├── book ├── statistics │ ├── consistency.md │ ├── sufficiency.md │ ├── information-geometry.md │ ├── lhc_stats_thumbnail.md │ ├── neyman_pearson.md │ ├── neyman_construction.md │ ├── estimators.md │ ├── statistical_decision_theory.md │ ├── cramer-rao-bound.md │ └── bias-variance.md ├── test-sphinxext-opengraph.md ├── logo.png ├── assets │ ├── dag.png │ ├── mvp.png │ ├── vmp.png │ ├── graphs.png │ ├── pAandB.png │ ├── backward.png │ ├── forward.png │ ├── AperpBmidC.png │ ├── composition.png │ ├── conditional.png │ ├── intro_bwd.png │ ├── intro_fwd.png │ ├── pA_and_pB.png │ ├── schmidhuber.png │ ├── prob_cousins.png │ ├── Data_Science_VD.png │ ├── atlas-higgs-2012.png │ ├── autodiff_systems.png │ ├── intro_autodiff.png │ ├── nbgrader-fetch.png │ ├── schematic_p_xy.png │ ├── change_kernel_lab.png │ ├── change_kernel_new.png │ ├── nbgrader-validate.png │ ├── 001_vanilla_ellipse.png │ ├── change_kernel_classic.png │ ├── nbgrader-assignments.png │ ├── schematic_p_x_given_y.png │ ├── schematic_p_y_given_x.png │ ├── LHC-stats-thumbnail.001.png │ ├── Bayes-theorem-in-pictures.png │ ├── HCPSS-stats-lectures-2020.001.png │ ├── HCPSS-stats-lectures-2020.002.png │ ├── Neyman-pearson │ │ ├── Neyman-pearson.001.png │ │ ├── Neyman-pearson.002.png │ │ ├── Neyman-pearson.003.png │ │ ├── Neyman-pearson.004.png │ │ ├── Neyman-pearson.005.png │ │ └── Neyman-pearson.006.png │ ├── Neyman-construction │ │ ├── Neyman-construction.001.png │ │ ├── Neyman-construction.002.png │ │ ├── Neyman-construction.003.png │ │ ├── Neyman-construction.004.png │ │ ├── Neyman-construction.005.png │ │ ├── Neyman-construction.006.png │ │ ├── Neyman-construction.007.png │ │ ├── Neyman-construction.008.png │ │ ├── Neyman-construction.009.png │ │ ├── Neyman-construction.010.png │ │ ├── Neyman-construction.011.png │ │ └── Neyman-construction.012.png │ └── wilks-delta-log-likelihood │ │ ├── wilks-delta-log-likelihood-1.gif │ │ └── wilks-delta-log-likelihood-2.gif ├── bibliography.md ├── chapter.md ├── pgm │ └── exoplanets.png ├── content.md ├── introduction.md ├── central-limit-theorem │ └── introduction.md ├── error-propagation │ └── introduction.md ├── requirements.txt ├── discussion_forum.md ├── prml_notebooks │ ├── attribution.md │ └── ch08_Graphical_Models.ipynb ├── empirical_distribution.md ├── test_embed_video.md ├── _static │ ├── pdf_print.css │ └── save_state.js ├── color-in-equations.md ├── computing-topics.md ├── expectation.md ├── ml-topics.md ├── preliminaries.md ├── built-on.ipynb ├── statistics-topics.md ├── datasaurus.md ├── independence.md ├── _config.yml ├── probability-topics.md ├── section.md ├── other_resources ├── jupyterhub.md ├── distributions │ ├── introduction.md │ └── Binomial-Distribution.ipynb ├── intro.md ├── _toc.yml ├── notebooks.ipynb ├── markdown.md ├── nbgrader.md ├── measures_of_dependence.md ├── other_resources.md ├── references.bib ├── data-science-topics.md ├── conditional.md ├── random_variables.md ├── bayes_theorem.md ├── correlation.md └── schedule.md ├── requirements.txt ├── .gitattributes ├── Makefile ├── binder ├── postBuild └── trigger_binder.sh ├── .github └── workflows │ ├── merged.yml │ └── deploy-jupyter-book.yml ├── README.md ├── LICENSE └── .gitignore /book/statistics/consistency.md: -------------------------------------------------------------------------------- 1 | # Consistency 2 | 3 | coming soon -------------------------------------------------------------------------------- /book/statistics/sufficiency.md: -------------------------------------------------------------------------------- 1 | # Sufficiency 2 | 3 | coming soon -------------------------------------------------------------------------------- /book/test-sphinxext-opengraph.md: -------------------------------------------------------------------------------- 1 | # Test Sphinxext-opengraph 2 | 3 | fixed? -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | jupyter~=1.0 2 | jupyterlab~=2.0 3 | jupyter-book~=0.8.3 4 | -------------------------------------------------------------------------------- /book/statistics/information-geometry.md: -------------------------------------------------------------------------------- 1 | # Information Geometry 2 | 3 | coming soon -------------------------------------------------------------------------------- /.gitattributes: -------------------------------------------------------------------------------- 1 | # Auto detect text files and perform LF normalization 2 | * text=auto 3 | -------------------------------------------------------------------------------- /book/logo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/logo.png -------------------------------------------------------------------------------- /book/assets/dag.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/dag.png -------------------------------------------------------------------------------- /book/assets/mvp.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/mvp.png -------------------------------------------------------------------------------- /book/assets/vmp.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/vmp.png -------------------------------------------------------------------------------- /book/bibliography.md: -------------------------------------------------------------------------------- 1 | # Bibliography 2 | 3 | ```{bibliography} references.bib 4 | ``` 5 | 6 | -------------------------------------------------------------------------------- /book/assets/graphs.