├── LICENSE
├── README.md
├── figs
├── 00003.png
├── 00003_BSRGAN.png
├── 00080.png
├── 00080_BSRGAN.png
├── 00081.png
├── 00081_BSRGAN.png
├── comic_03.png
├── comic_03_BSRGAN.png
├── comparison.png
├── degradationmodel.png
├── v1.png
├── v2.png
└── v3.png
├── main_download_pretrained_models.py
├── main_test_bsrgan.py
├── model_zoo
└── README.md
├── models
└── network_rrdbnet.py
├── testsets
├── BSRGAN
│ ├── Lincoln_BSRGAN.png
│ ├── building_BSRGAN.png
│ ├── butterfly2_BSRGAN.png
│ ├── butterfly_BSRGAN.png
│ ├── chip_BSRGAN.png
│ ├── comic1_BSRGAN.png
│ ├── comic2_BSRGAN.png
│ ├── comic3_BSRGAN.png
│ ├── computer_BSRGAN.png
│ ├── dog_BSRGAN.png
│ ├── dped_crop00061_BSRGAN.png
│ ├── foreman_BSRGAN.png
│ ├── frog_BSRGAN.png
│ ├── oldphoto2_BSRGAN.png
│ ├── oldphoto3_BSRGAN.png
│ ├── oldphoto6_BSRGAN.png
│ ├── painting_BSRGAN.png
│ ├── pattern_BSRGAN.png
│ ├── ppt3_BSRGAN.png
│ └── tiger_BSRGAN.png
├── ESRGAN
│ ├── Lincoln_ESRGAN.png
│ ├── building_ESRGAN.png
│ ├── butterfly2_ESRGAN.png
│ ├── butterfly_ESRGAN.png
│ ├── chip_ESRGAN.png
│ ├── comic1_ESRGAN.png
│ ├── comic2_ESRGAN.png
│ ├── comic3_ESRGAN.png
│ ├── computer_ESRGAN.png
│ ├── dog_ESRGAN.png
│ ├── dped_crop00061_ESRGAN.png
│ ├── foreman_ESRGAN.png
│ ├── frog_ESRGAN.png
│ ├── oldphoto2_ESRGAN.png
│ ├── oldphoto3_ESRGAN.png
│ ├── oldphoto6_ESRGAN.png
│ ├── painting_ESRGAN.png
│ ├── pattern_ESRGAN.png
│ ├── ppt3_ESRGAN.png
│ └── tiger_ESRGAN.png
├── README.md
├── RealSRSet
│ ├── Lincoln.png
│ ├── building.png
│ ├── butterfly.png
│ ├── butterfly2.png
│ ├── chip.png
│ ├── comic1.png
│ ├── comic2.png
│ ├── comic3.png
│ ├── computer.png
│ ├── dog.png
│ ├── dped_crop00061.png
│ ├── foreman.png
│ ├── frog.png
│ ├── oldphoto2.png
│ ├── oldphoto3.png
│ ├── oldphoto6.png
│ ├── painting.png
│ ├── pattern.png
│ ├── ppt3.png
│ └── tiger.png
└── RealSR_JPEG
│ ├── Lincoln_RealSR_JPEG.png
│ ├── building_RealSR_JPEG.png
│ ├── butterfly2_RealSR_JPEG.png
│ ├── butterfly_RealSR_JPEG.png
│ ├── chip_RealSR_JPEG.png
│ ├── comic1_RealSR_JPEG.png
│ ├── comic2_RealSR_JPEG.png
│ ├── comic3_RealSR_JPEG.png
│ ├── computer_RealSR_JPEG.png
│ ├── dog_RealSR_JPEG.png
│ ├── dped_crop00061_RealSR_JPEG.png
│ ├── foreman_RealSR_JPEG.png
│ ├── frog_RealSR_JPEG.png
│ ├── oldphoto2_RealSR_JPEG.png
│ ├── oldphoto3_RealSR_JPEG.png
│ ├── oldphoto6_RealSR_JPEG.png
│ ├── painting_RealSR_JPEG.png
│ ├── pattern_RealSR_JPEG.png
│ ├── ppt3_RealSR_JPEG.png
│ └── tiger_RealSR_JPEG.png
└── utils
├── README.md
├── test.png
├── utils_blindsr.py
├── utils_googledownload.py
├── utils_image.py
├── utils_logger.py
└── utils_model.py
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright 2022 Kai Zhang (cskaizhang@gmail.com, https://cszn.github.io/). All rights reserved.
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # [Designing a Practical Degradation Model for Deep Blind Image Super-Resolution](https://arxiv.org/pdf/2103.14006.pdf)
2 |
3 | 
4 |
5 | [Kai Zhang](https://cszn.github.io/), Jingyun Liang, [Luc Van Gool](https://vision.ee.ethz.ch/people-details.OTAyMzM=.TGlzdC8zMjQ4LC0xOTcxNDY1MTc4.html), [Radu Timofte](http://people.ee.ethz.ch/~timofter/)
6 | _[Computer Vision Lab](https://vision.ee.ethz.ch/the-institute.html), ETH Zurich, Switzerland_
7 |
8 | [[Paper](https://arxiv.org/abs/2103.14006)] [[Code](https://github.com/cszn/BSRGAN/blob/main/main_test_bsrgan.py)] [[Training Code](https://github.com/cszn/KAIR)]
9 |
10 | _**Our new work for real image denoising ---> [https://github.com/cszn/SCUNet](https://github.com/cszn/SCUNet)**_
11 |
12 | _**Our work is the beginning rather than the end of real image super-resolution.**_
13 |
14 | _______
15 | - **_News (2021-08-31)_**: We upload the training code.
16 | - **_News (2021-08-24)_**: We upload the BSRGAN degradation model.
17 | ```python
18 | from utils import utils_blindsr as blindsr
19 | img_lq, img_hq = blindsr.degradation_bsrgan(img, sf=4, lq_patchsize=72)
20 | ```
21 | - **_News (2021-07-23)_**: After rejection by CVPR 2021, our paper is accepted by ICCV 2021. For the sake of fairness, we will not update the trained models in our camera-ready version. However, we may update the trained models in github.
22 | - **_News (2021-05-18)_**: Add trained BSRGAN model for scale factor 2.
23 | - **_News (2021-04)_**: Our degradation model for face image enhancement: [https://github.com/vvictoryuki/BSRGAN_implementation](https://github.com/vvictoryuki/BSRGAN_implementation)
24 |
25 |
26 | Training
27 | ----------
28 | 1. Download [KAIR](https://github.com/cszn/KAIR): `git clone https://github.com/cszn/KAIR.git`
29 | 2. Put your training high-quality images into `trainsets/trainH` or set `"dataroot_H": "trainsets/trainH"`
30 | 3. Train BSRNet
31 | 1. Modify [train_bsrgan_x4_psnr.json](https://github.com/cszn/KAIR/blob/master/options/train_bsrgan_x4_psnr.json) e.g., `"gpu_ids": [0]`, `"dataloader_batch_size": 4`
32 | 2. Training with `DataParallel`
33 | ```bash
34 | python main_train_psnr.py --opt options/train_bsrgan_x4_psnr.json
35 | ```
36 | 2. Training with `DistributedDataParallel` - 4 GPUs
37 | ```bash
38 | python -m torch.distributed.launch --nproc_per_node=4 --master_port=1234 main_train_psnr.py --opt options/train_bsrgan_x4_psnr.json --dist True
39 | ```
40 | 4. Train BSRGAN
41 | 1. Put BSRNet model (e.g., '400000_G.pth') into `superresolution/bsrgan_x4_gan/models`
42 | 2. Modify [train_bsrgan_x4_gan.json](https://github.com/cszn/KAIR/blob/master/options/train_bsrgan_x4_gan.json) e.g., `"gpu_ids": [0]`, `"dataloader_batch_size": 4`
43 | 3. Training with `DataParallel`
44 | ```bash
45 | python main_train_gan.py --opt options/train_bsrgan_x4_gan.json
46 | ```
47 | 3. Training with `DistributedDataParallel` - 4 GPUs
48 | ```bash
49 | python -m torch.distributed.launch --nproc_per_node=4 --master_port=1234 main_train_gan.py --opt options/train_bsrgan_x4_gan.json --dist True
50 | ```
51 | 5. Test BSRGAN model `'xxxxxx_E.pth'` by modified `main_test_bsrgan.py`
52 | 1. `'xxxxxx_E.pth'` is more stable than `'xxxxxx_G.pth'`
53 |
54 |
55 | _______
56 | ✨ _**Some visual examples**_: [oldphoto2](https://imgsli.com/NDgzMjU); [butterfly](https://imgsli.com/NDgyNjY); [comic](https://imgsli.com/NDgyNzg); [oldphoto3](https://imgsli.com/NDgyNzk); [oldphoto6](https://imgsli.com/NDgyODA); [comic_01](https://imgsli.com/NDgzNTg); [comic_03](https://imgsli.com/NDgzNTk); [comic_04](https://imgsli.com/NDgzNTY)
57 |
58 | [
](https://imgsli.com/NDgzMjU) [
](https://imgsli.com/NDgyNzk)
59 | [
](https://imgsli.com/NDgzNDk)
60 | ___________
61 |
62 | * [Testing code](#testing-code)
63 | * [Main idea](#main-idea)
64 | * [Comparison](#comparison)
65 | * [More visual results on RealSRSet dataset](#more-visual-results-on-realsrset-dataset)
66 | * [Visual results on DPED dataset](#visual-results-on-dped-dataset)
67 | * [Citation](#citation)
68 | * [Acknowledgments](#acknowledgments)
69 |
70 | Testing code
71 | ----------
72 |
73 | * [main_test_bsrgan.py](main_test_bsrgan.py)
74 | * [model_zoo](model_zoo) (_Download the following models from [Google drive](https://drive.google.com/drive/folders/13kfr3qny7S2xwG9h7v95F5mkWs0OmU0D?usp=sharing) or [腾讯微云](https://share.weiyun.com/5qO32s3)_).
75 | * Proposed:
76 | * BSRGAN.pth [[Google drive]](https://drive.google.com/drive/folders/13kfr3qny7S2xwG9h7v95F5mkWs0OmU0D?usp=sharing) [[腾讯微云]](https://share.weiyun.com/7GPI8p7x)🌱
77 | * BSRNet.pth [[Google drive]](https://drive.google.com/drive/folders/13kfr3qny7S2xwG9h7v95F5mkWs0OmU0D?usp=sharing) [[腾讯微云]](https://share.weiyun.com/VOFW5Ela)🌱
78 | * Compared methods:
79 | * RRDB.pth ---> [original link](https://github.com/xinntao/ESRGAN)
80 | * ESRGAN.pth ---> [original link](https://github.com/xinntao/ESRGAN)
81 | * FSSR_DPED.pth ---> [original link](https://github.com/ManuelFritsche/real-world-sr)
82 | * FSSR_DPED.pth ---> [original link](https://github.com/ManuelFritsche/real-world-sr)
83 | * RealSR_DPED.pth ---> [original link](https://github.com/jixiaozhong/RealSR)
84 | * RealSR_JPEG.pth ---> [original link](https://github.com/jixiaozhong/RealSR)
85 |
86 |
87 | Main idea
88 | ----------
89 |
90 |
91 |
92 | __Design a new degradation model to synthesize LR images for training:__
93 |
94 | * **_1) Make the blur, downsampling and noise more practical_**
95 | * **_Blur:_** _two convolutions with isotropic and anisotropic Gaussian kernels from both the HR space and LR space_
96 | * **_Downsampling:_** _nearest, bilinear, bicubic, down-up-sampling_
97 | * **_Noise:_** _Gaussian noise, JPEG compression noise, processed camera sensor noise_
98 | * **_2) Degradation shuffle:_** _instead of using the commonly-used blur/downsampling/noise-addition pipeline, we perform randomly shuffled degradations to synthesize LR images_
99 |
100 | __Some notes on the proposed degradation model:__
101 |
102 | * *The degradation model is mainly designed to synthesize degraded LR images. Its most direct application is to train a deep blind super-resolver with paired LR/HR images. In particular, the degradation model can be performed on a large dataset of HR images to produce unlimited perfectly aligned training images, which typically do not suffer from the limited data issue of laboriously collected paired data and the misalignment issue of unpaired training data.*
103 |
104 | * *The degradation model tends to be unsuited to model a degraded LR image as it involves too many degradation parameters and also adopts a random shuffle strategy.*
105 |
106 | * *The degradation model can produce some degradation cases that rarely happen in real-world scenarios, while this can still be expected to improve the generalization ability of the trained deep blind super-resolver.*
107 |
108 | * *A DNN with large capacity has the ability to handle different degradations via a single model. This has been validated multiple times. For example, DnCNN is able
109 | to handle SISR with different scale factors, JPEG compression deblocking with different quality factors and denoising for a wide range of noise levels, while still having a performance comparable to VDSR for SISR. It is worth noting that even when the super-resolver reduces the performance for unrealistic bicubic downsampling, it is still a preferred choice for real SISR.*
110 |
111 | * *One can conveniently modify the degradation model by changing the degradation parameter settings and adding more reasonable degradation
112 | types to improve the practicability for a certain application.*
113 |
114 |
115 |
116 |
117 | Comparison
118 | ----------
119 |
120 |
121 |
122 |
123 | *These no-reference IQA metrics, i.e., NIQE, NRQM and PI, do not always match perceptual visual quality [1] and the IQA metric should be updated with new SISR methods [2]. We further argue that the IQA metric for SISR should also be updated with new image degradation types, which we leave for future work.*
124 |
125 | ```
126 | [1] "NTIRE 2020 challenge on real-world image super-resolution: Methods and results." CVPRW, 2020.
127 | [2] "PIPAL: a large-scale image quality assessment dataset for perceptual image restoration." ECCV, 2020.
