├── aes_cipher
├── __init__.py
├── aes.py
├── aes_s_box_tester.py
├── aes_t_table_tester.py
├── aes_tester.py
├── key_schedule.py
├── encryption_t_table.py
├── encryption_s_box.py
└── constants.py
├── plotter
├── __init__.py
├── output
│ └── .gitignore
└── plot_results.py
├── settings
├── __init__.py
├── settings.ini
└── active_settings.py
├── cpa_attacker
├── __init__.py
├── data
│ └── .gitignore
├── output
│ └── .gitignore
├── plotter.py
├── round1.py
└── attacker.py
├── hw_distribution
├── __init__.py
├── output
│ └── .gitignore
├── s_box_hw_distribution.py
└── t_table_hw_distribution.py
├── leakage_model
├── __init__.py
├── hw_s_box.py
└── hw_t_table.py
├── expected_round_keys
├── __init__.py
└── expected_round_keys_generator.py
├── leakage_generator
├── __init__.py
├── data
│ └── .gitignore
├── leaking_encryption_s_box.py
├── leaking_encryption_t_table.py
└── generator.py
├── symbolic_evaluator
├── __init__.py
├── data
│ └── .gitignore
└── evaluation_case_solver.py
├── correlation_coefficient_difference
├── __init__.py
└── delta_simulator.py
├── run.py
├── README.md
├── .gitignore
└── LICENSE
/aes_cipher/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/plotter/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/settings/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/cpa_attacker/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/hw_distribution/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/leakage_model/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/expected_round_keys/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/leakage_generator/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/symbolic_evaluator/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/correlation_coefficient_difference/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/cpa_attacker/data/.gitignore:
--------------------------------------------------------------------------------
1 | # Ignore everything
2 | *
3 |
4 | # But not these files...
5 | !.gitignore
--------------------------------------------------------------------------------
/plotter/output/.gitignore:
--------------------------------------------------------------------------------
1 | # Ignore everything
2 | *
3 |
4 | # But not these files...
5 | !.gitignore
--------------------------------------------------------------------------------
/cpa_attacker/output/.gitignore:
--------------------------------------------------------------------------------
1 | # Ignore everything
2 | *
3 |
4 | # But not these files...
5 | !.gitignore
--------------------------------------------------------------------------------
/hw_distribution/output/.gitignore:
--------------------------------------------------------------------------------
1 | # Ignore everything
2 | *
3 |
4 | # But not these files...
5 | !.gitignore
--------------------------------------------------------------------------------
/leakage_generator/data/.gitignore:
--------------------------------------------------------------------------------
1 | # Ignore everything
2 | *
3 |
4 | # But not these files...
5 | !.gitignore
--------------------------------------------------------------------------------
/symbolic_evaluator/data/.gitignore:
--------------------------------------------------------------------------------
1 | # Ignore everything
2 | *
3 |
4 | # But not these files...
5 | !.gitignore
--------------------------------------------------------------------------------
/settings/settings.ini:
--------------------------------------------------------------------------------
1 | [AES]
2 | # key - hexadecimal value
3 | key = 0xf530357968578480b398a3c251cd1093
4 | # key = 0x52bd2f944bc82d6607bd86412b587a43
5 |
6 |
7 | # radom state - list of bytes in hexadecimal
8 | random_state = [0x16, 0x2d, 0xb1, 0x0a, 0x22, 0x2c, 0x68, 0x88, 0x7d, 0x43, 0x42, 0x2c, 0x61, 0xc2, 0xe5, 0x5a]
9 | # random_state = [0xb6, 0xfd, 0x28, 0xdd, 0xa9, 0xfd, 0xba, 0x58, 0x50, 0xf3, 0xb1, 0x92, 0x93, 0x25, 0xce, 0x95]
10 |
--------------------------------------------------------------------------------
/aes_cipher/aes.py:
--------------------------------------------------------------------------------
1 | from aes_cipher.key_schedule import KeySchedule
2 | from aes_cipher.encryption_s_box import EncryptionSBox
3 |
4 |
5 | class Aes:
6 | def __init__(self, key):
7 | self.key = key
8 |
9 | self.key_schedule = KeySchedule()
10 | self.round_keys = self.key_schedule.run(self.key)
11 |
12 | self.encryption = EncryptionSBox(self.round_keys)
13 |
14 | def encrypt(self, plaintext):
15 | return self.encryption.encrypt(plaintext)
16 |
--------------------------------------------------------------------------------
/leakage_model/hw_s_box.py:
--------------------------------------------------------------------------------
1 | class HwSBox:
2 | def __init__(self):
3 | self.hw_table_length = 2 ** 8
4 | self.hw_table = [0] * self.hw_table_length
5 |
6 | self.init_hw_table()
7 |
8 | @staticmethod
9 | def hw(value):
10 | return bin(value).count('1')
11 |
12 | def init_hw_table(self):
13 | for i in range(self.hw_table_length):
14 | self.hw_table[i] = self.hw(i)
15 |
16 | def leak(self, value):
17 | return self.hw_table[value]
18 |
--------------------------------------------------------------------------------
/run.py:
--------------------------------------------------------------------------------
1 | from cpa_attacker.attacker import Attacker
2 |
3 |
4 | import os
5 | import time
6 |
7 |
8 | def main():
9 | os.chdir('./cpa_attacker/')
10 |
11 | attacker = Attacker(generate_traces=True, t_tables_implementation=True, debug=False)
12 | attacker.attack_guessing_entropy_evaluation_cases()
13 |
14 |
15 | if "__main__" == __name__:
16 | start_time = time.time()
17 |
18 | main()
19 |
20 | stop_time = time.time()
21 |
22 | print('Duration: {}'.format(time.strftime('%H:%M:%S', time.gmtime(stop_time - start_time))))
23 |
--------------------------------------------------------------------------------
/leakage_model/hw_t_table.py:
--------------------------------------------------------------------------------
1 | class HwTTable:
2 | def __init__(self):
3 | self.hw_table_length = 2 ** 16
4 | self.hw_table = [0] * self.hw_table_length
5 |
6 | self.init_hw_table()
7 |
8 | @staticmethod
9 | def hw(value):
10 | return bin(value).count('1')
11 |
12 | def init_hw_table(self):
13 | for i in range(self.hw_table_length):
14 | self.hw_table[i] = self.hw(i)
15 |
16 | def leak(self, value):
17 | return self.hw_table[value & 0xffff] + self.hw_table[value >> 16 & 0xffff]
18 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # aes-cpa
2 | This repository includes the software artifacts used for our paper:
3 | > Alex Biryukov, Daniel Dinu, and Yann Le Corre,
4 | > [Side-Channel Attacks meet Secure Network Protocols][paper],
5 | > ACNS 2017
6 |
7 | ## Description
8 | Features:
9 | * symbolic processing of an initial state
10 | * CPA attack on a given evaluation case
11 |
12 | The source code can be used to attack two implementations of the AES:
13 | * S-box implementation
14 | * T-table implementation
15 |
16 | For details, read [our paper][paper] or have a look at the source code.
17 |
18 | ## Required Packages
19 | * matplotlib
20 | * numpy
21 |
22 | ## Acknowledgement
23 | This work is supported by the CORE project ACRYPT (ID C12-15-4009992) funded by
24 | the [Fonds National de la Recherche, Luxembourg][fnr].
25 |
26 | [paper]: http://orbilu.uni.lu/bitstream/10993/31797/1/ACNS2017.pdf
27 | [fnr]: https://www.fnr.lu/
28 |
--------------------------------------------------------------------------------
/aes_cipher/aes_s_box_tester.py:
--------------------------------------------------------------------------------
1 | from aes_cipher.key_schedule import KeySchedule
2 | from aes_cipher.encryption_s_box import EncryptionSBox
3 | from aes_cipher.aes_tester import AesTester
4 |
5 |
6 | import time
7 |
8 |
9 | class AesSBoxTester(AesTester):
10 | def __init__(self, key=None):
11 | super().__init__()
12 | self.key_schedule = KeySchedule()
13 | self.encryption = EncryptionSBox()
14 | self.key = key
15 |
16 |
17 | def main():
18 | tester = AesSBoxTester()
19 | tests = [
20 | (0xf530357968578480b398a3c251cd1093, 0x00, 0xf5df39990fc688f1b07224cc03e86cea),
21 | (0x2b7e151628aed2a6abf7158809cf4f3c, 0x3243f6a8885a308d313198a2e0370734, 0x3925841d02dc09fbdc118597196a0b32)
22 | ]
23 | tester.run_tests(tests)
24 |
25 |
26 | if "__main__" == __name__:
27 | start_time = time.time()
28 |
29 | main()
30 |
31 | stop_time = time.time()
32 |
33 | print('Duration: {}'.format(time.strftime('%H:%M:%S', time.gmtime(stop_time - start_time))))
34 |
--------------------------------------------------------------------------------
/aes_cipher/aes_t_table_tester.py:
--------------------------------------------------------------------------------
1 | from aes_cipher.key_schedule import KeySchedule
2 | from aes_cipher.encryption_t_table import EncryptionTTable
3 | from aes_cipher.aes_tester import AesTester
4 |
5 |
6 | import time
7 |
8 |
9 | class AesTTableTester(AesTester):
10 | def __init__(self, key=None):
11 | super().__init__()
12 | self.key_schedule = KeySchedule()
13 | self.encryption = EncryptionTTable()
14 | self.key = key
15 |
16 |
17 | def main():
18 | tester = AesTTableTester()
19 | tests = [
20 | (0xf530357968578480b398a3c251cd1093, 0x00, 0xf5df39990fc688f1b07224cc03e86cea),
21 | (0x2b7e151628aed2a6abf7158809cf4f3c, 0x3243f6a8885a308d313198a2e0370734, 0x3925841d02dc09fbdc118597196a0b32)
22 | ]
23 | tester.run_tests(tests)
24 |
25 |
26 | if "__main__" == __name__:
27 | start_time = time.time()
28 |
29 | main()
30 |
31 | stop_time = time.time()
32 |
33 | print('Duration: {}'.format(time.strftime('%H:%M:%S', time.gmtime(stop_time - start_time))))
34 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | env/
12 | build/
13 | develop-eggs/
14 | dist/
15 | downloads/
16 | eggs/
17 | .eggs/
18 | lib/
19 | lib64/
20 | parts/
21 | sdist/
22 | var/
23 | *.egg-info/
24 | .installed.cfg
25 | *.egg
26 |
27 | # PyInstaller
28 | # Usually these files are written by a python script from a template
29 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
30 | *.manifest
31 | *.spec
32 |
33 | # Installer logs
34 | pip-log.txt
35 | pip-delete-this-directory.txt
36 |
37 | # Unit test / coverage reports
38 | htmlcov/
39 | .tox/
40 | .coverage
41 | .coverage.*
42 | .cache
43 | nosetests.xml
44 | coverage.xml
45 | *,cover
46 | .hypothesis/
47 |
48 | # Translations
49 | *.mo
50 | *.pot
51 |
52 | # Django stuff:
53 | *.log
54 |
55 | # Sphinx documentation
56 | docs/_build/
57 |
58 | # PyBuilder
59 | target/
60 |
61 | # Ipython Notebook
62 | .ipynb_checkpoints
63 |
64 | # PyCharm
65 | .idea/
66 |
--------------------------------------------------------------------------------
/leakage_generator/leaking_encryption_s_box.py:
--------------------------------------------------------------------------------
1 | from aes_cipher.encryption_s_box import EncryptionSBox
2 | from aes_cipher.constants import s_box
3 | from leakage_model.hw_s_box import HwSBox
4 |
5 |
6 | import numpy
7 |
8 |
9 | class LeakingEncryptionSBox(EncryptionSBox):
10 | def __init__(self, round_keys):
11 | EncryptionSBox.__init__(self, round_keys)
12 | self.number_of_samples = 16 * 10
13 |
14 | self.leakage = None
15 | self.leakage_index = 0
16 |
17 | self.power_model = HwSBox()
18 |
19 | def sub_bytes(self):
20 | for i in range(16):
21 | self.state[i] = s_box[self.state[i]]
22 |
23 | self.leakage[self.leakage_index] = self.power_model.leak(self.state[i])
24 | self.leakage_index += 1
25 |
26 | def encrypt(self, plaintext):
27 | self.leakage = numpy.zeros(self.number_of_samples)
28 | self.leakage_index = 0
29 |
30 | self.set_state(plaintext)
31 |
32 | self.add_round_key()
33 |
34 | for round_number in range(1, 10, 1):
35 | self.encrypt_round(round_number)
36 | self.encrypt_last_round(10)
37 |
38 | return self.leakage
39 |
--------------------------------------------------------------------------------
/settings/active_settings.py:
--------------------------------------------------------------------------------
1 | import configparser
2 | import os
3 |
4 |
5 | class ActiveSettings:
6 | instance = None
7 |
8 | def __new__(cls, *args, **kwargs):
9 | if not cls.instance:
10 | cls.instance = super(ActiveSettings, cls).__new__(cls, *args, **kwargs)
11 |
12 | cls.instance.key = 0x00
13 | cls.instance.random_state = [0] * 16
14 |
15 | working_dir = os.getcwd()
16 | package_dir = os.path.dirname(os.path.dirname(__file__))
17 | configuration_file = os.path.join(os.path.relpath(package_dir, working_dir), 'settings/settings.ini')
18 |
19 | try:
20 | config_parser = configparser.ConfigParser()
21 | config_parser.read(configuration_file)
22 |
23 | key = config_parser.get('AES', 'key')
24 | cls.instance.key = int(key, 16)
25 |
26 | random_state = config_parser.get('AES', 'random_state')
27 | cls.instance.random_state = list(map(lambda it: int(it.strip('[ ]'), 16), random_state.split(',')))
28 | except Exception as e:
29 | print('ERROR in {}: {}!'.format(cls.instance.__class__.__name__, e))
30 |
31 | return cls.instance
32 |
33 |
34 | def main():
35 | active_settings = ActiveSettings()
36 | print('Active settings')
37 | print('-' * 15)
38 |
39 | print('key 0x{}'.format(format(active_settings.key, '032x')))
40 |
41 | print('random_state [', end='')
42 | length = len(active_settings.random_state) - 1
43 | for i in range(length):
44 | print('0x{}, '.format(format(active_settings.random_state[i], '02x')), end='')
45 | print('0x{}] '.format(format(active_settings.random_state[length], '02x')), end='')
46 |
47 |
48 | if "__main__" == __name__:
49 | main()
50 |
--------------------------------------------------------------------------------
/aes_cipher/aes_tester.py:
--------------------------------------------------------------------------------
1 | class AesTester:
2 | def __init__(self):
3 | self.key_schedule = None
4 | self.encryption = None
5 | self.key = None
6 |
7 | def test_key_schedule(self):
8 | self.key_schedule.run(self.key)
9 |
10 | for i in range(11):
11 | print('{:2}: '.format(i), end='')
12 | for j in range(16):
13 | print('{} '.format(format(self.key_schedule.round_keys[i][j], '02x')), end='')
14 | print()
15 |
16 | def test_encryption(self, plaintext, expected_ciphertext):
17 | self.key_schedule.run(self.key)
18 |
19 | self.encryption.set_round_keys(self.key_schedule.round_keys)
20 | ciphertext = self.encryption.encrypt(plaintext)
21 |
22 | print('ciphertext = {} '.format(format(ciphertext, '032x')), end='')
23 | if expected_ciphertext == ciphertext:
24 | print('OK!')
25 | else:
26 | print('WRONG!')
27 |
28 | def get_round_keys(self):
29 | self.key_schedule.run(self.key)
30 |
31 | for i in range(11):
32 | print('{:2}: '.format(i), end='')
33 | print('[ ', end='')
34 | for j in range(15):
35 | print('0x{}, '.format(format(self.key_schedule.round_keys[i][j], '02x')), end='')
36 | print('0x{} '.format(format(self.key_schedule.round_keys[i][15], '02x')), end='')
37 | print(']', end='')
38 | print()
39 |
40 | def run(self, key, plaintext, expected_ciphertext):
41 | self.key = key
42 |
43 | self.test_key_schedule()
44 | print()
45 | self.test_encryption(plaintext, expected_ciphertext)
46 | print()
47 | self.get_round_keys()
48 | print()
49 |
50 | def run_tests(self, tests):
51 | for key, plaintext, ciphertext in tests:
52 | self.run(key, plaintext, ciphertext)
53 | print()
54 |
--------------------------------------------------------------------------------
/aes_cipher/key_schedule.py:
--------------------------------------------------------------------------------
1 | from aes_cipher.constants import r_con
2 | from aes_cipher.constants import s_box
3 |
4 |
5 | class KeySchedule:
6 | def __init__(self):
7 | self.key = None
8 | self.round_keys = [[0 for i in range(16)] for i in range(11)]
9 |
10 | def run(self, key):
11 | self.key = key
12 |
13 | for i in range(16):
14 | self.round_keys[0][i] = (key >> 8 * (15 - i)) & 0xff
15 |
16 | for i in range(1, 11, 1):
17 | self.round_keys[i][0] = self.round_keys[i - 1][0] ^ r_con[i - 1] ^ s_box[self.round_keys[i - 1][13]]
18 | self.round_keys[i][1] = self.round_keys[i - 1][1] ^ s_box[self.round_keys[i - 1][14]]
19 | self.round_keys[i][2] = self.round_keys[i - 1][2] ^ s_box[self.round_keys[i - 1][15]]
20 | self.round_keys[i][3] = self.round_keys[i - 1][3] ^ s_box[self.round_keys[i - 1][12]]
21 |
22 | self.round_keys[i][4] = self.round_keys[i - 1][4] ^ self.round_keys[i][0]
23 | self.round_keys[i][5] = self.round_keys[i - 1][5] ^ self.round_keys[i][1]
24 | self.round_keys[i][6] = self.round_keys[i - 1][6] ^ self.round_keys[i][2]
25 | self.round_keys[i][7] = self.round_keys[i - 1][7] ^ self.round_keys[i][3]
26 |
27 | self.round_keys[i][8] = self.round_keys[i - 1][8] ^ self.round_keys[i][4]
28 | self.round_keys[i][9] = self.round_keys[i - 1][9] ^ self.round_keys[i][5]
29 | self.round_keys[i][10] = self.round_keys[i - 1][10] ^ self.round_keys[i][6]
30 | self.round_keys[i][11] = self.round_keys[i - 1][11] ^ self.round_keys[i][7]
31 |
32 | self.round_keys[i][12] = self.round_keys[i - 1][12] ^ self.round_keys[i][8]
33 | self.round_keys[i][13] = self.round_keys[i - 1][13] ^ self.round_keys[i][9]
34 | self.round_keys[i][14] = self.round_keys[i - 1][14] ^ self.round_keys[i][10]
35 | self.round_keys[i][15] = self.round_keys[i - 1][15] ^ self.round_keys[i][11]
36 |
37 | return self.round_keys
38 |
--------------------------------------------------------------------------------
/leakage_generator/leaking_encryption_t_table.py:
--------------------------------------------------------------------------------
1 | from aes_cipher.encryption_t_table import EncryptionTTable
2 | from aes_cipher.constants import t0, t1, t2, t3
3 | from leakage_model.hw_t_table import HwTTable
4 |
5 |
6 | import numpy
7 |
8 |
9 | class LeakingEncryptionTTable(EncryptionTTable):
10 | def __init__(self, round_keys):
11 | EncryptionTTable.__init__(self, round_keys)
12 | self.number_of_samples = 16 * 10
13 |
14 | self.leakage = None
15 | self.leakage_index = 0
16 |
17 | self.power_model = HwTTable()
18 |
19 | def t_table_lookup(self):
20 | c0 = t0[self.state[0]] ^ t1[self.state[5]] ^ t2[self.state[10]] ^ t3[self.state[15]]
21 | c1 = t0[self.state[4]] ^ t1[self.state[9]] ^ t2[self.state[14]] ^ t3[self.state[3]]
22 | c2 = t0[self.state[8]] ^ t1[self.state[13]] ^ t2[self.state[2]] ^ t3[self.state[7]]
23 | c3 = t0[self.state[12]] ^ t1[self.state[1]] ^ t2[self.state[6]] ^ t3[self.state[11]]
24 |
25 | for i in range(16):
26 | if 0 == i % 4:
27 | value = t0[self.state[i]]
28 | elif 1 == i % 4:
29 | value = t1[self.state[i]]
30 | elif 2 == i % 4:
31 | value = t2[self.state[i]]
32 | elif 3 == i % 4:
33 | value = t3[self.state[i]]
34 |
35 | self.leakage[self.leakage_index] = self.power_model.leak(value)
36 | self.leakage_index += 1
37 |
38 | self.state[0] = (c0 >> 24) & 0xff
39 | self.state[1] = (c0 >> 16) & 0xff
40 | self.state[2] = (c0 >> 8) & 0xff
41 | self.state[3] = (c0 >> 0) & 0xff
42 |
43 | self.state[4] = (c1 >> 24) & 0xff
44 | self.state[5] = (c1 >> 16) & 0xff
45 | self.state[6] = (c1 >> 8) & 0xff
46 | self.state[7] = (c1 >> 0) & 0xff
47 |
48 | self.state[8] = (c2 >> 24) & 0xff
49 | self.state[9] = (c2 >> 16) & 0xff
50 | self.state[10] = (c2 >> 8) & 0xff
51 | self.state[11] = (c2 >> 0) & 0xff
52 |
53 | self.state[12] = (c3 >> 24) & 0xff
54 | self.state[13] = (c3 >> 16) & 0xff
55 | self.state[14] = (c3 >> 8) & 0xff
56 | self.state[15] = (c3 >> 0) & 0xff
57 |
58 | def encrypt(self, plaintext):
59 | self.leakage = numpy.zeros(self.number_of_samples)
60 | self.leakage_index = 0
61 |
62 | self.set_state(plaintext)
63 |
64 | self.add_round_key()
65 |
66 | for round_number in range(1, 10, 1):
67 | self.encrypt_round(round_number)
68 | self.encrypt_last_round(10)
69 |
70 | return self.leakage
71 |
--------------------------------------------------------------------------------
/leakage_generator/generator.py:
--------------------------------------------------------------------------------
1 | from aes_cipher.key_schedule import KeySchedule
2 | from leakage_generator.leaking_encryption_s_box import LeakingEncryptionSBox
3 | from leakage_generator.leaking_encryption_t_table import LeakingEncryptionTTable
4 | from settings.active_settings import ActiveSettings
5 |
6 |
7 | import copy
8 | import numpy
9 | import pickle
10 | import random
11 |
12 |
13 | class Generator:
14 | def __init__(self, state, number_of_traces=1000, t_tables_implementation=False):
15 | self.number_of_samples = 16 * 10
16 |
17 | active_settings = ActiveSettings()
18 | self.key = active_settings.key
19 | self.random_state = active_settings.random_state
20 |
21 | self.traces_file = './data/traces.npy'
22 | self.plaintexts_file = './data/plaintexts.bin'
23 | self.number_of_traces = number_of_traces
24 |
25 | self.state = copy.deepcopy(state[0])
26 |
27 | for i in range(16):
28 | if 0 != self.state[i]:
29 | self.state[i] = 0xff
30 |
31 | self.t_tables_implementation = t_tables_implementation
32 |
33 | def init_leaking_aes(self):
34 | key_schedule = KeySchedule()
35 | key_schedule.run(self.key)
36 |
37 | if self.t_tables_implementation:
38 | return LeakingEncryptionTTable(key_schedule.round_keys)
39 | return LeakingEncryptionSBox(key_schedule.round_keys)
40 |
41 | def get_plaintext(self):
42 | plaintext = 0
43 |
44 | for i in range(16):
45 | plaintext <<= 8
46 |
47 | # 1. Fill with zeros
48 | # plaintext += random.getrandbits(8) & self.state[i]
49 |
50 | # 2. Fill with random values
51 | # '''
52 | if self.state[i]:
53 | plaintext += random.getrandbits(8)
54 | else:
55 | plaintext += self.random_state[i]
56 | # '''
57 |
58 | return plaintext
59 |
60 | def generate(self):
61 | leaking_encryption = self.init_leaking_aes()
62 |
63 | traces = numpy.zeros((self.number_of_traces, self.number_of_samples))
64 | plaintexts = [0] * self.number_of_traces
65 |
66 | for i in range(self.number_of_traces):
67 | plaintexts[i] = self.get_plaintext()
68 | traces[i] = leaking_encryption.encrypt(plaintexts[i])
69 |
70 | numpy.save(self.traces_file, traces)
71 |
72 | f = open(self.plaintexts_file, 'wb')
73 | pickle.dump(plaintexts, f)
74 | f.close()
75 |
76 |
77 | def main():
78 | generator = Generator([[1] * 16])
79 | generator.generate()
80 |
81 |
82 | if "__main__" == __name__:
83 | main()
84 |
--------------------------------------------------------------------------------
/cpa_attacker/plotter.py:
--------------------------------------------------------------------------------
1 | import matplotlib
2 | import matplotlib.pyplot
3 |
4 |
5 | class Plotter:
6 | def __init__(self):
7 | # Force matplotlib to not use any Xwindows backend.