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/graphs.png -------------------------------------------------------------------------------- /book/assets/pAandB.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/pAandB.png -------------------------------------------------------------------------------- /book/assets/backward.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/backward.png -------------------------------------------------------------------------------- /book/assets/forward.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/forward.png -------------------------------------------------------------------------------- /book/chapter.md: -------------------------------------------------------------------------------- 1 | # Chapter title 2 | 3 | Some text so that following files may be treated like sections 4 | -------------------------------------------------------------------------------- /book/pgm/exoplanets.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/pgm/exoplanets.png -------------------------------------------------------------------------------- /book/assets/AperpBmidC.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/AperpBmidC.png -------------------------------------------------------------------------------- /book/assets/composition.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/composition.png -------------------------------------------------------------------------------- /book/assets/conditional.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/conditional.png -------------------------------------------------------------------------------- /book/assets/intro_bwd.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/intro_bwd.png -------------------------------------------------------------------------------- /book/assets/intro_fwd.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/intro_fwd.png -------------------------------------------------------------------------------- /book/assets/pA_and_pB.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/pA_and_pB.png -------------------------------------------------------------------------------- /book/assets/schmidhuber.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/schmidhuber.png -------------------------------------------------------------------------------- /book/assets/prob_cousins.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/prob_cousins.png -------------------------------------------------------------------------------- /book/assets/Data_Science_VD.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/Data_Science_VD.png -------------------------------------------------------------------------------- /book/assets/atlas-higgs-2012.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/atlas-higgs-2012.png -------------------------------------------------------------------------------- /book/assets/autodiff_systems.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/autodiff_systems.png -------------------------------------------------------------------------------- /book/assets/intro_autodiff.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/intro_autodiff.png -------------------------------------------------------------------------------- /book/assets/nbgrader-fetch.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/nbgrader-fetch.png -------------------------------------------------------------------------------- /book/assets/schematic_p_xy.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/schematic_p_xy.png -------------------------------------------------------------------------------- /book/assets/change_kernel_lab.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/change_kernel_lab.png -------------------------------------------------------------------------------- /book/assets/change_kernel_new.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/change_kernel_new.png -------------------------------------------------------------------------------- /book/assets/nbgrader-validate.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/nbgrader-validate.png -------------------------------------------------------------------------------- /book/assets/001_vanilla_ellipse.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/001_vanilla_ellipse.png -------------------------------------------------------------------------------- /book/assets/change_kernel_classic.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/change_kernel_classic.png -------------------------------------------------------------------------------- /book/assets/nbgrader-assignments.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/nbgrader-assignments.png -------------------------------------------------------------------------------- /book/assets/schematic_p_x_given_y.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/schematic_p_x_given_y.png -------------------------------------------------------------------------------- /book/assets/schematic_p_y_given_x.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/schematic_p_y_given_x.png -------------------------------------------------------------------------------- /book/assets/LHC-stats-thumbnail.001.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/LHC-stats-thumbnail.001.png -------------------------------------------------------------------------------- /book/assets/Bayes-theorem-in-pictures.