128 | ```
129 |
130 |
131 |
132 | More visual results on [RealSRSet](testsets/RealSRSet) dataset
133 | ----------
134 |
135 |
136 | **Left**: [real images](https://github.com/cszn/BSRNet/tree/main/testsets/RealSRSet) **|** **Right**: [super-resolved images with scale factor 4](https://github.com/cszn/BSRNet/tree/main/testsets/BSRGAN)
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
150 |
151 |
152 |
153 |
154 |
155 |
156 |
157 |
158 |
159 |
160 |
161 |
162 |
163 |
164 |
165 | Visual results on DPED dataset
166 | ----------
167 |
168 |
169 |
170 |
171 |
172 |
173 |
174 | *Without using any prior information of DPED dataset for training, our BSRGAN still performs well.*
175 |
176 |
177 |
178 |
179 | Citation
180 | ----------
181 | ```BibTex
182 | @inproceedings{zhang2021designing,
183 | title={Designing a Practical Degradation Model for Deep Blind Image Super-Resolution},
184 | author={Zhang, Kai and Liang, Jingyun and Van Gool, Luc and Timofte, Radu},
185 | booktitle={IEEE International Conference on Computer Vision},
186 | pages={4791--4800},
187 | year={2021}
188 | }
189 | ```
190 |
191 |
192 | Acknowledgments
193 | ----------
194 | This work was partly supported by the ETH Zurich Fund (OK), a Huawei Technologies Oy (Finland) project, and an Amazon AWS grant.
195 |
196 |
197 |
198 |
--------------------------------------------------------------------------------
/figs/00003.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/figs/00003.png
--------------------------------------------------------------------------------
/figs/00003_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/figs/00003_BSRGAN.png
--------------------------------------------------------------------------------
/figs/00080.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/figs/00080.png
--------------------------------------------------------------------------------
/figs/00080_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/figs/00080_BSRGAN.png
--------------------------------------------------------------------------------
/figs/00081.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/figs/00081.png
--------------------------------------------------------------------------------
/figs/00081_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/figs/00081_BSRGAN.png
--------------------------------------------------------------------------------
/figs/comic_03.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/figs/comic_03.png
--------------------------------------------------------------------------------
/figs/comic_03_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/figs/comic_03_BSRGAN.png
--------------------------------------------------------------------------------
/figs/comparison.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/figs/comparison.png
--------------------------------------------------------------------------------
/figs/degradationmodel.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/figs/degradationmodel.png
--------------------------------------------------------------------------------
/figs/v1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/figs/v1.png
--------------------------------------------------------------------------------
/figs/v2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/figs/v2.png
--------------------------------------------------------------------------------
/figs/v3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/figs/v3.png
--------------------------------------------------------------------------------
/main_download_pretrained_models.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import os
3 | import requests
4 | import re
5 |
6 |
7 | """
8 | How to use:
9 |
10 | download BSRGAN models:
11 | python main_download_pretrained_models.py --models "BSRGAN" --model_dir "model_zoo"
12 |
13 | ------------------------------------------------------------------
14 |
15 | download 'BSRGAN.pth'
16 | python main_download_pretrained_models.py --models "BSRGAN.pth" --model_dir "model_zoo"
17 |
18 | """
19 |
20 |
21 | def download_pretrained_model(model_dir='model_zoo', model_name='dncnn3.pth'):
22 | if os.path.exists(os.path.join(model_dir, model_name)):
23 | print(f'already exists, skip downloading [{model_name}]')
24 | else:
25 | os.makedirs(model_dir, exist_ok=True)
26 | if 'SwinIR' in model_name:
27 | url = 'https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/{}'.format(model_name)
28 | else:
29 | url = 'https://github.com/cszn/KAIR/releases/download/v1.0/{}'.format(model_name)
30 | r = requests.get(url, allow_redirects=True)
31 | print(f'downloading [{model_dir}/{model_name}] ...')
32 | open(os.path.join(model_dir, model_name), 'wb').write(r.content)
33 | print('done!')
34 |
35 |
36 | if __name__ == '__main__':
37 | parser = argparse.ArgumentParser()
38 | parser.add_argument('--models',
39 | type=lambda s: re.split(' |, ', s),
40 | default = "dncnn3.pth",
41 | help='comma or space delimited list of characters, e.g., "DnCNN", "DnCNN BSRGAN.pth", "dncnn_15.pth dncnn_50.pth"')
42 | parser.add_argument('--model_dir', type=str, default='model_zoo', help='path of model_zoo')
43 | args = parser.parse_args()
44 |
45 | print(f'trying to download {args.models}')
46 |
47 | method_model_zoo = {'DnCNN': ['dncnn_15.pth', 'dncnn_25.pth', 'dncnn_50.pth', 'dncnn3.pth', 'dncnn_color_blind.pth', 'dncnn_gray_blind.pth'],
48 | 'SRMD': ['srmdnf_x2.pth', 'srmdnf_x3.pth', 'srmdnf_x4.pth', 'srmd_x2.pth', 'srmd_x3.pth', 'srmd_x4.pth'],
49 | 'DPSR': ['dpsr_x2.pth', 'dpsr_x3.pth', 'dpsr_x4.pth', 'dpsr_x4_gan.pth'],
50 | 'FFDNet': ['ffdnet_color.pth', 'ffdnet_gray.pth', 'ffdnet_color_clip.pth', 'ffdnet_gray_clip.pth'],
51 | 'USRNet': ['usrgan.pth', 'usrgan_tiny.pth', 'usrnet.pth', 'usrnet_tiny.pth'],
52 | 'DPIR': ['drunet_gray.pth', 'drunet_color.pth', 'drunet_deblocking_color.pth', 'drunet_deblocking_grayscale.pth'],
53 | 'BSRGAN': ['BSRGAN.pth', 'BSRNet.pth', 'BSRGANx2.pth'],
54 | 'IRCNN': ['ircnn_color.pth', 'ircnn_gray.pth'],
55 | 'SwinIR': ['001_classicalSR_DF2K_s64w8_SwinIR-M_x2.pth', '001_classicalSR_DF2K_s64w8_SwinIR-M_x3.pth',
56 | '001_classicalSR_DF2K_s64w8_SwinIR-M_x4.pth', '001_classicalSR_DF2K_s64w8_SwinIR-M_x8.pth',
57 | '001_classicalSR_DIV2K_s48w8_SwinIR-M_x2.pth', '001_classicalSR_DIV2K_s48w8_SwinIR-M_x3.pth',
58 | '001_classicalSR_DIV2K_s48w8_SwinIR-M_x4.pth', '001_classicalSR_DIV2K_s48w8_SwinIR-M_x8.pth',
59 | '002_lightweightSR_DIV2K_s64w8_SwinIR-S_x2.pth', '002_lightweightSR_DIV2K_s64w8_SwinIR-S_x3.pth',
60 | '002_lightweightSR_DIV2K_s64w8_SwinIR-S_x4.pth', '003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.pth',
61 | '003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_PSNR.pth', '004_grayDN_DFWB_s128w8_SwinIR-M_noise15.pth',
62 | '004_grayDN_DFWB_s128w8_SwinIR-M_noise25.pth', '004_grayDN_DFWB_s128w8_SwinIR-M_noise50.pth',
63 | '005_colorDN_DFWB_s128w8_SwinIR-M_noise15.pth', '005_colorDN_DFWB_s128w8_SwinIR-M_noise25.pth',
64 | '005_colorDN_DFWB_s128w8_SwinIR-M_noise50.pth', '006_CAR_DFWB_s126w7_SwinIR-M_jpeg10.pth',
65 | '006_CAR_DFWB_s126w7_SwinIR-M_jpeg20.pth', '006_CAR_DFWB_s126w7_SwinIR-M_jpeg30.pth',
66 | '006_CAR_DFWB_s126w7_SwinIR-M_jpeg40.pth'],
67 | 'others': ['msrresnet_x4_psnr.pth', 'msrresnet_x4_gan.pth', 'imdn_x4.pth', 'RRDB.pth', 'ESRGAN.pth',
68 | 'FSSR_DPED.pth', 'FSSR_JPEG.pth', 'RealSR_DPED.pth', 'RealSR_JPEG.pth']
69 | }
70 |
71 | method_zoo = list(method_model_zoo.keys())
72 | model_zoo = []
73 | for b in list(method_model_zoo.values()):
74 | model_zoo += b
75 |
76 | if 'all' in args.models:
77 | for method in method_zoo:
78 | for model_name in method_model_zoo[method]:
79 | download_pretrained_model(args.model_dir, model_name)
80 | else:
81 | for method_model in args.models:
82 | if method_model in method_zoo: # method, need for loop
83 | for model_name in method_model_zoo[method_model]:
84 | if 'SwinIR' in model_name:
85 | download_pretrained_model(os.path.join(args.model_dir, 'swinir'), model_name)
86 | else:
87 | download_pretrained_model(args.model_dir, model_name)
88 | elif method_model in model_zoo: # model, do not need for loop
89 | if 'SwinIR' in method_model:
90 | download_pretrained_model(os.path.join(args.model_dir, 'swinir'), method_model)
91 | else:
92 | download_pretrained_model(args.model_dir, method_model)
93 | else:
94 | print(f'Do not find {method_model} from the pre-trained model zoo!')
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
--------------------------------------------------------------------------------
/main_test_bsrgan.py:
--------------------------------------------------------------------------------
1 | import os.path
2 | import logging
3 | import torch
4 |
5 | from utils import utils_logger
6 | from utils import utils_image as util
7 | # from utils import utils_model
8 | from models.network_rrdbnet import RRDBNet as net
9 |
10 |
11 | """
12 | Spyder (Python 3.6-3.7)
13 | PyTorch 1.4.0-1.8.1
14 | Windows 10 or Linux
15 | Kai Zhang (cskaizhang@gmail.com)
16 | github: https://github.com/cszn/BSRGAN
17 | https://github.com/cszn/KAIR
18 | If you have any question, please feel free to contact with me.
19 | Kai Zhang (e-mail: cskaizhang@gmail.com)
20 | by Kai Zhang ( March/2020 --> March/2021 --> )
21 | This work was previously submitted to CVPR2021.
