└── README.md /README.md: -------------------------------------------------------------------------------- 1 | # [知识图谱实验室学习资源](https://github.com/cxcygzs/Learning_Resources/edit/main/README.md) 2 | # 目录 3 | 4 | - [研究生时间规划](#研究生时间规划) 5 | - [蒲慕明院士写给实验室研究生的Email](#蒲慕明院士写给实验室研究生的Email) 6 | - [研究生从事学术研究的赫曼法则(The Laws of Herman)](#研究生从事学术研究的赫曼法则) 7 | - [如何阅读论文转自施一公](#如何阅读论文转自施一公) 8 | - [知识图谱、大模型相关综述](#知识图谱大模型相关综述) 9 | - [大模型工具](#大模型工具) 10 | - [科研工具](#科研工具) 11 | - [知识图谱各研究方向论文及数据集](#知识图谱各研究方向论文及数据集) 12 | - [知识图谱课程或相关研究机构主页](#知识图谱课程或相关研究机构主页) 13 | - [知识图谱相关书籍](#知识图谱相关书籍) 14 | - [知识图谱构建工具](#知识图谱构建工具) 15 | - [知识图谱与大语言模型](#知识图谱与大语言模型) 16 | - [推荐国际学术会议和期刊](#推荐国际学术会议和期刊) 17 | - [知识图谱相关会议](#知识图谱相关会议) 18 | - [知识图谱相关期刊](#知识图谱相关期刊) 19 | - [如何做科研写论文](#如何做科研写论文) 20 | - [知识图谱系统](#知识图谱系统) 21 | - [实验室自建知识图谱系统](#实验室自建知识图谱系统) 22 | - [实验室发表相关论文](#实验室发表相关论文) 23 | - [计算机科学有趣的链接](#计算机科学有趣的链接) 24 | - [机器学习算法可视化](#机器学习算法可视化) 25 | 26 | 27 | --- 28 | ### 研究生时间规划 29 | #### 研一第一学期 30 | 1. 研究生阶段完成一篇综述(对应大论文的一二章)、两篇创新点论文(申博士的同学三篇)(对应大论文的三四章),参与工程项目(对应大论文的最后一章)。保证学习时间,上午9点到12点,下午2:00到6:30,晚上7:30点到10:30,**每天不间断(寒暑假继续,国家法定节假日除外)**,如果有事情耽误,第二天补上! **申博英语六级成绩最低分要求:复旦计算机学院425,大数据学院500;浙大计算机学院460;东南大学网安学院425!** 31 | 2. 阅读知识图谱、大模型相关相关硕博论文和《计算机学报》《软件学报》《计算机研究与发展》三大学报上的论文,然后阅读英文论文,精读有代码的论文,观看videolectures相关学术报告,明确选题方向!(https://paperswithcode.com/task/knowledge-graphs) (https://paperswithcode.com/task/language-modelling) (https://videolectures.net/search?query=knowledge%20graph&tab=lectures) 32 | 3. 组会进行论文阅读汇报,并同导师讨论,**开始撰写综述(提前预选投稿杂志),寒假结束前完成**。引用的近三年文献占70%以上(CCF A类或者SCI一区以上(https://www.aminer.cn/search/pub?conf_tag=cjcr-1%E5%8C%BA%2Cccf-a&q=knowledge%20graph&t=b&time=2021-2024) 33 | 34 | #### 研一第二学期 35 | 1. **开学第一个月完成综述文章投搞!(中科院SCI二区以上期刊)** 36 | 2. 复现基线方法的代码,构思第一个创新点!并撰写论文初稿! 37 | 3. **第二学期结束前,第一个创新点论文一定要投出去(中科院SCI二区以上或者CCF A类),同时提交对应的专利申请稿** 38 | #### 研二第一学期 39 | 1. 研二,是整个研究生生涯最关键的一年,也是大量实验的一年,开始实验前一定要经过详细的实验计划以及反复确认实验的可行性。 40 | 2. 研二的同学准备好开题报告、开题答辩PPT(包含前期取得的成果以及已投稿论文)。 41 | 3. 实验期间,一定要及时和导师和师兄师姐进行沟通,切记,不要自己一个人闷头苦干,闭门造车! 42 | 4. 加紧实验,整理数据,准备开题,**开题前第二个创新点文章要投出去(中科院SCI二区以上或者CCF A类),同时提交对应的专利申请稿** 43 | #### 研二第二学期 44 | 1. 第三个创新点文章一定要有雏形,加紧实验,同时,还是要多和导师进行沟通,保持正确的大方向。**暑假前第三个创新点文章要投出去(中科院SCI二区以上或者CCF A类),同时提交对应的专利申请稿** (申请读博的同学要投第三个创新点论文) 45 | #### 研三第一学期 46 | 1. 博士申请、找工作。 47 | 2. 撰写毕业论文,国庆后第一周出大论文框架,在寒假回家前,完成初稿,送给小同行评审。 48 | #### 研三第二学期 49 | 1. 开学前大论文要写改好,准备送外审!准备毕业答辩! 50 | --- 51 | ### 蒲慕明院士写给实验室研究生的Email 52 | 1. [蒲慕明院士写给实验室研究生的Email](https://zhuanlan.zhihu.com/p/61681895) 53 | --- 54 | ### 研究生从事学术研究的赫曼法则 55 | 哥伦比亚大学应用物理学教授赫曼(Irving P. Herman)通过自己指导研究生的经历,针对研究生遇到的问题和困惑,从导师的角度对研究生如何顺利完成学位论文,提出了20条劝告,这被称为研究生从事学术研究的赫曼法则(The Laws of Herman)。 56 | 1. 在做学位论文期间,不要有任何度假休息的打算。 57 | 2. 科学研究中,记住这个原则:重要的是什么是正确的,而不是谁是正确的。 58 | 3. 在思想上,你要相信:多数情况下,无论学术研究还是其它事情,导师错的时候不多。 59 | 4. 在行动上,你要相信:绝大多数时候,只要按照导师的要求去做,就不会有错。 60 | 5. 与导师意见有分歧,如果你觉得你是对的,那么就想办法去说服导师,这样他也会高兴的。 61 | 6. 你的科研产出与你每天花在工作上的有效时间的1000次方成比例。 62 | 7. 你的科研产出与你分析已获得数据拖延的时间的1000次方的倒数成比例。 63 | 8. 如果今天能拿到数据就不要等到明天,说不定明天仪器设备就出问题了。 64 | 9. 为了避免自己日后崩溃,获得数据后每次再多花5分钟做好永久备份。 65 | 10. 