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/Bayes-theorem-in-pictures.png -------------------------------------------------------------------------------- /book/assets/HCPSS-stats-lectures-2020.001.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/HCPSS-stats-lectures-2020.001.png -------------------------------------------------------------------------------- /book/assets/HCPSS-stats-lectures-2020.002.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/HCPSS-stats-lectures-2020.002.png -------------------------------------------------------------------------------- /book/statistics/lhc_stats_thumbnail.md: -------------------------------------------------------------------------------- 1 | # Thumbnail of LHC Statistical Procedures 2 | 3 | ```{figure} ../assets/LHC-stats-thumbnail.001.png 4 | ``` 5 | -------------------------------------------------------------------------------- /Makefile: -------------------------------------------------------------------------------- 1 | all: build 2 | 3 | default: build 4 | 5 | build: 6 | jupyter-book build book/ 7 | 8 | clean: book/_build 9 | rm -rf book/_build 10 | -------------------------------------------------------------------------------- /book/assets/Neyman-pearson/Neyman-pearson.001.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/Neyman-pearson/Neyman-pearson.001.png -------------------------------------------------------------------------------- /book/assets/Neyman-pearson/Neyman-pearson.002.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/Neyman-pearson/Neyman-pearson.002.png -------------------------------------------------------------------------------- /book/assets/Neyman-pearson/Neyman-pearson.003.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/Neyman-pearson/Neyman-pearson.003.png -------------------------------------------------------------------------------- /book/assets/Neyman-pearson/Neyman-pearson.004.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/Neyman-pearson/Neyman-pearson.004.png -------------------------------------------------------------------------------- /book/assets/Neyman-pearson/Neyman-pearson.005.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/Neyman-pearson/Neyman-pearson.005.png -------------------------------------------------------------------------------- /book/assets/Neyman-pearson/Neyman-pearson.006.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/Neyman-pearson/Neyman-pearson.006.png -------------------------------------------------------------------------------- /book/assets/Neyman-construction/Neyman-construction.001.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/Neyman-construction/Neyman-construction.001.png -------------------------------------------------------------------------------- /book/assets/Neyman-construction/Neyman-construction.002.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/Neyman-construction/Neyman-construction.002.png -------------------------------------------------------------------------------- /book/assets/Neyman-construction/Neyman-construction.003.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/Neyman-construction/Neyman-construction.003.png -------------------------------------------------------------------------------- /book/assets/Neyman-construction/Neyman-construction.004.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/Neyman-construction/Neyman-construction.004.png -------------------------------------------------------------------------------- /book/assets/Neyman-construction/Neyman-construction.005.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/Neyman-construction/Neyman-construction.005.png -------------------------------------------------------------------------------- /book/assets/Neyman-construction/Neyman-construction.006.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/Neyman-construction/Neyman-construction.006.png -------------------------------------------------------------------------------- /book/assets/Neyman-construction/Neyman-construction.007.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/Neyman-construction/Neyman-construction.007.png -------------------------------------------------------------------------------- /book/assets/Neyman-construction/Neyman-construction.008.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/Neyman-construction/Neyman-construction.008.png -------------------------------------------------------------------------------- /book/assets/Neyman-construction/Neyman-construction.009.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/Neyman-construction/Neyman-construction.009.png -------------------------------------------------------------------------------- /book/assets/Neyman-construction/Neyman-construction.010.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/Neyman-construction/Neyman-construction.010.png -------------------------------------------------------------------------------- /book/assets/Neyman-construction/Neyman-construction.011.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/Neyman-construction/Neyman-construction.011.png -------------------------------------------------------------------------------- /book/assets/Neyman-construction/Neyman-construction.012.