22 |
23 | # --------------------------------------------
24 | @inproceedings{zhang2021designing,
25 | title={Designing a Practical Degradation Model for Deep Blind Image Super-Resolution},
26 | author={Zhang, Kai and Liang, Jingyun and Van Gool, Luc and Timofte, Radu},
27 | booktitle={arxiv},
28 | year={2021}
29 | }
30 | # --------------------------------------------
31 |
32 | """
33 |
34 |
35 | def main():
36 |
37 | utils_logger.logger_info('blind_sr_log', log_path='blind_sr_log.log')
38 | logger = logging.getLogger('blind_sr_log')
39 |
40 | # print(torch.__version__) # pytorch version
41 | # print(torch.version.cuda) # cuda version
42 | # print(torch.backends.cudnn.version()) # cudnn version
43 |
44 | testsets = 'testsets' # fixed, set path of testsets
45 | testset_Ls = ['RealSRSet'] # ['RealSRSet','DPED']
46 |
47 | model_names = ['RRDB','ESRGAN','FSSR_DPED','FSSR_JPEG','RealSR_DPED','RealSR_JPEG']
48 | model_names = ['BSRGAN'] # 'BSRGANx2' for scale factor 2
49 |
50 |
51 |
52 | save_results = True
53 | sf = 4
54 | device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
55 |
56 | for model_name in model_names:
57 | if model_name in ['BSRGANx2']:
58 | sf = 2
59 | model_path = os.path.join('model_zoo', model_name+'.pth') # set model path
60 | logger.info('{:>16s} : {:s}'.format('Model Name', model_name))
61 |
62 | # torch.cuda.set_device(0) # set GPU ID
63 | logger.info('{:>16s} : {:16s} : {:s}'.format('Input Path', L_path))
92 | logger.info('{:>16s} : {:s}'.format('Output Path', E_path))
93 | idx = 0
94 |
95 | for img in util.get_image_paths(L_path):
96 |
97 | # --------------------------------
98 | # (1) img_L
99 | # --------------------------------
100 | idx += 1
101 | img_name, ext = os.path.splitext(os.path.basename(img))
102 | logger.info('{:->4d} --> {: x{: {: [original link](https://github.com/xinntao/ESRGAN)
9 | * ESRGAN.pth ---> [original link](https://github.com/xinntao/ESRGAN)
10 | * FSSR_DPED.pth ---> [original link](https://github.com/ManuelFritsche/real-world-sr)
11 | * FSSR_DPED.pth ---> [original link](https://github.com/ManuelFritsche/real-world-sr)
12 | * RealSR_DPED.pth ---> [original link](https://github.com/jixiaozhong/RealSR)
13 | * RealSR_JPEG.pth ---> [original link](https://github.com/jixiaozhong/RealSR)
14 |
15 |
16 | * Github download link: https://github.com/cszn/KAIR/releases/tag/v1.0
17 | * Google drive download link: [https://drive.google.com/drive/folders/13kfr3qny7S2xwG9h7v95F5mkWs0OmU0D?usp=sharing](https://drive.google.com/drive/folders/13kfr3qny7S2xwG9h7v95F5mkWs0OmU0D?usp=sharing)
18 |
19 | * 腾讯微云下载链接: [https://share.weiyun.com/5qO32s3](https://share.weiyun.com/5qO32s3)
20 |
--------------------------------------------------------------------------------
/models/network_rrdbnet.py:
--------------------------------------------------------------------------------
1 | import functools
2 | import torch
3 | import torch.nn as nn
4 | import torch.nn.functional as F
5 | import torch.nn.init as init
6 |
7 |
8 | def initialize_weights(net_l, scale=1):
9 | if not isinstance(net_l, list):
10 | net_l = [net_l]
11 | for net in net_l:
12 | for m in net.modules():
13 | if isinstance(m, nn.Conv2d):
14 | init.kaiming_normal_(m.weight, a=0, mode='fan_in')
15 | m.weight.data *= scale # for residual block
16 | if m.bias is not None:
17 | m.bias.data.zero_()
18 | elif isinstance(m, nn.Linear):
19 | init.kaiming_normal_(m.weight, a=0, mode='fan_in')
20 | m.weight.data *= scale
21 | if m.bias is not None:
22 | m.bias.data.zero_()
23 | elif isinstance(m, nn.BatchNorm2d):
24 | init.constant_(m.weight, 1)
25 | init.constant_(m.bias.data, 0.0)
26 |
27 |
28 | def make_layer(block, n_layers):
29 | layers = []
30 | for _ in range(n_layers):
31 | layers.append(block())
32 | return nn.Sequential(*layers)
33 |
34 |
35 | class ResidualDenseBlock_5C(nn.Module):
36 | def __init__(self, nf=64, gc=32, bias=True):
37 | super(ResidualDenseBlock_5C, self).__init__()
38 | # gc: growth channel, i.e. intermediate channels
39 | self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias)
40 | self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias)
41 | self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias)
42 | self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias)
43 | self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias)
44 | self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
45 |
46 | # initialization
47 | initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
48 |
49 | def forward(self, x):
50 | x1 = self.lrelu(self.conv1(x))
51 | x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
52 | x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
53 | x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
54 | x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
55 | return x5 * 0.2 + x
56 |
57 |
58 | class RRDB(nn.Module):
59 | '''Residual in Residual Dense Block'''
60 |
61 | def __init__(self, nf, gc=32):
62 | super(RRDB, self).__init__()
63 | self.RDB1 = ResidualDenseBlock_5C(nf, gc)
64 | self.RDB2 = ResidualDenseBlock_5C(nf, gc)
65 | self.RDB3 = ResidualDenseBlock_5C(nf, gc)
66 |
67 | def forward(self, x):
68 | out = self.RDB1(x)
69 | out = self.RDB2(out)
70 | out = self.RDB3(out)
71 | return out * 0.2 + x
72 |
73 |
74 | class RRDBNet(nn.Module):
75 | def __init__(self, in_nc=3, out_nc=3, nf=64, nb=23, gc=32, sf=4):
76 | super(RRDBNet, self).__init__()
77 | RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
78 | self.sf = sf
79 | print([in_nc, out_nc, nf, nb, gc, sf])
80 |
81 | self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
82 | self.RRDB_trunk = make_layer(RRDB_block_f, nb)
83 | self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
84 | #### upsampling
85 | self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
86 | if self.sf==4:
87 | self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
88 | self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
89 | self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
90 |
91 | self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
92 |
93 | def forward(self, x):
94 | fea = self.conv_first(x)
95 | trunk = self.trunk_conv(self.RRDB_trunk(fea))
96 | fea = fea + trunk
97 |
98 | fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest')))
99 | if self.sf==4:
100 | fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest')))
101 | out = self.conv_last(self.lrelu(self.HRconv(fea)))
102 |
103 | return out
104 |
--------------------------------------------------------------------------------
/testsets/BSRGAN/Lincoln_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/BSRGAN/Lincoln_BSRGAN.png
--------------------------------------------------------------------------------
/testsets/BSRGAN/building_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/BSRGAN/building_BSRGAN.png
--------------------------------------------------------------------------------
/testsets/BSRGAN/butterfly2_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/BSRGAN/butterfly2_BSRGAN.png
--------------------------------------------------------------------------------
/testsets/BSRGAN/butterfly_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/BSRGAN/butterfly_BSRGAN.png
--------------------------------------------------------------------------------
/testsets/BSRGAN/chip_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/BSRGAN/chip_BSRGAN.png
--------------------------------------------------------------------------------
/testsets/BSRGAN/comic1_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/BSRGAN/comic1_BSRGAN.png
--------------------------------------------------------------------------------
/testsets/BSRGAN/comic2_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/BSRGAN/comic2_BSRGAN.png
--------------------------------------------------------------------------------
/testsets/BSRGAN/comic3_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/BSRGAN/comic3_BSRGAN.png
--------------------------------------------------------------------------------
/testsets/BSRGAN/computer_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/BSRGAN/computer_BSRGAN.png
--------------------------------------------------------------------------------
/testsets/BSRGAN/dog_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/BSRGAN/dog_BSRGAN.png
--------------------------------------------------------------------------------
/testsets/BSRGAN/dped_crop00061_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/BSRGAN/dped_crop00061_BSRGAN.png
--------------------------------------------------------------------------------
/testsets/BSRGAN/foreman_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/BSRGAN/foreman_BSRGAN.png
--------------------------------------------------------------------------------
/testsets/BSRGAN/frog_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/BSRGAN/frog_BSRGAN.png
--------------------------------------------------------------------------------
/testsets/BSRGAN/oldphoto2_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/BSRGAN/oldphoto2_BSRGAN.png
--------------------------------------------------------------------------------
/testsets/BSRGAN/oldphoto3_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/BSRGAN/oldphoto3_BSRGAN.png
--------------------------------------------------------------------------------
/testsets/BSRGAN/oldphoto6_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/BSRGAN/oldphoto6_BSRGAN.png
--------------------------------------------------------------------------------
/testsets/BSRGAN/painting_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/BSRGAN/painting_BSRGAN.png
--------------------------------------------------------------------------------
/testsets/BSRGAN/pattern_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/BSRGAN/pattern_BSRGAN.png
--------------------------------------------------------------------------------
/testsets/BSRGAN/ppt3_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/BSRGAN/ppt3_BSRGAN.png
--------------------------------------------------------------------------------
/testsets/BSRGAN/tiger_BSRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/BSRGAN/tiger_BSRGAN.png
--------------------------------------------------------------------------------
/testsets/ESRGAN/Lincoln_ESRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/ESRGAN/Lincoln_ESRGAN.png
--------------------------------------------------------------------------------
/testsets/ESRGAN/building_ESRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/ESRGAN/building_ESRGAN.png
--------------------------------------------------------------------------------
/testsets/ESRGAN/butterfly2_ESRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/ESRGAN/butterfly2_ESRGAN.png
--------------------------------------------------------------------------------
/testsets/ESRGAN/butterfly_ESRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/ESRGAN/butterfly_ESRGAN.png
--------------------------------------------------------------------------------
/testsets/ESRGAN/chip_ESRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/ESRGAN/chip_ESRGAN.png
--------------------------------------------------------------------------------
/testsets/ESRGAN/comic1_ESRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/ESRGAN/comic1_ESRGAN.png
--------------------------------------------------------------------------------
/testsets/ESRGAN/comic2_ESRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/ESRGAN/comic2_ESRGAN.png
--------------------------------------------------------------------------------
/testsets/ESRGAN/comic3_ESRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/ESRGAN/comic3_ESRGAN.png
--------------------------------------------------------------------------------
/testsets/ESRGAN/computer_ESRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/ESRGAN/computer_ESRGAN.png
--------------------------------------------------------------------------------
/testsets/ESRGAN/dog_ESRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/ESRGAN/dog_ESRGAN.png
--------------------------------------------------------------------------------
/testsets/ESRGAN/dped_crop00061_ESRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/ESRGAN/dped_crop00061_ESRGAN.png
--------------------------------------------------------------------------------
/testsets/ESRGAN/foreman_ESRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/ESRGAN/foreman_ESRGAN.png
--------------------------------------------------------------------------------
/testsets/ESRGAN/frog_ESRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/ESRGAN/frog_ESRGAN.png
--------------------------------------------------------------------------------
/testsets/ESRGAN/oldphoto2_ESRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/ESRGAN/oldphoto2_ESRGAN.png
--------------------------------------------------------------------------------
/testsets/ESRGAN/oldphoto3_ESRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/ESRGAN/oldphoto3_ESRGAN.png
--------------------------------------------------------------------------------
/testsets/ESRGAN/oldphoto6_ESRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/ESRGAN/oldphoto6_ESRGAN.png
--------------------------------------------------------------------------------
/testsets/ESRGAN/painting_ESRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/ESRGAN/painting_ESRGAN.png
--------------------------------------------------------------------------------
/testsets/ESRGAN/pattern_ESRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/ESRGAN/pattern_ESRGAN.png
--------------------------------------------------------------------------------
/testsets/ESRGAN/ppt3_ESRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/ESRGAN/ppt3_ESRGAN.png
--------------------------------------------------------------------------------
/testsets/ESRGAN/tiger_ESRGAN.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/ESRGAN/tiger_ESRGAN.png
--------------------------------------------------------------------------------
/testsets/README.md:
--------------------------------------------------------------------------------
1 |
2 |
3 | [RealSRSet](RealSRSet): 20 real low-resolution images
4 |
5 | RRDB/[ESRGAN](ESRGAN): https://github.com/xinntao/ESRGAN
6 |
7 | IKC: https://github.com/yuanjunchai/IKC
8 |
9 | FSSR_DPED/FSSR_JPEG: https://github.com/ManuelFritsche/real-world-sr
10 |
11 | RealSR_DPED/[RealSR_JPEG](RealSR_JPEG): https://github.com/jixiaozhong/RealSR
12 |
13 | BSRNet/[BSRGAN](BSRGAN): the trained models with the proposed degradation
14 |
--------------------------------------------------------------------------------
/testsets/RealSRSet/Lincoln.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSRSet/Lincoln.png
--------------------------------------------------------------------------------
/testsets/RealSRSet/building.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSRSet/building.png
--------------------------------------------------------------------------------
/testsets/RealSRSet/butterfly.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSRSet/butterfly.png
--------------------------------------------------------------------------------
/testsets/RealSRSet/butterfly2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSRSet/butterfly2.png
--------------------------------------------------------------------------------
/testsets/RealSRSet/chip.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSRSet/chip.png
--------------------------------------------------------------------------------
/testsets/RealSRSet/comic1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSRSet/comic1.png
--------------------------------------------------------------------------------
/testsets/RealSRSet/comic2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSRSet/comic2.png
--------------------------------------------------------------------------------
/testsets/RealSRSet/comic3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSRSet/comic3.png
--------------------------------------------------------------------------------
/testsets/RealSRSet/computer.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSRSet/computer.png
--------------------------------------------------------------------------------
/testsets/RealSRSet/dog.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSRSet/dog.png
--------------------------------------------------------------------------------
/testsets/RealSRSet/dped_crop00061.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSRSet/dped_crop00061.png
--------------------------------------------------------------------------------
/testsets/RealSRSet/foreman.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSRSet/foreman.png
--------------------------------------------------------------------------------
/testsets/RealSRSet/frog.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSRSet/frog.png
--------------------------------------------------------------------------------
/testsets/RealSRSet/oldphoto2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSRSet/oldphoto2.png
--------------------------------------------------------------------------------
/testsets/RealSRSet/oldphoto3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSRSet/oldphoto3.png
--------------------------------------------------------------------------------
/testsets/RealSRSet/oldphoto6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSRSet/oldphoto6.png
--------------------------------------------------------------------------------
/testsets/RealSRSet/painting.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSRSet/painting.png
--------------------------------------------------------------------------------
/testsets/RealSRSet/pattern.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSRSet/pattern.png
--------------------------------------------------------------------------------
/testsets/RealSRSet/ppt3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSRSet/ppt3.png
--------------------------------------------------------------------------------
/testsets/RealSRSet/tiger.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSRSet/tiger.png
--------------------------------------------------------------------------------
/testsets/RealSR_JPEG/Lincoln_RealSR_JPEG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSR_JPEG/Lincoln_RealSR_JPEG.png
--------------------------------------------------------------------------------
/testsets/RealSR_JPEG/building_RealSR_JPEG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSR_JPEG/building_RealSR_JPEG.png
--------------------------------------------------------------------------------
/testsets/RealSR_JPEG/butterfly2_RealSR_JPEG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSR_JPEG/butterfly2_RealSR_JPEG.png
--------------------------------------------------------------------------------
/testsets/RealSR_JPEG/butterfly_RealSR_JPEG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSR_JPEG/butterfly_RealSR_JPEG.png
--------------------------------------------------------------------------------
/testsets/RealSR_JPEG/chip_RealSR_JPEG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSR_JPEG/chip_RealSR_JPEG.png
--------------------------------------------------------------------------------
/testsets/RealSR_JPEG/comic1_RealSR_JPEG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSR_JPEG/comic1_RealSR_JPEG.png
--------------------------------------------------------------------------------
/testsets/RealSR_JPEG/comic2_RealSR_JPEG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSR_JPEG/comic2_RealSR_JPEG.png
--------------------------------------------------------------------------------
/testsets/RealSR_JPEG/comic3_RealSR_JPEG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSR_JPEG/comic3_RealSR_JPEG.png
--------------------------------------------------------------------------------
/testsets/RealSR_JPEG/computer_RealSR_JPEG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSR_JPEG/computer_RealSR_JPEG.png
--------------------------------------------------------------------------------
/testsets/RealSR_JPEG/dog_RealSR_JPEG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSR_JPEG/dog_RealSR_JPEG.png
--------------------------------------------------------------------------------
/testsets/RealSR_JPEG/dped_crop00061_RealSR_JPEG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSR_JPEG/dped_crop00061_RealSR_JPEG.png
--------------------------------------------------------------------------------
/testsets/RealSR_JPEG/foreman_RealSR_JPEG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSR_JPEG/foreman_RealSR_JPEG.png
--------------------------------------------------------------------------------
/testsets/RealSR_JPEG/frog_RealSR_JPEG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSR_JPEG/frog_RealSR_JPEG.png
--------------------------------------------------------------------------------
/testsets/RealSR_JPEG/oldphoto2_RealSR_JPEG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSR_JPEG/oldphoto2_RealSR_JPEG.png
--------------------------------------------------------------------------------
/testsets/RealSR_JPEG/oldphoto3_RealSR_JPEG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSR_JPEG/oldphoto3_RealSR_JPEG.png
--------------------------------------------------------------------------------
/testsets/RealSR_JPEG/oldphoto6_RealSR_JPEG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSR_JPEG/oldphoto6_RealSR_JPEG.png
--------------------------------------------------------------------------------
/testsets/RealSR_JPEG/painting_RealSR_JPEG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSR_JPEG/painting_RealSR_JPEG.png
--------------------------------------------------------------------------------
/testsets/RealSR_JPEG/pattern_RealSR_JPEG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSR_JPEG/pattern_RealSR_JPEG.png
--------------------------------------------------------------------------------
/testsets/RealSR_JPEG/ppt3_RealSR_JPEG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSR_JPEG/ppt3_RealSR_JPEG.png
--------------------------------------------------------------------------------
/testsets/RealSR_JPEG/tiger_RealSR_JPEG.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/testsets/RealSR_JPEG/tiger_RealSR_JPEG.png
--------------------------------------------------------------------------------
/utils/README.md:
--------------------------------------------------------------------------------
1 |
2 | # How to use the degradation model:
3 | ```python
4 | from utils import utils_blindsr as blindsr
5 | img_lq, img_hq = blindsr.degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.1, use_sharp=True, lq_patchsize=64)
6 | ```
7 |
8 |
--------------------------------------------------------------------------------
/utils/test.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cszn/BSRGAN/5ce1a9c6ae292f30ccfce4b597ecb73c70401733/utils/test.png
--------------------------------------------------------------------------------
/utils/utils_blindsr.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | import numpy as np
3 | import cv2
4 | import torch
5 |
6 | from utils import utils_image as util
7 |
8 | import random
9 | from scipy import ndimage
10 | import scipy
11 | import scipy.stats as ss
12 | from scipy.interpolate import interp2d
13 | from scipy.linalg import orth
14 |
15 |
16 |
17 |
18 | """
19 | # --------------------------------------------
20 | # Super-Resolution
21 | # --------------------------------------------
22 | #
23 | # Kai Zhang (cskaizhang@gmail.com)
24 | # https://github.com/cszn
25 | # From 2019/03--2021/08
26 | # --------------------------------------------
27 | """
28 |
29 | def modcrop_np(img, sf):
30 | '''
31 | Args:
32 | img: numpy image, WxH or WxHxC
33 | sf: scale factor
34 |
35 | Return:
36 | cropped image
37 | '''
38 | w, h = img.shape[:2]
39 | im = np.copy(img)
40 | return im[:w - w % sf, :h - h % sf, ...]
