├── .gitattributes ├── Currencies.pptx ├── README.md ├── Use Python to Automate the PowerPoint Update.html └── Use Python to Automate the PowerPoint Update.ipynb /.gitattributes: -------------------------------------------------------------------------------- 1 | *.html linguist-detectable=false 2 | *.ipynb linguist-detectable=true 3 | -------------------------------------------------------------------------------- /Currencies.pptx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cydalytics/Python_PowerPoint_Automation/6589c8e049a75ca96015033a24f8fd84b4446f93/Currencies.pptx -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Python PowerPoint Automation [![Python](https://img.shields.io/badge/Program-Python-BLUE)](https://blog.cyda.hk/) [![python-pptx](https://img.shields.io/badge/Package-pptx-GREEN)](https://blog.cyda.hk/) 2 | *Created by cyda - Yeung Wong & Carrie Lo* 3 | [![alt text](https://2.bp.blogspot.com/-JDCofS2Pvic/WxQCv_XstyI/AAAAAAAAABM/rWHKnG4ItnMULgmO_tWAuGTNL6kAexJlACK4BGAYYCw/s1000/tight%2Bbanner.png)](https://blog.cyda.hk/) 4 | 5 | --------------------------------------------------------------------------------------------- 6 | ### Please acknowledge team cyda - Yeung Wong and Carrie Lo when using the code 7 | 8 | ### If you find this script is helpful, please feel free to endorse us through Linkedin! 9 | Linkedin: 10 | 11 | * Yeung Wong - *https://www.linkedin.com/in/yeungwong/* 12 | * Carrie Lo - *https://www.linkedin.com/in/carrielsc/* 13 | --------------------------------------------------------------------------------------------- 14 | ## Project Description 15 | This project is to use Python to automatically update the PowerPoint slides regularly. 16 | 17 | ## Project Details 18 | To check the tutorial article, please click please click [here](https://towardsdatascience.com/use-python-to-automate-the-powerpoint-update-4a385acf1243?sk=13bfc8fa3dbbe98e94784de4e42ca245). 19 | 20 | [![alt text](https://cdn-images-1.medium.com/max/800/1*T5hoUO7SBPn1DCbUKAS5bA.png)](https://towardsdatascience.com/use-python-to-automate-the-powerpoint-update-4a385acf1243?sk=13bfc8fa3dbbe98e94784de4e42ca245) 21 | -------------------------------------------------------------------------------- /Use Python to Automate the PowerPoint Update.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "id": "a76decb6-b764-4ac5-a496-aa7bcca47703", 6 | "metadata": {}, 7 | "source": [ 8 | "#
Use Python to Automate the PowerPoint Update
\n", 9 | "###
Created by cyda - Yeung Wong & Carrie Lo
" 10 | ] 11 | }, 12 | { 13 | "cell_type": "markdown", 14 | "id": "bee06d4d-a337-4468-bcfc-f1aafc2214fc", 15 | "metadata": {}, 16 | "source": [ 17 | "--------------------------------------------------------------------------------------\n", 18 | "![logo](https://4.bp.blogspot.com/-LAXjdvVCYCU/WxeQFKQ-1wI/AAAAAAAAACs/o8IJ1eLLAEwQYv2Az7EqQi9jODTqRx7wACK4BGAYYCw/s1000/tight%2Bbanner_with_description.png)" 19 | ] 20 | }, 21 | { 22 | "cell_type": "markdown", 23 | "id": "92b1ac75-b724-40a3-b850-42e7a7d5480a", 24 | "metadata": {}, 25 | "source": [ 26 | "--------------------------------------------------------------------------------------\n", 27 | "Please acknowledge team cyda - Yeung Wong & Carrie Lo when using the code\n", 28 | "\n", 29 | "If you find this script is helpful, please feel free to endorse us through Linkedin!\n", 30 | "\n", 31 | "Linkedin:\n", 32 | "\n", 33 | "Yeung Wong - https://www.linkedin.com/in/yeungwong/\n", 34 | "\n", 35 | "Carrie Lo - https://www.linkedin.com/in/carrielsc/\n", 36 | "\n", 37 | "--------------------------------------------------------------------------------------" 38 | ] 39 | }, 40 | { 41 | "cell_type": "markdown", 42 | "id": "c5b3400a-5ab9-42b5-a8ef-eb1e186b6809", 43 | "metadata": {}, 44 | "source": [ 45 | "# Step 1 - Data Preprocessing" 46 | ] 47 | }, 48 | { 49 | "cell_type": "code", 50 | "execution_count": 1, 51 | "id": "4d484d31-306f-4357-b5b6-5d5323a9391f", 52 | "metadata": {}, 53 | "outputs": [ 54 | { 55 | "data": { 56 | "text/html": [ 57 | "
\n", 58 | "\n", 71 | "\n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | " \n", 303 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | "
SymbolNameLast PriceChange% Change52 Week RangeDay Chartpct_change
0EURUSD=XEUR/USD1.1322-0.0022-0.19%NaNNaN-0.19
1JPY=XUSD/JPY113.5700-0.1670-0.15%NaNNaN-0.15
2GBPUSD=XGBP/USD1.32070.0001+0.00%NaNNaN0.00
3AUDUSD=XAUD/USD0.7165-0.0004-0.06%NaNNaN-0.06
4NZDUSD=XNZD/USD0.68090.0001+0.01%NaNNaN0.01
5EURJPY=XEUR/JPY128.5450-0.4420-0.34%NaNNaN-0.34
6GBPJPY=XGBP/JPY149.9880-0.1670-0.11%NaNNaN-0.11
7EURGBP=XEUR/GBP0.8570-0.0015-0.18%NaNNaN-0.18
8EURCAD=XEUR/CAD1.4345-0.0003-0.02%NaNNaN-0.02
9EURSEK=XEUR/SEK10.25270.0000+0.00%NaNNaN0.00
10EURCHF=XEUR/CHF1.0433-0.0007-0.06%NaNNaN-0.06
11EURHUF=XEUR/HUF365.19000.3600+0.10%NaNNaN0.10
13CNY=XUSD/CNY6.34650.0023+0.04%NaNNaN0.04
14HKD=XUSD/HKD7.79710.0007+0.01%NaNNaN0.01
15SGD=XUSD/SGD1.36450.0030+0.22%NaNNaN0.22
16INR=XUSD/INR75.55000.1950+0.26%NaNNaN0.26
17MXN=XUSD/MXN20.95900.0380+0.18%NaNNaN0.18
18PHP=XUSD/PHP50.39300.1730+0.34%NaNNaN0.34
19IDR=XUSD/IDR14345.00000.00000.00%NaNNaN0.00
20THB=XUSD/THB33.45900.1150+0.34%NaNNaN0.34
21MYR=XUSD/MYR4.2150-0.0080-0.19%NaNNaN-0.19
22ZAR=XUSD/ZAR15.76780.0545+0.35%NaNNaN0.35
23RUB=XUSD/RUB73.64530.1587+0.22%NaNNaN0.22
\n", 341 | "
" 342 | ], 343 | "text/plain": [ 344 | " Symbol Name Last Price Change % Change 52 Week Range Day Chart \\\n", 345 | "0 EURUSD=X EUR/USD 1.1322 -0.0022 -0.19% NaN NaN \n", 346 | "1 JPY=X USD/JPY 113.5700 -0.1670 -0.15% NaN NaN \n", 347 | "2 GBPUSD=X GBP/USD 1.3207 0.0001 +0.00% NaN NaN \n", 348 | "3 AUDUSD=X AUD/USD 0.7165 -0.0004 -0.06% NaN NaN \n", 349 | "4 NZDUSD=X NZD/USD 0.6809 0.0001 +0.01% NaN NaN \n", 350 | "5 EURJPY=X EUR/JPY 128.5450 -0.4420 -0.34% NaN NaN \n", 351 | "6 GBPJPY=X GBP/JPY 149.9880 -0.1670 -0.11% NaN NaN \n", 352 | "7 EURGBP=X EUR/GBP 0.8570 -0.0015 -0.18% NaN NaN \n", 353 | "8 EURCAD=X EUR/CAD 1.4345 -0.0003 -0.02% NaN NaN \n", 354 | "9 EURSEK=X EUR/SEK 10.2527 0.0000 +0.00% NaN NaN \n", 355 | "10 EURCHF=X EUR/CHF 1.0433 -0.0007 -0.06% NaN NaN \n", 356 | "11 EURHUF=X EUR/HUF 365.1900 0.3600 +0.10% NaN NaN \n", 357 | "13 CNY=X USD/CNY 6.3465 0.0023 +0.04% NaN NaN \n", 358 | "14 HKD=X USD/HKD 7.7971 0.0007 +0.01% NaN NaN \n", 359 | "15 SGD=X USD/SGD 1.3645 0.0030 +0.22% NaN NaN \n", 360 | "16 INR=X USD/INR 75.5500 0.1950 +0.26% NaN NaN \n", 361 | "17 MXN=X USD/MXN 20.9590 0.0380 +0.18% NaN NaN \n", 362 | "18 PHP=X USD/PHP 50.3930 0.1730 +0.34% NaN NaN \n", 363 | "19 IDR=X USD/IDR 14345.0000 0.0000 0.00% NaN NaN \n", 364 | "20 THB=X USD/THB 33.4590 0.1150 +0.34% NaN NaN \n", 365 | "21 MYR=X USD/MYR 4.2150 -0.0080 -0.19% NaN NaN \n", 366 | "22 ZAR=X USD/ZAR 15.7678 0.0545 +0.35% NaN NaN \n", 367 | "23 RUB=X USD/RUB 73.6453 0.1587 +0.22% NaN NaN \n", 368 | "\n", 369 | " pct_change \n", 370 | "0 -0.19 \n", 371 | "1 -0.15 \n", 372 | "2 0.00 \n", 373 | "3 -0.06 \n", 374 | "4 0.01 \n", 375 | "5 -0.34 \n", 376 | "6 -0.11 \n", 377 | "7 -0.18 \n", 378 | "8 -0.02 \n", 379 | "9 0.00 \n", 380 | "10 -0.06 \n", 381 | "11 0.10 \n", 382 | "13 0.04 \n", 383 | "14 0.01 \n", 384 | "15 0.22 \n", 385 | "16 0.26 \n", 386 | "17 0.18 \n", 387 | "18 0.34 \n", 388 | "19 0.00 \n", 389 | "20 0.34 \n", 390 | "21 -0.19 \n", 391 | "22 0.35 \n", 392 | "23 0.22 " 393 | ] 394 | }, 395 | "execution_count": 1, 396 | "metadata": {}, 397 | "output_type": "execute_result" 398 | } 399 | ], 400 | "source": [ 401 | "import requests\n", 402 | "import pandas as pd\n", 403 | "from datetime import datetime\n", 404 | "\n", 405 | "datetime_now = datetime.now()\n", 406 | "full_list_url='https://finance.yahoo.com/currencies'\n", 407 | "header = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36'}\n", 408 | "full_list_page = requests.get(full_list_url, headers=header)\n", 409 | "df = pd.read_html(full_list_page.text)[0].drop_duplicates()\n", 410 | "df['pct_change'] = df['% Change'].str.slice(stop=-1).astype(float)\n", 411 | "df" 412 | ] 413 | }, 414 | { 415 | "cell_type": "code", 416 | "execution_count": 2, 417 | "id": "b948ed27-c050-461c-bb64-d659db90cb9d", 418 | "metadata": {}, 419 | "outputs": [ 420 | { 421 | "data": { 422 | "text/html": [ 423 | "
\n", 424 | "\n", 437 | "\n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | "
NameLast PriceChange% Change
0USD/ZAR15.76780.0545+0.35%
1USD/THB33.45900.1150+0.34%
2USD/PHP50.39300.1730+0.34%
3USD/INR75.55000.1950+0.26%
4USD/RUB73.64530.1587+0.22%
\n", 485 | "
" 486 | ], 487 | "text/plain": [ 488 | " Name Last Price Change % Change\n", 489 | "0 USD/ZAR 15.7678 0.0545 +0.35%\n", 490 | "1 USD/THB 33.4590 0.1150 +0.34%\n", 491 | "2 USD/PHP 50.3930 0.1730 +0.34%\n", 492 | "3 USD/INR 75.5500 0.1950 +0.26%\n", 493 | "4 USD/RUB 73.6453 0.1587 +0.22%" 494 | ] 495 | }, 496 | "execution_count": 2, 497 | "metadata": {}, 498 | "output_type": "execute_result" 499 | } 500 | ], 501 | "source": [ 502 | "top_df = df.sort_values(['pct_change'], ascending=False).reset_index(drop=True)[:5]\n", 503 | "top_df = top_df[['Name', 'Last Price', 'Change', '% Change']]\n", 504 | "top_df" 505 | ] 506 | }, 507 | { 508 | "cell_type": "code", 509 | "execution_count": 3, 510 | "id": "6d14bde1-f903-4084-8c2a-3c4ac15bc7cc", 511 | "metadata": {}, 512 | "outputs": [ 513 | { 514 | "data": { 515 | "text/html": [ 516 | "
\n", 517 | "\n", 530 | "\n", 531 | " \n", 532 | " \n", 533 | " \n", 534 | " \n", 535 | " \n", 536 | " \n", 537 | " \n", 538 | " \n", 539 | " \n", 540 | " \n", 541 | " \n", 542 | " \n", 543 | " \n", 544 | " \n", 545 | " \n", 546 | " \n", 547 | " \n", 548 | " \n", 549 | " \n", 550 | " \n", 551 | " \n", 552 | " \n", 553 | " \n", 554 | " \n", 555 | " \n", 556 | " \n", 557 | " \n", 558 | " \n", 559 | " \n", 560 | " \n", 561 | " \n", 562 | " \n", 563 | " \n", 564 | " \n", 565 | " \n", 566 | " \n", 567 | " \n", 568 | " \n", 569 | " \n", 570 | " \n", 571 | " \n", 572 | " \n", 573 | " \n", 574 | " \n", 575 | " \n", 576 | " \n", 577 | "
NameLast PriceChange% Change
0EUR/JPY128.5450-0.4420-0.34%
1EUR/USD1.1322-0.0022-0.19%
2USD/MYR4.2150-0.0080-0.19%
3EUR/GBP0.8570-0.0015-0.18%
4USD/JPY113.5700-0.1670-0.15%
\n", 578 | "