8 | # Details: http://stackoverflow.com/questions/2801882/generating-a-png-with-matplotlib-when-display-is-undefined
9 | matplotlib.use('Agg')
10 |
11 | @staticmethod
12 | def plot_correlation_matrix(correlation_matrix, index, expected_key, possible_key_count):
13 | for i in range(correlation_matrix.shape[0]):
14 | matplotlib.pyplot.plot(correlation_matrix[i], 'g')
15 |
16 | matplotlib.pyplot.plot(correlation_matrix[expected_key], 'r')
17 |
18 | matplotlib.pyplot.title('Correlation Matrix')
19 | matplotlib.pyplot.xlabel('Sample')
20 | matplotlib.pyplot.ylabel('Correlation')
21 |
22 | axes = matplotlib.pyplot.gca()
23 | axes.set_xlim(0, correlation_matrix.shape[1])
24 |
25 | correlation_matrix_file = 'output/CM_{:02}_{}.png'.format(index, possible_key_count)
26 | matplotlib.pyplot.savefig(correlation_matrix_file, bbox_inches='tight')
27 | matplotlib.pyplot.close()
28 |
29 | @staticmethod
30 | def plot_guessing_entropy(title, x_traces, y_guessing_entropy):
31 | Plotter.plot_guessing_entropy_short(title, x_traces, y_guessing_entropy)
32 | Plotter.plot_guessing_entropy_long(title, x_traces, y_guessing_entropy)
33 |
34 | @staticmethod
35 | def plot_guessing_entropy_short(title, x_traces, y_guessing_entropy):
36 | matplotlib.pyplot.plot(x_traces, y_guessing_entropy, linewidth=2.0, color='r', marker='x', markersize=10)
37 | matplotlib.pyplot.axhline(y=0, color='k', ls='dashed')
38 |
39 | # matplotlib.pyplot.title('GE - {}'.format(title))
40 | matplotlib.pyplot.xlabel('Traces')
41 | matplotlib.pyplot.ylabel('GE')
42 |
43 | axes = matplotlib.pyplot.gca()
44 | axes.set_ylim([-1, 10])
45 |
46 | matplotlib.pyplot.savefig('./output/GE_short_{}.png'.format(title), bbox_inches='tight')
47 | matplotlib.pyplot.close()
48 |
49 | @staticmethod
50 | def plot_guessing_entropy_long(title, x_traces, y_guessing_entropy):
51 | matplotlib.pyplot.plot(x_traces, y_guessing_entropy, linewidth=2.0, color='r', marker='x', markersize=10)
52 | matplotlib.pyplot.axhline(y=0, color='k', ls='dashed')
53 |
54 | # matplotlib.pyplot.title('GE - {}'.format(title))
55 | matplotlib.pyplot.xlabel('Traces')
56 | matplotlib.pyplot.ylabel('GE')
57 |
58 | axes = matplotlib.pyplot.gca()
59 | axes.set_ylim([-1, 128])
60 |
61 | matplotlib.pyplot.savefig('./output/GE_long_{}.png'.format(title), bbox_inches='tight')
62 | matplotlib.pyplot.close()
63 |
--------------------------------------------------------------------------------
/hw_distribution/s_box_hw_distribution.py:
--------------------------------------------------------------------------------
1 | from aes_cipher.constants import s_box
2 | from leakage_model.hw_s_box import HwSBox
3 |
4 |
5 | import matplotlib.pyplot
6 | import numpy
7 | import time
8 |
9 |
10 | class SBoxHwDistribution:
11 | def __init__(self):
12 | self.power_model = HwSBox()
13 |
14 | self.input_size = 8
15 | self.output_size = 8
16 |
17 | self.hw_distribution = None
18 |
19 | def get_key_distribution(self, key):
20 | self.hw_distribution = [0 for i in range(self.output_size + 1)]
21 |
22 | for i in range(2 ** self.input_size):
23 | intermediate = s_box[i ^ key]
24 | power = self.power_model.leak(intermediate)
25 | self.hw_distribution[power] += 1
26 |
27 | return self.hw_distribution
28 |
29 | def get_distribution(self):
30 | self.hw_distribution = [0 for i in range(self.output_size + 1)]
31 |
32 | for k in range(2 ** self.input_size):
33 | for i in range(2 ** self.input_size):
34 | intermediate = s_box[i ^ k]
35 | power = self.power_model.leak(intermediate)
36 | self.hw_distribution[power] += 1
37 |
38 | return self.hw_distribution
39 |
40 | @property
41 | def is_symmetric(self):
42 | for i in range(self.output_size // 2):
43 | if self.hw_distribution[i] != self.hw_distribution[self.output_size - i]:
44 | return False
45 | return True
46 |
47 | def plot(self, title):
48 | number_of_values = len(self.hw_distribution)
49 |
50 | matplotlib.pyplot.bar(numpy.arange(number_of_values), self.hw_distribution, width=0.5, align='center')
51 |
52 | axes = matplotlib.pyplot.gca()
53 | axes.set_xlim([-1, number_of_values])
54 | matplotlib.pyplot.xticks(numpy.arange(0, number_of_values, 1))
55 |
56 | matplotlib.pyplot.savefig('./output/{}.png'.format(title))
57 | matplotlib.pyplot.close()
58 |
59 | def print_distribution(self):
60 | print('Distribution')
61 | print('=' * 12)
62 |
63 | for i in range(self.output_size + 1):
64 | print('{}: {}'.format(i, self.hw_distribution[i]))
65 |
66 | print('-' * 12)
67 |
68 | def generate(self):
69 | self.get_distribution()
70 | self.plot('s_box')
71 |
72 | self.print_distribution()
73 | print('Symmetric: {}'.format(self.is_symmetric))
74 |
75 |
76 | def main():
77 | distribution = SBoxHwDistribution()
78 | distribution.generate()
79 |
80 |
81 | if "__main__" == __name__:
82 | start_time = time.time()
83 |
84 | main()
85 |
86 | stop_time = time.time()
87 |
88 | print('Duration: {}'.format(time.strftime('%H:%M:%S', time.gmtime(stop_time - start_time))))
89 |
--------------------------------------------------------------------------------
/hw_distribution/t_table_hw_distribution.py:
--------------------------------------------------------------------------------
1 | from aes_cipher.constants import t0, t1, t2, t3
2 | from leakage_model.hw_t_table import HwTTable
3 |
4 |
5 | import matplotlib.pyplot
6 | import numpy
7 | import time
8 |
9 |
10 | class TTableHwDistribution:
11 | def __init__(self, table_index=0):
12 | self.power_model = HwTTable()
13 |
14 | self.input_size = 8
15 | self.output_size = 32
16 |
17 | self.hw_distribution = None
18 |
19 | self.table = None
20 | self.init_table(table_index)
21 |
22 | def init_table(self, index):
23 | if 0 == index:
24 | self.table = t0
25 | elif 1 == index:
26 | self.table = t1
27 | elif 2 == index:
28 | self.table = t2
29 | elif 3 == index:
30 | self.table = t3
31 |
32 | def get_key_distribution(self, key):
33 | self.hw_distribution = [0 for i in range(self.output_size + 1)]
34 |
35 | for i in range(2 ** self.input_size):
36 | intermediate = self.table[i ^ key]
37 | power = self.power_model.leak(intermediate)
38 | self.hw_distribution[power] += 1
39 |
40 | return self.hw_distribution
41 |
42 | def get_distribution(self):
43 | self.hw_distribution = [0 for i in range(self.output_size + 1)]
44 |
45 | for k in range(2 ** self.input_size):
46 | for i in range(2 ** self.input_size):
47 | intermediate = self.table[i ^ k]
48 | power = self.power_model.leak(intermediate)
49 | self.hw_distribution[power] += 1
50 |
51 | return self.hw_distribution
52 |
53 | @property
54 | def is_symmetric(self):
55 | for i in range(self.output_size // 2):
56 | if self.hw_distribution[i] != self.hw_distribution[self.output_size - i]:
57 | return False
58 | return True
59 |
60 | def plot(self, title):
61 | number_of_values = len(self.hw_distribution)
62 |
63 | matplotlib.pyplot.bar(numpy.arange(number_of_values), self.hw_distribution, width=0.5, align='center')
64 |
65 | axes = matplotlib.pyplot.gca()
66 | axes.set_xlim([-1, number_of_values])
67 | matplotlib.pyplot.xticks(numpy.arange(0, number_of_values, 2))
68 |
69 | matplotlib.pyplot.savefig('./output/{}.png'.format(title))
70 | matplotlib.pyplot.close()
71 |
72 | def print_distribution(self, index):
73 | print('Distribution T{}'.format(index))
74 | print('=' * 15)
75 |
76 | for i in range(self.output_size + 1):
77 | print('{}: {}'.format(i, self.hw_distribution[i]))
78 |
79 | print('-' * 15)
80 |
81 | def generate(self):
82 | for i in range(4):
83 | self.init_table(i)
84 | self.get_distribution()
85 | self.plot('t_table_{}'.format(i))
86 |
87 | self.print_distribution(i)
88 | print('Symmetric: {}'.format(self.is_symmetric))
89 | print()
90 |
91 |
92 | def main():
93 | distribution = TTableHwDistribution()
94 | distribution.generate()
95 |
96 |
97 | if "__main__" == __name__:
98 | start_time = time.time()
99 |
100 | main()
101 |
102 | stop_time = time.time()
103 |
104 | print('Duration: {}'.format(time.strftime('%H:%M:%S', time.gmtime(stop_time - start_time))))
105 |
--------------------------------------------------------------------------------
/aes_cipher/encryption_t_table.py:
--------------------------------------------------------------------------------
1 | from aes_cipher.constants import s_box, t0, t1, t2, t3
2 |
3 |
4 | class EncryptionTTable:
5 | def __init__(self, round_keys=None):
6 | self.round_keys = round_keys
7 | self.state = [0] * 16
8 |
9 | def set_round_keys(self, round_keys):
10 | self.round_keys = round_keys
11 |
12 | def add_round_key(self, round_number=0):
13 | for i in range(16):
14 | self.state[i] ^= self.round_keys[round_number][i]
15 |
16 | def sub_bytes(self):
17 | for i in range(16):
18 | self.state[i] = s_box[self.state[i]]
19 |
20 | def shift_rows(self):
21 | # Row 0: no shift
22 |
23 | # Row 1: shift by 1
24 | temp_1 = self.state[1]
25 | self.state[1] = self.state[5]
26 | self.state[5] = self.state[9]
27 | self.state[9] = self.state[13]
28 | self.state[13] = temp_1
29 |
30 | # Row 2: shift by 2
31 | temp_1 = self.state[2]
32 | temp_2 = self.state[6]
33 | self.state[2] = self.state[10]
34 | self.state[6] = self.state[14]
35 | self.state[10] = temp_1
36 | self.state[14] = temp_2
37 |
38 | # Row 3: shift by 3
39 | temp_1 = self.state[3]
40 | temp_2 = self.state[7]
41 | temp_3 = self.state[11]
42 | self.state[3] = self.state[15]
43 | self.state[7] = temp_1
44 | self.state[11] = temp_2
45 | self.state[15] = temp_3
46 |
47 | @staticmethod
48 | def multiply(a, b):
49 | p = 0
50 |
51 | for i in range(8):
52 | if 1 == b & 1:
53 | p ^= a
54 | high_bit_set = a & 0x80
55 | a = (a << 1) & 0xff
56 | if 0x80 == high_bit_set:
57 | a ^= 0x1b
58 | b >>= 1
59 |
60 | return p
61 |
62 | def t_table_lookup(self):
63 | c0 = t0[self.state[0]] ^ t1[self.state[5]] ^ t2[self.state[10]] ^ t3[self.state[15]]
64 | c1 = t0[self.state[4]] ^ t1[self.state[9]] ^ t2[self.state[14]] ^ t3[self.state[3]]
65 | c2 = t0[self.state[8]] ^ t1[self.state[13]] ^ t2[self.state[2]] ^ t3[self.state[7]]
66 | c3 = t0[self.state[12]] ^ t1[self.state[1]] ^ t2[self.state[6]] ^ t3[self.state[11]]
67 |
68 | self.state[0] = (c0 >> 24) & 0xff
69 | self.state[1] = (c0 >> 16) & 0xff
70 | self.state[2] = (c0 >> 8) & 0xff
71 | self.state[3] = (c0 >> 0) & 0xff
72 |
73 | self.state[4] = (c1 >> 24) & 0xff
74 | self.state[5] = (c1 >> 16) & 0xff
75 | self.state[6] = (c1 >> 8) & 0xff
76 | self.state[7] = (c1 >> 0) & 0xff
77 |
78 | self.state[8] = (c2 >> 24) & 0xff
79 | self.state[9] = (c2 >> 16) & 0xff
80 | self.state[10] = (c2 >> 8) & 0xff
81 | self.state[11] = (c2 >> 0) & 0xff
82 |
83 | self.state[12] = (c3 >> 24) & 0xff
84 | self.state[13] = (c3 >> 16) & 0xff
85 | self.state[14] = (c3 >> 8) & 0xff
86 | self.state[15] = (c3 >> 0) & 0xff
87 |
88 | def encrypt_round(self, round_number):
89 | self.t_table_lookup()
90 | self.add_round_key(round_number)
91 |
92 | def encrypt_last_round(self, round_number):
93 | self.sub_bytes()
94 | self.shift_rows()
95 | self.add_round_key(round_number)
96 |
97 | def set_state(self, plaintext):
98 | for i in range(16):
99 | self.state[i] = (plaintext >> 8 * (15 - i)) & 0xff
100 |
101 | def get_state(self):
102 | ciphertext = 0
103 |
104 | for i in range(16):
105 | ciphertext <<= 8
106 | ciphertext ^= self.state[i]
107 |
108 | return ciphertext
109 |
110 | def print_state(self):
111 | for i in range(16):
112 | print('{} '.format(format(self.state[i], '02x')), end='')
113 | print()
114 |
115 | def encrypt(self, plaintext):
116 | self.set_state(plaintext)
117 |
118 | self.add_round_key()
119 |
120 | for round_number in range(1, 10, 1):
121 | self.encrypt_round(round_number)
122 | self.encrypt_last_round(10)
123 |
124 | return self.get_state()
125 |
--------------------------------------------------------------------------------
/aes_cipher/encryption_s_box.py:
--------------------------------------------------------------------------------
1 | from aes_cipher.constants import s_box
2 |
3 |
4 | class EncryptionSBox:
5 | def __init__(self, round_keys=None):
6 | self.round_keys = round_keys
7 | self.state = [0] * 16
8 |
9 | def set_round_keys(self, round_keys):
10 | self.round_keys = round_keys
11 |
12 | def add_round_key(self, round_number=0):
13 | for i in range(16):
14 | self.state[i] ^= self.round_keys[round_number][i]
15 |
16 | def sub_bytes(self):
17 | for i in range(16):
18 | self.state[i] = s_box[self.state[i]]
19 |
20 | def shift_rows(self):
21 | # Row 0: no shift
22 |
23 | # Row 1: shift by 1
24 | temp_1 = self.state[1]
25 | self.state[1] = self.state[5]
26 | self.state[5] = self.state[9]
27 | self.state[9] = self.state[13]
28 | self.state[13] = temp_1
29 |
30 | # Row 2: shift by 2
31 | temp_1 = self.state[2]
32 | temp_2 = self.state[6]
33 | self.state[2] = self.state[10]
34 | self.state[6] = self.state[14]
35 | self.state[10] = temp_1
36 | self.state[14] = temp_2
37 |
38 | # Row 3: shift by 3
39 | temp_1 = self.state[3]
40 | temp_2 = self.state[7]
41 | temp_3 = self.state[11]
42 | self.state[3] = self.state[15]
43 | self.state[7] = temp_1
44 | self.state[11] = temp_2
45 | self.state[15] = temp_3
46 |
47 | @staticmethod
48 | def multiply(a, b):
49 | p = 0
50 |
51 | for i in range(8):
52 | if 1 == b & 1:
53 | p ^= a
54 | high_bit_set = a & 0x80
55 | a = (a << 1) & 0xff
56 | if 0x80 == high_bit_set:
57 | a ^= 0x1b
58 | b >>= 1
59 |
60 | return p
61 |
62 | def mix_columns(self):
63 | # Column 0
64 | s0 = self.state[0]
65 | s1 = self.state[1]
66 | s2 = self.state[2]
67 | s3 = self.state[3]
68 |
69 | self.state[0] = self.multiply(s0, 2) ^ self.multiply(s1, 3) ^ s2 ^ s3
70 | self.state[1] = s0 ^ self.multiply(s1, 2) ^ self.multiply(s2, 3) ^ s3
71 | self.state[2] = s0 ^ s1 ^ self.multiply(s2, 2) ^ self.multiply(s3, 3)
72 | self.state[3] = self.multiply(s0, 3) ^ s1 ^ s2 ^ self.multiply(s3, 2)
73 |
74 | # Column 1
75 | s0 = self.state[4]
76 | s1 = self.state[5]
77 | s2 = self.state[6]
78 | s3 = self.state[7]
79 |
80 | self.state[4] = self.multiply(s0, 2) ^ self.multiply(s1, 3) ^ s2 ^ s3
81 | self.state[5] = s0 ^ self.multiply(s1, 2) ^ self.multiply(s2, 3) ^ s3
82 | self.state[6] = s0 ^ s1 ^ self.multiply(s2, 2) ^ self.multiply(s3, 3)
83 | self.state[7] = self.multiply(s0, 3) ^ s1 ^ s2 ^ self.multiply(s3, 2)
84 |
85 | # Column 2
86 | s0 = self.state[8]
87 | s1 = self.state[9]
88 | s2 = self.state[10]
89 | s3 = self.state[11]
90 |
91 | self.state[8] = self.multiply(s0, 2) ^ self.multiply(s1, 3) ^ s2 ^ s3
92 | self.state[9] = s0 ^ self.multiply(s1, 2) ^ self.multiply(s2, 3) ^ s3
93 | self.state[10] = s0 ^ s1 ^ self.multiply(s2, 2) ^ self.multiply(s3, 3)
94 | self.state[11] = self.multiply(s0, 3) ^ s1 ^ s2 ^ self.multiply(s3, 2)
95 |
96 | # Column 3
97 | s0 = self.state[12]
98 | s1 = self.state[13]
99 | s2 = self.state[14]
100 | s3 = self.state[15]
101 |
102 | self.state[12] = self.multiply(s0, 2) ^ self.multiply(s1, 3) ^ s2 ^ s3
103 | self.state[13] = s0 ^ self.multiply(s1, 2) ^ self.multiply(s2, 3) ^ s3
104 | self.state[14] = s0 ^ s1 ^ self.multiply(s2, 2) ^ self.multiply(s3, 3)
105 | self.state[15] = self.multiply(s0, 3) ^ s1 ^ s2 ^ self.multiply(s3, 2)
106 |
107 | def encrypt_round(self, round_number):
108 | self.sub_bytes()
109 | self.shift_rows()
110 | self.mix_columns()
111 | self.add_round_key(round_number)
112 |
113 | def encrypt_last_round(self, round_number):
114 | self.sub_bytes()
115 | self.shift_rows()
116 | self.add_round_key(round_number)
117 |
118 | def set_state(self, plaintext):
119 | for i in range(16):
120 | self.state[i] = (plaintext >> 8 * (15 - i)) & 0xff
121 |
122 | def get_state(self):
123 | ciphertext = 0
124 |
125 | for i in range(16):
126 | ciphertext <<= 8
127 | ciphertext ^= self.state[i]
128 |
129 | return ciphertext
130 |
131 | def print_state(self):
132 | for i in range(16):
133 | print('{} '.format(format(self.state[i], '02x')), end='')
134 | print()
135 |
136 | def encrypt(self, plaintext):
137 | self.set_state(plaintext)
138 |
139 | self.add_round_key()
140 |
141 | for round_number in range(1, 10, 1):
142 | self.encrypt_round(round_number)
143 | self.encrypt_last_round(10)
144 |
145 | return self.get_state()
146 |
--------------------------------------------------------------------------------
/plotter/plot_results.py:
--------------------------------------------------------------------------------
1 | import numpy
2 | import matplotlib.pyplot
3 |
4 |
5 | # \varphi_1 = S-box selection function
6 | # \varphi_2 = T-table selection function
7 |
8 | # (a) S-box implementation, S-box selection function
9 | # (b) S-box implementation, T-table selection function
10 | # (c) T-table implementation, T-table selection function
11 | # (d) T-table implementation, S-box selection function
12 |
13 |
14 | # Simulated - Implementation - Selection function
15 | # 100 experiments
16 | sim_s_box_s_box = numpy.array([
17 | 20, 15, 14, 24, 13, 15, 14, 20, 11, 14, 11, 11, 10, 11, 12, 10, 10, 10, 11, 11, 11, 11, 11, 10, 10])
18 | sim_s_box_t_table = numpy.array([
19 | 34, 28, 32, 33, 31, 37, 33, 35, 39, 42, 32, 30, 33, 35, 39, 29, 33, 37, 33, 29, 39, 40, 35, 33, 30])
20 |
21 | sim_t_table_t_table = numpy.array([
22 | 19, 13, 16, 19, 19, 21, 12, 17, 8, 13, 8, 7, 7, 7, 7, 8, 8, 9, 9, 7, 9, 8, 8, 8, 7])
23 | sim_t_table_s_box = numpy.array([
24 | 40, 30, 29, 39, 33, 38, 35, 34, 40, 32, 40, 39, 36, 32, 33, 34, 35, 34, 32, 31, 39, 42, 37, 32, 30])
25 |
26 |
27 | # Real - Implementation - Selection function
28 | real_s_box_s_box = numpy.array([
29 | 700, 620, 80, 430, 570, 390, 520, 280, 620, 380, 500, 500, 490, 410, 670, 430, 570, 380, 400, 420, 530, 490, 350,
30 | 510, 240])
31 | real_s_box_t_table = numpy.array([960, 760, 100, 700, 760, 660, 730, 540, 900, 590, 780, 570, 730, 670, 870, 500, 790,
32 | 560, 590, 650, 910, 620, 670, 650, 310])
33 |
34 | real_t_table_t_table = numpy.array([
35 | 630, 600, 180, 790, 300, 820, 390, 790, 910, 800, 800, 640, 660, 1010, 800, 830, 1000, 780, 790, 820, 790, 720,
36 | 640, 810, 590])
37 | real_t_table_s_box = numpy.array([1120, 490, 80, 1060, 160, 1140, 690, 1290, 1170, 1160, 1190, 1220, 1590, 1240, 1210,
38 | 1150, 1440, 1050, 1420, 990, 1460, 1130, 1200, 1200, 890])
39 |
40 |
41 | def plot_short(line1, line2, name):
42 | ls_box_phi1 = matplotlib.pyplot.plot(line1, 'ro-')
43 | ls_box_phi2 = matplotlib.pyplot.plot(line2, 'go-')
44 |
45 | axes = matplotlib.pyplot.gca()
46 | axes.set_xlim([0, 24])
47 | axes.set_xticks(list(range(0, 24 + 1, 1)))
48 |
49 | matplotlib.pyplot.grid()
50 |
51 | fig = matplotlib.pyplot.gcf()
52 | fig.set_size_inches(11, 4)
53 |
54 | matplotlib.pyplot.legend([ls_box_phi1[0], ls_box_phi2[0]], ['$\\varphi_1$', '$\\varphi_2$'])
55 |
56 | matplotlib.pyplot.xlabel('Evaluation case')
57 | matplotlib.pyplot.ylabel('Number of traces')
58 |
59 | matplotlib.pyplot.savefig('./output/{}.png'.format(name), bbox_inches='tight')
60 | matplotlib.pyplot.close()
61 |
62 |
63 | def plot(line1, line2, line3, line4, name):
64 | matplotlib.pyplot.plot(line1, 'ro-', label='(a)')
65 | matplotlib.pyplot.plot(line2, 'go-', label='(b)')
66 |
67 | matplotlib.pyplot.plot(line3, 'bo-', label='(c)')
68 | matplotlib.pyplot.plot(line4, 'yo-', label='(d)')
69 |
70 | axes = matplotlib.pyplot.gca()
71 | axes.set_xlim([0, 24])
72 | axes.set_xticks(list(range(0, 24 + 1, 1)))
73 |
74 | matplotlib.pyplot.grid()
75 |
76 | fig = matplotlib.pyplot.gcf()
77 | fig.set_size_inches(11, 4)
78 |
79 | matplotlib.pyplot.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=4, mode="expand", borderaxespad=0.)