41 |
42 |
43 | """
44 | # --------------------------------------------
45 | # anisotropic Gaussian kernels
46 | # --------------------------------------------
47 | """
48 | def analytic_kernel(k):
49 | """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
50 | k_size = k.shape[0]
51 | # Calculate the big kernels size
52 | big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
53 | # Loop over the small kernel to fill the big one
54 | for r in range(k_size):
55 | for c in range(k_size):
56 | big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
57 | # Crop the edges of the big kernel to ignore very small values and increase run time of SR
58 | crop = k_size // 2
59 | cropped_big_k = big_k[crop:-crop, crop:-crop]
60 | # Normalize to 1
61 | return cropped_big_k / cropped_big_k.sum()
62 |
63 |
64 | def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
65 | """ generate an anisotropic Gaussian kernel
66 | Args:
67 | ksize : e.g., 15, kernel size
68 | theta : [0, pi], rotation angle range
69 | l1 : [0.1,50], scaling of eigenvalues
70 | l2 : [0.1,l1], scaling of eigenvalues
71 | If l1 = l2, will get an isotropic Gaussian kernel.
72 |
73 | Returns:
74 | k : kernel
75 | """
76 |
77 | v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
78 | V = np.array([[v[0], v[1]], [v[1], -v[0]]])
79 | D = np.array([[l1, 0], [0, l2]])
80 | Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
81 | k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
82 |
83 | return k
84 |
85 |
86 | def gm_blur_kernel(mean, cov, size=15):
87 | center = size / 2.0 + 0.5
88 | k = np.zeros([size, size])
89 | for y in range(size):
90 | for x in range(size):
91 | cy = y - center + 1
92 | cx = x - center + 1
93 | k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
94 |
95 | k = k / np.sum(k)
96 | return k
97 |
98 |
99 | def shift_pixel(x, sf, upper_left=True):
100 | """shift pixel for super-resolution with different scale factors
101 | Args:
102 | x: WxHxC or WxH
103 | sf: scale factor
104 | upper_left: shift direction
105 | """
106 | h, w = x.shape[:2]
107 | shift = (sf-1)*0.5
108 | xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
109 | if upper_left:
110 | x1 = xv + shift
111 | y1 = yv + shift
112 | else:
113 | x1 = xv - shift
114 | y1 = yv - shift
115 |
116 | x1 = np.clip(x1, 0, w-1)
117 | y1 = np.clip(y1, 0, h-1)
118 |
119 | if x.ndim == 2:
120 | x = interp2d(xv, yv, x)(x1, y1)
121 | if x.ndim == 3:
122 | for i in range(x.shape[-1]):
123 | x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
124 |
125 | return x
126 |
127 |
128 | def blur(x, k):
129 | '''
130 | x: image, NxcxHxW
131 | k: kernel, Nx1xhxw
132 | '''
133 | n, c = x.shape[:2]
134 | p1, p2 = (k.shape[-2]-1)//2, (k.shape[-1]-1)//2
135 | x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
136 | k = k.repeat(1,c,1,1)
137 | k = k.view(-1, 1, k.shape[2], k.shape[3])
138 | x = x.view(1, -1, x.shape[2], x.shape[3])
139 | x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n*c)
140 | x = x.view(n, c, x.shape[2], x.shape[3])
141 |
142 | return x
143 |
144 |
145 |
146 | def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
147 | """"
148 | # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
149 | # Kai Zhang
150 | # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
151 | # max_var = 2.5 * sf
152 | """
153 | # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
154 | lambda_1 = min_var + np.random.rand() * (max_var - min_var)
155 | lambda_2 = min_var + np.random.rand() * (max_var - min_var)
156 | theta = np.random.rand() * np.pi # random theta
157 | noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
158 |
159 | # Set COV matrix using Lambdas and Theta
160 | LAMBDA = np.diag([lambda_1, lambda_2])
161 | Q = np.array([[np.cos(theta), -np.sin(theta)],
162 | [np.sin(theta), np.cos(theta)]])
163 | SIGMA = Q @ LAMBDA @ Q.T
164 | INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
165 |
166 | # Set expectation position (shifting kernel for aligned image)
167 | MU = k_size // 2 - 0.5*(scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
168 | MU = MU[None, None, :, None]
169 |
170 | # Create meshgrid for Gaussian
171 | [X,Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
172 | Z = np.stack([X, Y], 2)[:, :, :, None]
173 |
174 | # Calcualte Gaussian for every pixel of the kernel
175 | ZZ = Z-MU
176 | ZZ_t = ZZ.transpose(0,1,3,2)
177 | raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
178 |
179 | # shift the kernel so it will be centered
180 | #raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
181 |
182 | # Normalize the kernel and return
183 | #kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
184 | kernel = raw_kernel / np.sum(raw_kernel)
185 | return kernel
186 |
187 |
188 | def fspecial_gaussian(hsize, sigma):
189 | hsize = [hsize, hsize]
190 | siz = [(hsize[0]-1.0)/2.0, (hsize[1]-1.0)/2.0]
191 | std = sigma
192 | [x, y] = np.meshgrid(np.arange(-siz[1], siz[1]+1), np.arange(-siz[0], siz[0]+1))
193 | arg = -(x*x + y*y)/(2*std*std)
194 | h = np.exp(arg)
195 | h[h < scipy.finfo(float).eps * h.max()] = 0
196 | sumh = h.sum()
197 | if sumh != 0:
198 | h = h/sumh
199 | return h
200 |
201 |
202 | def fspecial_laplacian(alpha):
203 | alpha = max([0, min([alpha,1])])
204 | h1 = alpha/(alpha+1)
205 | h2 = (1-alpha)/(alpha+1)
206 | h = [[h1, h2, h1], [h2, -4/(alpha+1), h2], [h1, h2, h1]]
207 | h = np.array(h)
208 | return h
209 |
210 |
211 | def fspecial(filter_type, *args, **kwargs):
212 | '''
213 | python code from:
214 | https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
215 | '''
216 | if filter_type == 'gaussian':
217 | return fspecial_gaussian(*args, **kwargs)
218 | if filter_type == 'laplacian':
219 | return fspecial_laplacian(*args, **kwargs)
220 |
221 | """
222 | # --------------------------------------------
223 | # degradation models
224 | # --------------------------------------------
225 | """
226 |
227 |
228 | def bicubic_degradation(x, sf=3):
229 | '''
230 | Args:
231 | x: HxWxC image, [0, 1]
232 | sf: down-scale factor
233 |
234 | Return:
235 | bicubicly downsampled LR image
236 | '''
237 | x = util.imresize_np(x, scale=1/sf)
238 | return x
239 |
240 |
241 | def srmd_degradation(x, k, sf=3):
242 | ''' blur + bicubic downsampling
243 |
244 | Args:
245 | x: HxWxC image, [0, 1]
246 | k: hxw, double
247 | sf: down-scale factor
248 |
249 | Return:
250 | downsampled LR image
251 |
252 | Reference:
253 | @inproceedings{zhang2018learning,
254 | title={Learning a single convolutional super-resolution network for multiple degradations},
255 | author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
256 | booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
257 | pages={3262--3271},
258 | year={2018}
259 | }
260 | '''
261 | x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
262 | x = bicubic_degradation(x, sf=sf)
263 | return x
264 |
265 |
266 | def dpsr_degradation(x, k, sf=3):
267 |
268 | ''' bicubic downsampling + blur
269 |
270 | Args:
271 | x: HxWxC image, [0, 1]
272 | k: hxw, double
273 | sf: down-scale factor
274 |
275 | Return:
276 | downsampled LR image
277 |
278 | Reference:
279 | @inproceedings{zhang2019deep,
280 | title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
281 | author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
282 | booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
283 | pages={1671--1681},
284 | year={2019}
285 | }
286 | '''
287 | x = bicubic_degradation(x, sf=sf)
288 | x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
289 | return x
290 |
291 |
292 | def classical_degradation(x, k, sf=3):
293 | ''' blur + downsampling
294 |
295 | Args:
296 | x: HxWxC image, [0, 1]/[0, 255]
297 | k: hxw, double
298 | sf: down-scale factor
299 |
300 | Return:
301 | downsampled LR image
302 | '''
303 | x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
304 | #x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
305 | st = 0
306 | return x[st::sf, st::sf, ...]
307 |
308 |
309 | def add_sharpening(img, weight=0.5, radius=50, threshold=10):
310 | """USM sharpening. borrowed from real-ESRGAN
311 | Input image: I; Blurry image: B.
312 | 1. K = I + weight * (I - B)
313 | 2. Mask = 1 if abs(I - B) > threshold, else: 0
314 | 3. Blur mask:
315 | 4. Out = Mask * K + (1 - Mask) * I
316 | Args:
317 | img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
318 | weight (float): Sharp weight. Default: 1.
319 | radius (float): Kernel size of Gaussian blur. Default: 50.
320 | threshold (int):
321 | """
322 | if radius % 2 == 0:
323 | radius += 1
324 | blur = cv2.GaussianBlur(img, (radius, radius), 0)
325 | residual = img - blur
326 | mask = np.abs(residual) * 255 > threshold
327 | mask = mask.astype('float32')
328 | soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
329 |
330 | K = img + weight * residual
331 | K = np.clip(K, 0, 1)
332 | return soft_mask * K + (1 - soft_mask) * img
333 |
334 |
335 | def add_blur(img, sf=4):
336 | wd2 = 4.0 + sf
337 | wd = 2.0 + 0.2*sf
338 | if random.random() < 0.5:
339 | l1 = wd2*random.random()
340 | l2 = wd2*random.random()
341 | k = anisotropic_Gaussian(ksize=2*random.randint(2,11)+3, theta=random.random()*np.pi, l1=l1, l2=l2)
342 | else:
343 | k = fspecial('gaussian', 2*random.randint(2,11)+3, wd*random.random())
344 | img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
345 |
346 | return img
347 |
348 |
349 | def add_resize(img, sf=4):
350 | rnum = np.random.rand()
351 | if rnum > 0.8: # up
352 | sf1 = random.uniform(1, 2)
353 | elif rnum < 0.7: # down
354 | sf1 = random.uniform(0.5/sf, 1)
355 | else:
356 | sf1 = 1.0
357 | img = cv2.resize(img, (int(sf1*img.shape[1]), int(sf1*img.shape[0])), interpolation=random.choice([1, 2, 3]))
358 | img = np.clip(img, 0.0, 1.0)
359 |
360 | return img
361 |
362 |
363 | def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
364 | noise_level = random.randint(noise_level1, noise_level2)
365 | rnum = np.random.rand()
366 | if rnum > 0.6: # add color Gaussian noise
367 | img += np.random.normal(0, noise_level/255.0, img.shape).astype(np.float32)
368 | elif rnum < 0.4: # add grayscale Gaussian noise
369 | img += np.random.normal(0, noise_level/255.0, (*img.shape[:2], 1)).astype(np.float32)
370 | else: # add noise
371 | L = noise_level2/255.
372 | D = np.diag(np.random.rand(3))
373 | U = orth(np.random.rand(3,3))
374 | conv = np.dot(np.dot(np.transpose(U), D), U)
375 | img += np.random.multivariate_normal([0,0,0], np.abs(L**2*conv), img.shape[:2]).astype(np.float32)
376 | img = np.clip(img, 0.0, 1.0)
377 | return img
378 |
379 |
380 | def add_speckle_noise(img, noise_level1=2, noise_level2=25):
381 | noise_level = random.randint(noise_level1, noise_level2)
382 | img = np.clip(img, 0.0, 1.0)
383 | rnum = random.random()
384 | if rnum > 0.6:
385 | img += img*np.random.normal(0, noise_level/255.0, img.shape).astype(np.float32)
386 | elif rnum < 0.4:
387 | img += img*np.random.normal(0, noise_level/255.0, (*img.shape[:2], 1)).astype(np.float32)
388 | else:
389 | L = noise_level2/255.
