191040039 101 | 2.284709930419922 102 | -0.030987218022346497 103 | 0.4595218598842621 104 | 4.330350875854492 105 | 0.8761199712753296 106 | -4.912031173706055 107 | -4.070209980010986 108 | -2.910700559616089 109 | 10.01707935333252 110 | 2.3966686725616455 111 | 2.485304355621338 112 | -9.620461463928223 113 | 6.607663154602051 114 | 1.059680700302124 115 | 1.0963027477264404 116 | -1.1184041500091553 117 | -1.1863658428192139 118 | 3.494250774383545 119 | 5.655529499053955 120 | -0.5582454800605774 121 | -1.763230800628662 122 | -1.8242428302764893 123 | -2.7552812099456787 124 | 3.372560977935791 125 | 2.0961265563964844 126 | 2.508535385131836 127 | -0.20163995027542114 128 | 2.783172607421875 129 | 1.593299388885498 130 | 1.2972095012664795 131 | -0.4926881790161133 132 | -3.7138919830322266 133 | -0.4935981333255768 134 | 6.148187637329102 135 | 7.6405534744262695 136 | -0.9051918983459473 137 | -5.16288423538208 138 | -1.9227609634399414 139 | -14.948373794555664 140 | 1.7038474082946777 141 | 0.7064368724822998 142 | 0.1285615712404251 143 | 1.0412671566009521 144 | -4.691644668579102 145 | 4.942037105560303 146 | -2.5305747985839844 147 | 1.1194857358932495 148 | -7.184972286224365 149 | -2.9862892627716064 150 | -1.7738066911697388 151 | -6.907995223999023 152 | 1.650221824645996 153 | -4.725180625915527 154 | 6.655881404876709 155 | 6.059288501739502 156 | -1.4903379678726196 157 | -5.7715044021606445 158 | -4.448492527008057 159 | -1.9610620737075806 160 | -0.7476558685302734 161 | -0.2099844217300415 162 | -0.699581503868103 163 | -1.5551046133041382 164 | -6.396739482879639 165 | -1.428105354309082 166 | 8.298036575317383 167 | 0.5180798172950745 168 | -2.66447377204895 169 | -4.192991256713867 170 | 3.803530693054199 171 | -1.3027534484863281 172 | 3.3741495609283447 173 | 0.8588581085205078 174 | 0.11546272039413452 175 | -1.5969971418380737 176 | -1.33802330493927 177 | -1.4835104942321777 178 | 1.991294026374817 179 | 0.2807689607143402 180 | -0.5121182203292847 181 | -0.4860590100288391 182 | -1.8562729358673096 183 | -0.5266784429550171 184 | 3.5009546279907227 185 | 1.2218806743621826 186 | 2.59236741065979 187 | -20.472103118896484 188 | 1.7963805198669434 189 | 3.0600826740264893 190 | 1.4262340068817139 191 | 2.5313453674316406 192 | 4.696172714233398 193 | -4.13944149017334 194 | 3.4659857749938965 195 | 4.337987899780273 196 | -1.4595136642456055 197 | -1.6480791568756104 198 | 1.6500160694122314 199 | 4.130719184875488 200 | 2.24890398979187 201 | 0.6567013263702393 202 | -2.2098302841186523 203 | 3.8166322708129883 204 | -1.468214988708496 205 | -2.01578426361084 206 | 1.241145372390747 207 | 1.3790946006774902 208 | -3.4989194869995117 209 | 15.805227279663086 210 | 3.113041400909424 211 | -1.2102634906768799 212 | -3.2686402797698975 213 | -0.597640335559845 214 | 9.418169021606445 215 | -5.974555015563965 216 | -0.7636680006980896 217 | 4.639781475067139 218 | -13.09999942779541 219 | 7.180317401885986 220 | 4.882840156555176 221 | 3.583238124847412 222 | -3.531989812850952 223 | -0.16697382926940918 224 | 7.200372695922852 225 | 5.824387550354004 226 | -8.247612953186035 227 | -0.6986445188522339 228 | 3.8995168209075928 229 | -3.6819543838500977 230 | 1.8684991598129272 231 | -2.1490941047668457 232 | -7.8416643142700195 233 | -3.3927793502807617 234 | 0.32133448123931885 235 | 