导师不会在初期就期望你发表论文,但一年或更长的时间以后,如果你还没有论文发表,或者发表的论文比别人少,你应该抬头看看导师的脸色。 66 | 11. 在你所从事的研究领域,你必须使自己成为一个大专家,争取成为你导师的导师。 67 | 12. 如果你平时很配合导师的工作,导师的血压会很正常。 68 | 13. 如果你与导师背道而驰,我行我素,你导师的血压要么升高,要么会崩盘。 69 | 14. 学位论文的质量有一个基本标准,就是保证写进论文的每部分结果都达到能够发表的要求。 70 | 15. 在论文质量第一,不追求数量的前提下,你发表的学术论文质量越高,你的学位论文也就会越优秀。 71 | 16. 你要牢记一点:学位论文是你自己的,所以你必须自己亲力亲行去努力完成它。 72 | 17. 导师很期待你能成名,这样他(她)最终也会因你而成名。 73 | 18. 如果你学业优秀,最后导师一定会为你写一封特别棒的推荐信。 74 | 19. 对你有好处的事情,对你的导师也应该有好处。你好,他也好。 75 | 20. 对导师有好处的事情,对你自己也应该有好处。他好,你也好。 76 | 77 | --- 78 | ### 如何阅读论文转自施一公 79 | 1. 在读科研论文时,最重要的是了解文章的主线逻辑。文章中的所有Figures都是按照这个主线逻辑展开描述的。所以,我一般先读“introduction”部分,然后很快地看一遍Figures。大概知道这条主线之后,才一字一句地去读“results”和“discussion”。 80 | 2. 当遇到一些实验或结果分析很晦涩难懂时,不必花太多时间深究,而力求一气把文章读完。也许你的问题在后面的内容中自然就有解答。这与听学术讲座非常相似!你如果想每个细节都听懂,留心每一个技术细节,那你听学术讲座不仅会很累,而且也许会为了深究一个小技术环节而影响了对整个讲座逻辑推理及核心结论的理解。 81 | 3. 对个别重要的文章和自己领域内的科研论文,应该精读。对与自己课题相关的每一篇论文则必须字斟句酌地读。这些论文,不仅要完全读懂,理解每一个实验的细节、分析、结论,还必须联想到这些实验和结论对自己的课题的影响和启发,提出自己的观点。 82 | 4. 科学论文的阅读水平是循序渐进的。每个人开始都会很吃力,所以你有这种感觉不要气馁。坚持很重要,你一定会渐入佳境。当你有问题时或有绝妙分析时,应该与师兄师姐或找导师讨论。 83 | 5. 科研训练的一个重要组成部分就是科研论文的阅读。每一个研究生必须经过严格的科研论文阅读的训练。除了你自己的习惯性阅读外,你应该在研究生阶段自学以阅读分析专业文献为主的一至两门课,在实验室内也要有定期的科研论文讨论(Journal Club)。 84 | 6. 前面几条都是讨论如何提高科研论文的阅读能力,但是一旦入了门,就要学会critical reading。不要迷信已发表的论文,哪怕是发表在非常好的期刊上。要时刻提醒自己:该论文逻辑是否严谨,数据是否可靠,实验证据是否支持结论,你是否能想出更好的实验,你是否可以在此论文的基础上提出新的重要问题?等等。 85 | --- 86 | ### 知识图谱大模型相关综述 87 | 1. [如何写出一篇优秀的文献综述?|《自然》专访](http://www.naturechina.com/solutions/literature_review) 88 | 2. [From Symbols to Embeddings:A Tale of Two Representationsin Computational Social.pdf](https://github.com/cxcygzs/Learning_ResourcesForGraduates/files/10313630/From.Symbols.to.Embeddings.A.Tale.of.Two.Representationsin.Computational.Social.pdf) 89 | | [文中的参考文献](https://github.com/thunlp/CSSReview) 90 | 2. [A review of knowledge graph application scenarios in cyber security](https://github.com/cxcygzs/Learning_ResourcesForGraduates/files/10314038/A.review.of.knowledge.graph.application.scenarios.in.cyber.security1.pdf) 91 | 3. [A survey on knowledge graphs Representation, acquisition, and applications](https://github.com/cxcygzs/Learning_ResourcesForGraduates/files/10314086/A.survey.on.knowledge.graphs.Representation.acquisition.and.applications.pdf) 92 | 4. [Knowledge graph application in education :a literature review](https://github.com/cxcygzs/Learning_ResourcesForGraduates/files/10314089/Knowledge.graph.application.in.education.a.literature.review.pdf) 93 | 5. [Knowledge_Graph_Completion_A_Review](https://github.com/cxcygzs/Learning_ResourcesForGraduates/files/10314108/Knowledge_Graph_Completion_A_Review.pdf) 94 | 6. [A review Knowledge reasoning over knowledge graph](https://github.com/cxcygzs/Learning_ResourcesForGraduates/files/10314146/A.review.Knowledge.reasoning.over.knowledge.graph.pdf) 95 | 7. [Knowledge Graph Embedding A Survey of Approaches and Applications](https://github.com/cxcygzs/Learning_ResourcesForGraduates/files/10314147/Knowledge.Graph.Embedding.A.Survey.of.Approaches.and.Applications.pdf) 96 | 8. [Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey](https://arxiv.org/pdf/2402.05391v4) 