80 |
81 | matplotlib.pyplot.xlabel('Evaluation case')
82 | matplotlib.pyplot.ylabel('Number of traces')
83 |
84 | matplotlib.pyplot.savefig('./output/{}.png'.format(name), bbox_inches='tight')
85 | matplotlib.pyplot.close()
86 |
87 |
88 | def diff(line1, line2):
89 | difference = line2 - line1
90 | mean = numpy.mean(difference)
91 |
92 | print('Difference: {}'.format(difference))
93 | print('Mean: {}'.format(mean))
94 |
95 |
96 | def get_avg():
97 | print('Simulated')
98 | print('Avg (a): {}'.format(int(round(numpy.mean(sim_s_box_s_box)))))
99 | print('Min : {}'.format(numpy.amin(sim_s_box_s_box)))
100 | print('Max : {}'.format(numpy.amax(sim_s_box_s_box)))
101 |
102 | print('Avg (b): {}'.format(int(round(numpy.mean(sim_s_box_t_table)))))
103 | print('Min : {}'.format(numpy.amin(sim_s_box_t_table)))
104 | print('Max : {}'.format(numpy.amax(sim_s_box_t_table)))
105 |
106 | print('Avg (c): {}'.format(int(round(numpy.mean(sim_t_table_t_table)))))
107 | print('Min : {}'.format(numpy.amin(sim_t_table_t_table)))
108 | print('Max : {}'.format(numpy.amax(sim_t_table_t_table)))
109 |
110 | print('Avg (d): {}'.format(int(round(numpy.mean(sim_t_table_s_box)))))
111 | print('Min : {}'.format(numpy.amin(sim_t_table_s_box)))
112 | print('Max : {}'.format(numpy.amax(sim_t_table_s_box)))
113 |
114 | print()
115 |
116 | print('Real')
117 | print('Avg (a): {}'.format(int(round(numpy.mean(real_s_box_s_box)))))
118 | print('Min : {}'.format(numpy.amin(real_s_box_s_box)))
119 | print('Max : {}'.format(numpy.amax(real_s_box_s_box)))
120 |
121 | print('Avg (b): {}'.format(int(round(numpy.mean(real_s_box_t_table)))))
122 | print('Min : {}'.format(numpy.amin(real_s_box_t_table)))
123 | print('Max : {}'.format(numpy.amax(real_s_box_t_table)))
124 |
125 | print('Avg (c): {}'.format(int(round(numpy.mean(real_t_table_t_table)))))
126 | print('Min : {}'.format(numpy.amin(real_t_table_t_table)))
127 | print('Max : {}'.format(numpy.amax(real_t_table_t_table)))
128 |
129 | print('Avg (d): {}'.format(int(round(numpy.mean(real_t_table_s_box)))))
130 | print('Min : {}'.format(numpy.amin(real_t_table_s_box)))
131 | print('Max : {}'.format(numpy.amax(real_t_table_s_box)))
132 |
133 | print()
134 |
135 |
136 | def get_statistics():
137 | print('Simulated S-box')
138 | diff(sim_s_box_s_box, sim_s_box_t_table)
139 | print()
140 |
141 | print('Simulated T-table')
142 | diff(sim_t_table_t_table, sim_t_table_s_box)
143 | print()
144 |
145 | print('Real S-box')
146 | diff(real_s_box_s_box, real_s_box_t_table)
147 | print()
148 |
149 | print('Real T-table')
150 | diff(real_t_table_t_table, real_t_table_s_box)
151 | print()
152 |
153 |
154 | def main():
155 | get_avg()
156 | get_statistics()
157 |
158 | plot_short(sim_s_box_s_box, sim_s_box_t_table, 'simulated_s_box')
159 | plot_short(sim_t_table_s_box, sim_t_table_t_table, 'simulated_t_table')
160 |
161 | plot_short(real_s_box_s_box, real_s_box_t_table, 'real_s_box')
162 | plot_short(real_t_table_s_box, real_t_table_t_table, 'real_t_table')
163 |
164 | plot(sim_s_box_s_box, sim_s_box_t_table, sim_t_table_t_table, sim_t_table_s_box, 'simulated')
165 | plot(real_s_box_s_box, real_s_box_t_table, real_t_table_t_table, real_t_table_s_box, 'real')
166 |
167 |
168 | if "__main__" == __name__:
169 | main()
170 |
--------------------------------------------------------------------------------
/correlation_coefficient_difference/delta_simulator.py:
--------------------------------------------------------------------------------
1 | from aes_cipher.constants import s_box, t0, t1, t2, t3
2 | from leakage_model.hw_s_box import HwSBox
3 | from leakage_model.hw_t_table import HwTTable
4 |
5 |
6 | import numpy
7 | import operator
8 | import random
9 | import scipy
10 | import scipy.stats
11 | import time
12 |
13 |
14 | class DeltaSimulator:
15 | def __init__(self):
16 | self.number_of_plaintexts = 2 ** 8
17 | self.subkey_size = 8
18 |
19 | self.number_of_samples = 1
20 | self.leaking_sample = self.number_of_samples // 2
21 |
22 | self.evaluation_case = None
23 | self.power_model = None
24 | self.traces = None
25 |
26 | self.init_type = 0
27 | if 0 == self.init_type:
28 | self.init_evaluation_case1()
29 | else:
30 | self.init_evaluation_case2()
31 |
32 | numpy.seterr(divide='ignore', invalid='ignore')
33 |
34 | def init_evaluation_case1(self, evaluation_case=-1):
35 | self.evaluation_case = evaluation_case
36 |
37 | if -1 == self.evaluation_case:
38 | self.power_model = HwSBox()
39 | max_hw = 8
40 | else:
41 | self.power_model = HwTTable()
42 | max_hw = 32
43 |
44 | self.traces = numpy.zeros((self.number_of_plaintexts, self.number_of_samples))
45 |
46 | def init_evaluation_case2(self, evaluation_case=-1, targeted_key=0x00):
47 | self.evaluation_case = evaluation_case
48 |
49 | if -1 == self.evaluation_case:
50 | self.power_model = HwSBox()
51 | else:
52 | self.power_model = HwTTable()
53 |
54 | self.traces = numpy.zeros((self.number_of_plaintexts, self.number_of_samples))
55 |
56 | random_keys = [0 for i in range(self.number_of_samples)]
57 | for i in range(self.number_of_samples):
58 | random_keys[i] = random.getrandbits(self.subkey_size)
59 |
60 | if i == self.leaking_sample and random_keys[i] == targeted_key:
61 | while random_keys[i] == targeted_key:
62 | random_keys[i] = random.getrandbits(self.subkey_size)
63 |
64 | if -1 == evaluation_case:
65 | for i in range(self.number_of_plaintexts):
66 | for j in range(self.number_of_samples):
67 | p = random.getrandbits(self.subkey_size)
68 | value = self.power_model.leak(s_box[p ^ random_keys[j]])
69 | self.traces[i][j] = value
70 | elif 0 == evaluation_case:
71 | for i in range(self.number_of_plaintexts):
72 | for j in range(self.number_of_samples):
73 | p = random.getrandbits(self.subkey_size)
74 | value = self.power_model.leak(t0[p ^ random_keys[j]])
75 | self.traces[i][j] = value
76 | elif 1 == evaluation_case:
77 | for i in range(self.number_of_plaintexts):
78 | for j in range(self.number_of_samples):
79 | p = random.getrandbits(self.subkey_size)
80 | value = self.power_model.leak(t1[p ^ random_keys[j]])
81 | self.traces[i][j] = value
82 | elif 2 == evaluation_case:
83 | for i in range(self.number_of_plaintexts):
84 | for j in range(self.number_of_samples):
85 | p = random.getrandbits(self.subkey_size)
86 | value = self.power_model.leak(t2[p ^ random_keys[j]])
87 | self.traces[i][j] = value
88 | elif 3 == evaluation_case:
89 | for i in range(self.number_of_plaintexts):
90 | for j in range(self.number_of_samples):
91 | p = random.getrandbits(self.subkey_size)
92 | value = self.power_model.leak(t3[p ^ random_keys[j]])
93 | self.traces[i][j] = value
94 |
95 | def generate_leakage(self, k):
96 | for p in range(self.number_of_plaintexts):
97 | c = s_box[p ^ k]
98 | self.traces[p][self.leaking_sample] = self.power_model.leak(c)
99 |
100 | @staticmethod
101 | def pcc(p, o):
102 | n = p.size
103 | do = o - (numpy.einsum('ij->j', o) / numpy.double(n))
104 | p -= (numpy.einsum('i->', p) / numpy.double(n))
105 | tmp = numpy.einsum('ij,ij->j', do, do)
106 | tmp *= numpy.einsum('i,i->', p, p)
107 | return numpy.dot(p, do) / numpy.sqrt(tmp)
108 |
109 | def predict_power_consumption(self, plaintext, key):
110 | value = plaintext ^ key
111 |
112 | if -1 == self.evaluation_case:
113 | value = s_box[value]
114 | elif 0 == self.evaluation_case:
115 | value = t0[value]
116 | elif 1 == self.evaluation_case:
117 | value = t1[value]
118 | elif 2 == self.evaluation_case:
119 | value = t2[value]
120 | elif 3 == self.evaluation_case:
121 | value = t3[value]
122 |
123 | return self.power_model.leak(value)
124 |
125 | def get_delta(self, correlation_matrix, expected_key):
126 | correlation_coefficients = [0] * (2 ** self.subkey_size)
127 |
128 | for i in range(correlation_matrix.shape[0]):
129 | max_value_index = numpy.argmax(correlation_matrix[i])
130 | max_value = correlation_matrix[i][max_value_index]
131 | correlation_coefficients[i] = (i, max_value, max_value_index)
132 |
133 | correlation_coefficients = sorted(correlation_coefficients, key=operator.itemgetter(1), reverse=True)
134 |
135 | delta_1 = 0
136 | delta_2 = 0
137 |
138 | rank_index = -1
139 | break_next = False
140 | for i in range(len(correlation_coefficients)):
141 | key = correlation_coefficients[i][0]
142 | value = correlation_coefficients[i][1]
143 | sample = correlation_coefficients[i][2]
144 |
145 | rank_index += 1
146 |
147 | # print('Rank {}: 0x{} {:1.010} ({})'.format(rank_index, format(key, '02x'), value, sample))
148 |
149 | if break_next:
150 | break
151 |
152 | if expected_key == key:
153 | delta_1 = value
154 |
155 | if 0 != i:
156 | delta_2 = correlation_coefficients[0][1]
157 | else:
158 | delta_2 = correlation_coefficients[i + 1][1]
159 | break_next = True
160 |
161 | delta = delta_1 - delta_2
162 | # print('d1 (expected) : {:+1.06}'.format(delta_1))
163 | # print('d2 (best != expected) : {:+1.06}'.format(delta_2))
164 | # print('d (d1 - d2) : {:+1.06}'.format(delta))
165 |
166 | return delta
167 |
168 | def attack(self, expected_key):
169 | hypothetical_power_consumption = numpy.zeros((self.number_of_plaintexts, 2 ** self.subkey_size))
170 |
171 | for p in range(self.number_of_plaintexts):
172 | for k in range(2 ** self.subkey_size):
173 | power = self.predict_power_consumption(p, k)
174 | hypothetical_power_consumption[p][k] = power
175 |
176 | correlation_matrix = numpy.zeros((2 ** self.subkey_size, self.number_of_samples))
177 |
178 | for i in range(2 ** self.subkey_size):
179 | pcc = self.pcc(hypothetical_power_consumption[:, i], self.traces)
180 | correlation_matrix[i] = pcc
181 |
182 | correlation_matrix = numpy.nan_to_num(correlation_matrix)
183 | delta = self.get_delta(correlation_matrix, expected_key)
184 |
185 | return delta
186 |
187 | def check_all(self, evaluation_case=-1):
188 | if 0 == self.init_type:
189 | self.init_evaluation_case1(evaluation_case)
190 | else:
191 | self.init_evaluation_case2()
192 |
193 | delta_value = 0
194 |
195 | for k in range(2 ** self.subkey_size):
196 | if 0 != self.init_type:
197 | self.init_evaluation_case2(evaluation_case, k)
198 |
199 | self.generate_leakage(k)
200 | delta = self.attack(k)
201 |
202 | if 0 == k:
203 | delta_value = delta
204 |
205 | if delta_value != delta:
206 | print('Error: key 0x{} has delta {:+1.06}, not {:+1.06}!'.format(format(k, '02x'), delta, delta_value))
207 |
208 | return delta_value
209 |
210 | def run(self, key, evaluation_case=-1):
211 | if 0 == self.init_type:
212 | self.init_evaluation_case1(evaluation_case)
213 | else:
214 | self.init_evaluation_case2(evaluation_case, key)
215 |
216 | self.generate_leakage(key)
217 | delta = self.attack(key)
218 |
219 | return delta
220 |
221 |
222 | def run_keys(evaluation_case=-1, key1=0x00, key2=0x0F, key3=0xFF):
223 | delta_s = DeltaSimulator()
224 |
225 | delta = delta_s.run(key1, evaluation_case)
226 | print('k = 0x{}: {:+1.03}'.format(format(key1, '02x'), delta))
227 |
228 | delta = delta_s.run(key2, evaluation_case)
229 | print('k = 0x{}: {:+1.03}'.format(format(key2, '02x'), delta))
230 |
231 | delta = delta_s.run(key3, evaluation_case)
232 | print('k = 0x{}: {:+1.03}'.format(format(key3, '02x'), delta))
233 |
234 |
235 | def run():
236 | number_of_experiments = 10
237 |
238 | evaluation_cases = [-1, 0, 1, 2, 3]
239 |
240 | keys = list(range(2 ** 8))
241 |
242 | delta_s = DeltaSimulator()
243 | for evaluation_case in evaluation_cases:
244 |
245 | print('Evaluation case: {:+1}'.format(evaluation_case))
246 |
247 | global_delta = [0 for i in range(len(keys))]
248 | global_index = 0
249 |
250 | for k in keys:
251 | delta = [0 for i in range(number_of_experiments)]
252 |
253 | for experiment in range(number_of_experiments):
254 | delta[experiment] = delta_s.run(k, evaluation_case)
255 |
256 | global_delta[global_index] = numpy.mean(delta)
257 | global_index += 1
258 |
259 | global_delta = 1.0 * numpy.array(global_delta)
260 | n = len(global_delta)
261 |
262 | confidence = 0.95
263 | m, se = numpy.mean(global_delta), scipy.stats.sem(global_delta)
264 | h = se * scipy.stats.t._ppf((1 + confidence) / 2., n - 1)
265 |
266 | print('global delta = {}'.format(global_delta))
267 |
268 | print('Result: {:+1.03} {:+1.03}'.format(m, h))
269 | print()
270 |
271 |
272 | def check_all():
273 | delta_simulator = DeltaSimulator()
274 | delta_simulator.check_all()
275 |
276 |
277 | if "__main__" == __name__:
278 | start_time = time.time()
279 |
280 | # run_keys()
281 | run()
282 | # check_all()
283 |
284 | stop_time = time.time()
285 |
286 | print()
287 | print('Duration: {}'.format(time.strftime('%H:%M:%S', time.gmtime(stop_time - start_time))))
288 |
--------------------------------------------------------------------------------
/symbolic_evaluator/evaluation_case_solver.py:
--------------------------------------------------------------------------------
1 | class EvaluationCaseSolver:
2 | def __init__(self, initial_state):
3 | self.state = [[0 for i in range(16)] for j in range(4)]
4 | self.pairs = [[[] for i in range(16)] for j in range(4)]
5 |
6 | self.pair_number = 0
7 |
8 | for i in range(16):
9 | self.state[0][i] = initial_state[i]
10 |
11 | def recovered(self, round_number):
12 | for i in range(16):
13 | if 0 >= self.state[round_number][i]:
14 | return False
15 |
16 | return True
17 |
18 | def variable_inputs(self, round_number, in_index0, in_index1, in_index2, in_index3):
19 | variable_inputs = 0
20 |
21 | if 0 != self.state[round_number - 1][in_index0]:
22 | variable_inputs += 1
23 | if 0 != self.state[round_number - 1][in_index1]:
24 | variable_inputs += 1
25 | if 0 != self.state[round_number - 1][in_index2]:
26 | variable_inputs += 1
27 | if 0 != self.state[round_number - 1][in_index3]:
28 | variable_inputs += 1
29 |
30 | return variable_inputs
31 |
32 | def independent_candidates(self, round_number, in_index0, in_index1, in_index2, in_index3):
33 | candidates = 1
34 |
35 | previous_pairs = self.combine_pairs(self.pairs[round_number - 1][in_index0],
36 | self.pairs[round_number - 1][in_index1],
37 | self.pairs[round_number - 1][in_index2],
38 | self.pairs[round_number - 1][in_index3])
39 |
40 | if 0 < len(previous_pairs):
41 | candidates = 2 ** len(previous_pairs)
42 |
43 | return candidates
44 |
45 | @staticmethod
46 | def combine_pairs(pair0, pair1, pair2='', pair3=''):
47 | pair0 = set(pair0)
48 | pair1 = set(pair1)
49 | pair2 = set(pair2)
50 | pair3 = set(pair3)
51 |
52 | new_pair = pair0.union(pair1)
53 | new_pair = new_pair.union(pair2)
54 | new_pair = new_pair.union(pair3)
55 | new_pair = list(new_pair)
56 |
57 | return new_pair
58 |
59 | def update(self, round_number, in_index0, in_index1, in_index2, in_index3,
60 | out_index0, out_index1, out_index2, out_index3):
61 | variable_inputs = self.variable_inputs(round_number, in_index0, in_index1, in_index2, in_index3)
62 | candidates = self.independent_candidates(round_number, in_index0, in_index1, in_index2, in_index3)
63 |
64 | previous_pairs = self.combine_pairs(self.pairs[round_number - 1][in_index0],
65 | self.pairs[round_number - 1][in_index1],
66 | self.pairs[round_number - 1][in_index2],
67 | self.pairs[round_number - 1][in_index3])
68 |
69 | self.pairs[round_number][out_index0] = previous_pairs
70 | self.pairs[round_number][out_index1] = previous_pairs
71 | self.pairs[round_number][out_index2] = previous_pairs
72 | self.pairs[round_number][out_index3] = previous_pairs
73 |
74 | if 0 == variable_inputs:
75 | self.state[round_number][out_index0] = 0
76 | self.state[round_number][out_index1] = 0
77 | self.state[round_number][out_index2] = 0
78 | self.state[round_number][out_index3] = 0
79 | elif 1 == variable_inputs:
80 | if 0 != self.state[round_number - 1][in_index0]:
81 | self.state[round_number][out_index0] = -1 * candidates
82 | self.state[round_number][out_index1] = -2 * candidates
83 | self.state[round_number][out_index2] = -2 * candidates
84 | self.state[round_number][out_index3] = -1 * candidates
85 |
86 | self.pair_number += 1
