├── .gitignore
├── LICENSE
├── README.md
├── parse.py
└── topics
├── 1_fundamentals.md
├── 2_images.md
└── 3_others.md
/.gitignore:
--------------------------------------------------------------------------------
1 | *.pptx
2 | *.html
3 | .DS_Store
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2023 cvpr2023-tutorial-diffusion-models
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Papers in the CVPR 2023 Diffusion Model Tutorial
2 |
3 | This repository contains a list of papers to include in the CVPR 2023 tutorial ["Denoising Diffusion Models:
4 | A Generative Learning Big Bang"](https://cvpr2023-tutorial-diffusion-models.github.io/), by Jiaming Song, Chenlin Meng, and Arash Vahdat.
5 |
6 | As the number of papers are growing quite rapidly, it is impossible to list or even carefully read every paper in this field.
7 | Therefore, we take an "RLHF" approach to our tutorial and welcome any community feedback, to ensure we don't miss interesting / important works by accident (could be yours, could be others').
8 |
9 | ## Disclaimers
10 |
11 | 1. The goal of the tutorial is to provide a **high-level introduction** to researchers not familiar with diffusion models, or wish to be more familiar with its more recent developments related to CVPR.
12 | 2. The field is growing at a near-exponential rate[^1]. Therefore, we have to consider **a curated list of selected papers**. We do not aim to make another paper tracker on diffusion models[^2].
13 | 3. Even in the curated list, your paper might not get highlighted (i.e., taking at least 3 mins in the tutorial) in the 3-hour talk.
14 | 4. Given the time constraint (1 hour x 3 sections), we can only highlight no more than 20 papers in each hour of the tutorial.
15 | 5. **We will make the final decisions regarding which papers get highlighted**, and we try to lean on papers with novel yet highly practical ideas.
16 | 6. That being said, we will list all the papers contributed here in our slides, and strive to give a "shout out" to many of them (e.g., one or two sentences listing their connections to highlighted work), as long as they are related to the topics in the tutorial.
17 | 7. Although we use the term "paper", it does not have to be a paper at all. The community has lots of amazing ideas that are not always presnted as a paper, and these are worth highlighting as well (an example is negative prompting).
18 | 8. The deadline for contributions is **June 9th**, around ten days before the actual tutorial.
19 |
20 | [^1]: The awesome diffusion models repo (https://github.com/heejkoo/Awesome-Diffusion-Models) already lists more than 1300 papers on the topic, and that are even not all of them!
21 | [^2]: Several trackers are here: https://github.com/heejkoo/Awesome-Diffusion-Models (about 1300 papers as of writing), https://vsehwag.github.io/blog/2023/2/all_papers_on_diffusion.html (about 500 papers), https://scorebasedgenerativemodeling.github.io/ (about 800 papers).
22 |
23 | ## Contributions
24 |
25 | We welcome all types of contributions, mostly in the form of papers under certain topics relevant to CVPR. For now, these include:
26 |
27 | - [**Fundamentals [Arash]**](https://github.com/cvpr2023-tutorial-diffusion-models/papers/blob/main/topics/1_fundamentals.md): these include methods that can be applied to general domains, such as training, sampling, guidance.
28 | - [**Applications on natural iamges [Chenlin]**](https://github.com/cvpr2023-tutorial-diffusion-models/papers/blob/main/topics/2_images.md): these include applications that stem from natural images but can also be applied to other domains, such as architecture, editing, personalization, fine-tuning, "low-level" vision.
29 | - [**Applications on other domains [Jiaming]**](https://github.com/cvpr2023-tutorial-diffusion-models/papers/blob/main/topics/3_others.md): these include applications from other domains, such as video, 3d, motion, large content generation, inverse problems for medical domains, etc.
30 |
31 | ### New topics
32 | If you think a paper does not fall into any of the topics that we listed, please raise an issue.
33 |
34 | ### New papers
35 | If you want to contribute new "papers", please create a [pull request](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request-from-a-fork).
36 |
37 | See [this](https://github.com/cvpr2023-tutorial-diffusion-models/papers/pull/1) as an example. Generally, we will accept your pull request as long as it is a relevant paper -- this does not guarantee it being "highlighted", but we will try our best read the paper (hopefully we don't get 1k+ PRs).
38 |
39 | Generally, we recommend adding papers in "Awesome Diffusion Models" format. If you are the author and you have some slides for the work, you can create a link to the slides as well. We will compile them to [the website](https://cvpr2023-tutorial-diffusion-models.github.io/) after the tutorial.
40 |
41 | ### Questions or suggestions
42 |
43 | Please create an issue or send an email to jiaming [dot] tsong [at] "Google's personal email service in the US" [dot] com.
44 |
--------------------------------------------------------------------------------
/parse.py:
--------------------------------------------------------------------------------
1 | import re
2 | import argparse
3 |
4 |
5 | def main():
6 | """
7 | Convert the awesome diffusion markdown format into HTML.
8 | """
9 | parser = argparse.ArgumentParser()
10 | parser.add_argument('--fin', type=str, help="input markdown")
11 | parser.add_argument('--fout', type=str, help="output html")
12 |
13 | args = parser.parse_args()
14 | html = []
15 |
16 | with open(f'{args.fin}', 'r') as f:
17 | lines = f.readlines()
18 | filtered_lines = [line for line in lines if not line.startswith("#")]
19 | lines = ''.join(filtered_lines)
20 | all_lines = lines.split('**')
21 | l = len(all_lines) // 2
22 |
23 | for i in range(0, l):
24 | title = all_lines[i*2+1]
25 | rest = all_lines[i*2+2]
26 | authors = rest.split('\n')[1]
27 | authors = re.sub(r'\*+', '', authors)
28 | authors = re.sub(r'\\+', '', authors)
29 | authors = re.sub(r'1', '', authors)
30 | authors = authors.strip().split(',')
31 | if len(authors) > 2:
32 | authors = authors[0].split()[-1] + ' et al.'