390 | D = np.diag(np.random.rand(3))
391 | U = orth(np.random.rand(3,3))
392 | conv = np.dot(np.dot(np.transpose(U), D), U)
393 | img += img*np.random.multivariate_normal([0,0,0], np.abs(L**2*conv), img.shape[:2]).astype(np.float32)
394 | img = np.clip(img, 0.0, 1.0)
395 | return img
396 |
397 |
398 | def add_Poisson_noise(img):
399 | img = np.clip((img * 255.0).round(), 0, 255) / 255.
400 | vals = 10**(2*random.random()+2.0) # [2, 4]
401 | if random.random() < 0.5:
402 | img = np.random.poisson(img * vals).astype(np.float32) / vals
403 | else:
404 | img_gray = np.dot(img[...,:3], [0.299, 0.587, 0.114])
405 | img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
406 | noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
407 | img += noise_gray[:, :, np.newaxis]
408 | img = np.clip(img, 0.0, 1.0)
409 | return img
410 |
411 |
412 | def add_JPEG_noise(img):
413 | quality_factor = random.randint(30, 95)
414 | img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
415 | result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
416 | img = cv2.imdecode(encimg, 1)
417 | img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
418 | return img
419 |
420 |
421 | def random_crop(lq, hq, sf=4, lq_patchsize=64):
422 | h, w = lq.shape[:2]
423 | rnd_h = random.randint(0, h-lq_patchsize)
424 | rnd_w = random.randint(0, w-lq_patchsize)
425 | lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
426 |
427 | rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
428 | hq = hq[rnd_h_H:rnd_h_H + lq_patchsize*sf, rnd_w_H:rnd_w_H + lq_patchsize*sf, :]
429 | return lq, hq
430 |
431 |
432 | def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
433 | """
434 | This is the degradation model of BSRGAN from the paper
435 | "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
436 | ----------
437 | img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
438 | sf: scale factor
439 | isp_model: camera ISP model
440 |
441 | Returns
442 | -------
443 | img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
444 | hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
445 | """
446 | isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
447 | sf_ori = sf
448 |
449 | h1, w1 = img.shape[:2]
450 | img = img.copy()[:h1 - h1 % sf, :w1 - w1 % sf, ...] # mod crop
451 | h, w = img.shape[:2]
452 |
453 | if h < lq_patchsize*sf or w < lq_patchsize*sf:
454 | raise ValueError(f'img size ({h1}X{w1}) is too small!')
455 |
456 | hq = img.copy()
457 |
458 | if sf == 4 and random.random() < scale2_prob: # downsample1
459 | if np.random.rand() < 0.5:
460 | img = cv2.resize(img, (int(1/2*img.shape[1]), int(1/2*img.shape[0])), interpolation=random.choice([1,2,3]))
461 | else:
462 | img = util.imresize_np(img, 1/2, True)
463 | img = np.clip(img, 0.0, 1.0)
464 | sf = 2
465 |
466 | shuffle_order = random.sample(range(7), 7)
467 | idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
468 | if idx1 > idx2: # keep downsample3 last
469 | shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
470 |
471 | for i in shuffle_order:
472 |
473 | if i == 0:
474 | img = add_blur(img, sf=sf)
475 |
476 | elif i == 1:
477 | img = add_blur(img, sf=sf)
478 |
479 | elif i == 2:
480 | a, b = img.shape[1], img.shape[0]
481 | # downsample2
482 | if random.random() < 0.75:
483 | sf1 = random.uniform(1,2*sf)
484 | img = cv2.resize(img, (int(1/sf1*img.shape[1]), int(1/sf1*img.shape[0])), interpolation=random.choice([1,2,3]))
485 | else:
486 | k = fspecial('gaussian', 25, random.uniform(0.1, 0.6*sf))
487 | k_shifted = shift_pixel(k, sf)
488 | k_shifted = k_shifted/k_shifted.sum() # blur with shifted kernel
489 | img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
490 | img = img[0::sf, 0::sf, ...] # nearest downsampling
491 | img = np.clip(img, 0.0, 1.0)
492 |
493 | elif i == 3:
494 | # downsample3
495 | img = cv2.resize(img, (int(1/sf*a), int(1/sf*b)), interpolation=random.choice([1,2,3]))
496 | img = np.clip(img, 0.0, 1.0)
497 |
498 | elif i == 4:
499 | # add Gaussian noise
500 | img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
501 |
502 | elif i == 5:
503 | # add JPEG noise
504 | if random.random() < jpeg_prob:
505 | img = add_JPEG_noise(img)
506 |
507 | elif i == 6:
508 | # add processed camera sensor noise
509 | if random.random() < isp_prob and isp_model is not None:
510 | with torch.no_grad():
511 | img, hq = isp_model.forward(img.copy(), hq)
512 |
513 | # add final JPEG compression noise
514 | img = add_JPEG_noise(img)
515 |
516 | # random crop
517 | img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
518 |
519 | return img, hq
520 |
521 |
522 |
523 |
524 | def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
525 | """
526 | This is an extended degradation model by combining
527 | the degradation models of BSRGAN and Real-ESRGAN
528 | ----------
529 | img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
530 | sf: scale factor
531 | use_shuffle: the degradation shuffle
532 | use_sharp: sharpening the img
533 |
534 | Returns
535 | -------
536 | img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
537 | hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
538 | """
539 |
540 | h1, w1 = img.shape[:2]
541 | img = img.copy()[:h1 - h1 % sf, :w1 - w1 % sf, ...] # mod crop
542 | h, w = img.shape[:2]
543 |
544 | if h < lq_patchsize*sf or w < lq_patchsize*sf:
545 | raise ValueError(f'img size ({h1}X{w1}) is too small!')
546 |
547 | if use_sharp:
548 | img = add_sharpening(img)
549 | hq = img.copy()
550 |
551 | if random.random() < shuffle_prob:
552 | shuffle_order = random.sample(range(13), 13)
553 | else:
554 | shuffle_order = list(range(13))
555 | # local shuffle for noise, JPEG is always the last one
556 | shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
557 | shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
558 |
559 | poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
560 |
561 | for i in shuffle_order:
562 | if i == 0:
563 | img = add_blur(img, sf=sf)
564 | elif i == 1:
565 | img = add_resize(img, sf=sf)
566 | elif i == 2:
567 | img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
568 | elif i == 3:
569 | if random.random() < poisson_prob:
570 | img = add_Poisson_noise(img)
571 | elif i == 4:
572 | if random.random() < speckle_prob:
573 | img = add_speckle_noise(img)
574 | elif i == 5:
575 | if random.random() < isp_prob and isp_model is not None:
576 | with torch.no_grad():
577 | img, hq = isp_model.forward(img.copy(), hq)
578 | elif i == 6:
579 | img = add_JPEG_noise(img)
580 | elif i == 7:
581 | img = add_blur(img, sf=sf)
582 | elif i == 8:
583 | img = add_resize(img, sf=sf)
584 | elif i == 9:
585 | img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
586 | elif i == 10:
587 | if random.random() < poisson_prob:
588 | img = add_Poisson_noise(img)
589 | elif i == 11:
590 | if random.random() < speckle_prob:
591 | img = add_speckle_noise(img)
592 | elif i == 12:
593 | if random.random() < isp_prob and isp_model is not None:
594 | with torch.no_grad():
595 | img, hq = isp_model.forward(img.copy(), hq)
596 | else:
597 | print('check the shuffle!')
598 |
599 | # resize to desired size
600 | img = cv2.resize(img, (int(1/sf*hq.shape[1]), int(1/sf*hq.shape[0])), interpolation=random.choice([1, 2, 3]))
601 |
602 | # add final JPEG compression noise
603 | img = add_JPEG_noise(img)
604 |
605 | # random crop
606 | img, hq = random_crop(img, hq, sf, lq_patchsize)
607 |
608 | return img, hq
609 |
610 |
611 |
612 | if __name__ == '__main__':
613 | img = util.imread_uint('utils/test.png', 3)
614 | img = util.uint2single(img)
615 | sf = 4
616 |
617 | for i in range(20):
618 | img_lq, img_hq = degradation_bsrgan(img, sf=sf, lq_patchsize=72)
619 | print(i)
620 | lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf*img_lq.shape[1]), int(sf*img_lq.shape[0])), interpolation=0)
621 | img_concat = np.concatenate([lq_nearest, util.single2uint(img_hq)], axis=1)
622 | util.imsave(img_concat, str(i)+'.png')
623 |
624 | # for i in range(10):
625 | # img_lq, img_hq = degradation_bsrgan_plus(img, sf=sf, shuffle_prob=0.1, use_sharp=True, lq_patchsize=64)
626 | # print(i)
627 | # lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf*img_lq.shape[1]), int(sf*img_lq.shape[0])), interpolation=0)
628 | # img_concat = np.concatenate([lq_nearest, util.single2uint(img_hq)], axis=1)
629 | # util.imsave(img_concat, str(i)+'.png')
630 |
631 | # run utils/utils_blindsr.py
632 |
--------------------------------------------------------------------------------
/utils/utils_googledownload.py:
--------------------------------------------------------------------------------
1 | import math
2 | import requests
3 | from tqdm import tqdm
4 |
5 |
6 | '''
7 | borrowed from
8 | https://github.com/xinntao/BasicSR/blob/28883e15eedc3381d23235ff3cf7c454c4be87e6/basicsr/utils/download_util.py
9 | '''
10 |
11 |
12 | def sizeof_fmt(size, suffix='B'):
13 | """Get human readable file size.
14 | Args:
15 | size (int): File size.
16 | suffix (str): Suffix. Default: 'B'.
17 | Return:
18 | str: Formated file siz.
19 | """
20 | for unit in ['', 'K', 'M', 'G', 'T', 'P', 'E', 'Z']:
21 | if abs(size) < 1024.0:
22 | return f'{size:3.1f} {unit}{suffix}'
23 | size /= 1024.0
24 | return f'{size:3.1f} Y{suffix}'
25 |
26 |
27 | def download_file_from_google_drive(file_id, save_path):
28 | """Download files from google drive.
29 | Ref:
30 | https://stackoverflow.com/questions/25010369/wget-curl-large-file-from-google-drive # noqa E501
31 | Args:
32 | file_id (str): File id.
33 | save_path (str): Save path.
34 | """
35 |
36 | session = requests.Session()
37 | URL = 'https://docs.google.com/uc?export=download'
38 | params = {'id': file_id}
39 |
40 | response = session.get(URL, params=params, stream=True)
41 | token = get_confirm_token(response)
42 | if token:
43 | params['confirm'] = token
44 | response = session.get(URL, params=params, stream=True)
45 |
46 | # get file size
47 | response_file_size = session.get(
48 | URL, params=params, stream=True, headers={'Range': 'bytes=0-2'})
49 | if 'Content-Range' in response_file_size.headers:
50 | file_size = int(
51 | response_file_size.headers['Content-Range'].split('/')[1])
52 | else:
53 | file_size = None
54 |
55 | save_response_content(response, save_path, file_size)
56 |
57 |
58 | def get_confirm_token(response):
59 | for key, value in response.cookies.items():
60 | if key.startswith('download_warning'):
61 | return value
62 | return None
63 |
64 |
65 | def save_response_content(response,
66 | destination,
67 | file_size=None,
68 | chunk_size=32768):
69 | if file_size is not None:
70 | pbar = tqdm(total=math.ceil(file_size / chunk_size), unit='chunk')
71 |
72 | readable_file_size = sizeof_fmt(file_size)
73 | else:
74 | pbar = None
75 |
76 | with open(destination, 'wb') as f:
77 | downloaded_size = 0
78 | for chunk in response.iter_content(chunk_size):
79 | downloaded_size += chunk_size
80 | if pbar is not None:
81 | pbar.update(1)
82 | pbar.set_description(f'Download {sizeof_fmt(downloaded_size)} '
83 | f'/ {readable_file_size}')
84 | if chunk: # filter out keep-alive new chunks
85 | f.write(chunk)
86 | if pbar is not None:
87 | pbar.close()
88 |
89 |
90 | if __name__ == "__main__":
91 | file_id = '1WNULM1e8gRNvsngVscsQ8tpaOqJ4mYtv'
92 | save_path = 'BSRGAN.pth'
93 | download_file_from_google_drive(file_id, save_path)
94 |
--------------------------------------------------------------------------------
/utils/utils_image.py:
--------------------------------------------------------------------------------
1 | import os
2 | import math
3 | import random
4 | import numpy as np
5 | import torch
6 | import cv2
7 | from torchvision.utils import make_grid
8 | from datetime import datetime
9 | # import torchvision.transforms as transforms
10 | import matplotlib.pyplot as plt
11 | from mpl_toolkits.mplot3d import Axes3D
12 | os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
13 |
14 |
15 | '''
16 | # --------------------------------------------
17 | # Kai Zhang (github: https://github.com/cszn)
18 | # 03/Mar/2019
19 | # --------------------------------------------
20 | # https://github.com/twhui/SRGAN-pyTorch
21 | # https://github.com/xinntao/BasicSR
22 | # --------------------------------------------
23 | '''
24 |
25 |
26 | IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
27 |
28 |
29 | def is_image_file(filename):
30 | return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
31 |
32 |
33 | def get_timestamp():
34 | return datetime.now().strftime('%y%m%d-%H%M%S')
35 |
36 |
37 | def imshow(x, title=None, cbar=False, figsize=None):
38 | plt.figure(figsize=figsize)
39 | plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
40 | if title:
41 | plt.title(title)
42 | if cbar:
43 | plt.colorbar()
44 | plt.show()
45 |
46 |
47 | def surf(Z, cmap='rainbow', figsize=None):
48 | plt.figure(figsize=figsize)
49 | ax3 = plt.axes(projection='3d')
50 |
51 | w, h = Z.shape[:2]
52 | xx = np.arange(0,w,1)
53 | yy = np.arange(0,h,1)
54 | X, Y = np.meshgrid(xx, yy)
55 | ax3.plot_surface(X,Y,Z,cmap=cmap)
56 | #ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
57 | plt.show()
58 |
59 |
60 | '''
61 | # --------------------------------------------
62 | # get image pathes
63 | # --------------------------------------------
64 | '''
65 |
66 |
67 | def get_image_paths(dataroot):
68 | paths = None # return None if dataroot is None
69 | if dataroot is not None:
70 | paths = sorted(_get_paths_from_images(dataroot))
71 | return paths
72 |
73 |
74 | def _get_paths_from_images(path):
75 | assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
76 | images = []
77 | for dirpath, _, fnames in sorted(os.walk(path)):
78 | for fname in sorted(fnames):
79 | if is_image_file(fname):
80 | img_path = os.path.join(dirpath, fname)
81 | images.append(img_path)
82 | assert images, '{:s} has no valid image file'.format(path)
83 | return images
84 |
85 |
86 | '''
87 | # --------------------------------------------
88 | # split large images into small images
89 | # --------------------------------------------
90 | '''
91 |
92 |
93 | def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
94 | w, h = img.shape[:2]
95 | patches = []
96 | if w > p_max and h > p_max:
97 | w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
98 | h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
99 | w1.append(w-p_size)
100 | h1.append(h-p_size)
101 | # print(w1)
102 | # print(h1)
103 | for i in w1:
104 | for j in h1:
105 | patches.append(img[i:i+p_size, j:j+p_size,:])
106 | else:
107 | patches.append(img)
108 |
109 | return patches
110 |
111 |
112 | def imssave(imgs, img_path):
113 | """
114 | imgs: list, N images of size WxHxC
115 | """
116 | img_name, ext = os.path.splitext(os.path.basename(img_path))
117 |
118 | for i, img in enumerate(imgs):
119 | if img.ndim == 3:
120 | img = img[:, :, [2, 1, 0]]
121 | new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
122 | cv2.imwrite(new_path, img)
123 |
124 |
125 | def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
126 | """
127 | split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
128 | and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
129 | will be splitted.