87 | self.pairs[round_number][out_index1] = self.combine_pairs(self.pairs[round_number][out_index1],
88 | [self.pair_number])
89 | self.pairs[round_number][out_index2] = self.combine_pairs(self.pairs[round_number][out_index2],
90 | [self.pair_number])
91 | if 0 != self.state[round_number - 1][in_index1]:
92 | self.state[round_number][out_index0] = -1 * candidates
93 | self.state[round_number][out_index1] = -1 * candidates
94 | self.state[round_number][out_index2] = -2 * candidates
95 | self.state[round_number][out_index3] = -2 * candidates
96 |
97 | self.pair_number += 1
98 | self.pairs[round_number][out_index2] = self.combine_pairs(self.pairs[round_number][out_index2],
99 | [self.pair_number])
100 | self.pairs[round_number][out_index3] = self.combine_pairs(self.pairs[round_number][out_index3],
101 | [self.pair_number])
102 | if 0 != self.state[round_number - 1][in_index2]:
103 | self.state[round_number][out_index0] = -2 * candidates
104 | self.state[round_number][out_index1] = -1 * candidates
105 | self.state[round_number][out_index2] = -1 * candidates
106 | self.state[round_number][out_index3] = -2 * candidates
107 |
108 | self.pair_number += 1
109 | self.pairs[round_number][out_index0] = self.combine_pairs(self.pairs[round_number][out_index0],
110 | [self.pair_number])
111 | self.pairs[round_number][out_index3] = self.combine_pairs(self.pairs[round_number][out_index3],
112 | [self.pair_number])
113 | if 0 != self.state[round_number - 1][in_index3]:
114 | self.state[round_number][out_index0] = -2 * candidates
115 | self.state[round_number][out_index1] = -2 * candidates
116 | self.state[round_number][out_index2] = -1 * candidates
117 | self.state[round_number][out_index3] = -1 * candidates
118 |
119 | self.pair_number += 1
120 | self.pairs[round_number][out_index0] = self.combine_pairs(self.pairs[round_number][out_index0],
121 | [self.pair_number])
122 | self.pairs[round_number][out_index1] = self.combine_pairs(self.pairs[round_number][out_index1],
123 | [self.pair_number])
124 | elif variable_inputs in [2, 3]:
125 | self.state[round_number][out_index0] = -1
126 | self.state[round_number][out_index1] = -1
127 | self.state[round_number][out_index2] = -1
128 | self.state[round_number][out_index3] = -1
129 | elif 4 == variable_inputs:
130 | self.state[round_number][out_index0] = 1
131 | self.state[round_number][out_index1] = 1
132 | self.state[round_number][out_index2] = 1
133 | self.state[round_number][out_index3] = 1
134 |
135 | def attack(self, round_number):
136 | if 0 == round_number:
137 | return
138 |
139 | self.update(round_number, 0, 5, 10, 15, 0, 1, 2, 3)
140 | self.update(round_number, 4, 9, 14, 3, 4, 5, 6, 7)
141 | self.update(round_number, 8, 13, 2, 7, 8, 9, 10, 11)
142 | self.update(round_number, 12, 1, 6, 11, 12, 13, 14, 15)
143 |
144 | def process(self):
145 | round_number = 0
146 |
147 | while True:
148 | self.attack(round_number)
149 |
150 | if self.recovered(round_number):
151 | break
152 | round_number += 1
153 |
154 | def get_possible_keys(self, i):
155 | return self.state[i][0]
156 |
157 | def get_statistics(self):
158 | possible_keys = -1
159 | number_of_rounds = -1
160 |
161 | for i in range(3, -1, -1):
162 | if self.recovered(i):
163 | possible_keys = self.get_possible_keys(i)
164 | number_of_rounds = i + 1
165 | break
166 |
167 | return possible_keys, number_of_rounds
168 |
169 | def max_possible_keys(self, pairs):
170 | pair1 = self.combine_pairs(pairs[0], pairs[1], pairs[2], pairs[3])
171 | pair2 = self.combine_pairs(pairs[4], pairs[5], pairs[6], pairs[7])
172 | pair3 = self.combine_pairs(pairs[8], pairs[9], pairs[10], pairs[11])
173 | pair4 = self.combine_pairs(pairs[12], pairs[13], pairs[14], pairs[15])
174 | independent_pairs = self.combine_pairs(pair1, pair2, pair3, pair4)
175 |
176 | return 2 ** len(independent_pairs)
177 |
178 | def get_max_possible_keys(self):
179 | for i in range(3, -1, -1):
180 | if self.recovered(i):
181 | return self.max_possible_keys(self.pairs[i])
182 |
183 | return -1
184 |
185 | def print_state(self, round_number=-1):
186 | if -1 == round_number:
187 | for i in range(4):
188 | self.print_state(i)
189 | return
190 |
191 | print('round {}: state'.format(round_number), end='')
192 | for i in range(4):
193 | print('\n\t', end='')
194 | for j in range(4):
195 | print('{:2} '.format(self.state[round_number][i + 4 * j]), end='')
196 | print()
197 |
198 | def print_pairs(self, round_number=-1):
199 | if -1 == round_number:
200 | for i in range(4):
201 | self.print_pairs(i)
202 | return
203 |
204 | print('round {}: pairs'.format(round_number), end='')
205 | for i in range(4):
206 | print('\n\t', end='')
207 | for j in range(4):
208 | print('{} '.format(self.pairs[round_number][i + 4 * j]), end='')
209 | print()
210 |
211 | def print_state_pairs(self, round_number=-1):
212 | if -1 == round_number:
213 | for i in range(4):
214 | self.print_state_pairs(i)
215 | return
216 |
217 | print('round {}: state \t\t\t pairs'.format(round_number), end='')
218 | for i in range(4):
219 | print('\n\t', end='')
220 | for j in range(4):
221 | print('{:2} '.format(self.state[round_number][i + 4 * j]), end='')
222 | print('\t ', end='')
223 | for j in range(4):
224 | print('{} '.format(self.pairs[round_number][i + 4 * j]), end='')
225 | print()
226 |
227 | def get_pair_indexes(self, pair, round_number):
228 | indexes = []
229 |
230 | for i in range(16):
231 | if pair in set(self.pairs[round_number][i]):
232 | indexes.append(16 * round_number + i)
233 |
234 | return indexes
235 |
236 |
237 | def main():
238 | initial_state = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
239 |
240 | evaluation_case = EvaluationCaseSolver(initial_state)
241 | evaluation_case.process()
242 |
243 | # evaluation_case.print_state()
244 | # evaluation_case.print_pairs()
245 | evaluation_case.print_state_pairs()
246 |
247 | print()
248 | print('(keys, rounds) = {}'.format(evaluation_case.get_statistics()))
249 |
250 |
251 | if "__main__" == __name__:
252 | main()
253 |
--------------------------------------------------------------------------------
/cpa_attacker/round1.py:
--------------------------------------------------------------------------------
1 | from aes_cipher.constants import s_box
2 |
3 |
4 | import copy
5 |
6 |
7 | class Round1:
8 | def __init__(self, round_keys, state):
9 | self.round_keys = round_keys
10 | self.state = copy.deepcopy(state)
11 |
12 | for i in range(len(state)):
13 | for j in range(16):
14 | if 0 != self.state[i][j]:
15 | self.state[i][j] = 1
16 |
17 | @staticmethod
18 | def multiply(a, b):
19 | p = 0
20 |
21 | for i in range(8):
22 | if 1 == b & 1:
23 | p ^= a
24 | high_bit_set = a & 0x80
25 | a = (a << 1) & 0xff
26 | if 0x80 == high_bit_set:
27 | a ^= 0x1b
28 | b >>= 1
29 |
30 | return p
31 |
32 | def get_plaintext_part(self, plaintext, index):
33 | if 16 == index:
34 | return self.get_plaintext_part_round1_k0(plaintext)
35 | elif 17 == index:
36 | return self.get_plaintext_part_round1_k1(plaintext)
37 | elif 18 == index:
38 | return self.get_plaintext_part_round1_k2(plaintext)
39 | elif 19 == index:
40 | return self.get_plaintext_part_round1_k3(plaintext)
41 | elif 20 == index:
42 | return self.get_plaintext_part_round1_k4(plaintext)
43 | elif 21 == index:
44 | return self.get_plaintext_part_round1_k5(plaintext)
45 | elif 22 == index:
46 | return self.get_plaintext_part_round1_k6(plaintext)
47 | elif 23 == index:
48 | return self.get_plaintext_part_round1_k7(plaintext)
49 | elif 24 == index:
50 | return self.get_plaintext_part_round1_k8(plaintext)
51 | elif 25 == index:
52 | return self.get_plaintext_part_round1_k9(plaintext)
53 | elif 26 == index:
54 | return self.get_plaintext_part_round1_k10(plaintext)
55 | elif 27 == index:
56 | return self.get_plaintext_part_round1_k11(plaintext)
57 | elif 28 == index:
58 | return self.get_plaintext_part_round1_k12(plaintext)
59 | elif 29 == index:
60 | return self.get_plaintext_part_round1_k13(plaintext)
61 | elif 30 == index:
62 | return self.get_plaintext_part_round1_k14(plaintext)
63 | elif 31 == index:
64 | return self.get_plaintext_part_round1_k15(plaintext)
65 |
66 | def get_plaintext_part_round1_k0(self, plaintext):
67 | # Round 0
68 | x0 = (plaintext >> 120) & 0xff
69 | x5 = (plaintext >> 80) & 0xff
70 | x10 = (plaintext >> 40) & 0xff
71 | x15 = (plaintext >> 0) & 0xff
72 |
73 | # AddRoundKey
74 | x0 ^= self.round_keys[0]
75 | x5 ^= self.round_keys[5]
76 | x10 ^= self.round_keys[10]
77 | x15 ^= self.round_keys[15]
78 |
79 | # SubBytes
80 | y0 = s_box[x0]
81 | y5 = s_box[x5]
82 | y10 = s_box[x10]
83 | y15 = s_box[x15]
84 |
85 | y0 *= self.state[0][0]
86 | y5 *= self.state[0][5]
87 | y10 *= self.state[0][10]
88 | y15 *= self.state[0][15]
89 |
90 | z = self.multiply(y0, 2) ^ self.multiply(y5, 3) ^ y10 ^ y15
91 | return z
92 |
93 | def get_plaintext_part_round1_k1(self, plaintext):
94 | # Round 0
95 | x0 = (plaintext >> 120) & 0xff
96 | x5 = (plaintext >> 80) & 0xff
97 | x10 = (plaintext >> 40) & 0xff
98 | x15 = (plaintext >> 0) & 0xff
99 |
100 | # AddRoundKey
101 | x0 ^= self.round_keys[0]
102 | x5 ^= self.round_keys[5]
103 | x10 ^= self.round_keys[10]
104 | x15 ^= self.round_keys[15]
105 |
106 | # SubBytes
107 | y0 = s_box[x0]
108 | y5 = s_box[x5]
109 | y10 = s_box[x10]
110 | y15 = s_box[x15]
111 |
112 | y0 *= self.state[0][0]
113 | y5 *= self.state[0][5]
114 | y10 *= self.state[0][10]
115 | y15 *= self.state[0][15]
116 |
117 | z = y0 ^ self.multiply(y5, 2) ^ self.multiply(y10, 3) ^ y15
118 | return z
119 |
120 | def get_plaintext_part_round1_k2(self, plaintext):
121 | # Round 0
122 | x0 = (plaintext >> 120) & 0xff
123 | x5 = (plaintext >> 80) & 0xff
124 | x10 = (plaintext >> 40) & 0xff
125 | x15 = (plaintext >> 0) & 0xff
126 |
127 | # AddRoundKey
128 | x0 ^= self.round_keys[0]
129 | x5 ^= self.round_keys[5]
130 | x10 ^= self.round_keys[10]
131 | x15 ^= self.round_keys[15]
132 |
133 | # SubBytes
134 | y0 = s_box[x0]
135 | y5 = s_box[x5]
136 | y10 = s_box[x10]
137 | y15 = s_box[x15]
138 |
139 | y0 *= self.state[0][0]
140 | y5 *= self.state[0][5]
141 | y10 *= self.state[0][10]
142 | y15 *= self.state[0][15]
143 |
144 | z = y0 ^ y5 ^ self.multiply(y10, 2) ^ self.multiply(y15, 3)
145 | return z
146 |
147 | def get_plaintext_part_round1_k3(self, plaintext):
148 | # Round 0
149 | x0 = (plaintext >> 120) & 0xff
150 | x5 = (plaintext >> 80) & 0xff
151 | x10 = (plaintext >> 40) & 0xff
152 | x15 = (plaintext >> 0) & 0xff
153 |
154 | # AddRoundKey
155 | x0 ^= self.round_keys[0]
156 | x5 ^= self.round_keys[5]
157 | x10 ^= self.round_keys[10]
158 | x15 ^= self.round_keys[15]
159 |
160 | # SubBytes
161 | y0 = s_box[x0]
162 | y5 = s_box[x5]
163 | y10 = s_box[x10]
164 | y15 = s_box[x15]
165 |
166 | y0 *= self.state[0][0]
167 | y5 *= self.state[0][5]
168 | y10 *= self.state[0][10]
169 | y15 *= self.state[0][15]
170 |
171 | z = self.multiply(y0, 3) ^ y5 ^ y10 ^ self.multiply(y15, 2)
172 | return z
173 |
174 | def get_plaintext_part_round1_k4(self, plaintext):
175 | # Round 0
176 | x4 = (plaintext >> 88) & 0xff
177 | x9 = (plaintext >> 48) & 0xff
178 | x14 = (plaintext >> 8) & 0xff
179 | x3 = (plaintext >> 96) & 0xff
180 |
181 | # AddRoundKey
182 | x4 ^= self.round_keys[4]
183 | x9 ^= self.round_keys[9]
184 | x14 ^= self.round_keys[14]
185 | x3 ^= self.round_keys[3]
186 |
187 | # SubBytes
188 | y4 = s_box[x4]
189 | y9 = s_box[x9]
190 | y14 = s_box[x14]
191 | y3 = s_box[x3]
192 |
193 | y4 *= self.state[0][4]
194 | y9 *= self.state[0][9]
195 | y14 *= self.state[0][14]
196 | y3 *= self.state[0][3]
197 |
198 | z = self.multiply(y4, 2) ^ self.multiply(y9, 3) ^ y14 ^ y3
199 | return z
200 |
201 | def get_plaintext_part_round1_k5(self, plaintext):
202 | # Round 0
203 | x4 = (plaintext >> 88) & 0xff
204 | x9 = (plaintext >> 48) & 0xff
205 | x14 = (plaintext >> 8) & 0xff
206 | x3 = (plaintext >> 96) & 0xff
207 |
208 | # AddRoundKey
209 | x4 ^= self.round_keys[4]
210 | x9 ^= self.round_keys[9]
211 | x14 ^= self.round_keys[14]
212 | x3 ^= self.round_keys[3]
213 |
214 | # SubBytes
215 | y4 = s_box[x4]
216 | y9 = s_box[x9]
217 | y14 = s_box[x14]
218 | y3 = s_box[x3]
219 |
220 | y4 *= self.state[0][4]
221 | y9 *= self.state[0][9]
222 | y14 *= self.state[0][14]
223 | y3 *= self.state[0][3]
224 |
225 | z = y4 ^ self.multiply(y9, 2) ^ self.multiply(y14, 3) ^ y3
226 | return z
227 |
228 | def get_plaintext_part_round1_k6(self, plaintext):
229 | # Round 0
230 | x4 = (plaintext >> 88) & 0xff
231 | x9 = (plaintext >> 48) & 0xff
232 | x14 = (plaintext >> 8) & 0xff
233 | x3 = (plaintext >> 96) & 0xff
234 |
235 | # AddRoundKey
236 | x4 ^= self.round_keys[4]
237 | x9 ^= self.round_keys[9]
238 | x14 ^= self.round_keys[14]
239 | x3 ^= self.round_keys[3]
240 |
241 | # SubBytes
242 | y4 = s_box[x4]
243 | y9 = s_box[x9]
244 | y14 = s_box[x14]
245 | y3 = s_box[x3]
246 |
247 | y4 *= self.state[0][4]
248 | y9 *= self.state[0][9]
249 | y14 *= self.state[0][14]
250 | y3 *= self.state[0][3]
251 |
252 | z = y4 ^ y9 ^ self.multiply(y14, 2) ^ self.multiply(y3, 3)
253 | return z
254 |
255 | def get_plaintext_part_round1_k7(self, plaintext):
256 | # Round 0
257 | x4 = (plaintext >> 88) & 0xff
258 | x9 = (plaintext >> 48) & 0xff
259 | x14 = (plaintext >> 8) & 0xff
260 | x3 = (plaintext >> 96) & 0xff
261 |
262 | # AddRoundKey
263 | x4 ^= self.round_keys[4]
264 | x9 ^= self.round_keys[9]
265 | x14 ^= self.round_keys[14]
266 | x3 ^= self.round_keys[3]
267 |
268 | # SubBytes
269 | y4 = s_box[x4]
270 | y9 = s_box[x9]
271 | y14 = s_box[x14]
272 | y3 = s_box[x3]
273 |
274 | y4 *= self.state[0][4]
275 | y9 *= self.state[0][9]
276 | y14 *= self.state[0][14]
277 | y3 *= self.state[0][3]
278 |
279 | z = self.multiply(y4, 3) ^ y9 ^ y14 ^ self.multiply(y3, 2)
280 | return z
281 |
282 | def get_plaintext_part_round1_k8(self, plaintext):
283 | # Round 0
284 | x8 = (plaintext >> 56) & 0xff
285 | x13 = (plaintext >> 16) & 0xff
286 | x2 = (plaintext >> 104) & 0xff
287 | x7 = (plaintext >> 64) & 0xff
288 |
289 | # AddRoundKey
290 | x8 ^= self.round_keys[8]
291 | x13 ^= self.round_keys[13]
292 | x2 ^= self.round_keys[2]
293 | x7 ^= self.round_keys[7]
294 |
295 | # SubBytes
296 | y8 = s_box[x8]
297 | y13 = s_box[x13]
298 | y2 = s_box[x2]
299 | y7 = s_box[x7]
300 |
301 | y8 *= self.state[0][8]
302 | y13 *= self.state[0][13]
303 | y2 *= self.state[0][2]
304 | y7 *= self.state[0][7]
305 |
306 | z = self.multiply(y8, 2) ^ self.multiply(y13, 3) ^ y2 ^ y7
307 | return z
308 |
309 | def get_plaintext_part_round1_k9(self, plaintext):
310 | # Round 0
311 | x8 = (plaintext >> 56) & 0xff
312 | x13 = (plaintext >> 16) & 0xff
313 | x2 = (plaintext >> 104) & 0xff
314 | x7 = (plaintext >> 64) & 0xff
315 |
316 | # AddRoundKey
317 | x8 ^= self.round_keys[8]
318 | x13 ^= self.round_keys[13]
319 | x2 ^= self.round_keys[2]
320 | x7 ^= self.round_keys[7]
321 |
322 | # SubBytes
323 | y8 = s_box[x8]
324 | y13 = s_box[x13]
325 | y2 = s_box[x2]
326 | y7 = s_box[x7]
327 |
328 | y8 *= self.state[0][8]
329 | y13 *= self.state[0][13]
330 | y2 *= self.state[0][2]
331 | y7 *= self.state[0][7]
332 |
333 | z = y8 ^ self.multiply(y13, 2) ^ self.multiply(y2, 3) ^ y7
334 | return z
335 |
336 | def get_plaintext_part_round1_k10(self, plaintext):
337 | # Round 0
338 | x8 = (plaintext >> 56) & 0xff
339 | x13 = (plaintext >> 16) & 0xff
340 | x2 = (plaintext >> 104) & 0xff
341 | x7 = (plaintext >> 64) & 0xff
342 |
343 | # AddRoundKey
344 | x8 ^= self.round_keys[8]
345 | x13 ^= self.round_keys[13]
346 | x2 ^= self.round_keys[2]
347 | x7 ^= self.round_keys[7]
348 |
349 | # SubBytes
350 | y8 = s_box[x8]
351 | y13 = s_box[x13]
352 | y2 = s_box[x2]
353 | y7 = s_box[x7]
354 |
355 | y8 *= self.state[0][8]
356 | y13 *= self.state[0][13]
357 | y2 *= self.state[0][2]
358 | y7 *= self.state[0][7]
359 |
360 | z = y8 ^ y13 ^ self.multiply(y2, 2) ^ self.multiply(y7, 3)
361 | return z
362 |
363 | def get_plaintext_part_round1_k11(self, plaintext):
364 | # Round 0
365 | x8 = (plaintext >> 56) & 0xff
366 | x13 = (plaintext >> 16) & 0xff
367 | x2 = (plaintext >> 104) & 0xff