33 | else:
34 | authors = ' and '.join([a.split()[-1] for a in authors])
35 | conference = rest.split('\n')[2].split('.')[0].split('(')[0].strip()
36 |
37 | paper_link= rest.split('\n')[2].split('[Paper]')
38 | if len(paper_link) < 2:
39 | paper_link = ''
40 | else:
41 | paper_link = paper_link[1].split(']')[0][1:-1]
42 |
43 | html.append(f'{authors}, "{title}", {conference}
')
44 |
45 | html = '\n'.join(html)
46 |
47 | html = f"""
48 |
49 |
50 |
51 | My HTML Page
52 |
53 |
54 | {html}
55 |
56 | """
57 |
58 | print(args.fout)
59 |
60 | with open(f'{args.fout}', 'w') as f:
61 | f.write(html)
62 |
63 |
64 | if __name__ == '__main__':
65 | main()
--------------------------------------------------------------------------------
/topics/1_fundamentals.md:
--------------------------------------------------------------------------------
1 | # Fundamentals of Diffusion Models
2 |
3 | ## Training
4 |
5 | **Denoising Diffusion Probabilistic Models** \
6 | *Jonathan Ho, Ajay Jain, Pieter Abbeel* \
7 | NeurIPS 2020. [[Paper](https://arxiv.org/abs/2006.11239)] [[Github](https://github.com/hojonathanho/diffusion)] [[Github2](https://github.com/pesser/pytorch_diffusion)] \
8 | 19 Jun 2020
9 |
10 | **Score-Based Generative Modeling through Stochastic Differential Equations** \
11 | *Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, Ben Poole* \
12 | ICLR 2021 (Oral). [[Paper](https://arxiv.org/abs/2011.13456)] [[Github](https://github.com/yang-song/score_sde)] \
13 | 26 Nov 2020
14 |
15 | **Variational Diffusion Models** \
16 | *Diederik P. Kingma1, Tim Salimans1, Ben Poole, Jonathan Ho* \
17 | arXiv 2021. [[Paper](https://arxiv.org/abs/2107.00630)] [[Github](https://github.com/google-research/vdm)] \
18 | 1 Jul 2021
19 |
20 | **Elucidating the Design Space of Diffusion-Based Generative Models** \
21 | *Tero Karras, Miika Aittala, Timo Aila, Samuli Laine* \
22 | NeurIPS 2022. [[Paper](https://arxiv.org/abs/2206.00364)] \
23 | 1 Jun 2022
24 |
25 |
26 | ## Fast sampling without additional training
27 |
28 | **Denoising Diffusion Implicit Models** \
29 | *Jiaming Song, Chenlin Meng, Stefano Ermon* \
30 | ICLR 2021. [[Paper](https://arxiv.org/abs/2010.02502)] [[Github](https://github.com/ermongroup/ddim)] \
31 | 6 Oct 2020
32 |
33 | **Gotta Go Fast When Generating Data with Score-Based Models** \
34 | Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, Ioannis Mitliagkas* \
35 | arXiv 2021. [[Paper](https://arxiv.org/abs/2105.14080)] [[Github](https://github.com/AlexiaJM/score_sde_fast_sampling)] \
36 | 28 May 2021
37 |
38 | **Pseudo Numerical Methods for Diffusion Models on Manifolds** \
39 | *Luping Liu, Yi Ren, Zhijie Lin, Zhou Zhao* \
40 | ICLR 2022. [[Paper](https://arxiv.org/abs/2202.09778)] [[Github](https://github.com/luping-liu/PNDM)] \
41 | 20 Feb 2022
42 |
43 | **DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps** \
44 | *Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, Jun Zhu* \
45 | NeurIPS 2022. [[Paper](https://arxiv.org/abs/2206.00927)] [[Github](https://github.com/LuChengTHU/dpm-solver)] \
46 | 2 Jun 2022
47 |
48 | **DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models** \
49 | *Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, Jun Zhu* \
50 | NeurIPS 2022 (Oral). [[Paper](https://arxiv.org/abs/2211.01095)] [[Github](https://github.com/LuChengTHU/dpm-solver)] \
51 | 2 Nov 2022
52 |
53 | **Fast Sampling of Diffusion Models with Exponential Integrator** \
54 | *Qinsheng Zhang, Yongxin Chen* \
55 | arXiv 2022. [[Paper](https://arxiv.org/abs/2204.13902)] \
56 | 29 Apr 2022
57 |
58 | **gDDIM: Generalized denoising diffusion implicit models** \
59 | *Qinsheng Zhang, Molei Tao, Yongxin Chen* \
60 | arXiv 2022. [[Paper](https://arxiv.org/abs/2206.05564)] [[Github](https://github.com/qsh-zh/gDDIM)] \
61 | 11 Jun 2022
62 |
63 | **UniPC: A Unified Predictor-Corrector Framework for Fast Sampling of Diffusion Models** \
64 | *Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, Jiwen Lu* \
65 | arXiv 2023. [[Paper](https://arxiv.org/abs/2302.04867)] [[Project](https://unipc.ivg-research.xyz)] [[Github](https://github.com/wl-zhao/UniPC)] \
66 | 9 Feb 2023
67 |
68 | **Parallel Sampling of Diffusion Models** \
69 | *Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, Nima Anari* \
70 | arxiv 2023. [[Paper](https://arxiv.org/abs/2305.16317)] [[Github](https://github.com/AndyShih12/paradigms)] \
71 | 25 May 2023
72 |
73 | **A Geometric Perspective on Diffusion Models** \
74 | *Defang Chen, Zhenyu Zhou, Jian-Ping Mei, Chunhua Shen, Chun Chen, Can Wang* \
75 | arXiv 2023. [[Paper](https://arxiv.org/abs/2305.19947)] \
76 | 31 May 2023
77 |
78 | ## Fast sampling with additional training
79 |
80 | **Tackling the Generative Learning Trilemma with Denoising Diffusion GANs** \
81 | *Zhisheng Xiao, Karsten Kreis, Arash Vahdat* \
82 | arXiv 2021. [[Paper](https://arxiv.org/abs/2112.07804)] [[Project](https://nvlabs.github.io/denoising-diffusion-gan)] \
83 | 15 Dec 2021
84 |
85 | **Progressive Distillation for Fast Sampling of Diffusion Models** \
86 | *Tim Salimans, Jonathan Ho* \
87 | ICLR 2022. [[Paper](https://arxiv.org/abs/2202.00512)] \
88 | 1 Feb 2022
89 |
90 | **On Distillation of Guided Diffusion Models** \
91 | *Chenlin Meng, Ruiqi Gao, Diederik P. Kingma, Stefano Ermon, Jonathan Ho, Tim Salimans* \
92 | arXiv 2022. [[Paper](https://arxiv.org/abs/2210.03142)] \
93 | 6 Oct 2022
94 |
95 | **GENIE: Higher-Order Denoising Diffusion Solvers** \
96 | *Tim Dockhorn, Arash Vahdat, Karsten Kreis* \
97 | NeurIPS 2022 (Oral). [[Paper](https://arxiv.org/abs/2210.05475)] [[Github](https://github.com/nv-tlabs/GENIE)] \
98 | 11 Oct 2022
99 |
100 | **Learning Fast Samplers for Diffusion Models by Differentiating Through Sample Quality** \
101 | *Daniel Watson, William Chan, Jonathan Ho, Mohammad Norouzi* \
102 | ICLR 2022. [[Paper](https://arxiv.org/abs/2202.05830)] \