" 579 | ], 580 | "text/plain": [ 581 | " Name Last Price Change % Change\n", 582 | "0 EUR/JPY 128.5450 -0.4420 -0.34%\n", 583 | "1 EUR/USD 1.1322 -0.0022 -0.19%\n", 584 | "2 USD/MYR 4.2150 -0.0080 -0.19%\n", 585 | "3 EUR/GBP 0.8570 -0.0015 -0.18%\n", 586 | "4 USD/JPY 113.5700 -0.1670 -0.15%" 587 | ] 588 | }, 589 | "execution_count": 3, 590 | "metadata": {}, 591 | "output_type": "execute_result" 592 | } 593 | ], 594 | "source": [ 595 | "bottom_df = df.sort_values(['pct_change'], ascending=True).reset_index(drop=True)[:5]\n", 596 | "bottom_df = bottom_df[['Name', 'Last Price', 'Change', '% Change']]\n", 597 | "bottom_df" 598 | ] 599 | }, 600 | { 601 | "cell_type": "code", 602 | "execution_count": 4, 603 | "id": "3518fc9c-d5fc-408d-b099-be252c70e10e", 604 | "metadata": {}, 605 | "outputs": [ 606 | { 607 | "data": { 608 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuwAAAFYCAYAAAAIk6kCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAB0+0lEQVR4nO3dd3ib53X//zc2uLdI7W1JlizLU952bNhGnOVst0jipG1Gmz2/2XGbNm2aNE2T5pedOE2QxIkz7Dg2bMOWLe8py5Ylay9KokRS3Njj9wcegAAJkiBFkBD5eV2XLgAPnnGTosTzHJz73KZkMomIiIiIiJQm83QPQERERERERqaAXURERESkhClgFxEREREpYQrYRURERERKmHW6B1CKXD6vZuKKiIiIyJTzuz2moduUYRcRERERKWEK2EVERERESpgCdhERERGREqYa9gL43Z7pHoKIiIiIzEAun3fMfZRhFxEREREpYQrYRURERERKmAJ2EREREZESpoBdRERERKSEKWAXERERESlhCthFREREREqYAnYRERERkRKmgF1EREREpIQpYBcRERERKWEK2EVERERESpgCdhERERGREqaAXUREZAzdkRD/suUR+qOR6R6KiMxCCthFRETG8Ju9L7P5+CHubt0z3UMRkVlIAbuIiIiISAlTwC4iIlIgE6bpHoKIzEIK2EVERMaQnO4BiMispoBdRERERKSEKWAXERERESlhCthFREQKFE3Ep3sIIjILKWAXEREZQyKZqmIPTzBg7wqHeOnkickckojMIgrYRURExhBOxACIxCcWsH/g8bv5+NP3T+aQRGQWUcAuIiIyhrARqIfisQkd3xkOTuZwRGSWUcAuIiIyhrARqEdOsYY9XVojIjIeCthFRETGEDrFDHtaPJmYjOGIyCxjLWQnl8/7FuBKYANwNlAFeP1uzztGOcYEvAt4D7AeKAPagGeAL/rdnl0FXHcl8CbgemAl0Ax0AU8C3/a7PZvyHPNu4OejnPYf/W7PD8a6toiISFq6hj08jhr2TccOcHZ9M5U2e2ZbPJnENumjE5GZrqCAHfgiqUC9H2gFVo+2s8vndQK/B14L7AR+DfQB84DLgTOAMQN24KvA24HtwN3ASWAV8Hrg9S6f96N+t+c7Ixx7B/BCnu3PFnBdERGRjHSgfjTQx1PtR9jYNH/U/QdiUf5t62M0OMp43aKVme1xlcSIyAQUGrB/nFSgvodUpn1YZnuI/yIVrP87qWx6zmeALp+30ASDD/i63+3ZMuT4K4H7gW+4fN7f+92eY3mO/bPf7bm1wOuIiIiMKF3Dfmigly889xD3Xf+3mE2mEffvMiaZdoaD3Lr7xcz2WEIlMSIyfgUF7NmlJy6fd9R9XT7vcuADpEpfvuB3e4alE/xuT7TA6946wvaHXT7vQ8C1wCXAHwo5n4iIyEQMrV0PxKI5pS5DdUVCebcnVMMuIhNQaIZ9PP6G1GTWXwDVLp/3dcBCoBN40O/27Jmk66SD/pFmAG1w+bwfA5zAEWCT3+1pnaRri4jILDK0dr03Gh49YA+nAvYPrjmfs+vn8McDO/Ed2auSGBGZkGIE7BcYjzXAXqAh672ky+f9PvARv9sz4d5YLp93MXANEAA2j7DbR4e8jrt83p8AH/O7PflTHyIiInmEE3EaHGWZfuq90QjzRtm/28iwX9G8iAZnGevqmvAd2auSGBGZkGK0dZxjPP4LqQmeZ5HqKnMNqQD+n4AvTfTkLp/XAXgBB3CL3+3pGrLLfuDDpCanVpCa6Po24ADwfuBnE722iIjMPslkknA8xpLK2sy2vkg4774ffuJe/nDgFbrCIUxArd0BgNWc+nWrDLuITEQxMuwW4/EY8Ea/25Ne3u1Boz3k88AnXD7v1/xuT2Q8J3b5vBbgl8ClwG3AN4fu43d7HgYeztoUAH7v8nmfBLYCf+Pyeb/ud3u2jnCN941nTCIiMrNFEwmSwNn1c1hQUcUdh3bRGx0esMcTCXb0dLCjpwOAMosVixGoW4wJqurDLiITUYwMezrj7csK1gEwguT9pDLua8ZzUiNY/xXwVuB3wDvyTWgdid/tOUyqNSTAFaPs96PxjEtERGa29ITTMouVd644C4C+6PB8U18sd9sbFp2ReW4xpX7dxhSwi8gEFCNg32k8do/wfjqgLyv0hC6f1wr8BriJVE/3v/W7PRNZbq7deKyYwLEiIjILhROpKVd2i5Uqa2qiab6AvWdImcx7Vp6deT6YYVdJjIiMXzEC9geMx3VD3zDqz9MrSBwo5GQun9cO3E4qs/5/wDtPYcLqRuNx3wSPFxGRWcC7dxtbTx4HBnuwOy0WLGYz5VYbfXlKYnqzAvYamyNTDgODGXYF7CIyEcUI2O8hFRBf7/J5rx3y3pdIdY952O/2tKU3unzeGpfPu9rl887N3tkI8P8EvAH4KfCeoYswDeXyeS/Ps83k8nk/B1wMdJBakElERGSYcDzGz3dv5ZNP+4HBkhiHJTXtq9pmH1bD/nxnG3cd3g3AR868gP+84Jqc9zMZ9knoEtMbCfPz3VuJJCbcbE1ETjMFTTp1+bw3AjcaL1uMx4tdPu+txvMOv9vzKQC/2xNx+bw3A/cB97h83j8BB0m1e7yCVFnK0ImdbwR+Tqp3+7uztv8AuIFUkH0E+HKehZse8rs9D2W93uzyeXeRWrjpCKkbhEtJZfwDgMfv9vQW8nWLiMjsc3gg91dEuge7w5zqqVBtc9A7pCTmM888kHl+8ZwFNDnLc94f7BJz6gH7N156gifaj7C2tpELm+af8vlEpPQV2iVmA3DzkG3LjD+QCsg/lX7D7/Y86vJ5zwe+ArwKqAWOAz8CvjqOBYyWGo+NwJdH2e+hrOffBC4ErgbqgQRwCPge8C2/26NyGBERGdGh/sGAvTsSymTYnUaGvcpmpy8SYW9vF8uqakkMKXOpzrOg0mTWsD/RfgRg2E2DiMxcBQXsfrfnFuCW8ZzY7/ZsB95e4L63Arfm2X7VeK5pHPPp8R4jIiKSlp1hPxEcyEw6dVhSGfYqm4PnOtt4/+N387G1F7K2timzf63dmSmdyZbpEnOKJTHZx3eEAqd0LhE5fRSjD7uIiMhpqyc6uBh2dyREMBYFsmrY7YMZ9EP9PdTZnQB8ct1FXNWyKO85LZO0cFJ7VpDeEQqOsqeIzCQK2EVERLL0RSKYMZEgSWc4yH9tewpIdYmBVIY9rcxqoyuSCvAvaJxLmdWW95yTtXDS8WB/5nlHWBl2kdmiGF1iRERETlt9sQgLKqoAONDXk9luNw/WsKdF4vFM//Vqu4ORTFYNe1twAIB55ZV0TjDDfsfBnbzxgd/z18N7TmksIjJ1FLCLiIhk6Y9GaHJWYDdbONDfndmenkza6BjsANMbDdMdCVFhtWE3usjkYzVNTpeYtmA/Zkwsq6rL2wu+EE+1H6UvGuHbLz9FV1hlNSKnAwXsIiIiWfqiEapsdmrtDg70pzLs3954baYO/fLmhfydsYppTyRMdzhErVHHPpLJWjipLThAo7OMWruT/tjEusTs7evCabGQBE6GQ2PuLyLTTwG7iIhIlv5ohEqbnVq7k04jA50dkFvMZv52+TrObWhJZdijYWpHKYeBwZKYiXSJ+btH/sLPdr0ApGrYW8oqqbTa6I9GSY7zBqAnEqYzHGR9fTOQujkRkdKngF1ERMSQTCbpi0WottmpdQwG6fky6DU2RybDXjNGht06SpeYdBeafELxGIcGevn1vpeJJxO0BQdoKaukymYnlkwQMhZ1SiST/Ne2J3m5q33UcXQbE2SXVtYCTDhLLyJTSwG7iIiIIRiPkUgmUxl2WyoIt5nMVOTp/lJtd9AbDdMRDtDgKBv1vJkM+5Aa9u5IiNf5f8dt+7fnPe5kVo35y13tdIQCNJdVUGHU0+/u7eRnu17gaKCPe1r38tGn7hu2kNPQrw9gjrESqzLsIqcHtXUUEREx7OvrAlITS9PZ6FqHE5MRcGertjkyAe/c8spRz2s2atgTQ0pi2gKpNo0/3rmFty89c9hx2Z1gNh07SBKoczgznWo+8bQfgK0nj2f2O9DfzbKqurzjCMVSAXujEbD3K2AXOS0owy4iImK498g+yixWLpozP1MGM9KE0pqsuvW5ZaMH7COVxHRmZdDzdZBJ91ovt1j5y+HdQKqtZKXVnrPfy90dmedbOo8zklA8VX5T7yjDjEklMSKnCQXsIiIyq23v7sDXuhdIZarPa5xLudWWCdTzlcPAkIB9jAz7SCUx2SUv/dHhtezpgP7DZ16Q2VZlc2RKYgDOMSaQAtQ7nGzvHrmOPV0SU261UWGzKcMucppQwC4iIrPaR568l29ue5KucJCjgX7OrG0EwGZkxctHCNirs1Y8bRkjwz7SwknZbRV7I2EO9vfwbMexrPeD2MxmzmloyWyrstkzPeEB3rRkNQBOi5VlVXUcCfSNOI70JFWnxUql1a4adpHThGrYRUREgN29qfr11TUNADQ7KwA4NytYzpa9smmlzZ53nzTLkIWT+qJhyq22TMkLQE80xMeeuh8Av9sDpGrYGxzl1GV1rKmy2ZlbVsmamkZaA71c1DSf71x0PWbg/qP72d7VTjKZzFt3HzI60jgtVqpsdnoiYeLJBP3RaM4nBiJSWhSwi4iIAMeCqQmg6Wz5mXVN/PSy17Koojrv/jW2wgNcs8mEGROxRIJALMobH7id6+YtozXQm9mnJzK4cmk8kcBiNtMZDtLgKMsE/JAK2E0mE/9z0XWE4jFMJlPmU4EdPZ0E4jG6IyHiySR/OriT1y9aSbPxNaVLYsosVhqd5RwJ9PHppx9gV28nP73stZn9RKS0qCRGRERmreyFhw7192DGlNOicXFlTd5MNQzWsG9smlfQtcwmE7/e9zJff/FxAO47uo/t3R2Zcpf20GC2vcvoUNMZDtLgzG0ZWWFMODWbTMPKddI3F7t7u7j9wA5u27+d/9r2VOb9UDyG2WTCZjbT5CznYH8PL3adIBSP8/v9rxT0dYjI1FPALiIis9ZA1qJFB/t7qHc4sZgL+9XosFj58aWv4csbLi9o/3SnmMdOtOZsP7t+DgAvZ00W/dXebTx2/DCHB3ppHNLj3TzCDQTA2rombGYzT7a3sunYQQB2dHdkSnFC8RhOixWTyZRp7QhgN1t4uuNIQV+HnLp9fV2ZFqIihVDALiIis1Z2W8VDAz05QWwhllbV4rAUVl36n+dfnemfnu2K5kXYzRYO9Q+Wx9x1eDdf2bIZgDIji/7GxatGLM9Jc1qsnNvQwp2HdtMZDuKat4RgPMZPdr4ApEpiyozxNmV9rTcsWMHRQH+mL7wU1/seu5v3PXb3dA9DTiMK2EVEZNZK13RDqmPLeAP28Tizrom/P2NDzravbLicRZU11DvKONTfk/e4dbVNAHxwzfn87PLXjXmdj555Iec3zuXdK9bzvlXnAvDHg6/QEwmzue0QdrMFSC0OlXbxnPkAo3aYEZHpo4BdRERmrWginvN6cWVNUa83dIGl9A1Cg6OMaJ6Fk65sWcQFBdbIp80pq+A/zr+ad6w4i3pHGf+98VriySTv2nwHA7FoZnJteqIqDPaRz/7EQaZGJB7nt/teHvazKJJNAbuIiMxa0URukLyiqq6o1zu3oYWvn381c4xAvd5o19iYNbH0/511ceb5SKusjseZtY1c1ryQQCyK02Lho8YiTHaLhV9c/nq+s/E66o06+Y6sia9SfD/ZuYU/HdrJT3a9wF2Hdk/3cKSEqa2jiIjMWkOzmiuq64t6PZPJxHmNc/mXc6/k7tY9NBm93tPlKRaTCde8pezo6eDOQ7vz1ryPl8Vk5pZzriCRTA6bsDq/oor5FVUAVFrtyrBPgezORL/dv52/WbYWgL6YFrGSkSlgFxGRWWtohr2lrGJKrruiup6PnHlh5nW6NMaECZPJhNn4ALzSeuoBe9po3WUAGpxlyrBPgR09nTmve43++0MWwRXJoZIYERGZtSLxwQz7DQtWjNhzvdjSNeQxo449SSp6GyvInkwtZRU8dqKVV4YElDK5PvLkvTmvXzh5HIDeaDjf7iKAAnYREZnF0iUxP7r0Bj6+9sIx9i6etUYnmKGm8vbBs2wdALsVsBdNPM/E4nRnnpMqR5JRKGAXEZFZK10SU21zTFt2HaDOkTu5NF1Lv7DIXWuyLatOTbjtz1pMSiZXf3Twezu0xafmD8hoVMMuIiKzVjrDbjN6k0+nX1z++sxqqO75yzijup7l1cXtWpPNYbZgNZkZiGryY7H0Z31vz6iuZ0llDQeM/vvtmj8go1CGXUREZq2IUaJgN0//r8P5FVU0G5NeTSbTlAbr6WtWWG3KsBdRdieYJPCTy17Lna638falZ9IRCvDo8cO89v7f0qVsuwwx/f9DiYiITJNSyrCXgkqbnQG1FyyavsjgxNKFFdUAlFttLKqoJgncsmUzoXicl7s7pmmEUqoUsIuIyKwVTSQwkep/LlBhtTGgDHvR9Bs3Qz+97LWZT1MAWspzV8B9pbuDtkD/lI5NSpsCdhERmbWiiTg2s2VaJ5yWkgqbXTXsRdRnfG+HLog1vzy1eFWTs5wGRxm/3b+dd2y+g8iQhb1k9lLALiIis1Y0kcBWAvXrpUIZ9uJKB+yVQwL2Rmc53954LT+//HW8ZuGKzPZn2o9O6fikdOl/KRERmbXSGXZJqbTaSzZgP9jfQywxvI/56SQYi2IzmbHn+ZlbVzcHp8XKu1as53evehN2s4VtXe2Z93+15yXuO7KP9z76V/b1dU3lsKUEKGAXEZFZSxn2XHUOJ+2hAG984Pc5LQinW08kzN8/ehdf2/rYdA/llEQScWyWsW8Q6x1lzCuvZEdPBz/ZuYUjA33cuudF/vOlJ9jf380fDrxCMpmcghFLqdD/UiIiMmtFEvG82c7Z6k2LVwGp0o1DRn/wUnDUWA108/FDeVcLhVRQH47HpnJY4xaOx3EU+PM2t7yKbV3t/Hb/dv7jxcdz3rv3yD7+enhPMYYoJUoBu4iIzFrKsOeqc5Tx08teC8CxYOl0KWnLGsvzHW15+5S/+cHb+cwzD0zlsMYtkojjKCDDDuTcmOzoGWzzOLcs1VFmW/eJyR2clDStdCoiIrOWatiHS7cbbAsOAPDrvdtYUlXLJXMWTNuYjmW1OPzcc5sA8Ls9mW0JozykFPqXv9LdwbLquryf3ITH8YnOdfOW8XT7Ud6+9EyOBfv58JoLMJtMOCwWXnv/bZRbbZM9dClhBQXsLp/3LcCVwAbgbKAK8PrdnneMcowJeBfwHmA9UAa0Ac8AX/S7PbsKHaTL570E+CJwEeAE9gA/A77rd3vy9jxy+bw3Ax8EzgTiwBbgm363565CrysiIjPXzp5Onmo/SoOjbLqHUlKcFit1dmcmSP7Z7q1AboA81Y4F+6m1O7GaTHQY2fWeSJgauwMY7L4y3U6Gg3zoyXu5Zu4SPnf2pcPej8Tj2AvMsF81dzFXtizK23K0payCQKy0y39kchX6OeAXgQ+RCtiPjLWzy+d1AncCtwItwK+BbwObgfOBMwodoMvnfYNx3BXAn4DvAXbgv4HfjnDMN41rzwV+DPwKOAv4i8vn/VCh1xYRkZnr0eOHAejUMvDDNJdVcCI0kLOtIxSYptFAW6CflrIKrmhZlNn2dPsRHm47SDQRpzsSmraxZUvfODzUdjDv++FE4TXswIjrA5RZbARLtJuPFEehJTEfB1pJZbavBDaNsf9/Aa8F/p1UNj1nhojL5y3ocxyXz1tNKuCOA1f53Z5nje1fAh4E3uLyeW/yuz2/zTrmEuCTwF7gAr/b02Vs/wbwHPBNl897l9/tOVDIGEREZGaymlI5q/esPHuaR1J6GhxlPHaildfdf1tm276+bhqd5dMynmPBAdbUNvAPq85hZXU9X3/pCb6741kCsSg3LlrFFS0LM/v+7UN/4p/PuZKVNfXjvs6DRw+wtq6R5rLKsXce4sNP3JtZ6Cg+QgeXVIb91KuRy61WAgrYZ5WCMux+t2eT3+3Z7Xd7xuwh5PJ5lwMfIFX68oWhwbpxvkJ/yt4CNAG/TQfrxvEhUll/gH8ccswHjMd/SwfrxjEHSGXnHaTKdEREZBbrjoSotjnwLF833UMpOfVGmVAwq+vKdE1CPdzfS1uwn7llldjNFq6dv4w5zvJMwHqwv5vuSDiz/4lQgCfbxywGGCaeSPDvLz7GnYd2T2icO3o62JvVHz1fN5tUV6JTn+RcbrURKPGOODK5ijE1/m+M8/4CqHb5vO9w+byfc/m873P5vCvGOHaoq41HX573NgMB4BKXz+so8Jh7huwjIiKzVHckRK3dMfaOs1B9Vl2/2SjLaAtMT8D+nkf/ApCT3V9YUZ153h0J881tT+YcU2gnlmwDsShJoCs8OeU13eHwsG3heAyH+dQz7GXW0iiJSSaT/HrvNg739073UGa8YgTsFxiPNaTKUn4JfA34IbDL5fN+z+XzFvovaZXxOGyCqt/tiQH7SZX1LANw+bwVwHyg3+/2HMtzvvRtc8E19CIiMjOlAnbndA+jJFVn3cikO7BMR4b9eHCwjn5NTWPm+Rk1DdTanVzRsoj9/d3DykMmsuhTeoXXk5Hxz2nIl00/mWduRCRR+KTT0ZRbbCVREtMdCfOz3Vv54vMPTfdQZrxiBOxzjMd/AZ4lNdmzCriGVAD/T8CXCjxXjfE40uoN6e21E9x/GJfP+74CxyYiIqexnkhYAfsIEnlqsI9NQ4Z968njAHznoutzatLfueIsfnrZazIdfuodTr51oYsllakwYGACwexALBXkTyTDHszTsaUzPHyS7mQt1FVutZZESUy7MTG5lFbFnamKEbCnfxKPAW/0uz3b/G5Pv9/teZBUTXoC+ITL57VPwrXS06fHuz7viPv73Z4fTXw4IiJyuuiKhKh1qCQmn41N84ZtOxboIznCZMpi2d7dQbnVxuqahpztdrOFGruTKlsqlFhSWcv6+mZ+ctlrmVdeOaE2j+mMdb7M+FjSwX4235F9PNN+NGdbOF74wkmjSZfETPXfRyyR+0nCCaNzkMWcv5uNTJ5iBOzpGRc+v9uT81Pvd3u2kipjqQLWFHCudEa8ZoT3q4fsN9b+Y2XgRURkFoglEvRFI8qwj2BeeRWfWndR5vUcZzmBeIze6PC67GLa0d3BmpqGTB39UFXWVMCevYhQpdVOfyxC60Avn332QTpDhQXg6ax8TySct8SlkGMByo0uMI8eP5xZ5CktEp+kDLvFShIITWGWfevJ47jv+w07shanOmGULFlMWi242IrxHd5pPHaP8H46oC9kpYr0uYbVnLt8XiuwFIgB+wD8bs8AqT7xlS6fd26e8600HgtetElERGaedOBZo4B9RM6s9oPpSZ5TWRYTjEXZ39fNmbVNI+5jM7LVFVkBe4XNzkA0woeeuJdnO46xq7ezoOulM+wJkvRExndjkh2w19ideSczx5MJosnEpGTY64xSoBe7TnDbvpd5egJdccbrhc5UedJHn7qPLuNTiPQcg2hifDc4Mn7FCNgfMB6H9ckyurmkg+YDBZzrQePRnee9K4By4HG/25P9L2u0Y149ZB8REZmF0gvt1ClgH1FuwJ76gPpIoG/Krr+z5yQJkqypbRhxn3SGucySnWG30R+L0m+UqRQaTPZnBd3jLYsZiA4eW2a15nTZSYvEU+OYjAx7c1kFAP+29TF+vOsFvvj8wwRiUQ729xStTCY9WTaRTPKrvdsAeKnrBAA9kdCwchmZXMUI2O8hlfG+3uXzXjvkvS+RKkt52O/2tKU3unzeGpfPuzpPVvx2oAO4yeXznp+1vxP4V+Pl94cc8wPj8Qsun7cu65glwAeBMPDziXxhIiIyM6T7dqut48jKrIMB+5KqGsotVl7qap+y62/vTl1rdVZ3mKHOa0iFDa55SzLbKm32nEmQhZaNDGQd84HH7+H4OLriZNew19gcXDpn4bB90osqjWel05G0GAs7ZT4VSCb5wON38/eP3sUjxgq+k607azKu3WzheLCfXb0nmVtWSRKmvFxqtimoGajL570RuNF42WI8XuzyeW81nnf43Z5PAfjdnojL570ZuA+4x+Xz/gk4SKrd4xVAOzC0E8sbSQXRvwDend7od3t6XT7ve0kF7g+5fN7fAieB15Nq+Xg7cFv2ifxuz+Mun/dbwCeAF10+7+2AHXg7UA98WKuciojMbungQyUxI8vOsDvMFtbVz8l0bZkKRwP9NDjKclpMDrW0qha/25OzrcFRRmdWhrzQgH1om8S7W/fmXQW3OxLi8EAvC8qrqLTZsZktOSUxVXYH71ixjp09nTzdcZRYIoHVbM6MwzEJK502OsuwmEzEk0lW1TSws6eTo0a50iNth7iiZdEpX2Oo7E8d+mMRjhjXO69xLncd3k1vJJz3kwWZHIVm2DcANxt/rje2Lcva9pbsnf1uz6PA+cAfgCuBjxj7/wg41+/2FFxD7nd7/mycYzPwZuDDQJRUQH5TvtVX/W7PJ0kF/m2kbg7eBbwMvM7v9vxvodcWEZGZKV0So0mnI8sO2K1mM2dU13NkoI/4FJU+9EQn1nZzUUVu34lCA/b+WDTnax7Jt7Y9xcefup+3bvojX33hUZLJZG4Nu82BxWTmgsZU9j/9Xnqho+xPLibKYjIzx5kqi1lZXY+ZwUm5W7uKc1N1MhJiXV0TK6rrOBkO0mP8G1pkzG+YSGceKVxBPzV+t+cW4JbxnNjv9mwnldUuZN9bgVtHef8x4IZxXv8XpDL2IiIiObojIcwmU6YtoAxXlh2wm8w0OstJkORkJERT1qqjxdITCVEzgZKlxZUTC9h7I2HmOMs5NJBatbM9OLyPejyR4IXONmrtTiqsNh4/0cp9R/bllNMsq6oFUpNfIVUuU2N3EDTGkd3R5lS0lFVwLNhPjd1Bk7Oc46EBllXVsr+vm3gigcU8uVXPXeEgSyprCcVjdIVDmbKyRcb3WyUxxaU+PCIiUlS9kTBff/Hxklpc5UQoQJOjfMR2gTI8w54O0g/19+RdWGmy9UTCEwrYF1RU5bwuNGDvHnKDcN/RfbQN6YqzrbudQDzGB9ecx88vfx3r6+bwvR3PcnCgl2qbg38+5wpeszDVWyPduSb9c58uuSm3TFLAXp6qY6+2OXjtotQ1z6lvIUlqjYF8TmVCam80QrXdTp3Dmcmwm4B5xjgUsBeXAnYRESmq2/Zv5/6j+7m7dc90DyXjRHCAOWXFzxKfzpxZpRsW02DA/v+efZBvbXuq6NfvjoQmVBLjsFgzK6BC4QF7TzRMjd3J9y528+bFqwHwH9ufs8+v9m6jzu7koqb5mE0mPnzmBQTiMZ440UqlzcalzQszN4GVmQy7URJjjMM5CSUxMNgpptpm56alZ/J/V7ye9fWpxeY783S5CcZiXHvvr7nz0Pg7WyeTSQaiESqsdprLKjgZDnHIuElJ/x31ltAN+UykgF1ERIoqnXmbjHZ2k+VEaCBTAyz52UxmLEbwaTWbaXQM3uAc7C/u+oPRRJyBWJQa28S6+Pzgklfz0TMvYI6znFAsXtAxPZEQtXYHq2oa+Mc159HkLKfVKI+BVEnIC51tvHbhSsqM7PmiiurM96jCmlteVWm8Ttd2Byc5wz7X6BRTbXdgMpmYV16VuVHJ15bykeOHAPjd/u3jvlYkESeaTFBps3PxnAUkSLK57RA1dgdlFitWk5necfaul/FRwC4iIkWVLgUIJwoLnIotnkzQHgowp0wB+2hMJlOmLMY6pN6/P1bcbGp64aKJlMRAamGh1y06A6fFWlCGPZFM0huJ5HQNWlRRzeGBVN/5vmiY3+3fQRK4rHmwZaPFbM5kuiuG1KY3OFPBc0coVQsfyNSwT06GfV1dE2dU17Oiqj6zLd2lZWiGfW9vF9986Ulg5M5IHaHAiNn3fqPPfIXVxoqqOhaUp8qOau1OTCYT1Xa7SmKKTAG7iMgskUwmcfm8/HTXC1N63S6jhWJ2H+fptKO7g3gymclQysgGA3YzJpOJv177dl67cEXRs6npn5m6U2wTWGjA3hcNkyBJbVZGf0FFNYf6ewjGYvzLlkf4/YEdOMyWzKTStHRP9KEBe43NgdNioc1YDTSdYXdOUoa9uayS/++SV2duDADqHKlgfOi/tV/ufQmnxcL6ujkcDfTl1LLHEwlePHmczz27ie9sfyZzg5Et3We+0mrHZDKxsWk+ABub5gFQZXOoS0yRKWAXEZkl0hmw3+/fMaXXTS9fPt7l3ovltn3bqbM7edXcxdM9lJKX7hST7jjisFiptTvpi0aIJ4vX3vFEKPUzc6rdaAoN2LszGf3B7PNVLYsJxWP8w6N3scXoP395y0JMQyYqzzOyzWVDAnaTycQcZ0XmawnGY5gx4bQUrzTMZrbgtFhzPgHpiYR54kQrr1m4kqvmLqYvGskpafrai4/xiaf97O/vBsgbsKdXga20pb5Gz/J1fHjN+bxlyRogVUevkpjiUsAuIjJLpD8mH5oJLKZkMpm5brr3eU8kxOef3cShItdBp3WFg/zdI3/hli2b6YmE2dp1gkvmLBgWYMlw6QmStqwWgdU2BwmSfOIpf9Gu224EjXOmKGBP9xTPLsE5q34O71xxFseNgPt9q87ho2deOOzY9XWpiZ5HA33D3msuq8jcsAZjUZxW67CAf7JVWm2ZEhaA5zqOEU8muWruYq5oWYTVZObu1r2Z9/f1deccn29+QrrTTbpOv9ru4A2LV2Vu5KptDpXEFNnkFFKJiEjJO2l8TF5hm7pAtTcaJmZkYk9GUoH77/bv4OmOo7ATvnbeq4o+hmc6jnFooJdDA720DvQSiEUz3TRkdOmSGItpMGBPB7Uvd7eTTCaJJ5OYYFL7freHAlhN5lNeibbwgD1/zfw7l5/F1XOX0OAoG/EG79zG1ALw+Vb5bC6rYGfPSQACsRjlk7DK6VgqbfacDHtbMNWacnFlDU6LlUuaF/DHg69wRctC1tXNyZS7pH1j25Msq65jZfVgbXymJGaEdQtSJTGdk/2lSBZl2EVEZomTmQz71C0WlM6uL6msYW9vF60DvbxglBc83X6UH77yfFGvH0nE+dPBnVRYbbx1yRoOGNnD9fXNRb3uTFGWVcOelt2DvTca4b2P/ZX3P373pF63PRSg0XnqffLHG7APbSNpMplYUFE96qcxtXYn/7PxOj6xduOw95rLKumNhgnGogTi0Sn5VKfCas8s5LS9u4Of7d5q1NOn/i5vXHQGAP/98tMkk0n6IhFW1TTw3lXnZM6xr7cr55wDWZNO80lPOj2VPu8yOgXsIiKzRHZJTCQR572P/pXnOo4V9Zrpeth3rVhPEnjsRCsnw0GuaF7E9fOX8fsDO4o6hk1HD7C79yTnNLTwmoUrMtunYqXOmSAz6dQ8GDif1zg383xvXxeHB3ozN0KTpSscpMFxatl1AKfVQig+dnei7mjq06fqCXalWVvXlPfYZqN16PHgAL2RMNUTbFM5HpU2G1tOHucnO7fwhec2AZB937O+vplXL1jO0UAfwXiMaDLBFc0LefvSMzP19R1Dusx0hAOYMY34/am2OYgmEgTjMcIF9r2X8VHALiIyS6Q7b5iAtkA/+/u7+c72Z4p6zfRNwhnV9TQ4yjjQ183JcJB55ZV89MwLaXCU8ZfDu4t2/V29J7GYTHxpw2UsqKhmeVUdNy5aVbTrzTT5SmLqHWV8/+JXA/DA0cGFhWKJyZuEGozHJiUbPZ4Me7nVNulrBaRbPh4PDXAyHKR+Em5CxlJufN9+u387cePvpHvIhNDlVXVEE4nMPJJ0IP7na95Gjc2RKaNJ29fXzYKKqhG/P1XGjcg/b3mE19x/mzLtRaCAXURklgjGUx9rh+JxopMYXI2mdaAPq8lMo7OcxZU1vNR1gngySYOjDLvFwtKqWk4Yk/L+9qE/8f/teHZSr7+zp5M1tY2ZgPOHl97Ah848f1KvMZOVWdMZ9txwIR2Ibu/uyGzrDA/vLjJRoXgsc7NwKpwWK5FEfMyONt3GokmTLf19ah3ooyMczFvnPtmyP1FwGN/DDUNKwNKtKHf1purr0wG31WxmfkUVxwLDA/alQ9pZZqs2atuf60x9WlbsPv2zkQJ2EZFZIp1pDCdimUlkxe1XAYf6e1hQUYXVbGZJZU2mJ3W90Tu6yVnOiVCASCLOiVCAPx7cOWnX3nTsAK/0dLK2tmnSzjnbOPPUsANU2eyUWawczloJ9ERw7IA9kUzyg1eeY9OxA3TlWY0zbTIDdoDwGGUxvZEwNbbJz37XO8oot1j5/ivPEYhFM33Siym7B3tXJMT185fxz+dembPP3PJUwJ7+hK06azLp3LLKnIA9Eo/TFuxnSWXtiNdsGrIIWWdo5L9bmRgF7CIis0Q6aAnH45lFTordYu5Afw+LK2sAuHHxYClKOjhqdlbQHQnlBAjpjPtEDMSi/N+eF3H5vNy2fzsOs4V3rjhrwueb7fKVxEDq56Z5SJCW7uM9muPBAW4/8Ar/tvUx3rrpjzx49EDe/SY7YM8ui4knEsNKNvqikZyVXCeL2WRiXd1gR6I6e/Ez7ENvCs5vnDtssujCimquaF6UeV2VVVvfUl5JeyiQKXHqMlpeNjpHHvuiiuqc1w+3HeKVns6cCcpyahSwi4jMEunJYEcCfXxr21PA5GbYb9+/g+9sfzrzuiscpC3Yz7KqOiC1wMw3L7iGhRXVmdUi05M/t3e3Z457paeTjz91H7ds2cyWzjY2tx3KBFh3HNzJP2/ZPOIY3vfoX/m/PS8BsKe3i5U19ZMS+M1WlzUv5KasyYjZ0gH7/PIqFlfWcO+RfWPWLqfLstK+9uJjefcLxWOZDjWnYmjAnkwmuf6+3/DDnbndiQZi0aKtT/CxtYO926eitvuT6y7KaR+5oLx62D5mk4kvn3M5n1i7kbcsWZ0TcM8tqyRBkkeOHwIG108Y2kEnW/mQ790v977Eh57wcd29v8Z/dD/xZIIf79xySjfjs53+FxMRmSWya1t7irDIyQ+MIOgjxuIyjxw/TBK4eM78zD4bGlr4+eWvy7yeV5FaJfK2fdsz2x49fpiXutozzwHeuHgVz3Ycy5RgdBht/7Jt7+7ILHKTlq7VlYlZVlXHslV1ed9LB+y1difXzl/Kt19+Gt+Rvbx6wYq8+wMFrYaZSCYJxeNFybCna6tvP/AKH1h9Xma/gVikaOsTzCmr4PevehP/s/0ZLm9ZNPYBp6jG7sC9YHmmvGy+8W8snxsWDv+7SpfL/NvWx7iieVFBATukJrLu7esatv2Z9qOsqKrjtv3bebbjGD+89IaCvxYZpAy7iMgsEU4M75ZRzHzfju4OGhxlLB2l9nVdbROXNS+k1Vglcn55FQ8eOwDA9fOXZfb708GdOfXS6V7u2e4/sm/YtrkK2IsmXdN8JNDHaxasYGV1Pf+17alR23QOvVHMV4aSLt3Kl9Ufr/Q5QrHUz353OP8Nw0A0WtT1CeocZdxyzhXDFmYqlnTGu87uHJb9HsvCrGx7RziQqYkfK2D/2nmv4ldXvCHz+gtnX8rFcxaws6eTcCL1d5ovoJfCKGAXEZlBEskkH37iXh4zMtPZ8k28C8aiw7aN5hsvPcHnnn2woH07wkHmOCtGrZM3mUx86ezL+OS6jXx63UW45i3NvPePq8/jz9e8lcuaFwLw2oUruOvat1Nls7Ols23YuTrDwWEB+rxyBezF4p6/nCZnOW9eshqTyZTpc///nn2QXT35V73sycqwNzsr8raCDBllM5OaYU/EaR3oZVtW6VVaJB4nmkwUrSRmOqRbYi4YJbs+knpHWaaM51hgoOAMe4OzjJbySm69/HW8femZXN68iFU19bQG+nJKYdTycWJUEiMicprqiYT575ef4qNnXkCd0S5uV08nO3o6+MqWzcxxlvMf51/NImPSZ75+1B3hIHcc3MkbFo/dmzwQi3KvkcW+zvdrGpxl/OCSG4ZlDZPJJD/auYUtnW2ZYHs0FrM5U0bRFw1z75F9lFutmWXQ37F8HQsrqvmbZWtxWqxsqG9mS2cbyWQy52agOxKipbySY1k9pEfrbCGnxm6x8Osrb8z8HbxmwQqWVNbwsafuZ3t3B2fUNAw7pjcrw95cVsHx0ACJZDJnRdOg8XM62SUx737kL5ntZkzs6umkNxrhZaP8aiYF7Oka9vl56tcLcW5DCwA/2bWFV4ybr3SLz7EsqKjOrJq6qjr1M5D9iVhPNEyt3cnRQB+NzvJJ730/UynDLiJymrqndQ+PHj/MOzffmVlR1Hdkb+b9E6EAv9u/I/N6pNZ2/hE6dWT77vZneL3/d5nXCZK0hwLszJNJbR3o4/cHUtdtdIxvRdEqm4NfXvF6vn/JqzPbVlTX8/dnbMh8tL+ubg4nQoFM5i+tJxKm1ubg41lLxC+snFjAIoXJvmEymUysrW2iwmrj0MDwlU8jiTi37n4x83pOWepnY+iNZPq1s8AAcTTpgH2TUWY1OFj4pyd8fPbZB/nl3tQk5coidImZLul/K6PVr48mPRk8HaxPtINO+qYt+xOx9mCAk+Eg79p8Jz96ZUvO/u2hAH/3yF94Ic8naLOdAnYRkRLXGwnzX9ue5FdG9xNITbpMB+CheIyvbX2MTccOcNfhPTnHdmQtZhOOx3j9opWZRVTOa5jLksqanGXn8znY38Mdh3blfS/dSzv7Y+7H21szz80TaBtpMpmGtRHMNscIJjqH9PHujoSodTgzpRkwOVlaKZzJZGJxZQ0H+3uHvTe0tn2OMzVpNTCkLCs9OXoyu8RsOnYwZ3u+doMzKsOeDtjLJxaw28wW3pj1qdvtV795QuepsTuYX17Foex+/aEBnmo/AsAzHUdz9n+q/QiHBnr5TIFld7OJ/icTESlhkXicH+/awj2tqcx53Cgf+MWeF3P2e7HrBC92nWBNTSPBeJQDxpLj6cx7IpkknIhTY3NyaXMNL5w8ToXNRpWtlt3Gaof5HOzv4e8fvWvYdpvJTDSZ4IRx/uws6YG+7szzyZg4OFSDUf5z0gjYE8kk27vbGYhFM+U5P7n0NcMCQZkaC8qreb5z+MTT9M9k2pyykQL2ySuJqR7HJE/7DLq5O6O6gfMaWlhfP2fsnUfwwTXns7e3ixq7Y9Qb6LHcsGA5P971Qub1iydP8PiJ1E19csi0921dJ4DUv+lgLFZwGc5soO+EiEiJ+u72Z7i7dU9OWUn64/t86h1OPrv+Er6x7YnMtgEjGEoHtw6LJVMzWmaxUmG1cSI4wLe2PYVn+VqayyoJx2P8+4uPc9OytbQNWaLcbDKRSCa5adla/tq6m8MDvVx/769zFic60N9Ds7OCd6w4i1fNXXzq34gh0vX6fz28h0eOH6bRUT5Y1mB0+lgyyjLqUlwNzjK6IqFhtekH+7tpcpbzzQtcPNV+hEbj7zEwUknMJGXYP752I//98lNj7juTMuwNzjK+fsE1p3yeb2289pTPsbFpfiZgN2PiDwdfAWBldT27e09meuDHEgmeaT+G1WQmlkzQOtDLypr6U77+TKGAXUSkBAVi0UwZyrFgPxc2zePp9tTHx+VWWyYruba2ibctXUOTszxTL1puGQw8okYXDs/DfwbAYbFmAqIyi406RxnRZIK7W/dQabNxw4IVPNx2KNP/fHnVYA/u31z1RuxmC0mSVNscPNtxLNOCMbs2eXfvSc6ub+bVC5ZP9rcFGMywP3aiddh76Qm2Mn0aHGXEk0l6IuGcVTcP9feyqKKG+RVVvKliNVuNiYhDOxUdNzqKNIxz/sNIsuuvz2uYy5uXrObzz23K2eeqlsWsyjNJVk5ddh39R9deyK/3buPzZ19KfyzCF557iLsP72FFdR1HBvroiYZ57xkb+PGuFzg00KOAPYsCdhGRErRnSJnK2XVz2HbyBEuqannH8nU8eryVueWVvGnxKhxDMpHZk/XSwVDcqNkNxWOZPstn1NTn1J7/bv+OnEmqdrOFQ/091Duc/PCS1wxb8tw1bwk7ejryjn+itbOFsOcps3n70jN569I11Nimps+1jCx9Q9UZDuT8zBwL9ucExek666ElMa0DvZRbbdQ7Rm8jWKjsPuRfv+BqABxmS6Y3OMDZp1A6IqOzZXWBec3CFZk5Jp2h1Kd+2avOrqtr4vWLVvHjXS/kdHsSBewiIiVpd29qgZF0rfj8imq+sOEyWsoqWVxZw4VN80c8NjvDHk7EiWf1uq6w2rh0zgL+96LrWVXTkHcBorRjgX56oiFW1zQOC9YBXrtoJZU2O96923ImlQE5JTLFcFZdEyeCgczKpkurasfsEy1ToyFrUnB6+u9ALEpfNEKLUbcOgyUoA0MC9sMDvSysqB61f/94lOcprfmT661s7+rgU8/4AYbd9Mrkcs1bOuzvud7hxGmx5KzAfM3cJZRZrTgtVvoikakeZklTlxgRkRKTTCZ54Oh+5pdX8asrb+QDq87lwqZ5bGyaz+ICSj6GTtQKxmPU2h2sqmngNQtWYDKZWF3biMlkYt6QTPirWhbz12vfzqsXLGdHTwdHA/2cbXSVGcpiMnPNvKWZQDm7BCbdFq5Y/vOCa/jllYOrKi6qUPvGUtFg3NxlL5Zz3MiWzskK2NOlKn3R3MDsUH8PCyfYjjCffCt92s0WarMmpNrMCoeK6bPrL+Gr516Zs81kMvGNC1x8cPV5mW3p/4+qbXZ6o2H29XXxpwOv0B9V8K6fUBGRKZJIJnOy3SPZ0dPJrt6TvG3pmTQ4y3jL0jXjWlxkaDu8YDzGQCzKhvpmLEMCk+zA2nvljXx6/cU4LFbOqhssETjPWERlJBGjtCB9MzEVrRRtZgtmk4kFxi/4hQrYS0ajs5x55ZX8/sCOzM9GOnhvyVqJtsJqxwR8/5Xn+OTTfuLJBJ2hIB3hICuqJ692uWyEyaTZfdeVYZ8ea2obeeOS1ZnXc42ViavtDnZ0d/CPj9/D9155LtMlazZTwC4iMkV+uuuFzEfwo3ns+GEsJhNXtiya0HXSQVKz0ee6JxIimkjkzTRmd/FoLqvI3BhcN38Zt131Jm69/HVjdlxJ94NPB88Xj1KuM9m+fsE1fGXD5SMGZTL1LCYzH15zAUcD/dx1aDeQWhAHcm8Qs3/2tp48zv6+bl4x5kSsqWmctPGM1P0lezKqQ6ttTqv0nJf0/1nVNgetgb7M3JuXjHaPs5luKUVEpsiRQB97s3qUj2RHdwerahomvPJielGYK1oW8fsDO+gwJneNFLi8a4R68wZnGVA25vXec8bZ/PvWxzi7vpnvbLxuUrOjY2kuq6A5q8xCSsP5jXM5r2EuP9z5PM1lFZwMp1alHbpiZnYX7v193RwN9GPGxIrqOibLSAswOSxW7GYLkUR8XJ9gyeT79sZraQ30ZT4BzP45uWTOArZ1tZNMJidtXsPpSAG7iMgUCcZiBGJRIvF43k4naSfDQZadQsDyrhXrWVc3h2qbIxWwG6ud5suwp/c/FZfMWcBfrn07AGfWNZ3SuWRmMJlMvHfVBj7w+D18ZctmIFUnPlrpyf7+bk4EAzSXVUxqicrQMrBsVTY7neHgqP8epfjqHGWZ9RUglWGH1KcwG+qbefxEK12REPWOMuLJBAPR6LgWxZoJVBIjIjJFwolU//OuSDBneyQe5yc7t2RaMHZFQtSdQseTSpudK1oWUW5MPv32y08DM2thGCl9Q3vij/bz57RYODzQl+kQUwwXNs0bti2dyVVJTGlJB+PVNkdmbswhY6Xc7+94njc9eDvhIQtuzXTKsIuITJH0gkVd4RDNWZPv/np4N7/dvx2r2czfLlvHQCyat43ieA3NqFdYJ1ZiIzIRQ8tMEskRdiS1QFdPJMSRQG9ReqLffe1NWPKUU6TLzpRhLy3pVXDD8Vjmxu/QQC8bGlq4p3UPkPr/dDZNFlaGXURkiqQnZ3ZFQjnbQ8Yk0XA8nnmvzj527fhYhnZrUYZdptoXzr40k9mOZi1UlHZ580Ig1bv9YH8PoXh8WKvRyWC3WPKWxlQZN7GqYS8ta2pTk46D8RiNjjKcFgtHBvpIJpOZBa/C8eE/TzPZ7Lk1ERGZZukMe3oC3lAm02AwPxkZ9npHGZfMWcDjJ1oBWKDWhzLFXjV3CfWOMp5uP0o0T0vTL559GZFEnB/u3JJZWGcqJxFXGbXSDmXYS8pSozOVxWTCZDJR7yjjDwdf4Q8HX8nsE8lzAziTFRSwu3zetwBXAhuAs4EqwOt3e96RZ98lwP5RTneb3+25qcDr3grcPMZuD/rdnmuyjnk38PNR9v9Hv9vzg0KuLyIymTIlMVk17Ht6T/LTXS9kXneHU++dSg17mtlk4ivnXM719/4GGL6gkshUSC+sFUsOD9gtZjNlZjPVWV1Bir3oVrZMSYwy7CXFYjLzH+dfnflZqLM7ORroz9knpBr2vL5IKlDvB1qB1aPvDsBW4M95tm8r8JoYxx8Y4b13AsuAe0Z4/w7ghTzbnx3H9UVEJk12DXvaBx7P/S9ssCTm1AN2SP3ie9+qc1heNXlt8kTGo5Cf5eyOH3OcU5dhX1xZQ4OjDJsC9pJzfuPczPN015hsEZXE5PVxUoH6HlKZ9k0FHPOC3+25ZYLjAsDv9vyZPEG/y+etBT4DRIBbRzj8z363Z6T3REQmZHPbIf548BU+v/7SnGXWxxJPJjIlAV2REPFkgh+9siVnn9/t38FrFqwAJqckJu1tS8+ctHOJjFe6E8toC4FlB2RDe7UX06sXLOe6+UtzFnGS0hM3OvZfPXcJDx47AAzO/Zm0ayQTPNV+lJe72rlm3hKWlViSo6CA3e/2ZAJ0l89bvNEU7p2kVvP4rd/t6ZjuwYjI7PEvLzwCwMvd7eMK2LMnSHWHQ+zsOZlTj5n219Y9lFtts6r7gcxsJpOJ269+86iTnrMXCZvKxXHMJhNmk7LrpS6d7DiztjETsE92W8fnOtr48vMPYzWZWVpVe3oG7BM0z+Xzvh9oADqBJ/xuz4uTdO73Go8/GmWfDS6f92OAEzgCbPK7Pa2TdH0RmYXSK4hCKugej+x6y5PhYN6OGWkjrcwocrqqHaMsZonRuu/LGy6fiuHIaWZBeRVbOttYXdvIWXVNvNTVPuldYk4a84d+ctlrSnKCfjF/K1xr/Mlw+bwPATf73Z5DEz2py+e9GDgL2JWd+c/jo0Nex10+70+Aj/ndnvH9phWRadcTCTMQixSl5VuhsmvPT0YmFrCXW210RUL0RyMj7tsZDo74nshMNK+8ivuu/1uVpkhe7199Lhc2zWN1TQOfOesS3rn5jknPsKf/Tx7r5nK6FKMPewD4KnAeUGf8Sde9XwU84PJ5T2VGyfuMxx+P8P5+4MPAKqACmAe8jdTk1fcDPzuFa4vINPmHR+/iXZvvLPp1vvL8w9xxaFfe946HBjLPjwT62NXTWfB50wH7oopqBmJRdhrHXj9/2SmMVmTmULAuI3FarFw8Z4HxPFXCFJ7kGva+WAQTwxecKxWTnmH3uz0ngC8P2bzZ5fNeBzwKbAT+Afif8Z7b5fPWkAq+R5xs6nd7HgYeztoUAH7v8nmfJNW55m9cPu/X/W7P1hGu8b5820Vkeg1dbKgYwvEYj51o5bETrezuOckHVp+bU1t7PJhqK2YzmdncdojNbYe4/eo3F5SRCcVSAftrFq5kb18Xv973MgAfXHM+K6rr+d6OVAOrJZU1vGrukkn+ykREZob0/J7skpiBWJTb9+/gdYtWUu+Y2KJz/dEIlTZ7yd44TtlKp363Jwb8xHh5xQRP8w6gHPjjeCeb+t2ew8DdY13f7/aMVhcvItMsmRxlffNT0BMJsbe3K/Pad2Qvv9r7Us4+6QWPllcPTkb6zDMPEEnE6Y9GiOfpM53WGugDUpOmllTWAqlFQcosVt64eBV3X3sTf77mrfzkstfiWb5usr4sEZEZxWFOZ9gHS2K8e1/il3tf4usvPjHh8/ZHI1Rap65D0XhNWcBuaDceJ1oSk55s+sNpur6ITLPoKEHxqfjGS0/ykafuy9k2tJa8OxLCYjJlVuED2NfXzUsnT3DjA7/nP7Y+TiKZ5Lvbn8kJ/gH293VjM5tZUF6VWcmxyubIdMSwWyw52XwRERnOYjZjNZlzMuyPHU/1FNnVW3iZ4lB9sciUthQdr6kO2C8yHveN90CXz7uR1OJNu/xuz0MTvP7GiV5fREpDMFac1e1e6Rn+oV3AWCo9rTsSotbuHDbx9fETqV8Wm9oOsqv3JHcc2sX7H7+b3+/fwfFgqu59X18XSyprsZjNmYVhSvmXg4hIqbJbLJlJp4lkkhPG/7N90UjeDlydoSDheIxNxw5w56FdxBMJook4O7oH/9/vj0aoKOH/kye9ht0IrLf43Z7IkO1Xk1qACeBXQ96rAeYCPX6359gIp07Xlo9asuLyeS/3uz2PDNlmAj4LXAx0AL4CvhQRKUHBWJQa+/BV705Vlc1BdyScs21oJ5fucCpgn28E7Isqqmkd6OP+o/sz+9x/ZDAf8MOdz3PHoV387LLXcjTQz+qaBgAajEWRtBy6iMj4OS2WTIa9Mxwkmkywsrqe3b0n6Y6EaXKWZ/a9+/AevvXyUyysqObwQC+QauFowsQv976ECfjFFa+nPxqh0VGe73IloaCA3eXz3gjcaLxsMR4vdvm8txrPO/xuz6eM518H1hotHNN9z9cDVxvPv+R3ex4fcok3Aj8HfgG8O8/1q4G3k5ps+osxhrvZ5fPuAp4h1X+9BrgUWEdqAqrH7/b0jnEOESlRwUlu5ZWWr83i3r5uBmLRzIIvXUaGfW55JZBazKPcaqM/FmFBeRXHQwPcfXgPkOql/v5V5/Lt7U/zp0M76QwHaTR+iSw2athvWqYVSEVExqvW7uSE0bWrLZBqBnBmbSO7e09yMhzMCdh/uz81wT8drENqVel04icJ/PXwHo4HBzi/cd4UfQXjV2hJzAbgZuPP9ca2ZVnb3pK17y+Bp4ALSNWc/xOwEvgdcIXf7fnXCYzTQ6ruvJDJpt8E2kjdIHwUeBdgA74HnOV3e+4b5VgRKXHFCNiTyST90QhnVNfz9qWDQXQoHuPuw3v4zvanCcaidEdC1DkcmZKYa+YtydSjf2TthVw8Z0Gmxv4O19t47aKVXNg0jx/v3EIkEafB6F6wsWke3itvVDcYEZEJOKO6gZ09J0kmkxwzunetqW0EoCscJBSP8YXnNvHd7c9wLNDPu1eszxz7T6vPI5qI0x4K8KE153NmbSO37d9OOBHnwqbSDdgLyrD73Z5bgFsK3PenwE/HMwi/23MrI7RpNN7/PvD9As/16fFcW0ROL8EhdeWTIZKIE00muLxlEX+zbC237d+eee8Xe7YSisd5pbuTtuAAV7YspsJq48/XvJVyq43r5i8jFI+xrKqOM2sb6QgFsJhMmdZgNyxYwdPtRwFocKYCdpPJlAn0RURkfFbXNOA7spc7D+/mu9ufwWRsA+gMh9jdc5KnjP93AZZkNQq4aM58Xuw6wVPtR7hm3hLW1jXxi90v0h0Jsb5+zhR/JYXT+tciclopRoa9P5q6Cag0Sl/++ZwrKLfa+Pyzm0h3kdzVe5J6h5O3LFmT2teYnJQ9AdVpsfI/G68jwWDryXMbWjLPS7k+UkTkdHF+41xMwHe3PwOAw2KhuayCGpuD7+14NpNtT1tSWcN/X3gtdx7aRXNZBR9fu5ETwQGqbA6qbA7+9byrpv6LGKep7hIjInJKipFh74+l6tfTQfilzQs5p6EFp9Was5redfOWUecYfZEkk8mExTT4X2u51caSyhpgMMMuIiIT11JeyYasZEgoHsdmtvC5sy8lkoiz9eTxnP3nlldyVv0cvrDhMiwmMzV2Bytr6qd62KdEAbuInFaKk2E3AvYhi2aUGSvqOS0WPrD6XN62dGKTRL914bV85qyLmVtWeWoDFRERgLz/n57fOJd/M7LliyqqM9uzkyinK5XEiMhpwWoyE0smhvVGnwx90dwMe1q5USLT5KzIlMJMRLXdwXXzl018gCIikiM9iR/gM2ddnHm+sWk+f7j6LdjNFl7nv206hlYUCthF5LRgMZmIJWGgCAF7VyS1omn9kHIXp5FhL0bfdxERmbj0/9cXNc0flhBJ/5/9rhVncV7D3CkfWzEoYBeR00I0kWqX2JenX/qp6gylAvY6R26NeZmRYa+1j163LiIiUyv9/3XMaKWbz7uy2jme7k7/oh4RmfHiyUSm88pANEJXODSp5+8IB6mxOYatPJquYa9Vhl1EpKSk/7+OJ5Nj7DkzKGAXkZKXzq4DbGo7yFs3/YGD/T2Tdv7OcDBvB5d0L/U5TvVMFxEpJcuM3uruWTI/SCUxIlLyolmtFdOOB/tZbLRLPFWdoUDOBKa03kgYQIsciYiUmEZnOX63Z7qHMWWUYReRkhdLDK9R7M1Ty34iOJBp0TgeXZEQ9XkC9nS9vDLsIiIynRSwi0jJi+QL2I3sd9rJcJC/ffjPfO3Fx8Z17mQySU8knLcTTF80dY1Gp1YoFRGR6aOAXURKXr6SmN5obsB+35F9ADzdfjSzrS8a5k8HXuGHrzw/4rlD8TiRRJwa2/CA/QOrz6PBUUaTAnYREZlGqmEXkZKXvyQmN2A/FujPeT63vJJPPf0Ae/u6AHj/6nPznjt9nuo8Gfar5i7mqrmLJzxuERGRyaAMu4iUvHSXmM+uv4RvXeiiyVnOnYd2c2SgL7PP8dAAVTY7VpMZ795tJJLJTLAOuUF/dsY+XVpTnSfDLiIiUgoUsItIyesMpxY2mldexfr6ZtpDAQB+sefFzD4nggNsqG/mjYtXce+RvdxvlMicUV2fej80wF2HdvOpp/2855G/EDGC9p5RMuwiIiKlQAG7iJS8Y8FUuctco73ixU3zATga6KMrHORjT93HoYFemssq8CxfR4OjjG9sexKADQ3NAPznS0/w7e1P88LJ47QFB3i24xgwmGHPV8MuIiJSChSwi0jJawv047RYqLU7Afjnc6/kTYtXs7v3JI8cP8y2rnYAllXVUWmz89Vzr8I9fznXzF3C+Y3zANjW1c6r5i7mD1e/mSqbnUfaDgFwx6GdgDLsIiJSujTpVERK3rFgPy1llZiMlUfNJhMtZRXEk0le6Dye2e/KlkUArKyp51NnXQRA60Bv5v3XLzyDGruT8xvm8mzHMfqjEV7u7qDKZlcNu4iIlCxl2EWk5HWEAsMWL6pzpLLtm48fYl1dE7dd9SYcluE5iPSCSGaTiTPrGgE4u6GZrkiIg/09APz9yg2YjZsBERGRUqMMu4iUvP5YhAUV1Tnb0uUxAK9buJIG5/CVSgHKrTa+s/E6FlfVYjGlchTpIP5EaAAAh8VSjGGLiIhMCgXsIlLyBqJRKqy2nG11WQH7JXMWjnr8mXVNOa+rbHYAOkOp7jP5MvMiIiKlQiUxIlLSkskk/bEIlUaQnVbrGAzYy6zjC7jT9erp9pBOZdhFRKSEKWAXkZIWTsSJJ5PDMuynMkk0nWHvCKcCdrtZGXYRESld+i0lIiVtIBoFGBawm00mPr3uIlbVNIz7nOlsfYcy7CIichpQwC4iJa0/FgEYVhIDcP2C5RM6p91swWmx0KEadhEROQ2oJEZEStpALH+G/VRV2Ry0GyUx6hIjIiKlTAG7iJS0/mgqw15hHZ5hPxXVNgeJZBIApzLsIiJSwhSwi0hB7juyj9/t3z7l1x0YpSTmVFw0Z37muUpiRESklClgF5GC/OdLT/CjnVum/Lp7eruwmEw0Ossn9bzXzluaee4wqyRGRERKlwJ2ESlZiWSSx0+0sr6+edJr2JvLKjLPrWb9VygiIqVLv6VEJGNz2yH+cOCVUfdJ131PhQePHeDwQC/Xz1826ee2KasuIiKnCRVuikjGv7zwCACXNy9kTlYGOjtIH4hFqDqFRYvGY+vJ49TaHVwzd8mUXE9ERKQUKcMuIhnp1UMfOX44Z3uf0all6PNiaw8FmOOswGQyFeX8l8xZQJkmnIqISInTbyqRGagnEiIcj/Nw2yHW1Dawrm5OQcdV2mz0RsPs7e3K2d4dCWWe90bCzCuvynt8ZyhIpc02aV1X2kMBFoxwrcnwL+deWbRzi4iITBYF7CIz0Oefe4idPZ2Z1363p6Dj0tnzvX2jBOyjZNg/+MQ9XDd/GX93xoZxjHZk7cEBzqlvmZRziYiInK5UEiMyAw3NkBcikUxmFik60N+dWWEUyHn+Py8/TVc4NOz4aCJORzjI/r7u8Q84jydOtBKIx2gqm9x2jiIiIqebgjLsLp/3LcCVwAbgbKAK8Prdnnfk2XcJsH+U093md3tuKvC6Ez6Xy+e9GfggcCYQB7YA3/S7PXcVcm2R09miymr2ZQXOx4MDOW0M8xmIRUiSmnD6yPHDvHvznfz6qhuxmS0EjYC9xubgeGgA795tfOjM83OObw8FADgW7D+lse/uOcmdh3dxLJA6zzn1zad0PhERkdNdoSUxXyQVqPcDrcDqAo7ZCvw5z/ZtBV5zwudy+bzfBD5Jaqw/BuzATcBfXD7vh/1uz/9OYAwip42hE0Nf6Gzj+gXLCzrmwqb5PHL8MF2REAf6e1hZXU8wHgPgh5fewJeff5jDAz05x3aGgrxr850AtAX7SSaTE54o+q9bH+VIoA+LycQVzYs4o6ZhQucRERGZKQoN2D9OKvjdQyrTvqmAY17wuz23THBcEz6Xy+e9hFSwvhe4wO/2dBnbvwE8B3zT5fPe5Xd7DkzS2ERKzkA0wpsWr+YDq8/lbZv+yNMdRwsO2GvsDr6z8To+8tR9dIWDAISMgN1psTK/oood3Z05xx4L9mWeh+LxTA38iur6cY/daUxYjSeTNDrLxn28iIjITFNQDbvf7dnkd3t2+92eqVsxZeI+YDz+WzpYBzAC9O8BDuA90zAukSkRTyQIxGNU2eyYTSaunruER44fpnWgN2e/k+Egv9n3MvFkIvMaUmUv9Y4yY1uqVj0USwXsZRYr88urOBEcIJqIZ87VHQnnnPsDj9/DBx6/h1giMe7xV9rsmecNDgXsIiIixewSM8/l874faAA6gSf8bs+LU3Cuq41HX5737gG+ZOzzlQmORaSk9cdSmfJKqw2ANyw6gz8efIWXutpZUFFNZyhIOBHjs88+yNFAP+tqmzirfg4vnjyBzWRmeXUd6WKWdBAfjMewmy1YzGbmlVeRIMnx4AALKqoB6DDq14d64kQrl7csGtf4q7IC9kanJpyKiIgUM2C/1viT4fJ5HwJu9rs9h4pxLpfPWwHMB/r9bs+xPOfZbTyeMc7ri5w2+qOpCaLpTHVLWQVmk4m2YD/f3f4MdxzalbO//+h+Vtc28PiJVtbUNmZKUkzAz3ZvZUNDC8F4NLPA0LzySgCOBvrGDNi/se1Jzm2cS4Vx81AIM4O17wrYRUREitPWMQB8FTgPqDP+pOverwIeMALrYpyrxnjMnRE3KL29dqQLunze9xU4NpGS1Gdk2NOZaovZTJOjnLZA/7BgHeCvrXv40BP3ciTQx5uXDM4nT9e/ff7ZTQRjMcqsqYB9vrGQ0ZFAP7/a+xI/3fUCHeHhAfvFcxYQiEV5pbuDp9uPZurgx5Le7+q5S1hX21TYFy0iIjKDTXqG3e/2nAC+PGTzZpfPex3wKLAR+Afgf6byXEOMWIvvd3t+5PJ5fzjO84mUjHQv9exa8OayCl7u7hi27yfXbeS/tj3F3r4uLmicy6XNCzPvueYtwX/0AP2xCF2RUCbzXmt3Umaxsqunk/uP7s9sW1RRzefWX8rPdr/A7t4uPrH2Qt52opU7Du3i8ROtfPjMC3jDorE/3ArGo5xd38znz770lL4PIiIiM8WULZzkd3tiwE+Ml1cU6VzpDHoN+Y2VgRc57WUCdutgwD6/ooo2oz/618+/mr9e+3a8V76BVy9YwYfWnM/a2iY+uCa3r/pn11/K59enguYDfd2DpTImE/PKq9jW1Z7ZtzsSYkllLStr6vnquVfxm6tupM5RxqLKGh4/0QqkWkvGEwmOBVJtH0cSjMcy5TciIiIy9Sudpn/DF1oSM65z+d2eAeAIUOnyeefmOWal8Ti8LkBkhsiXYb9p6drM84UV1TgsVprLUrXoNy5exf9cdF2mHj3bXKNevSMcpCyrDn1xZc2wBZLSLRitZjM2swWANTWNmfcfOX6Y6+/7De/cfAcPHDsw4viDMQXsIiIi2aY6YL/IeNxXxHM9aDy68xzz6iH7iMw4Q2vYIZVh/81Vb+Sz6y9hzhgrnmZrMYJ6ICeIXlZVm3lea3cA0JBnguia2sZh2wD+48XH2dZ1gqOBVP/2UDyWaS8ZisdwWhWwi4iIpE16wO7yeTe6fF57nu1Xk1qACeBXQ96rcfm8q4dmxSdyLuAHxuMXXD5vXdYxS4APAmHg54V/RSKnl/5oBJvJjN3Icqc1OctxzVs6rnPV2h2ZwD/7BiA7YF9amXpebRv2T5XLmxfyhkVn8PXzr+Zvl63N6QDzsafu512b7+TlrnZee/9tfGvbU2w6doDeSJgyS+FdZURERGa6gtJYLp/3RuBG42WL8Xixy+e91Xje4Xd7PmU8/zqw1mi72GpsW89gf/Qv+d2ex4dc4o2kguhfAO/O2j7uc/ndnsddPu+3gE8AL7p83tsBO/B2oB74sFY5lZmsPxqh0mbHZDKNvfMYTCYTVTY7fdEIZ9Q0ZLZnZ843zpnPlpPHqbY5hh1fbXfw4TMvAOC8xrm8deka9vZ28alnHsjsc0/rXgDuPbKPe4+kPjArU4ZdREQko9DfihuAm4dsW2b8ATgIpAP2X5IKwC8gVYJiA44DvwP+1+/2PDKO8U3oXH6355Mun/dF4EPA+4AE8DzwDb/bc9c4ri9y2umLRXKy4aeqyuYA+lmbFaRX2RwsrqzhYH8Pb1q8miWVtZzX0DLySbKO29DQwjuWr+NXe7cB4Duyd/h+1skbv4iIyOnONFq3htnK5fPmfFP8bs90DaVk3du6l129J/nQmvMLzuQ+23GMo4E+Xl9Aaz+ZuM888wCheIzvXHT9pJzvcH8v9x3dx3tWno056+86HI8RiseosTvHfc5gLMaB/m4+/OS9AHiWr2NZVS1ffeFRAH54yQ0sr64b7RQiIiIzgsvnzXntd3uGBVb63FnGrScS4hvbngTgnSvOojZPwHY00Me3X36az62/hDpHqnvIZ59NzfVVwF5c/dFI3r+TiVpYWc3fn7Fh2HaHxYpjgt1cyqxW1tQ28sWzL6M7EuLGxasAeHTuYTYdO5hTIy8iIjLbTXWXGJkBDg30Zp53h0N59/G17uX5zja8e1+eqmGJoT8WyWnpWMqumrs4E6wDfHb9Jdx97U2TUn8vIiIyUyhgl3GJJxJ8b8ezmdfdkVTAHk+mtv9q70vG9jAAu3s7p36Qs1xfdHJr2KeSxWTGbrGMvaOIiMgsopIYGZetXSfY09uVed0ZDnLLls3s7OmkPRQA4C+HdtNrBOzpwF2mRjKZZCAapcKqtogiIiIzhTLsMi4dRlA+z1gB85mOozx6/HAmWIdUEN9UllpEp89YdTNbPJGYgpHOToF4jARJo7OLiIiIzAQK2GVcTgQHAPjRpa/BjInnOtoA+MLZl3LtvKUsqqjmjOp6fnH56/EsX0d/NEJiSCeicCI+5eOeLfqjqU80TpcadhERERmbSmJkXI6HBqizO3FarNQ6HJwMhyi32riyZTGvmrsEgEQymVpwx2onQZJALLdEI5KIU45KNooh/YnG6VrDLiIiIsMpwy7jciIYoLmsAoCNTfMBWFPTkNOfO/08HTT2RSOE4oNZ9XBcGfZi6Y9GAahUDbuIiMiMoQy7FOx4sJ8jgT5WGAva3LxiPVaTGc/ydXn3r7Kn6qj7omEcWZ0/IgrYi6Y/lsqwqyRGRERk5lCGXQqSTCbxPHwHbcF+aowJjY3Ocj669kIaneV5j0ln2F/p6aQ/a/JpRDXsRaOSGBERkZlHGXYpSCAeyzyvsRfWgaTaCOy/s/0ZLmtemNmuSafFE4ilSmLKVRIjIiIyYyjDLgXJXtG00GXvF1ZU887lZwHwVPuRzPZIVvAvkytsfG+dFt2Li4iIzBQK2KUg6RVNofAMu9lk4uaV61lb20g0q/e6SmKKJ5yIY8aE1aR/2iIiIjOFfqtLQbID9kIz7GkNRo17k/GoLjHFE47HsFssmLK69oiIiMjpTQG7jKk/GuErWzZnXmd3fClEkyMVqJ/b0AIow15M4Xgc5zj/fkRERKS0KWCXMbUF+3Nezy+vGtfx6S4y5yhgL7pwPI7drIBdRERkJtHMNBlTKGuSqN/tGffxF8+ZT+tALxvqmwGVxBRTOBHThFMREZEZRr/ZZUyBWCpg/87G6yZ0/IKKaj6+bmMms94bDU/a2CRXOB7HrpIYERGRGUUlMTKquw7v5okTrQBUnOJiPHazhSZnOccC/WPvPI3293VP9xAmLJyI4zDrPlxERGQmUcAuo/r2y0/zl8O7ASibhFKLuWWVHC3hgP3p9qO897G/cv+RfdM9lAkJx2PjnhQsIiIipU0BuxRsMlbPnFdexbFg3ySMpjhOBAcAeCJroafTSTgex6EadhERkRlFAbuMKJlM5rwus556IDivvJKT4VDORNZSEjTGtbntEPedhln2cDyGQ11iREREZhQF7DKi7NVJTYBlElbPTLd4PBkOnvK5iiF7XL/a+xLxZGKUvUtPOBFXSYyIiMgMo4BdRhSMRzPPk6PsNx4NjjIAOkKBwscRi/GJp+7n+c62SRpFfvFkgo5wgJaySj697iKOBvr5p8d9/GzXC5mJt6UuVRKjgF1ERGQmUcAuIypG2Uo6w945jgz7A8f282LXCX74yvPjutbRQB87ezoL2jeeTPCOh+9g07GDNDrLuH7BchZX1rC3r4tf73uZLz3/8LiuPV0iiZi6xIiIiMwwCthlRKEiLHCUzrDf3bp3WI38SB5uOwRAdyRU8DHxZIJ3bb6TDz7hK2j/IwN9tBtZ/yWVtQC0lFXk7JO+diQe52ig9CbOJpNJQsqwi4iIzDgK2GVE6QmYHzvzQn55xRsm5ZwVRqeZLZ1tBWW/I4k4L3e1YyKVle+OFLbo0oNHD2Seu3zeMWvR9/Z1AfCtC1185MwLACi35HbFSd/A/Ne2J3nX5jvpDJVWHX56zoFdk05FRERmFAXsMqKQscLpgooq5pZXTso5TSYT59Q3A3Cgv2fM/Xf1dBJJxHEvWA7AsQIz2388uDPndX80mvM6EIvi8nm549AuAPb2dmE1mVlT24jZZAIG6/bX1jZmjgnGojxw7AAA9xzZU9BYpkq6hMmpto4iIiIzigJ2GVGxAsD/OP9qrCYzfzq4k/AodfLRRJw7D6UWbbpm7hIAvrxlM1/b+tio508kkxwccjOwo7sjZ1u6G8zt+3cAcDTQz9zySmxZ2enzG+cCsK5uDpAK2O8/uj/z/taTJ0Ydx1SLJFKfANhVEiMiIjKjKGCXEaW7xEx2wG4xm4klE+zt6+JBI1udz237tmfeP7O2CUjVsT947AD7+7pHPO5EcIBIIs788qrMti8+/xB//+hdmTKWuFGPns6iHw8NMMeZW7N+/fxl3HbVmzirLnXtgXiUh9sOsaSyhtcuXMGunk4SBdbUTwVl2EVERGYmBewyonTNdjECwLctXQPAwJBSlWxPtR8FUpluu8WCNasPfLrN4nMdx7j7cG5pSqtRNrOyun7YOZ9oTx0XjKWvm8rG7+zppHnIJFOTyUSDsyyzwmtvJMSO7g7ObZjLqppGBmLRkpp8msmwq4ZdRERkRlHALiNKZ2wnY4XTof7hjHMwY6IvFhn2Xn80wts2/YEdPR28YdEZ3HLOFQC8Y/m6zD4vdaXKUf7fsw/yrZefIpLV0eYvh3ZhMZlYXdsw7NzpADs9oTaZhL9/9C4A6h3OvGNNB+x/PrSLSCLO+vo5LK6oBuC5zja2FLk/fKEGb7AUsIuIiMwkCthlRMUssTCbTFTa7PRFh3d9ORbs52Q4xFl1Tbx/1bmZ63uWr+PWy1/H6xau5KWudj7/7KbMMTfc/1taB3rZdOwAj51o5a1L1tBSNnyi7L6+bp5pP0rAyLAns5aEas6zPwwG7E+3H+WsuiYuaprPvIpUuc13tz/Dp595YILfhckVMf6+7OrDLiIiMqPoN7uMKBSPYaJ4JRZVNjt90eEZ9nSZzM0r1udMoDSZTCyoqOb6Bcv5y+HdPN1xNOe4dz/yl8zztXVNw8ZdYbXxbMcxnu04xt+tPBuAE0bv9VfNXcx185fmHWc6YAf4m2VrsZrN1NgcOC3WzE1NIpnMdJcpplA8RjAWpc7oZ5/7njLsIiIiM5Ey7DKiUCyG02LFVKRAdMSA3SiTqbDa8x63uqaBaptj1HMvqqgZ9snANfOWZJ4P7ed+WfNCLKb8/xyyA/bzGlKdY0wmU875A7GRa/En0/975kHeuumPed9TlxgREZGZqaAMu8vnfQtwJbABOBuoArx+t+cdefZdAuwfuj3LbX6356YCr7sSeBNwPbASaAa6gCeBb/vdnk15jnk38PNRTvuPfrfnB4Vcf7YLxWNF7ThSZbPTmzdgTwW/FTbbsPfSHBYLROGjZ17AL/a8yJUtizM91QFayisIJ1LZb4vJxB2ut7G57RB3kmoT2RXJXfRo7gjlMJD6hME1bylXtSzGYh4M6j9/9qX8eu82Xjh5nP5ohEpb/huModKfXDgm8L19ubsdIO/11CVGRERkZir0N/sXSQXq/UArsLqAY7YCf86zfVuB1wT4KvB2YDtwN3ASWAW8Hni9y+f9qN/t+c4Ix94BvJBn+7PjuP6sFix6wO7gSJ4uKwPR0TPsAA6j3GVhRTW3X/0WAGrtTo4Eerlu/nIsJjMOo5a7yVmO02JleVVd5vjucCjz/B3L13FGzfAJqtk+u/6SYdvObWghEIumAvY8k2fziSbivPGB37OutolvXOgq6Jh89vSe5MFjB2lwlHHzyvUAmYm36hIjIiIysxQajX2cVKC+h1SmfVhmO48X/G7PLRMcV5oP+Lrf7dmSvdHl814J3A98w+Xz/t7v9hzLc+yf/W7Prad4/VktFI8VpUNMWrokJplM8viJVs5paKHcahvMsFtHzrAvrqyhNdCXU8v9zhVn5exjNbLhDY5yABZVVmfeOxkZDNivaFk04a+h0hjj0JVUR/Lo8cNEEwm2nDw+7msls3q+3390P/ce2QfAuY0tnFU3h5DxiYJDJTEiIiIzSkHRWHbpicvnLd5ohl/31hG2P+zyeR8CrgUuAf4wZYOaRYpdElNutRGMxXiq/Shf2bKZpZW1/Piy1zAQi+K0WDIBdz6fOusiLj7eyqKK6hH3aS6r4BNrN3LRnPkA2MwW/v28V/G55zZlVjoFhi2YNB4VRlnKQIEZ9j29XZnn4ymjAXLq/ff2DZ5ne1c7Z9XNyWTYJ1JqIyIiIqWrmL/Z57l83vcDDUAn8ITf7XlxEs+fTmmOtLb9BpfP+zHACRwBNvndntZJvP6MV+yA3WmxEksmeMbo9nKgv5tkMkl/LDJqOQykymncC5aPeY0bFq7IeT3faMfYF41gNZn52NoLxxU0D1VpjLM/Ty1+Pvv7uzPPDw/0sqa2seBr/XDn85nnHUZ3GxicQJuujbeNMHlWRERETk/FDNivNf5kGFnxm/1uz6FTObHL510MXAMEgM0j7PbRIa/jLp/3J8DH/G5PKN8BkisUj1Frz7+Y0GRI3wxsbkv9OCSB7kiIgWh01HKYU1FmGTzvhU3zCgr6R1NlBPv9o3SJOdjfQ7nVRqOjjH29Xaysrmd370mOBvoKDtjjyQSPHD/MxU3z2d7dkQnSyyzWzATaSCKOo4hdfURERGR6FCMVFyA1WfQ8oM74k657vwp4wOXzTrgGweXzOgAv4ABu8bs9XUN22Q98mNTk1ApgHvA24ADwfuBnY5z/fRMd20xT7Ax7mXHurkiIS+YsAOBYcIDWQC819tHbNk5U9tezeoyJpoUot9owY6InMvI94N8/ehd/89CfONDfQ0c4yFVzFwPQEQ6OeMxQ+3q7CcSiXDV3MWVZNzPzyqt4qv0oXeEgJ4IB9WAXERGZgSY9GvO7PSeALw/ZvNnl814HPApsBP4B+J/xntvl81qAXwKXArcB38xz/YeBh7M2BYDfu3zeJ0l1rvkbl8/7db/bs3WE8f/I5fP+cLxjm4mmoiQm7cbFq3j8RCv3H9nHvr5uPr52Y1GumT0hc9UkBOxmk4nmsgqOBfrzvj+QlXn/8c7U3Omr5y7hV3teojNUeMCeLqVZVdOQudGxmEzU2h3s7evK9GZ/y5JCGjiJiIjI6WTKil39bk8M+Inx8orxHm8E678C3gr8DniH3+1Jjn5UzvUPk2oNOaHrz0bBWCwTHBaDM6sDzaqaBiqsNv5yONUn/fzGuUW5ZvZqpIsqayblnAsqqmjN054S4EBfd+b50x1HWVvbRJOznAZHGR3hAC93tXNkoI9jgX7uM7q+5JOeJNvgKMt07im32nLaYtbYHNy84uxJ+IpERESklEx1O4l243FcJTEun9cK/JpUsP5r4F1+tyc+VdefjZLJZCrDXsS2jtkZ9gqrDc/ydfzIyELXO4pXO5/WkNUS8lQsqKhmW9deksnksPrxA/09Oa9dxmqrDc5yNrcdYnPbIcyYSJC697yyZVHeLi9d4RBOi5Uyqy1zE1VmsbKubg5twdQ6Zec0tBS1DaeIiIhMj6luJ3GR8ThyKnEIl89rB24nFaz/H/DOCQbrkCrHGdf1Z6tIIk6S4q6aOTR7vyxrYSPbFCz+Y56kyZkLyqsIxmN5a9K7hmxbWlUL5N4szC0fXGX1ZDjE9u4O7mndm3ueSIg6YwJwuoa93GrjY2svZK0xcbW5TPehIiIiM9GkB+wun3ejEWQP3X41qQWYIFXakv1ejcvnXe3yeecO2e4A/gS8Afgp8B6/25MY4/qX59lmcvm8nwMuBjpILcgko0j3/K4ao73iqRh6M9AyRQGnw2xhaWXtpJ1vWXXqRuNTT/v57LMP5ixw1BMN53S8WWD0jT+juh6AZmcFb1q8KvN+W7Cfr219jG+//BRHBgbLXboiIeqMTx3SNzpOixWnxUpLWSrgV8AuIiIyMxWUPnX5vDcCNxovW4zHi10+763G8w6/2/Mp4/nXgbVGC8d03/P1wNXG8y/53Z7Hh1zijcDPgV8A787a/gPgBlJB9hHgy3kWbnrI7/Y8lPV6s8vn3QU8YxxTQ2qS6jpSE1A9frend4wveVZrC/Tzjs13ABStWwsMD9hPZQGj8bjD9bZJPd9y45OBI4E+jgT62HryOBsaUv9MeiJhauyOzOTTGlvq+3nNvCX8YOfznNvYwoVN82HHswB8+pkHMue9+ZE7+fM1b6XSZqcrHGR+eaqHfHYNO0A0kbqHrSzizZWIiIhMn0LrHTYANw/Ztsz4A3AQSAfsvyQVgF8AvBqwAcdJTRT9X7/b88g4xrfUeGxkeOeZbA9lPf8mcCGpG4R6IAEcAr4HfMvv9qgcZgzPdbZlnhczYB9ab203OrhMRrvF0Yy2gupElFttLKyo5vBA6j5wR09nTsBebXPw9rVrORroy9S41znKuPXy19HoLMdpsfKDS17NBx6/B0jdAKRXMu2OhKi02TkZDrGurgkY7CWfDtjX189h8/FDLJ6kSbQiIiJSWgoK2P1uzy3ALQXu+1NS5SsF87s9twK35tl+1XjOYxzz6fEeI7mya8trpmDhpGy3X/3motbNF8u3LrwWu8XC2zf9ke7wYE/23miYOoeT1wxZcRUGy2NgMEsP8P1LXs1r77+NSCJObzRCTyREbzTMgvLU/uF4agpHOuP+hkVncFHTfFqyauFFRERk5tAa5jJMLDk4TaCYGXZHnomltXbnaRmw1zmcVFht1Nmd/OHgK5nVW3sj4UwZzGhMJhPvXH4WXzvvVZhNJv7rQhcAfdEwB41OM+k2lBYjS39588LMsQrWRUREZq7TLzKSoste7KfKVry6aJPJxAdWn8s59S1j73yaSJep/MsLj/B/V7yenmio4Juem1euzzxPf9/7ohGOBwcAWGIE7DevXM9Fc+az2ugOIyIiIjObAnYZJpAVsFtMxf0Q5i1L1hT1/FMt+3v3rs13AlBdQIZ9qPQxvZEwRwJ9lFusNDnLgdRNwTkNM+cmR0REREangF1ypHqA7wHgVXMXT/NoTj/pdpjZJjIPoMJmwwQc7O/huc42FlXWDFuUSURERGYH1bBLRjKZ5CNP3kubUYLxhbMvm+YRnX7Orp8DkFnkCKB6AmVFFpOZJPDX1j20BftzFlcSERGR2UUZdsnIrl2Xifns+ks4EQqwuLKG9JoBkzFxN704koiIiMw+CtgloyurHaFMTJnVNqwf+kRbY379/KuptNkZiEVZU+Te9CIiIlK6FLBLRlckON1DmJEmMukU4LzGuZM8EhERETkdKWCXjK5IKsN+Tn0z5zfNm+bRzBwTqWEXERERSVPALhnpkpjPn30ZdY7irXA6WzQ4yugMB7GYNbdbREREJk4Bu2R0R0KYMVFtV0Z4MvzgkhvoDAemexgiIiJymlPALhld4RDVdkfRF0uaLeocTn1SISIiIqdMkZlkdEVCOf