├── .DS_Store ├── .nojekyll ├── README.md ├── index.html └── static ├── .DS_Store ├── css ├── bulma-carousel.min.css ├── bulma-slider.min.css ├── bulma.css.map.txt ├── bulma.min.css ├── fontawesome.all.min.css └── index.css ├── images └── pipeline.png ├── js ├── bulma-carousel.js ├── bulma-carousel.min.js ├── bulma-slider.js ├── bulma-slider.min.js ├── fontawesome.all.min.js └── index.js ├── pdfs └── paper.pdf └── videos ├── .DS_Store ├── earphone_cat.mp4 ├── giraffe_cat.mp4 ├── penguin_cat.mp4 ├── spot_cat.mp4 └── video.mp4 /.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cwchenwang/physctrl/5cd0fd53f8e4094929265c8ee9ae653b2c535a44/.DS_Store -------------------------------------------------------------------------------- /.nojekyll: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 |
184 | Existing video generation models excel at producing photo-realistic videos from text or images, but often lack physical plausibility and 3D controllability. To overcome these limitations, we introduce PhysCtrl, a novel framework for physics-grounded image-to-video generation with physical parameters and force control. At its core is a generative physics network that learns the distribution of physical dynamics across four materials (elastic, sand, plasticine, and rigid) via a diffusion model conditioned on physics parameters and applied forces. We represent physical dynamics as 3D point trajectories and train on a large-scale synthetic dataset of 550K animations generated by physics simulators. We enhance the diffusion model with a novel spatiotemporal attention block that emulates particle interactions and incorporates physics-based constraints during training to enforce physical plausibility. Experiments show that PhysCtrl generates realistic, physics-grounded motion trajectories which, when used to drive image-to-video models, yield high-fidelity, controllable videos that outperform existing methods in both visual quality and physical plausibility. 185 |
186 |
226 | @inproceedings{physctrl2025,
227 | Author = {Chen Wang* and Chuhao Chen* and Yiming Huang and Zhiyang Dou and Yuan Liu and Jiatao Gu and Lingjie Liu},
228 | Title = {PhysCtrl: Generative Physics for Controllable and Physics-Grounded Video Generation},
229 | Year = {2025},
230 | booktitle={NeurIPS},
231 | }
232 |
233 |