103 | 11 Feb 2022
104 |
105 | **Wavelet Diffusion Models Are Fast and Scalable Image Generators** \
106 | *Hao Phung, Quan Dao, Anh Tran* \
107 | CVPR 2023. [[Paper](https://arxiv.org/abs/2211.16152)] [[Github](https://github.com/VinAIResearch/WaveDiff.git)] \
108 | 29 Nov 2022
109 |
110 | ## Conditional Generation and Guidance
111 |
112 | **Diffusion Models Beat GANs on Image Synthesis** \
113 | *Prafulla Dhariwal1, Alex Nichol1* \
114 | arXiv 2021. [[Paper](https://arxiv.org/abs/2105.05233)] [[Github](https://github.com/openai/guided-diffusion)] \
115 | 11 May 2021
116 |
117 | **Classifier-Free Diffusion Guidance** \
118 | *Jonathan Ho, Tim Salimans* \
119 | NeurIPS Workshop 2021. [[Paper](https://arxiv.org/abs/2207.12598)] \
120 | 28 Sep 2021
121 |
122 | **Negative Prompt** \
123 | *Automatic1111* \
124 | GitHub. [[Paper](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Negative-prompt)]
125 |
126 | **Improving Sample Quality of Diffusion Models Using Self-Attention Guidance** \
127 | *Susung Hong, Gyuseong Lee, Wooseok Jang, Seungryong Kim* \
128 | arXiv 2022. [[Paper](https://arxiv.org/abs/2210.00939)] [[Github](https://github.com/KU-CVLAB/Self-Attention-Guidance/)] \
129 | 3 Oct 2022
130 |
131 | ## Diffusion Models on Low-dimensional Spaces
132 |
133 | **Image Super-Resolution via Iterative Refinement** \
134 | *Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, Mohammad Norouzi* \
135 | arXiv 2021. [[Paper](https://arxiv.org/abs/2104.07636)] [[Project](https://iterative-refinement.github.io/)] [[Github](https://github.com/Janspiry/Image-Super-Resolution-via-Iterative-Refinement)] \
136 | 15 Apr 2021
137 |
138 | **Cascaded Diffusion Models for High Fidelity Image Generation** \
139 | *Jonathan Ho1, Chitwan Saharia1, William Chan, David J. Fleet, Mohammad Norouzi, Tim Salimans* \
140 | JMLR 2021. [[Paper](https://arxiv.org/abs/2106.15282)] [[Project](https://cascaded-diffusion.github.io/)] \
141 | 30 May 2021
142 |
143 | **D2C: Diffusion-Denoising Models for Few-shot Conditional Generation** \
144 | *Abhishek Sinha1, Jiaming Song1, Chenlin Meng, Stefano Ermon* \
145 | NeurIPS 2021. [[Paper](https://arxiv.org/abs/2106.06819)] [[Project](https://d2c-model.github.io/)] [[Github](https://github.com/d2c-model/d2c-model.github.io)] \
146 | 12 Jun 2021
147 |
148 | **Score-based Generative Modeling in Latent Space** \
149 | *Arash Vahdat1, Karsten Kreis1, Jan Kautz* \
150 | arXiv 2021. [[Paper](https://arxiv.org/abs/2106.05931)] \
151 | 10 Jun 2021
152 |
153 | **High-Resolution Image Synthesis with Latent Diffusion Models** \
154 | *Robin Rombach1, Andreas Blattmann1, Dominik Lorenz, Patrick Esser, Björn Ommer* \
155 | CVPR 2022. [[Paper](https://arxiv.org/abs/2112.10752)] [[Github](https://github.com/CompVis/latent-diffusion)] \
156 | 20 Dec 2021
157 |
158 | **Score-Guided Intermediate Layer Optimization: Fast Langevin Mixing for Inverse Problems** \
159 | *Giannis Daras1, Yuval Dagan1, Alexandros G. Dimakis, Constantinos Daskalakis* \
160 | ICML 2022. [[Paper](https://arxiv.org/abs/2206.09104)] [[Github](https://github.com/giannisdaras/sgilo)] \
161 | 22 Jun 2022
162 |
163 | **Refusion: Enabling Large-Size Realistic Image Restoration with Latent-Space Diffusion Models** \
164 | *Ziwei Luo, Fredrik K. Gustafsson, Zheng Zhao, Jens Sjölund, Thomas B. Schön* \
165 | CVPR Workshop 2023. [[Paper](https://arxiv.org/abs/2304.08291)] [[Github](https://github.com/Algolzw/image-restoration-sde)] \
166 | 17 Apr 2023
167 |
168 | ## Generalized Diffusion Models
169 |
170 |
171 | **Diffusion Schrödinger Bridge** \
172 | *Valentin De Bortoli, James Thornton, Jeremy Heng, Arnaud Doucet* \
173 | NeurIPS 2021. [[Paper](https://arxiv.org/abs/2106.01357)] \
174 | 01 Jun 2021
175 |
176 | **Riemannian Score-Based Generative Modelling** \
177 | *Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh, Arnaud Doucet* \
178 | NeurIPS 2022. [[Paper](https://arxiv.org/abs/2202.02763)] \
179 | 06 Feb 2022
180 |
181 | **Action Matching: Learning Stochastic Dynamics from Samples** \
182 | *Kirill Neklyudov, Rob Brekelmans, Daniel Severo, Alireza Makhzani* \
183 | ICML 2023. [[Paper](https://arxiv.org/abs/2210.06662)] [[Github](https://github.com/necludov/jam)] \
184 | 13 Oct 2022
185 |
186 |
187 | **Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise** \
188 | *Arpit Bansal, Eitan Borgnia, Hong-Min Chu, Jie S. Li, Hamid Kazemi, Furong Huang, Micah Goldblum, Jonas Geiping, Tom Goldstein* \
189 | arXiv 2022. [[Paper](https://arxiv.org/abs/2208.09392)] [[Github](https://github.com/arpitbansal297/Cold-Diffusion-Models)] \
190 | 19 Aug 2022
191 |
192 | **Soft Diffusion: Score Matching for General Corruptions** \
193 | *Giannis Daras, Mauricio Delbracio, Hossein Talebi, Alexandros G. Dimakis, Peyman Milanfar* \
194 | TMLR 2023. [[Paper](https://openreview.net/forum?id=W98rebBxlQ)] \
195 | 12 Sep 2022
196 |
197 | **Inversion by Direct Iteration: An Alternative to Denoising Diffusion for Image Restoration** \
198 | *Mauricio Delbracio, Peyman Milanfar* \
199 | arXiv 2023. [[Paper](https://arxiv.org/abs/2303.11435)] \
200 | 20 March 2023
201 |
202 | **Image Restoration with Mean-Reverting Stochastic Differential Equations** \
203 | *Ziwei Luo, Fredrik K. Gustafsson, Zheng Zhao, Jens Sjölund, Thomas B. Schön* \
204 | ICML 2023. [[Paper](https://arxiv.org/abs/2301.11699)] [[Project](https://algolzw.github.io/ir-sde/index.html)] [[Github](https://github.com/Algolzw/image-restoration-sde)] \
205 | 27 Jan 2023
206 |
--------------------------------------------------------------------------------
/topics/2_images.md:
--------------------------------------------------------------------------------
1 | # Applications on Images
2 |
3 | Some of the applications are directly transferrable to other domains, and we try to not repeat them in the next section.