368 | x7 = (plaintext >> 64) & 0xff
369 |
370 | # AddRoundKey
371 | x8 ^= self.round_keys[8]
372 | x13 ^= self.round_keys[13]
373 | x2 ^= self.round_keys[2]
374 | x7 ^= self.round_keys[7]
375 |
376 | # SubBytes
377 | y8 = s_box[x8]
378 | y13 = s_box[x13]
379 | y2 = s_box[x2]
380 | y7 = s_box[x7]
381 |
382 | y8 *= self.state[0][8]
383 | y13 *= self.state[0][13]
384 | y2 *= self.state[0][2]
385 | y7 *= self.state[0][7]
386 |
387 | z = self.multiply(y8, 3) ^ y13 ^ y2 ^ self.multiply(y7, 2)
388 | return z
389 |
390 | def get_plaintext_part_round1_k12(self, plaintext):
391 | # Round 0
392 | x12 = (plaintext >> 24) & 0xff
393 | x1 = (plaintext >> 112) & 0xff
394 | x6 = (plaintext >> 72) & 0xff
395 | x11 = (plaintext >> 32) & 0xff
396 |
397 | # AddRoundKey
398 | x12 ^= self.round_keys[12]
399 | x1 ^= self.round_keys[1]
400 | x6 ^= self.round_keys[6]
401 | x11 ^= self.round_keys[11]
402 |
403 | # SubBytes
404 | y12 = s_box[x12]
405 | y1 = s_box[x1]
406 | y6 = s_box[x6]
407 | y11 = s_box[x11]
408 |
409 | y12 *= self.state[0][12]
410 | y1 *= self.state[0][1]
411 | y6 *= self.state[0][6]
412 | y11 *= self.state[0][11]
413 |
414 | z = self.multiply(y12, 2) ^ self.multiply(y1, 3) ^ y6 ^ y11
415 | return z
416 |
417 | def get_plaintext_part_round1_k13(self, plaintext):
418 | # Round 0
419 | x12 = (plaintext >> 24) & 0xff
420 | x1 = (plaintext >> 112) & 0xff
421 | x6 = (plaintext >> 72) & 0xff
422 | x11 = (plaintext >> 32) & 0xff
423 |
424 | # AddRoundKey
425 | x12 ^= self.round_keys[12]
426 | x1 ^= self.round_keys[1]
427 | x6 ^= self.round_keys[6]
428 | x11 ^= self.round_keys[11]
429 |
430 | # SubBytes
431 | y12 = s_box[x12]
432 | y1 = s_box[x1]
433 | y6 = s_box[x6]
434 | y11 = s_box[x11]
435 |
436 | y12 *= self.state[0][12]
437 | y1 *= self.state[0][1]
438 | y6 *= self.state[0][6]
439 | y11 *= self.state[0][11]
440 |
441 | z = y12 ^ self.multiply(y1, 2) ^ self.multiply(y6, 3) ^ y11
442 | return z
443 |
444 | def get_plaintext_part_round1_k14(self, plaintext):
445 | # Round 0
446 | x12 = (plaintext >> 24) & 0xff
447 | x1 = (plaintext >> 112) & 0xff
448 | x6 = (plaintext >> 72) & 0xff
449 | x11 = (plaintext >> 32) & 0xff
450 |
451 | # AddRoundKey
452 | x12 ^= self.round_keys[12]
453 | x1 ^= self.round_keys[1]
454 | x6 ^= self.round_keys[6]
455 | x11 ^= self.round_keys[11]
456 |
457 | # SubBytes
458 | y12 = s_box[x12]
459 | y1 = s_box[x1]
460 | y6 = s_box[x6]
461 | y11 = s_box[x11]
462 |
463 | y12 *= self.state[0][12]
464 | y1 *= self.state[0][1]
465 | y6 *= self.state[0][6]
466 | y11 *= self.state[0][11]
467 |
468 | z = y12 ^ y1 ^ self.multiply(y6, 2) ^ self.multiply(y11, 3)
469 | return z
470 |
471 | def get_plaintext_part_round1_k15(self, plaintext):
472 | # Round 0
473 | x12 = (plaintext >> 24) & 0xff
474 | x1 = (plaintext >> 112) & 0xff
475 | x6 = (plaintext >> 72) & 0xff
476 | x11 = (plaintext >> 32) & 0xff
477 |
478 | # AddRoundKey
479 | x12 ^= self.round_keys[12]
480 | x1 ^= self.round_keys[1]
481 | x6 ^= self.round_keys[6]
482 | x11 ^= self.round_keys[11]
483 |
484 | # SubBytes
485 | y12 = s_box[x12]
486 | y1 = s_box[x1]
487 | y6 = s_box[x6]
488 | y11 = s_box[x11]
489 |
490 | y12 *= self.state[0][12]
491 | y1 *= self.state[0][1]
492 | y6 *= self.state[0][6]
493 | y11 *= self.state[0][11]
494 |
495 | z = self.multiply(y12, 3) ^ y1 ^ y6 ^ self.multiply(y11, 2)
496 | return z
497 |
--------------------------------------------------------------------------------
/aes_cipher/constants.py:
--------------------------------------------------------------------------------
1 | s_box = [
2 | 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
3 | 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
4 | 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
5 | 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
6 | 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
7 | 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
8 | 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
9 | 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
10 | 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
11 | 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
12 | 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
13 | 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
14 | 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
15 | 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
16 | 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
17 | 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
18 | ]
19 |
20 | r_con = [0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36]
21 |
22 | t0 = [
23 | 0xc66363a5, 0xf87c7c84, 0xee777799, 0xf67b7b8d,
24 | 0xfff2f20d, 0xd66b6bbd, 0xde6f6fb1, 0x91c5c554,
25 | 0x60303050, 0x02010103, 0xce6767a9, 0x562b2b7d,
26 | 0xe7fefe19, 0xb5d7d762, 0x4dababe6, 0xec76769a,
27 | 0x8fcaca45, 0x1f82829d, 0x89c9c940, 0xfa7d7d87,
28 | 0xeffafa15, 0xb25959eb, 0x8e4747c9, 0xfbf0f00b,
29 | 0x41adadec, 0xb3d4d467, 0x5fa2a2fd, 0x45afafea,
30 | 0x239c9cbf, 0x53a4a4f7, 0xe4727296, 0x9bc0c05b,
31 | 0x75b7b7c2, 0xe1fdfd1c, 0x3d9393ae, 0x4c26266a,
32 | 0x6c36365a, 0x7e3f3f41, 0xf5f7f702, 0x83cccc4f,
33 | 0x6834345c, 0x51a5a5f4, 0xd1e5e534, 0xf9f1f108,
34 | 0xe2717193, 0xabd8d873, 0x62313153, 0x2a15153f,
35 | 0x0804040c, 0x95c7c752, 0x46232365, 0x9dc3c35e,
36 | 0x30181828, 0x379696a1, 0x0a05050f, 0x2f9a9ab5,
37 | 0x0e070709, 0x24121236, 0x1b80809b, 0xdfe2e23d,
38 | 0xcdebeb26, 0x4e272769, 0x7fb2b2cd, 0xea75759f,
39 | 0x1209091b, 0x1d83839e, 0x582c2c74, 0x341a1a2e,
40 | 0x361b1b2d, 0xdc6e6eb2, 0xb45a5aee, 0x5ba0a0fb,
41 | 0xa45252f6, 0x763b3b4d, 0xb7d6d661, 0x7db3b3ce,
42 | 0x5229297b, 0xdde3e33e, 0x5e2f2f71, 0x13848497,
43 | 0xa65353f5, 0xb9d1d168, 0x00000000, 0xc1eded2c,
44 | 0x40202060, 0xe3fcfc1f, 0x79b1b1c8, 0xb65b5bed,
45 | 0xd46a6abe, 0x8dcbcb46, 0x67bebed9, 0x7239394b,
46 | 0x944a4ade, 0x984c4cd4, 0xb05858e8, 0x85cfcf4a,
47 | 0xbbd0d06b, 0xc5efef2a, 0x4faaaae5, 0xedfbfb16,
48 | 0x864343c5, 0x9a4d4dd7, 0x66333355, 0x11858594,
49 | 0x8a4545cf, 0xe9f9f910, 0x04020206, 0xfe7f7f81,
50 | 0xa05050f0, 0x783c3c44, 0x259f9fba, 0x4ba8a8e3,
51 | 0xa25151f3, 0x5da3a3fe, 0x804040c0, 0x058f8f8a,
52 | 0x3f9292ad, 0x219d9dbc, 0x70383848, 0xf1f5f504,
53 | 0x63bcbcdf, 0x77b6b6c1, 0xafdada75, 0x42212163,
54 | 0x20101030, 0xe5ffff1a, 0xfdf3f30e, 0xbfd2d26d,
55 | 0x81cdcd4c, 0x180c0c14, 0x26131335, 0xc3ecec2f,
56 | 0xbe5f5fe1, 0x359797a2, 0x884444cc, 0x2e171739,
57 | 0x93c4c457, 0x55a7a7f2, 0xfc7e7e82, 0x7a3d3d47,
58 | 0xc86464ac, 0xba5d5de7, 0x3219192b, 0xe6737395,
59 | 0xc06060a0, 0x19818198, 0x9e4f4fd1, 0xa3dcdc7f,
60 | 0x44222266, 0x542a2a7e, 0x3b9090ab, 0x0b888883,
61 | 0x8c4646ca, 0xc7eeee29, 0x6bb8b8d3, 0x2814143c,
62 | 0xa7dede79, 0xbc5e5ee2, 0x160b0b1d, 0xaddbdb76,
63 | 0xdbe0e03b, 0x64323256, 0x743a3a4e, 0x140a0a1e,
64 | 0x924949db, 0x0c06060a, 0x4824246c, 0xb85c5ce4,
65 | 0x9fc2c25d, 0xbdd3d36e, 0x43acacef, 0xc46262a6,
66 | 0x399191a8, 0x319595a4, 0xd3e4e437, 0xf279798b,
67 | 0xd5e7e732, 0x8bc8c843, 0x6e373759, 0xda6d6db7,
68 | 0x018d8d8c, 0xb1d5d564, 0x9c4e4ed2, 0x49a9a9e0,
69 | 0xd86c6cb4, 0xac5656fa, 0xf3f4f407, 0xcfeaea25,
70 | 0xca6565af, 0xf47a7a8e, 0x47aeaee9, 0x10080818,
71 | 0x6fbabad5, 0xf0787888, 0x4a25256f, 0x5c2e2e72,
72 | 0x381c1c24, 0x57a6a6f1, 0x73b4b4c7, 0x97c6c651,
73 | 0xcbe8e823, 0xa1dddd7c, 0xe874749c, 0x3e1f1f21,
74 | 0x964b4bdd, 0x61bdbddc, 0x0d8b8b86, 0x0f8a8a85,
75 | 0xe0707090, 0x7c3e3e42, 0x71b5b5c4, 0xcc6666aa,
76 | 0x904848d8, 0x06030305, 0xf7f6f601, 0x1c0e0e12,
77 | 0xc26161a3, 0x6a35355f, 0xae5757f9, 0x69b9b9d0,
78 | 0x17868691, 0x99c1c158, 0x3a1d1d27, 0x279e9eb9,
79 | 0xd9e1e138, 0xebf8f813, 0x2b9898b3, 0x22111133,
80 | 0xd26969bb, 0xa9d9d970, 0x078e8e89, 0x339494a7,
81 | 0x2d9b9bb6, 0x3c1e1e22, 0x15878792, 0xc9e9e920,
82 | 0x87cece49, 0xaa5555ff, 0x50282878, 0xa5dfdf7a,
83 | 0x038c8c8f, 0x59a1a1f8, 0x09898980, 0x1a0d0d17,
84 | 0x65bfbfda, 0xd7e6e631, 0x844242c6, 0xd06868b8,
85 | 0x824141c3, 0x299999b0, 0x5a2d2d77, 0x1e0f0f11,
86 | 0x7bb0b0cb, 0xa85454fc, 0x6dbbbbd6, 0x2c16163a
87 | ]
88 |
89 | t1 = [
90 | 0xa5c66363, 0x84f87c7c, 0x99ee7777, 0x8df67b7b,
91 | 0x0dfff2f2, 0xbdd66b6b, 0xb1de6f6f, 0x5491c5c5,
92 | 0x50603030, 0x03020101, 0xa9ce6767, 0x7d562b2b,
93 | 0x19e7fefe, 0x62b5d7d7, 0xe64dabab, 0x9aec7676,
94 | 0x458fcaca, 0x9d1f8282, 0x4089c9c9, 0x87fa7d7d,
95 | 0x15effafa, 0xebb25959, 0xc98e4747, 0x0bfbf0f0,
96 | 0xec41adad, 0x67b3d4d4, 0xfd5fa2a2, 0xea45afaf,
97 | 0xbf239c9c, 0xf753a4a4, 0x96e47272, 0x5b9bc0c0,
98 | 0xc275b7b7, 0x1ce1fdfd, 0xae3d9393, 0x6a4c2626,
99 | 0x5a6c3636, 0x417e3f3f, 0x02f5f7f7, 0x4f83cccc,
100 | 0x5c683434, 0xf451a5a5, 0x34d1e5e5, 0x08f9f1f1,
101 | 0x93e27171, 0x73abd8d8, 0x53623131, 0x3f2a1515,
102 | 0x0c080404, 0x5295c7c7, 0x65462323, 0x5e9dc3c3,
103 | 0x28301818, 0xa1379696, 0x0f0a0505, 0xb52f9a9a,
104 | 0x090e0707, 0x36241212, 0x9b1b8080, 0x3ddfe2e2,
105 | 0x26cdebeb, 0x694e2727, 0xcd7fb2b2, 0x9fea7575,
106 | 0x1b120909, 0x9e1d8383, 0x74582c2c, 0x2e341a1a,
107 | 0x2d361b1b, 0xb2dc6e6e, 0xeeb45a5a, 0xfb5ba0a0,
108 | 0xf6a45252, 0x4d763b3b, 0x61b7d6d6, 0xce7db3b3,
109 | 0x7b522929, 0x3edde3e3, 0x715e2f2f, 0x97138484,
110 | 0xf5a65353, 0x68b9d1d1, 0x00000000, 0x2cc1eded,
111 | 0x60402020, 0x1fe3fcfc, 0xc879b1b1, 0xedb65b5b,
112 | 0xbed46a6a, 0x468dcbcb, 0xd967bebe, 0x4b723939,
113 | 0xde944a4a, 0xd4984c4c, 0xe8b05858, 0x4a85cfcf,
114 | 0x6bbbd0d0, 0x2ac5efef, 0xe54faaaa, 0x16edfbfb,
115 | 0xc5864343, 0xd79a4d4d, 0x55663333, 0x94118585,
116 | 0xcf8a4545, 0x10e9f9f9, 0x06040202, 0x81fe7f7f,
117 | 0xf0a05050, 0x44783c3c, 0xba259f9f, 0xe34ba8a8,
118 | 0xf3a25151, 0xfe5da3a3, 0xc0804040, 0x8a058f8f,
119 | 0xad3f9292, 0xbc219d9d, 0x48703838, 0x04f1f5f5,
120 | 0xdf63bcbc, 0xc177b6b6, 0x75afdada, 0x63422121,
121 | 0x30201010, 0x1ae5ffff, 0x0efdf3f3, 0x6dbfd2d2,
122 | 0x4c81cdcd, 0x14180c0c, 0x35261313, 0x2fc3ecec,
123 | 0xe1be5f5f, 0xa2359797, 0xcc884444, 0x392e1717,
124 | 0x5793c4c4, 0xf255a7a7, 0x82fc7e7e, 0x477a3d3d,
125 | 0xacc86464, 0xe7ba5d5d, 0x2b321919, 0x95e67373,
126 | 0xa0c06060, 0x98198181, 0xd19e4f4f, 0x7fa3dcdc,
127 | 0x66442222, 0x7e542a2a, 0xab3b9090, 0x830b8888,
128 | 0xca8c4646, 0x29c7eeee, 0xd36bb8b8, 0x3c281414,
129 | 0x79a7dede, 0xe2bc5e5e, 0x1d160b0b, 0x76addbdb,
130 | 0x3bdbe0e0, 0x56643232, 0x4e743a3a, 0x1e140a0a,
131 | 0xdb924949, 0x0a0c0606, 0x6c482424, 0xe4b85c5c,
132 | 0x5d9fc2c2, 0x6ebdd3d3, 0xef43acac, 0xa6c46262,
133 | 0xa8399191, 0xa4319595, 0x37d3e4e4, 0x8bf27979,
134 | 0x32d5e7e7, 0x438bc8c8, 0x596e3737, 0xb7da6d6d,
135 | 0x8c018d8d, 0x64b1d5d5, 0xd29c4e4e, 0xe049a9a9,
136 | 0xb4d86c6c, 0xfaac5656, 0x07f3f4f4, 0x25cfeaea,
137 | 0xafca6565, 0x8ef47a7a, 0xe947aeae, 0x18100808,
138 | 0xd56fbaba, 0x88f07878, 0x6f4a2525, 0x725c2e2e,
139 | 0x24381c1c, 0xf157a6a6, 0xc773b4b4, 0x5197c6c6,
140 | 0x23cbe8e8, 0x7ca1dddd, 0x9ce87474, 0x213e1f1f,
141 | 0xdd964b4b, 0xdc61bdbd, 0x860d8b8b, 0x850f8a8a,
142 | 0x90e07070, 0x427c3e3e, 0xc471b5b5, 0xaacc6666,
143 | 0xd8904848, 0x05060303, 0x01f7f6f6, 0x121c0e0e,
144 | 0xa3c26161, 0x5f6a3535, 0xf9ae5757, 0xd069b9b9,
145 | 0x91178686, 0x5899c1c1, 0x273a1d1d, 0xb9279e9e,
146 | 0x38d9e1e1, 0x13ebf8f8, 0xb32b9898, 0x33221111,
147 | 0xbbd26969, 0x70a9d9d9, 0x89078e8e, 0xa7339494,
148 | 0xb62d9b9b, 0x223c1e1e, 0x92158787, 0x20c9e9e9,
149 | 0x4987cece, 0xffaa5555, 0x78502828, 0x7aa5dfdf,
150 | 0x8f038c8c, 0xf859a1a1, 0x80098989, 0x171a0d0d,
151 | 0xda65bfbf, 0x31d7e6e6, 0xc6844242, 0xb8d06868,
152 | 0xc3824141, 0xb0299999, 0x775a2d2d, 0x111e0f0f,
153 | 0xcb7bb0b0, 0xfca85454, 0xd66dbbbb, 0x3a2c1616
154 | ]
155 |
156 | t2 = [
157 | 0x63a5c663, 0x7c84f87c, 0x7799ee77, 0x7b8df67b,
158 | 0xf20dfff2, 0x6bbdd66b, 0x6fb1de6f, 0xc55491c5,
159 | 0x30506030, 0x01030201, 0x67a9ce67, 0x2b7d562b,
160 | 0xfe19e7fe, 0xd762b5d7, 0xabe64dab, 0x769aec76,
161 | 0xca458fca, 0x829d1f82, 0xc94089c9, 0x7d87fa7d,
162 | 0xfa15effa, 0x59ebb259, 0x47c98e47, 0xf00bfbf0,
163 | 0xadec41ad, 0xd467b3d4, 0xa2fd5fa2, 0xafea45af,
164 | 0x9cbf239c, 0xa4f753a4, 0x7296e472, 0xc05b9bc0,
165 | 0xb7c275b7, 0xfd1ce1fd, 0x93ae3d93, 0x266a4c26,
166 | 0x365a6c36, 0x3f417e3f, 0xf702f5f7, 0xcc4f83cc,
167 | 0x345c6834, 0xa5f451a5, 0xe534d1e5, 0xf108f9f1,
168 | 0x7193e271, 0xd873abd8, 0x31536231, 0x153f2a15,
169 | 0x040c0804, 0xc75295c7, 0x23654623, 0xc35e9dc3,
170 | 0x18283018, 0x96a13796, 0x050f0a05, 0x9ab52f9a,
171 | 0x07090e07, 0x12362412, 0x809b1b80, 0xe23ddfe2,
172 | 0xeb26cdeb, 0x27694e27, 0xb2cd7fb2, 0x759fea75,
173 | 0x091b1209, 0x839e1d83, 0x2c74582c, 0x1a2e341a,
174 | 0x1b2d361b, 0x6eb2dc6e, 0x5aeeb45a, 0xa0fb5ba0,
175 | 0x52f6a452, 0x3b4d763b, 0xd661b7d6, 0xb3ce7db3,
176 | 0x297b5229, 0xe33edde3, 0x2f715e2f, 0x84971384,
177 | 0x53f5a653, 0xd168b9d1, 0x00000000, 0xed2cc1ed,
178 | 0x20604020, 0xfc1fe3fc, 0xb1c879b1, 0x5bedb65b,
179 | 0x6abed46a, 0xcb468dcb, 0xbed967be, 0x394b7239,
180 | 0x4ade944a, 0x4cd4984c, 0x58e8b058, 0xcf4a85cf,
181 | 0xd06bbbd0, 0xef2ac5ef, 0xaae54faa, 0xfb16edfb,
182 | 0x43c58643, 0x4dd79a4d, 0x33556633, 0x85941185,
183 | 0x45cf8a45, 0xf910e9f9, 0x02060402, 0x7f81fe7f,
184 | 0x50f0a050, 0x3c44783c, 0x9fba259f, 0xa8e34ba8,
185 | 0x51f3a251, 0xa3fe5da3, 0x40c08040, 0x8f8a058f,
186 | 0x92ad3f92, 0x9dbc219d, 0x38487038, 0xf504f1f5,
187 | 0xbcdf63bc, 0xb6c177b6, 0xda75afda, 0x21634221,
188 | 0x10302010, 0xff1ae5ff, 0xf30efdf3, 0xd26dbfd2,
189 | 0xcd4c81cd, 0x0c14180c, 0x13352613, 0xec2fc3ec,
190 | 0x5fe1be5f, 0x97a23597, 0x44cc8844, 0x17392e17,
191 | 0xc45793c4, 0xa7f255a7, 0x7e82fc7e, 0x3d477a3d,
192 | 0x64acc864, 0x5de7ba5d, 0x192b3219, 0x7395e673,
193 | 0x60a0c060, 0x81981981, 0x4fd19e4f, 0xdc7fa3dc,
194 | 0x22664422, 0x2a7e542a, 0x90ab3b90, 0x88830b88,
195 | 0x46ca8c46, 0xee29c7ee, 0xb8d36bb8, 0x143c2814,
196 | 0xde79a7de, 0x5ee2bc5e, 0x0b1d160b, 0xdb76addb,
197 | 0xe03bdbe0, 0x32566432, 0x3a4e743a, 0x0a1e140a,
198 | 0x49db9249, 0x060a0c06, 0x246c4824, 0x5ce4b85c,
199 | 0xc25d9fc2, 0xd36ebdd3, 0xacef43ac, 0x62a6c462,
200 | 0x91a83991, 0x95a43195, 0xe437d3e4, 0x798bf279,
201 | 0xe732d5e7, 0xc8438bc8, 0x37596e37, 0x6db7da6d,
202 | 0x8d8c018d, 0xd564b1d5, 0x4ed29c4e, 0xa9e049a9,
203 | 0x6cb4d86c, 0x56faac56, 0xf407f3f4, 0xea25cfea,
204 | 0x65afca65, 0x7a8ef47a, 0xaee947ae, 0x08181008,
205 | 0xbad56fba, 0x7888f078, 0x256f4a25, 0x2e725c2e,
206 | 0x1c24381c, 0xa6f157a6, 0xb4c773b4, 0xc65197c6,
207 | 0xe823cbe8, 0xdd7ca1dd, 0x749ce874, 0x1f213e1f,
208 | 0x4bdd964b, 0xbddc61bd, 0x8b860d8b, 0x8a850f8a,
209 | 0x7090e070, 0x3e427c3e, 0xb5c471b5, 0x66aacc66,
210 | 0x48d89048, 0x03050603, 0xf601f7f6, 0x0e121c0e,
211 | 0x61a3c261, 0x355f6a35, 0x57f9ae57, 0xb9d069b9,
212 | 0x86911786, 0xc15899c1, 0x1d273a1d, 0x9eb9279e,
213 | 0xe138d9e1, 0xf813ebf8, 0x98b32b98, 0x11332211,
214 | 0x69bbd269, 0xd970a9d9, 0x8e89078e, 0x94a73394,
215 | 0x9bb62d9b, 0x1e223c1e, 0x87921587, 0xe920c9e9,
216 | 0xce4987ce, 0x55ffaa55, 0x28785028, 0xdf7aa5df,
217 | 0x8c8f038c, 0xa1f859a1, 0x89800989, 0x0d171a0d,
218 | 0xbfda65bf, 0xe631d7e6, 0x42c68442, 0x68b8d068,
219 | 0x41c38241, 0x99b02999, 0x2d775a2d, 0x0f111e0f,
220 | 0xb0cb7bb0, 0x54fca854, 0xbbd66dbb, 0x163a2c16
221 | ]
222 |
223 | t3 = [
224 | 0x6363a5c6, 0x7c7c84f8, 0x777799ee, 0x7b7b8df6,
225 | 0xf2f20dff, 0x6b6bbdd6, 0x6f6fb1de, 0xc5c55491,
226 | 0x30305060, 0x01010302, 0x6767a9ce, 0x2b2b7d56,
227 | 0xfefe19e7, 0xd7d762b5, 0xababe64d, 0x76769aec,
228 | 0xcaca458f, 0x82829d1f, 0xc9c94089, 0x7d7d87fa,
229 | 0xfafa15ef, 0x5959ebb2, 0x4747c98e, 0xf0f00bfb,
230 | 0xadadec41, 0xd4d467b3, 0xa2a2fd5f, 0xafafea45,
231 | 0x9c9cbf23, 0xa4a4f753, 0x727296e4, 0xc0c05b9b,
232 | 0xb7b7c275, 0xfdfd1ce1, 0x9393ae3d, 0x26266a4c,
233 | 0x36365a6c, 0x3f3f417e, 0xf7f702f5, 0xcccc4f83,
234 | 0x34345c68, 0xa5a5f451, 0xe5e534d1, 0xf1f108f9,
235 | 0x717193e2, 0xd8d873ab, 0x31315362, 0x15153f2a,
236 | 0x04040c08, 0xc7c75295, 0x23236546, 0xc3c35e9d,
237 | 0x18182830, 0x9696a137, 0x05050f0a, 0x9a9ab52f,
238 | 0x0707090e, 0x12123624, 0x80809b1b, 0xe2e23ddf,
239 | 0xebeb26cd, 0x2727694e, 0xb2b2cd7f, 0x75759fea,
240 | 0x09091b12, 0x83839e1d, 0x2c2c7458, 0x1a1a2e34,
241 | 0x1b1b2d36, 0x6e6eb2dc, 0x5a5aeeb4, 0xa0a0fb5b,