1.4349594116210938 236 | 0.7858332991600037 237 | 4.026864051818848 238 | 6.059041976928711 239 | -10.562238693237305 240 | 2.2702476978302 241 | -2.9781556129455566 242 | -10.859169960021973 243 | -17.103181838989258 244 | -2.6062281131744385 245 | 0.22815561294555664 246 | 0.013509392738342285 247 | -4.855340003967285 248 | 3.7834696769714355 249 | 11.406576156616211 250 | -0.7079981565475464 251 | 2.5997416973114014 252 | 1.1532623767852783 253 | -1.8436986207962036 254 | -0.14240097999572754 255 | 3.2312941551208496 256 | -0.3144707679748535 257 | 8.951624870300293 258 | 6.065783500671387 259 | -1.109897494316101 260 | 1.8943359851837158 261 | -0.37358567118644714 262 | -0.4054828882217407 263 | -3.1248862743377686 264 | -2.8532397747039795 265 | -3.024846315383911 266 | 1.6806825399398804 267 | -2.3469769954681396 268 | -0.28217506408691406 269 | -4.926253795623779 270 | 0.28951284289360046 271 | -2.7472763061523438 272 | -4.18715763092041 273 | -10.530071258544922 274 | 5.553009986877441 275 | 2.328333616256714 276 | -4.375964164733887 277 | 7.791709899902344 278 | -0.7508206367492676 279 | -2.8153648376464844 280 | -0.17130941152572632 281 | 2.1220083236694336 282 | -0.772686779499054 283 | -3.9579567909240723 284 | -0.9572691917419434 285 | 0.11475634574890137 286 | -1.9081493616104126 287 | -8.719874382019043 288 | 1.701182246208191 289 | -2.0366244316101074 290 | -1.817596435546875 291 | -2.6724178791046143 292 | 2.5758347511291504 293 | 2.526885747909546 294 | 2.5212900638580322 295 | -5.854193687438965 296 | 4.158119201660156 297 | 3.429279088973999 298 | -2.0391860008239746 299 | 0.7695621252059937 300 | -1.8226772546768188 301 | -2.645385265350342 302 | -1.1688748598098755 303 | 3.5406558513641357 304 | -0.6908847689628601 305 | 1.9273738861083984 306 | -6.586912155151367 307 | 2.7788798809051514 308 | -0.4026978015899658 309 | 0.5082286596298218 310 | 3.3647172451019287 311 | 8.513944625854492 312 | 3.4118826389312744 313 | 3.5581045150756836 314 | 3.153630018234253 315 | -2.299386739730835 316 | -2.609142541885376 317 | -1.8234598636627197 318 | 3.169311046600342 319 | -2.8229973316192627 320 | 2.716843605041504 321 | -0.7869055271148682 322 | 2.8834314346313477 323 | 0.3018586039543152 324 | 2.0242772102355957 325 | -0.19325178861618042 326 | -0.23916149139404297 327 | 5.737156867980957 328 | -9.890714645385742 329 | -2.3972036838531494 330 | 2.7927167415618896 331 | 2.9633214473724365 332 | -10.992615699768066 333 | 0.26598525047302246 334 | 1.0050767660140991 335 | 2.5771484375 336 | -1.141348123550415 337 | 5.730081558227539 338 | -22.19025993347168 339 | 1.1940648555755615 340 | -2.097658634185791 341 | -3.513871669769287 342 | -4.336470603942871 343 | 3.1359364986419678 344 | -0.2096867561340332 345 | 1.3763432502746582 346 | -11.30398941040039 347 | -3.2971479892730713 348 | 2.5667965412139893 349 | -0.2158641815185547 350 | -7.594038963317871 351 | 3.8189897537231445 352 | -9.54382038116455 353 | 4.968285083770752 354 | 1.4877784252166748 355 | -8.885279655456543 356 | -0.023855745792388916 357 | 0.44510889053344727 358 | 2.473463535308838 359 | 1.2929306030273438 360 | -3.6723852157592773 361 | -1.2251110076904297 362 | -3.2197208404541016 363 | 2.7834160327911377 364 | -3.1211485862731934 365 | 4.710231304168701 366 | -3.7569313049316406 367 | -1.4119837284088135 368 | 0.9259021282196045 369 | -1.7957839965820312 370 | 1.8843525648117065 371 | -1.9007289409637451 372 | 1.2520551681518555 373 | 0.17192408442497253 374 | -4.809134006500244 375 | 2.3703558444976807 376 | -0.6869763135910034 377 | -0.5301554203033447 378 | -4.0859456062316895 379 | -4.512564182281494 380 | 2.322129249572754 381 | -18.442054748535156 382 | 1.5279061794281006 383 | -2.4201812744140625 384 | -4.3993754386901855 385 | -5.898117542266846 386 | 2.476531505584717 387 | -6.12139368057251 388 | 2.2642250061035156 389 | -1.0307867527008057 390 | 3.655785083770752 391 | 3.344989538192749 392 | 3.2603514194488525 393 | -2.3643593788146973 394 | -1.3072680234909058 395 | -0.5524692535400391 396 | 0.11666876077651978 397 | -4.173194885253906 398 | 5.160131454467773 399 | -6.786517143249512 400 | 0.4995182752609253 401 | 1.901309847831726 402 | 0.10847806930541992 403 | -0.11293435096740723 404 | -1.6647439002990723 405 | 1.5052897930145264 406 | -1.7728090286254883 407 | -0.3422349691390991 408 | 0.3785741329193115 409 | 17.51258087158203 410 | -1.5650317668914795 411 | -2.091646194458008 412 | -0.42006659507751465 413 | -1.619654893875122 414 | -1.7789101600646973 415 | 0.9829925298690796 416 | -11.139884948730469 417 | -11.0364990234375 418 | -4.261678695678711 419 | -3.7367587089538574 420 | 1.6202600002288818 421 | 1.341861605644226 422 | -0.32028257846832275 423 | 1.6274598836898804 424 | -1.4767866134643555 425 | 0.7093187570571899 426 | -0.6748148202896118 427 | 2.076136589050293 428 | 15.791215896606445 429 | -0.7822685837745667 430 | 7.0705976486206055 431 | -1.9206420183181763 432 | -1.6267471313476562 433 | -2.058323383331299 434 | -4.830176830291748 435 | 1.6845703125 436 | 7.163625717163086 437 | -1.5394916534423828 438 | 4.989022731781006 439 | -1.326122760772705 440 | 5.427080154418945 441 | -6.013006210327148 442 | 1.0943608283996582 443 | 2.8398797512054443 444 | 2.6191368103027344 445 | 1.4992244243621826 446 | -2.0595927238464355 447 | -5.943818092346191 448 | 1.1072311401367188 449 | 1.9705002307891846 450 | 4.2553863525390625 451 | 0.21813324093818665 452 | 4.284130096435547 453 | -3.0002517700195312 454 | -0.760847806930542 455 | 0.010945439338684082 456 | -1.3374278545379639 457 | -4.71036958694458 458 | -1.6725900173187256 459 | -0.35759997367858887 460 | 0.2770507335662842 461 | 2.94087553024292 462 | 8.862470626831055 463 | 0.8249713778495789 464 | -7.333408355712891 465 | -0.7287315726280212 466 | 6.227076530456543 467 | 1.6747584342956543 468 | 3.078268527984619 469 | -5.158805847167969 470 | 1.8955185413360596 471 | 0.15459120273590088 472 | 3.5217440128326416 473 | -5.868156909942627 474 | -6.080015182495117 475 | -4.05483341217041 476 | 0.9909290075302124 477 | -3.2740542888641357 478 | 1.4692318439483643 479 | 4.842197418212891 480 | -4.050615310668945 481 | -3.35654616355896 482 | 1.5180168151855469 483 | 7.843831539154053 484 | 5.49627685546875 485 | 0.7021646499633789 486 | -0.7542362213134766 487 | 0.7506548166275024 488 | -1.052706003189087 489 | 8.533729553222656 490 | -1.2669944763183594 491 | 1.432857632637024 492 | 2.3320140838623047 493 | -5.576338768005371 494 | 11.215115547180176 495 | 6.889138698577881 496 | -4.243010997772217 497 | -3.2827866077423096 498 | 3.8254544734954834 499 | -0.591546893119812 500 | -1.3735162019729614 501 | 0.7340031862258911 502 | 2.4279286861419678 503 | 1.109885573387146 