4 |
5 | ## Architecture
6 |
7 | **All are Worth Words: a ViT Backbone for Score-based Diffusion Models** \
8 | *Fan Bao, Chongxuan Li, Yue Cao, Jun Zhu* \
9 | arXiv 2022. [[Paper](https://arxiv.org/abs/2209.12152)] \
10 | 25 Sep 2022
11 |
12 | **Scalable Diffusion Models with Transformers** \
13 | *William Peebles, Saining Xie* \
14 | arXiv 2022. [[Paper](https://arxiv.org/abs/2212.09748)] [[Project](https://www.wpeebles.com/DiT)] [[Github](https://github.com/facebookresearch/DiT)] \
15 | 19 Dec 2022
16 |
17 | **One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale** \
18 | *Fan Bao, Shen Nie, Kaiwen Xue, Chongxuan Li, Shi Pu, Yaole Wang, Gang Yue, Yue Cao, Hang Su, Jun Zhu* \
19 | arXiv 2023. [[Paper](https://arxiv.org/abs/2303.06555)] [[Github](https://github.com/thu-ml/unidiffuser)] \
20 | 12 Mar 2023
21 |
22 | **Scalable Adaptive Computation for Iterative Generation** \
23 | *Allan Jabri, David Fleet, Ting Chen* \
24 | arXiv 2022. [[Paper](https://arxiv.org/abs/2212.11972)] \
25 | 22 Dec 2022
26 |
27 | **simple diffusion: End-to-end diffusion for high resolution images** \
28 | *Emiel Hoogeboom1, Jonathan Heek1, Tim Salimans* \
29 | arXiv 2023. [[Paper](https://arxiv.org/abs/2301.11093)] \
30 | 26 Jan 2023
31 |
32 |
33 | ## Editing
34 |
35 | **SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations** \
36 | *Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, Stefano Ermon* \
37 | ICLR 2022. [[Paper](https://arxiv.org/abs/2108.01073)] [[Project](https://sde-image-editing.github.io/)] [[Github](https://github.com/ermongroup/SDEdit)] \
38 | 2 Aug 2021
39 |
40 | **Efficient Spatially Sparse Inference for Conditional GANs and Diffusion Models** \
41 | *Muyang Li, Ji Lin, Chenlin Meng, Stefano Ermon, Song Han, Jun-Yan Zhu* \
42 | NeurIPS 2022. [[Paper](https://arxiv.org/abs/2211.02048)] [[Github](https://github.com/lmxyy/sige)] \
43 | 4 Nov 2022
44 |
45 | **Blended Diffusion for Text-driven Editing of Natural Images** \
46 | *Omri Avrahami, Dani Lischinski, Ohad Fried* \
47 | CVPR 2022. [[Paper](https://arxiv.org/abs/2111.14818)] [[Project](https://omriavrahami.com/blended-diffusion-page/)] [[Github](https://github.com/omriav/blended-diffusion)] \
48 | 29 Nov 2021
49 |
50 | **Prompt-to-Prompt Image Editing with Cross-Attention Control** \
51 | *Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, Daniel Cohen-Or* \
52 | ICLR 2023. [[Paper](https://prompt-to-prompt.github.io/ptp_files/Prompt-to-Prompt_preprint.pdf)] | [[GitHub](https://github.com/google/prompt-to-prompt/)]
53 |
54 | **Imagic: Text-Based Real Image Editing with Diffusion Models** \
55 | *Bahjat Kawar1, Shiran Zada1, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, Michal Irani* \
56 | CVPR 2023. [[Paper](https://arxiv.org/abs/2210.09276)] [[Project](https://imagic-editing.github.io/)] \
57 | 17 Oct 2022
58 |
59 | **DiffEdit: Diffusion-based semantic image editing with mask guidance** \
60 | *Guillaume Couairon, Jakob Verbeek, Holger Schwenk, Matthieu Cord* \
61 | ICLR 2023. [[Paper](https://arxiv.org/abs/2210.11427)] \
62 | 20 Oct 2022
63 |
64 | **Collage Diffusion** \
65 | *Vishnu Sarukkai, Linden Li, Arden Ma, Christopher Ré, Kayvon Fatahalian* \
66 | arXiv 2023. [[Paper](https://arxiv.org/abs/2303.00262)] \
67 | 1 Mar 2023
68 |
69 | **MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation** \
70 | *Omer Bar-Tal, Lior Yariv, Yaron Lipman, Tali Dekel* \
71 | ICML 2023. [[Paper](https://arxiv.org/abs/2302.08113)] [[Github](https://github.com/omerbt/MultiDiffusion)] \
72 | 16 Feb 2023
73 |
74 |
75 | ## Personalization
76 |
77 | **An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion** \
78 | *Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal Chechik, Daniel Cohen-Or* \
79 | ICLR 2023. [[Paper](https://arxiv.org/abs/2208.01618)] | [[Github](https://github.com/rinongal/textual_inversion)] | [[Project](https://textual-inversion.github.io/)] \
80 | 1 Mar 2023
81 |
82 | **DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation** \
83 | *Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, Kfir Aberman* \
84 | CVPR 2023. [[Paper](https://arxiv.org/abs/2208.12242)] [[Project](https://dreambooth.github.io/)] [[Github](https://github.com/Victarry/stable-dreambooth)] \
85 | 25 Aug 2022
86 |
87 | **Multi-Concept Customization of Text-to-Image Diffusion** \
88 | *Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, Jun-Yan Zhu* \
89 | CVPR 2023. [[Paper](https://arxiv.org/abs/2212.04488)] [[Project](https://www.cs.cmu.edu/~custom-diffusion/)] \
90 | 8 Dec 2022
91 |
92 | **Key-Locked Rank One Editing for Text-to-Image Personalization** \
93 | *Yoad Tewel, Rinon Gal, Gal Chechik, Yuval Atzmon* \
94 | SIGGRAPH 2023. [[Paper](https://arxiv.org/abs/2305.01644)] [[Project](https://research.nvidia.com/labs/par/Perfusion/)] \
95 | 8 Dec 2022
96 |
97 | **A Recipe for Watermarking Diffusion Models** \
98 | *Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Ngai-Man Cheung, Min Lin* \
99 | arXiv 2023. [[Paper](https://arxiv.org/abs/2303.10137)] [[Project](https://github.com/yunqing-me/WatermarkDM)] \
100 | 17 March 2023
101 |
102 |
103 | ## Fine-tuning
104 |
105 | **LoRA: Low-Rank Adaptation of Large Language Models** \