242 | 0x5252f6a4, 0x3b3b4d76, 0xd6d661b7, 0xb3b3ce7d,
243 | 0x29297b52, 0xe3e33edd, 0x2f2f715e, 0x84849713,
244 | 0x5353f5a6, 0xd1d168b9, 0x00000000, 0xeded2cc1,
245 | 0x20206040, 0xfcfc1fe3, 0xb1b1c879, 0x5b5bedb6,
246 | 0x6a6abed4, 0xcbcb468d, 0xbebed967, 0x39394b72,
247 | 0x4a4ade94, 0x4c4cd498, 0x5858e8b0, 0xcfcf4a85,
248 | 0xd0d06bbb, 0xefef2ac5, 0xaaaae54f, 0xfbfb16ed,
249 | 0x4343c586, 0x4d4dd79a, 0x33335566, 0x85859411,
250 | 0x4545cf8a, 0xf9f910e9, 0x02020604, 0x7f7f81fe,
251 | 0x5050f0a0, 0x3c3c4478, 0x9f9fba25, 0xa8a8e34b,
252 | 0x5151f3a2, 0xa3a3fe5d, 0x4040c080, 0x8f8f8a05,
253 | 0x9292ad3f, 0x9d9dbc21, 0x38384870, 0xf5f504f1,
254 | 0xbcbcdf63, 0xb6b6c177, 0xdada75af, 0x21216342,
255 | 0x10103020, 0xffff1ae5, 0xf3f30efd, 0xd2d26dbf,
256 | 0xcdcd4c81, 0x0c0c1418, 0x13133526, 0xecec2fc3,
257 | 0x5f5fe1be, 0x9797a235, 0x4444cc88, 0x1717392e,
258 | 0xc4c45793, 0xa7a7f255, 0x7e7e82fc, 0x3d3d477a,
259 | 0x6464acc8, 0x5d5de7ba, 0x19192b32, 0x737395e6,
260 | 0x6060a0c0, 0x81819819, 0x4f4fd19e, 0xdcdc7fa3,
261 | 0x22226644, 0x2a2a7e54, 0x9090ab3b, 0x8888830b,
262 | 0x4646ca8c, 0xeeee29c7, 0xb8b8d36b, 0x14143c28,
263 | 0xdede79a7, 0x5e5ee2bc, 0x0b0b1d16, 0xdbdb76ad,
264 | 0xe0e03bdb, 0x32325664, 0x3a3a4e74, 0x0a0a1e14,
265 | 0x4949db92, 0x06060a0c, 0x24246c48, 0x5c5ce4b8,
266 | 0xc2c25d9f, 0xd3d36ebd, 0xacacef43, 0x6262a6c4,
267 | 0x9191a839, 0x9595a431, 0xe4e437d3, 0x79798bf2,
268 | 0xe7e732d5, 0xc8c8438b, 0x3737596e, 0x6d6db7da,
269 | 0x8d8d8c01, 0xd5d564b1, 0x4e4ed29c, 0xa9a9e049,
270 | 0x6c6cb4d8, 0x5656faac, 0xf4f407f3, 0xeaea25cf,
271 | 0x6565afca, 0x7a7a8ef4, 0xaeaee947, 0x08081810,
272 | 0xbabad56f, 0x787888f0, 0x25256f4a, 0x2e2e725c,
273 | 0x1c1c2438, 0xa6a6f157, 0xb4b4c773, 0xc6c65197,
274 | 0xe8e823cb, 0xdddd7ca1, 0x74749ce8, 0x1f1f213e,
275 | 0x4b4bdd96, 0xbdbddc61, 0x8b8b860d, 0x8a8a850f,
276 | 0x707090e0, 0x3e3e427c, 0xb5b5c471, 0x6666aacc,
277 | 0x4848d890, 0x03030506, 0xf6f601f7, 0x0e0e121c,
278 | 0x6161a3c2, 0x35355f6a, 0x5757f9ae, 0xb9b9d069,
279 | 0x86869117, 0xc1c15899, 0x1d1d273a, 0x9e9eb927,
280 | 0xe1e138d9, 0xf8f813eb, 0x9898b32b, 0x11113322,
281 | 0x6969bbd2, 0xd9d970a9, 0x8e8e8907, 0x9494a733,
282 | 0x9b9bb62d, 0x1e1e223c, 0x87879215, 0xe9e920c9,
283 | 0xcece4987, 0x5555ffaa, 0x28287850, 0xdfdf7aa5,
284 | 0x8c8c8f03, 0xa1a1f859, 0x89898009, 0x0d0d171a,
285 | 0xbfbfda65, 0xe6e631d7, 0x4242c684, 0x6868b8d0,
286 | 0x4141c382, 0x9999b029, 0x2d2d775a, 0x0f0f111e,
287 | 0xb0b0cb7b, 0x5454fca8, 0xbbbbd66d, 0x16163a2c
288 | ]
289 |
--------------------------------------------------------------------------------
/expected_round_keys/expected_round_keys_generator.py:
--------------------------------------------------------------------------------
1 | from aes_cipher.key_schedule import KeySchedule
2 | from aes_cipher.constants import s_box
3 | from settings.active_settings import ActiveSettings
4 |
5 |
6 | import copy
7 | import random
8 |
9 |
10 | class ExpectedRoundKeysGenerator:
11 | def __init__(self, state):
12 | self.state = copy.deepcopy(state)
13 |
14 | self.debug = False
15 |
16 | for i in range(len(state)):
17 | for j in range(16):
18 | if 0 != self.state[i][j]:
19 | self.state[i][j] = 0xff
20 |
21 | active_settings = ActiveSettings()
22 | self.key = active_settings.key
23 | self.random_state = active_settings.random_state
24 |
25 | self.plaintext = 0
26 | for i in range(16):
27 | self.plaintext <<= 8
28 |
29 | # 1. Fill with zeros
30 | # self.plaintext += random.getrandbits(8) & self.state[0][i]
31 |
32 | # 2. Fill with random values
33 | # '''
34 | if self.state[0][i]:
35 | self.plaintext += random.getrandbits(8)
36 | else:
37 | self.plaintext += self.random_state[i]
38 | # '''
39 |
40 | self.round_keys = [[0 for i in range(16)] for j in range(4)]
41 |
42 | for i in range(len(state)):
43 | for j in range(16):
44 | if 0xff == self.state[i][j]:
45 | self.state[i][j] = 1
46 |
47 | @staticmethod
48 | def multiply(a, b):
49 | p = 0
50 |
51 | for i in range(8):
52 | if 1 == b & 1:
53 | p ^= a
54 | high_bit_set = a & 0x80
55 | a = (a << 1) & 0xff
56 | if 0x80 == high_bit_set:
57 | a ^= 0x1b
58 | b >>= 1
59 |
60 | return p
61 |
62 | def generate(self):
63 | key_schedule = KeySchedule()
64 | key_schedule.run(self.key)
65 |
66 | # Round 0
67 | x0 = (self.plaintext >> 120) & 0xff
68 | x1 = (self.plaintext >> 112) & 0xff
69 | x2 = (self.plaintext >> 104) & 0xff
70 | x3 = (self.plaintext >> 96) & 0xff
71 |
72 | x4 = (self.plaintext >> 88) & 0xff
73 | x5 = (self.plaintext >> 80) & 0xff
74 | x6 = (self.plaintext >> 72) & 0xff
75 | x7 = (self.plaintext >> 64) & 0xff
76 |
77 | x8 = (self.plaintext >> 56) & 0xff
78 | x9 = (self.plaintext >> 48) & 0xff
79 | x10 = (self.plaintext >> 40) & 0xff
80 | x11 = (self.plaintext >> 32) & 0xff
81 |
82 | x12 = (self.plaintext >> 24) & 0xff
83 | x13 = (self.plaintext >> 16) & 0xff
84 | x14 = (self.plaintext >> 8) & 0xff
85 | x15 = (self.plaintext >> 0) & 0xff
86 |
87 | # AddRoundKey
88 | x0 ^= key_schedule.round_keys[0][0]
89 | x1 ^= key_schedule.round_keys[0][1]
90 | x2 ^= key_schedule.round_keys[0][2]
91 | x3 ^= key_schedule.round_keys[0][3]
92 |
93 | x4 ^= key_schedule.round_keys[0][4]
94 | x5 ^= key_schedule.round_keys[0][5]
95 | x6 ^= key_schedule.round_keys[0][6]
96 | x7 ^= key_schedule.round_keys[0][7]
97 |
98 | x8 ^= key_schedule.round_keys[0][8]
99 | x9 ^= key_schedule.round_keys[0][9]
100 | x10 ^= key_schedule.round_keys[0][10]
101 | x11 ^= key_schedule.round_keys[0][11]
102 |
103 | x12 ^= key_schedule.round_keys[0][12]
104 | x13 ^= key_schedule.round_keys[0][13]
105 | x14 ^= key_schedule.round_keys[0][14]
106 | x15 ^= key_schedule.round_keys[0][15]
107 |
108 | # SubBytes
109 | y0 = s_box[x0]
110 | y1 = s_box[x1]
111 | y2 = s_box[x2]
112 | y3 = s_box[x3]
113 |
114 | y4 = s_box[x4]
115 | y5 = s_box[x5]
116 | y6 = s_box[x6]
117 | y7 = s_box[x7]
118 |
119 | y8 = s_box[x8]
120 | y9 = s_box[x9]
121 | y10 = s_box[x10]
122 | y11 = s_box[x11]
123 |
124 | y12 = s_box[x12]
125 | y13 = s_box[x13]
126 | y14 = s_box[x14]
127 | y15 = s_box[x15]
128 |
129 | for i in range(16):
130 | if self.state[0][i]:
131 | self.round_keys[0][i] = key_schedule.round_keys[0][i]
132 |
133 | # Round 1
134 | x16 = self.multiply(y0, 2) ^ self.multiply(y5, 3) ^ y10 ^ y15
135 | x17 = y0 ^ self.multiply(y5, 2) ^ self.multiply(y10, 3) ^ y15
136 | x18 = y0 ^ y5 ^ self.multiply(y10, 2) ^ self.multiply(y15, 3)
137 | x19 = self.multiply(y0, 3) ^ y5 ^ y10 ^ self.multiply(y15, 2)
138 |
139 | x20 = self.multiply(y4, 2) ^ self.multiply(y9, 3) ^ y14 ^ y3
140 | x21 = y4 ^ self.multiply(y9, 2) ^ self.multiply(y14, 3) ^ y3
141 | x22 = y4 ^ y9 ^ self.multiply(y14, 2) ^ self.multiply(y3, 3)
142 | x23 = self.multiply(y4, 3) ^ y9 ^ y14 ^ self.multiply(y3, 2)
143 |
144 | x24 = self.multiply(y8, 2) ^ self.multiply(y13, 3) ^ y2 ^ y7
145 | x25 = y8 ^ self.multiply(y13, 2) ^ self.multiply(y2, 3) ^ y7
146 | x26 = y8 ^ y13 ^ self.multiply(y2, 2) ^ self.multiply(y7, 3)
147 | x27 = self.multiply(y8, 3) ^ y13 ^ y2 ^ self.multiply(y7, 2)
148 |
149 | x28 = self.multiply(y12, 2) ^ self.multiply(y1, 3) ^ y6 ^ y11
150 | x29 = y12 ^ self.multiply(y1, 2) ^ self.multiply(y6, 3) ^ y11
151 | x30 = y12 ^ y1 ^ self.multiply(y6, 2) ^ self.multiply(y11, 3)
152 | x31 = self.multiply(y12, 3) ^ y1 ^ y6 ^ self.multiply(y11, 2)
153 |
154 | # AddRoundKey
155 | x16 ^= key_schedule.round_keys[1][0]
156 | x17 ^= key_schedule.round_keys[1][1]
157 | x18 ^= key_schedule.round_keys[1][2]
158 | x19 ^= key_schedule.round_keys[1][3]
159 |
160 | x20 ^= key_schedule.round_keys[1][4]
161 | x21 ^= key_schedule.round_keys[1][5]
162 | x22 ^= key_schedule.round_keys[1][6]
163 | x23 ^= key_schedule.round_keys[1][7]
164 |
165 | x24 ^= key_schedule.round_keys[1][8]
166 | x25 ^= key_schedule.round_keys[1][9]
167 | x26 ^= key_schedule.round_keys[1][10]
168 | x27 ^= key_schedule.round_keys[1][11]
169 |
170 | x28 ^= key_schedule.round_keys[1][12]
171 | x29 ^= key_schedule.round_keys[1][13]
172 | x30 ^= key_schedule.round_keys[1][14]
173 | x31 ^= key_schedule.round_keys[1][15]
174 |
175 | # SubBytes
176 | y16 = s_box[x16]
177 | y17 = s_box[x17]
178 | y18 = s_box[x18]
179 | y19 = s_box[x19]
180 |
181 | y20 = s_box[x20]
182 | y21 = s_box[x21]
183 | y22 = s_box[x22]
184 | y23 = s_box[x23]
185 |
186 | y24 = s_box[x24]
187 | y25 = s_box[x25]
188 | y26 = s_box[x26]
189 | y27 = s_box[x27]
190 |
191 | y28 = s_box[x28]
192 | y29 = s_box[x29]
193 | y30 = s_box[x30]
194 | y31 = s_box[x31]
195 |
196 | variable_part = [0 for i in range(16)]
197 |
198 | variable_part[0] = \
199 | self.multiply((1 - self.state[0][0]) * y0, 2) ^ \
200 | self.multiply((1 - self.state[0][5]) * y5, 3) ^ \
201 | ((1 - self.state[0][10]) * y10) ^ \
202 | ((1 - self.state[0][15]) * y15)
203 | variable_part[1] = \
204 | ((1 - self.state[0][0]) * y0) ^ \
205 | self.multiply((1 - self.state[0][5]) * y5, 2) ^ \
206 | self.multiply((1 - self.state[0][10]) * y10, 3) ^ \
207 | ((1 - self.state[0][15]) * y15)
208 | variable_part[2] = \
209 | ((1 - self.state[0][0]) * y0) ^ \
210 | ((1 - self.state[0][5]) * y5) ^ \
211 | self.multiply((1 - self.state[0][10]) * y10, 2) ^ \
212 | self.multiply((1 - self.state[0][15]) * y15, 3)
213 | variable_part[3] = \
214 | self.multiply((1 - self.state[0][0]) * y0, 3) ^ \
215 | ((1 - self.state[0][5]) * y5) ^ \
216 | ((1 - self.state[0][10]) * y10) ^ \
217 | self.multiply((1 - self.state[0][15]) * y15, 2)
218 |
219 | variable_part[4] = \
220 | self.multiply((1 - self.state[0][4]) * y4, 2) ^ \
221 | self.multiply((1 - self.state[0][9]) * y9, 3) ^ \
222 | ((1 - self.state[0][14]) * y14) ^ \
223 | ((1 - self.state[0][3]) * y3)
224 | variable_part[5] = \
225 | ((1 - self.state[0][4]) * y4) ^ \
226 | self.multiply((1 - self.state[0][9]) * y9, 2) ^ \
227 | self.multiply((1 - self.state[0][14]) * y14, 3) ^ \
228 | ((1 - self.state[0][3]) * y3)
229 | variable_part[6] = \
230 | ((1 - self.state[0][4]) * y4) ^ \
231 | ((1 - self.state[0][9]) * y9) ^ \
232 | self.multiply((1 - self.state[0][14]) * y14, 2) ^ \
233 | self.multiply((1 - self.state[0][3]) * y3, 3)
234 | variable_part[7] = \
235 | self.multiply((1 - self.state[0][4]) * y4, 3) ^ \
236 | ((1 - self.state[0][9]) * y9) ^ \
237 | ((1 - self.state[0][14]) * y14) ^ \
238 | self.multiply((1 - self.state[0][3]) * y3, 2)
239 |
240 | variable_part[8] = \
241 | self.multiply((1 - self.state[0][8]) * y8, 2) ^ \
242 | self.multiply((1 - self.state[0][13]) * y13, 3) ^ \
243 | ((1 - self.state[0][2]) * y2) ^ \
244 | ((1 - self.state[0][7]) * y7)
245 | variable_part[9] = \
246 | ((1 - self.state[0][8]) * y8) ^ \
247 | self.multiply((1 - self.state[0][13]) * y13, 2) ^ \
248 | self.multiply((1 - self.state[0][2]) * y2, 3) ^ \
249 | ((1 - self.state[0][7]) * y7)
250 | variable_part[10] = \
251 | ((1 - self.state[0][8]) * y8) ^ \
252 | ((1 - self.state[0][13]) * y13) ^ \
253 | self.multiply((1 - self.state[0][2]) * y2, 2) ^ \
254 | self.multiply((1 - self.state[0][7]) * y7, 3)
255 | variable_part[11] = \
256 | self.multiply((1 - self.state[0][8]) * y8, 3) ^ \
257 | ((1 - self.state[0][13]) * y13) ^ \
258 | (1 - self.state[0][2]) * y2 ^ \
259 | self.multiply((1 - self.state[0][7]) * y7, 2)
260 |
261 | variable_part[12] = \
262 | self.multiply((1 - self.state[0][12]) * y12, 2) ^ \
263 | self.multiply((1 - self.state[0][1]) * y1, 3) ^ \
264 | ((1 - self.state[0][6]) * y6) ^ \
265 | ((1 - self.state[0][11]) * y11)
266 | variable_part[13] = \
267 | ((1 - self.state[0][12]) * y12) ^ \
268 | self.multiply((1 - self.state[0][1]) * y1, 2) ^ \
269 | self.multiply((1 - self.state[0][6]) * y6, 3) ^ \
270 | ((1 - self.state[0][11]) * y11)
271 | variable_part[14] = \
272 | ((1 - self.state[0][12]) * y12) ^ \
273 | ((1 - self.state[0][1]) * y1) ^ \
274 | self.multiply((1 - self.state[0][6]) * y6, 2) ^ \
275 | self.multiply((1 - self.state[0][11]) * y11, 3)
276 | variable_part[15] = \
277 | self.multiply((1 - self.state[0][12]) * y12, 3) ^ \
278 | ((1 - self.state[0][1]) * y1) ^ \
279 | ((1 - self.state[0][6]) * y6) ^ \
280 | self.multiply((1 - self.state[0][11]) * y11, 2)
281 |
282 | for i in range(16):
283 | if self.state[1][i]:
284 | self.round_keys[1][i] = key_schedule.round_keys[1][i] ^ variable_part[i]
285 |
286 | # Round 2
287 | variable_part = [0 for i in range(16)]
288 |
289 | variable_part[0] = \
290 | self.multiply((1 - self.state[1][0]) * y16, 2) ^ \
291 | self.multiply((1 - self.state[1][5]) * y21, 3) ^ \
292 | ((1 - self.state[1][10]) * y26) ^ \
293 | ((1 - self.state[1][15]) * y31)
294 | variable_part[1] = \
295 | ((1 - self.state[1][0]) * y16) ^ \
296 | self.multiply((1 - self.state[1][5]) * y21, 2) ^ \
297 | self.multiply((1 - self.state[1][10]) * y26, 3) ^ \
298 | ((1 - self.state[1][15]) * y31)
299 | variable_part[2] = \
300 | ((1 - self.state[1][0]) * y16) ^ \
301 | ((1 - self.state[1][5]) * y21) ^ \
302 | self.multiply((1 - self.state[1][10]) * y26, 2) ^ \
303 | self.multiply((1 - self.state[1][15]) * y31, 3)
304 | variable_part[3] = \
305 | self.multiply((1 - self.state[1][0]) * y16, 3) ^ \
306 | ((1 - self.state[1][5]) * y21) ^ \
307 | ((1 - self.state[1][10]) * y26) ^ \
308 | self.multiply((1 - self.state[1][15]) * y31, 2)
309 |
310 | variable_part[4] = \
311 | self.multiply((1 - self.state[1][4]) * y20, 2) ^ \
312 | self.multiply((1 - self.state[1][9]) * y25, 3) ^ \
313 | ((1 - self.state[1][14]) * y30) ^ \
314 | ((1 - self.state[1][3]) * y19)
315 | variable_part[5] = \
316 | ((1 - self.state[1][4]) * y20) ^ \
317 | self.multiply((1 - self.state[1][9]) * y25, 2) ^ \
318 | self.multiply((1 - self.state[1][14]) * y30, 3) ^ \
319 | ((1 - self.state[1][3]) * y19)
320 | variable_part[6] = \
321 | ((1 - self.state[1][4]) * y20) ^ \
322 | ((1 - self.state[1][9]) * y25) ^ \
323 | self.multiply((1 - self.state[1][14]) * y30, 2) ^ \
324 | self.multiply((1 - self.state[1][3]) * y19, 3)
325 | variable_part[7] = \
326 | self.multiply((1 - self.state[1][4]) * y20, 3) ^ \
327 | ((1 - self.state[1][9]) * y25) ^ \
328 | ((1 - self.state[1][14]) * y30) ^ \
329 | self.multiply((1 - self.state[1][3]) * y19, 2)
330 |
331 | variable_part[8] = \
332 | self.multiply((1 - self.state[1][8]) * y24, 2) ^ \
333 | self.multiply((1 - self.state[1][13]) * y29, 3) ^ \
334 | ((1 - self.state[1][2]) * y18) ^ \
335 | ((1 - self.state[1][7]) * y23)
336 | variable_part[9] = \
337 | ((1 - self.state[1][8]) * y24) ^ \
338 | self.multiply((1 - self.state[1][13]) * y29, 2) ^ \
339 | self.multiply((1 - self.state[1][2]) * y18, 3) ^ \
340 | ((1 - self.state[1][7]) * y23)
341 | variable_part[10] = \
342 | ((1 - self.state[1][8]) * y24) ^ \
343 | ((1 - self.state[1][13]) * y29) ^ \
344 | self.multiply((1 - self.state[1][2]) * y18, 2) ^ \
345 | self.multiply((1 - self.state[1][7]) * y23, 3)
346 | variable_part[11] = \
347 | self.multiply((1 - self.state[1][8]) * y24, 3) ^ \
348 | ((1 - self.state[1][13]) * y29) ^ \
349 | ((1 - self.state[1][2]) * y18) ^ \
350 | self.multiply((1 - self.state[1][7]) * y23, 2)
351 |
352 | variable_part[12] = \
353 | self.multiply((1 - self.state[1][12]) * y28, 2) ^ \
354 | self.multiply((1 - self.state[1][1]) * y17, 3) ^ \
355 | ((1 - self.state[1][6]) * y22) ^ \
356 | ((1 - self.state[1][11]) * y27)
357 | variable_part[13] = \
358 | ((1 - self.state[1][12]) * y28) ^ \
359 | self.multiply((1 - self.state[1][1]) * y17, 2) ^ \
360 | self.multiply((1 - self.state[1][6]) * y22, 3) ^ \
361 | ((1 - self.state[1][11]) * y27)
362 | variable_part[14] = \
363 | ((1 - self.state[1][12]) * y28) ^ \
364 | ((1 - self.state[1][1]) * y17) ^ \
365 | self.multiply((1 - self.state[1][6]) * y22, 2) ^ \
366 | self.multiply((1 - self.state[1][11]) * y27, 3)
367 | variable_part[15] = \
368 | self.multiply((1 - self.state[1][12]) * y28, 3) ^ \
369 | ((1 - self.state[1][1]) * y17) ^ \
370 | ((1 - self.state[1][6]) * y22) ^ \
371 | self.multiply((1 - self.state[1][11]) * y27, 2)
372 |
373 | for i in range(16):
374 | if self.state[2][i]:
375 | self.round_keys[2][i] = key_schedule.round_keys[2][i] ^ variable_part[i]
376 |
377 | # Round 3
378 | self.round_keys[3][0] = key_schedule.round_keys[3][0]