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/Neyman-construction/Neyman-construction.012.png -------------------------------------------------------------------------------- /book/content.md: -------------------------------------------------------------------------------- 1 | Content in Jupyter Book 2 | ======================= 3 | 4 | There are many ways to write content in Jupyter Book. This short section 5 | covers a few tips for how to do so. 6 | -------------------------------------------------------------------------------- /book/assets/wilks-delta-log-likelihood/wilks-delta-log-likelihood-1.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/wilks-delta-log-likelihood/wilks-delta-log-likelihood-1.gif -------------------------------------------------------------------------------- /book/assets/wilks-delta-log-likelihood/wilks-delta-log-likelihood-2.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cranmer/stats-ds-book/master/book/assets/wilks-delta-log-likelihood/wilks-delta-log-likelihood-2.gif -------------------------------------------------------------------------------- /book/introduction.md: -------------------------------------------------------------------------------- 1 | # Central Limit Theorem 2 | 3 | Some words 4 | 5 | Some equations $e^{i\pi}+1=0$ 6 | 7 | \begin{equation} 8 | \frac{1}{\sqrt{2 \pi} \sigma} 9 | \end{equation} 10 | 11 | -------------------------------------------------------------------------------- /book/central-limit-theorem/introduction.md: -------------------------------------------------------------------------------- 1 | # Central Limit Theorem 2 | 3 | Some words 4 | 5 | Some equations $e^{i\pi}+1=0$ 6 | 7 | \begin{equation} 8 | \frac{1}{\sqrt{2 \pi} \sigma} 9 | \end{equation} 10 | 11 | -------------------------------------------------------------------------------- /book/error-propagation/introduction.md: -------------------------------------------------------------------------------- 1 | # Error propagation 2 | 3 | is often taught poorly 4 | 5 | Some equations $e^{i\pi}+1=0$ 6 | 7 | \begin{equation} 8 | \frac{1}{\sqrt{2 \pi} \sigma} 9 | \end{equation} 10 | 11 | -------------------------------------------------------------------------------- /binder/postBuild: -------------------------------------------------------------------------------- 1 | python -m pip install --no-cache-dir -r requirements.txt 2 | python -m pip install --no-cache-dir -r book/requirements.txt 3 | jupyter labextension install jupyterlab-jupytext --no-build 4 | jupyter labextension install nbdime-jupyterlab --no-build 5 | jupyter lab build -y 6 | jupyter lab clean -y 7 | -------------------------------------------------------------------------------- /book/requirements.txt: -------------------------------------------------------------------------------- 1 | datascience~=0.17.0 # Gets scipy, numpy, pandas, folium, bokeh, and plotly 2 | nbinteract~=0.2 3 | sympy~=1.7.0 4 | jax~=0.2.7 5 | jaxlib~=0.1.57 6 | pyprob~=1.2.5 # Gets scikit-learn 7 | pyhf~=0.5 8 | daft~=0.1.0 9 | seaborn~=0.11.0 # Gets matplotlib 10 | altair~=4.1.0 11 | jupytext~=1.7 12 | sphinx-click~=2.5 13 | sphinx-tabs~=1.3 14 | sphinx-panels~=0.5 15 | sphinxext-opengraph~=0.3 16 | sphinxcontrib-bibtex<2.0.0 17 | git+https://github.com/ctgk/PRML.git 18 | -------------------------------------------------------------------------------- /book/discussion_forum.md: -------------------------------------------------------------------------------- 1 | # Discussion Forum 2 | 3 | 4 | While it's not totally decided, the original plan was to use piazza for the course discussion forum. 5 | 6 | ```{admonition} Piazza Discussion Forum 7 | [https://piazza.com/nyu/fall2020/physga2059/home](https://piazza.com/nyu/fall2020/physga2059/home) 8 | ``` 9 | 10 | ## A short video about piazza 11 | 12 | -------------------------------------------------------------------------------- /.github/workflows/merged.yml: -------------------------------------------------------------------------------- 1 | name: Merged PR 2 | 3 | on: 4 | pull_request: 5 | types: [closed] 6 | 7 | jobs: 8 | binder: 9 | name: Trigger Binder build 10 | runs-on: ubuntu-latest 11 | if: github.event.pull_request.merged 12 | steps: 13 | - uses: actions/checkout@v2 14 | - name: Trigger Binder build 15 | run: | 16 | # Use Binder build API to trigger repo2docker to build image on Google Cloud cluster of Binder Federation 17 | bash binder/trigger_binder.sh https://gke.mybinder.org/build/gh/cranmer/stats-ds-book/master 18 | -------------------------------------------------------------------------------- /book/prml_notebooks/attribution.md: -------------------------------------------------------------------------------- 1 | # PRML Examples 2 | 3 | 4 | The repository provides python implementation of the algorithms described in [Pattern Recognition and Machine Learning (Christopher Bishop)](https://research.microsoft.com/en-us/um/people/cmbishop/PRML/). 5 | It's highly recommended, but unfortunately not free online. 6 | 7 | ```{admonition} Attribution 8 | These notebooks and the underlying `prml` library are from the wonderful repository: [https://github.com/ctgk/PRML](https://github.com/ctgk/PRML) 9 | ``` 10 | 11 | 12 | ```{image} https://davidrosenberg.github.io/ml2017/images/bishop-2x.jpg 13 | :name: bishop-cover 14 | ``` -------------------------------------------------------------------------------- /book/empirical_distribution.md: -------------------------------------------------------------------------------- 1 | # Empirical Distribution 2 | 3 | Often we are working directly with data and we don't know the parent distribution that generated the data. 4 | 5 | We often denote a dataset with $N$ data points indexed by $i$ as $\{x_i\}_{i=1}^N$. 