130 |
131 | Args:
132 | original_dataroot:
133 | taget_dataroot:
134 | p_size: size of small images
135 | p_overlap: patch size in training is a good choice
136 | p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
137 | """
138 | paths = get_image_paths(original_dataroot)
139 | for img_path in paths:
140 | # img_name, ext = os.path.splitext(os.path.basename(img_path))
141 | img = imread_uint(img_path, n_channels=n_channels)
142 | patches = patches_from_image(img, p_size, p_overlap, p_max)
143 | imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
144 | #if original_dataroot == taget_dataroot:
145 | #del img_path
146 |
147 | '''
148 | # --------------------------------------------
149 | # makedir
150 | # --------------------------------------------
151 | '''
152 |
153 |
154 | def mkdir(path):
155 | if not os.path.exists(path):
156 | os.makedirs(path)
157 |
158 |
159 | def mkdirs(paths):
160 | if isinstance(paths, str):
161 | mkdir(paths)
162 | else:
163 | for path in paths:
164 | mkdir(path)
165 |
166 |
167 | def mkdir_and_rename(path):
168 | if os.path.exists(path):
169 | new_name = path + '_archived_' + get_timestamp()
170 | print('Path already exists. Rename it to [{:s}]'.format(new_name))
171 | os.rename(path, new_name)
172 | os.makedirs(path)
173 |
174 |
175 | '''
176 | # --------------------------------------------
177 | # read image from path
178 | # opencv is fast, but read BGR numpy image
179 | # --------------------------------------------
180 | '''
181 |
182 |
183 | # --------------------------------------------
184 | # get uint8 image of size HxWxn_channles (RGB)
185 | # --------------------------------------------
186 | def imread_uint(path, n_channels=3):
187 | # input: path
188 | # output: HxWx3(RGB or GGG), or HxWx1 (G)
189 | if n_channels == 1:
190 | img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE
191 | img = np.expand_dims(img, axis=2) # HxWx1
192 | elif n_channels == 3:
193 | img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G
194 | if img.ndim == 2:
195 | img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG
196 | else:
197 | img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB
198 | return img
199 |
200 |
201 | # --------------------------------------------
202 | # matlab's imwrite
203 | # --------------------------------------------
204 | def imsave(img, img_path):
205 | img = np.squeeze(img)
206 | if img.ndim == 3:
207 | img = img[:, :, [2, 1, 0]]
208 | cv2.imwrite(img_path, img)
209 |
210 | def imwrite(img, img_path):
211 | img = np.squeeze(img)
212 | if img.ndim == 3:
213 | img = img[:, :, [2, 1, 0]]
214 | cv2.imwrite(img_path, img)
215 |
216 |
217 |
218 | # --------------------------------------------
219 | # get single image of size HxWxn_channles (BGR)
220 | # --------------------------------------------
221 | def read_img(path):
222 | # read image by cv2
223 | # return: Numpy float32, HWC, BGR, [0,1]
224 | img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE
225 | img = img.astype(np.float32) / 255.
226 | if img.ndim == 2:
227 | img = np.expand_dims(img, axis=2)
228 | # some images have 4 channels
229 | if img.shape[2] > 3:
230 | img = img[:, :, :3]
231 | return img
232 |
233 |
234 | '''
235 | # --------------------------------------------
236 | # image format conversion
237 | # --------------------------------------------
238 | # numpy(single) <---> numpy(unit)
239 | # numpy(single) <---> tensor
240 | # numpy(unit) <---> tensor
241 | # --------------------------------------------
242 | '''
243 |
244 |
245 | # --------------------------------------------
246 | # numpy(single) [0, 1] <---> numpy(unit)
247 | # --------------------------------------------
248 |
249 |
250 | def uint2single(img):
251 |
252 | return np.float32(img/255.)
253 |
254 |
255 | def single2uint(img):
256 |
257 | return np.uint8((img.clip(0, 1)*255.).round())
258 |
259 |
260 | def uint162single(img):
261 |
262 | return np.float32(img/65535.)
263 |
264 |
265 | def single2uint16(img):
266 |
267 | return np.uint16((img.clip(0, 1)*65535.).round())
268 |
269 |
270 | # --------------------------------------------
271 | # numpy(unit) (HxWxC or HxW) <---> tensor
272 | # --------------------------------------------
273 |
274 |
275 | # convert uint to 4-dimensional torch tensor
276 | def uint2tensor4(img):
277 | if img.ndim == 2:
278 | img = np.expand_dims(img, axis=2)
279 | return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
280 |
281 |
282 | # convert uint to 3-dimensional torch tensor
283 | def uint2tensor3(img):
284 | if img.ndim == 2:
285 | img = np.expand_dims(img, axis=2)
286 | return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
287 |
288 |
289 | # convert 2/3/4-dimensional torch tensor to uint
290 | def tensor2uint(img):
291 | img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
292 | if img.ndim == 3:
293 | img = np.transpose(img, (1, 2, 0))
294 | return np.uint8((img*255.0).round())
295 |
296 |
297 | # --------------------------------------------
298 | # numpy(single) (HxWxC) <---> tensor
299 | # --------------------------------------------
300 |
301 |
302 | # convert single (HxWxC) to 3-dimensional torch tensor
303 | def single2tensor3(img):
304 | return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
305 |
306 |
307 | # convert single (HxWxC) to 4-dimensional torch tensor
308 | def single2tensor4(img):
309 | return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
310 |
311 |
312 | # convert torch tensor to single
313 | def tensor2single(img):
314 | img = img.data.squeeze().float().cpu().numpy()
315 | if img.ndim == 3:
316 | img = np.transpose(img, (1, 2, 0))
317 |
318 | return img
319 |
320 | # convert torch tensor to single
321 | def tensor2single3(img):
322 | img = img.data.squeeze().float().cpu().numpy()
323 | if img.ndim == 3:
324 | img = np.transpose(img, (1, 2, 0))
325 | elif img.ndim == 2:
326 | img = np.expand_dims(img, axis=2)
327 | return img
328 |
329 |
330 | def single2tensor5(img):
331 | return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
332 |
333 |
334 | def single32tensor5(img):
335 | return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
336 |
337 |
338 | def single42tensor4(img):
339 | return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
340 |
341 |
342 | # from skimage.io import imread, imsave
343 | def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
344 | '''
345 | Converts a torch Tensor into an image Numpy array of BGR channel order
346 | Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
347 | Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
348 | '''
349 | tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
350 | tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
351 | n_dim = tensor.dim()
352 | if n_dim == 4:
353 | n_img = len(tensor)
354 | img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
355 | img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
356 | elif n_dim == 3:
357 | img_np = tensor.numpy()
358 | img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
359 | elif n_dim == 2:
360 | img_np = tensor.numpy()
361 | else:
362 | raise TypeError(
363 | 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
364 | if out_type == np.uint8:
365 | img_np = (img_np * 255.0).round()
366 | # Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
367 | return img_np.astype(out_type)
368 |
369 |
370 | '''
371 | # --------------------------------------------
372 | # Augmentation, flipe and/or rotate
373 | # --------------------------------------------
374 | # The following two are enough.
375 | # (1) augmet_img: numpy image of WxHxC or WxH
376 | # (2) augment_img_tensor4: tensor image 1xCxWxH
377 | # --------------------------------------------
378 | '''
379 |
380 |
381 | def augment_img(img, mode=0):
382 | '''Kai Zhang (github: https://github.com/cszn)
383 | '''
384 | if mode == 0:
385 | return img
386 | elif mode == 1:
387 | return np.flipud(np.rot90(img))
388 | elif mode == 2:
389 | return np.flipud(img)
390 | elif mode == 3:
391 | return np.rot90(img, k=3)
392 | elif mode == 4:
393 | return np.flipud(np.rot90(img, k=2))
394 | elif mode == 5:
395 | return np.rot90(img)
396 | elif mode == 6:
397 | return np.rot90(img, k=2)
398 | elif mode == 7:
399 | return np.flipud(np.rot90(img, k=3))
400 |
401 |
402 | def augment_img_tensor4(img, mode=0):
403 | '''Kai Zhang (github: https://github.com/cszn)
404 | '''
405 | if mode == 0:
406 | return img
407 | elif mode == 1:
408 | return img.rot90(1, [2, 3]).flip([2])
409 | elif mode == 2:
410 | return img.flip([2])
411 | elif mode == 3:
412 | return img.rot90(3, [2, 3])
413 | elif mode == 4:
414 | return img.rot90(2, [2, 3]).flip([2])
415 | elif mode == 5:
416 | return img.rot90(1, [2, 3])
417 | elif mode == 6:
418 | return img.rot90(2, [2, 3])
419 | elif mode == 7:
420 | return img.rot90(3, [2, 3]).flip([2])
421 |
422 |
423 | def augment_img_tensor(img, mode=0):
424 | '''Kai Zhang (github: https://github.com/cszn)
425 | '''
426 | img_size = img.size()
427 | img_np = img.data.cpu().numpy()
428 | if len(img_size) == 3:
429 | img_np = np.transpose(img_np, (1, 2, 0))
430 | elif len(img_size) == 4:
431 | img_np = np.transpose(img_np, (2, 3, 1, 0))
432 | img_np = augment_img(img_np, mode=mode)
433 | img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
434 | if len(img_size) == 3:
435 | img_tensor = img_tensor.permute(2, 0, 1)
436 | elif len(img_size) == 4:
437 | img_tensor = img_tensor.permute(3, 2, 0, 1)
438 |
439 | return img_tensor.type_as(img)
440 |
441 |
442 | def augment_img_np3(img, mode=0):
443 | if mode == 0:
444 | return img
445 | elif mode == 1:
446 | return img.transpose(1, 0, 2)
447 | elif mode == 2:
448 | return img[::-1, :, :]
449 | elif mode == 3:
450 | img = img[::-1, :, :]
451 | img = img.transpose(1, 0, 2)
452 | return img
453 | elif mode == 4:
454 | return img[:, ::-1, :]
455 | elif mode == 5:
456 | img = img[:, ::-1, :]
457 | img = img.transpose(1, 0, 2)
458 | return img
459 | elif mode == 6:
460 | img = img[:, ::-1, :]
461 | img = img[::-1, :, :]
462 | return img
463 | elif mode == 7:
464 | img = img[:, ::-1, :]
465 | img = img[::-1, :, :]
466 | img = img.transpose(1, 0, 2)
467 | return img
468 |
469 |
470 | def augment_imgs(img_list, hflip=True, rot=True):
471 | # horizontal flip OR rotate
472 | hflip = hflip and random.random() < 0.5
473 | vflip = rot and random.random() < 0.5
474 | rot90 = rot and random.random() < 0.5
475 |
476 | def _augment(img):
477 | if hflip:
478 | img = img[:, ::-1, :]
479 | if vflip:
480 | img = img[::-1, :, :]
481 | if rot90:
482 | img = img.transpose(1, 0, 2)
483 | return img
484 |
485 | return [_augment(img) for img in img_list]
486 |
487 |
488 | '''
489 | # --------------------------------------------
490 | # modcrop and shave
491 | # --------------------------------------------
492 | '''
493 |
494 |
495 | def modcrop(img_in, scale):
496 | # img_in: Numpy, HWC or HW
497 | img = np.copy(img_in)
498 | if img.ndim == 2:
499 | H, W = img.shape
500 | H_r, W_r = H % scale, W % scale
501 | img = img[:H - H_r, :W - W_r]
502 | elif img.ndim == 3:
503 | H, W, C = img.shape
504 | H_r, W_r = H % scale, W % scale
505 | img = img[:H - H_r, :W - W_r, :]
506 | else:
507 | raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
508 | return img
509 |
510 |
511 | def shave(img_in, border=0):
512 | # img_in: Numpy, HWC or HW
513 | img = np.copy(img_in)
514 | h, w = img.shape[:2]
515 | img = img[border:h-border, border:w-border]
516 | return img
517 |
518 |
519 | '''
520 | # --------------------------------------------
521 | # image processing process on numpy image
522 | # channel_convert(in_c, tar_type, img_list):
523 | # rgb2ycbcr(img, only_y=True):
524 | # bgr2ycbcr(img, only_y=True):
525 | # ycbcr2rgb(img):
526 | # --------------------------------------------
527 | '''
528 |
529 |
530 | def rgb2ycbcr(img, only_y=True):
531 | '''same as matlab rgb2ycbcr
532 | only_y: only return Y channel
533 | Input:
534 | uint8, [0, 255]
535 | float, [0, 1]
536 | '''
537 | in_img_type = img.dtype
538 | img.astype(np.float32)
539 | if in_img_type != np.uint8:
540 | img *= 255.