97 | 9. [人大大模型综述](https://github.com/RUCAIBox/LLMSurvey)[中文版链接](https://llmbook-zh.github.io/LLMBook.pdf) 98 | --- 99 | ### 大模型工具 100 | 1. [大模型huggingface社区](https://huggingface.co/models) 101 | 2. [huggingface论文趋势](https://huggingface.co/papers/trending) 102 | 3. [代码大模型Cursor](https://www.cursor.com/) 103 | 4. [ChatGPT](https://chatgpt.com/) 104 | 5. [InFlectionAI](https://inflection.ai/) 105 | 6. [文心一言](https://yiyan.baidu.com/chat/Nzk4NDg5NDAxOjQ2Mjg0NzUxNzI=) 106 | 7. [智普淸言](https://chatglm.cn/main/alltoolsdetail?lang=zh) 107 | 8. [豆包](https://www.doubao.com/chat/?channel=bing_sem&source=dbweb_bing_sem_xhs_pc_01&keywordid=1&msclkid=cd18f532d43b134c629e93cde6cea7a3) 108 | --- 109 | ### 科研工具 110 | 1. [清华大学Aminer科技情报大数据平台](https://www.aminer.cn/) 111 | 2. [Huggingface论文趋势Trending Papers](https://huggingface.co/papers/trending?q=knowledge+graph) 112 | 3. [DBLP计算机类论文检索](https://dblp.uni-trier.de/db/) 113 | 4. [Readpaper](https://readpaper.com/) 114 | 5. [赛特新思](https://www.citexs.com/) 115 | 116 | 117 | 118 | 119 | --- 120 | ### 知识图谱各研究方向论文及数据集 121 | 1. [有代码的知识图谱论文及公开数据集](https://paperswithcode.com/task/knowledge-graphs) 122 | 2. [命名实体识别有代码的论文](https://paperswithcode.com/task/cg) 123 | 3. [关系抽取有代码的论文](https://paperswithcode.com/task/relation-extraction) [基于神经网络的关系抽取必读论文](https://github.com/thunlp/NREPapers) 124 | 4. [清华刘知远教授推荐的知识表示学习论文](https://github.com/thunlp/KRLPapers) [知识图谱推理的必读论文](https://github.com/THU-KEG/Knowledge_Graph_Reasoning_Papers) 125 | 5. [实体链接有代码的论文](https://paperswithcode.com/task/entity-linking) 126 | 6. [知识图谱补全有代码的论文](https://paperswithcode.com/task/knowledge-graph-completion) 127 | 7. [网络空间安全知识图谱数据集](https://sepses.ifs.tuwien.ac.at/dumps/) 128 | --- 129 | ### 知识图谱课程或相关研究机构主页 130 | 1. [浙江大学陈华钧教授《知识图谱课程》](https://person.zju.edu.cn/huajun) 131 | 2. [复旦大学肖仰华教授《知识图谱:概念与技术》课程](http://kw.fudan.edu.cn/workshop/kgbook) 132 | 3. [UMBC Tim Finin 《knowlegdge graph》 course](https://redirect.cs.umbc.edu/courses/graduate/691/fall22/kg/) 133 | 4. [Maastricht University 《knowledge graph》course](https://github.com/MaastrichtU-IDS/building-and-mining-knowledge-graphs-course-materials) 134 | 5. [斯坦福大学Jure Leskovec主页](https://cs.stanford.edu/people/jure/)|[斯坦福大学Jure Leskovec《Machine Learning with Graphs》课程](http://web.stanford.edu/class/cs224w/index.html)|[图神经网络工具包pyg链接Graph Neural Network Library for PyTorch](https://github.com/pyg-team/pytorch_geometric) 135 | 6. [UIUC Ji Heng 实验室](http://blender.cs.illinois.edu/publications/) 136 | 7. [Knowledge Graphs:A curated collection of research on knowledge graphs](https://shaoxiongji.github.io/knowledge-graphs/) 137 | 138 | --- 139 | ### 知识图谱相关书籍 140 | 1. [Knowledge Graphs Methodology, Tools and Selected Use Cases](https://github.com/cxcygzs/Learning_Resources/files/10046420/Knowledge.Graphs.Methodology.Tools.and.Selected.Use.Cases.pdf) 141 | 2. [Knowledge Graphs and Big Data Processing Authors: Valentina Janev et al.](https://library.oapen.org/handle/20.500.12657/41294) 142 | 3. [Domain-Specific Knowledge Graph