504 | 0.7690758109092712 505 | -14.833874702453613 506 | 0.6482682228088379 507 | 0.48952120542526245 508 | 6.022487640380859 509 | 2.0515363216400146 510 | 2.022491216659546 511 | 2.9855153560638428 512 | 5.265866279602051 513 | -5.288228988647461 514 | -0.5609156489372253 515 | 2.927887201309204 516 | -5.269428730010986 517 | 3.3841753005981445 518 | -1.363224744796753 519 | 2.2558979988098145 520 | 1.6810563802719116 521 | -3.904043674468994 522 | -1.707606315612793 523 | -5.202923774719238 524 | -1.0977940559387207 525 | -3.0100009441375732 526 | -1.190838098526001 527 | 12.805835723876953 528 | 4.557701587677002 529 | -2.7721991539001465 530 | 1.6215852499008179 531 | -0.7475705742835999 532 | 0.4098297357559204 533 | -8.107074737548828 534 | 3.050112247467041 535 | -4.71641206741333 536 | -0.4120310842990875 537 | -3.2525382041931152 538 | -17.005435943603516 539 | 3.1549999713897705 540 | 8.566758155822754 541 | 1.1872649192810059 542 | 0.5684356689453125 543 | -5.268470764160156 544 | 2.230459451675415 545 | 7.600817680358887 546 | 2.137200355529785 547 | 5.099704265594482 548 | 2.7859652042388916 549 | 3.3820884227752686 550 | -4.02784538269043 551 | -1.3119131326675415 552 | 0.1587706208229065 553 | -4.998839855194092 554 | 5.174114227294922 555 | 0.34093189239501953 556 | 2.050584316253662 557 | -2.113865613937378 558 | 1.780343770980835 559 | 3.197960376739502 560 | 2.490506172180176 561 | -6.280818939208984 562 | -2.107384204864502 563 | -4.346945285797119 564 | 3.664414882659912 565 | -4.684101581573486 566 | 11.23931884765625 567 | 1.9713568687438965 568 | 2.7915542125701904 569 | 1.3690462112426758 570 | -0.33934128284454346 571 | -0.7114195823669434 572 | 1.8849965333938599 573 | -5.152978420257568 574 | 0.5687487125396729 575 | -2.7087016105651855 576 | -11.24411678314209 577 | 3.6373283863067627 578 | -2.898242712020874 579 | 2.727815628051758 580 | 3.648822546005249 581 | 6.442690372467041 582 | -0.5325595140457153 583 | 0.7698869705200195 584 | -2.2362372875213623 585 | -6.490482807159424 586 | 2.331486701965332 587 | 7.323617935180664 588 | 4.748493671417236 589 | 1.9290711879730225 590 | -3.8082799911499023 591 | -1.049980878829956 592 | -2.5735116004943848 593 | 0.7549701929092407 594 | 2.4666006565093994 595 | -3.3345296382904053 596 | -3.4227004051208496 597 | 2.6468472480773926 598 | 3.1249985694885254 599 | -1.1063296794891357 600 | 10.70348834991455 601 | 1.1156259775161743 602 | -0.9655866622924805 603 | 0.3566414415836334 604 | 2.4547605514526367 605 | 4.792818069458008 606 | 1.0076481103897095 607 | -5.0906805992126465 608 | 2.9711413383483887 609 | -4.014595985412598 610 | -3.284111499786377 611 | 10.259397506713867 612 | 0.8918404579162598 613 | -0.23243586719036102 614 | -0.33253997564315796 615 | 0.36303186416625977 616 | 5.306700706481934 617 | -2.828523635864258 618 | 3.4094297885894775 619 | -2.011018753051758 620 | -3.398947238922119 621 | 3.7835023403167725 622 | 0.8073973655700684 623 | -0.686923623085022 624 | 2.7591257095336914 625 | -2.1043334007263184 626 | 5.321327209472656 627 | 3.721473217010498 628 | -4.791174411773682 629 | 1.9306522607803345 630 | 1.3027524948120117 631 | 2.3630142211914062 632 | -1.4421470165252686 633 | 2.1120386123657227 634 | -2.4094367027282715 635 | -7.54622745513916 636 | -5.032058238983154 637 | -1.2209923267364502 638 | 0.15280425548553467 