├── .gitignore ├── ChatTTS ├── __init__.py ├── core.py ├── experimental │ └── llm.py ├── infer │ └── api.py ├── model │ ├── dvae.py │ └── gpt.py └── utils │ ├── gpu_utils.py │ ├── infer_utils.py │ └── io_utils.py ├── LICENSE ├── README.md ├── README_CN.md ├── images └── webui_image.png ├── infer.ipynb ├── requirements.txt └── webui.py /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | *.ckpt 6 | # C extensions 7 | *.so 8 | *.pt 9 | 10 | # Distribution / packaging 11 | .Python 12 | outputs/ 13 | build/ 14 | develop-eggs/ 15 | dist/ 16 | downloads/ 17 | eggs/ 18 | .eggs/ 19 | lib/ 20 | lib64/ 21 | parts/ 22 | sdist/ 23 | var/ 24 | wheels/ 25 | share/python-wheels/ 26 | *.egg-info/ 27 | asset/* 28 | .installed.cfg 29 | *.egg 30 | MANIFEST 31 | 32 | # PyInstaller 33 | # Usually these files are written by a python script from a template 34 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 35 | *.manifest 36 | *.spec 37 | 38 | # Installer logs 39 | pip-log.txt 40 | pip-delete-this-directory.txt 41 | 42 | # Unit test / coverage reports 43 | htmlcov/ 44 | .tox/ 45 | .nox/ 46 | .coverage 47 | .coverage.* 48 | .cache 49 | nosetests.xml 50 | coverage.xml 51 | *.cover 52 | *.py,cover 53 | .hypothesis/ 54 | .pytest_cache/ 55 | cover/ 56 | 57 | # Translations 58 | *.mo 59 | *.pot 60 | 61 | # Django stuff: 62 | *.log 63 | local_settings.py 64 | db.sqlite3 65 | db.sqlite3-journal 66 | 67 | # Flask stuff: 68 | instance/ 69 | .webassets-cache 70 | 71 | # Scrapy stuff: 72 | .scrapy 73 | 74 | # Sphinx documentation 75 | docs/_build/ 76 | 77 | # PyBuilder 78 | .pybuilder/ 79 | target/ 80 | 81 | # Jupyter Notebook 82 | .ipynb_checkpoints 83 | 84 | # IPython 85 | profile_default/ 86 | ipython_config.py 87 | 88 | # pyenv 89 | # For a library or package, you might want to ignore these files since the code is 90 | # intended to run in multiple environments; otherwise, check them in: 91 | # .python-version 92 | 93 | # pipenv 94 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. 95 | # However, in case of collaboration, if having platform-specific dependencies or dependencies 96 | # having no cross-platform support, pipenv may install dependencies that don't work, or not 97 | # install all needed dependencies. 98 | #Pipfile.lock 99 | 100 | # poetry 101 | # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. 102 | # This is especially recommended for binary packages to ensure reproducibility, and is more 103 | # commonly ignored for libraries. 104 | # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control 105 | #poetry.lock 106 | 107 | # pdm 108 | # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control. 109 | #pdm.lock 110 | # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it 111 | # in version control. 112 | # https://pdm.fming.dev/#use-with-ide 113 | .pdm.toml 114 | 115 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm 116 | __pypackages__/ 117 | 118 | # Celery stuff 119 | celerybeat-schedule 120 | celerybeat.pid 121 | 122 | # SageMath parsed files 123 | *.sage.py 124 | 125 | # Environments 126 | .env 127 | .venv 128 | env/ 129 | venv/ 130 | ENV/ 131 | env.bak/ 132 | venv.bak/ 133 | 134 | # Spyder project settings 135 | .spyderproject 136 | .spyproject 137 | 138 | # Rope project settings 139 | .ropeproject 140 | 141 | # mkdocs documentation 142 | /site 143 | 144 | # mypy 145 | .mypy_cache/ 146 | .dmypy.json 147 | dmypy.json 148 | 149 | # Pyre type checker 150 | .pyre/ 151 | 152 | # pytype static type analyzer 153 | .pytype/ 154 | 155 | # Cython debug symbols 156 | cython_debug/ 157 | 158 | # PyCharm 159 | # JetBrains specific template is maintained in a separate JetBrains.gitignore that can 160 | # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore 161 | # and can be added to the global gitignore or merged into this file. For a more nuclear 162 | # option (not recommended) you can uncomment the following to ignore the entire idea folder. 163 | #.idea/ 164 | -------------------------------------------------------------------------------- /ChatTTS/__init__.py: -------------------------------------------------------------------------------- 1 | from .core import Chat -------------------------------------------------------------------------------- /ChatTTS/core.py: -------------------------------------------------------------------------------- 1 | 2 | import os 3 | import logging 4 | from omegaconf import OmegaConf 5 | 6 | import torch 7 | from vocos import Vocos 8 | from .model.dvae import DVAE 9 | from .model.gpt import GPT_warpper 10 | from .utils.gpu_utils import select_device 11 | from .utils.io_utils import get_latest_modified_file 12 | from .infer.api import refine_text, infer_code 13 | 14 | from huggingface_hub import snapshot_download 15 | 16 | logging.basicConfig(level = logging.INFO) 17 | 18 | 19 | class Chat: 20 | def __init__(self, ): 21 | self.pretrain_models = {} 22 | self.logger = logging.getLogger(__name__) 23 | 24 | def check_model(self, level = logging.INFO, use_decoder = False): 25 | not_finish = False 26 | check_list = ['vocos', 'gpt', 'tokenizer'] 27 | 28 | if use_decoder: 29 | check_list.append('decoder') 30 | else: 31 | check_list.append('dvae') 32 | 33 | for module in check_list: 34 | if module not in self.pretrain_models: 35 | self.logger.log(logging.WARNING, f'{module} not initialized.') 36 | not_finish = True 37 | 38 | if not not_finish: 39 | self.logger.log(level, f'All initialized.') 40 | 41 | return not not_finish 42 | 43 | def load_models(self, source='huggingface', force_redownload=False, local_path=''): 44 | if source == 'huggingface': 45 | hf_home = os.getenv('HF_HOME', os.path.expanduser("~/.cache/huggingface")) 46 | try: 47 | download_path = get_latest_modified_file(os.path.join(hf_home, 'hub/models--2Noise--ChatTTS/snapshots')) 48 | except: 49 | download_path = None 50 | if download_path is None or force_redownload: 51 | self.logger.log(logging.INFO, f'Download from HF: https://huggingface.co/2Noise/ChatTTS') 52 | download_path = snapshot_download(repo_id="2Noise/ChatTTS", allow_patterns=["*.pt", "*.yaml"]) 53 | else: 54 | self.logger.log(logging.INFO, f'Load from cache: {download_path}') 55 | self._load(**{k: os.path.join(download_path, v) for k, v in OmegaConf.load(os.path.join(download_path, 'config', 'path.yaml')).items()}) 56 | elif source == 'local': 57 | self.logger.log(logging.INFO, f'Load from local: {local_path}') 58 | self._load(**{k: os.path.join(local_path, v) for k, v in OmegaConf.load(os.path.join(local_path, 'config', 'path.yaml')).items()}) 59 | 60 | def _load( 61 | self, 62 | vocos_config_path: str = None, 63 | vocos_ckpt_path: str = None, 64 | dvae_config_path: str = None, 65 | dvae_ckpt_path: str = None, 66 | gpt_config_path: str = None, 67 | gpt_ckpt_path: str = None, 68 | decoder_config_path: str = None, 69 | decoder_ckpt_path: str = None, 70 | tokenizer_path: str = None, 71 | device: str = None 72 | ): 73 | if not device: 74 | device = select_device(4096) 75 | self.logger.log(logging.INFO, f'use {device}') 76 | 77 | if vocos_config_path: 78 | vocos = Vocos.from_hparams(vocos_config_path).to(device).eval() 79 | assert vocos_ckpt_path, 'vocos_ckpt_path should not be None' 80 | vocos.load_state_dict(torch.load(vocos_ckpt_path)) 81 | self.pretrain_models['vocos'] = vocos 82 | self.logger.log(logging.INFO, 'vocos loaded.') 83 | 84 | if dvae_config_path: 85 | cfg = OmegaConf.load(dvae_config_path) 86 | dvae = DVAE(**cfg).to(device).eval() 87 | assert dvae_ckpt_path, 'dvae_ckpt_path should not be None' 88 | dvae.load_state_dict(torch.load(dvae_ckpt_path, map_location='cpu')) 89 | self.pretrain_models['dvae'] = dvae 90 | self.logger.log(logging.INFO, 'dvae loaded.') 91 | 92 | if gpt_config_path: 93 | cfg = OmegaConf.load(gpt_config_path) 94 | gpt = GPT_warpper(**cfg).to(device).eval() 95 | assert gpt_ckpt_path, 'gpt_ckpt_path should not be None' 96 | gpt.load_state_dict(torch.load(gpt_ckpt_path, map_location='cpu')) 97 | self.pretrain_models['gpt'] = gpt 98 | spk_stat_path = os.path.join(os.path.dirname(gpt_ckpt_path), 'spk_stat.pt') 99 | assert os.path.exists(spk_stat_path), f'Missing spk_stat.pt: {spk_stat_path}' 100 | self.pretrain_models['spk_stat'] = torch.load(spk_stat_path).to(device) 101 | self.logger.log(logging.INFO, 'gpt loaded.') 