106 | *Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen* \
107 | ICLR 2022. [[Paper](https://arxiv.org/abs/2106.09685)] \
108 |
109 | **GLIGEN: Open-Set Grounded Text-to-Image Generation** \
110 | *Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li, Yong Jae Lee* \
111 | CVPR 2023. [[Paper](https://arxiv.org/abs/2301.07093)] [[Project](https://gligen.github.io/)] \
112 |
113 | **SpaText: Spatio-Textual Representation for Controllable Image Generation** \
114 | *Omri Avrahami, Thomas Hayes, Oran Gafni, Sonal Gupta, Yaniv Taigman, Devi Parikh, Dani Lischinski, Ohad Fried, Xi Yin* \
115 | CVPR 2023. [[Paper](https://arxiv.org/abs/2211.14305)] [[Project](https://omriavrahami.com/spatext/)] \
116 | 25 Nov 2022
117 |
118 | **Adding Conditional Control to Text-to-Image Diffusion Models** \
119 | *Lvmin Zhang, Maneesh Agrawala* \
120 | arXiv 2023. [[Paper](https://arxiv.org/abs/2302.05543)] [[Github](https://github.com/lllyasviel/ControlNet)] \
121 | 10 Feb 2023
122 |
123 | **T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models** \
124 | *Chong Mou, Xintao Wang, Liangbin Xie, Jian Zhang, Zhongang Qi, Ying Shan, Xiaohu Qie* \
125 | arXiv 2023. [[Paper](https://arxiv.org/abs/2302.08453)] [[Github](https://github.com/TencentARC/T2I-Adapter)] \
126 | 10 Feb 2023
127 |
128 | **Editing Implicit Assumptions in Text-to-Image Diffusion Models** \
129 | *Hadas Orgad, Bahjat Kawar, Yonatan Belinkov* \
130 | arXiv 2023. [[Paper](https://arxiv.org/abs/2303.08084)] [[Project](https://time-diffusion.github.io/)] [[Github](https://github.com/bahjat-kawar/time-diffusion)] \
131 | 14 Mar 2023
132 |
133 | **SVDiff: Compact Parameter Space for Diffusion Fine-Tuning** \
134 | *Ligong Han, Yinxiao Li, Han Zhang, Peyman Milanfar, Dimitris Metaxas, Feng Yang* \
135 | arXiv 2023. [[Paper](https://arxiv.org/abs/2303.11305)] \
136 | 20 Mar 2023
137 |
138 | **DiffFit: Unlocking Transferability of Large Diffusion Models via Simple Parameter-Efficient Fine-Tuning** \
139 | *Enze Xie, Lewei Yao, Han Shi, Zhili Liu, Daquan Zhou, Zhaoqiang Liu, Jiawei Li, Zhenguo Li* \
140 | arXiv 2023. [[Paper](https://arxiv.org/abs/2304.06648)] \
141 | 13 Apr 2023
142 |
143 |
144 | ## Low-level Vision
145 |
146 | **Palette: Image-to-Image Diffusion Models** \
147 | *Chitwan Saharia, William Chan, Huiwen Chang, Chris A. Lee, Jonathan Ho, Tim Salimans, David J. Fleet, Mohammad Norouzi*\
148 | SIGGRAPH 2022. [[Paper](https://arxiv.org/abs/2111.05826)] [[Project](https://iterative-refinement.github.io/palette/)] \
149 |
150 | **Deblurring via Stochastic Refinement** \
151 | *Jay Whang, Mauricio Delbracio, Hossein Talebi, Chitwan Saharia, Alexandros G. Dimakis, Peyman Milanfar* \
152 | CVPR 2022. [[Paper](https://arxiv.org/abs/2112.02475)] \
153 | 5 Dec 2021
154 |
155 | **Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models** \
156 | *Jiarui Xu, Sifei Liu, Arash Vahdat, Wonmin Byeon, Xiaolong Wang, Shalini De Mello* \
157 | arXiv 2023. [[Paper](https://arxiv.org/abs/2303.04803)] [[Project](https://jerryxu.net/ODISE/)] \
158 | 8 Mar 2023
159 |
160 | **Monocular Depth Estimation using Diffusion Models** \
161 | *Saurabh Saxena, Abhishek Kar, Mohammad Norouzi, David J. Fleet* \
162 | arXiv 2023. [[Paper](https://arxiv.org/abs/2302.14816)]
163 | 28 April 2023
164 |
165 | ## Classification
166 | **Your Diffusion Model is Secretly a Zero-Shot Classifier** \
167 | *Alexander C. Li, Mihir Prabhudesai, Shivam Duggal, Ellis Brown, Deepak Pathak*\
168 | arXiv 2023. [[Paper](https://arxiv.org/abs/2303.16203)] [[Project](https://diffusion-classifier.github.io/)] [[Github](https://github.com/diffusion-classifier/diffusion-classifier)] \
169 | 28 Mar 2023
170 |
171 | ## Adversarial Robustness
172 |
173 | **Improving Robustness using Generated Data** \
174 | Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Andrei Calian, Timothy Mann \
175 | NeurIPS 2021. [[Paper](https://arxiv.org/abs/2110.09468)] [[Github](https://github.com/deepmind/deepmind-research/tree/master/adversarial_robustness)] \
176 | 18 Oct 2021
177 |
178 | **Better Diffusion Models Further Improve Adversarial Training** \
179 | Zekai Wang*, Tianyu Pang*, Chao Du, Min Lin, Weiwei Liu, Shuicheng Yan \
180 | ICML 2023. [[Paper](https://arxiv.org/pdf/2302.04638.pdf)] [[Github](https://github.com/wzekai99/DM-Improves-AT)] \
181 | 09 Feb 2023
182 |
--------------------------------------------------------------------------------
/topics/3_others.md:
--------------------------------------------------------------------------------
1 | # Applications on Other Domains
2 |
3 | # Inverse Problems and Medical Imaging
4 |
5 | **Robust Compressed Sensing MRI with Deep Generative Priors** \
6 | Ajil Jalal, Marius Arvinte, Giannis Daras, Eric Price, Alexandros G Dimakis, Jon Tamir \
7 | NeurIPS 2021. [[Paper](https://proceedings.neurips.cc/paper/2021/hash/7d6044e95a16761171b130dcb476a43e-Abstract.html)] [[Github](https://github.com/utcsilab/csgm-mri-langevin)] \
8 | 09 Nov 2021
9 |
10 | **Solving Inverse Problems in Medical Imaging with Score-Based Generative Models** \
11 | *Yang Song1, Liyue Shen1, Lei Xing, Stefano Ermon* \
12 | ICLR 2022. [[Paper](https://arxiv.org/abs/2111.08005)] [[Github](https://github.com/yang-song/score_inverse_problems)] \
13 | 15 Nov 2021