6 | 7 | Sometimes this dataset is thought of a samples or realizatiosn from some parent distribution. For instance, we often assume that we have **independent and identically distributed (iid)** data $x_i \sim p_X$ for $i=1\dots N$. 8 | 9 | In other cases one thinks of this data set as an **emperical distribution** 10 | 11 | $$ 12 | p_\textrm{emp, X} = \frac{1}{N} \sum_{i=1}^N \delta(x-x_i) 13 | $$ 14 | 15 | 16 | -------------------------------------------------------------------------------- /binder/trigger_binder.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env bash 2 | 3 | function trigger_binder() { 4 | local URL="${1}" 5 | 6 | curl -L --connect-timeout 10 --max-time 30 "${URL}" 7 | curl_return=$? 8 | 9 | # Return code 28 is when the --max-time is reached 10 | if [ "${curl_return}" -eq 0 ] || [ "${curl_return}" -eq 28 ]; then 11 | if [[ "${curl_return}" -eq 28 ]]; then 12 | printf "\nBinder build started.\nCheck back soon.\n" 13 | fi 14 | else 15 | return "${curl_return}" 16 | fi 17 | 18 | return 0 19 | } 20 | 21 | function main() { 22 | # 1: the Binder build API URL to curl 23 | trigger_binder $1 24 | } 25 | 26 | main "$@" || exit 1 27 | -------------------------------------------------------------------------------- /book/statistics/neyman_pearson.md: -------------------------------------------------------------------------------- 1 | # Neyman-Pearson lemma 2 | 3 | 4 | 5 | `````{tabs} 6 | ````{tab} Step 1 7 | 8 | ```{figure} ../assets/Neyman-pearson/Neyman-pearson.001.png 9 | ``` 10 | 11 | ```` 12 | ````{tab} Step 2 13 | 14 | ```{figure} ../assets/Neyman-pearson/Neyman-pearson.002.png 15 | ``` 16 | 17 | ```` 18 | ````{tab} Step 3 19 | 20 | ```{figure} ../assets/Neyman-pearson/Neyman-pearson.003.png 21 | ``` 22 | 23 | ```` 24 | ````{tab} Step 4 25 | 26 | ```{figure} ../assets/Neyman-pearson/Neyman-pearson.004.png 27 | ``` 28 | 29 | ```` 30 | ````{tab} Step 5 31 | 32 | ```{figure} ../assets/Neyman-pearson/Neyman-pearson.005.png 33 | ``` 34 | 35 | ```` 36 | ````{tab} Step 6 37 | 38 | ```{figure} ../assets/Neyman-pearson/Neyman-pearson.006.png 39 | ``` 40 | 41 | ```` 42 | ````` 43 | 44 | -------------------------------------------------------------------------------- /book/test_embed_video.md: -------------------------------------------------------------------------------- 1 | # Test Embed Video 2 | 3 | Below is a Video 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | ```{warning} 15 | This fa role doesn't seem to work. 16 | ``` 17 | 18 | {fa}`check,text-success mr-1` -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Statistics and Data Science Jupyter Book 2 | 3 | [](https://github.com/cranmer/stats-ds-book/actions?query=workflow%3A%22Deploy+Jupyter+Book%22+branch%3Amaster) 4 | [](https://mybinder.org/v2/gh/cranmer/stats-ds-book/master?urlpath=lab/tree/book) 5 | 6 | This is the start of a book for Statistics and Data Science course for Fall 2020 at NYU Physics. 7 | 8 | This uses [Jupyter book](https://jupyterbook.org/customize/toc.html) 9 | 10 | The book itself is here: [http://cranmer.github.io/stats-ds-book](http://cranmer.github.io/stats-ds-book) 11 | 12 | 13 | Many thanks to Jupyter book team, Matthew Feickert for some assistance, and ctgk for the wonderful [ctgk/PRML](https://github.com/ctgk/PRML) repository. 14 | -------------------------------------------------------------------------------- /book/_static/pdf_print.css: -------------------------------------------------------------------------------- 1 | /********************************************* 2 | * Print-specific CSS * 3 | *********************************************/ 4 | 5 | @media print { 6 | 7 | div.topbar { 8 | display: none; 9 | } 10 | 11 | .pr-md-0 { 12 | flex: 0 0 100% !important; 13 | max-width: 100% !important; 14 | } 15 | 16 | .page_break { 17 | /* 18 | Control where and how page-breaks happen in pdf prints 19 | This page has a nice guide: https://tympanus.net/codrops/css_reference/break-before/ 20 | This SO link describes how to use it: https://stackoverflow.com/a/1664058 21 | Simply add an empty div with this class where you want a page break 22 | like so:
; 23 | */ 24 | clear: both; 25 | page-break-after: always !important; 26 | break-after: always !important; 27 | } 28 | 29 | } -------------------------------------------------------------------------------- /book/color-in-equations.md: -------------------------------------------------------------------------------- 1 | # Color in equations 2 | 3 | Test 1: 4 | 5 | ``` 6 | $${\color{#0271AE}{\int dx e^-x}}$$ 7 | ``` 8 | 9 | yields 10 | 11 | $$ 12 | {\color{#0271AE}{\int dx e^-x}} 13 | $$ 14 | 15 | Test 2: 16 | 17 | ``` 18 | $$(x={\color{#DC2830}{c_1}} \cdot {\color{#0271AE}{x_1}} + {\color{#DC2830}{c_2}} \cdot {\color{#0271AE}{x_2}})$$ 19 | ``` 20 | yields 21 | 22 | $$ 23 | (x={\color{#DC2830}{c_1}} \cdot {\color{#0271AE}{x_1}} + {\color{#DC2830}{c_2}} \cdot {\color{#0271AE}{x_2}}) 24 | $$ 25 | 26 | Test macro: 27 | 28 | ``` 29 | $$ 30 | A = \bmat{} 1 & 1 \\ 2 & 1\\ 3 & 2 \emat{},\ b=\bmat{} 2\\ 3 \\ 4\emat{},\ \gamma = 0.5 31 | $$ 32 | ``` 33 | 34 | yields 35 | 36 | $$ 37 | A = \bmat{} 1 & 1 \\ 2 & 1\\ 3 & 2 \emat{},\ b=\bmat{} 2\\ 3 \\ 4\emat{},\ \gamma = 0.5 38 | $$ 39 | 40 | test sphinx shortcut for color 41 | 42 | ```$$\bered{\int dx e^-x}$$``` 43 | 44 | yields 45 | 46 | $$ 47 | \bered{\int dx e^-x} 48 | $$ 49 | -------------------------------------------------------------------------------- /book/computing-topics.md: -------------------------------------------------------------------------------- 1 | # Software & Computing Topics 2 | 3 | 1. Basics 4 | 1. Shell / POSIX [Software Carpentries](http://swcarpentry.github.io/shell-novice/) 5 | 1. Version Control 6 | 1. Git [Software Carpentries](http://swcarpentry.github.io/git-novice/) 7 | 1. GitHub 8 | 1. Basic Model 9 | 1. Pull Requests 10 | 1. Actions 11 | 1. Licenses 12 | 1. Binder 13 | 1. Colab 14 | 1. Continuous Integration [HSF training](https://hsf-training.github.io/hsf-training-cicd/index.html) 15 | 1. Cloud computing 16 | 1. Containers 17 | 1. Docker 18 | 1. Singularity 19 | 1. Kubernetes 20 | 1. AWS 21 | 1. GKE 22 | 1. Environment management 23 | 1. [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/cheatsheet.html) 24 | 1. virtual env 25 | 1. jupyter 26 | 1. Jupyter Lab 27 | 1. Voila 28 | 1. Configuration 29 | 1. JSON 30 | 1. YAML 31 | 1. XML 32 | 1. Testing 33 | 1. Documentation 34 | 1. DOIs 35 | 1. GitHub 36 | 1. Zenodo 37 | 38 | -------------------------------------------------------------------------------- /book/_static/save_state.js: -------------------------------------------------------------------------------- 1 | 2 | /* This code is copied verbatim from this SO post by Rory McCrossan: https://stackoverflow.com/a/51543474/2217577. 3 | The code was shared under the CC BY-SA 4.0 license: https://creativecommons.org/licenses/by-sa/4.0/ 4 | It's purpose is to simply store the state of checked boxes locally as a localStorage object. 5 | To use it, simply add checkboxes as normal within your md files: 6 | Item 1 7 | Item 2 8 | Item 3 9 | */ 10 | 11 | function onClickBox() { 12 | var arr = $('.box').map(function() { 13 | return this.checked; 14 | }).get(); 15 | localStorage.setItem("checked", JSON.stringify(arr)); 16 | } 17 | 18 | $(document).ready(function() { 19 | var arr = JSON.parse(localStorage.getItem('checked')) || []; 20 | arr.forEach(function(checked, i) { 21 | $('.box').eq(i).prop('checked', checked); 22 | }); 23 | 24 | $(".box").click(onClickBox); 25 | }); -------------------------------------------------------------------------------- /book/expectation.md: -------------------------------------------------------------------------------- 1 | # Expectation 2 | 3 | If a $X$ is a random variable, then a function $g(x)$ is also a random variable. We will touch on this again we talk about [How do distributions transform under a change of variables?](distributions/change-of-variables). 4 | 5 | The **expected value** of a function $g(x)$, which may just be $x$ itself or a component of $x$, is defined by 6 | 7 | $$ 8 | \mathbb{E}[g(x)] := \int g(x) p_X(x) dx 9 | $$ 10 | 11 | ```{admonition} Synonymous terms: 12 | Expected value, expectation, mean, or average, or first moment . 13 | ``` 14 | 15 | Note in physics, one would often write $\langle g \rangle$ for the expected value of $g$. 16 | 17 | Note, sometimes one writes $\mathbb{E}_{p_X}$ to make the distribution $p_X$ more explicit. 18 | 19 | ## Expectations with emperical data 20 | 21 | If $\{x_i\}_{i=1}^N$ is a dataset (emperical distribution) with independent and identically distributed (iid) $x_i \sim p_X$, then one can estimate the expectation with the **sample mean** 22 | 23 | $$ 24 | \mathbb{E}[g(x)] \approx \frac{1}{N} \sum_{i=1}^N g(x_i) 25 | $$ 26 | 27 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2020 Kyle Cranmer 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /book/ml-topics.md: -------------------------------------------------------------------------------- 1 | # Machine Learning Topics 2 | 3 | 1. Loss, Risk 4 | 1. Emperical Risk 5 | 1. Generalization 6 | 1. Train / Test 7 | 1. Loss functions 8 | 1. classification 9 | 1. density estimation 10 | 1. Regression 11 | 1. linear regression 12 | 1. logistic regression 13 | 1. Gaussian Processes 14 | 1. Models 15 | 1. Decision trees 16 | 1. Support Vector Machines 17 | 1. Neural Networks 18 | 1. MLP 19 | 1. conv nets 20 | 1. RNN 21 | 1. Graph Networks 22 | 1. Paradigms 23 | 1. supervised 24 | 1. unsupervised 25 | 1. reinforcement 26 | 1. BackProp and AutoDiff 27 | 1. Forward mode 28 | 1. Reverse Mode 29 | 1. Fixed point / implicit 30 | 1. Learning Algorithms 31 | 1. Gradient Descent 32 | 1. SGD 33 | 1. Adam etc. 34 | 1. Natural Gradients 35 | 1. Domain adaptation 36 | 1. Transfer learning 37 | 1. No free lunch 38 | 1. Inductive Bias 39 | 1. Differentiable Programming 40 | 1. sorting 41 | 1. Gumbel 42 | 1. Probabilistic ML 43 | 1. VAE 44 | 1. GAN 45 | 1. Normalizing Flows 46 | 1. Blackbox optimization 47 | 1. Multiarm bandits 48 | 1. Bayesian Optimization 49 | 1. Hyperparameter optimization 50 | 51 | -------------------------------------------------------------------------------- /book/preliminaries.md: -------------------------------------------------------------------------------- 1 | # Preliminaries 2 | 3 | 4 | The status of this checklist should be stored in your browser locally, so that you can come back to the same page and update the checkboxes. 5 | Note that this will NOT work across browsers, across devices, likely will not work in privacy/incognito browsing mode, and definitly will not work if you clear/reset your cache and temporary files. 