102 | 103 | if decoder_config_path: 104 | cfg = OmegaConf.load(decoder_config_path) 105 | decoder = DVAE(**cfg).to(device).eval() 106 | assert decoder_ckpt_path, 'decoder_ckpt_path should not be None' 107 | decoder.load_state_dict(torch.load(decoder_ckpt_path, map_location='cpu')) 108 | self.pretrain_models['decoder'] = decoder 109 | self.logger.log(logging.INFO, 'decoder loaded.') 110 | 111 | if tokenizer_path: 112 | tokenizer = torch.load(tokenizer_path, map_location='cpu') 113 | tokenizer.padding_side = 'left' 114 | self.pretrain_models['tokenizer'] = tokenizer 115 | self.logger.log(logging.INFO, 'tokenizer loaded.') 116 | 117 | self.check_model() 118 | 119 | def infer( 120 | self, 121 | text, 122 | skip_refine_text=False, 123 | refine_text_only=False, 124 | params_refine_text={}, 125 | params_infer_code={}, 126 | use_decoder=False 127 | ): 128 | 129 | assert self.check_model(use_decoder=use_decoder) 130 | 131 | if not skip_refine_text: 132 | text_tokens = refine_text(self.pretrain_models, text, **params_refine_text)['ids'] 133 | text_tokens = [i[i < self.pretrain_models['tokenizer'].convert_tokens_to_ids('[break_0]')] for i in text_tokens] 134 | text = self.pretrain_models['tokenizer'].batch_decode(text_tokens) 135 | if refine_text_only: 136 | return text 137 | 138 | text = [params_infer_code.get('prompt', '') + i for i in text] 139 | params_infer_code.pop('prompt', '') 140 | result = infer_code(self.pretrain_models, text, **params_infer_code, return_hidden=use_decoder) 141 | 142 | if use_decoder: 143 | mel_spec = [self.pretrain_models['decoder'](i[None].permute(0,2,1)) for i in result['hiddens']] 144 | else: 145 | mel_spec = [self.pretrain_models['dvae'](i[None].permute(0,2,1)) for i in result['ids']] 146 | 147 | wav = [self.pretrain_models['vocos'].decode(i).cpu().numpy() for i in mel_spec] 148 | 149 | return wav 150 | 151 | def sample_random_speaker(self, ): 152 | 153 | dim = self.pretrain_models['gpt'].gpt.layers[0].mlp.gate_proj.in_features 154 | std, mean = self.pretrain_models['spk_stat'].chunk(2) 155 | return torch.randn(dim, device=std.device) * std + mean 156 | 157 | 158 | -------------------------------------------------------------------------------- /ChatTTS/experimental/llm.py: -------------------------------------------------------------------------------- 1 | 2 | from openai import OpenAI 3 | 4 | prompt_dict = { 5 | 'kimi': [ {"role": "system", "content": "你是 Kimi,由 Moonshot AI 提供的人工智能助手,你更擅长中文和英文的对话。"}, 6 | {"role": "user", "content": "你好,请注意你现在生成的文字要按照人日常生活的口吻,你的回复将会后续用TTS模型转为语音,并且请把回答控制在100字以内。并且标点符号仅包含逗号和句号,将数字等转为文字回答。"}, 7 | {"role": "assistant", "content": "好的,我现在生成的文字将按照人日常生活的口吻, 并且我会把回答控制在一百字以内, 标点符号仅包含逗号和句号,将阿拉伯数字等转为中文文字回答。下面请开始对话。"},], 8 | 'deepseek': [ 9 | {"role": "system", "content": "You are a helpful assistant"}, 10 | {"role": "user", "content": "你好,请注意你现在生成的文字要按照人日常生活的口吻,你的回复将会后续用TTS模型转为语音,并且请把回答控制在100字以内。并且标点符号仅包含逗号和句号,将数字等转为文字回答。"}, 11 | {"role": "assistant", "content": "好的,我现在生成的文字将按照人日常生活的口吻, 并且我会把回答控制在一百字以内, 标点符号仅包含逗号和句号,将阿拉伯数字等转为中文文字回答。下面请开始对话。"},], 12 | 'deepseek_TN': [ 13 | {"role": "system", "content": "You are a helpful assistant"}, 14 | {"role": "user", "content": "你好,现在我们在处理TTS的文本输入,下面将会给你输入一段文本,请你将其中的阿拉伯数字等等转为文字表达,并且输出的文本里仅包含逗号和句号这两个标点符号"}, 15 | {"role": "assistant", "content": "好的,我现在对TTS的文本输入进行处理。这一般叫做text normalization。下面请输入"}, 16 | {"role": "user", "content": "We paid $123 for this desk."}, 17 | {"role": "assistant", "content": "We paid one hundred and twenty three dollars for this desk."}, 18 | {"role": "user", "content": "详询请拨打010-724654"}, 19 | {"role": "assistant", "content": "详询请拨打零幺零,七二四六五四"}, 20 | {"role": "user", "content": "罗森宣布将于7月24日退市,在华门店超6000家!"}, 21 | {"role": "assistant", "content": "罗森宣布将于七月二十四日退市,在华门店超过六千家。"}, 22 | ], 23 | } 24 | 25 | class llm_api: 26 | def __init__(self, api_key, base_url, model): 27 | self.client = OpenAI( 28 | api_key = api_key, 29 | base_url = base_url, 30 | ) 31 | self.model = model 32 | def call(self, user_question, temperature = 0.3, prompt_version='kimi', **kwargs): 33 | 34 | completion = self.client.chat.completions.create( 35 | model = self.model, 36 | messages = prompt_dict[prompt_version]+[{"role": "user", "content": user_question},], 37 | temperature = temperature, 38 | **kwargs 39 | ) 40 | return completion.choices[0].message.content 41 | -------------------------------------------------------------------------------- /ChatTTS/infer/api.py: -------------------------------------------------------------------------------- 1 | 2 | import torch 3 | import torch.nn.functional as F 4 | from transformers.generation import TopKLogitsWarper, TopPLogitsWarper 5 | from ..utils.infer_utils import CustomRepetitionPenaltyLogitsProcessorRepeat 6 | 7 | def infer_code( 8 | models, 9 | text, 10 | spk_emb = None, 11 | top_P = 0.7, 12 | top_K = 20, 13 | temperature = 0.3, 14 | repetition_penalty = 1.05, 15 | max_new_token = 2048, 16 | **kwargs 17 | ): 18 | 19 | device = next(models['gpt'].parameters()).device 20 | 21 | if not isinstance(text, list): 22 | text = [text] 23 | 24 | if not isinstance(temperature, list): 25 | temperature = [temperature] * models['gpt'].num_vq 26 | 27 | if spk_emb is not None: 28 | text = [f'[Stts][spk_emb]{i}[uv_break][Ptts]' for i in text] 29 | else: 30 | text = [f'[Stts][empty_spk]{i}[uv_break][Ptts]' for i in text] 31 | 32 | text_token = models['tokenizer'](text, return_tensors='pt', add_special_tokens=False, padding=True).to(device) 33 | input_ids = text_token['input_ids'][...,None].expand(-1, -1, models['gpt'].num_vq) 34 | text_mask = torch.ones(text_token['input_ids'].shape, dtype=bool, device=device) 35 | 36 | inputs = { 37 | 'input_ids': input_ids, 38 | 'text_mask': text_mask, 39 | 'attention_mask': text_token['attention_mask'], 40 | } 41 | 42 | emb = models['gpt'].get_emb(**inputs) 43 | if spk_emb is not None: 44 | emb[inputs['input_ids'][..., 0] == models['tokenizer'].convert_tokens_to_ids('[spk_emb]')] = \ 45 | F.normalize(spk_emb.to(device).to(emb.dtype)[None].expand(len(text), -1), p=2.0, dim=1, eps=1e-12) 46 | 47 | num_code = models['gpt'].emb_code[0].num_embeddings - 1 48 | 49 | LogitsWarpers = [] 50 | if top_P is not None: 51 | LogitsWarpers.append(TopPLogitsWarper(top_P, min_tokens_to_keep=3)) 52 | if top_K is not None: 53 | LogitsWarpers.append(TopKLogitsWarper(top_K, min_tokens_to_keep=3)) 54 | 55 | LogitsProcessors = [] 56 | if repetition_penalty is not None and repetition_penalty != 1: 57 | LogitsProcessors.append(CustomRepetitionPenaltyLogitsProcessorRepeat(\ 58 | repetition_penalty, num_code, 16)) 59 | 60 | result = models['gpt'].generate( 61 | emb, inputs['input_ids'], 62 | temperature = torch.tensor(temperature, device=device), 63 | attention_mask = inputs['attention_mask'], 64 | LogitsWarpers = LogitsWarpers, 65 | LogitsProcessors = LogitsProcessors, 66 | eos_token = num_code, 67 | max_new_token = max_new_token, 68 | infer_text = False, 69 | **kwargs 70 | ) 71 | 72 | return result 73 | 74 | 75 | def refine_text( 76 | models, 77 | text, 78 | top_P = 0.7, 79 | top_K = 20, 80 | temperature = 0.7, 81 | repetition_penalty = 1.0, 82 | max_new_token = 384, 83 | prompt = '', 84 | **kwargs 85 | ): 86 | 87 | device = next(models['gpt'].parameters()).device 88 | 89 | if not isinstance(text, list): 90 | text = [text] 91 | 92 | assert len(text), 'text should not be empty' 93 | 94 | text = [f"[Sbreak]{i}[Pbreak]{prompt}" for i in text] 95 | text_token = models['tokenizer'](text, return_tensors='pt', add_special_tokens=False, padding=True).to(device) 96 | text_mask = torch.ones(text_token['input_ids'].shape, dtype=bool, device=device) 97 | 98 | inputs = { 99 | 'input_ids': text_token['input_ids'][...,None].expand(-1, -1, models['gpt'].num_vq), 100 | 'text_mask': text_mask, 101 | 'attention_mask': text_token['attention_mask'], 102 | } 103 | 104 | LogitsWarpers = [] 105 | if top_P is not None: 106 | LogitsWarpers.append(TopPLogitsWarper(top_P, min_tokens_to_keep=3)) 107 | if top_K is not None: 108 | LogitsWarpers.append(TopKLogitsWarper(top_K, min_tokens_to_keep=3)) 109 | 110 | LogitsProcessors = [] 111 | if repetition_penalty is not None and repetition_penalty != 1: 112 | LogitsProcessors.append(CustomRepetitionPenaltyLogitsProcessorRepeat(repetition_penalty, len(models['tokenizer']), 16)) 113 | 114 | result = models['gpt'].generate( 115 | models['gpt'].get_emb(**inputs), inputs['input_ids'], 116 | temperature = torch.tensor([temperature,], device=device), 117 | attention_mask = inputs['attention_mask'], 118 | LogitsWarpers = LogitsWarpers, 119 | LogitsProcessors = LogitsProcessors, 120 | eos_token = torch.tensor(models['tokenizer'].convert_tokens_to_ids('[Ebreak]'), device=device)[None], 121 | max_new_token = max_new_token, 122 | infer_text = True, 123 | **kwargs 124 | ) 125 | return result -------------------------------------------------------------------------------- /ChatTTS/model/dvae.py: -------------------------------------------------------------------------------- 1 | import math 2 | from einops import rearrange 3 | from vector_quantize_pytorch import GroupedResidualFSQ 4 | 5 | import torch 6 | import torch.nn as nn 7 | import torch.nn.functional as F 8 | 9 | class ConvNeXtBlock(nn.Module): 10 | def __init__( 11 | self, 12 | dim: int, 13 | intermediate_dim: int, 14 | kernel, dilation, 15 | layer_scale_init_value: float = 1e-6, 16 | ): 17 | # ConvNeXt Block copied from Vocos. 