14 |
15 | **Denoising Diffusion Restoration Models** \
16 | *Bahjat Kawar, Michael Elad, Stefano Ermon, Jiaming Song* \
17 | NeurIPS 2022. [[Paper](https://arxiv.org/abs/2201.11793)] \
18 | 27 Jan 2022
19 |
20 | **Improving Diffusion Models for Inverse Problems using Manifold Constraints** \
21 | *Hyungjin Chung1, Byeongsu Sim1, Dohoon Ryu, Jong Chul Ye* \
22 | NeurIPS 2022. [[Paper](https://arxiv.org/abs/2206.00941)] \
23 | 2 Jun 2022
24 |
25 | **Pyramidal Denoising Diffusion Probabilistic Models** \
26 | *Dohoon Ryu, Jong Chul Ye* \
27 | arXiv 2022. [[Paper](https://arxiv.org/abs/2208.01864)] \
28 | 3 Aug 2022
29 |
30 | **Diffusion Posterior Sampling for General Noisy Inverse Problems** \
31 | *Hyungjin Chung1, Jeongsol Kim1, Michael T. Mccann, Marc L. Klasky, Jong Chul Ye* \
32 | arXiv 2022. [[Paper](https://arxiv.org/abs/2209.14687)] [[Github](https://github.com/DPS2022/diffusion-posterior-sampling)] \
33 | 29 Sep 2022
34 |
35 | **Score-Based Diffusion Models as Principled Priors for Inverse Imaging** \
36 | *Berthy T. Feng, Jamie Smith, Michael Rubinstein, Huiwen Chang, Katherine L. Bouman, William T. Freeman* \
37 | arXiv 2023. [[Paper](https://arxiv.org/abs/2304.11751)] \
38 | 23 Apr 2023
39 |
40 | **Pseudoinverse-Guided Diffusion Models for Inverse Problems** \
41 | *Jiaming Song, Arash Vahdat, Morteza Mardani, Jan Kautz* \
42 | ICLR 2023. [[Paper](https://openreview.net/forum?id=9_gsMA8MRKQ)] \
43 | 7 May 2023
44 |
45 | **A Variational Perspective on Solving Inverse Problems with Diffusion Models** \
46 | *Morteza Mardani, Jiaming Song, Jan Kautz, Arash Vahdat* \
47 | arXiv 2023. [[Paper](https://arxiv.org/abs/2305.04391)] \
48 | 7 May 2023
49 |
50 | **Inversion by Direct Iteration: An Alternative to Denoising Diffusion for Image Restoration**
51 | *Mauricio Delbracio, Peyman Milanfar*
52 | arxiv 2023. [[Paper](https://arxiv.org/abs/2303.11435)] \
53 | 22 Mar 2023
54 |
55 | **Removing Structured Noise with Diffusion Models**
56 | *Tristan S.W. Stevens, Hans van Gorp, Faik C. Meral, Jun Seob Shin, Jason Yu, Jean-Luc Robert, Ruud J.G. van Sloun*
57 | arxiv 2023. [[Paper](https://arxiv.org/pdf/2302.05290.pdf)] [[Blog](https://tristan-deep.github.io/posts/2023/03/diffusion-models/)] \
58 | 24 May 2023
59 |
60 | **Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model**
61 | *Yinhuai Wang, Jiwen Yu, Jian Zhang*
62 | ICLR 2023. [[Paper](https://arxiv.org/pdf/2302.05290.pdf)] \
63 | 1 Feb 2023
64 |
65 | ## 3D
66 |
67 | ### Point clouds
68 |
69 | **3D Shape Generation and Completion through Point-Voxel Diffusion** \
70 | *Linqi Zhou, Yilun Du, Jiajun Wu* \
71 | ICCV 2021. [[Paper](https://arxiv.org/abs/2104.03670)] [[Project](https://alexzhou907.github.io/pvd)]
72 |
73 | **LION: Latent Point Diffusion Models for 3D Shape Generation** \
74 | *Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, Karsten Kreis* \
75 | NeurIPS 2022. [[Paper](https://arxiv.org/pdf/2210.06978.pdf)] [[Project](https://nv-tlabs.github.io/LION/)]
76 |
77 | **Point-E: A System for Generating 3D Point Clouds from Complex Prompts** \
78 | *Alex Nichol1, Heewoo Jun1, Prafulla Dhariwal, Pamela Mishkin, Mark Chen* \
79 | arXiv 2022. [[Paper](https://arxiv.org/abs/2212.08751)] [[Github](https://github.com/openai/point-e)] \
80 | 16 Dec 2022
81 |
82 |
83 | ### SDFs
84 |
85 | **DiffusionSDF: Conditional Generative Modeling of Signed Distance Functions** \
86 | *Gene Chou, Yuval Bahat, Felix Heide* \
87 | arXiv 2022. [[Paper](https://arxiv.org/abs/2211.13757)] \
88 | 24 Nov 2022
89 |
90 | **SDFusion: Multimodal 3D Shape Completion, Reconstruction, and Generation** \
91 | *Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, Alexander Schwing, Liangyan Gui* \
92 | arXiv 2022. [[Paper](https://arxiv.org/abs/2212.04493)] [[Project](https://yccyenchicheng.github.io/SDFusion/)] \
93 | 8 Dec 2022
94 |
95 | **Neural Wavelet-domain Diffusion for 3D Shape Generation** \
96 | *Ka-Hei Hui, Ruihui Li, Jingyu Hu, Chi-Wing Fu* \
97 | arXiv 2022. [[Paper](https://arxiv.org/abs/2209.08725)] \
98 | 19 Sep 2022
99 |
100 |
101 | ### Triplanes
102 |
103 | **3D Neural Field Generation using Triplane Diffusion** \
104 | *J. Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner, Jiajun Wu, Gordon Wetzstein* \
105 | arXiv 2022. [[Paper](https://arxiv.org/abs/2211.16677)] [[Project](https://jryanshue.com/nfd/)] \
106 | 30 Nov 2022
107 |
108 |
109 | ### NeRF and other field representations
110 |
111 | **Learning a Diffusion Prior for NeRFs** \
112 | *Guandao Yang, Abhijit Kundu, Leonidas J. Guibas, Jonathan T. Barron, Ben Poole* \
113 | ICLR Workshop 2023. [[Paper](https://arxiv.org/abs/2304.14473)] \
114 | 27 Apr 2023
115 |
116 | **Shap-E: Generating Conditional 3D Implicit Functions** \
117 | *Heewoo Jun, Alex Nichol* \
118 | arXiv 2023. [[Paper](https://arxiv.org/abs/2305.02463)] [[Github](https://github.com/openai/shap-e)]
119 | 3 May 2023
120 |
121 | ### 3d using 2d models, 2d data
122 |
123 | **DreamFusion: Text-to-3D using 2D Diffusion** \
124 | *Ben Poole, Ajay Jain, Jonathan T. Barron, Ben Mildenhall* \
125 | arXiv 2022. [[Paper](https://arxiv.org/abs/2209.14988)] [[Github](https://dreamfusion3d.github.io/)] \
126 | 29 Sep 2022
127 |
128 | **Magic3D: High-Resolution Text-to-3D Content Creation** \