541 | # convert
542 | if only_y:
543 | rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
544 | else:
545 | rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
546 | [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
547 | if in_img_type == np.uint8:
548 | rlt = rlt.round()
549 | else:
550 | rlt /= 255.
551 | return rlt.astype(in_img_type)
552 |
553 |
554 | def ycbcr2rgb(img):
555 | '''same as matlab ycbcr2rgb
556 | Input:
557 | uint8, [0, 255]
558 | float, [0, 1]
559 | '''
560 | in_img_type = img.dtype
561 | img.astype(np.float32)
562 | if in_img_type != np.uint8:
563 | img *= 255.
564 | # convert
565 | rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
566 | [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
567 | if in_img_type == np.uint8:
568 | rlt = rlt.round()
569 | else:
570 | rlt /= 255.
571 | return rlt.astype(in_img_type)
572 |
573 |
574 | def bgr2ycbcr(img, only_y=True):
575 | '''bgr version of rgb2ycbcr
576 | only_y: only return Y channel
577 | Input:
578 | uint8, [0, 255]
579 | float, [0, 1]
580 | '''
581 | in_img_type = img.dtype
582 | img.astype(np.float32)
583 | if in_img_type != np.uint8:
584 | img *= 255.
585 | # convert
586 | if only_y:
587 | rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
588 | else:
589 | rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
590 | [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
591 | if in_img_type == np.uint8:
592 | rlt = rlt.round()
593 | else:
594 | rlt /= 255.
595 | return rlt.astype(in_img_type)
596 |
597 |
598 | def channel_convert(in_c, tar_type, img_list):
599 | # conversion among BGR, gray and y
600 | if in_c == 3 and tar_type == 'gray': # BGR to gray
601 | gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
602 | return [np.expand_dims(img, axis=2) for img in gray_list]
603 | elif in_c == 3 and tar_type == 'y': # BGR to y
604 | y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
605 | return [np.expand_dims(img, axis=2) for img in y_list]
606 | elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR
607 | return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
608 | else:
609 | return img_list
610 |
611 |
612 | '''
613 | # --------------------------------------------
614 | # metric, PSNR and SSIM
615 | # --------------------------------------------
616 | '''
617 |
618 |
619 | # --------------------------------------------
620 | # PSNR
621 | # --------------------------------------------
622 | def calculate_psnr(img1, img2, border=0):
623 | # img1 and img2 have range [0, 255]
624 | #img1 = img1.squeeze()
625 | #img2 = img2.squeeze()
626 | if not img1.shape == img2.shape:
627 | raise ValueError('Input images must have the same dimensions.')
628 | h, w = img1.shape[:2]
629 | img1 = img1[border:h-border, border:w-border]
630 | img2 = img2[border:h-border, border:w-border]
631 |
632 | img1 = img1.astype(np.float64)
633 | img2 = img2.astype(np.float64)
634 | mse = np.mean((img1 - img2)**2)
635 | if mse == 0:
636 | return float('inf')
637 | return 20 * math.log10(255.0 / math.sqrt(mse))
638 |
639 |
640 | # --------------------------------------------
641 | # SSIM
642 | # --------------------------------------------
643 | def calculate_ssim(img1, img2, border=0):
644 | '''calculate SSIM
645 | the same outputs as MATLAB's
646 | img1, img2: [0, 255]
647 | '''
648 | #img1 = img1.squeeze()
649 | #img2 = img2.squeeze()
650 | if not img1.shape == img2.shape:
651 | raise ValueError('Input images must have the same dimensions.')
652 | h, w = img1.shape[:2]
653 | img1 = img1[border:h-border, border:w-border]
654 | img2 = img2[border:h-border, border:w-border]
655 |
656 | if img1.ndim == 2:
657 | return ssim(img1, img2)
658 | elif img1.ndim == 3:
659 | if img1.shape[2] == 3:
660 | ssims = []
661 | for i in range(3):
662 | ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
663 | return np.array(ssims).mean()
664 | elif img1.shape[2] == 1:
665 | return ssim(np.squeeze(img1), np.squeeze(img2))
666 | else:
667 | raise ValueError('Wrong input image dimensions.')
668 |
669 |
670 | def ssim(img1, img2):
671 | C1 = (0.01 * 255)**2
672 | C2 = (0.03 * 255)**2
673 |
674 | img1 = img1.astype(np.float64)
675 | img2 = img2.astype(np.float64)
676 | kernel = cv2.getGaussianKernel(11, 1.5)
677 | window = np.outer(kernel, kernel.transpose())
678 |
679 | mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
680 | mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
681 | mu1_sq = mu1**2
682 | mu2_sq = mu2**2
683 | mu1_mu2 = mu1 * mu2
684 | sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
685 | sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
686 | sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
687 |
688 | ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
689 | (sigma1_sq + sigma2_sq + C2))
690 | return ssim_map.mean()
691 |
692 |
693 | '''
694 | # --------------------------------------------
695 | # matlab's bicubic imresize (numpy and torch) [0, 1]
696 | # --------------------------------------------
697 | '''
698 |
699 |
700 | # matlab 'imresize' function, now only support 'bicubic'
701 | def cubic(x):
702 | absx = torch.abs(x)
703 | absx2 = absx**2
704 | absx3 = absx**3
705 | return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
706 | (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
707 |
708 |
709 | def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
710 | if (scale < 1) and (antialiasing):
711 | # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
712 | kernel_width = kernel_width / scale
713 |
714 | # Output-space coordinates
715 | x = torch.linspace(1, out_length, out_length)
716 |
717 | # Input-space coordinates. Calculate the inverse mapping such that 0.5
718 | # in output space maps to 0.5 in input space, and 0.5+scale in output
719 | # space maps to 1.5 in input space.
720 | u = x / scale + 0.5 * (1 - 1 / scale)
721 |
722 | # What is the left-most pixel that can be involved in the computation?
723 | left = torch.floor(u - kernel_width / 2)
724 |
725 | # What is the maximum number of pixels that can be involved in the
726 | # computation? Note: it's OK to use an extra pixel here; if the
727 | # corresponding weights are all zero, it will be eliminated at the end
728 | # of this function.
729 | P = math.ceil(kernel_width) + 2
730 |
731 | # The indices of the input pixels involved in computing the k-th output
732 | # pixel are in row k of the indices matrix.
733 | indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
734 | 1, P).expand(out_length, P)
735 |
736 | # The weights used to compute the k-th output pixel are in row k of the
737 | # weights matrix.
738 | distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
739 | # apply cubic kernel
740 | if (scale < 1) and (antialiasing):
741 | weights = scale * cubic(distance_to_center * scale)
742 | else:
743 | weights = cubic(distance_to_center)
744 | # Normalize the weights matrix so that each row sums to 1.
745 | weights_sum = torch.sum(weights, 1).view(out_length, 1)
746 | weights = weights / weights_sum.expand(out_length, P)
747 |
748 | # If a column in weights is all zero, get rid of it. only consider the first and last column.
749 | weights_zero_tmp = torch.sum((weights == 0), 0)
750 | if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
751 | indices = indices.narrow(1, 1, P - 2)
752 | weights = weights.narrow(1, 1, P - 2)
753 | if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
754 | indices = indices.narrow(1, 0, P - 2)
755 | weights = weights.narrow(1, 0, P - 2)
756 | weights = weights.contiguous()
757 | indices = indices.contiguous()
758 | sym_len_s = -indices.min() + 1
759 | sym_len_e = indices.max() - in_length
760 | indices = indices + sym_len_s - 1
761 | return weights, indices, int(sym_len_s), int(sym_len_e)
762 |
763 |
764 | # --------------------------------------------
765 | # imresize for tensor image [0, 1]
766 | # --------------------------------------------
767 | def imresize(img, scale, antialiasing=True):
768 | # Now the scale should be the same for H and W
769 | # input: img: pytorch tensor, CHW or HW [0,1]
770 | # output: CHW or HW [0,1] w/o round
771 | need_squeeze = True if img.dim() == 2 else False
772 | if need_squeeze:
773 | img.unsqueeze_(0)
774 | in_C, in_H, in_W = img.size()
775 | out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
776 | kernel_width = 4
777 | kernel = 'cubic'
778 |
779 | # Return the desired dimension order for performing the resize. The
780 | # strategy is to perform the resize first along the dimension with the
781 | # smallest scale factor.
782 | # Now we do not support this.
783 |
784 | # get weights and indices
785 | weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
786 | in_H, out_H, scale, kernel, kernel_width, antialiasing)
787 | weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
788 | in_W, out_W, scale, kernel, kernel_width, antialiasing)
789 | # process H dimension
790 | # symmetric copying
791 | img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
792 | img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
793 |
794 | sym_patch = img[:, :sym_len_Hs, :]
795 | inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
796 | sym_patch_inv = sym_patch.index_select(1, inv_idx)
797 | img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
798 |
799 | sym_patch = img[:, -sym_len_He:, :]
800 | inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
801 | sym_patch_inv = sym_patch.index_select(1, inv_idx)
802 | img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
803 |
804 | out_1 = torch.FloatTensor(in_C, out_H, in_W)
805 | kernel_width = weights_H.size(1)
806 | for i in range(out_H):
807 | idx = int(indices_H[i][0])
808 | for j in range(out_C):
809 | out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
810 |
811 | # process W dimension
812 | # symmetric copying
813 | out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
814 | out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
815 |
816 | sym_patch = out_1[:, :, :sym_len_Ws]
817 | inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
818 | sym_patch_inv = sym_patch.index_select(2, inv_idx)
819 | out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
820 |
821 | sym_patch = out_1[:, :, -sym_len_We:]
822 | inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
823 | sym_patch_inv = sym_patch.index_select(2, inv_idx)
824 | out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
825 |
826 | out_2 = torch.FloatTensor(in_C, out_H, out_W)
827 | kernel_width = weights_W.size(1)
828 | for i in range(out_W):
829 | idx = int(indices_W[i][0])
830 | for j in range(out_C):
831 | out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
832 | if need_squeeze:
833 | out_2.squeeze_()
834 | return out_2
835 |
836 |
837 | # --------------------------------------------
838 | # imresize for numpy image [0, 1]
839 | # --------------------------------------------
840 | def imresize_np(img, scale, antialiasing=True):
841 | # Now the scale should be the same for H and W
842 | # input: img: Numpy, HWC or HW [0,1]
843 | # output: HWC or HW [0,1] w/o round
844 | img = torch.from_numpy(img)
845 | need_squeeze = True if img.dim() == 2 else False
846 | if need_squeeze:
847 | img.unsqueeze_(2)
848 |
849 | in_H, in_W, in_C = img.size()
850 | out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
851 | kernel_width = 4
852 | kernel = 'cubic'
853 |
854 | # Return the desired dimension order for performing the resize. The
855 | # strategy is to perform the resize first along the dimension with the
856 | # smallest scale factor.
857 | # Now we do not support this.
858 |
859 | # get weights and indices
860 | weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
861 | in_H, out_H, scale, kernel, kernel_width, antialiasing)
862 | weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
863 | in_W, out_W, scale, kernel, kernel_width, antialiasing)
864 | # process H dimension
865 | # symmetric copying
866 | img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
867 | img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
868 |
869 | sym_patch = img[:sym_len_Hs, :, :]
870 | inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
871 | sym_patch_inv = sym_patch.index_select(0, inv_idx)
872 | img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
873 |
874 | sym_patch = img[-sym_len_He:, :, :]
875 | inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
876 | sym_patch_inv = sym_patch.index_select(0, inv_idx)
877 | img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
878 |
879 | out_1 = torch.FloatTensor(out_H, in_W, in_C)
880 | kernel_width = weights_H.size(1)
881 | for i in range(out_H):
882 | idx = int(indices_H[i][0])
883 | for j in range(out_C):
884 | out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
885 |
886 | # process W dimension
887 | # symmetric copying
888 | out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
889 | out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
890 |
891 | sym_patch = out_1[:, :sym_len_Ws, :]
892 | inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
893 | sym_patch_inv = sym_patch.index_select(1, inv_idx)
894 | out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
895 |
896 | sym_patch = out_1[:, -sym_len_We:, :]
897 | inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
898 | sym_patch_inv = sym_patch.index_select(1, inv_idx)
899 | out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
900 |
901 | out_2 = torch.FloatTensor(out_H, out_W, in_C)
902 | kernel_width = weights_W.size(1)
903 | for i in range(out_W):
904 | idx = int(indices_W[i][0])
905 | for j in range(out_C):
906 | out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
907 | if need_squeeze:
908 | out_2.squeeze_()
909 |
910 | return out_2.numpy()
911 |
912 |
913 | if __name__ == '__main__':
914 | print('---')
915 | # img = imread_uint('test.bmp', 3)
916 | # img = uint2single(img)
917 | # img_bicubic = imresize_np(img, 1/4)
918 |
919 |
920 |
921 |
922 |
923 |
924 |
925 |
--------------------------------------------------------------------------------
/utils/utils_logger.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import datetime
3 | import logging
4 |
5 |
6 | '''
7 | # --------------------------------------------
8 | # Kai Zhang (github: https://github.com/cszn)
9 | # 03/Mar/2019
10 | # --------------------------------------------
11 | # https://github.com/xinntao/BasicSR
12 | # --------------------------------------------
13 | '''
14 |
15 |
16 | def log(*args, **kwargs):
17 | print(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S:"), *args, **kwargs)
18 |
19 |
20 | '''
21 | # --------------------------------------------
22 | # logger
23 | # --------------------------------------------
24 | '''
25 |
26 |
27 | def logger_info(logger_name, log_path='default_logger.log'):
28 | ''' set up logger
29 | modified by Kai Zhang (github: https://github.com/cszn)
30 | '''
31 | log = logging.getLogger(logger_name)
32 | if log.hasHandlers():
33 | print('LogHandlers exist!')