18 | super().__init__() 19 | self.dwconv = nn.Conv1d(dim, dim, 20 | kernel_size=kernel, padding=dilation*(kernel//2), 21 | dilation=dilation, groups=dim 22 | ) # depthwise conv 23 | 24 | self.norm = nn.LayerNorm(dim, eps=1e-6) 25 | self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers 26 | self.act = nn.GELU() 27 | self.pwconv2 = nn.Linear(intermediate_dim, dim) 28 | self.gamma = ( 29 | nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) 30 | if layer_scale_init_value > 0 31 | else None 32 | ) 33 | 34 | def forward(self, x: torch.Tensor, cond = None) -> torch.Tensor: 35 | residual = x 36 | x = self.dwconv(x) 37 | x = x.transpose(1, 2) # (B, C, T) -> (B, T, C) 38 | x = self.norm(x) 39 | x = self.pwconv1(x) 40 | x = self.act(x) 41 | x = self.pwconv2(x) 42 | if self.gamma is not None: 43 | x = self.gamma * x 44 | x = x.transpose(1, 2) # (B, T, C) -> (B, C, T) 45 | 46 | x = residual + x 47 | return x 48 | 49 | 50 | 51 | class GFSQ(nn.Module): 52 | 53 | def __init__(self, 54 | dim, levels, G, R, eps=1e-5, transpose = True 55 | ): 56 | super(GFSQ, self).__init__() 57 | self.quantizer = GroupedResidualFSQ( 58 | dim=dim, 59 | levels=levels, 60 | num_quantizers=R, 61 | groups=G, 62 | ) 63 | self.n_ind = math.prod(levels) 64 | self.eps = eps 65 | self.transpose = transpose 66 | self.G = G 67 | self.R = R 68 | 69 | def _embed(self, x): 70 | if self.transpose: 71 | x = x.transpose(1,2) 72 | x = rearrange( 73 | x, "b t (g r) -> g b t r", g = self.G, r = self.R, 74 | ) 75 | feat = self.quantizer.get_output_from_indices(x) 76 | return feat.transpose(1,2) if self.transpose else feat 77 | 78 | def forward(self, x,): 79 | if self.transpose: 80 | x = x.transpose(1,2) 81 | feat, ind = self.quantizer(x) 82 | ind = rearrange( 83 | ind, "g b t r ->b t (g r)", 84 | ) 85 | embed_onehot = F.one_hot(ind.long(), self.n_ind).to(x.dtype) 86 | e_mean = torch.mean(embed_onehot, dim=[0,1]) 87 | e_mean = e_mean / (e_mean.sum(dim=1) + self.eps).unsqueeze(1) 88 | perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + self.eps), dim=1)) 89 | 90 | return ( 91 | torch.zeros(perplexity.shape, dtype=x.dtype, device=x.device), 92 | feat.transpose(1,2) if self.transpose else feat, 93 | perplexity, 94 | None, 95 | ind.transpose(1,2) if self.transpose else ind, 96 | ) 97 | 98 | class DVAEDecoder(nn.Module): 99 | def __init__(self, idim, odim, 100 | n_layer = 12, bn_dim = 64, hidden = 256, 101 | kernel = 7, dilation = 2, up = False 102 | ): 103 | super().__init__() 104 | self.up = up 105 | self.conv_in = nn.Sequential( 106 | nn.Conv1d(idim, bn_dim, 3, 1, 1), nn.GELU(), 107 | nn.Conv1d(bn_dim, hidden, 3, 1, 1) 108 | ) 109 | self.decoder_block = nn.ModuleList([ 110 | ConvNeXtBlock(hidden, hidden* 4, kernel, dilation,) 111 | for _ in range(n_layer)]) 112 | self.conv_out = nn.Conv1d(hidden, odim, kernel_size=1, bias=False) 113 | 114 | def forward(self, input, conditioning=None): 115 | # B, T, C 116 | x = input.transpose(1, 2) 117 | x = self.conv_in(x) 118 | for f in self.decoder_block: 119 | x = f(x, conditioning) 120 | 121 | x = self.conv_out(x) 122 | return x.transpose(1, 2) 123 | 124 | 125 | class DVAE(nn.Module): 126 | def __init__( 127 | self, decoder_config, vq_config, dim=512 128 | ): 129 | super().__init__() 130 | self.register_buffer('coef', torch.randn(1, 100, 1)) 131 | 132 | self.decoder = DVAEDecoder(**decoder_config) 133 | self.out_conv = nn.Conv1d(dim, 100, 3, 1, 1, bias=False) 134 | if vq_config is not None: 135 | self.vq_layer = GFSQ(**vq_config) 136 | else: 137 | self.vq_layer = None 138 | 139 | def forward(self, inp): 140 | 141 | if self.vq_layer is not None: 142 | vq_feats = self.vq_layer._embed(inp) 143 | else: 144 | vq_feats = inp.detach().clone() 145 | 146 | temp = torch.chunk(vq_feats, 2, dim=1) # flatten trick :) 147 | temp = torch.stack(temp, -1) 148 | vq_feats = temp.reshape(*temp.shape[:2], -1) 149 | 150 | vq_feats = vq_feats.transpose(1, 2) 151 | dec_out = self.decoder(input=vq_feats) 152 | dec_out = self.out_conv(dec_out.transpose(1, 2)) 153 | mel = dec_out * self.coef 154 | 155 | return mel 156 | -------------------------------------------------------------------------------- /ChatTTS/model/gpt.py: -------------------------------------------------------------------------------- 1 | import os 2 | os.environ["TOKENIZERS_PARALLELISM"] = "false" 3 | 4 | import logging 5 | from tqdm import tqdm 6 | from einops import rearrange 7 | from transformers.cache_utils import Cache 8 | 9 | import torch 10 | import torch.nn as nn 11 | import torch.nn.functional as F 12 | import torch.nn.utils.parametrize as P 13 | from torch.nn.utils.parametrizations import weight_norm 14 | from transformers import LlamaModel, LlamaConfig 15 | 16 | 17 | class LlamaMLP(nn.Module): 18 | def __init__(self, hidden_size, intermediate_size): 19 | super().__init__() 20 | self.hidden_size = hidden_size 21 | self.intermediate_size = intermediate_size 22 | self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) 23 | self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) 24 | self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) 25 | self.act_fn = F.silu 26 | 27 | def forward(self, x): 28 | down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) 29 | return down_proj 30 | 31 | 32 | class GPT_warpper(nn.Module): 33 | def __init__( 34 | self, 35 | gpt_config, 36 | num_audio_tokens, 37 | num_text_tokens, 38 | num_vq=4, 39 | **kwargs, 40 | ): 41 | super().__init__() 42 | 43 | self.logger = logging.getLogger(__name__) 44 | self.gpt = self.build_model(gpt_config) 45 | self.model_dim = self.gpt.config.hidden_size 46 | 47 | self.num_vq = num_vq 48 | self.emb_code = nn.ModuleList([nn.Embedding(num_audio_tokens, self.model_dim) for i in range(self.num_vq)]) 49 | self.emb_text = nn.Embedding(num_text_tokens, self.model_dim) 50 | self.head_text = weight_norm(nn.Linear(self.model_dim, num_text_tokens, bias=False), name='weight') 51 | self.head_code = nn.ModuleList([weight_norm(nn.Linear(self.model_dim, num_audio_tokens, bias=False), name='weight') for i in range(self.num_vq)]) 52 | 53 | def build_model(self, config): 54 | 55 | configuration = LlamaConfig(**config) 56 | model = LlamaModel(configuration) 57 | del model.embed_tokens 58 | 59 | return model 60 | 61 | def get_emb(self, input_ids, text_mask, **kwargs): 62 | 63 | emb_text = self.emb_text(input_ids[text_mask][:, 0]) 64 | 65 | emb_code = [self.emb_code[i](input_ids[~text_mask][:, i]) for i in range(self.num_vq)] 66 | emb_code = torch.stack(emb_code, 2).sum(2) 67 | 68 | emb = torch.zeros((input_ids.shape[:-1])+(emb_text.shape[-1],), device=emb_text.device, dtype=emb_text.dtype) 69 | emb[text_mask] = emb_text 70 | emb[~text_mask] = emb_code.to(emb.dtype) 71 | 72 | return emb 73 | 74 | def prepare_inputs_for_generation( 75 | self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs 76 | ): 77 | # With static cache, the `past_key_values` is None 78 | # TODO joao: standardize interface for the different Cache classes and remove of this if 79 | has_static_cache = False 80 | if past_key_values is None: 81 | past_key_values = getattr(self.gpt.layers[0].self_attn, "past_key_value", None) 82 | has_static_cache = past_key_values is not None 83 | 84 | past_length = 0 85 | if past_key_values is not None: 86 | if isinstance(past_key_values, Cache): 87 | past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() 88 | max_cache_length = ( 89 | torch.tensor(past_key_values.get_max_length(), device=input_ids.device) 90 | if past_key_values.get_max_length() is not None 91 | else None 92 | ) 93 | cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length) 94 | # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects 95 | else: 96 | cache_length = past_length = past_key_values[0][0].shape[2] 97 | max_cache_length = None 98 | 99 | # Keep only the unprocessed tokens: 100 | # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where 101 | # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as 102 | # input) 103 | if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: 104 | input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] 105 | # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard 106 | # input_ids based on the past_length. 