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | -------------------------------------------------------------------------------- /.github/workflows/deploy-jupyter-book.yml: -------------------------------------------------------------------------------- 1 | name: Deploy Jupyter Book 2 | 3 | on: 4 | push: 5 | pull_request: 6 | 7 | jobs: 8 | 9 | deploy-book: 10 | runs-on: ubuntu-latest 11 | 12 | steps: 13 | - uses: actions/checkout@v2 14 | 15 | - name: Set up Python 3.8 16 | uses: actions/setup-python@v2 17 | with: 18 | python-version: 3.8 19 | 20 | - name: Install dependencies 21 | run: | 22 | python -m pip install --upgrade pip setuptools wheel 23 | python -m pip install --no-cache-dir -r requirements.txt 24 | python -m pip install --no-cache-dir -r book/requirements.txt 25 | python -m pip list 26 | 27 | - name: Build the book 28 | run: | 29 | jupyter-book build book/ 30 | # cp book/_static/* book/_build/html/_static 31 | 32 | - name: Deploy Jupyter book to GitHub pages 33 | if: success() && github.event_name == 'push' && github.ref == 'refs/heads/master' && github.repository == 'cranmer/stats-ds-book' 34 | uses: peaceiris/actions-gh-pages@v3 35 | with: 36 | github_token: ${{ secrets.GITHUB_TOKEN }} 37 | publish_dir: book/_build/html 38 | force_orphan: true 39 | user_name: 'github-actions[bot]' 40 | user_email: 'github-actions[bot]@users.noreply.github.com' 41 | commit_message: Deploy to GitHub pages 42 | -------------------------------------------------------------------------------- /book/built-on.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# Built on" 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": 3, 13 | "metadata": {}, 14 | "outputs": [ 15 | { 16 | "name": "stdout", 17 | "output_type": "stream", 18 | "text": [ 19 | "Wed Aug 19 17:30:25 CDT 2020\r\n" 20 | ] 21 | } 22 | ], 23 | "source": [ 24 | "!date" 25 | ] 26 | }, 27 | { 28 | "cell_type": "markdown", 29 | "metadata": {}, 30 | "source": [ 31 | "## Status\n", 32 | "\n", 33 | "[](https://github.com/cranmer/stats-ds-book/actions?query=workflow%3A%22Deploy+Jupyter+Book%22+branch%3Amaster)\n" 34 | ] 35 | }, 36 | { 37 | "cell_type": "code", 38 | "execution_count": null, 39 | "metadata": {}, 40 | "outputs": [], 41 | "source": [] 42 | } 43 | ], 44 | "metadata": { 45 | "kernelspec": { 46 | "display_name": "Python 3", 47 | "language": "python", 48 | "name": "python3" 49 | }, 50 | "language_info": { 51 | "codemirror_mode": { 52 | "name": "ipython", 53 | "version": 3 54 | }, 55 | "file_extension": ".py", 56 | "mimetype": "text/x-python", 57 | "name": "python", 58 | "nbconvert_exporter": "python", 59 | "pygments_lexer": "ipython3", 60 | "version": "3.8.5" 61 | } 62 | }, 63 | "nbformat": 4, 64 | "nbformat_minor": 2 65 | } 66 | -------------------------------------------------------------------------------- /book/statistics-topics.md: -------------------------------------------------------------------------------- 1 | # Statistics Topics 2 | 3 | 4 | 1. Estimators 5 | 1. Bias, Variance, MSE 6 | 1. Cramer-Rao bound 7 | 1. Information Geometry 8 | 1. Sufficiency 9 | 1. Consistency 10 | 1. Asymptotic Properties 11 | 1. Maximum likelihood 12 | 1. Bias-Variance Tradeoff 13 | 1. [James-Stein Paradox](https://en.wikipedia.org/wiki/James–Stein_estimator) 14 | 1. Goodness of fit 15 | 1. chi-square test 16 | 1. other tests 17 | 1. anomoly detection 18 | 1. Hypothesis Testing 19 | 1. Simple vs. Compound hypotheses 20 | 1. Nuisance Parameters 21 | 1. TypeI and TypeII error 22 | 1. Test statistics 23 | 1. Neyman-Pearson Lemma 24 | 1. Connection to classification 25 | 1. multiple testing 26 | 1. look elsewhere effect 27 | 1. Family wise error rate 28 | 1. False Discovery Rate 29 | 1. [Asymptotics, Daves, Gross and Vitells](https://arxiv.org/abs/1005.1891) 30 | 1. Confidence Intervals 31 | 1. Interpretation 32 | 1. Coverage 33 | 1. Power 34 | 1. No UMPU Tests 35 | 1. Neyman-Construction 36 | 1. Likelihood-Ratio tests 37 | 1. Profile likelihood 38 | 1. Profile construction 39 | 1. Asymptotic Properties of Likelihood Ratio 40 | 1. Bayesian Model Selection 41 | 1. Bayes Factors 42 | 1. BIC, etc. 43 | 1. Bayesian Credible Intervals 44 | 1. Interpretation 45 | 1. Metropolis Hastings 46 | 1. Variational Inference 47 | 1. LDA 48 | 1. Causal Inference 49 | 1. [Elements of Causal Inference by Jonas Peters, Dominik Janzing and Bernhard Schölkopf](https://mitpress.mit.edu/books/elements-causal-inference) [free PDF](https://www.dropbox.com/s/dl/gkmsow492w3oolt/11283.pdf) 50 | 1. Statistical Decision Theory 51 | 1. [Admissible decision rule](https://en.wikipedia.org/wiki/Admissible_decision_rule) 52 | 1. Experimental Design 53 | 1. Expected Information Gain 54 | 1. Bayesian Optimization 55 | 56 | -------------------------------------------------------------------------------- /book/datasaurus.md: -------------------------------------------------------------------------------- 1 | 2 | # Linear summary statistics and visualization 3 | 4 | ## Correlation and Dependence 5 | 6 | http://en.wikipedia.org/wiki/Correlation_and_dependence 7 | 8 | https://en.wikipedia.org/wiki/Anscombe%27s_quartet 9 | 10 | ## Draw my data 11 | 12 | http://robertgrantstats.co.uk/drawmydata.html 13 | 14 | ## Datasaurus 15 | 16 | [data source](https://www.autodeskresearch.com/publications/samestats) 17 | 18 | Justin Matejka, George Fitzmaurice (2017) 19 | Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealing 20 | CHI 2017 Conference proceedings: 21 | ACM SIGCHI Conference on Human Factors in Computing Systems 22 | 23 | 24 | https://twitter.com/JustinMatejka/status/859075295059562498?s=20 25 | 26 |27 | 28 |New #chi2017 paper is up. Don't trust statistics alone, visualize your data!https://t.co/amnbAYvsq1 pic.twitter.com/1s6vkge6dl