379 | self.round_keys[3][1] = key_schedule.round_keys[3][1]
380 | self.round_keys[3][2] = key_schedule.round_keys[3][2]
381 | self.round_keys[3][3] = key_schedule.round_keys[3][3]
382 |
383 | self.round_keys[3][4] = key_schedule.round_keys[3][4]
384 | self.round_keys[3][5] = key_schedule.round_keys[3][5]
385 | self.round_keys[3][6] = key_schedule.round_keys[3][6]
386 | self.round_keys[3][7] = key_schedule.round_keys[3][7]
387 |
388 | self.round_keys[3][8] = key_schedule.round_keys[3][8]
389 | self.round_keys[3][9] = key_schedule.round_keys[3][9]
390 | self.round_keys[3][10] = key_schedule.round_keys[3][10]
391 | self.round_keys[3][11] = key_schedule.round_keys[3][11]
392 |
393 | self.round_keys[3][12] = key_schedule.round_keys[3][12]
394 | self.round_keys[3][13] = key_schedule.round_keys[3][13]
395 | self.round_keys[3][14] = key_schedule.round_keys[3][14]
396 | self.round_keys[3][15] = key_schedule.round_keys[3][15]
397 |
398 | if self.debug:
399 | for i in range(4):
400 | print('{:2}: '.format(i), end='')
401 | for j in range(16):
402 | print('{} '.format(format(self.round_keys[i][j], '02x')), end='')
403 | print()
404 |
405 | print()
406 | print()
407 |
408 | for i in range(4):
409 | print('{:2}: '.format(i), end='')
410 | print('[ ', end='')
411 | for j in range(16):
412 | print('0x{}, '.format(format(self.round_keys[i][j], '02x')), end='')
413 | print(']', end='')
414 | print()
415 |
416 | round_keys = []
417 | for i in range(4):
418 | for j in range(16):
419 | round_keys.append(self.round_keys[i][j])
420 |
421 | return round_keys
422 |
--------------------------------------------------------------------------------
/cpa_attacker/attacker.py:
--------------------------------------------------------------------------------
1 | from aes_cipher.constants import s_box, t0, t1, t2, t3
2 | from cpa_attacker.plotter import Plotter
3 | from cpa_attacker.round1 import Round1
4 | from cpa_attacker.round2 import Round2
5 | from cpa_attacker.round3 import Round3
6 | from leakage_generator.generator import Generator
7 | from leakage_model.hw_s_box import HwSBox
8 | from leakage_model.hw_t_table import HwTTable
9 | from expected_round_keys.expected_round_keys_generator import ExpectedRoundKeysGenerator
10 | from symbolic_evaluator.evaluation_case_solver import EvaluationCaseSolver
11 |
12 |
13 | import gc
14 | import math
15 | import numpy
16 | import operator
17 | import pickle
18 | import shutil
19 | import time
20 |
21 |
22 | class Attacker:
23 | def __init__(self, generate_traces=True, t_tables_implementation=False, debug=False):
24 | self.t_tables_implementation = t_tables_implementation
25 | if self.t_tables_implementation:
26 | self.power_model = HwTTable()
27 | else:
28 | self.power_model = HwSBox()
29 |
30 | self.path = './data/'
31 | self.source_plaintexts_file = self.path + 'plaintexts.bin'
32 | self.source_traces_file = self.path + 'traces.npy'
33 |
34 | self.plaintexts_file_format = self.path + 'plaintexts_evaluation_case_{:02}_experiment_{:03}.bin'
35 | self.traces_file_format = self.path + 'traces_evaluation_case_{:02}_experiment_{:03}.npy'
36 |
37 | self.number_of_plaintexts = 0
38 | self.plaintexts = None
39 |
40 | self.start_sample = 0
41 | if t_tables_implementation:
42 | self.number_of_samples = 16 * 9
43 | else:
44 | self.number_of_samples = 16 * 9
45 |
46 | self.traces = None
47 |
48 | self.subkey_size = 8
49 |
50 | self.average_traces = None
51 | self.average_traces_count = None
52 |
53 | self.expected_key = None
54 |
55 | self.round1 = None
56 | self.round2 = None
57 | self.round3 = None
58 |
59 | self.recovered_keys = None
60 | self.valid_recovered_keys = None
61 | self.guessing_entropy = None
62 |
63 | self.number_of_cpa_attacks = 0
64 |
65 | self.debug = debug
66 |
67 | self.plotter_possible_key = [-1] * 64
68 | self.plot_correlation_matrix = False
69 |
70 | self.number_of_traces = 500
71 |
72 | self.attacked_number_of_rounds = 0
73 |
74 | self.generate_traces = generate_traces
75 |
76 | self.conditional_average = True
77 |
78 | self.round_leakage = True
79 |
80 | numpy.seterr(divide='ignore', invalid='ignore')
81 |
82 | @staticmethod
83 | def pcc(p, o):
84 | n = p.size
85 | do = o - (numpy.einsum('ij->j', o) / numpy.double(n))
86 | p -= (numpy.einsum('i->', p) / numpy.double(n))
87 | tmp = numpy.einsum('ij,ij->j', do, do)
88 | tmp *= numpy.einsum('i,i->', p, p)
89 | return numpy.dot(p, do) / numpy.sqrt(tmp)
90 |
91 | @staticmethod
92 | def get_keys(correlation_matrix):
93 | max_value_indexes = numpy.argwhere(correlation_matrix == numpy.amax(correlation_matrix))
94 |
95 | subkeys = []
96 | for max_value_index in max_value_indexes:
97 | subkeys.append(max_value_index[0])
98 |
99 | return subkeys
100 |
101 | @staticmethod
102 | def get_keys2(correlation_matrix):
103 | subkeys = []
104 |
105 | max_value_index = numpy.argmax(correlation_matrix)
106 | subkey = numpy.unravel_index(max_value_index, correlation_matrix.shape)[0]
107 |
108 | subkeys.append(subkey)
109 |
110 | old_correlation_coefficient = correlation_matrix[subkey, :]
111 | correlation_matrix[subkey, :] = numpy.zeros((1, correlation_matrix.shape[1]))
112 |
113 | max_value_index = numpy.argmax(correlation_matrix)
114 | subkey = numpy.unravel_index(max_value_index, correlation_matrix.shape)[0]
115 |
116 | subkeys.append(subkey)
117 |
118 | correlation_matrix[subkeys[0], :] = old_correlation_coefficient
119 |
120 | return subkeys
121 |
122 | def predict_power_consumption(self, plaintext, key, index):
123 | value = plaintext ^ key
124 |
125 | if self.t_tables_implementation:
126 | if 0 == index % 4:
127 | value = t0[value]
128 | elif 1 == index % 4:
129 | value = t1[value]
130 | elif 2 == index % 4:
131 | value = t2[value]
132 | elif 3 == index % 4:
133 | value = t3[value]
134 | else:
135 | value = s_box[value]
136 |
137 | return self.power_model.leak(value)
138 |
139 | def get_plaintext_part(self, plaintext, index):
140 | if (0 <= index) & (15 >= index):
141 | # first round
142 | x = (plaintext >> ((15 - index) * 8)) & 0xff
143 | elif (16 <= index) & (31 >= index):
144 | # second round
145 | x = self.round1.get_plaintext_part(plaintext, index)
146 | elif (32 <= index) & (47 >= index):
147 | # third round
148 | x = self.round2.get_plaintext_part(plaintext, index)
149 | elif (48 <= index) & (63 >= index):
150 | # fourth round
151 | x = self.round3.get_plaintext_part(plaintext, index)
152 |
153 | return x
154 |
155 | def rank(self, correlation_matrix, expected_key):
156 | correlation_coefficients = [0] * (2 ** self.subkey_size)
157 |
158 | for i in range(correlation_matrix.shape[0]):
159 | max_value_index = numpy.argmax(correlation_matrix[i])
160 | max_value = correlation_matrix[i][max_value_index]
161 | correlation_coefficients[i] = (i, max_value, max_value_index)
162 |
163 | correlation_coefficients = sorted(correlation_coefficients, key=operator.itemgetter(1), reverse=True)
164 |
165 | rank_index = -1
166 | rank = 10
167 | expected_key_rank = rank_index
168 | break_next = False
169 | for i in range(len(correlation_coefficients)):
170 | key = correlation_coefficients[i][0]
171 | value = correlation_coefficients[i][1]
172 | sample = correlation_coefficients[i][2]
173 |
174 | if value != rank:
175 | rank_index += 1
176 | rank = value
177 | # print('Rank {}: 0x{} {} ({})'.format(rank_index, format(key, '02x'), value, sample))
178 | if break_next:
179 | break
180 | if key == expected_key:
181 | expected_key_rank = rank_index
182 | break_next = True
183 | else:
184 | # print('Rank {}: 0x{} {} ({})'.format(rank_index, format(key, '02x'), value, sample))
185 | if key == expected_key:
186 | expected_key_rank = rank_index
187 | break_next = True
188 |
189 | return expected_key_rank
190 |
191 | def delta(self, correlation_matrix):
192 | correlation_coefficients = [0] * (2 ** self.subkey_size)
193 |
194 | for i in range(correlation_matrix.shape[0]):
195 | max_value_index = numpy.argmax(correlation_matrix[i])
196 | max_value = correlation_matrix[i][max_value_index]
197 | correlation_coefficients[i] = (i, max_value, max_value_index)
198 |
199 | correlation_coefficients = sorted(correlation_coefficients, key=operator.itemgetter(1), reverse=True)
200 |
201 | first_value = correlation_coefficients[0][1]
202 | second_value = correlation_coefficients[1][1]
203 | delta = first_value - second_value
204 |
205 | return delta
206 |
207 | def init_conditional_average(self, index):
208 | self.start_sample = 0
209 |
210 | # all rounds
211 | if self.t_tables_implementation:
212 | self.number_of_samples = 16 * 9
213 | else:
214 | self.number_of_samples = 16 * 9
215 |
216 | # first 4 rounds
217 | # self.number_of_samples = 16 * 4
218 |
219 | # just 1 round
220 | if self.round_leakage:
221 | self.number_of_samples = 16
222 |
223 | self.average_traces = numpy.zeros((2 ** self.subkey_size, self.number_of_samples))
224 | self.average_traces_count = [0 for i in range(2 ** self.subkey_size)]
225 |
226 | self.number_of_plaintexts = 2 ** self.subkey_size
227 | self.plaintexts = [i for i in range(self.number_of_plaintexts)]
228 |
229 | def load_conditional_average(self, index, start, number_of_traces, evaluation_case, experiment):
230 | plaintexts_file = self.plaintexts_file_format.format(evaluation_case, experiment)
231 | traces_file = self.traces_file_format.format(evaluation_case, experiment)
232 |
233 | f = open(plaintexts_file, 'rb')
234 | plaintexts = pickle.load(f)
235 | number_of_plaintexts = len(plaintexts)
236 | f.close()
237 |
238 | traces = numpy.load(traces_file)
239 |
240 | if not self.round_leakage:
241 | traces = traces[:, self.start_sample:self.start_sample + self.number_of_samples]
242 |
243 | # Use just the leakage from the attacked round
244 | if self.round_leakage:
245 | if index in range(16):
246 | traces = traces[:, 0:16]
247 | elif index in range(16, 32, 1):
248 | traces = traces[:, 16:32]
249 | elif index in range(32, 48, 1):
250 | traces = traces[:, 32:48]
251 | else:
252 | traces = traces[:, 48:64]
253 |
254 | if self.conditional_average:
255 | # Conditional average
256 | for j in range(start, number_of_traces, 1):
257 | x = self.get_plaintext_part(plaintexts[j], index)
258 | self.average_traces_count[x] += 1
259 | self.average_traces[x] += (traces[j] - self.average_traces[x]) / self.average_traces_count[x]
260 |
261 | self.traces = self.average_traces
262 |
263 | valid_plaintexts = 0
264 | for i in range(2 ** self.subkey_size):
265 | if self.average_traces[i][0]:
266 | valid_plaintexts += 1
267 |
268 | if self.number_of_plaintexts != valid_plaintexts:
269 | self.number_of_plaintexts = valid_plaintexts
270 | new_plaintexts = [0 for i in range(self.number_of_plaintexts)]
271 | new_traces = numpy.zeros((self.number_of_plaintexts, self.number_of_samples))
272 |
273 | index = 0
274 | for i in range(2 ** self.subkey_size):
275 | if self.average_traces[i][0]:
276 | new_plaintexts[index] = self.plaintexts[i]
277 | new_traces[index] = self.average_traces[i]
278 | index += 1
279 |
280 | self.plaintexts = new_plaintexts
281 | self.traces = new_traces
282 | else:
283 | # No conditional average
284 | self.number_of_plaintexts = number_of_plaintexts
285 | self.plaintexts = [0 for i in range(self.number_of_plaintexts)]
286 | for j in range(start, number_of_traces, 1):
287 | self.plaintexts[j] = self.get_plaintext_part(plaintexts[j], index)
288 | self.traces = traces
289 |
290 | def conditional_average_attack(self, index, number_of_traces):
291 | self.number_of_cpa_attacks += 1
292 |
293 | hypothetical_power_consumption = numpy.zeros((self.number_of_plaintexts, 2 ** self.subkey_size))
294 |
295 | for i in range(self.number_of_plaintexts):
296 | x = self.plaintexts[i]
297 |
298 | for j in range(2 ** self.subkey_size):
299 | power = self.predict_power_consumption(x, j, index)
300 | hypothetical_power_consumption[i][j] = power
301 |
302 | correlation_matrix = numpy.zeros((2 ** self.subkey_size, self.number_of_samples))
303 |
304 | for i in range(2 ** self.subkey_size):
305 | pcc = self.pcc(hypothetical_power_consumption[:, i], self.traces)
306 | correlation_matrix[i] = pcc
307 |
308 | correlation_matrix = numpy.nan_to_num(correlation_matrix)
309 |
310 | recovered_keys = self.get_keys(correlation_matrix)
311 |
312 | expected_key = self.expected_key[index]
313 |
314 | rank = self.rank(correlation_matrix, expected_key)
315 |
316 | guessing_entropy = self.get_guessing_entropy(index, rank)
317 |
318 | if self.plot_correlation_matrix:
319 | self.plotter_possible_key[index] += 1
320 | Plotter.plot_correlation_matrix(correlation_matrix, index, expected_key, self.plotter_possible_key[index])
321 |
322 | return recovered_keys, guessing_entropy
323 |
324 | def conditional_average_attack2(self, index, number_of_traces):
325 | self.number_of_cpa_attacks += 1
326 |
327 | hypothetical_power_consumption = numpy.zeros((self.number_of_plaintexts, 2 ** self.subkey_size))
328 |
329 | for i in range(self.number_of_plaintexts):
330 | x = self.plaintexts[i]
331 |
332 | for j in range(2 ** self.subkey_size):
333 | power = self.predict_power_consumption(x, j, index)
334 | hypothetical_power_consumption[i][j] = power
335 |
336 | correlation_matrix = numpy.zeros((2 ** self.subkey_size, self.number_of_samples))
337 |
338 | for i in range(2 ** self.subkey_size):
339 | pcc = self.pcc(hypothetical_power_consumption[:, i], self.traces)
340 | correlation_matrix[i] = pcc
341 |
342 | correlation_matrix = numpy.nan_to_num(correlation_matrix)
343 |
344 | recovered_keys = self.get_keys2(correlation_matrix)
345 |
346 | expected_key = self.expected_key[index]
347 |
348 | rank = self.rank(correlation_matrix, expected_key)
349 |
350 | guessing_entropy = self.get_guessing_entropy(index, rank)
351 |
352 | if self.plot_correlation_matrix:
353 | self.plotter_possible_key[index] += 1
354 | Plotter.plot_correlation_matrix(correlation_matrix, index, expected_key, self.plotter_possible_key[index])
355 |
356 | return recovered_keys
357 |
358 | def conditional_average_attack_delta(self, index, number_of_traces):
359 | self.number_of_cpa_attacks += 1
360 |
361 | hypothetical_power_consumption = numpy.zeros((self.number_of_plaintexts, 2 ** self.subkey_size))
362 |
363 | for i in range(self.number_of_plaintexts):
364 | x = self.plaintexts[i]
365 |
366 | for j in range(2 ** self.subkey_size):
367 | power = self.predict_power_consumption(x, j, index)
368 | hypothetical_power_consumption[i][j] = power
369 |
370 | correlation_matrix = numpy.zeros((2 ** self.subkey_size, self.number_of_samples))
371 |
372 | for i in range(2 ** self.subkey_size):
373 | pcc = self.pcc(hypothetical_power_consumption[:, i], self.traces)
374 | correlation_matrix[i] = pcc
375 |
376 | correlation_matrix = numpy.nan_to_num(correlation_matrix)
377 |
378 | recovered_keys = self.get_keys(correlation_matrix)
379 |
380 | expected_key = self.expected_key[index]
381 |
382 | rank = self.rank(correlation_matrix, expected_key)
383 | delta = self.delta(correlation_matrix)
384 |
385 | guessing_entropy = self.get_guessing_entropy(index, rank)
386 |
387 | if self.plot_correlation_matrix:
388 | self.plotter_possible_key[index] += 1
389 | Plotter.plot_correlation_matrix(correlation_matrix, index, expected_key, self.plotter_possible_key[index])
390 |
391 | return recovered_keys, delta, guessing_entropy
392 |
393 | def get_guessing_entropy(self, index, rank):
394 | if (self.attacked_number_of_rounds - 1) * 16 <= index < self.attacked_number_of_rounds * 16:
395 | return math.log(rank + 1, 2)
396 |
397 | return 0
398 |
399 | def attack_subkey(self, index, evaluation_case, experiment):
400 | self.init_conditional_average(index)
401 | self.load_conditional_average(index, 0, self.number_of_traces, evaluation_case, experiment)
402 | keys, guessing_entropy = self.conditional_average_attack(index, self.number_of_traces)
403 |
404 | self.traces = None
405 | self.plaintexts = None
406 | gc.collect()
407 |
408 | return keys[0], guessing_entropy
409 |
410 | def attack_subkey2(self, index, evaluation_case, experiment):