Construction Authors: Mayank Kejriwal](https://github.com/cxcygzs/Learning_Resources/files/10046123/Mayank_Kejriwal._Domain-Specific_Knowledge_Graph.pdf) 143 | 4. [Exploiting Linked Data and Knowledge Graphs in Large Organisation](https://github.com/cxcygzs/Learning_Resources/files/10046439/Exploiting.Linked.Data.and.Knowledge.Graphs.in.Large.Organisation.pdf) 144 | 5. [Knowledge Graphs Data in Context Responsive](https://github.com/cxcygzs/Learning_Resources/files/10046440/Knowledge_Graphs_Data_in_Context_Responsive.pdf) 145 | 6. [the knowledge graph cookbook](https://github.com/cxcygzs/Learning_Resources/files/10046442/the-knowledge-graph-cookbook.pdf) 146 | 7. [Knowledge Graphs And Big Data Processing](https://github.com/cxcygzs/Learning_Resources/files/10046447/Book_Knowledge.Graphs.And.Big.Data.Processing.pdf) 147 | 8. [《Learning SPARQL》本书对应网站](http://learningsparql.com/2ndeditionexamples/index.html) 148 | 9. [KNOWLEDGE GRAPHS](https://kgbook.org/) [github link](https://github.com/Knowledge-Graphs-Book/HTML-Book/) 149 | 10. [Knowledge Graphs: A Practical Introduction across Disciplines](https://usc-isi-i2.github.io/ASONAM2020Tutorial/2020-12-asonam-tutorial-KG.pdf) 150 | 11. [Knowledge Graphs Applied ](https://www.manning.com/books/knowledge-graphs-applied) 151 | 12. [《从零构建知识图谱 技术、方法与案例》](https://github.com/cxcygzs/Learning_Resources/files/10049088/default.pdf) || [邵浩等著,配有实战案例,本书代码github地址](https://github.com/zhangkai-ai/build-kg-from-scratch) 152 | 13. [Relational AI-My First Knowledge Graph](https://docs.relational.ai/getting-started/rel/my-first-knowledge-graph) 153 | 14. 《知识图谱:概念与技术》,肖仰华等著,可作为高年级本科生、硕士生或者博士生的教材 154 | 15. 《知识图谱:方法、实践与应用》,王昊奋,漆桂林,陈华钧编 155 | 16. 《知识图谱与深度学习》刘知远,韩旭,孙茂松著 156 | 17. 《TensorFlow知识图谱实战》,王晓华著,(有代码PPT) 157 | --- 158 | ### 知识图谱构建工具 159 | 1. [浙江大学支持cnSchema、低资源、长篇章、多模态的知识图谱抽取开源工具](http://deepke.zjukg.cn/CN/re_doc_show.html) 160 | 2. [Introduction to STIX](https://oasis-open.github.io/cti-documentation/stix/intro)|[STIX Viewer输入网页链接或者Json文件生成图谱](https://oasis-open.github.io/cti-stix-visualization/?url=https://raw.githubusercontent.com/oasis-open/cti-documentation/master/examples/example_json/using-granular-markings.json) 161 | 162 | --- 163 | ### 知识图谱与大语言模型 164 | 1. [Ask ChatGPT and Get an Annotated Response演示系统链接](https://demos.isl.ics.forth.gr/GPToLODS/demo#main) |[Using Multiple RDF Knowledge Graphs for Enriching ChatGPT Responses论文下载](https://github.com/cxcygzs/Learning_ResourcesForGraduates/files/11496662/Using.Multiple.RDF.Knowledge.Graphs.for.Enriching.ChatGPT.Responses.pdf) 165 | 2. [清华大学通用语言模型ChatGLM-6B ](https://huggingface.co/THUDM/chatglm-6b) 166 | 3. [基于大模型的知识抽取工具(陈华钧团队)](https://github.com/zjunlp/DeepKE/blob/main/example/llm/README_CN.md) 167 | 4. [BertNet: Harvesting Knowledge Graphs from PLMs(2023 ACL Findings)LLM辅助搜索候选实体进行KG补全](https://github.com/tanyuqian/knowledge-harvest-from-lms)[Demo](https://lmnet.io/) 168 | 5. [Reasoning over Different Types of Knowledge Graphs: Static, Temporal and Multi-Modal(学习本文写综述、整理资料的能力)](https://github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning) 169 | 6. [使用ChatGPT进行零样本关系抽取](https://github.com/cocacola-lab/ChatIE) 170 | 7. [LLM(Large Language Model)下的自然语言处理任务、基于清华开源大模型 ChatGLM-6B](https://github.com/HarderThenHarder/transformers_tasks/blob/main/LLM/zero-shot/readme.md) 171 | 8. [知识图谱与大模型论文](https://github.com/zjukg/KG-LLM-Papers) 172 | 9. [关于大模型与图分析综述。