107 | elif past_length < input_ids.shape[1]: 108 | input_ids = input_ids[:, past_length:] 109 | # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. 110 | 111 | # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. 112 | if ( 113 | max_cache_length is not None 114 | and attention_mask is not None 115 | and cache_length + input_ids.shape[1] > max_cache_length 116 | ): 117 | attention_mask = attention_mask[:, -max_cache_length:] 118 | 119 | position_ids = kwargs.get("position_ids", None) 120 | if attention_mask is not None and position_ids is None: 121 | # create position_ids on the fly for batch generation 122 | position_ids = attention_mask.long().cumsum(-1) - 1 123 | position_ids.masked_fill_(attention_mask == 0, 1) 124 | if past_key_values: 125 | position_ids = position_ids[:, -input_ids.shape[1] :] 126 | 127 | # if `inputs_embeds` are passed, we only want to use them in the 1st generation step 128 | if inputs_embeds is not None and past_key_values is None: 129 | model_inputs = {"inputs_embeds": inputs_embeds} 130 | else: 131 | # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise 132 | # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114 133 | # TODO: use `next_tokens` directly instead. 134 | model_inputs = {"input_ids": input_ids.contiguous()} 135 | 136 | input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1] 137 | if cache_position is None: 138 | cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device) 139 | else: 140 | cache_position = cache_position[-input_length:] 141 | 142 | if has_static_cache: 143 | past_key_values = None 144 | 145 | model_inputs.update( 146 | { 147 | "position_ids": position_ids, 148 | "cache_position": cache_position, 149 | "past_key_values": past_key_values, 150 | "use_cache": kwargs.get("use_cache"), 151 | "attention_mask": attention_mask, 152 | } 153 | ) 154 | return model_inputs 155 | 156 | def generate( 157 | self, 158 | emb, 159 | inputs_ids, 160 | temperature, 161 | eos_token, 162 | attention_mask = None, 163 | max_new_token = 2048, 164 | min_new_token = 0, 165 | LogitsWarpers = [], 166 | LogitsProcessors = [], 167 | infer_text=False, 168 | return_attn=False, 169 | return_hidden=False, 170 | ): 171 | 172 | with torch.no_grad(): 173 | 174 | attentions = [] 175 | hiddens = [] 176 | 177 | start_idx, end_idx = inputs_ids.shape[1], torch.zeros(inputs_ids.shape[0], device=inputs_ids.device, dtype=torch.long) 178 | finish = torch.zeros(inputs_ids.shape[0], device=inputs_ids.device).bool() 179 | 180 | temperature = temperature[None].expand(inputs_ids.shape[0], -1) 181 | temperature = rearrange(temperature, "b n -> (b n) 1") 182 | 183 | attention_mask_cache = torch.ones((inputs_ids.shape[0], inputs_ids.shape[1]+max_new_token,), dtype=torch.bool, device=inputs_ids.device) 184 | if attention_mask is not None: 185 | attention_mask_cache[:, :attention_mask.shape[1]] = attention_mask 186 | 187 | for i in tqdm(range(max_new_token)): 188 | 189 | model_input = self.prepare_inputs_for_generation(inputs_ids, 190 | outputs.past_key_values if i!=0 else None, 191 | attention_mask_cache[:, :inputs_ids.shape[1]], use_cache=True) 192 | 193 | if i == 0: 194 | model_input['inputs_embeds'] = emb 195 | else: 196 | if infer_text: 197 | model_input['inputs_embeds'] = self.emb_text(model_input['input_ids'][:,:,0]) 198 | else: 199 | code_emb = [self.emb_code[i](model_input['input_ids'][:,:,i]) for i in range(self.num_vq)] 200 | model_input['inputs_embeds'] = torch.stack(code_emb, 3).sum(3) 201 | 202 | model_input['input_ids'] = None 203 | outputs = self.gpt.forward(**model_input, output_attentions=return_attn) 204 | attentions.append(outputs.attentions) 205 | hidden_states = outputs[0] # 🐻 206 | if return_hidden: 207 | hiddens.append(hidden_states[:, -1]) 208 | 209 | with P.cached(): 210 | if infer_text: 211 | logits = self.head_text(hidden_states) 212 | else: 213 | logits = torch.stack([self.head_code[i](hidden_states) for i in range(self.num_vq)], 3) 214 | 215 | logits = logits[:, -1].float() 216 | 217 | if not infer_text: 218 | logits = rearrange(logits, "b c n -> (b n) c") 219 | logits_token = rearrange(inputs_ids[:, start_idx:], "b c n -> (b n) c") 220 | else: 221 | logits_token = inputs_ids[:, start_idx:, 0] 222 | 223 | logits = logits / temperature 224 | 225 | for logitsProcessors in LogitsProcessors: 226 | logits = logitsProcessors(logits_token, logits) 227 | 228 | for logitsWarpers in LogitsWarpers: 229 | logits = logitsWarpers(logits_token, logits) 230 | 231 | if i < min_new_token: 232 | logits[:, eos_token] = -torch.inf 233 | 234 | scores = F.softmax(logits, dim=-1) 235 | 236 | idx_next = torch.multinomial(scores, num_samples=1) 237 | 238 | if not infer_text: 239 | idx_next = rearrange(idx_next, "(b n) 1 -> b n", n=self.num_vq) 240 | finish = finish | (idx_next == eos_token).any(1) 241 | inputs_ids = torch.cat([inputs_ids, idx_next.unsqueeze(1)], 1) 242 | else: 243 | finish = finish | (idx_next == eos_token).any(1) 244 | inputs_ids = torch.cat([inputs_ids, idx_next.unsqueeze(-1).expand(-1, -1, self.num_vq)], 1) 245 | 246 | end_idx = end_idx + (~finish).int() 247 | 248 | if finish.all(): 249 | break 250 | 251 | inputs_ids = [inputs_ids[idx, start_idx: start_idx+i] for idx, i in enumerate(end_idx.int())] 252 | inputs_ids = [i[:, 0] for i in inputs_ids] if infer_text else inputs_ids 253 | 254 | if return_hidden: 255 | hiddens = torch.stack(hiddens, 1) 256 | hiddens = [hiddens[idx, :i] for idx, i in enumerate(end_idx.int())] 257 | 258 | if not finish.all(): 259 | self.logger.warn(f'Incomplete result. hit max_new_token: {max_new_token}') 260 | 261 | return { 262 | 'ids': inputs_ids, 263 | 'attentions': attentions, 264 | 'hiddens':hiddens, 265 | } -------------------------------------------------------------------------------- /ChatTTS/utils/gpu_utils.py: -------------------------------------------------------------------------------- 1 | 2 | import torch 3 | import logging 4 | 5 | def select_device(min_memory = 2048): 6 | logger = logging.getLogger(__name__) 7 | if torch.cuda.is_available(): 8 | available_gpus = [] 9 | for i in range(torch.cuda.device_count()): 10 | props = torch.cuda.get_device_properties(i) 11 | free_memory = props.total_memory - torch.cuda.memory_reserved(i) 12 | available_gpus.append((i, free_memory)) 13 | selected_gpu, max_free_memory = max(available_gpus, key=lambda x: x[1]) 14 | device = torch.device(f'cuda:{selected_gpu}') 15 | free_memory_mb = max_free_memory / (1024 * 1024) 16 | if free_memory_mb < min_memory: 17 | logger.log(logging.WARNING, f'GPU {selected_gpu} has {round(free_memory_mb, 2)} MB memory left.') 18 | device = torch.device('cpu') 19 | else: 20 | logger.log(logging.WARNING, f'No GPU found, use CPU instead') 21 | device = torch.device('cpu') 22 | 23 | return device 24 | -------------------------------------------------------------------------------- /ChatTTS/utils/infer_utils.py: -------------------------------------------------------------------------------- 1 | 2 | import torch 3 | import torch.nn.functional as F 4 | 5 | 6 | class CustomRepetitionPenaltyLogitsProcessorRepeat(): 7 | 8 | def __init__(self, penalty: float, max_input_ids, past_window): 9 | if not isinstance(penalty, float) or not (penalty > 0): 10 | raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}") 11 | 12 | self.penalty = penalty 13 | self.max_input_ids = max_input_ids 14 | self.past_window = past_window 15 | 16 | def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: 17 | 18 | input_ids = input_ids[:, -self.past_window:] 19 | freq = F.one_hot(input_ids, scores.size(1)).sum(1) 20 | freq[self.max_input_ids:] = 0 21 | alpha = self.penalty**freq 22 | scores = torch.where(scores < 0, scores*alpha, scores/alpha) 23 | 24 | return scores 25 | 26 | class CustomRepetitionPenaltyLogitsProcessor(): 27 | 28 | def __init__(self, penalty: float, max_input_ids, past_window): 29 | if not isinstance(penalty, float) or not (penalty > 0): 30 | raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}") 31 | 32 | self.penalty = penalty 33 | self.max_input_ids = max_input_ids 34 | self.past_window = past_window 35 | 36 | def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: 37 | 38 | input_ids = input_ids[:, -self.past_window:] 39 | score = torch.gather(scores, 1, input_ids) 40 | _score = score.detach().clone() 41 | score = torch.where(score < 0, score * self.penalty, score / self.penalty) 42 | score[input_ids>=self.max_input_ids] = _score[input_ids>=self.max_input_ids] 43 | scores.scatter_(1, input_ids, score) 44 | 45 | return scores -------------------------------------------------------------------------------- /ChatTTS/utils/io_utils.py: -------------------------------------------------------------------------------- 1 | 2 | import os 3 | import logging 4 | 5 | def get_latest_modified_file(directory): 6 | logger = logging.getLogger(__name__) 7 | 8 | files = [os.path.join(directory, f) for f in os.listdir(directory)] 9 | if not files: 10 | logger.log(logging.WARNING, f'No files found in the directory: {directory}') 11 | return None 12 | latest_file = max(files, key=os.path.getmtime) 13 | 14 | return latest_file -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | # Attribution-NonCommercial-NoDerivatives 4.0 International 2 | 3 | > *Creative Commons Corporation (“Creative Commons”) is not a law firm and does not provide legal services or legal advice. Distribution of Creative Commons public licenses does not create a lawyer-client or other relationship. Creative Commons makes its licenses and related information available on an “as-is” basis. Creative Commons gives no warranties regarding its licenses, any material licensed under their terms and conditions, or any related information. Creative Commons disclaims all liability for damages resulting from their use to the fullest extent possible.* 4 | > 5 | > ### Using Creative Commons Public Licenses 6 | > 7 | > Creative Commons public licenses provide a standard set of terms and conditions that creators and other rights holders may use to share original works of authorship and other material subject to copyright and certain other rights specified in the public license below. The following considerations are for informational purposes only, are not exhaustive, and do not form part of our licenses. 8 | > 9 | > * __Considerations for licensors:__ Our public licenses are intended for use by those authorized to give the public permission to use material in ways otherwise restricted by copyright and certain other rights. Our licenses are irrevocable. Licensors should read and understand the terms and conditions of the license they choose before applying it. Licensors should also secure all rights necessary before applying our licenses so that the public can reuse the material as expected. Licensors should clearly mark any material not subject to the license. This includes other CC-licensed material, or material used under an exception or limitation to copyright. [More considerations for licensors](http://wiki.creativecommons.org/Considerations_for_licensors_and_licensees#Considerations_for_licensors). 10 | > 11 | > * __Considerations for the public:__ By using one of our public licenses, a licensor grants the public permission to use the licensed material under specified terms and conditions. If the licensor’s permission is not necessary for any reason–for example, because of any applicable exception or limitation to copyright–then that use is not regulated by the license. Our licenses grant only permissions under copyright and certain other rights that a licensor has authority to grant. Use of the licensed material may still be restricted for other reasons, including because others have copyright or other rights in the material. A licensor may make special requests, such as asking that all changes be marked or described. Although not required by our licenses, you are encouraged to respect those requests where reasonable. [More considerations for the public](http://wiki.creativecommons.org/Considerations_for_licensors_and_licensees#Considerations_for_licensees). 12 | 13 | ## Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License 14 | 15 | By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions of this Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License ("Public License"). To the extent this Public License may be interpreted as a contract, You are granted the Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor grants You such rights in consideration of benefits the Licensor receives from making the Licensed Material available under these terms and conditions. 16 | 17 | ### Section 1 – Definitions. 18 | 19 | a. __Adapted Material__ means material subject to Copyright and Similar Rights that is derived from or based upon the Licensed Material and in which the Licensed Material is translated, altered, arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed Material is a musical work, performance, or sound recording, Adapted Material is always produced where the Licensed Material is synched in timed relation with a moving image. 20 | 21 | b. __Copyright and Similar Rights__ means copyright and/or similar rights closely related to copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis Database Rights, without regard to how the rights are labeled or categorized. For purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights. 22 | 23 | e. __Effective Technological Measures__ means those measures that, in the absence of proper authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international agreements. 24 | 25 | f. __Exceptions and Limitations__ means fair use, fair dealing, and/or any other exception or limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material. 26 | 27 | h. __Licensed Material__ means the artistic or literary work, database, or other material to which the Licensor applied this Public License. 28 | 29 | i. __Licensed Rights__ means the rights granted to You subject to the terms and conditions of this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed Material and that the Licensor has authority to license. 30 | 31 | h. __Licensor__ means the individual(s) or entity(ies) granting rights under this Public License. 32 | 33 | i. __NonCommercial__ means not primarily intended for or directed towards commercial advantage or monetary compensation. For purposes of this Public License, the exchange of the Licensed Material for other material subject to Copyright and Similar Rights by digital file-sharing or similar means is NonCommercial provided there is no payment of monetary compensation in connection with the exchange. 34 | 35 | j. __Share__ means to provide material to the public by any means or process that requires permission under the Licensed Rights, such as reproduction, public display, public performance, distribution, dissemination, communication, or importation, and to make material available to the public including in ways that members of the public may access the material from a place and at a time individually chosen by them. 36 | 37 | k. __Sui Generis Database Rights__ means rights other than copyright resulting from Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere in the world. 38 | 39 | l. __You__ means the individual or entity exercising the Licensed Rights under this Public License. Your has a corresponding meaning. 40 | 41 | ### Section 2 – Scope. 42 | 43 | a. ___License grant.