├── .gitattributes ├── README.md ├── assignments └── README.md ├── notebooks ├── CEC.ipynb ├── Convolution.ipynb ├── Dropout.ipynb ├── Linear.ipynb ├── MNIST_GAN.ipynb ├── Max-Pool.ipynb ├── NN.ipynb ├── ReLU.ipynb ├── Transposed Convolution.ipynb ├── WeightInit.ipynb ├── cifar10 │ ├── te_data.bin │ └── te_labels.bin └── mnist │ ├── test_32x32.t7 │ └── train_32x32.t7 └── projects ├── glyphs_sample.png └── readme.md /.gitattributes: -------------------------------------------------------------------------------- 1 | *.t7 filter=lfs diff=lfs merge=lfs -text 2 | *.pdf filter=lfs diff=lfs merge=lfs -text 3 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | 2 |
Date | 86 |Topics | 87 |Slides | 88 |iTorch Notebooks | 89 |Extra Reading | 90 |
---|---|---|---|---|
4th Jan. 2018 | 93 |
|
94 | Slides | 95 |-- 96 | | 97 |-- | 98 |
5th Jan. 2018 | 102 |
103 | Camera Geometry
104 |
|
110 | Slides | 111 |-- 112 | | 113 |Homogeneous Representations of Points, Lines and Planes | 114 |
12th Jan. 2018 | 117 |
|
123 | Slides | 124 |-- 125 | | 126 |-- | 127 |
13th Jan. 2018 | 131 |
|
138 | Slides | 139 |-- 140 | | 141 |Resource on SVD, how/why it can be used to solve eq. sytems of type Ax=0, |x|=1 | 142 |
18th Jan. 2018 | 146 |
|
158 |
159 | Slides(1) 160 | Slides(2) 161 | |
162 | -- | 163 |-- | 164 |
19th Jan. 2018 | 167 |
|
185 |
186 | Slides(1) 187 | Slides(2) 188 | |
189 | -- | 190 |-- | 191 |
25th Jan. 2018 | 195 |
196 | Recognizing images, objects, scenes (Prof. Suyash P. Awate)
197 |
|
203 |
204 | Slides 205 | |
206 | -- | 207 |-- | 208 |
1st Feb. 2018 | 211 |
212 | Recognizing images, objects, scenes (Prof. Suyash P. Awate)
213 |
|
217 |
218 | Slides 219 | |
220 | -- | 221 |-- | 222 |
2nd Feb. 2018 | 225 |
226 | Robust Methods in Computer Vision
227 |
|
242 |
243 | Slides(1) 244 | Slides(2) 245 | |
246 | KNN | 247 |Matrix calculus reminder 248 | | 249 |
8th Feb. 2018 | 252 |
253 |
|
260 |
261 | Slides 262 | |
263 | Gradient Check | 264 | ADAM,
265 | Nesterov 266 | DL optimization algorithms overview 267 | |
268 |
9th Feb. 2018 | 271 |
272 |
|
277 |
278 | Slides 279 | |
280 | Linear Layer, 281 | ReLU 282 | | 283 |-- | 284 |
15th Feb. 2018 | 287 |
288 |
|
292 |
293 | Slides 294 | |
295 | MaxPool, 296 | Convolution, 297 | Transposed convolution, Dropout 298 | | 299 |Convolution arithmetic for deep 300 | learning | 301 |
16th Feb. 2018 | 304 |
305 |
|
310 |
311 | Slides 312 | |
313 | Cross Entropy, 314 | Weight Initialization 315 | | 316 |-- | 317 |22nd Feb. 2018 | 319 |
320 |
|
324 |
325 | Slides 326 | |
327 | 328 | -- 329 | | 330 |-- | 331 | 332 |
23rd Feb. 2018 | 334 |
335 |
|
339 |
340 | Slides 341 | |
342 | -- 343 | | 344 |-- | 345 |
8th March 2018 | 348 |
349 |
|
355 |
356 | Slides 357 | |
358 | -- 359 | | 360 |-- | 361 |
9th March 2018 | 365 |
366 |
|
373 |
374 | Slides 375 | Slides 376 | |
377 | MNIST Vanilla GAN 378 | | 379 |-- | 380 |
15th March 2018 | 383 |
384 |
|
387 | 388 | Slides 389 | | 390 |-- | 391 |-- | 392 |
16th March 2018 | 395 |
396 | Structure from Motion
397 |
|
402 |
403 | Slides 404 | |
405 | -- | 406 |-- | 407 |
22nd March 2018 | 410 |
411 | Kanade-Lucas-Tomasi Feature Tracking (KLT)
412 |
|
416 |
417 | Slides 418 | |
419 | -- | 420 | Lucas-Kanade 20 Years On: A Unifying Framework |
421 |
23rd March 2018 | 424 |
425 | Geometric Stereo
426 |
|
431 |
432 | Slides 433 | |
434 | -- | 435 |-- | 436 |
5th April 2018 | 439 |
440 |
|
446 |
447 | Slides 448 | |
449 | -- | 450 |-- | 451 |
6th April 2018 | 454 |
455 |
|
460 |
461 | Slides(1) 462 | Slides(2) 463 | |
464 | -- | 465 |-- | 466 |
12th April 2018 | 469 |
470 |
|
474 |
475 | Slides 476 | |
477 | -- | 478 |-- | 479 |
19th April 2018 | 482 |
483 |
|
487 |
488 | Slides 489 | |
490 | -- | 491 |-- | 492 |
20th April 2018 | 495 |
496 |
|
499 |
500 | Slides 501 | |
502 | -- | 503 |-- | 504 |
Glyph based AR application
36 |
Sachin Goyal, Mohit Madan, Michelle Barnette
37 |
38 | We wish to perform glyph based AR using the following steps: 1) Glyph-boundary recognition using edge detection. 2) Estimating of the distortion (orientation and scaling) in 3D space. 3) Placing any image on the glyph in 3D space (applying rigid transformations). 4) Identification of the glyph pattern and placing specific image on glyph. 5) (If time permits) placing a 3D object on glyph.
39 |
40 |