A Survey of Large Language Models on Generative Graph Analytics: Query, Learning, and Applications](https://arxiv.org/pdf/2404.14809) 173 | 10. [知识图谱提示学习PromptKG Family: a Gallery of Prompt Learning & KG-related research works, toolkits, and paper-list.](https://github.com/zjunlp/PromptKG) 174 | 11. [知识图谱提示工程LLMs for Knowledge Graph 2: GPT Prompt Engineering for Knowledge Graph Creation](https://graphaware.com/blog/hume/episode_2-gpt-prompt-engineering.html) 175 | 12. [LLM Prompt Engineering Techniques for Knowledge Graph Integration可视化知识图谱提示工程](https://www.visual-design.net/post/llm-prompt-engineering-techniques-for-knowledge-graph) 176 | 13. [Prompt-Engineering-Guide提示工程指导书](https://github.com/dair-ai/Prompt-Engineering-Guide) 177 | 178 | --- 179 | ### 推荐国际学术会议和期刊 180 | 1. [中国计算机学会(CCF)推荐国际学术会议和期刊目录(2022)-单页](https://ying-zhang.github.io/misc/2022-ccf-list/) 181 | 2. [Usenix会议投稿](https://www.usenix.org/conferences/calls-for-papers) 182 | --- 183 | 184 | 185 | ### 知识图谱相关会议 186 | #### CCF推荐A会 187 | 1. [International World Wide Web Conferences(AAAI-DBLP)](https://dblp.uni-trier.de/search?q=knowledge%20graph%20streamid%3Aconf%2Faaai%3A) 188 | 2. [Annual Meeting of the Association for Computational Linguistics(ACL-DBLP)](https://dblp.uni-trier.de/search?q=knowledge%20graph%20streamid%3Aconf%2Facl%3A) 189 | 3. [International World Wide Web Conferences(WWW-DBLP)](https://dblp.uni-trier.de/search?q=knowledge%20graph%20streamid%3Aconf%2Fwww%3A) 190 | 4. [International Joint Conference on Artificial Intelligence(IJCAI-DBLP)](https://dblp.uni-trier.de/search?q=knowledge%20graph%20streamid%3Aconf%2Fijcai%3A) 191 | 5. [ACM Knowledge Discovery and Data Mining(SIGKDD)](http://dblp.uni-trier.de/db/conf/kdd/) 192 | #### CCF推荐B会 193 | 1. [ACM International Conference on Information and Knowledge Management(CIKM-DBLP)](https://dblp.uni-trier.de/search?q=knowledge%20graph%20streamid%3Aconf%2Fcikm%3A) 194 | 2. [Conference on Empirical Methods in Natural Language Processing(EMNLP-DBLP)](https://dblp.uni-trier.de/search?q=knowledge%20graph%20streamid%3Aconf%2Femnlp%3A) 195 | 3. [International Conference on Principles of Knowledge Representation and Reasoning(KR)](http://dblp.uni-trier.de/db/conf/kr/) 196 | 197 | #### CCF推荐C会 198 | 1. [International Conference on Software Engineering and Knowledge Engineering(SEKE)](http://dblp.uni-trier.de/db/conf/seke/) 199 | 2. [Pacific-Asia Conference on Knowledge Discovery and Data Mining(PAKDD)](http://dblp.uni-trier.de/db/conf/pakdd/) 200 | 201 | #### 以知识图谱为主题的会 202 | 1. [The Knowledge Graph Conference](https://www.knowledgegraph.tech/) 203 | 2. [International Joint Conference on Knowledge Graphs (IJCKG)](https://dblp.uni-trier.de/db/conf/jist/index.html) 204 | 3. [International Workshop on Graph Structures for Knowledge Representation and Reasoning (GKR)](https://dblp.uni-trier.de/db/conf/gkr/index.html) 205 | 4. [IEEE International Conference on Big Knowledge (ICBK) IEEE International Conference on Knowledge Graph (ICKG)](https://dblp.uni-trier.de/db/conf/icbk/index.html) 206 | 5. [Iberoamerican Conference on Knowledge Graphs and Semantic Web (KGSWC) ](https://dblp.uni-trier.de/db/conf/kgswc/index.html) 207 | 6. [China Conference on Knowledge Graph and Semantic Computing (CCKS)中文会议 ](https://dblp.uni-trier.de/db/conf/ccks/index.html) 208 | --- 209 | ### 知识图谱相关期刊 210 | #### CCF推荐A刊 211 | 1. [IEEE Transactions on Knowledge and Data Engineering](http://dblp.uni-trier.de/db/journals/tkde/) 212 | 213 | #### CCF推荐B刊 214 | 1. [ACM Transactions on Knowledge Discovery from Data](http://dblp.uni-trier.de/db/journals/tkdd/) 215 | 2. [Data and Knowledge Engineering](http://dblp.uni-trier.de/db/journals/dke/)[CiteScore 4.0 Impact Factor 2.5 Acceptance rate 10% Time to 1st decision 10 weeks 216 | Time to publication 3 weeks] 217 | 3. [Data Mining and Knowledge Discovery](http://dblp.uni-trier.de/db/journals/datamine/) 218 | 4. [Information Processing and Management](http://dblp.uni-trier.de/db/journals/ipm/)[CiteScore 14.8 Impact Factor 8.6 Acceptance rate 11% Time to 1st decision 219 | 3 weeks Time to publication 3 weeks] 220 | 5. [Information Sciences](https://dblp.uni-trier.de/search?q=knowledge%20graph%20streamid%3Ajournals%2Fisci%3A)[CiteScore 13.4 Impact Factor 8.1 Acceptance rate 221 | 18% Time to 1st decision 6 weeks Time to publication 3 weeks] 222 | 6. [Knowledge and Information Systems](http://dblp.uni-trier.de/db/journals/kais/) 223 | 224 | #### CCF推荐C刊 225 | 1. [Knowledge-Based Systems(KBS)](https://dblp.uni-trier.de/search?q=knowledge%20graph%20streamid%3Ajournals%2Fkbs%3A) [主页](https://www.sciencedirect.com/journal/knowledge-based-systems) [CiteScore 12.3 Impact Factor 8.8 Acceptance rate 17% Time to 1st decision 226 | 5 weeks Time to publication 3 weeks] 227 | 2. [Expert Systems with Applications](https://dblp.uni-trier.de/search?q=knowledge%20graph%20streamid%3Ajournals%2Feswa%3A)[CiteScore 228 | 12.6 Impact Factor 8.5 Acceptance rate 25% Time to 1st decision 14 weeks Time to publication 3 weeks] 229 | 3. [International Journal of Software Engineering and Knowledge Engineering](http://dblp.uni-trier.de/db/journals/ijseke/index.html) 230 | 4. [International Journal of Knowledge Management](http://dblp.uni-trier.de/db/journals/ijkm/) 231 | 5. [Neurocomputing](https://dblp.uni-trier.de/search?q=knowledge%20graph%20streamid%3Ajournals%2Fijon%3A) [CiteScore 10.8 Impact Factor 232 | 6.0 Acceptance rate 17% Time to 1st decision 6 weeks Time to publication 6 weeks] 233 | 6. [International Journal of Uncertainty,Fuzziness and Knowledge-Based System(IJUFKS)](https://dblp.uni-trier.de/db/journals/ijufks/) 234 | 7. [Journal of Visual Communication and Image