___ 44 | 45 | 1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed Rights in the Licensed Material to: 46 | 47 | A. reproduce and Share the Licensed Material, in whole or in part, for NonCommercial purposes only; and 48 | 49 | B. produce and reproduce, but not Share, Adapted Material for NonCommercial purposes only. 50 | 51 | 2. __Exceptions and Limitations.__ For the avoidance of doubt, where Exceptions and Limitations apply to Your use, this Public License does not apply, and You do not need to comply with its terms and conditions. 52 | 53 | 3. __Term.__ The term of this Public License is specified in Section 6(a). 54 | 55 | 4. __Media and formats; technical modifications allowed.__ The Licensor authorizes You to exercise the Licensed Rights in all media and formats whether now known or hereafter created, and to make technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right or authority to forbid You from making technical modifications necessary to exercise the Licensed Rights, including technical modifications necessary to circumvent Effective Technological Measures. For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4) never produces Adapted Material. 56 | 57 | 5. __Downstream recipients.__ 58 | 59 | A. __Offer from the Licensor – Licensed Material.__ Every recipient of the Licensed Material automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms and conditions of this Public License. 60 | 61 | B. __No downstream restrictions.__ You may not offer or impose any additional or different terms or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing so restricts exercise of the Licensed Rights by any recipient of the Licensed Material. 62 | 63 | 6. __No endorsement.__ Nothing in this Public License constitutes or may be construed as permission to assert or imply that You are, or that Your use of the Licensed Material is, connected with, or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive attribution as provided in Section 3(a)(1)(A)(i). 64 | 65 | b. ___Other rights.___ 66 | 67 | 1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent necessary to allow You to exercise the Licensed Rights, but not otherwise. 68 | 69 | 2. Patent and trademark rights are not licensed under this Public License. 70 | 71 | 3. To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly reserves any right to collect such royalties, including when the Licensed Material is used other than for NonCommercial purposes. 72 | 73 | ### Section 3 – License Conditions. 74 | 75 | Your exercise of the Licensed Rights is expressly made subject to the following conditions. 76 | 77 | a. ___Attribution.___ 78 | 79 | 1. If You Share the Licensed Material, You must: 80 | 81 | A. retain the following if it is supplied by the Licensor with the Licensed Material: 82 | 83 | i. identification of the creator(s) of the Licensed Material and any others designated to receive attribution, in any reasonable manner requested by the Licensor (including by pseudonym if designated); 84 | 85 | ii. a copyright notice; 86 | 87 | iii. a notice that refers to this Public License; 88 | 89 | iv. a notice that refers to the disclaimer of warranties; 90 | 91 | v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable; 92 | 93 | B. indicate if You modified the Licensed Material and retain an indication of any previous modifications; and 94 | 95 | C. indicate the Licensed Material is licensed under this Public License, and include the text of, or the URI or hyperlink to, this Public License. 96 | 97 | For the avoidance of doubt, You do not have permission under this Public License to Share Adapted Material. 98 | 99 | 2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium, means, and context in which You Share the Licensed Material. For example, it may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the required information. 100 | 101 | 3. If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A) to the extent reasonably practicable. 102 | 103 | ### Section 4 – Sui Generis Database Rights. 104 | 105 | Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material: 106 | 107 | a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all or a substantial portion of the contents of the database for NonCommercial purposes only and provided You do not Share Adapted Material; 108 | 109 | b. if You include all or a substantial portion of the database contents in a database in which You have Sui Generis Database Rights, then the database in which You have Sui Generis Database Rights (but not its individual contents) is Adapted Material; and 110 | 111 | c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the contents of the database. 112 | 113 | For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public License where the Licensed Rights include other Copyright and Similar Rights. 114 | 115 | ### Section 5 – Disclaimer of Warranties and Limitation of Liability. 116 | 117 | a. __Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers the Licensed Material as-is and as-available, and makes no representations or warranties of any kind concerning the Licensed Material, whether express, implied, statutory, or other. This includes, without limitation, warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors, whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in part, this disclaimer may not apply to You.__ 118 | 119 | b. __To the extent possible, in no event will the Licensor be liable to You on any legal theory (including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or in part, this limitation may not apply to You.__ 120 | 121 | c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver of all liability. 122 | 123 | ### Section 6 – Term and Termination. 124 | 125 | a. This Public License applies for the term of the Copyright and Similar Rights licensed here. However, if You fail to comply with this Public License, then Your rights under this Public License terminate automatically. 126 | 127 | b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates: 128 | 129 | 1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your discovery of the violation; or 130 | 131 | 2. upon express reinstatement by the Licensor. 132 | 133 | For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek remedies for Your violations of this Public License. 134 | 135 | c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms or conditions or stop distributing the Licensed Material at any time; however, doing so will not terminate this Public License. 136 | 137 | d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License. 138 | 139 | ### Section 7 – Other Terms and Conditions. 140 | 141 | a. The Licensor shall not be bound by any additional or different terms or conditions communicated by You unless expressly agreed. 142 | 143 | b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein are separate from and independent of the terms and conditions of this Public License. 144 | 145 | ### Section 8 – Interpretation. 146 | 147 | a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully be made without permission under this Public License. 148 | 149 | b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be automatically reformed to the minimum extent necessary to make it enforceable. If the provision cannot be reformed, it shall be severed from this Public License without affecting the enforceability of the remaining terms and conditions. 150 | 151 | c. No term or condition of this Public License will be waived and no failure to comply consented to unless expressly agreed to by the Licensor. 152 | 153 | d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal processes of any jurisdiction or authority. 154 | 155 | > Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect to apply one of its public licenses to material it publishes and in those instances will be considered the “Licensor.” Except for the limited purpose of indicating that material is shared under a Creative Commons public license or as otherwise permitted by the Creative Commons policies published at [creativecommons.org/policies](http://creativecommons.org/policies), Creative Commons does not authorize the use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons without its prior written consent including, without limitation, in connection with any unauthorized modifications to any of its public licenses or any other arrangements, understandings, or agreements concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part of the public licenses. 