639 | -6.931533336639404 640 | -1.835806131362915 641 | 5.59632682800293 642 | -0.024733111262321472 643 | -3.573979616165161 644 | -0.02602115273475647 645 | 3.6334288120269775 646 | -4.6793904304504395 647 | 3.428410768508911 648 | -0.43644094467163086 649 | 35.22792053222656 650 | -2.139810800552368 651 | -6.680325031280518 652 | -0.699800968170166 653 | -2.3328208923339844 654 | -14.412164688110352 655 | 1.037909746170044 656 | 1.757841944694519 657 | 0.012564599514007568 658 | 2.619309425354004 659 | -0.9960500001907349 660 | -4.2047648429870605 661 | 19.267162322998047 662 | -0.23737451434135437 663 | -0.5876004695892334 664 | 0.17221194505691528 665 | 3.652613639831543 666 | -0.834098219871521 667 | -2.8462438583374023 668 | 2.9487149715423584 669 | 14.196974754333496 670 | -0.5382420420646667 671 | 8.776010513305664 672 | 1.6677191257476807 673 | 4.704874038696289 674 | 3.551088571548462 675 | 0.8234259486198425 676 | 2.2404401302337646 677 | -1.8789511919021606 678 | -0.10697197914123535 679 | -1.6935741901397705 680 | 0.14586085081100464 681 | 3.4932870864868164 682 | -0.6451947093009949 683 | 1.54131019115448 684 | 1.5420390367507935 685 | 2.5671701431274414 686 | 2.1119956970214844 687 | 16.968883514404297 688 | -1.4925720691680908 689 | -1.3571209907531738 690 | -2.484980583190918 691 | -1.593801736831665 692 | -6.315855503082275 693 | -2.303790807723999 694 | -4.091524600982666 695 | 0.2342437505722046 696 | -1.416684865951538 697 | 2.7992491722106934 698 | 1.1641948223114014 699 | -2.5090858936309814 700 | -9.572628021240234 701 | 0.06550639867782593 702 | 0.41088199615478516 703 | 1.4784330129623413 704 | 0.253915011882782 705 | -5.2080769538879395 706 | -0.8467676043510437 707 | 3.431915760040283 708 | 0.14458680152893066 709 | 3.0583136081695557 710 | 2.897667407989502 711 | 2.649819850921631 712 | 1.9675915241241455 713 | 2.37106990814209 714 | 1.6907589435577393 715 | 2.2919461727142334 716 | -2.8111467361450195 717 | -0.47072088718414307 718 | 1.0424797534942627 719 | 1.4962700605392456 720 | -0.18744951486587524 721 | 0.19849926233291626 722 | 2.9188027381896973 723 | 2.83549165725708 724 | 0.06866070628166199 725 | 1.2398388385772705 726 | -0.6559618711471558 727 | -0.3998815715312958 728 | -0.5576735734939575 729 | 4.650650978088379 730 | 1.9070353507995605 731 | 0.1938856840133667 732 | -0.020982563495635986 733 | -0.14715543389320374 734 | 4.179995059967041 735 | -2.3066835403442383 736 | -1.4715983867645264 737 | -1.9471445083618164 738 | 0.9546282887458801 739 | 5.96260929107666 740 | 4.023129463195801 741 | 3.0354366302490234 742 | 0.7384524345397949 743 | -1.1674525737762451 744 | 4.946894645690918 745 | -10.400114059448242 746 | -1.3820455074310303 747 | 3.021265983581543 748 | -3.4803690910339355 749 | 0.7551063299179077 750 | -1.127030849456787 751 | -2.7988767623901367 752 | -0.9749518632888794 753 | -1.7667616605758667 754 | 1.2003930807113647 755 | -0.757935643196106 756 | -1.5739977359771729 757 | 2.0045924186706543 758 | 6.6161885261535645 759 | -1.3023020029067993 760 | 3.181184768676758 761 | -3.496387004852295 762 | 3.924931764602661 763 | 1.231516718864441 764 | -0.033911705017089844 765 | -4.08697509765625 766 | 2.331129550933838 767 | -3.756582498550415 768 | -0.07896524667739868 769 | --------------------------------------------------------------------------------