Representation](https://www.sciencedirect.com/journal/journal-of-visual-communication-and-image-representation?adobe_mc=MCMID%3D17833385809454035740297324323038236191%7CMCORGID%3D4D6368F454EC41940A4C98A6%2540AdobeOrg%7CTS%3D1715068067&dgcid=sd%3Ajf%3Arecommend-stem)[CiteScore 6.8 Impact Factor 2.6 Acceptance rate —Time to 1st decision 7 weeks Time to publication 3 weeks] 235 | 8. [Neural Computing and Applications](https://link.springer.com/journal/521)[Impact factor 6.0 (SCI 3 区 2022) 5 year impact factor 5.6 (2022) Submission to first decision (median) 16 days] 236 | #### SCI 237 | 1. [IEEE Transactions on Industrial Informatics](https://www.ieee-ies.org/pubs/transactions-on-industrial-informatics#:~:text=The%20IEEE%20Transactions%20on%20Industrial%20Informatics%20is%20a%20multidisciplinary%20journal)[SCI 1区、南开一类] 238 | 2. [Scientific reports ](https://www.nature.com/srep/)[SCI 2区] 239 | 3. [Proceedings of the VLDB Endowment](https://dl.acm.org/journal/pvldb)[SCI 3区] 240 | 241 | --- 242 | ### 如何做科研写论文 243 | 1. [高质量读研:教你如何写论文、做科研](https://www.dedao.cn/ebook/detail?id=BpM1nLOerPa1XOp27zqQ8KGR56loVWrZejWdLygv94jYmnENDxAMZJBkbNzEblgQ) 244 | 2. [研究生高分论文写作(第四版)](https://www.dedao.cn/ebook/detail?id=bBVDEXGGLn7eB51b8NjVRqDoQJPMk3a7RP0adYrXmAxE4Ov92lgzK6ZypxLqdQjp) 245 | 3. [怎样顺利完成论文:论文写作的策略与技巧(第四版)](https://www.dedao.cn/ebook/detail?id=V5R16yPmaYOMqGRAv82jkX4KDe175w7Geawrbx6pNgznl9VZPLJQyEBodb89mqoO) 246 | 4. [Zobel - Writing for computer science 3rd edition](https://github.com/cxcygzs/Learning_Resources/files/10046946/Zobel.-.Writing.for.computer.science.3rd.edition.-.pdf) 247 | 5. [Advice and resources for thriving and surviving graduate school from Georgia Tech](https://github.com/poloclub/awesome-grad-school) 248 | 249 | 250 | --- 251 | ### 知识图谱系统 252 | 1. [The Linked Open Data Cloud](https://lod-cloud.net/) 253 | 2. [DBpedia](https://www.dbpedia.org/) [针对dbpedia的sparql在线查询平台](https://yasgui.triply.cc/) 254 | 3. [dbpedia如何从Wikipedia中抽取知识github](https://github.com/dbpedia/) 255 | 4. [YAGO: A High-Quality Knowledge Base](https://yago-knowledge.org/) 256 | 5. [GDELT Project](https://www.gdeltproject.org/) 257 | 6. [Wikidata](https://www.wikidata.org/wiki/Wikidata:Main_Page) 258 | 7. [WordNet](https://wordnet.princeton.edu/) 259 | 8. [NELL](https://www.cmu.edu/homepage/computing/2010/fall/nell-computer-that-learns.shtml) 260 | 9. [网络空间安全知识图谱Sepses 可以通过sparql endpoint 查询](https://sepses.ifs.tuwien.ac.at/sparql) 261 | 10. [Cybersecurity demo for Neo4j's Connections: Graphs in Cybersecurity 2021](https://github.com/neo4j-graph-examples/cybersecurity) 262 | 11. [Introduction to STIX](https://oasis-open.github.io/cti-documentation/stix/intro)|[STIX Viewer输入网页链接或者Json文件生成图谱](https://oasis-open.github.io/cti-stix-visualization/?url=https://raw.githubusercontent.com/oasis-open/cti-documentation/master/examples/example_json/using-granular-markings.json) 263 | 12. [开放的中文知识图谱](http://www.openkg.cn/) 264 | 13. [中国近代历史人物知识图谱](http://www.zjuwtx.work/project/kg/intro/) 265 | 14. [唐诗知识图谱](http://tsby.e.bnu.edu.cn/) 266 | 