156 | > 157 | > Creative Commons may be contacted at [creativecommons.org](http://creativecommons.org). 158 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # ChatTTS demo 2 | 3 | the ChatTTS webui 4 | 5 | ![the webui image looklike](images/webui_image.png) 6 | 7 | ## webui start 8 | 9 | start webui.py 10 | ```bash 11 | python webui.py 12 | 13 | python webui.py --server_port=8080 14 | ``` 15 | 16 | ## install 17 | ```bash 18 | conda create -n chattts python=3.9 19 | conda activate chattts 20 | 21 | conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia 22 | pip install omegaconf vocos transformers vector-quantize-pytorch 23 | ``` 24 | 25 | 26 | [**English**](./README.md) | [**中文简体**](./README_CN.md) 27 | 28 | ChatTTS is a text-to-speech model designed specifically for dialogue scenario such as LLM assistant. It supports both English and Chinese languages. Our model is trained with 100,000+ hours composed of chinese and english. The open-source version on HuggingFace is a 40,000 hours pre trained model without SFT. 29 | 30 | For formal inquiries about model and roadmap, please contact us at open-source@2noise.com. You could join our QQ group: 808364215 for discussion. Adding github issues is always welcomed. 31 | 32 | --- 33 | ## Highlights 34 | 1. **Conversational TTS**: ChatTTS is optimized for dialogue-based tasks, enabling natural and expressive speech synthesis. It supports multiple speakers, facilitating interactive conversations. 35 | 2. **Fine-grained Control**: The model could predict and control fine-grained prosodic features, including laughter, pauses, and interjections. 36 | 3. **Better Prosody**: ChatTTS surpasses most of open-source TTS models in terms of prosody. We provide pretrained models to support further research and development. 37 | 38 | For the detailed description of the model, you can refer to [video on Bilibili](https://www.bilibili.com/video/BV1zn4y1o7iV) 39 | 40 | --- 41 | 42 | ## Disclaimer 43 | 44 | This repo is for academic purposes only. It is intended for educational and research use, and should not be used for any commercial or legal purposes. The authors do not guarantee the accuracy, completeness, or reliability of the information. The information and data used in this repo, are for academic and research purposes only. The data obtained from publicly available sources, and the authors do not claim any ownership or copyright over the data. 45 | 46 | ChatTTS is a powerful text-to-speech system. However, it is very important to utilize this technology responsibly and ethically. To limit the use of ChatTTS, we added a small amount of high-frequency noise during the training of the 40,000-hour model, and compressed the audio quality as much as possible using MP3 format, to prevent malicious actors from potentially using it for criminal purposes. At the same time, we have internally trained a detection model and plan to open-source it in the future. 47 | 48 | 49 | --- 50 | ## Usage 51 | 52 |

basic usage

53 | 54 | ```python 55 | import ChatTTS 56 | from IPython.display import Audio 57 | 58 | chat = ChatTTS.Chat() 59 | chat.load_models() 60 | 61 | texts = ["",] 62 | 63 | wavs = chat.infer(texts, use_decoder=True) 64 | Audio(wavs[0], rate=24_000, autoplay=True) 65 | ``` 66 | 67 |

advanced usage

68 | 69 | ```python 70 | ################################### 71 | # Sample a speaker from Gaussian. 72 | import torch 73 | std, mean = torch.load('ChatTTS/asset/spk_stat.pt').chunk(2) 74 | rand_spk = torch.randn(768) * std + mean 75 | 76 | params_infer_code = { 77 | 'spk_emb': rand_spk, # add sampled speaker 78 | 'temperature': .3, # using custom temperature 79 | 'top_P': 0.7, # top P decode 80 | 'top_K': 20, # top K decode 81 | } 82 | 83 | ################################### 84 | # For sentence level manual control. 85 | 86 | # use oral_(0-9), laugh_(0-2), break_(0-7) 87 | # to generate special token in text to synthesize. 88 | params_refine_text = { 89 | 'prompt': '[oral_2][laugh_0][break_6]' 90 | } 91 | 92 | wav = chat.infer("", params_refine_text=params_refine_text, params_infer_code=params_infer_code) 93 | 94 | ################################### 95 | # For word level manual control. 96 | text = 'What is [uv_break]your favorite english food?[laugh][lbreak]' 97 | wav = chat.infer(text, skip_refine_text=True, params_infer_code=params_infer_code) 98 | 99 | ``` 100 | 101 |
102 |

Example: self introduction

103 | 104 | ```python 105 | inputs_en = """ 106 | chat T T S is a text to speech model designed for dialogue applications. 107 | [uv_break]it supports mixed language input [uv_break]and offers multi speaker 108 | capabilities with precise control over prosodic elements [laugh]like like 109 | [uv_break]laughter[laugh], [uv_break]pauses, [uv_break]and intonation. 110 | [uv_break]it delivers natural and expressive speech,[uv_break]so please 111 | [uv_break] use the project responsibly at your own risk.[uv_break] 112 | """.replace('\n', '') # English is still experimental. 113 | 114 | params_refine_text = { 115 | 'prompt': '[oral_2][laugh_0][break_4]' 116 | } 117 | audio_array_cn = chat.infer(inputs_cn, params_refine_text=params_refine_text) 118 | audio_array_en = chat.infer(inputs_en, params_refine_text=params_refine_text) 119 | ``` 120 | [male speaker](https://github.com/2noise/ChatTTS/assets/130631963/e0f51251-db7f-4d39-a0e9-3e095bb65de1) 121 | 122 | [female speaker](https://github.com/2noise/ChatTTS/assets/130631963/f5dcdd01-1091-47c5-8241-c4f6aaaa8bbd) 123 |
124 | 125 | --- 126 | ## Roadmap 127 | - [x] Open-source the 40k hour base model and spk_stats file 128 | - [ ] Open-source VQ encoder and Lora training code 129 | - [ ] Streaming audio generation without refining the text* 130 | - [ ] Open-source the 40k hour version with multi-emotion control 131 | - [ ] ChatTTS.cpp maybe? (PR or new repo are welcomed.) 132 | 133 | ---- 134 | ## FAQ 135 | 136 | ##### How much VRAM do I need? How about infer speed? 137 | For a 30-second audio clip, at least 4GB of GPU memory is required. For the 4090D GPU, it can generate audio corresponding to approximately 7 semantic tokens per second. The Real-Time Factor (RTF) is around 0.65. 138 | 139 | ##### model stability is not good enough, with issues such as multi speakers or poor audio quality. 140 | 141 | This is a problem that typically occurs with autoregressive models(for bark and valle). It's generally difficult to avoid. One can try multiple samples to find a suitable result. 142 | 143 | ##### Besides laughter, can we control anything else? Can we control other emotions? 144 | 145 | In the current released model, the only token-level control units are [laugh], [uv_break], and [lbreak]. In future versions, we may open-source models with additional emotional control capabilities. 146 | 147 | --- 148 | ## Acknowledgements 149 | - [bark](https://github.com/suno-ai/bark), [XTTSv2](https://github.com/coqui-ai/TTS) and [valle](https://arxiv.org/abs/2301.02111) demostrate a remarkable TTS result by a autoregressive-style system. 150 | - [fish-speech](https://github.com/fishaudio/fish-speech) reveals capability of GVQ as audio tokenizer for LLM modeling. 151 | - [vocos](https://github.com/gemelo-ai/vocos) which is used as a pretrained vocoder. 152 | 153 | --- 154 | ## Special Appreciation 155 | - [wlu-audio lab](https://audio.westlake.edu.cn/) for early algorithm experiments. 156 | -------------------------------------------------------------------------------- /README_CN.md: -------------------------------------------------------------------------------- 1 | # ChatTTS 2 | [**English**](./README.md) | [**中文简体**](./README_CN.md) 3 | 4 | ChatTTS是专门为对话场景设计的文本转语音模型,例如LLM助手对话任务。它支持英文和中文两种语言。最大的模型使用了10万小时以上的中英文数据进行训练。在HuggingFace中开源的版本为4万小时训练且未SFT的版本. 5 | 6 | 如需就模型进行正式商业咨询,请发送邮件至 open-source@2noise.com。对于中文用户,您可以加入我们的QQ群:808364215 进行讨论。同时欢迎在GitHub上提出问题。如果遇到无法使用HuggingFace的情况,可以在[modelscope](https://www.modelscope.cn/models/pzc163/chatTTS)上进行下载. 7 | 8 | --- 9 | ## 亮点 10 | 1. **对话式 TTS**: ChatTTS针对对话式任务进行了优化,实现了自然流畅的语音合成,同时支持多说话人。 11 | 2. **细粒度控制**: 该模型能够预测和控制细粒度的韵律特征,包括笑声、停顿和插入词等。 12 | 3. **更好的韵律**: ChatTTS在韵律方面超越了大部分开源TTS模型。同时提供预训练模型,支持进一步的研究。 13 | 14 | 对于模型的具体介绍, 可以参考B站的[宣传视频](https://www.bilibili.com/video/BV1zn4y1o7iV) 15 | 16 | --- 17 | 18 | ## 免责声明 19 | 本文件中的信息仅供学术交流使用。其目的是用于教育和研究,不得用于任何商业或法律目的。作者不保证信息的准确性、完整性或可靠性。本文件中使用的信息和数据,仅用于学术研究目的。这些数据来自公开可用的来源,作者不对数据的所有权或版权提出任何主张。 20 | 21 | ChatTTS是一个强大的文本转语音系统。然而,负责任地和符合伦理地利用这项技术是非常重要的。为了限制ChatTTS的使用,我们在4w小时模型的训练过程中添加了少量额外的高频噪音,并用mp3格式尽可能压低了音质,以防不法分子用于潜在的犯罪可能。同时我们在内部训练了检测模型,并计划在未来开放。 22 | 23 | --- 24 | ## 用法 25 | 26 |