34 | else:
35 | print('LogHandlers setup!')
36 | level = logging.INFO
37 | formatter = logging.Formatter('%(asctime)s.%(msecs)03d : %(message)s', datefmt='%y-%m-%d %H:%M:%S')
38 | fh = logging.FileHandler(log_path, mode='a')
39 | fh.setFormatter(formatter)
40 | log.setLevel(level)
41 | log.addHandler(fh)
42 | # print(len(log.handlers))
43 |
44 | sh = logging.StreamHandler()
45 | sh.setFormatter(formatter)
46 | log.addHandler(sh)
47 |
48 |
49 | '''
50 | # --------------------------------------------
51 | # print to file and std_out simultaneously
52 | # --------------------------------------------
53 | '''
54 |
55 |
56 | class logger_print(object):
57 | def __init__(self, log_path="default.log"):
58 | self.terminal = sys.stdout
59 | self.log = open(log_path, 'a')
60 |
61 | def write(self, message):
62 | self.terminal.write(message)
63 | self.log.write(message) # write the message
64 |
65 | def flush(self):
66 | pass
67 |
--------------------------------------------------------------------------------
/utils/utils_model.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | import numpy as np
3 | import torch
4 | from utils import utils_image as util
5 | import re
6 | import glob
7 | import os
8 |
9 |
10 | '''
11 | # --------------------------------------------
12 | # Model
13 | # --------------------------------------------
14 | # Kai Zhang (github: https://github.com/cszn)
15 | # 03/Mar/2019
16 | # --------------------------------------------
17 | '''
18 |
19 |
20 | def find_last_checkpoint(save_dir, net_type='G'):
21 | """
22 | # ---------------------------------------
23 | # Kai Zhang (github: https://github.com/cszn)
24 | # 03/Mar/2019
25 | # ---------------------------------------
26 | Args:
27 | save_dir: model folder
28 | net_type: 'G' or 'D'
29 |
30 | Return:
31 | init_iter: iteration number
32 | init_path: model path
33 | # ---------------------------------------
34 | """
35 | file_list = glob.glob(os.path.join(save_dir, '*_{}.pth'.format(net_type)))
36 | if file_list:
37 | iter_exist = []
38 | for file_ in file_list:
39 | iter_current = re.findall(r"(\d+)_{}.pth".format(net_type), file_)
40 | iter_exist.append(int(iter_current[0]))
41 | init_iter = max(iter_exist)
42 | init_path = os.path.join(save_dir, '{}_{}.pth'.format(init_iter, net_type))
43 | else:
44 | init_iter = 0
45 | init_path = None
46 | return init_iter, init_path
47 |
48 |
49 | def test_mode(model, L, mode=0, refield=32, min_size=256, sf=1, modulo=1):
50 | '''
51 | # ---------------------------------------
52 | # Kai Zhang (github: https://github.com/cszn)
53 | # 03/Mar/2019
54 | # ---------------------------------------
55 | Args:
56 | model: trained model
57 | L: input Low-quality image
58 | mode:
59 | (0) normal: test(model, L)
60 | (1) pad: test_pad(model, L, modulo=16)
61 | (2) split: test_split(model, L, refield=32, min_size=256, sf=1, modulo=1)
62 | (3) x8: test_x8(model, L, modulo=1) ^_^
63 | (4) split and x8: test_split_x8(model, L, refield=32, min_size=256, sf=1, modulo=1)
64 | refield: effective receptive filed of the network, 32 is enough
65 | useful when split, i.e., mode=2, 4
66 | min_size: min_sizeXmin_size image, e.g., 256X256 image
67 | useful when split, i.e., mode=2, 4
68 | sf: scale factor for super-resolution, otherwise 1
69 | modulo: 1 if split
70 | useful when pad, i.e., mode=1
71 |
72 | Returns:
73 | E: estimated image
74 | # ---------------------------------------
75 | '''
76 | if mode == 0:
77 | E = test(model, L)
78 | elif mode == 1:
79 | E = test_pad(model, L, modulo, sf)
80 | elif mode == 2:
81 | E = test_split(model, L, refield, min_size, sf, modulo)
82 | elif mode == 3:
83 | E = test_x8(model, L, modulo, sf)
84 | elif mode == 4:
85 | E = test_split_x8(model, L, refield, min_size, sf, modulo)
86 | return E
87 |
88 |
89 | '''
90 | # --------------------------------------------
91 | # normal (0)
92 | # --------------------------------------------
93 | '''
94 |
95 |
96 | def test(model, L):
97 | E = model(L)
98 | return E
99 |
100 |
101 | '''
102 | # --------------------------------------------
103 | # pad (1)
104 | # --------------------------------------------
105 | '''
106 |
107 |
108 | def test_pad(model, L, modulo=16, sf=1):
109 | h, w = L.size()[-2:]
110 | paddingBottom = int(np.ceil(h/modulo)*modulo-h)
111 | paddingRight = int(np.ceil(w/modulo)*modulo-w)
112 | L = torch.nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(L)
113 | E = model(L)
114 | E = E[..., :h*sf, :w*sf]
115 | return E
116 |
117 |
118 | '''
119 | # --------------------------------------------
120 | # split (function)
121 | # --------------------------------------------
122 | '''
123 |
124 |
125 | def test_split_fn(model, L, refield=32, min_size=256, sf=1, modulo=1):
126 | """
127 | Args:
128 | model: trained model
129 | L: input Low-quality image
130 | refield: effective receptive filed of the network, 32 is enough
131 | min_size: min_sizeXmin_size image, e.g., 256X256 image
132 | sf: scale factor for super-resolution, otherwise 1
133 | modulo: 1 if split
134 |
135 | Returns:
136 | E: estimated result
137 | """
138 | h, w = L.size()[-2:]
139 | if h*w <= min_size**2:
140 | L = torch.nn.ReplicationPad2d((0, int(np.ceil(w/modulo)*modulo-w), 0, int(np.ceil(h/modulo)*modulo-h)))(L)
141 | E = model(L)
142 | E = E[..., :h*sf, :w*sf]
143 | else:
144 | top = slice(0, (h//2//refield+1)*refield)
145 | bottom = slice(h - (h//2//refield+1)*refield, h)
146 | left = slice(0, (w//2//refield+1)*refield)
147 | right = slice(w - (w//2//refield+1)*refield, w)
148 | Ls = [L[..., top, left], L[..., top, right], L[..., bottom, left], L[..., bottom, right]]
149 |
150 | if h * w <= 4*(min_size**2):
151 | Es = [model(Ls[i]) for i in range(4)]
152 | else:
153 | Es = [test_split_fn(model, Ls[i], refield=refield, min_size=min_size, sf=sf, modulo=modulo) for i in range(4)]
154 |
155 | b, c = Es[0].size()[:2]
156 | E = torch.zeros(b, c, sf * h, sf * w).type_as(L)
157 |
158 | E[..., :h//2*sf, :w//2*sf] = Es[0][..., :h//2*sf, :w//2*sf]
159 | E[..., :h//2*sf, w//2*sf:w*sf] = Es[1][..., :h//2*sf, (-w + w//2)*sf:]
160 | E[..., h//2*sf:h*sf, :w//2*sf] = Es[2][..., (-h + h//2)*sf:, :w//2*sf]
161 | E[..., h//2*sf:h*sf, w//2*sf:w*sf] = Es[3][..., (-h + h//2)*sf:, (-w + w//2)*sf:]
162 | return E
163 |
164 |
165 | '''
166 | # --------------------------------------------
167 | # split (2)
168 | # --------------------------------------------
169 | '''
170 |
171 |
172 | def test_split(model, L, refield=32, min_size=256, sf=1, modulo=1):
173 | E = test_split_fn(model, L, refield=refield, min_size=min_size, sf=sf, modulo=modulo)
174 | return E
175 |
176 |
177 | '''
178 | # --------------------------------------------
179 | # x8 (3)
180 | # --------------------------------------------
181 | '''
182 |
183 |
184 | def test_x8(model, L, modulo=1, sf=1):
185 | E_list = [test_pad(model, util.augment_img_tensor4(L, mode=i), modulo=modulo, sf=sf) for i in range(8)]
186 | for i in range(len(E_list)):
187 | if i == 3 or i == 5:
188 | E_list[i] = util.augment_img_tensor4(E_list[i], mode=8 - i)
189 | else:
190 | E_list[i] = util.augment_img_tensor4(E_list[i], mode=i)
191 | output_cat = torch.stack(E_list, dim=0)
192 | E = output_cat.mean(dim=0, keepdim=False)
193 | return E
194 |
195 |
196 | '''
197 | # --------------------------------------------
198 | # split and x8 (4)
199 | # --------------------------------------------
200 | '''
201 |
202 |
203 | def test_split_x8(model, L, refield=32, min_size=256, sf=1, modulo=1):
204 | E_list = [test_split_fn(model, util.augment_img_tensor4(L, mode=i), refield=refield, min_size=min_size, sf=sf, modulo=modulo) for i in range(8)]
205 | for k, i in enumerate(range(len(E_list))):
206 | if i==3 or i==5:
207 | E_list[k] = util.augment_img_tensor4(E_list[k], mode=8-i)
208 | else:
209 | E_list[k] = util.augment_img_tensor4(E_list[k], mode=i)
210 | output_cat = torch.stack(E_list, dim=0)
211 | E = output_cat.mean(dim=0, keepdim=False)
212 | return E
213 |
214 |
215 | '''
216 | # ^_^-^_^-^_^-^_^-^_^-^_^-^_^-^_^-^_^-^_^-^_^-
217 | # _^_^-^_^-^_^-^_^-^_^-^_^-^_^-^_^-^_^-^_^-^_^
218 | # ^_^-^_^-^_^-^_^-^_^-^_^-^_^-^_^-^_^-^_^-^_^-
219 | '''
220 |
221 |
222 | '''
223 | # --------------------------------------------
224 | # print
225 | # --------------------------------------------
226 | '''
227 |
228 |
229 | # --------------------------------------------
230 | # print model
231 | # --------------------------------------------
232 | def print_model(model):
233 | msg = describe_model(model)
234 | print(msg)
235 |
236 |
237 | # --------------------------------------------
238 | # print params
239 | # --------------------------------------------
240 | def print_params(model):
241 | msg = describe_params(model)
242 | print(msg)
243 |
244 |
245 | '''
246 | # --------------------------------------------
247 | # information
248 | # --------------------------------------------
249 | '''
250 |
251 |
252 | # --------------------------------------------
253 | # model inforation
254 | # --------------------------------------------
255 | def info_model(model):
256 | msg = describe_model(model)
257 | return msg
258 |
259 |
260 | # --------------------------------------------
261 | # params inforation
262 | # --------------------------------------------
263 | def info_params(model):
264 | msg = describe_params(model)
265 | return msg
266 |
267 |
268 | '''
269 | # --------------------------------------------
270 | # description
271 | # --------------------------------------------
272 | '''
273 |
274 |
275 | # --------------------------------------------
276 | # model name and total number of parameters
277 | # --------------------------------------------
278 | def describe_model(model):
279 | if isinstance(model, torch.nn.DataParallel):
280 | model = model.module
281 | msg = '\n'
282 | msg += 'models name: {}'.format(model.__class__.__name__) + '\n'
283 | msg += 'Params number: {}'.format(sum(map(lambda x: x.numel(), model.parameters()))) + '\n'
284 | msg += 'Net structure:\n{}'.format(str(model)) + '\n'
285 | return msg
286 |
287 |
288 | # --------------------------------------------
289 | # parameters description
290 | # --------------------------------------------
291 | def describe_params(model):
292 | if isinstance(model, torch.nn.DataParallel):
293 | model = model.module
294 | msg = '\n'
295 | msg += ' | {:^6s} | {:^6s} | {:^6s} | {:^6s} || {:<20s}'.format('mean', 'min', 'max', 'std', 'param_name') + '\n'
296 | for name, param in model.state_dict().items():
297 | if not 'num_batches_tracked' in name:
298 | v = param.data.clone().float()
299 | msg += ' | {:>6.3f} | {:>6.3f} | {:>6.3f} | {:>6.3f} || {:s}'.format(v.mean(), v.min(), v.max(), v.std(), name) + '\n'
300 | return msg
301 |
302 |
303 | if __name__ == '__main__':
304 |
305 | class Net(torch.nn.Module):
306 | def __init__(self, in_channels=3, out_channels=3):
307 | super(Net, self).__init__()
308 | self.conv = torch.nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, padding=1)
309 |
310 | def forward(self, x):
311 | x = self.conv(x)
312 | return x
313 |
314 | start = torch.cuda.Event(enable_timing=True)
315 | end = torch.cuda.Event(enable_timing=True)
316 |
317 | model = Net()
318 | model = model.eval()
319 | print_model(model)
320 | print_params(model)
321 | x = torch.randn((2,3,401,401))
322 | torch.cuda.empty_cache()
323 | with torch.no_grad():
324 | for mode in range(5):
325 | y = test_mode(model, x, mode, refield=32, min_size=256, sf=1, modulo=1)
326 | print(y.shape)
327 |
328 | # run utils/utils_model.py
--------------------------------------------------------------------------------