129 | *Chen-Hsuan Lin1, Jun Gao1, Luming Tang1, Towaki Takikawa1, Xiaohui Zeng1, Xun Huang, Karsten Kreis, Sanja Fidler, Ming-Yu Liu, Tsung-Yi Lin* \
130 | arXiv 2022. [[Paper](https://arxiv.org/abs/2211.10440)] [[Project](https://deepimagination.cc/Magic3D/)] \
131 | 18 Nov 2022
132 |
133 | **Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D Generation** \
134 | *Haochen Wang1, Xiaodan Du1, Jiahao Li1, Raymond A. Yeh, Greg Shakhnarovich* \
135 | arXiv 2022. [[Paper](https://arxiv.org/abs/2212.00774)] \
136 | 1 Dec 2022
137 |
138 | **Latent-NeRF for Shape-Guided Generation of 3D Shapes and Textures** \
139 | *Gal Metzer1, Elad Richardson1, Or Patashnik, Raja Giryes, Daniel Cohen-Or* \
140 | arXiv 2022. [[Paper](https://arxiv.org/abs/2211.07600)] [[Github](https://github.com/eladrich/latent-nerf)] \
141 | 14 Nov 2022
142 |
143 | **Debiasing Scores and Prompts of 2D Diffusion for Robust Text-to-3D Generation** \
144 | *Susung Hong1, Donghoon Ahn1, Seungryong Kim* \
145 | CVPR Workshop 2023. [[Paper](https://arxiv.org/abs/2303.15413)] \
146 | 27 March 2023
147 |
148 |
149 | ### 3d using 2d models, 3d data
150 |
151 | **Novel View Synthesis with Diffusion Models** \
152 | *Daniel Watson, William Chan, Ricardo Martin-Brualla, Jonathan Ho, Andrea Tagliasacchi, Mohammad Norouzi* \
153 | arXiv 2022. [[Paper](https://arxiv.org/abs/2210.04628)] \
154 |
155 | **Generative Novel View Synthesis with 3D-Aware Diffusion Models** \
156 | *Eric R. Chan1, Koki Nagano1, Matthew A. Chan, Alexander W. Bergman, Jeong Joon Park, Axel Levy, Miika Aittala, Shalini De Mello, Tero Karras, Gordon Wetzstein* \
157 | arXiv 2023. [[Paper](https://arxiv.org/abs/2304.02602)] [[Project](https://nvlabs.github.io/genvs/)] \
158 | 5 Apr 2023
159 |
160 |
161 | ### 3d reconstruction
162 |
163 | **NeuralLift-360: Lifting An In-the-wild 2D Photo to A 3D Object with 360° Views** \
164 | *Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Yi Wang, Zhangyang Wang* \
165 | arXiv 2022. [[Paper](https://arxiv.org/abs/2211.16431)] [[Project](https://vita-group.github.io/NeuralLift-360/)] \
166 | 29 Nov 2022
167 |
168 | **SparseFusion: Distilling View-conditioned Diffusion for 3D Reconstruction** \
169 | *Zhizhuo Zhou, Shubham Tulsiani* \
170 | arXiv 2022. [[Paper](https://arxiv.org/abs/2212.00792)] [[Github](https://sparsefusion.github.io/)] \
171 | 1 Dec 2022
172 |
173 | **DITTO-NeRF: Diffusion-based Iterative Text To Omni-directional 3D Model** \
174 | *Hoigi Seo1, Hayeon Kim1, Gwanghyun Kim, Se Young Chun* \
175 | arXiv 2023. [[Paper](https://arxiv.org/abs/2304.02827)] [[Project](https://janeyeon.github.io/ditto-nerf/)] \
176 | 6 Apr 2023
177 |
178 | ### 3d editing
179 |
180 | **Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions** \
181 | *Ayaan Haque, Matthew Tancik, Alexei A. Efros, Aleksander Holynski, Angjoo Kanazawa* \
182 | arXiv 2023. [[Paper](https://arxiv.org/abs/2303.12789)] [[Project](https://instruct-nerf2nerf.github.io/)] \
183 | 22 Mar 2023
184 |
185 | **Vox-E: Text-guided Voxel Editing of 3D Objects** \
186 | *Etai Sella, Gal Fiebelman, Peter Hedman, Hadar Averbuch-Elor* \
187 | arXiv 2023. [[Paper](https://arxiv.org/abs/2303.12048)] [[Project](https://tau-vailab.github.io/Vox-E/)] \
188 | 21 Mar 2023
189 |
190 |
191 | # Video
192 |
193 | ## Video generation / prediction / interpolation
194 |
195 | **Video Diffusion Models** \
196 | *Jonathan Ho1, Tim Salimans1, Alexey Gritsenko, William Chan, Mohammad Norouzi, David J. Fleet* \
197 | NeurIPS 2022. [[Paper](https://arxiv.org/abs/2204.03458)] \
198 | 7 Apr 2022
199 |
200 | **Flexible Diffusion Modeling of Long Videos** \
201 | *William Harvey, Saeid Naderiparizi, Vaden Masrani, Christian Weilbach, Frank Wood* \
202 | arXiv 2022. [[Paper](https://arxiv.org/abs/2205.11495)] [[Github](https://github.com/plai-group/flexible-video-diffusion-modeling)] \
203 | 23 May 2022
204 |
205 | **MCVD: Masked Conditional Video Diffusion for Prediction, Generation, and Interpolation** \
206 | *Vikram Voleti1, Alexia Jolicoeur-Martineau1, Christopher Pal* \
207 | NeurIPS 2022. [[Paper](https://arxiv.org/abs/2205.09853)] [[Github](https://github.com/voletiv/mcvd-pytorch)] \
208 | 19 May 2022
209 |
210 | **Imagen Video: High Definition Video Generation with Diffusion Models** \
211 | *Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P. Kingma, Ben Poole, Mohammad Norouzi, David J. Fleet, Tim Salimans* \
212 | Oct 2022. [[Paper](https://imagen.research.google/video/paper.pdf)]
213 |
214 | **Make-A-Video: Text-to-Video Generation without Text-Video Data** \
215 | *Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, Yaniv Taigman* \
216 | arXiv 2022. [[Paper](https://arxiv.org/abs/2209.14792)] \
217 | 29 Sep 2022
218 |
219 | **VIDM: Video Implicit Diffusion Models** \
220 | *Kangfu Mei, Vishal M. Patel* \
221 | arXiv 2022. [[Paper](https://arxiv.org/abs/2212.00235)] [[Project](https://kfmei.page/vidm/)] \
222 | 1 Dec 2022
223 |
224 | **Align your Latents: High-Resolution Video Synthesis with Latent Diffusion Models** \
225 | *Andreas Blattmann1, Robin Rombach1, Huan Ling1, Tim Dockhorn1, Seung Wook Kim, Sanja Fidler, Karsten Kreis* \
226 | CVPR 2023. [[Paper](https://arxiv.org/abs/2304.08818)] [[Project](https://research.nvidia.com/labs/toronto-ai/VideoLDM/)] \