411 | self.init_conditional_average(index)
412 | self.load_conditional_average(index, 0, self.number_of_traces, evaluation_case, experiment)
413 | keys = self.conditional_average_attack2(index, self.number_of_traces)
414 |
415 | self.traces = None
416 | self.plaintexts = None
417 | gc.collect()
418 |
419 | return keys
420 |
421 | def attack_subkey_delta(self, index, evaluation_case, experiment):
422 | self.init_conditional_average(index)
423 | self.load_conditional_average(index, 0, self.number_of_traces, evaluation_case, experiment)
424 | keys, delta, guessing_entropy = self.conditional_average_attack_delta(index, self.number_of_traces)
425 |
426 | self.traces = None
427 | self.plaintexts = None
428 | gc.collect()
429 |
430 | return keys[0], delta, guessing_entropy
431 |
432 | @staticmethod
433 | def get_pair_indexes(pairs, pair, round_number):
434 | indexes = []
435 |
436 | for i in range(16):
437 | if pair in set(pairs[i]):
438 | indexes.append(16 * round_number + i)
439 |
440 | return indexes
441 |
442 | def check_recovery(self, number_of_possible_keys, number_of_rounds):
443 | if self.debug:
444 | print('INDEX')
445 | print('IDX ', end='')
446 | for i in range(16 * number_of_rounds):
447 | print('{:2} '.format(i), end='')
448 | print()
449 |
450 | print('RECOVERED')
451 | for i in range(number_of_possible_keys):
452 | print('{:2}) '.format(i), end='')
453 | for j in range(16 * number_of_rounds):
454 | if self.recovered_keys[i][j] is not None:
455 | print('{} '.format(format(self.recovered_keys[i][j], '02x')), end='')
456 | else:
457 | print('{} '.format(format(0x00, '02x')), end='')
458 | print(' {}'.format(self.valid_recovered_keys[i]), end='')
459 | print()
460 | print()
461 |
462 | print('EXPECTED')
463 | print('EXP ', end='')
464 | for i in range(16 * number_of_rounds):
465 | print('{} '.format(format(self.expected_key[i], '02x')), end='')
466 | print()
467 |
468 | correct_key_index = -1
469 |
470 | valid_keys = 0
471 | for i in range(number_of_possible_keys):
472 | if self.valid_recovered_keys[i]:
473 | valid_keys += 1
474 |
475 | found = True
476 | for j in range(16 * number_of_rounds):
477 | if self.recovered_keys[i][j] != self.expected_key[j]:
478 | found = False
479 | break
480 |
481 | if found:
482 | correct_key_index = i
483 |
484 | if self.debug and found:
485 | print('Correct key at index {}.'.format(i))
486 |
487 | if self.debug and 1 == valid_keys:
488 | print('Unique candidate!')
489 |
490 | if 1 == valid_keys:
491 | return correct_key_index
492 | else:
493 | return -1
494 |
495 | def attack(self, initial_state, number_of_traces, evaluation_case, experiment):
496 | self.number_of_traces = number_of_traces
497 | self.guessing_entropy = 0
498 | self.number_of_cpa_attacks = 0
499 |
500 | evaluation_case_solver = EvaluationCaseSolver(initial_state)
501 | evaluation_case_solver.process()
502 | state = evaluation_case_solver.state
503 | pairs = evaluation_case_solver.pairs
504 | statistics = evaluation_case_solver.get_statistics()
505 | max_possible_keys = evaluation_case_solver.get_max_possible_keys()
506 | if self.debug:
507 | evaluation_case_solver.print_state_pairs()
508 |
509 | if self.debug:
510 | print('Attack {} round(s) to get {} possible key(s).'.format(statistics[1], statistics[0]))
511 |
512 | self.attacked_number_of_rounds = statistics[1]
513 |
514 | known_pairs = set()
515 | map_pairs = []
516 |
517 | self.recovered_keys = [[0 for i in range(64)] for j in range(max_possible_keys)]
518 | self.valid_recovered_keys = [True for i in range(max_possible_keys)]
519 | self.guessing_entropy = [0 for i in range(max_possible_keys)]
520 |
521 | for i in range(statistics[1]):
522 | if 1 == i:
523 | self.round1 = Round1(self.recovered_keys[0], state)
524 | if 2 == i:
525 | self.round2 = Round2(self.recovered_keys[0], state)
526 | if 3 == i:
527 | self.round3 = Round3(self.recovered_keys[0], state)
528 |
529 | for j in range(16):
530 | if 0 != state[i][j]:
531 | index = 16 * i + j
532 | if self.debug:
533 | print('Attack subkey: {:2}'.format(index))
534 |
535 | subkey_pairs = set(pairs[i][j])
536 |
537 | if set(subkey_pairs) <= set(known_pairs):
538 |
539 | if 0 == len(pairs[i][j]):
540 | recovered_key, guessing_entropy = self.attack_subkey(index, evaluation_case, experiment)
541 | for k in range(max_possible_keys):
542 | self.recovered_keys[k][index] = recovered_key
543 | self.guessing_entropy[k] += guessing_entropy
544 | else:
545 | is_index_mapped = False
546 | for k in range(len(pairs[i][j])):
547 | if index in map_pairs[pairs[i][j][k] - 1]:
548 | is_index_mapped = True
549 | break
550 |
551 | if not is_index_mapped:
552 | recovered_key = [None for i in range(32)]
553 | delta = [0 for i in range(32)]
554 | guessing_entropy = [0 for i in range(32)]
555 |
556 | mask = 0
557 | for pair in subkey_pairs:
558 | mask |= 2 ** (pair - 1)
559 |
560 | for k in range(max_possible_keys):
561 | if recovered_key[k & mask] is None and self.valid_recovered_keys[k]:
562 | self.round2 = Round2(self.recovered_keys[k], state)
563 | self.round3 = Round3(self.recovered_keys[k], state)
564 |
565 | recovered_key[k & mask], delta[k & mask], guessing_entropy[k & mask] = \
566 | self.attack_subkey_delta(index, evaluation_case, experiment)
567 |
568 | self.recovered_keys[k][index] = recovered_key[k & mask]
569 | self.guessing_entropy[k] += guessing_entropy[k & mask]
570 |
571 | if (1 == abs(state[i][j])) and (0 != len(pairs[i][j])):
572 | max_delta = -1
573 | for k in range(max_possible_keys):
574 | if max_delta < delta[k & mask]:
575 | max_delta = delta[k & mask]
576 |
577 | for k in range(max_possible_keys):
578 | if max_delta > delta[k & mask]:
579 | self.valid_recovered_keys[k] = False
580 | else:
581 | if 1 == len(subkey_pairs):
582 | pair = list(subkey_pairs)[0]
583 |
584 | [index1, index2] = self.get_pair_indexes(pairs[i], pair, i)
585 | recovered_keys = self.attack_subkey2(index, evaluation_case, experiment)
586 |
587 | mask = 2 ** (pair - 1)
588 | for k in range(max_possible_keys):
589 | if 0 == k & mask:
590 | self.recovered_keys[k][index1] = recovered_keys[0]
591 | self.recovered_keys[k][index2] = recovered_keys[1]
592 | else:
593 | self.recovered_keys[k][index1] = recovered_keys[1]
594 | self.recovered_keys[k][index2] = recovered_keys[0]
595 |
596 | elif 2 == len(subkey_pairs):
597 | pair1 = list(subkey_pairs)[0]
598 | pair2 = list(subkey_pairs)[1]
599 |
600 | if set([pair1]) <= set(known_pairs):
601 | new_pair = pair2
602 | known_pair = pair1
603 | else:
604 | new_pair = pair1
605 | known_pair = pair2
606 |
607 | [index1, index2] = self.get_pair_indexes(pairs[i], new_pair, i)
608 |
609 | direct = None
610 | reverse = None
611 |
612 | known_mask = 2 ** (known_pair - 1)
613 | mask = 2 ** (new_pair - 1)
614 | for k in range(max_possible_keys):
615 | if 0 == k & known_mask:
616 | if direct is None:
617 | self.round1 = Round1(self.recovered_keys[k], state)
618 | self.round2 = Round2(self.recovered_keys[k], state)
619 | direct = self.attack_subkey2(index, evaluation_case, experiment)
620 |
621 | if 0 == k & mask:
622 | self.recovered_keys[k][index1] = direct[0]
623 | self.recovered_keys[k][index2] = direct[1]
624 | else:
625 | self.recovered_keys[k][index1] = direct[1]
626 | self.recovered_keys[k][index2] = direct[0]
627 | else:
628 | if reverse is None:
629 | self.round1 = Round1(self.recovered_keys[k], state)
630 | self.round2 = Round2(self.recovered_keys[k], state)
631 | reverse = self.attack_subkey2(index, evaluation_case, experiment)
632 |
633 | if 0 == k & mask:
634 | self.recovered_keys[k][index1] = reverse[0]
635 | self.recovered_keys[k][index2] = reverse[1]
636 | else:
637 | self.recovered_keys[k][index1] = reverse[1]
638 | self.recovered_keys[k][index2] = reverse[0]
639 |
640 | for pair in subkey_pairs:
641 | if pair not in known_pairs:
642 | known_pairs.add(pair)
643 | map_pairs.append(self.get_pair_indexes(pairs[i], pair, i))
644 |
645 | correct_key_index = self.check_recovery(max_possible_keys, statistics[1])
646 |
647 | if self.debug:
648 | print('Number of CPA attacks: {}.'.format(self.number_of_cpa_attacks))
649 |
650 | return self.guessing_entropy[correct_key_index]
651 |
652 | def dump_data(self, evaluation_case, initial_state, experiments, traces_x, guessing_entropy_y,
653 | minimum_number_of_traces, duration):
654 | f = open('./output/data_evaluation_case_{:02}.txt'.format(evaluation_case), 'w')
655 |
656 | f.write('Evaluation case: {}\n'.format(evaluation_case))
657 | f.write('Experiments: {}\n'.format(experiments))
658 |
659 | f.write('\n')
660 |
661 | f.write('Initial state: {}\n'.format(initial_state))
662 | f.write('Attacked number of rounds: {}\n'.format(self.attacked_number_of_rounds))
663 | f.write('CPA attacks: {}\n'.format(self.number_of_cpa_attacks))
664 |
665 | f.write('\n')
666 |
667 | f.write('Traces: {}\n'.format(traces_x))
668 | f.write('GE: {}\n'.format(guessing_entropy_y))
669 | f.write('Minimum number of traces: {}'.format(minimum_number_of_traces))
670 |
671 | f.write('\n')
672 |
673 | f.write('Duration: {}'.format(time.strftime('%H:%M:%S', time.gmtime(duration))))
674 |
675 | f.close()
676 |
677 | @staticmethod
678 | def get_minimum_number_of_traces(traces_x, guessing_entropy_y):
679 | minimum = -1
680 |
681 | for i in range(len(traces_x) - 1, -1, -1):
682 | if 0 != guessing_entropy_y[i]:
683 | break
684 | minimum = traces_x[i]
685 |
686 | return minimum
687 |
688 | def rename_files(self, evaluation_case, experiment):
689 | if not self.generate_traces:
690 | return
691 |
692 | destination_plaintext_file = self.plaintexts_file_format.format(evaluation_case, experiment)
693 | destination_traces_file = self.traces_file_format.format(evaluation_case, experiment)
694 |
695 | shutil.move(self.source_plaintexts_file, destination_plaintext_file)
696 | shutil.move(self.source_traces_file, destination_traces_file)
697 |
698 | def attack_guessing_entropy(self, evaluation_case, initial_state, start_traces, stop_traces, step_traces,
699 | experiments=1):
700 | evaluation_case_start_time = time.time()
701 |
702 | traces_x = []
703 | guessing_entropy_y = []
704 |
705 | for experiment in range(experiments):
706 | # Get attack state
707 | evaluation_case_solver = EvaluationCaseSolver(initial_state)
708 | evaluation_case_solver.process()
709 | state = evaluation_case_solver.state
710 |
711 | if self.generate_traces:
712 | generator = Generator(state, stop_traces + step_traces, self.t_tables_implementation)
713 | generator.generate()
714 |
715 | key_schedule = ExpectedRoundKeysGenerator(state)
716 | self.expected_key = key_schedule.generate()
717 |
718 | # Rename leakage files
719 | self.rename_files(evaluation_case, experiment)
720 |
721 | for traces in range(start_traces, stop_traces + 1, step_traces):
722 | guessing_entropy = self.attack(initial_state, traces, evaluation_case, experiment)
723 |
724 | if 0 == experiment:
725 | traces_x.append(traces)
726 | guessing_entropy_y.append(guessing_entropy)
727 | else:
728 | index = -1
729 | for j in range(len(traces_x)):
730 | if traces_x[j] == traces:
731 | index = j
732 | break
733 |
734 | guessing_entropy_y[index] += (guessing_entropy - guessing_entropy_y[index]) / (traces + 1)
735 |
736 | Plotter.plot_guessing_entropy('{:02}'.format(evaluation_case), traces_x, guessing_entropy_y)
737 |
738 | evaluation_case_stop_time = time.time()
739 | duration = evaluation_case_stop_time - evaluation_case_start_time
740 |
741 | minimum_number_of_traces = self.get_minimum_number_of_traces(traces_x, guessing_entropy_y)
742 |
743 | self.dump_data(evaluation_case, initial_state, experiments, traces_x, guessing_entropy_y,
744 | minimum_number_of_traces, duration)
745 |
746 | def attack_guessing_entropy_evaluation_cases(self):
747 | # Test extreme evaluation cases
748 | # """
749 | initial_states = [
750 | # 1 byte controlled by attacker
751 | [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
752 |
753 | # 16 bytes controlled by attacker
754 | [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
755 | ]
756 | # """
757 |
758 | # All 25 evaluation cases
759 | """
760 | initial_states = [
761 | # 1 byte controlled by attacker
762 | [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # Case 0
763 |
764 | # 2 bytes controlled by attacker
765 | [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # Case 1
766 |
767 | # 3 bytes controlled by attacker
768 | [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # Case 2
769 |
770 | # 4 bytes controlled by attacker
771 | [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # Case 3
772 | [1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # Case 4
773 |
774 | # 5 bytes controlled by attacker
775 | [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # Case 5
776 | [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], # Case 6
777 |
778 | # 6 bytes controlled by attacker
779 | [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # Case 7
780 | [1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], # Case 8
781 |
782 | # 7 bytes controlled by attacker
783 | [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], # Case 9
784 | [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], # Case 10
785 |
786 | # 8 bytes controlled by attacker
787 | [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], # Case 11
788 | [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0], # Case 12
789 |
790 | # 9 bytes controlled by attacker
791 | [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], # Case 13
792 | [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0], # Case 14
793 |
794 | # 10 bytes controlled by attacker
795 | [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], # Case 15
796 | [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0], # Case 16
797 |
798 | # 11 bytes controlled by attacker
799 | [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], # Case 17
800 | [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0], # Case 18
801 |
802 | # 12 bytes controlled by attacker
803 | [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0], # Case 19
804 | [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1], # Case 20
805 |
806 | # 13 bytes controlled by attacker
807 | [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], # Case 21
808 |
809 | # 14 bytes controlled by attacker
810 | [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], # Case 22
811 |
812 | # 15 bytes controlled by attacker
813 | [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], # Case 23
814 |
815 | # 16 bytes controlled by attacker
816 | [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] # Case 24
817 | ]
818 | """
819 |
820 | # Step 1
821 | start_traces = 10
822 | stop_traces = 50
823 | step_traces = 10
824 | experiments = 10
825 |
826 | print('Run for {} evaluation cases; {} experiments for each evaluation case.'.format(len(initial_states),
827 | experiments))
828 |
829 | evaluation_case = 0
830 | for initial_state in initial_states:
831 | print('Evaluation case {:2}: {}'.format(evaluation_case, initial_state))
832 | self.attack_guessing_entropy(evaluation_case, initial_state, start_traces, stop_traces, step_traces,
833 | experiments)
834 | evaluation_case += 1
835 |
836 |
837 | def main():
838 | attacker = Attacker(generate_traces=True, t_tables_implementation=True, debug=False)
839 | attacker.attack_guessing_entropy_evaluation_cases()
840 |
841 |
842 | if "__main__" == __name__:
843 | start_time = time.time()
844 |
845 | main()
846 |
847 | stop_time = time.time()
848 |
849 | print('Duration: {}'.format(time.strftime('%H:%M:%S', time.gmtime(stop_time - start_time))))
850 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 | {one line to give the program's name and a brief idea of what it does.}
635 | Copyright (C) {year} {name of author}
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | {project} Copyright (C) {year} {fullname}
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------