15. [李白迁徙图](http://tsby.e.bnu.edu.cn/web/sc/home/migration?id=5CCA4A88-32BF-4E53-A046-F83C6FBE8AB4) 267 | 16. [李白为中心节点的知识图谱](http://tsby.e.bnu.edu.cn/web/sc/home/poet-visual?id=5cca4a88-32bf-4e53-a046-f83c6fbe8ab4) 268 | 17. [K12基础教育知识图谱](https://edukg.cn/) 269 | 18. [刘焕勇中国科学院软件研究所-人物知识图谱数据集](https://github.com/liuhuanyong/PersonRelationKnowledgeGraph) 270 | 19. [kali.org例子](https://www.virustotal.com/gui/home/upload) 271 | 20. [Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph](https://github.com/IS5882/Open-CyKG) 272 | --- 273 | ### 实验室自建知识图谱系统 274 | 1. [疫情流调分析-马宇科](https://graphxr.kineviz.com/projects)[检索输入杨铠冰] 275 | 2. [网络安全漏洞知识图谱-王乐天](http://124.222.11.46:8082/index) 276 | 3. [基于Neo4j的漏洞知识图谱可视化系统-车昭明](http://riyuezhao.gitee.io/vul-kg/) 277 | 4. [食品安全知识图谱-徐锐](http://124.222.11.46:8081/login/) 278 | 5. [计算机专业课程知识图谱-马宇科](http://124.222.11.46:8002/) 279 | 6. [医疗诊断知识图谱-郭建华](http://124.222.11.46:5200/) 280 | --- 281 | ### 实验室发表相关论文 282 | 1. [DBLP](https://dblp.org/pid/164/3328.html) 283 | 284 | --- 285 | ### 计算机科学有趣的链接 286 | 1. [兵棋推演系统](https://nashet.github.io/Prosperity-Wars/WEBGL/index.html) 287 | 2. [Six degree of seperatation The Oracle of Bacon电影演员的六度分割](https://oracleofbacon.org/movielinks.php) 288 | 3. [无人驾驶伦理问题MIT Moral Machine](https://www.moralmachine.net/hl/zh) 289 | 4. [清华大学认知大模型GLM-130B:中英文双语预训练模型Demo](https://models.aminer.cn/democenter?demo=fill_blank_and_choice) 290 | 5. [旧金山大学_University of San Francisco数据结构可视化](https://www.cs.usfca.edu/~galles/visualization/Algorithms.html) 291 | --- 292 | ### 机器学习算法可视化 293 | 1. [数学公式可视化Manim](https://www.manim.community/) 294 | 2. [Visualizing DBSCAN Clustering Demo](https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/) 295 | 3. [Visualizing K-Means Clustering Demo](https://www.naftaliharris.com/blog/visualizing-k-means-clustering/) 296 | 4. [CNN Explainer Learn Convolutional Neural Network (CNN) in your browser!](https://poloclub.github.io/cnn-explainer/) 297 | 5. [Machine Learning Visualization WordEmbedding](https://towardsdatascience.com/machine-learning-visualization-fcc39a1e376a) 298 | 6. [A visual introduction to machine learning](http://www.r2d3.us/visual-intro-to-machine-learning-part-1/) 299 | 7. [Play with Generative Adversarial Networks (GANs) in your browser!](https://poloclub.github.io/ganlab/) 300 | 8. [Large Graph Exploration & Visualization](https://poloclub.github.io/#research-graph) 301 | 9. [Transformer模型的可视化Dodrio:Exploring transformer models in your browser!](https://poloclub.github.io/dodrio/) [视频](https://www.youtube.com/watch?v=qB-T9j7UTgE) 302 | 10. [BertViz: Visualize Attention in NLP Models自然语言处理模型注意力可视化](https://github.com/jessevig/bertviz)||[可执行代码](https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing#scrollTo=T3H0qUZvPOP4) 303 | 11. [Embedding projector嵌入可视化](https://projector.tensorflow.org/) 304 | 12. [词云生成文本可视化](https://www.yciyun.com/) 305 | 306 | ### 您是第几位访客? 307 | ![Visitor Count](https://profile-counter.glitch.me/all-smile/count.svg) 308 | --------------------------------------------------------------------------------