227 | 18 Apr 2023
228 |
229 |
230 | ## Video editing / style transfer
231 |
232 | **Zero-Shot Video Editing Using Off-The-Shelf Image Diffusion Models** \
233 | *Wen Wang1, Kangyang Xie1, Zide Liu1, Hao Chen, Yue Cao, Xinlong Wang, Chunhua Shen* \
234 | arXiv 2023. [[Paper](https://arxiv.org/abs/2303.17599)] \
235 | 30 Mar 2023
236 |
237 | **Pix2Video: Video Editing using Image Diffusion** \
238 | *Duygu Ceylan, Chun-Hao Paul Huang, Niloy J. Mitra* \
239 | arXiv 2023. [[Paper](https://arxiv.org/abs/2303.12688)] [[Project](https://duyguceylan.github.io/pix2video.github.io/)] \
240 | 22 Mar 2023
241 |
242 | **Structure and Content-Guided Video Synthesis with Diffusion Models** \
243 | *Patrick Esser, Johnathan Chiu, Parmida Atighehchian, Jonathan Granskog, Anastasis Germanidis* \
244 | arXiv 2023. [[Paper](https://arxiv.org/abs/2302.03011)] \
245 | 6 Feb 2023
246 |
247 | # Flexible Large-Content Generation
248 |
249 | **Mixture of Diffusers for scene composition and high resolution image generation** \
250 | *Álvaro Barbero Jiménez* \
251 | arXiv 2023. [[Paper](https://arxiv.org/abs/2302.02412)] [[Github](https://github.com/albarji/mixture-of-diffusers)] \
252 | 5 Feb 2023
253 |
254 | **MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation** \
255 | *Omer Bar-Tal1, Lior Yariv1, Yaron Lipman, Tali Dekel* \
256 | arXiv 2023. [[Paper](https://arxiv.org/abs/2302.08113)] [Project](https://multidiffusion.github.io/)] [[Github](https://github.com/omerbt/MultiDiffusion)] \
257 | 16 Feb 2023
258 |
259 | **DiffCollage: Parallel Generation of Large Content with Diffusion Models** \
260 | *Qinsheng Zhang, Jiaming Song, Xun Huang, Yongxin Chen, Ming-Yu Liu* \
261 | CVPR 2023. [[Paper](https://arxiv.org/abs/2303.17076)] [[Project](https://research.nvidia.com/labs/dir/diffcollage/)] \
262 | 30 Mar 2023
263 |
264 |
265 |
266 | # Motion
267 |
268 | **MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model** \
269 | *Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying Guo, Lei Yang, Ziwei Liu* \
270 | arXiv 2022. [[Paper](https://arxiv.org/abs/2208.15001)] [[Project](https://mingyuan-zhang.github.io/projects/MotionDiffuse.html)] \
271 | 31 Aug 2022
272 |
273 | **Human Motion Diffusion Model** \
274 | *Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Amit H. Bermano, Daniel Cohen-Or* \
275 | arXiv 2022. [[Paper](https://arxiv.org/abs/2209.14916)] [[Project](https://guytevet.github.io/mdm-page/)] \
276 | 29 Sep 2022
277 |
278 | **Executing your Commands via Motion Diffusion in Latent Space** \
279 | *Xin Chen1, Biao Jiang1, Wen Liu, Zilong Huang, Bin Fu, Tao Chen, Jingyi Yu, Gang Yu* \
280 | CVPR 2023. [[Paper](https://arxiv.org/abs/2212.04048)] [[Project](https://github.com/ChenFengYe/motion-latent-diffusion)] \
281 | 8 Dec 2022
282 |
283 | **Avatars Grow Legs: Generating Smooth Human Motion from Sparse Tracking Inputs with Diffusion Model** \
284 | *Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, Artsiom Sanakoyeu* \
285 | CVPR 2023. [[Paper](https://arxiv.org/abs/2304.08577)] [[Project](https://dulucas.github.io/agrol/)] \
286 | 17 Apr 2023
287 |
288 | **Human Motion Diffusion as a Generative Prior** \
289 | *Yonatan Shafir1, Guy Tevet1, Roy Kapon, Amit H. Bermano* \
290 | arXiv 2023. [[Paper](https://arxiv.org/abs/2303.01418)] \
291 | 2 Mar 2023
292 |
293 |
294 | ## Limitations & Mitigations
295 |
296 | **Diffusion Art or Digital Forgery? Investigating Data Replication in Diffusion Models** \
297 | *Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, Tom Goldstein* \
298 | CVPR 2023. [[Paper](https://openaccess.thecvf.com/content/CVPR2023/papers/Somepalli_Diffusion_Art_or_Digital_Forgery_Investigating_Data_Replication_in_Diffusion_CVPR_2023_paper.pdf)] [[Github](https://github.com/somepago/DCR)] \
299 | 7 Dec 2022
300 |
301 | **Extracting Training Data from Diffusion Models** \
302 | *Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramèr, Borja Balle, Daphne Ippolito, Eric Wallace* \
303 | arXiv 2023. [[Paper](https://arxiv.org/abs/2301.13188)] \
304 | 30 Jan 2023
305 |
306 | **Erasing Concepts from Diffusion Models** \
307 | *Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, David Bau* \
308 | arXiv 2023. [[Paper](https://arxiv.org/abs/2303.07345)] \
309 | 13 March 2023
310 |
311 | **Ablating Concepts in Text-to-Image Diffusion Models** \
312 | *Nupur Kumari, Bin Zhang, Sheng-Yu Wang, Eli Shechtman, Richard Zhang, Jun-Yan Zhu* \
313 | arXiv 2023. [[Paper](https://arxiv.org/abs/2303.13516)] \
314 | 23 March 2023
315 |
316 | **Understanding and Mitigating Copying in Diffusion Models** \
317 | *Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, Tom Goldstein* \
318 | arXiv 2023. [[Paper](https://arxiv.org/abs/2305.20086)] [[Github](https://github.com/somepago/DCR)] \
319 | 31 May 2023
320 |
321 | **Extracting Training Data from Diffusion Models** \
322 | *Nicholas Carlini1, Jamie Hayes1, Milad Nasr1, Matthew Jagielski, Vikash Sehwag, Florian Tramèr, Borja Balle, Daphne Ippolito, Eric Wallace* \
323 | arXiv 2023. [[Paper](https://arxiv.org/abs/2302.00860)] \
324 | 2 Feb 2023
--------------------------------------------------------------------------------