基本用法

27 | 28 | ```python 29 | import ChatTTS 30 | from IPython.display import Audio 31 | 32 | chat = ChatTTS.Chat() 33 | chat.load_models() 34 | 35 | texts = ["",] 36 | 37 | wavs = chat.infer(texts, use_decoder=True) 38 | Audio(wavs[0], rate=24_000, autoplay=True) 39 | ``` 40 | 41 |

进阶用法

42 | 43 | ```python 44 | ################################### 45 | # Sample a speaker from Gaussian. 46 | import torch 47 | std, mean = torch.load('ChatTTS/asset/spk_stat.pt').chunk(2) 48 | rand_spk = torch.randn(768) * std + mean 49 | 50 | params_infer_code = { 51 | 'spk_emb': rand_spk, # add sampled speaker 52 | 'temperature': .3, # using custom temperature 53 | 'top_P': 0.7, # top P decode 54 | 'top_K': 20, # top K decode 55 | } 56 | 57 | ################################### 58 | # For sentence level manual control. 59 | 60 | # use oral_(0-9), laugh_(0-2), break_(0-7) 61 | # to generate special token in text to synthesize. 62 | params_refine_text = { 63 | 'prompt': '[oral_2][laugh_0][break_6]' 64 | } 65 | 66 | wav = chat.infer("", params_refine_text=params_refine_text, params_infer_code=params_infer_code) 67 | 68 | ################################### 69 | # For word level manual control. 70 | # use_decoder=False to infer faster with a bit worse quality 71 | text = 'What is [uv_break]your favorite english food?[laugh][lbreak]' 72 | wav = chat.infer(text, skip_refine_text=True, params_infer_code=params_infer_code, use_decoder=False) 73 | 74 | ``` 75 | 76 |
77 |

自我介绍样例

78 | 79 | ```python 80 | inputs_cn = """ 81 | chat T T S 是一款强大的对话式文本转语音模型。它有中英混读和多说话人的能力。 82 | chat T T S 不仅能够生成自然流畅的语音,还能控制[laugh]笑声啊[laugh], 83 | 停顿啊[uv_break]语气词啊等副语言现象[uv_break]。这个韵律超越了许多开源模型[uv_break]。 84 | 请注意,chat T T S 的使用应遵守法律和伦理准则,避免滥用的安全风险。[uv_break]' 85 | """.replace('\n', '') 86 | 87 | params_refine_text = { 88 | 'prompt': '[oral_2][laugh_0][break_4]' 89 | } 90 | audio_array_cn = chat.infer(inputs_cn, params_refine_text=params_refine_text) 91 | audio_array_en = chat.infer(inputs_en, params_refine_text=params_refine_text) 92 | ``` 93 | [男说话人](https://github.com/2noise/ChatTTS/assets/130631963/bbfa3b83-2b67-4bb6-9315-64c992b63788) 94 | 95 | [女说话人](https://github.com/2noise/ChatTTS/assets/130631963/e061f230-0e05-45e6-8e4e-0189f2d260c4) 96 |
97 | 98 | 99 | --- 100 | ## 计划路线 101 | - [x] 开源4w小时基础模型和spk_stats文件 102 | - [ ] 开源VQ encoder和Lora 训练代码 103 | - [ ] 在非refine text情况下, 流式生成音频* 104 | - [ ] 开源多情感可控的4w小时版本 105 | - [ ] ChatTTS.cpp maybe? (欢迎社区PR或独立的新repo) 106 | 107 | --- 108 | ## 常见问题 109 | 110 | ##### 连不上HuggingFace 111 | 请使用[modelscope](https://www.modelscope.cn/models/pzc163/chatTTS)的版本. 并设置cache的位置: 112 | ```python 113 | 114 | ``` 115 | 116 | ##### 我要多少显存? Infer的速度是怎么样的? 117 | 对于30s的音频, 至少需要4G的显存. 对于4090D, 1s生成约7个字所对应的音频. RTF约0.65. 118 | 119 | ##### 模型稳定性似乎不够好, 会出现其他说话人或音质很差的现象. 120 | 这是自回归模型通常都会出现的问题. 说话人可能会在中间变化, 可能会采样到音质非常差的结果, 这通常难以避免. 可以多采样几次来找到合适的结果. 121 | 122 | ##### 除了笑声还能控制什么吗? 还能控制其他情感吗? 123 | 在现在放出的模型版本中, 只有[laugh]和[uv_break], [lbreak]作为字级别的控制单元. 在未来的版本中我们可能会开源其他情感控制的版本. 124 | 125 | --- 126 | ## 致谢 127 | - [bark](https://github.com/suno-ai/bark),[XTTSv2](https://github.com/coqui-ai/TTS)和[valle](https://arxiv.org/abs/2301.02111)展示了自回归任务用于TTS任务的可能性. 128 | - [fish-speech](https://github.com/fishaudio/fish-speech)一个优秀的自回归TTS模型, 揭示了GVQ用于LLM任务的可能性. 129 | - [vocos](https://github.com/gemelo-ai/vocos)作为模型中的vocoder. 130 | 131 | --- 132 | ## 特别致谢 133 | - [wlu-audio lab](https://audio.westlake.edu.cn/)为我们提供了早期算法试验的支持. 134 | -------------------------------------------------------------------------------- /images/webui_image.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cronrpc/ChatTTS-webui/92f48ddf313722570f123308a1092f3f11989318/images/webui_image.png -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | omegaconf~=2.3.0 2 | torch~=2.0 3 | tqdm 4 | einops 5 | vector_quantize_pytorch 6 | transformers~=4.41.1 7 | vocos 8 | -------------------------------------------------------------------------------- /webui.py: -------------------------------------------------------------------------------- 1 | import os 2 | import random 3 | import argparse 4 | 5 | import torch 6 | import gradio as gr 7 | import numpy as np 8 | 9 | import ChatTTS 10 | 11 | 12 | def generate_seed(): 13 | new_seed = random.randint(1, 100000000) 14 | return { 15 | "__type__": "update", 16 | "value": new_seed 17 | } 18 | 19 | 20 | def generate_audio(text, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag): 21 | 22 | torch.manual_seed(audio_seed_input) 23 | rand_spk = chat.sample_random_speaker() 24 | params_infer_code = { 25 | 'spk_emb': rand_spk, 26 | 'temperature': temperature, 27 | 'top_P': top_P, 28 | 'top_K': top_K, 29 | } 30 | params_refine_text = {'prompt': '[oral_2][laugh_0][break_6]'} 31 | 32 | torch.manual_seed(text_seed_input) 33 | 34 | if refine_text_flag: 35 | text = chat.infer(text, 36 | skip_refine_text=False, 37 | refine_text_only=True, 38 | params_refine_text=params_refine_text, 39 | params_infer_code=params_infer_code 40 | ) 41 | 42 | wav = chat.infer(text, 43 | skip_refine_text=True, 44 | params_refine_text=params_refine_text, 45 | params_infer_code=params_infer_code 46 | ) 47 | 48 | audio_data = np.array(wav[0]).flatten() 49 | sample_rate = 24000 50 | text_data = text[0] if isinstance(text, list) else text 51 | 52 | return [(sample_rate, audio_data), text_data] 53 | 54 | 55 | def main(): 56 | 57 | with gr.Blocks() as demo: 58 | gr.Markdown("# ChatTTS Webui") 59 | gr.Markdown("ChatTTS Model: [2noise/ChatTTS](https://github.com/2noise/ChatTTS)") 60 | 61 | default_text = "四川美食确实以辣闻名,但也有不辣的选择。比如甜水面、赖汤圆、蛋烘糕、叶儿粑等,这些小吃口味温和,甜而不腻,也很受欢迎。" 62 | text_input = gr.Textbox(label="Input Text", lines=4, placeholder="Please Input Text...", value=default_text) 63 | 64 | with gr.Row(): 65 | refine_text_checkbox = gr.Checkbox(label="Refine text", value=True) 66 | temperature_slider = gr.Slider(minimum=0.00001, maximum=1.0, step=0.00001, value=0.3, label="Audio temperature") 67 | top_p_slider = gr.Slider(minimum=0.1, maximum=0.9, step=0.05, value=0.7, label="top_P") 68 | top_k_slider = gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_K") 69 | 70 | with gr.Row(): 71 | audio_seed_input = gr.Number(value=2, label="Audio Seed") 72 | generate_audio_seed = gr.Button("\U0001F3B2") 73 | text_seed_input = gr.Number(value=42, label="Text Seed") 74 | generate_text_seed = gr.Button("\U0001F3B2") 75 | 76 | generate_button = gr.Button("Generate") 77 | 78 | text_output = gr.Textbox(label="Output Text", interactive=False) 79 | audio_output = gr.Audio(label="Output Audio") 80 | 81 | generate_audio_seed.click(generate_seed, 82 | inputs=[], 83 | outputs=audio_seed_input) 84 | 85 | generate_text_seed.click(generate_seed, 86 | inputs=[], 87 | outputs=text_seed_input) 88 | 89 | generate_button.click(generate_audio, 90 | inputs=[text_input, temperature_slider, top_p_slider, top_k_slider, audio_seed_input, text_seed_input, refine_text_checkbox], 91 | outputs=[audio_output, text_output]) 92 | 93 | parser = argparse.ArgumentParser(description='ChatTTS demo Launch') 94 | parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name') 95 | parser.add_argument('--server_port', type=int, default=8080, help='Server port') 96 | parser.add_argument('--local_path', type=str, default=None, help='the local_path if need') 97 | args = parser.parse_args() 98 | 99 | print("loading ChatTTS model...") 100 | global chat 101 | chat = ChatTTS.Chat() 102 | 103 | if args.local_path == None: 104 | chat.load_models() 105 | else: 106 | print('local model path:', args.local_path) 107 | chat.load_models('local', local_path=args.local_path) 108 | 109 | demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True) 110 | 111 | 112 | if __name__ == '__main__': 113 | main() --------------------------------------------------------------------------------