— Justin Matejka (@JustinMatejka) May 1, 2017
29 | 30 | https://youtu.be/DbJyPELmhJc 31 | 32 | -------------------------------------------------------------------------------- /book/independence.md: -------------------------------------------------------------------------------- 1 | # Independence 2 | ```{math} 3 | \newcommand\indep{\perp\kern-5pt\perp} 4 | ``` 5 | 6 | As discussed in the previous section, **conditional probabilities** quantify the extent to which the knowledge of the occurrence of a certain event affects the probability of another event [^footnote1]. 7 | In some cases, it makes no difference: the events are independent. More formally, events $A$ and $B$ are **independent** if and only if 8 | 9 | $$ 10 | P (A|B) = P (A) . 11 | $$ 12 | 13 | This definition is not valid if $P (B) = 0$. The following definition covers this case and is otherwise 14 | equivalent. 15 | 16 | ```{admonition} Definition (Independence). 17 | Let $(\Omega,\mathcal{F},P)$ be a probability space. Two events $A,B \in \mathcal{F}$ 18 | are independent if and only if 19 | 20 | $$ 21 | P (A \cap B) = P (A) P (B) . 22 | $$ 23 | ``` 24 | ```{admonition} Notation 25 | This is often denoted $ A \indep B $ 26 | ``` 27 | 28 | Similarly, we can define **conditional independence** between two events given a third event. 29 | $A$ and $B$ are conditionally independent given $C$ if and only if 30 | 31 | $$ 32 | P (A|B, C) = P (A|C) , 33 | $$ 34 | 35 | where $P (A|B, C) := P (A|B \cap C)$. Intuitively, this means that the probability of $A$ is not affected by whether $B$ occurs or not, as long as $C$ occurs. 36 | 37 | ```{admonition} Notation 38 | This is often denoted $ A \indep B \mid C$ 39 | ``` 40 | 41 | ## Graphical Models 42 | 43 | There is a graphical model representation for joint distributions $P(A,B,C)$ that encodes their conditional (in)dependence known as a **probabilistic graphical model**. For this situation $ A \indep B \mid C$, the graphical model looks like this: 44 | 45 |Be wary of boxplots! They might be obscuring important information.https://t.co/amnbAYvsq1 pic.twitter.com/7YxslPGp1n
— Justin Matejka (@JustinMatejka) August 9, 2017
46 |
47 | The lack of an edge directly between $A$ and $B$ indicates that the two varaibles are conditionally independent. This image was produced with `daft`, and there are more examples in [Visualizing Graphical Models](./pgm/daft).
48 |
49 | [^footnote1]: This text is based on excerpts from Section 1.3 of [NYU CDS lecture notes on Probability and Statistics](https://cims.nyu.edu/~cfgranda/pages/stuff/probability_stats_for_DS.pdf)
50 |
--------------------------------------------------------------------------------
/book/_config.yml:
--------------------------------------------------------------------------------
1 | # Book settings
2 | title: Statistics and Data Science
3 | author: Kyle Cranmer
4 | logo: logo.png
5 | copyright: ""
6 |
7 | parse:
8 | myst_extended_syntax: true
9 |
10 | execute:
11 | exclude_patterns : ["*/Central-Limit-Theorem.ipynb","*/prop-error-plots.ipynb","*/track-example.ipynb"]
12 | execute_notebooks : off # force, off, auto
13 |
14 | # Information about where the book exists on the web
15 | repository:
16 | url: https://github.com/cranmer/stats-ds-book
17 | path_to_book: book
18 | branch: master
19 |
20 | html:
21 | home_page_in_navbar : true
22 | use_repository_button: true
23 | use_issues_button: true
24 | use_edit_page_button: true
25 | google_analytics_id: UA-178330963-1
26 | comments:
27 | hypothesis: true
28 | extra_footer : |
29 |
31 | All content on this site (unless otherwise specified) is licensed under the CC BY-NC-SA 4.0 license
32 | 34 | -------------------------------------------------------------------------------- /book/jupyterhub.md: -------------------------------------------------------------------------------- 1 | # JupyterHub for class 2 | 3 | In doing your work, you will need a python3 environment with several libraries installed. To streamline this, we created a JupyterHub instance with the necessary environment pre-installed. We will use this JupyterHub for some homework assignments that are graded with `nbgrader`. Below are the links to the 4 | * For students: [https://physga-2059-fall.rcnyu.org](https://physga-2059-fall.rcnyu.org) 5 | * For instructors: [https://physga-2059-fall-instructor.rcnyu.org](https://physga-2059-fall-instructor.rcnyu.org) 6 | 7 | Please give it a try and let us know how it works for you 8 | 9 | ```{tip} 10 | Course material will be put in the `shared` folder, which is read-only. You will need to copy the files to your home area to modify them. 11 | ``` 12 | 13 | 14 | ```{tip} 15 | If you prefer the Jupyter Lab interface over the classic notebook, change the last part of the URL to "lab", e.g. [https://physga-2059-fall.rcnyu.org/user/The 10 most helpful *free1. online machine learning courses, via @chipro
— MIT CSAIL (@MIT_CSAIL) August 17, 2020
Full thread: https://t.co/RUcG2AL1uC#MondayMotivation pic.twitter.com/Fd3sN2u7UV