3DRURERGT6KWCXjK5wSBlhERERkRKjgF0ylGEXERERKT0K2CWjOxJUhl1ERESkxChgFwCCsRiheJxaZdhFRERESoq6xMxyiWSSf3nhEeaXVwGoJEZERESkxChgn+UeOX6IR48fzrxWSYyIiIhIaVFJzCy3u+dkzus6e9k0jURERERE8lGGfZY6GQ4STybpioRytivDLiIiIlJaFLDPUrds2cz27g4aHLkZ9Rq7Y5pGJCIiIiL5qCRmltre3QFAZziYs91mtkzHcERERERkBArYZ5lkMsmfDrySs+2y5oXTNBoRERERGYtKYmaZPx7cyfdfeS5n28KKaj605nwiifg0jUpERERERqKAfRY5ERzAu3fbsO11dic3Ll41DSMSERERkbGoJOY0cyI4wKefeYDOUHDsnQ2tA738fPdW/u7RvxDNk0VXZxgRERGR0qWA/TTzcNshtnS28ZlnHyAcj425f28kzLsf+QvevdsIxeP85wXXsKyqNmcf9V4XERERKV0K2E8zTkuqi8vB/h4ePHZw1H2PBvp404O352xbU9vIOfUtOdvqlWEXERERKVkK2EtcPJFgd+/gaqS90UjmeVdWS8aOUIB7WvfkHLuzpxOAOc5yzqpr4p3LzwLgvavO4X8vuj6zn0piREREREqXJp2WuF/ufYlf7d3Gjy69AYCf795qZNlN7O/v5v/2vIhn+Tq++sIjvNzdwQWN82h0lgNwJNAHwM8ufx1Oy+BftdVsZnVtY+Z1pdU+dV+QiIiIiIyLAvYSt8vIrh8PDvCl5x8GIBSP0+ysYJNREnNB4zxOhkMAHAv20+gs5+n2I9y6+0WAnGA9W5OznPZQAJPJVOwvQ0REREQmSAF7ibOZUlVLvZFwzvYau4PjoQEA7juyD4dR234s0M/WzuPcuicVrI9Wn/7DS24gEIsWY9giIiIiMkkUsJc4mzkViHeEc9s4JrOe/+Xw7szznT2d3HFoFwAbm+bxT6vPH/Hc1XYH1XbH5A1WRERERCadAvYSZzOnMuxtwf6c7UNfpz16/DAAXzz7Mq5oWYRZ5S4iIiIip7WCAnaXz/sW4EpgA3A2UAV4/W7PO/LsuwTYP8rpbvO7PTeNZ5Aun/cS4IvARYAT2AP8DPiu3+0ZvhJQ6pibgQ8CZwJxYAvwTb/bc9d4rl0qjgVSAfqbF6/mhoUr+NcXHqUvGuGr517J7/fv4MWuEwB0Gpn4ldX1CtZFREREZoBCM+xfJBWo9wOtwOoCjtkK/DnP9m0FXhMAl8/7BuAPQAi4DTgJvA74b+BS4K15jvkm8EljrD8G7MBNwF9cPu+H/W7P/45nDNMpaCyOlM6oX9K8gMWVNfzbeVdxoL+HC5vmsbK6npse+hPVNge90VSte3NZxbSNWUREREQmT6EB+8dJBb97SGXaNxVwzAt+t+eWCY4LAJfPW00q4I4DV/ndnmeN7V8CHgTe4vJ5b/K7Pb/NOuYSUsH6XuACv9vTZWz/BvAc8E2Xz3uX3+05cCpjmyrpSaFtwdQE03KLDYA5ZRXMMYLyRmc5d7rexis9nXzmmQeAVOtGERERETn9FRTV+d2eTX63Z7ff7UmOvfekegvQBPw2Hawb4wmRyvoD/OOQYz5gPP5bOlg3jjkAfA9wAO8p1oAn29AuLmXW/PdY5VYb59Q385mzLubLGy6fiqGJiIiIyBQo5qTTeS6f9/1AA9AJPOF3e14c5zmuNh59ed7bDASAS1w+r8Pv9oQLOOYe4EvGPl8Z51imXHckxCvGaqVp5VbbiPubTCaum7+s2MMSERERkSlUzLqJa4EfAP9mPG51+bybXD7vonGcY5XxuGvoG363J0ZqcqsVWAbg8nkrgPlAv9/tOZbnfOn+h2eMYwzT5hsvPTFsW5ll5IBdRERERGaeYgTsAeCrwHlAnfEnXfd+FfCAEVgXosZ47Bnh/fT22gnuX9L6o8MXNXIaCySJiIiIyOww6SUxfrfnBPDlIZs3u3ze64BHgY3APwD/MwmXS/ctHG9t/Yj7u3ze9018OJOrxljU6Nsbr+VjT90PpMpeRERERGT2mLJWIkYJy0+Ml1cUeFg6I14zwvvVQ/Yba/+xMvD43Z4fFTi2ouuLhllfN4d1dXOmeygiIiIiMk2muvdfu/FYaEnMTuNxWM25y+e1AkuBGLAPwO/2DABHgEqXzzs3z/lWGo/DauJLUV80QrWRZf/tVW/k+5e8eppHJCIiIiJTbaoD9ouMx30F7v+g8ejO894VQDnweFaHmLGOefWQfUpaXzRClc0OpHqtr6yun+YRiYiIiMhUm/SA3eXzbnT5vPY8268mtQATwK+GvFfj8nlX58mK3w50ADe5fN7zs/Z3Av9qvPz+kGN+YDx+weXz1mUdswT4IBAGfj6uL2qaZAfsIiIiIjI7FTTp1OXz3gjcaLxsMR4vdvm8txrPO/xuz6eM518H1rp83odIrY4KsJ7B/uhf8rs9jw+5xBtJBdG/AN6d3uh3e3pdPu97SQXuD7l83t8CJ4HXk2r5eDtwW/aJ/G7P4y6f91vAJ4AXXT7v7YAdeDtQD3z4dFjlNByPEUnEqbQqYBcRERGZzQrNsG8Abjb+XG9sW5a17S1Z+/4SeAq4AHgv8E+kasd/B1zhd3v+lXHwuz1/JtUWcjPwZuDDQJRUQH5TvtVX/W7PJ0kF/m3A+4B3AS8Dr/O7Pf87nutPl75oBIBqm2OaRyIiIiIi08mUTI63I+LM5/J5c74pfrdnysewr6+L9z12N1/acBlXtiye8uuLiIiISPG5fN6c1363Z1gP76medCoF6jcy7FXKsIuIiIjMagrYS1RfJmBXDbuIiIjIbKaAvUT1ZmrYFbCLiIiIzGYK2EtUXzTVWl4lMSIiIiKzmwL2EtUXjWAxmSizFNR5U0RERERmKEWDJagjFOA3+14GwGQaNlFYRERERGYRZdhL0NaTx6d7CCIiIiJSIhSwl6CE0Rv/unnLpnkkIiIiIjLdFLCXoEA8BsA/rNowvQMRERERkWmngL0EBWNRAMostmkeiYiIiIhMNwXsJSgQi2LGhNNime6hiIiIiMg0U8BegoLxGE6rVR1iREREREQBeykKxKKUq/+6iIiIiKCAvSQFYzHKrapfFxEREREF7CUpEI9SpoBdRERERFDAXpKCKokREREREYMC9hIUiMWUYRcRERERQAF7SQrGo5RblWEXEREREVBUWIK+cs4VOM36qxERERERBewlaWV1/XQPQURERERKhEpiRERERERKmAJ2EREREZESpoBdRERERKSEKWAXERERESlhCthFREREREqYAnYRERERkRKmgF1EREREpIQpYBcRERERKWEK2EVERERESpgCdhERERGREmad7gGcDlw+73QPQURERERmKWXYRURERERKmAJ2EREREZESpoBdRERERKSEmZLJ5HSPQURERERERqAMu4iIiIhICVPALiIiIiJSwhSwi4iIiIiUMAXsIiIiIiIlTAG7iIiIiEgJU8AuIiIiIlLCFLCLiIiIiJQwBewiIiIiIiXs/wf4hSEVUknotAAAAABJRU5ErkJggg==\n", 609 | "text/plain": [ 610 | "
" 611 | ] 612 | }, 613 | "metadata": { 614 | "needs_background": "dark" 615 | }, 616 | "output_type": "display_data" 617 | }, 618 | { 619 | "data": { 620 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtkAAAFYCAYAAACGSeB+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABycklEQVR4nO3dd3xcd5X//9f0GfVmuffuOI7Te1cSEQiEhPoVX+oCy3eBpf9oS9/dL20Xdpf9BthdsiwCQkIJCaAkSo/THSdO4rgXualYXdPb74+5d3RnNJJG0qhZ7+fj4Yc1c+/c+UiWpTNnzuccWzKZRERERERECsc+3QsQERERETndKMgWERERESkwBdkiIiIiIgWmIFtEREREpMCc072AQqlratQOThERERGZcs31Dbbs+5TJFhEREREpMAXZIiIiIiIFpiBbRERERKTATpua7GzN9Q3TvQQREREROQ3VNTWOeo4y2SIiIiIiBaYgW0RERESkwBRki4iIiIgUmIJsEREREZECU5AtIiIiIlJgCrJFRERERApMQbaIiIiISIEpyBYRERERKTAF2SIiIiIiBaYgW0RERESkwBRki4iIiIgUmILs00g8meDbO5/kYH/3dC9FREREZE5TkH0aOe7v54ETh/jGjseneykiIiIic5qC7NOI3WYDIEFymlciIiIiMrcpyD6NJI3YOqEYW0RERGRaKcg+jUSTcQASycQ0r0RERERkblOQfRqJJFLBdSKpVLaIiIjIdFKQfRqJxlOZbIXYIiIiItNLQfZpJJIwy0UUZouIiIhMJwXZp5GoykVEREREZgQF2aeRqJnJVsGIiIiIyLRSkH0aMTPZsUSCnV1t07waERERkblLQfZpxMxkB+MxPvVsM692d0zzikRERETmJgXZpxEzk2066u+bppWIiIiIzG0Ksk8jZibbdGSgd5pWIiIiIjK3Kcg+jUSyguxXujtIqtOIiIiIyJRTkH0asZaLXLtwBa/1nuLJ9mPTuCIRERGRuUlB9mnEmsn+5OYLWV5Szs/2vTSNKxIRERGZmxRkn0aiiQQeu4Pm+ga8DifnVi+gPRSY7mWJiIiIzDkKsk8j0UQCl92Rvu2yO4ZshhQRERGRyacg+zQSTcRx2Qf/Sd12B9FEQpsfRURERKaYguzTSDSRwJ2Ryban7xcRERGRqaMg+zQSiscyM9mOVMCd3dpPRERERCaXM5+T6poa3wJcCWwFzgJKgcbm+oZ35Th3KfAF4FxgOVAJdAIHgP8CftFc3xDNeswS4D3G9c8GVgE2YG1zfcP+cXxep71/eGkb833FfGDdVgCSySS7ejrYWFGTPsfMaivIFhEREZla+Wayvwx8lFQQfHyUc1cDDUAv8Afg+8A9pALu/wLur2tqzA7uzwO+BdxKKrjWqMJRPHTyML86+Gp6quPhgV5OhYNcMG9x+px0kB1XkC0iIiIylfLKZAOfBI4B+0lltB8e4dwngcrm+oaMQuC6pkYXcD9wFXAL8BvL4eeBK4CXmusb+uqaGh8xnkdG0RocYHlJOV3hIABLikvTx5TJFhEREZkeeQXZzfUN6aC6rqlxtHMjw9wfrWtq/AOpIHtt1rFjpIJ4yUPMspHxVCgVXIeNQNpj2fho1mRr46OIiIjI1JqyjY91TY0O4Ebj5s6pet7TUSgeS3/cGU4Nmwkb93kcg6+b3MYmSGWyRURERKZWvuUiY1bX1FhDqo7bBswDrgPWAL8E7p2s550LrEG2mck2667dWcNoQEG2iIiIyFSbtCAbqAG+armdBL4HfLG5vkHTUSYgZybbLBdxWMpFtPFRREREZFpMWrlIc33D7ub6BhupQH45qc2THwIeq2tqrCrkc9U1NX6okNeb6axBdm8kDOTOZGvjo4iIiMj0mPSa7Ob6hnhzfUNLc33DD4EPAxcB3yjwc/ykkNcrlEgiTjAWHf3EMTKDbK/Dmf7YzGS7HUM3PirIFhEREZlaUz3x8S/G31dN8fNOi08/08xNzb8Z/cQxChtZ6wq3Nx1kRxJxbIDLNvhPqrHqIiIiItNjqoNsc1JKbMSzThOv9Z6alOuagXWF2zMYZMfjeBwObDZb+rx8ykXiiQTNJw4RTyoQFxERESmUggfZdU2NF9Y1NRbluL8E+KFx80+Fft6ZLFrgcg0zsK60ZLLDiRhue+Y+VjPIjo6w8fFPx/bzf3c+yb1HNb1eREREpFDy6i5S19R4M3CzcXOB8ffFdU2Ntxsfn2qub/iM8fEXgKvqmhofBVqAALAUeB1QQWoi5D/meI7bLTc3GH9/u66psd/4+D+a6xueyGe9M0EyOdhAZSAaodLjG/H8w/09HBro4eqFK0a9dtDMZHu8hOJxnmg7yh9b9lHkdGWcl09N9snAAAB7eztHfV4RERERyU++Lfy2Au/Jum+V8QfgCGAG2T8F/MD5pGqvi4BuYDupUer/1VzfkKtcJPv6kBq/bnoEmDVBdl80kvHxSEF2MBbjr7alkvuX1i7N2LyYy2C5iBeA/9z7IgCBrE2WZk22f4TNl/v7ugDYoyBbREREpGDyHav+NeBreZ77J8ZRDmK0+zttHPf3pT/uj4ZznhNPJnDY7OztGwxwjwz0srZ85A6HoVhmkD0ch83OurIqXuhs5f05jh/z97G/vxuAE4EBEskkdktN90efauKMinl8ZOO5Iz6PiIiIiGSa6o2Pp61wPMZvD+8mbnTyuP/EwfSxfktW29QTCfHWh37H5557kL29Xen79/R28tvDu0ccIHMyOECl20upyw1klqZku2T+Enb3dg4J9COJOO99/B76oxFKXW4iiTiffvaBjGvt7u3kt0d2j/KZi4iIiEi2yZz4OKfcvm8ndx5+DYBblq/nuY6TrC2rYl9fV0aQ/VT7MVaVVnDf8YP0RcO80NnKC52tlLrcRBMJbtuznVA8TjAe5V2rz8z5XMf8/SwtLsPrSP3zjTQ+s9ZbDEBfJEKpy5O+/1QokP74zMpanmw/xsvdHXRHQlR5fCRGCNxFREREZGTKZBfIPqO2+f/t3s519/2StpCf82oWAoNTGeOJBH/3wqN8/On7ea7jJGdUzGNDeTUAa8uqWF1aQcjIYHeFg0OeI5lMcri/h1d7OlhiCbJzZcpNxcZmyOx67fagP/3xmZW16Y9bBnqB1GZNERERERkfBdkF0mHJDJu2VNZS5HTRGhwgkojzlR2PAtAZDvJa7ynOqKxhSXEZAGdUzGNVaWX6seEc5SL/sHNbeoPkypJyfEaQ3WeUgpgbHa2KnamSEn8sM2hut2ayq2p5/9qzAPjnV5/l90f28MuDr+T5mYuIiIhINgXZBZBMJrmkdsmQ+zdW1LCkqJS7W/byn3te5JmOExnHN1fWUr841aDlygXLWGfZ8Gi21rPa0dnG+TUL+fZ513Dj0jV4nYPVPqtLK/nllW8e8phiVyqTnd1hpD00mMmudHt556ozKHI4OR7o50evPc9dhwdrsT/wxL283NWu7LaIiIhInhRkF4DNZuPDG87JuO/uurdR4nJTbGxOzN5AeEHNIi6at5it1Qt44Ib/xYrSCq5csDx9/GQwM8gOx2P0REJsrqzl3JqFeBxOyiw11qtKK6j0DO02YpaL+GNRArEoB41uIh3BAHZsfH7LJcz3FWOz2aj2DpkhBKQ6nnz75ae4+cE7M8pMRERERCQ3BdmT4PNbLkkHt2ZJR7bLFyxLt8szR6EXOV38+JIbuXrhcjpDwXSnEoA2I7id7ytO3zfPW4THmOpYYgTz2cx1dIaDfPzp+/jQtj+TSCZpD/lZU1ZJ3aKV6XMr3J6c1wBoNYL+nkhohM9cREREREBBdkF965wr+fyWSzIC149vOh87Q1uAV+fIOgOsLqtka9UCEiQ5Zdn8mCvIttts6eB6uJ7ZZk32f+59kcPGpsZgPEZHKECt5VoATiNg/8iGc/nUGRfmvF7UEviLiIiISG4KsgvootolGQE2QI23iLeu3AjAO1Zu4m3Gx/N9JcNeZ55RttFhqZtOB9nezMDYHJl++fylOa/ltNvT2W5TIBalPRRIP4/J/GaodHu5cekaPrbp/CHXM0e6i4iIiMjw1Cd7CpjZ3xKXm7eu2Mg1C1ewvKR82PPNbHV7MABGw5HW4AAOm41qb+Z49m+cfSWv9HSwbITrFTldhCOD3Uo6gn4CseiQIHuwbCX1bWGWmlgFRxjRLiIiIiIpCrKnwHqja8iG8mocdjtrykYem15rBL8ngv3p+9pCfuZ5i3HYMt98OLOqljOrahlJictNt6WWendvp/E8mVnxGk/qeT1GHXmuevJQgTPZB/u78didLC4uLeh1RURERKaTguwpcM3CFWwor8k7kPQ5XSz0lbC3t4vPPttMJJEgSZIFWTXU+arxFnHU35e+/e+7twOwJGs9H9l4LmvLKtlaNR+ANWWVrCmrZH9fd/qcXOUin33uQa5ZuILXLVk96lqiiTg7Ols5v2YRNpuND237MwAfXH82j5w8wj9dcB0+p74tRUREZHZTTfYUsNlsY87UzvcV82T7MXZ0tfFqTwdtQX/GpsexqDBa/WWXf5iDcEzFThdvWr4+XTYy31fCbZfcmHFOW9DP0YFUwJ5MJrnr0Gvs6Gzl+688Peo6Xupq43X3/5ovbn+EHV1tGVnxn+7Zwb6+LppPHBz7JygiIiIywyjInqG2Vs/PuN0ZDrKwaPjNkiMpM1rzXW8MvjF5h2kvmO1b51zJpcawnTsO7eJ9T9xDIplkf383t+15IX3eLw68POJ1nrUM4/nccw/ytod+O+ScV3tO5bUmERERkZlMQfYM9faVm/j05sw2euvKqsd1rVtXbGBpcRmvX7Imfd+51QvyfvxFtUv4+jlX4nUMdilpGeglmjX6/fZ9O0kmk8NepycSotrj4/yahQAELJns+d5iVpdW4tdUSRERETkNKMieoVx2B69bsoY/X/eO9H3ry0feMDmcRUWl/OzymzI6kHz7/GvHfB2vY7Dc5JXuDvpjQwPiI0Yv7lx6IiEqPV6+svXy9H1rylLtU5aWlFHqcue8poiIiMhsoyB7hnM7HHxhyyXcsHgV5cMMnMmXOWFyvKzdRg4OdNMXCQ85Z9cI5R7d4RAVbi8+p4uvbr2cGxav4uMbU724r1+0ihKXmwFlskVEROQ0oDYOs8C1i1ZybdaQm/H60lmXsqKkYlyPddkHX5MdGehjcdHgxsl7r3s7b3v4d+zr6xr28T2RULo/+OULlnH5gmUA/PqqN1PjLeKFzlYF2SIiInJaUJA9x1y9cMW4H+u0BNktA71srpwHQKnLjdfhZE1p5bBBdjKZpNsoF8lWY/QFL3G5GFC5iIiIiJwGVC4ieXv7yk0AnFExj+5IiLbgAGUuD7+/9q0ArCytYH9fd0ag3RsJE0sk8MeiRBMJKkYoeSlxuQnF40QT8WHPEREREZkNFGRL3q5dtJKfXXYTr1+a6lLSMtBHqcudPl7rKyaWTPCRJ/9CdzjI4f4ebn3oLhoPvEJnOAgMTpXMpdSZutZAVKPbRUREZHZTkC1jsrSkjHKj7/Yxfx9lxqAbGBwHD3DX4d382OihvavnFKdCAQDmeYcPskuMgH1fXycJoxXgtraj3H1kT2E/CREREZFJpppsGbNyI7AOxGOUuQcz2fN9g8Ny7ji0K/3x9s6TbO88CUC11zfsdas9qWNf3P4IH9t4Hm9Ytpav7ngMgDctX1+w9R8Z6CUYj7GhfHx9x0VERERGo0y2jJk5QRIYNpP91hUbqfUW4bRlfouNVC6ysrQi/fH+/m52dQ+2AyxUnXYoHuMDT9zLR59qKsj1RERERHJRJlvGzLp5sdQSZFd7fLxv7VlcMX8ZS0vK+PCGc/jGi4/zWGtL+hy3ZWpktvKM67p5obM1fbszFGTBOMfKW73c1T7ha4iIiIiMRkG2jJl1KI21XMRms9GwenPGuebo9WsWrmBjRc2o1z6raj4vdbVxb8u+jLHrHaFAQYLsvujgAJ1kMoltggN6RERERHJRuYiMmc1mwwxNreUiuYSMQLlu0UrenEdd9fcvqGN1aWU6wN5aNR9IBdmF0GcZdhNWq0ARERGZJAqyZVzMATKjBdn1S1YDsLq0Mu9rm+UoC3wlfOvcq3DbHTzVcYx4IjHO1Q7qt2Sy+zVdUkRERCaJykVkXFaVVtARCpAkOeJ51y5ayTULV4ypLKPSkwrcF/qK8TqcXD5/KQ+ePMx8bzF/tf7sCa3bGlj3R8MjthQUERERGS9lsmVcPrLhXM6omMc51QtGPXesdc/LissBiBu9sj+wbisABwd68r7Gof7c5/ZFwpaPlckWERGRyaEgW8ZlSXEZP7zo+oyOIIXy5uUb2FJZy81GDXetr5hLapfQEcyvLvvR1iN8cNuf2NZ2dMix/mgEhxH0P97WQlvQX7iFi4iIiBhULiIzjs/p5J8uvC7jvlpvMS91teX1+L29XUBq6MzjbUdZWVrB5op5bKqooS8aZnFRKS3+Pu5u2cuDJw7zh7q3FvxzEBERkblNQbbMCrW+IvyxKAPRSHr8+nDiydQGSX8sSvOJQ+n7G1Zv5qi/j4vmLabF3wfAQEwlIyIiIlJ4KheRWcHcoJhPKz+zlnt/X1fG/Y0HXsEfi/L2VZsy7g9b+nGLiIiIFIKCbJkVzHHsXeFg+r5Xuzt4IkfdddRo9feiUV4y31vMRzeelz6+Kqud4MnAQMHXKyIiInObgmyZFSo9qQ2WneEgkUScZDLJ3z5zP1/b8RjRRJyn24+TNDLYfqNNXzyZZFVpBY1X3UzdopUA3LwstZny4nmL09dWyYiIiIgUmoJsmRWqPT4Afvjqs9zy4J3cvn9n+tgvD7zKl194hGc6TgDQaxk4c5YxMbLE5ebOq2/lIxvOAeDLWy/jy2ddBsCAhtKIiIhIgSnIllnB53QBqVHooXicxgOvpI892X4MgOdOGUG2pRf25sp56Y8rPV4c9tS3vMfhZE1ZqmxkIBad3MWLiIjInKMgW2adL2y5JOP2gf5uALa1HSUcj9Ey0Js+trasatjrmF1KfrH/ZX5zaBf90TDheIxIPM5xf/8krFxERETmCrXwk1lnY0XNkPvWl1ezp7eT1z9wR8b9C30lw16nxJkKso8F+vnJnh38ZM8OzqlewNLiMu5u2cuXzrqUqxeuKOjaRUREZG5QkC2zxv9c8SaSJJnvKx5y7J2rzuDrOx4jadz+5BkXEo7HRhzp7rQPfSPnhc5WXunuAODeo/sVZIuIiMi4qFxEZo2FRSUsKirFYbOzuKiU82sWpo9tKK+m8cqbAajx+Hj90jXcsmLDuJ4nkoizrqyKV7rbCaheW0RERMZBmWyZlW6//CaSwPZTJ7n/xEGqPT5sNhtf2HIJZ1TMG/XxI6nx+Lh1xQb+ceeTdIQCLC8pL8yiRUREZM5QkC2zks1mwwacP28R589blL7/WqMfdr7OrV5Aa9DP8cDgRscNFTUUGd1MQpoGKSIiIuOgchGZ0759/rX89LLXZ9xX4ynC60i9/lSQLSIiIuOhIFvmPLfdwZ1X38pXtl4OwHk1CxVki4iIyISoXESE1KCaKxYs4+dXvJFFRaUc6u8BFGSLiIjI+CiTLWKxqKgUYDCTHVOQLSIiImOnIFskB5WLiIiIyEQoyBbJQUG2iIiITISCbJEcPA4HAKF4fJpXIiIiIrORgmyRHOw2G16HQ5lsERERGRcF2SLD8DqcBBVki4iIyDgoyBYZhtfh5N6j+/jx7hemeykiIiIyyyjIFhmGufnxzsOvTfNKREREZLZRkC0yDKdd/z1ERERkfBRFiAzjE2dcON1LEBERkVlKQbbIMDaUV/P2lZtw2x3TvRQRERGZZRRki4zAabcTSySmexkiIiIyyyjIFhmB02YnQZJ4UoG2iIiI5M+Zz0l1TY1vAa4EtgJnAaVAY3N9w7tynLsU+AJwLrAcqAQ6gQPAfwG/aK5viA7zPO8B/gbYBMSBHcD3musb7h3TZyVSIObmx1gigcOh16QiIiKSn3yjhi8DHyUVZB8f5dzVQAPQC/wB+D5wD6mA+7+A++uaGocE93VNjd8DbgcWAj8FfgGcCdxT19T40TzXKVJQLpsRZCeTo577bMcJIonxj2GPJxKjZsxPhQJsazs67ucQERGRqZFXJhv4JHAM2E8qo/3wCOc+CVQ21zdkRAt1TY0u4H7gKuAW4DeWY5cAnyaV7T6/ub6h27j/u8B24Ht1TY33Ntc3HM5zvSIFMZjJjgOuYc9rC/r54vaH+fTmC3ndkjXjeq43NN/B8pJybrvkxmHP+fSzzRwP9HNP3dvxOfP97ysiIiJTLa9MdnN9w8PN9Q37musbRk3nNdc3RLIDbOP+KKnMNsDarMN/bfz992aAbTzmMPAjwAO8L5+1ihSSGWRHR9n86I9FAGgZ6Bv3c0UTCfb3dY94zvFAPwCtwYFxP4+IiIhMvikrMq1ranQAZopuZ9bha4y/m3I89C9Z54hMGadtsCZ7JKFYDIATRhBsFU3E+adXnqFtmMA4GIvx/VeeHnUtgdjgVgYF2SIiIjPbpL3fXNfUWEOqjtsGzAOuA9YAvwTutZxXDCwGBprrG07muNQ+4+91k7VWkeG4zHKRUWqlQ0Yt9vEcQfZRfx9/Praf1WWVvGlZ5rfxiUA/737sj3mt5S7LePdHW1tw2R3s7e3kf63enNfjRUREZOpMZlFnDfBVy+0k8D3gi1llJ+XG373DXMe8v2K4J6pravzQONcoMiJrd5GRhOKpTPZxfz9HBnpZXlKePuaPpjLQnaHAkMcd6u8Zcl84HsPjyPyv2R8N89vDu7lo3mKe7jhO84lDNJ84BMAtKzbgzTr/P/e+yB9b9nJ33dtG+QxFRERkMkxauUhzfcPu5voGG6lAfjmpzZMfAh6ra2qsGsclh60Hb65v+Mn4VikyMrNcJDpKJjtsBNnRZIIPPHEve3s708cGjHrtznBwyOPiObqWdIdDQ+774vOP4I9FedOydXxw3daMYwdz1HH/6uCr+GNROkNDn1NEREQm36TXZDfXN8Sb6xtamusbfgh8GLgI+IblFDNTXT7kwZn3D5fpFpk0Y81kmx5tbUl/3B9NBdmncgS82Y8D6I4MDbJPBgc4t3oh589bxPWLV2Uc29vXlXH77pa96Y939XSMuG4RERGZHFM9XcPcxHiVeUdzfYOfVO/tkrqmxoU5HmN2Itmb45jIpMp742M8sz/2HYd28euDrwLgj5qZ7FS5SCKZ5F93Pceh/h76ouEh12oL+jNux5MJ+iJhNlZUA1Dh9qaPlbrc7MsKsv9113Ppj+9u2UsymZpYGYwNDehnkt5IiL95qondPaemeykiIiITNtVB9mLj7+zf9g8Zf9fneMzrss4RmTJ5b3zMkZH+j70vAoOZabNcpDMc5O6WvXxw25/46Z4dQx53zJ/ZBrAvEiZBkkojuLbZbOljG8tr2GMpTcn2YlcbJwID/Oi157mp+Y4ZPR7+yfZj7Ont5KNP38fP9+8kmccAIBERkZmq4EF2XVPjhXVNjUU57i8Bfmjc/FPW4duMv79U19RYaXnMClJj1sPAzwq9VpHROO0OYPQ+2eF4DBvwk0tv5JblG9L3P9p6hF8aGe3+aIRIPE7UMhUyV0320awg2wzSKz2+9H1vWLqGG5esYW15FS0DfemacKvVpan/Snt6O/ljS6pJT3aWfDqlOqvcza6eUySSSV7obE0f+/n+l2mdQWsVEREZq7y6i9Q1Nd4M3GzcXGD8fXFdU+PtxsenmusbPmN8/AXgqrqmxkeBFiAALCWVka4gNRHyH63Xb65veLKuqfGfgE8BO+uaGu8C3MDbgSrgY5r2KNPBaWSN88lkexxOVpVWsqioJH3/HQd3ZZzXGQ6OWLZR4fYMCbKPDKS2I1RaykQ+ccaFANzbso8ESfqjkSEdSTZWVHPU38ee3k6KnC4CsSgtA30sKiod8XOZKk+3H+dEYICPP30fNR4fdpuNzZXzeKU7VUfeEwmx0PK1FBERmU3yzWRvBd5j/LnBuG+V5b63WM79KalM9Ubg3aQC5zpS49E/DFzZXN8wZJJGc33Dp4H3Aq2kupC8G3gVuKm5vuHfxvA5iRSMdePjXYde40vbH6YvMrSOOhSP43Wkst413sE3crI3JXaGAwTiUXJx2e1sqZpPl6ULSSKZ5O9f2gZk1mKb3MZzRozseCSjNtzG0uIyjgX6KHamRsK3+GfO/mFrmcupcJD2UIAtlbV865wrgdwbQEVERGaLvDLZzfUNXwO+lue5f2JoOUhemusb/hv47/E8VmQyuGypIPafXnkm3Yrv8bajvH7pmozzQvFYulf1pbVL+NQZF/JPrz6TPn7NwhU8dPIwneEgPocrff/nzryY77z8FAB/uf6d3LZ7O88azwOpzYCm+b7iIetzG+UsZnDttzw2nkxQ4/VxKhRMHz8RmP5JkY+2HuGJ1qO80NnKZfOX8tWtl/OBJ+6lxd/H0uIyVhllLmYrw3gygcM21dtHREREJka/uURGYGayByzBqzWQhVQQuK3tKHajtMRms1G/ZHX6+DfOuZKPbjwPSLXxC1oy2atLK/nWOVdy87L1AJS43IQsddunjKz2V7dens5aW3mM+8IJM8gevHY8kaTaU0RrcIBeo4tJzzRnh+OJBN99+Wkebj1CbzTMpooabDYbNy5JvWhZXlJOhSeVse+OBPnF/pepv+9XvO/xe+jN8Q6CiIjITDWZEx9FZj2zu4iVNZAFeLz1KMF4jKVOd/o+u83GB9efzX/tfZGzq+bjdThx2ex0hYPp0g2ASo+X1WWVXFS7BIBS4xoD0Qjlbm+6dKTasunRKjuTPWBZW62vCLvNlrHe7hwDcabSsUB/RieWjRU1ALxp+TqWFJeytqwKm81GidPNn4/upz0UoMrj5ai/jxe7WrlywfLpWrqIiMiYKJMtMoJcZQqBrCB7e+dJAL569hUZ979txUb+fP078DldqcDR5cYfixC0PL7c7cl4TIkrFWR/cNufeP0Dv2Z3T6puudqbO8i2ZrJPhQI8dOIwALcs30DD6s3UeAbrw2u9RdNe52z2DP/Q+rO5YfEqNpSnen+77A4uql2Sbk9Y5fHSHgqwsqSC/778jQB888UneOTkEX5/ZA8JtfcTEZEZTkG2yAismex3rNxEhdszJMh+uaudi2uXDKmZttlsGUF6icvNQDRK0Mjk/vn6dwwJ4kuNILsnEiaaSPBUxzEgs32flceeejMqHI/xzRcf53dHdgNQv2QVLrsjYxPmlqpaunKMbJ9KZlb9jIp5fPbMi3HZh5bAAOk2iO9ZuwWf08UV85cB8K2XnuBHrz3PE21Hp2bBIiIi46QgW2QEZpC9rLiMv1p/NhVu75Bykc5wkIW+0VvNFTtdDMQiBOMxnDZ7utTDqsSVmdne39dNpdub81zI7C7SY6lZNtv0nVk5L33f8pIKQvHYtE5+NDurFFlKZnJ5w7K13HHVLVw2fykAX9p6abpuHeCRk0cmb5EiIiIFoJpskRF4HE6+uvVyNlfWAlDsdGcE2ZF4nGA8NqTsI5dUJjtCIBbF58z9X6/UUtdd4fbSEwlxUe3inOdCZk32wqISjgf6AdKdTnxOF29ZsQF/LJrus90dCeJzTk+vbPNdgNGCbMgskXHY7NyweBV/aNkDQFdkemvLRURERqMgW2QUly9Ylv642OlKd+oA6DM+LnflEWQ73bQGBgjFY/gcuf/rlblTQfbl85ficTh4vPUob1y6bthrmjXZ33/1GZYXlwPwbxfXZ5zz1xvOBeClrjYg1cZvugbSmC9QivMIsrOtKavkw+vP4b7jB+iZ5rIXERGR0SjIFhmDIqeLE0a2OJ5I8I5Hfg9AWV6ZbBcDsSg9kRClwwTl5W4v/3Lh9awuq8Rtd/DZM5Mj9og2M9mJZJJDAz1cWrskvZkw25KiMgCO+fs4r2bhqOudDGYme7hM/khsNhtvXbmR1uAADxobPEVERGYq1WSLjEGx08WxQD+37d7OyeDgYJeKPILsYqcbfzTCqVCQmmG6hQBsqpyHx+EcsnEyl+ze2SMF+1UeL0UOJwf6uzOG3Ey2eDLBD199loP93QRiUbwO54SGy1S6vQzEIhz39xdwlSIiIoWlIFtkDIpdqTKHuw7v5j/2vpi+vzzHyPMhj3W6iCYTnAj0Z7TWmwhXVrA6Ums7m83G4uIy/nLsALc+9NuCPH8+TvgHuOfoPr6+43H8sei4SkWszGE173n8j4VYnoiIyKRQkC0yBvMtXUSsbeTKXO5cp2cwA/FgPJbRWm8izL7Sptagf8Tz88m4F1pbKLWmQCxakCDbqRHrIiIyC+i3lcgYLMmxYXBLZW1emeyrFi6nxOgeUpnH+WO1urSS963dMuI5JZYXA+H41LTyM2vYkyTxR6P4JhhkXzBvUSGWJSIiMqkUZIuMweIcQfZ3L7gWe1ZGOZdip4u/Wr8VSI1TL7QfX3pjutXgcMosGy77jemLk+1kIFW7HorHOBUOUDXMYJ18VXl8NKzejA1IavKjiIjMUOouIjIG83yZZR5Om31Mm/hev2QNa8qqWF9WVeil5cWaye6LhgtWtjKSNqOEJRSPc2Sgl7OrFkz4mkVOF0lSgftEM+MiIiKTQUG2yBg4bHZ+fMmN1HiLeLGrdcxZWZvNNmyLvfH6/JZL8l6HddjNVGWyO8MBzqycx76+bkLxGAuyxs+PR7EjFVj7YxMvPxEREZkMCrJFxmh1WSUAVy5YPs0rSalbtDLvc83uKDCVQXaITRU1BOMx9vd1D3k3YDzMiZGBrBH3IiIiM4VqskXmEBuDteP9lsmVkyWZTNIVDlLt8XHZ/KUAzCtA+0IF2SIiMtMpky0yR/VFJj/I9seiRBJxqjw+bl2xgbOrFrCpct6Er2u2AfQryBYRkRlKmWyROWSzJcANTkELv85wEEhNm7TbbJxRgAAblMkWEZGZT0G2yByypLiM5voGvA4noSkIsl/qaks/byEpyBYRkZlOQbbIHDRVQfb9xw+ytqyKdQVuWeh1OACm5HMQEREZDwXZInPQVAXZPZEQy0vKh4x/nyizN3lCw2hERGSGUpAtMgd5HQ5C8fikP89ANJoeJV9IDnvqR1dcQbaIiMxQCrJF5iCvw0kwNrmZ7GQySSAWzejNXSgOIzMeTyYKfu2ZLplM8nT7MWKJufe5i4jMJgqyReYg3xSUiwTjMRIk0+32CmkwyJ57mew9vZ18+YVHaTp+IOP+m5vv5N9fe36aViUiItkUZIvMQZNdk/1Yawtf3v4IwOSUixg12bE5mMne398NwDPtx9P3xZMJBmIRfndkz3QtS0REsmgYjcgcNNlB9jdefDz98WSUi9htqdmVczGTfai/B4AdXa2E4zE8DicD0cFWhvFkIv0iREREpo9+EovMQV6nk+OBfnZ1dxT82slkErfdkb49GZlsSGWz43OwLvnwQC8uu51QPJ7uQ26d3nmov4emYwd46MRhbnnwLtqC/ulaqojInKYgW2QO8jpSb2J9/Jn7C37t9lCASGKwc8lk1GQDOO22OZnJPhUKcEHNIuzY2NVzCoC+6GCQ/aej+/neK0/zDzu30RcN83J3+3QtVURkTlOQLTIH9VuCskI7MtCbcdsM6AvNbrPPySC7Mxxkga+EcreHrnAIyAyy7zm6L+P8buOcmaJloJdgLEZyDv7bicjcoiBbZA46ERiYtGsf9fcB8OnNF1HsdDHfVzwpz+Ow2eZcC79ALEooHqPK66PK46MrHCSeTPD3L20D4NLaJQDYsfHVrZdT5HTRGpy8f+uxiicSvP+Je7mp+Q6++eIT070cEZFJpSBbZA66aN5iIBWMFVrLQC9lLg+vW7Kau+vehm+SykUcczCT3RUOAlDl9lLl8dIVDnLCP5DexHrlguUA3Lh0DZcvWMZCX8mMCrK7I4NZ9cfaWrj/+EEA7jt2gPuOHRjuYSIis5K6i4jMQe9YdQY9kRC/O7KH9z1+Dz+7/KaCXfvwQC/LSsoKdr3hzMVMdqcZZHtSmexD/T30RAcD16sWLidJksvmLwVgWXEZ2ztbCcSiFE3Si52xMNdv+s7LT7G8pJzvvvI0ADcsWT0dyxIRmRTKZIvMQXabjYW+EmCwvKMQ4okE+/u6WFdWVbBrDsdhs5GYY5nsE4F+AGq8RVR5fHRHQuns9rfPuwa7zca1i1biMerg37x8PX3RMI+3tkzbmq3Mtf7NxvP4+3OvApgxaxMRKTRlskXmqIglC5xMJrHZJl46csTfSzgRZ3159YSvNZpUucjcymQ/crKFBb4SlhWXUePxEU8m07XNK0srhpy/vrwaOzZOTnHJSDKZJJFM4rCn8jj7+rr46Z4dmC+JLpu/lHneItaUVbK3ryv9uFA8NmkbZUVEppoy2SJz1KaKmvTHA7HIhK4VSyT4zs6n+NqOx7ABmyvnTXB1o3PYbMQScyeTnUgm2dndxiW1S7DZbKzICqrLXZ4hj3HY7VR7fbQHA1O0ypRt7cd480N30W1krj/y5F94obOVHZ2tAFS6vQCsL6vmFUuv9o4pXqeIyGRSkC0yR51ZWcvnzrwYIN0Kbrxe6W7n/hMHOREY4NpFK5hvlKJMJod9bmWy/3BkD9FEIl3vvioryDazxtlqvUW0h6Z2IM0Oow78yfbjOdtFOo213rBkdUZP9alep4jIZFKQLTKH1XiLgIn3Un6m4wROm50fX3Ijn9l8cSGWNqrUxse5kcluDQzw77u3A7C4qBSA0hyZ61xqvcVTHrwe6O8G4J9ffYY3P3hXxrG7696W/nhTRU3GhszXek9NzQJFRKaAit9E5rAq42377khwlDNH1hocYHFxKavLKguxrLw4T7Oa7FOhQPpFTzZrG75FRYPvEvz35W+kNxLC6xz+R3mtr5jH244STyZw2CY3r3L/8YME4zEO9nUPe072BNBabxGHjQFGTccOctPSdezv6+Kc6gUF2ScgIjJdFGSLzGElLjcAA9GJ1WT7Y9FJG58+HPtplMne1naUr+54jG+fdw3n1iwccrw1OJiJtgbii4tLWVxcOuK1FxWVEksm6AgGWFA0eWU88WSC77z8VPr221du4o5Du/jbTeezqrSSSo+XXP9c51Qv4PBALzcvW8/dLXtoePQPhOIxPnfmxVy/eNWkrVdEZLIpyBaZwzwOBwCRxMgZ4dG6PvhjUUqNgH2qzOZhNAf7u/nS9kcIxmK8e82ZHBroAVIt+s5laJDdZgTZf6x725iz0WZ5yfFA/6QG2Tfc96uM2+9du4V3rT4T3whZdoAPrj+brdULuKR2CSUuF7848AoAL3e3K8gWkVlNNdkic5jbngqyw8bEwFzuadnLGx64g1Oh4Ts/BKYhk+2w2YiP8uJgpvrVwVfpCAUYiEX4993b+Ysx7bDCKN/JdjI4wDxv0bgGyiwxMt3HjB7bhZBdphOMZX7/vG7Jalx2x6gBNoDL7uASYxz821ZuSn8NXjjVSjKZxB+L8vcvPUHbDJpcKSKSDwXZInOYGWRHRwhW7z26H4COEYJsfyxCsXOKM9n22ZvJ3tHZxubKeXxxy6UZ9w/3+Rzq72FZcfm4nqva46PY6WJnV9u4Hp/tVCjADff9iuYTh9L37bZsWLxu0Ur+dtMF47p2kdPFjy6u5/1rz6It5OdrOx7jTc2/4eGTR/jeK8/MueFDIjK7KcgWmcNsNhsuuz2jjVq2PqMFWygr232wvzud0Zy2TPYs3PiYTCYZiEbYXDGPqxYuZ0tlbfpYNMe/w3/v28mB/m7Wl49viqbNZuOmpWt5rLWFbW1Hx71uU4sxIfQ3h3bRGwnxcnc7n33uwfTx82sWpVv0jcd8XzF1i1YCqX7bph2drfx8/85xX1dEZKopyBaZ4zx2J+H48EG239gU2W/ZHHnM38eHtv2ZG+77FY0HXiEUj09LkD0bM5uRRJxYMkGR04XdZuOfLryOD68/Bxj6jkI8keB/DrwMwJoJjKpvWH0mi4pK+d2RPbzU1cZjrS0c7u8Z17XMATMH+3u49aHf8slnHsg4vqWqNtfDxqTWV8yXzrp0yP13HnptxBeEIiIziYJskTnO7cidyY4nE/z7a9sJGBnsvmiYowN9ROJxeiODA0Z+tu8lYGhrtsnmsNmJzcJMtj8WBaDYslG0btEKYGgm+6ARCK8ureSieYvH/Zw+p5PVpZXs7e3k0882840XH+evtv2JyAgvrrIlkkmCsVjO2vz15dX86OJ6musbhm1DOFaXz1+WvvZ917+Tr2y9nHAizo33/5p/2fVsQZ5DRGQyqbuIyBzntjuJJIZufDzY38PvjuxO324NDPCj154nmkhwhmUku2k8m/ImYqYMo0kkk/zywCvctGwt5cNsXLTyR1NBdonl6+Uya+OTCY75+/jWS08QiceZZwSsXz/7CtxGJ5jxqvR4CWaV/DzZfoyrFi4f8XGfeuYBqjw+lhaXpbPqAP960Q184pn7iSeTLC0uZX159YTWl81pt/Pfl7+RcrcHh92eUS7zyMkWPj7Oum8RkamiTLbIHOe224nEh2aEjxm1t1/dejluu4NdPafS5Qyv9gydzDfSQJTJ4LDZZ0R3kVe627l9/07+6ZVn8jrfHzcy2RlBdupHcTSR4A9H9rK/r5sWfx/bO1tx2uzU+oonvM5Kz9AXAE/kUaO9s7udR1qP8NDJwxn3b6yooWH1ZgDKXaO/uBiPxcWl6V7utd7Br4FKRkRkNlCQLTLHuR0Owjky2cf9qZZvF8xbRKnLzas9HUPOcdnt3LJ8A5sr57GhfGh2ezI57TMjk21OJewM5zc106xxt3ZjSWeyE3FqvL6M870OJ/YCTD6sdGde146NZzqO510yUmspA/ncmRcDg+suxPpGY7PZ+OcLr+OGxasIxWNDNuKKiMw0KhcRmeM8dkfGMJpkMonNZuOov49abxEeh5NSlztnEPnn694xbaOvHTNlrLoR5+cb9Jk12dbyGrvNhsNmI5pIDHnhUKi68xJXZjnPjUtXc+/R/TzfeZKN5TU5M92/OzxYLmSWq9ggPSSmzOVJ/e32FGSNozmzspZj/j7uO34wNU7eN3nDdUREJkqZbJE5zm13pLOZTccOcOMDv+Yvxw5wLNDPkuIyAKo9uTezTVeADTNnrHrYKF0I5ZkRTm98zKphd9kdRBNxBqIRip0ubrvkdQDEClQSU+3JzGRfPn8ZJU43X3nhUd768G9pt4xuh9SLrX/fvT19+8hALwC3X/7G9H03LF7F/9lwLreu2FCQNebDHFbTbdl8KyIyEynIFpnj3A5HusZ1W/sxookETcf2c8zfl54WaP49k8yUsermtMyRpmZa+WNGuYgrO8i2E00k6IuGKXd70i9wNlYUZkPh5spafnLpjZQb2ecqj4+Laheljw/EIhnnZ79oaA36ubh2CYst3wtOu51bVmxIDzWaCmaQ3RsJTdlzioiMh8pFROY4t30wyDazmebGxiVFqUBvQdbb8j+48Lopn/CYbaYMozHLRLojIT75zP184owLWV4y/HTGQI5yERj8dxiIRihxuvE6nPzzBdeNeK2xWlVaifnmQ4nLzbqyappPHAZSNdq51mlV5pref3OAcqM0pSesIFtEZjZlskXmOI/DkR5G0xb0ZwRbZgbb50i9Hr9ywTK+sOUSNlfWsrK0YsrXajVzMtmDGd+Xuzv4wBP38rRlUmE2fzSKz+HEYcv88WtmsvujEUqNYPbMqtqC1zt/ZvNFrCypoNLtZVHRYFY6mvWCJVeQXToDgmyzzCa7HaGIyEyjTLbIHGfWAvtjUQZiEVaUlHPYqL+tMup4r120gj19nXxg3db02/XTLTXxcfoz2bnKRF7u7uCi2iU5z/fHojl7iltrsucXoGXfcC6qXZJe22JLkJ1d+x2IDw2yS2ZAkO0xXvDlW54jIjJdlMkWmePMseptwQEAVpRUpI+ZwaDP6eLTmy+aMQE2GOUiienPZIdy9Gy+49Au3vPYH3OWs/hjkZzTMc1M9kAsMmUZ4/lFg8H8kCDbyGQv9JVwtTGw5rzqhVOyrpGY9d/5bjQVEZkuCrJF5jivw8FALML/7E9N81tbVpk+5nNM7RTHsXDYU2PVk9NcMhKOx7ABb1u5kX++8DpuXZ7qtHE80J8xft4UiEVz1rO77A7C8Ri9kfCUvZhx2x28bslqYGirQDPI/urZl/O3my7g11e9mQ05Jn1ONbvNhtfhUJ9sEZnxFGSLzHFvWLqWao+Px9uOYgPWWsZjF03xFMexcNntJGHa67LD8Tgeh5MPrT+HMytreceqTeljuXqL+2PRIZ1FIPX5dIaDJIHKKXzH4HVL1gCkp3marP28S1xuary52zhOB4/dmXOAkojITKIgW2SOW1BUwnvXbgFSc1XMFm/AlLZmGyuXbXAU+XQKxWN4HYNfp0qPj3+58HoA9vR20p3VBcMfiw5TLuJId3epyDEYZrKYX0drJrsjFOBQfw8wtAvKTGDdrCsiMlPllaaqa2p8C3AlsBU4CygFGpvrG96V49y1wC3ADcBaYD7QDTwN/KC5vuHhYZ5jFfAl4HrjMV3Aw8DXm+sbdud6jIgUxvWLVtF07CBryirxWbLX0zlsZjTWUeS+adzDHY7H8dgzn9/cMPqDV5+l+cQhPrT+HJYWl1Lq8uCPRYbZ+GgnYJRATGUm22k3gmzLi5UPPH5Pei0zMcj2OpwqFxGRGS/fTPaXgY+SCrKPj3LuN4H/SypQ/jPwfWAb8Hrgobqmxo9nP6CuqfEcYAfwfmAv8EPgEeBW4Pm6psaL8lyniIyDw27nhxddz8c2nZ9u1zfTuewzJJOdiOFxZGb8qyzTFV/p7uDjT9/HR55sAlK1ziU5arKt7xpM5QbTwa/jYGY4YAlgZ+K7GR6HU5lskVnocH8PrxlzGOaCfH+bfhI4BuwnldHOmY02NAHfbq5v2GG9s66p8UrgAeC7dU2NdzbXN5y0HP5PoAz4VHN9wz9bHnMx8Bjw87qmxjOa6xuG9pQSkYLyzpogezCTPZ3C8diQr5nbMTQwbQ0O0BYcIBSP5ywXObtqPk+0HQWgcgrLRcx+3WYmO2L5er51xcYpW8dYpMpFYjQdO4Db7uCaRSume0kikoe/2vYnAH5xxZsod3vwDfNO2X/ufRGX3c6712yZyuUVXF6Z7Ob6hoeb6xv2Ndc3jLrDqLm+4fbsANu4/1FS2Wk3cIl5v1EmshVoJ5XBtj7mKeBuUmUn9fmsVUQmxjNrguyhtcRTLRiLctzfn5G5Nn397Cv4x3Ovzrjvmy8+AZBzE+Ebl63jDUvXsLKkImeme7KYX8ef7XuJYCzKx566D4DPb7mED284Z8rWMRYeu5NgPMb3Xnmaf9i5bbqXIyJj9K7H7uazzz047PFfHXyVnxsdr2azqd74aGaircV0C4y/DzfXN+T6bXnQ+PvaSVuViKTZZ3AdtpWZyY5MYyb7pubfcCzQz6oc0y8vnb+U8+ct4nNnXszVC1J9pnf3drKhvJq6RSuHnG+z2fjEGRfy08teP6W18GZN9qlwkH977XkO9HcDsLS4bMrWMFZebXwUmfV293YCcN+xA9zy4F0EY0P3WQxEI1O9rIKasiC7rqlxOalAOUCqBMRkFucsr2tqzPWbZZXx94ZJXJ6IzDIzpSYbYFlJ+bDHrl+8ii9tvSw9YOZ1S9akA9uZwGkZ726Wq7xnzRbWlVVN15JG5XGohZ/I6eK7rzxNXzTMTc130BoYIGJ5Ab2/r2saVzZxU/KTvq6p0QM0Ah7ga831Dd3mseb6hr2kNjvOBz6W9bgLgTcZNysZRl1T44cKvWaRue7s6gWjnzSNprsm29rd4tw8JiF+/ewreOeqM9LTE2cKlyXg98ei2LFxy4oNM7qzjNfhzDnoR0Rml/5o5v/jn+zZwfufuCd9+6TR1nS2mvTiy7qmRgfwP8ClwB3A93Kc9mFSGyZ/WNfUeBPwIrCEVCvAXcAWYNjfpM31DT+pa2r8cWFXLjJ33XfDO7Exc4MsGMzAZo8Dnyp9RpD3yTMuzGuj4paq+Wypmj/Zyxqz7Kz6psqanBszZxKvw5EeliMis4fDZssYIPbbw6kOzcVOF/5YlMfaWjLO7wjN7iB7UjPZRoD9C+CtwG+Ad+XaPNlc3/AIcAFwJ6mA+m+N298C/s44rX0y1yoigxw2+4yvzXYbwWFkuoJsIwNT7vaMcubM5rBl/hq4cN7iaVpJ/mbL5lwRyZSdvPnFgVcA+PJZl+U8vyMUmPQ1TaZJ+0lV19ToBH5JKsD+JfDu5vqGkbLRO4G35bjO140Pn5uMdYrI7DTd5SJmuUKZa+o6gUyF+sWrp3sJo8ruS55MJmd0eYuIpH5WD9cNan15dfrj1aWVHOjvZp63iPbg7A6yJyWTXdfU6AbuIhVg/xz43yMF2CNcxwO8G0gAvy7oIkVkVnNO88ZHM5Nd5prdmWyr751/7ZT26B4vb9aEzfA090oXkdGZ+1jevHw9n958YcaxMss7gp844wJ+f+1bWF9eTYu/l5e7Zm8hQ8GDbCMw/j2pDYv/CbxvmNZ81scUG6Ul1vtcwP8DVgD/r7m+4UCh1yois9dwfbK/tuMx3vf4PbkeUlB9RmupslleLmK1dYZvdjVlZ7I1Yl1k5jNb9K0sqeB1S9ak7/+PS1+fcd58XzGlLg+Li0rpCAX45LMPpPfAzDZ5lYvUNTXeDNxs3DR/Cl9c19R4u/Hxqeb6hs8YH98G3EiqNd9x4Ct1TY3Zl3zEqMM2XQ38R11TYzNwlNT0xxtJBdh/Aj6TfQERmduGKxcx29BNNrN/a+lpVi4yG2TXZIcVZIvMeOaLYZ8z8//viqw5AxXu1Ltpyy2tUY8H+mdlQiPfmuytwHuy7lvFYA/rIwwGwuaUhRrgKyNc8xHLx3uBbaRGttcCQeAl4OvAz0fLhIvI3DPdGx8DsSguuz0d7MvUyR5jH9JgGpEZL2gG2cb/3y+fdVlGC1GTuek+O8jeWFEzBassrLyC7Ob6hq8BX8vz3KvGugijV/atY32ciMxdgzXZ0xNgBWJRihwzu9Xd6Sq7XCSoTLbIjGeWi5gvkq/Kmhnw7fOuyWjNuax4MMg+1N8z+QucBDNn7JiIyBiYGeTh+mT/dM8Onj91ctKePxiPDnnbU6ZGdiZb5SIiM59ZLuIdpg//uTULuWLBsvRtn9PJH+vexurSSu46/BptwYEpWWchKcgWkVlptLHqdxzaxeeff2jEa8STCSLjzIQHYzF8ymRPi+yabDNDJiIzUzgeI2BkqX1j6HNf5HTxsU3nEU8mebm7Y7KWN2mUhhGRWckcmDORcpEvPP8wL3S20lzfMOq529qO4rY7OK9mITabjUA8RtFpksn++KbzZ/yURyuvpQ7ebrPxSnc7F9XO/CE6InNRPJHg9Q/cQZERXGe/EzWajeU1uOx2DvR1U7do5egPmEGUyRaRWctls0+oT/YLna15nXcyMMBXdzzGF7Y/zJ+O7QcgGIvim0WB6UjeuGwd186iX17WTPa51QumrKOMiIyd2cc+kLXxMV8Ou50VJRUc7O8u+Nomm4JsEZm13A7HqOUe+WS6k8nkiMc7w4NTx8wNONr4OH28lo2Py0vKORUOTuNqRGQk2T+DveN4B3BVaQUH+rtH/Vk90yjIFpFZq9jppt/oVz2c193/a3b3nBrxnOgwo35NvZZBCObu92A8po2P08SayS5zeQjFY+OurReRyWVts+qw2XDZxh56ri6tpCcSpiscKuTSJp2CbBGZtcrdHvb2dtIaGHnX+UMnj4x4PGhpG5VLjxFkFztd6c07gViUotOkXGS28Vhqss1hQLN1IpzI6c6ayfbYHdiMPthjsaq0EoB9fZ0FW9dUUJAtIrNWmcvNsUA/73rs7pzHP7BuKwD7+7pGvE5glO4UvZFU9mRRUSmBWJRkMml0F1Emezo4LAMszClwo72jISLTI2IZFjXenvbry6uocHv4j70v0h+dPS+oFWSLyKxV5ho6Ztf6VuQFNYt4w9I1HBnoHfE6wfjImezeSBivw0ml20sgFiWciJMgqUz2NHLZ7bx95SZKje+Bvln0i1dkLrFuTh9vRbXP6eILWy6lxd/HnYdeK8zCpoCCbBGZtXJ19yg2ygdSx51UuL30RyMkRtgw86PXtg/ZUJNMJtP3dUdCVLg9FBnlIgNG1rTE6R5yLZkaf7n+nXxw/dmUGf/eymQX3gudrezpnV1vz8vMU6j9EufWLGRJUSkvdLbyzRcfpzM08zc8K8gWkVnLWutnThOLWzYxFjldlLs8JEimA+NcXupqoycSYvupk+lNkn/3wqNcd98vaQ0M8PDJwyzwlaSC7Hg0HdCVuhVkTzczk/1qdwevdLfzdPvxEc8Px2M82zHyOZLyuece5G+eapruZcgsN5FZBtkW+ErY3dvJo60tvNoz84fTKMgWkVnLWt/Xbew6j1sy0j6HM12zay0nuOvQa3z35acyrnVooJf/7/mH+OjT95FMJnnaCMT29nWRBN62chPFThdd4RB/Nnpll+YoV5GpVW78+955+DU+8cwDfPmFR0Zs8/Vfe1/ii9sf4bVROs6ISGEUsvNPpceb/jg2gRkJU0VBtojMWlfMX5b+uNvolRy3/OB12x3pum2zDV8skeC2PS9w3/GDGddqsdRtf+rZB9If+2OprPWy4rL0pLLfH9kDDHa2kOnjdTh5w9I1GfcdGugZ9vyuSOr75Ki/bzKXdVqZbb2JZWaZyMCwbEHLJvXQODdRTiVtjReRWeuqhctZ4Cvmo0/fR3dkMJN96/IN3LpiAzabLZ3p7I2GebGzjX3DdBo5EehPf/xy9+DbkGbdn8/p4pRlKA1AqWqyZ4Q3LlvHvUf3p28/1X483fIrW5XbBwy+KJPcrGVX/dFI+h0hkbEyM9kNqzdzXs3CCV3rvWu3EIhHef7UScKzIMhWJltEZjXzl7/ZWi+WTOBzOqn1FQOD5QS9kTCfea6ZH+95Ied1jluCbKv2UCqw9jmdrC2ryjhWqsBjRljoK8m4/csDr/Dvrz2f8a6Gyayjn21DLaaaNWPYEQqMcKbIyMxM9g2LV3FmZe2ErrWspJxvnH0lMP52gFNJQbaIzGpmCUcwHiNhNIhyWtr4lblSNXxmr+tsNy5JlRoc9+cOsjtCfpw2O267gzcsXcudV9+aPlakPtkzgrXLTJXHSzgR53dH9rCzu33IuWYdZ/a7EpIpYBnQ1Kmsv0yA2SfbbRkiNREuux0bEJ4FU14VZIvIrGYOhAnFY8QTqSDbbpko5nM6KXa6aAv6M4Jv03vWbMEGnBhmamRr0J8en2632TI23oxncplMjsVFpRl/D8d861qB48j8liB7tD7yIiMxu4sUKsi22Wx4HU5CowwRmwkUZIvIrOYxM9mxWLqO1DoREAbbPsWSCS6uXZK+/ytbL6fa66PE5SZBEq8j9Uug3NI15Ki/b0hw/vaVmzi3emK1hVJYb1mxAYAVJRXp+6ydZjpCAU4E+onEU98j3SoXGZE1k90bCWvzo4yb+cLWVaAgG1I/98OJmR9k671OEZnV7DYbXoeDUDxGzAiys4PiWl8xT7UfA+ANS9cQisfY0dmazoIv9JXQH+2i1OXh9stvoNTlpjMc5N2P/RGAgVhmj+0Prj97sj8tGaOblq3jnOqFHPH3cs/RfUCqM8yPXnue6xev4hNP3084EU+XB3Upkz0iv+V7/l92PcdANML/Wr15Glcks5VZk+22Fy6v63U4Z0V3EWWyRWTW8zqcBOOxdObSkVXGscDYBAmpTGeqom/QtYtWAqnSkxpvER5HalKkqZAtqGTyLC4uzej40h4M8Psje/j0s83p+s0jRqvGYDxGMKYyiFz6o2Fe68mc9Nh84tA0rUZmu0gijt1mG/IO40SkEiszvyZbmWwRmfW8DldGTXZ2JnuJpU53vq+Yvz3jfG7ft5OzqucD8Pqla4glE2wsr06fV+R08ckzLuSfX31mCj4DKZRi1+AmSPMdiIjll7F1SlxXOMRiy6ZJSfni84/wWm/msB63o3Bv9cvcEknEC1aPbVImW0RkimSXizjsmZnqG5as5szKebxnzRYAFhWV8sWzLk3/4Pc6nLx95Sa2VM3PeNx1RoZbZo8SSyY7PYAomfudCHMwzUxxdKCPgWhk9BMnWXaADYXbtCZzTzSRwFXALDbMniBbmWwRmfV8DlfmxsesTLbX4eSfL7x+zNc1s3fZ5SUyc5W4rEF27s2NLpudaDJB/wwIaK3e98Q9LPCV8Isr3zSt6yh1uYd8bTwKsmWcwvHCZ7I9Dgf+8Mwv91ImW0RmPa/TSSgeTZeLZNdkT8QPLryO26+4qWDXk8nls/QuNzPZ2cxAfCZOjGsNDraS3NXdwbFpGP9ebJTQvHvNmen7EsDdR/aQUJcRGaNALJr+nioUayb7QF83r/UMffdlJlCQLSKzns/hJBSPD5vJnojNlbUsGqX3sswcNpuNNy9fD0BfNHeQXWoE2ZEZvnHq48/cz3sfv2fKn7cnEubW5Rt4t1FeBfBSVxv/+trzPHzy8JSvR2Y3fyxKUYGD7GKnO11a9eEn/8zHnr4v3SpwJlGQLSKzXqq7SHSwhV+B6/9kdvmbjeexrqxq2Ey2GWSHZtAv5bilbjw2jd1sgrEooXiMKsvQJatjw0xGFRmOPxah2LJXohAq3B56o+GMd1aeaD1a0OcoBP0mEpFZz+dwGjXZhS8XkdnJ7XBkDFSxKpmBmWxrm8i2oD8j6J5K5iTMSo8v53H1F5exmoxykUq3l0QySX80nH5BuKGiepRHTT0F2SIy6xU5XQTjUeKJwpeLyOzksjvSvbFN5iRPM5M9kybGWbPXJwL9+KPTs6mrxagBX1JcBsDPLrspY9OaxtHLWPlj0YzWmoVQYQTW3eEQ/ZEI71i5aUaW9ek3kYjMesVOF6F4PB1UKZMtuVqG1XiLgFQ3GofNNsMy2YNrORHoHzJldKq0GMN6lhlB9tKSMs6tWZg+3hb0T8u6ZPbyx6IUOQqfyQY4ERwgmkxQ7s5d3jTdFGSLyKxnvhVpth1TTbbkahlmvq3stjvw2GfWxLhIRiZ7YNraCx4Z6KXG48tohei1fC2P+vtm5AYzmZniyQSheKzgmWyznOlwfw8A5W5PQa9fKPpNJCKznrlzvT2UyrJ5HRoBMNe5cpQMHTVKIdaXV+N2OInM0HKRo4HMoTSTFdQmkkmSySTRRJz3PPZHfn94N0+2H2NT5byM8zyW/0+xZIL/2PPipKxHTj/mvojCb3xMvWA+bLzzUuZSkC0iMimKjayb2St1qfFWt8xdud7NuH7xKgAum78Ur8NBeAZlss1ykVKXm2c7TvBoa0v62GTVZ19/3y/519eeoysc5Hignx/t3o4/FuVdqzdnnOfJGsr0uyO7aVfZiOTBDLIL3cKvzOXG53CyrS3VUaRCmWwRkclh/gDf1XOKWm9RwX+gy+zjylEu8u41W2i6/p24HQ7cOTZGTqeo0U3kygXLAfjzsf3pY/5JqM82g/o/tuzDb+nCcsvy9awqrcw41wyyFxaV8PMr3gjAw61HCr4mKYztp06mg8/p5k9nsgv7M9lms7GoqJRwIs6G8mrWllUV9PqFoiBbRGY9M6juCAVYVlI+zauRmSDXxkcYzHB7HM4ZNfHRbOF3ce1iPnXGhRmZue5w7vHwE2Ftb2it/16Yo0ODx54qF3HZ7SwqKqXM5aE1MDDkPJkZ/r/nH+KrOx6b1n7rpr5I6nurzFXYchEY7C3/+qVrcczQfTgzc1UiImNQYsmSzNS3DWVq5dr4mH08n+4irYEBTgQmfwCLmVl22x3cuHQNd13zFu665lZ8Die/P7Kn4M/nHybIrs7RH9vcVGZuFK3yeOmOFD7wl8La2d0+3UtIT10tm4Sfy2Zy5cysPQQziYJsEZn1rOUh6pEtMHqHGa8jv3KRdz12N+9+7I+FWtawzKyjdd0Vbi+vW7KGpzqOEYwVNuueGWQPTsbMNelxntH60Dyv0u2lW/2yZ6SkZQLiy10zIMg2pq5OxsbEz2+5hL/ZcC6LZ2B/bJN+G4nIrGet9xuuTEDmltG+D9wO55g2PlrHN08GM5OdXUt+Ue1iookEL3W1FvT5rOUifZZMdlWOTLYZZJuBeaXHR9cklLDIxFlfPO0yNoJPp3QmexKC7EVFpbx5xQZsM3gugn4bicisZy0NUCZbIPfGRyuP3TGmmuzJHsJi1mRntx5cZ2zoOuYvbMmKNRjrCg1mpXMH2cUZt1PlIspkz0TmRE6fw8nevs5pXk0qyPY6nLgdI/9/PF3pt5GIzHo2mw2nEZwoky2Q+X1wzcIV/M3G8zKO+5xOgmMIso8Y/XgnSzrIzvr+LXa6cNrsBa+Btmayjwb6KHG6+fkVb8zZYz57n0Ol20soHs+4hswMp0IBADZU1NAfjUx7q8XeSHhSNj3OFvptJCKnBbOWVZlsgcxM9hfPupQ3L1+fcbzE6c7I5o5msjf6meUi2bXkNpuNCreHngI/v99SIrK3t5OFRSUsGqa21WazUb94NV/ccikw2IGkxRjuIzPH86dO4rDZOLtqPgD/69E/pAPv6dAXDU/KpsfZQr+NROS0YGYAlckWyD3x0arY5SIUj43Y5sx6LDTJWVuzT3aurigVHi+9kfCQ+yfC+gKjJxJmVWnFiOd/5syLuGbRCiA1MRNgzwyo+ZVMT7Qd5byahSyxDOTqixb2e2cs+qMRSmfoNMapoN9GInJaMKfROZXJFkZ/sVVijHkeGGHQi7UcYiylJeMxXLkIpLqMFDyTnfWiIXsAzUhqvUVUur3s6e0q6JpkYqKJOG1BP2vLqtJtFwEi09gvOxCLZrRYnWv020hETgvmBvOZOpRAptZoGx9LjTrRgejMCLIHW/jlyGSPUi7SMtDL13Y8NqZ+3qkNaYPPtXqUTLaVzWZjfXk1e2bAxjpJiSbivO7+X5MgyQJfCRXuwVaMk/0uzEj8seicnsCr30YicloZrUxA5obRMtnFztGDbGu2dyJ9qtuCA6M+frCF33CZ7OHf8t/R2coTbUf5h5e25b2mznCQJcVl6Xd+Vo4hkw2wobyaloHe037z4w9ffZZ3PvL76V7GqKzfHwt8xRkt8yb7BeJI/LFowUeqzyb6bSQip4lUKluZbIHRM9klrtQv/o8+fd+wddnWADI0zkDlibajNDx6N//22nMjnmeWi+Qqd/I5UvXjyWF6dQ8Y6xzLBrfucIhqj49yt4ca4++xWF9eTRLY2dU2psfNNvcc3UfHNG4czJd1oNB8Xwll7sGOHoUeZJSvRDJJMBZNv6Cdi/TbSEROC+Y4AmWyBQYzwgt8xTmPl1h+8Q+XjfVb6rWD8fFlbI8ZHThOBgZGPK8/GqHI4cSeY7CG+bmYmyN7IyEePnk4fdycqtcVDqUz4iO549Au9vV1UeXxsaiohI0VNXl9LlZbq+dT5fHy5RcePW0D7elufzcW/ZZ3ZGq9RThsdt6/9ixg+jLZwXiMJKhcRERktlNNtliZweYCX0nO4yWW3r3DjVc3pxpWuD082tpC6yiBci5mAO/IETzHk4l0INcR8jNvmBcE5iCPiDGh8gvPP8zfv7QtHVybAVaCJCcDA7zY2UpdU+Owvb1/umcHkKpL/9rZV/DpzReN+fNy2R3p3uNPtB0b8+NnA+um2Pg0bh7Mh/k9cNslr0v/DHzjsnXA+F8gTpT5va8gW0TkNKEWfgKDY5wvX7As93FLecSOzqEjy7vDQe5u2YsNqDUmHn7muQfHvA6zrjtXh4f/2vsS/+vRP9AdDtERCqTHl2cz2/qZLxz29qW6enRHQgRi0YwWbccD/dx//BAw+ljtvkiEcrc34wXHWFy5YDmbKmrY33d6dhmJWv7NhnshNlOY5SLWdnk+Y7DQdJWLmEG2arJFRGY5m1mTnSNjKHPPhooabr/8Jt64dG3O4267gy+fdRkA33n5qYzyC4Bvv/wUB/q7STKYJWwP+bnj0C7+cQwbDAPpIHtokPZ4WwsAb334t+zt6xo1yM6+xgeeuJc3Nv+G/miY1cbGxeOB/nTm0pdjeqO1nOQdqzbl/XkMZ21ZFfv7uoatF5/NrLX6uf79ZpI+43vUOl3RYbfjtjumLZPtVyZbQbaInF5G2/Amc8eS4jJsI7zosv7yf7z1aMYxa/bPnPZY5HDxUmcbz546kfcazHrYXEGajcy1jRpkxxM5N2m+2nOKxUWlFDmc3Lb7BZ4/dRJIjY7P1hkKAvDpzRdmDCwZr1pfMYF4bNwbQ4czEI2MOChoKlgz2WapzkzVHwnjtNnxZr2w8jmc05bJNqeKKpMtInKacCqTLXmy9ok+0N+dcWypJQA1A0if00lPJER/NJLXBkOwlIsYQVp/NMy2tqNsazvK8ay+1sMF2WYJVCQRHzYreSocIGCs0wzs7Qz9v9AWStWA13hyP9dYDQ71KWy29OYH7+RrOx4r6DXH4tmOExwa6EnfnumZ7NRkRfeQF5U+p3PaNj4G4spkD32ZKyIyC5m/WnIN8xDJxWPJ+g2XNf3SWZfyyMkjbGs/RiKZTI8374mEhw2KAf726fsJxKKDmxaNIO2jT903JLg2zfOOvPExmogTHiaj+p41W7ht9wsZgWE8OfRz+sWBV/A6HGOa8DgSsxXiQDQy4tdjLMwXJk93HC/I9cYqnkzwxe0PZ9w304Ps44F+anNsnPU6nAQnsZf5MX8f97TsY1FRCW9avj7jmJlBL8rxjspcoUy2iJwWzAyOMtmSL+tb6wkya4pD8RiLi0q5euEKvrT1Ml6/ZA29kXB68mJXODjitV/t6eDQQE/6LfNIIk48kcgIsN+/9iz+9aIb0rfzqcnebpSCWP3k0hs5t2Yh3zn/Gt67Zkv6/niOOundPaeoX7yGaq9vxPXnK5/x9GPVYWmdN9KwoEK54+CrvP/xe9K3T/iHdpGZztHko0kmk+zr62JtWdWQYyUud8HfZTgVCtAXCfObQ7t47+P38Nsju/mJ0bHGysygZ5ewzCVz9zMXkdOSU91FJE8ey7se2TXFoXgsHRy47Q6WlpQRSyaIGXFr9yhBtumYEVSH43G6jAD9DUvX8oala1iTFRSNFmQ/1X6cOw+/lnHsS2ddms5KV3p8XDJ/Cbfv3wlALCuTHYrHCMZjVHm8FEqxsdHOX8BguN0y/OXwQA+bK2sLdu1cfrr3xYzb+/uHdkuJzuCa7JPBAfyxaM4gu9TloS049taTI3mHMQHTjo2La5fQEw7lfHcmXWblmLvlIvptJCKnlVwT80Ry8VhqsgOxaEaHjLAlyAYod2VORDR7aOcSzlEDG0nE0xMZL5y3aEiADcPXrpo12Uf8Q/teV7ozA+bFRaXpj7NLYLqNNVd6CpPFBigx1vzlFx5NZ/nzFR5miqV1wuKh/p4pyWbDYC/sA33dQ47N5BZ+z3akNuJurpw35FiZy50xqGairBtAEyR558pNXFy7mL5omFA8RstAb3pzbSgew45tTrdVnbufuYicVgZrsvVjTfJjrcmOJ5PpiYqQeqvbGmRn95LuigyfyX79A3dk3DanTrYaGcXsTYe1o9QyD3YXGRrorS7LrK3O/pyszC4p2YH5RFi/LrtH6ctt1R8N8/oH7uC/jaw7pGrO/9iyNz0lE+CHu57j5gfvLMxiR2GWNxzs7xlybCbXZD/edpTlJeUsLykfcqzM5aEjFOCdRvZ5oo4F+jJurymrSteC7+/r4v1P3MvfPnMff/XEvTx/6iReh2PEDj+nO/02EpHTijLZki9P1iZZc4NYTyTEof6ejO4j2UF29wiZbNNXt17Ofde/k5uNDWHmW+o1WfXQ/3nZG/j9tW8Z9jrmxsdcmx5LszLsAD+77CZg6MZHM9NcWchyEUv2PTqGuuV7WvYB8GhrS/q++44d5F92Pcedh19jY3lNRlY+17sDhWaWN2R3moGZ28LvYH83L3W1cfn8pTmPlxrft9Z3BybCOkX0/JqFuB2OdJnTnYdSpUytQT+HB3rZ09uJbw53FgHVZIvIacLsOaxMtuTLkfW9EozFKHfD+x6/h3AinpnJdg4G2W67Y9iNj9Zg0ONw4rDb08H8rp5T+BxOyrMyyaMFImYm22/ZXPjxTedzVtX8nOebZSfxRFYmO1z4TLa1L333GMpFjhrZapfdTiAWpcjpwm7JeF4wbxE7u9rSL0xag/6cmdpCCsVjdIdDdOb4t52JmeyBaIS/3vYXAK4YZrJpqeXFYSQRT38vjdcpoxTk11e9mWqj7Mj8fmrx9w05fy5vegRlskXkNGH+frbP4bcmZWKO+vv4+f6d6RpWawBpDVaWl5QPW5M9EB3s5GDWyJqBzbMdJ7h0/tIxf4+a67AGsRfOWzRs0Omwp66fvfFxe+dJfA5nQTPZABfPWwwwpprsNqODyMH+Ht792N1A5jTK6xevzHgxcsKyse7x1haO+3O3QZyIYDzGQSOLvSxrUM9MDLKbTxwiQZKPbzp/2JaM1vKhnjzefRmNPxbBBlR5fOkyEPNFYq5s+VwPsvP67OuaGt8CXAlsBc4CSoHG5vqGd+U4dy1wC3ADsBaYD3QDTwM/aK5veDj7McbjaoHPADcCy4EIcBj4NXBbc31D4f9HichpRMG1TMyvDr7Kzu729G1rWzpruciSolL29HUOeXwymeS23duBVNcPM6PstpSdbB0m+zwSt5Fxt25gGyl4MUumrDXZ/liUx1pbePvKTQWfivrNc6/ilgfvyquExtQeGmzT12P0Hu83vt6f2HQB830llLsHS2Fa/H1cTOpr/PUXH8fncHLPdW8vzCdgCMVj7DeC7DMq52VkZmdid5FD/T1UuD28cdm6Yc+xlvB0R0I5e2mPxUA0SrHTnfFC0Wd8L4biMeZ5iyhxutP92q0lV3NRvpnsLwMfJRVkj9Yd/pvA/yUVXP8Z+D6wDXg98FBdU+PHsx9Q19S4AngZ+CzQAdwG/BIoAb4DPFHX1Fi47dAiIiLAF7dcyl9vOAcYHIJismZmrfXbVR5fzkx2RyjAw61HgKHlJYOPHXsWOddb/J4RgmyHbWgm22zjtq58aFeTQqj0ePPOZMeTiSFZz2QyiT8axetw8IZlawEyguwn21Jj780uH5MxxbAzFOSPR/Yy31tMbdZgoJmQyf7+K0/z+vt/zctdqReCvdEwFaOU/lyzcAXrjE42Y3kRNBx/LDJkTHp2WdV7126xHJvbNdn5BtmfBNYBZcBHRjm3CTinub7hjOb6hg831zd8obm+4RbgWiAKfLeuqXFh1mM+C9QCX2uub7i6ub7hs831DR8DNgEPAVuAt+a5VhGZg7581qVcWruE+cNMzRPJ5ZpFKzi7agEALVkt8qxvr1s7JJS7PYTisSGb8ayBmLW8xBokjxYU5eKw24eUmIxUW2vWmsctWcz2YCqozQ4eC6XC7c27JrsnHCaeTLKhvDp9X180zEAsQrHlxYn1hcqrPacYiEYK3s7P+jV6uuMYbSE/71931pB3CqZjGM0jJ4/w7Z1Pcq+xSfQvxw4QTsT55LMPcCoUoCcSGvX7yed08pWtlwNjq5kfzkAsOmQTsNNuT7fpK3G5uHT+Ui4zNmL65vC0R8gzyG6ub3i4ub5hX3N9w9CGlkPPvb25vmHI6J/m+oZHgUcAN3BJ1uFVxt9/zHpMHPiTcXNoA0gREcOGihq+fs6VQzaziYzGDASiiQRnVs7jnrq3cU71Aj595kU5z08PYMnKfFuzq9ZApMySkR1vj+rsoHqkum4zk20tFzHLMyYryK50e/POlAbjqa/bm5at4xObLjDWF6A/Gsn4upmfh/mCpT3kL3iQbf0329ubGkJzce2SjDIHl80+ZFjRVPhjy14eOHGIH+x6lj8c2ZNx7OXudnrCoYxs/3DMc/oKEGT7o0Mz2TA4cMZ8YWT+m831cpGpfolh/kTK/m59FagnVVKSDtDrmhrtwOuABKmMtoiISEFZA9gabxE+p4vvnH/tkPM+tvE8yt3edGu8QCxKlSVoDsVyB9nWTXT5BEW5eB3OvAM9h82OjcxykfagH6fNXvBNj6YKd/7lImYrQq/DyVJj8+bjrS080XaU9ZbstvlCotrjoz8a4VQokN5kV6hWnQHLC6UWfx/zvEUUOV0ZHV+8zvy/9oXUEwnhtjuIJOL822vPZxxrPnGInsjo5SKQ+jrbKEyJjT8WzVnX7XM46YuG0y9Azf8XjjneUnXKguy6psblpEpGAsBjWYe/A7wB+GZdU+PVwAukMt7XAwuAv8qVHRcREZko6+TH6hEyzW8y+l0/1X4MSL11boom4vxs30vp29ZsnzVgG28LtRKnKx3E5lPX7bTZM0ohToUD1Hh9k9Z9p9LjxR+LEonHMzZ65mIGrF6Hk1UlFbjtDn558FUA9vQObii9uHYJP9mzg/ev28pXXniUjlCQak8qO+8u0DtWgax3I5YaL4is/35jeYFTSN2REOfXLGSb8f0G8IMLr+OFzlZ+vv9lIL/yI5vNhs/hJBCb2OdwqL+H/miYlaUVQ46Z7waZGeybl62jPejn6oUrJvScs92UvMSoa2r0AI2Ah1TddUan9+b6hnbgIuD3wDWkuox8HFgP/AZonop1iojI3GMNfIcbbW5lBmB+S+nCn48dSHcm+dQZFxa8g4eZIXzTsnX85upbRz3fYbdllIvkm/UcL/Pa+WSz00G204nb4eAMyzjwayxBWY23iHuuezsX1CzCjo1TRkkJMGogn6/+WGb5yWqjFZ61rMbncBKcYIA6VtFEnP5ohLVlgxtVv7DlEjZX1lK3aGX6vnzfGfE5XekynfE40NfNB7f9ifZQIKNW3mT+HzL/b1R6fPx/Wy7hvJrsLXhzy6QH2XVNjQ7gf4BLgTuA7+U4ZwWp7PaZpFr4lQMLSW2ybACeq2tqXJn9OMvjP1TwhYuIyJxgDbJH6tphMjfnWbOgCUtAe3b1giGP+fVVb+b2y28a9xrN4D9XPWwuDps9Y+JjXyScURteaGYZSj6b69JBtj31td5ckQqylxWX8fkt2Vu2UhvrKj1eTgYH0jXZhXoR059V473GGFM/31ISMRmZ7HuP7uNkYGDY42ZbwwqPl00VNQDpCZjWtS0rzm9AT5HTNSRrPxZ90XD64xLX0O/BXmO9C3wl436O09GklosYAfYvSHUG+Q3wrmE2T95OKsA+q7m+YadxXx/w47qmRi/wA+CrwHtzPU9zfcNP6poaf1zQxYuIyJxg7RySPWo9FzPgtW589FmC81wdFWqM0dPjZW4CLHYNzSLmPt+eUZPdGwlP6sTEyjFksq012QBrjbaC4Xh82HKWjRU1vNTVxqKiVBDnKlC5SL8RHK4pq2R/X3c6c2ytqZ9oFjjbqVCAH7z6LGvKKrntkhtzntNtTJ2sdHv56tYr+NOxfemvk7XO2QzARzPRbHzY0id8dY7BN6fCqe412UN85rpJC7LrmhqdpHpdv9X4+91Gt5Ds80pJDbrpsgTYVubwmnMna60iIiKQbyZ7aJBtDfp8kzjlLtdb9bk47baMseq90fC4N13mw6zFzaf7h7VcBGCNEbSN1O7tvJqFPNF2lFe7OwCIFailnpnJ/uY5V7G3t5NlOV6IeB0OusKFC7LNuvPhurFEE/F0H/ZKj49qr493r9mScc5bV2ykPeTPu2ymaAwvFL6x43GuWbSCy+YvpTUwwK6eUxntKTdX1g55jFmatERBdoZJ+UlQ19ToJpW5fhPwc+B9zfUNw/2PMH9ilNU1Nbqb6xuy/4eaxVqF7dsjIiKSJZ+WY2aQbX373dpHebybG/MxlnIRM5N9b8s+QvEYZa7JC7LNFyfhPCYjmkG2+a7BPG8Rf73+HC6qXTzsY8yuI9s7W4HCDYfpi4axY6Pa4+NSo7ez6X+vPhOHzcbhgV6CscINnTaD7FwvxiKJODfe/2vmGe98VA5TR/9hY4BSvnwOJ+05xp4Pef54nMfaWnisrYV/OPcqvr3zKXotpSIXzVucs0PN2VXz2dHVNqklSbNRwWuyjU2OvycVYP8nIwfYNNc3dAKvkQr4/y7rWl5S0yYBHiz0WkVERKzyCZAddjtehwO/sWnu1e4OOi0BjG2SOnhA/sM9zJrsZDLJD3Y9CzCpAZD5dQvnEfxmZ7JtNhtvWblxxCyoWY9sMoP5UDxGdIwBdzKZ5L5jB3ihszW1kc/lzlmm8p61W3jXmjMLXpO9x+jHfSocJJnMrKA1ByCZEzEL1XIx35IXa436F7c/khFgA/zd1styPu5b517Fb68ZfUPuXJPX/9a6psabgZuNm+aOjovrmhpvNz4+1Vzf8Bnj49tIbV48RWoE+1fqmhqzL/lIc33DI5bbHyc1dObLdU2N1wFPAj5SPbKXA/uBb+ezVhERkfHKnvQ3nGKnG38sSiyR4G+fuX+SVwVmLJZv+O6wpcpFjgcGM7Dx5Kjz5MbNfAcgewpmLqF4DDs2XGPooVzkdKUG3hg13+FEnEg8zlsf+i024K5r35LxAulgfzenQkEumLdoyLWO+vv47itPp29nB/DZfE5nwca4J5NJ9valMtmheIzjgf6MFxfWjaNFDmfe34+jKXLm18JvIDa0aOBLZ13K37+0DRj+RajH4cyr1GquyfcrshV4T9Z9qxic1HiEVNs9ALMLSA3wlRGu+Yj5QXN9Q3NdU+P5pMarXwl8FIgDB4F/BL7TXN/Qk+daRURExsWTZ42r1+EkFIvRGR79LfhCWF5SxvbOk3mXfDjtqXKR3UZpwhULlnH9omGbdE1YOpOdR7lIOB7H63CMOeNf7fXRHQnhsTsIJ+IcC/Slg9/OUJCFxqbIWCLBh7b9GYDm+oYh19nZ1Z5xe7SvqZnJTiaTE36XojXopz8a4e0rN3HHoV0813GCJcVlfOqZB7hiwbKM7hzjnQ6ai8/hIphHdxF/jpr6s6rmpz+ezHdpTkd5BdnN9Q1fA76W57lXjWchxqbH/z2ex4qIiBSCx55f7skMvDqy6lwn0qZvJH+1/mzOrVnIhjy7SdiAx9uOUm7U9H5+yyWTWitus9mM4De/TLY3z7IXq3esPIMf7nqWzZW1PNV+jB/vfiF97IvbH+adq86gbtFKvm/JUufySk87VR4vl81fyh9b9rGxonrE830OJ/Fkkmgygds2sa+h2YXj7OoFPNbawsvdHdy8fD07u9vZ2d3OpzdfmD63kH3Ni5wuwok40UR8xPaHuTLZVQUM9ueauT3vUkRExGJMmeysINtjd0xadwW33cGF84bfGJjt8EAvkOrHXOXxTmqAbfI4nPllshOxvF/MWF21cDm/v/at6QEn5iZISJWA/Muu57ht93YeOHEo3fIwnqMLyd7eLtaX17C2LBVcn18ztKTEyizZCBVgII3ZfaXE5WZJcSkngwMZmzitHUcKVY8NsKwk9X15oC81C/CYvy8jsx2Kx7i7Ze+QvuGf2HRBwdYwFynIFhERMeRbV+p1pOp0rUF2oaYQFpp1euFk8jgcowbZe3s7ea2nk+IcA03yNVyLxFA8xu+O7OFNy9bx4fWp7hsDWSUSwViMo/4+1pZVUr94FT+59EbOz1G3nfF8Rta9EHXZZhBb6nSzwFdCa3Ago1a60+iPDbCwgINdNlek2u693N1BMpnkvY/fw5e2P5I+/nhrC/+66zleyiqlecOytQBctWB5xjROyY+q1EVERAz5ZrJ9Tied4QCnQoNB0VRki8ej1jdFQbbdMerGx//zVBMANy1dO+7nsQ5gqXB7hwzA+cC6rTzRdhSA/miYg/3d6Smce/s6SQJry6qw2WysyjFYJVs6k12AINuayV7gK6Y/GqHxwCvp43e37E1/bE6fLIRqr48lRaU8f+okNxmB887uwYC6LegHoDWYmkL5o4vrKbfUqn95mK4iMjJlskVERAxjrcnut7Q4m6lB9vwpy2Q782rhB6kJjuNlluRUebzcefUtGcfOrV5AkdOV7if+3/t38tnnHuTZjhMAbD91ErvNxpk5BqoMx8ycFzKTXeJyMc/4d/lDy570cWvHlUJP6Ly4dgkvdbVxKke/7LZQKshuC/px2x2sL69mQZFGpE+UMtkiIiKGsdRkB2OxjHKEGVsuMlWZbMfImWxzrPfiotIJlx7cefWt2G02bDYbt19+EyUuN892nOCS2iXA4Fj0V4wJkR2hAPFEgsdaW9hUUZMxNn00gzXZE5/6OBCLUOx04bDZh7QX/PrZV3Dp/KXs7e3k7pa9rCytmPDzWW2pquXOw6+lh+EAPNNxnM5QkHYjk3080K/R6AWkIFtERMSQayhJLj4jkz0wQzPZ51YvSG8MnD+F5SKhEWqye42yjnesOgOnfWJvpFs3BZqZ7esXr0rfZ46f74uk/n3C8Rjb2o9xLNDP+9dtHdNzeY2seCHKRfqjkfQI+hKXm7eu2Midh18DBrt4rCuv5rNnXjzh58pmvrCwZrLNuuwlll7hY9lgKyNTuYiIiMx5P7jwOt639qy8z/capRF9lm4MMynI/vb513KZMSZ8KstFRhp3bg5aGW5UeCGVGBsrzfKVU+EAB/q7sdts6Wx3vgpZLjIQjWRk0c2yFki12ZtM5nN1WPYRmKwj17dU5V9KIyNTJltEROa8zZW1bB5Dna7Z57nTuvFxhpWLmBnTWl/RlDyfx+FgX18XwVgUX46A0dygWMjWdMMpzRow0xEMEE0mWOArHnMWvZAbH/ui4Yy1FVsC7qkKsk/lGKBkfXE0Ve98zAXKZIuIiIyRmd20Du9wT7AEotBWlFSwqKgkXTox2bqM9nM/3bsj53GzB3Qhh6wMx7r5EeDh1iM80XaUSvfYB6uYQXawAH2y24N+ar2DL3qsaxyuNWGhFDuHlovkGik/VS0f54KZ9RNBRERkFvDmCIgmOxM5VrcsX8/PLr9pykZhm1+TbW3HqGtqZF9vV8bxo/4+XHY71VM0QfCD687GbXfw1hUb0/eN590Gs0/2RDPZkUScznAwI1OcEWSPYwrmWJjXt/Z2X5pjk+NYNoXKyFQuIiIiMkbWrKPb7iCSiLOggMNDCsFms+FgagJsgM+deQlvffi36YEqz5w6ztryqvTxfX1drC6tnPCmx3y9YdlaXrdkNbFkgngyQaXHx5ULlo35Oi6bHbvNNuGa7I5ggCRkfJ9YA1qHbXK/Lg6bHZ/DmTHwZk1ZJU93HJ/U553LFGSLiIiMkTWTnUgmATLKAOaiSo+XrVXzebGrDcjs+ZxMJtnX18XVUzw10GG348DO/9l43rivYbPZsGPjVwdf5V2rN+c9FTSbOehluEz2VLC+UPi3i25Ib0Ytcrr45BkXEMsxhl7GT+UiIiIiY+S1vLUfS6YCk8opKoOYycrdg5v6rINpeiJh/LEoy2dpD2bz3/jR1pZxX8PMINd4Bl+MmSVG51YvnMDqxmdDRU36+ed7i7l64Qqus7RBlIlTJltERGSMrOUiZS4PfdHwnM9kQ+amRuu48zYjizvbpwgmjXctxiNoDLOx1u4vKirl81su4aIp7k39OaMPdzrIVkeRSaEgW0REZIys5SKfO/NiuiMh1pZVjfCIuSEjyA4PDuppNSYKztZg7iMbzuX/7d5Oj2X40Fj500F2ZuhVt2jlhNY2FjcsXkVHKJAe3FOsIHtSKcgWEREZI2uQvcBXzEW1mpIHsL68Gq8xDbM7MrjBri2UCrJna3u4W5av5z/27EhPrRyPYDyG3Wab1qFF2ZMkS11ubKQy6lJ4qskWEREZI19G67WZ1bpvOl0wbxH3Xvd2rlm4ghOBgXR5RXvQT4nTPWvbw9lsNsrdHnoj489kB2JRip2uKWupmI9Sl4fvnl/HjUvWTPdSTkvKZIuIiIyR19JvOfvtf4GtVfN56ORhnmg7yu+P7GFndzvLZummR1O525tRZ24aiEb47/072dPbyV+vP4dNlfNyPj4Yi036wJnx2Fo9f7qXcNpSJltERGSMrD2NfQ5lsrOdP28RAP++ezs7u9uBqZn0OJkqhslk//bwbn5/ZA+7ek7x8Wfu5w9H9uR8fCAenXEDi2RyKcgWERGZgKkarjKbzPMWsbKkImO6YIVndgfZC3wl7O7t5Lbd2znY352+/4XOkxnn/dtrz+d8fDAW1QuyOUY/GURERKTgLjCy2aapHrxSaObm1ruMzLXpeKCfFSXlGdMku8OhIVlvfyyq0qI5RkG2iIiIFNwNWYNNEhPoMT0TnFu9kPNrUkNjzAA6lkjQEwlz+fxl/N3Wy/ne+XUAvP2R33HrQ3cRN4bY9EXCBOMxlYvMMQqyRUREpOCWlZTz1xvOSXeumO0ju90OB/943jWcVTWfPqNftrkRstqY9rmpoga33ZF+QbGvr5veSIhbHrqLIwO9CrLnGAXZIiIiMinesmIjtyxfD3Da9BIvc7npMzLZ5qj0SqPe3O1wsKG8On3ugycO0eLvszzWg8wdKg4SEREZh19c8SYSzO4SiKmworSCe+redtr0Ey9zeeiLRgDoMoJsM5MNsLqsMt1R5fdH9vDwycNAaoT5rSs2TO1iZVopyBYRERmHBUUl072EWeN0CbABytwe+qNhkslkOktdZQmyF/hS3xfXLFzBnt5Ojgf6AfjtNbfimsZpjzL1VC4iIiIikqcyl4d4Mkl3JMSvD77KmZXzmOctSh9fUpwaUb6spIz3rNkCgM/hVIA9BymTLSIiIpKnMmM0/Nse/h0A71x1Rsao9AtqFvGNc67kgppF2G02+qJhan3F07JWmV4KskVERETydK7Rxg/AbXewtWpBxnGbzcYltUvSt282Nn7K3KNyEREREZE81XiLuGbhCuNjH26HykAkNwXZIiIiImNQ4kpt5Cxxuqd5JTKTKcgWERERGYNiI7gucSnIluEpyBYREREZg2KjJaHLrjBKhqfvDhEREZExMINsG7ZRzpS5TEG2iIiIyBiY5SIKsWUkCrJFRERExsBplIlY+2OLZFOQLSIiIjIGSZIA2BVkywgUZIuIiIiMwdLiMgDOqV4wypkyl2nio4iIiMgYrCqt5NdXvZlqj2+6lyIzmIJsERERkTGq8RZN9xJkhlO5iIiIiIhIgSnIFhEREREpMAXZIiIiIiIFpiBbRERERKTAFGSLiIiIiBSYgmwRERERkQJTkC0iIiIiUmAKskVERERECkxBtoiIiIhIgSnIFhEREREpsNN2rHpdU+N0L0FERERE5ihlskVERERECkxBtoiIiIhIgSnIFhEREREpMFsymZzuNYiIiIiInFaUyRYRERERKTAF2SIiIiIiBaYgW0RERESkwBRki4iIiIgUmIJsEREREZECU5AtIiIiIlJgCrJFRERERApMQbaIiIiISIH9/4w9OfUfrgwpAAAAAElFTkSuQmCC\n", 621 | "text/plain": [ 622 | "
" 623 | ] 624 | }, 625 | "metadata": { 626 | "needs_background": "dark" 627 | }, 628 | "output_type": "display_data" 629 | } 630 | ], 631 | "source": [ 632 | "import json\n", 633 | "import matplotlib.pyplot as plt\n", 634 | "\n", 635 | "top_name = top_df['Name'][0].replace('/', '')\n", 636 | "bottom_name = bottom_df['Name'][0].replace('/', '')\n", 637 | "\n", 638 | "for idx in range(2):\n", 639 | " \n", 640 | " name = [top_name, bottom_name][idx]\n", 641 | " file_path = ['top.png', 'bottom.png']\n", 642 | " \n", 643 | " url = 'https://query1.finance.yahoo.com/v8/finance/chart/' + name + '=X?region=US&lang=en-US&includePrePost=false&interval=30m&useYfid=true&range=1mo&corsDomain=finance.yahoo.com&.tsrc=finance'\n", 644 | " header = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36'}\n", 645 | " page = requests.get(url, headers=header)\n", 646 | " temp_json = json.loads(page.text)\n", 647 | " price_list = temp_json['chart']['result'][0]['indicators']['quote'][0]['close']\n", 648 | " price_list = [price for price in price_list if price != None]\n", 649 | " fig, ax = plt.subplots(figsize=(12, 6))\n", 650 | " ax.plot(price_list, color='#43B7A4')\n", 651 | " ax.set_xticks([])\n", 652 | " ax.tick_params(axis='y', colors='#43B7A4', labelsize=20)\n", 653 | " for axis in ['top','bottom','left','right']:\n", 654 | " ax.spines[axis].set_color('#43B7A4')\n", 655 | " ax.spines[axis].set_linewidth(4)\n", 656 | " plt.savefig(file_path[idx], transparent=True)" 657 | ] 658 | }, 659 | { 660 | "cell_type": "markdown", 661 | "id": "3ca4ce29-3790-4226-841a-ad2e44b0d0a6", 662 | "metadata": {}, 663 | "source": [ 664 | "# Step 2 - PowerPoint Updating" 665 | ] 666 | }, 667 | { 668 | "cell_type": "code", 669 | "execution_count": 5, 670 | "id": "54a8a21c-419f-4384-b36b-59ce112294be", 671 | "metadata": {}, 672 | "outputs": [], 673 | "source": [ 674 | "from pptx import Presentation\n", 675 | "from pptx.util import Inches\n", 676 | "\n", 677 | "# Open the PPT\n", 678 | "currencies_ppt = Presentation('Currencies.pptx')\n", 679 | "\n", 680 | "# Select the slide to be editted\n", 681 | "slide = currencies_ppt.slides[0]\n", 682 | "\n", 683 | "# Remove the old figures\n", 684 | "shapes = slide.shapes\n", 685 | "for shape in shapes:\n", 686 | " #print(shape.shape_type)\n", 687 | " if shape.shape_type == 13: # 13 = PICTURE\n", 688 | " shapes.element.remove(shape.element)\n", 689 | "\n", 690 | "# Add the new figures\n", 691 | "top_img_path = 'top.png'\n", 692 | "bottom_img_path = 'bottom.png'\n", 693 | "top_pic = slide.shapes.add_picture(top_img_path, Inches(0.40), Inches(4.85), width=Inches(5.30))\n", 694 | "bottom_pic = slide.shapes.add_picture(bottom_img_path, Inches(5.25), Inches(4.85), width=Inches(5.30))\n", 695 | "\n", 696 | "# Send the figures to the back\n", 697 | "ref_element = slide.shapes[0]._element\n", 698 | "ref_element.addprevious(top_pic._element)\n", 699 | "ref_element.addprevious(bottom_pic._element)\n", 700 | "\n", 701 | "# Separate text box and table\n", 702 | "shapes = slide.shapes\n", 703 | "text_box_list = []\n", 704 | "auto_shape_list = []\n", 705 | "table_list = []\n", 706 | "for shape_idx in range(len(shapes)):\n", 707 | " shape = shapes[shape_idx]\n", 708 | " if shape.shape_type == 17: # TEXT_BOX\n", 709 | " text_box_list.append(shape_idx)\n", 710 | " if shape.shape_type == 1: # AUTO_SHAPE\n", 711 | " auto_shape_list.append(shape_idx)\n", 712 | " if shape.shape_type == 19: # TABLE\n", 713 | " table_list.append(shape_idx)\n", 714 | "\n", 715 | "# Last update date shape index\n", 716 | "last_update_date_textbox_height = max([shapes[shape_idx].height for shape_idx in text_box_list])\n", 717 | "last_update_date_idx = [shape_idx for shape_idx in text_box_list if shapes[shape_idx].height == last_update_date_textbox_height][0]\n", 718 | "\n", 719 | "# Top 5 figure label shape index\n", 720 | "top_label_left = min([shapes[shape_idx].left for shape_idx in auto_shape_list])\n", 721 | "top_label_idx = [shape_idx for shape_idx in auto_shape_list if shapes[shape_idx].left == top_label_left][0]\n", 722 | "auto_shape_list.remove(top_label_idx)\n", 723 | "\n", 724 | "# Bottom 5 figure label shape index\n", 725 | "bottom_label_idx = auto_shape_list[0]\n", 726 | "\n", 727 | "# Top 5 table shape index\n", 728 | "top_table_left = min([shapes[shape_idx].left for shape_idx in table_list])\n", 729 | "top_table_idx = [shape_idx for shape_idx in table_list if shapes[shape_idx].left == top_table_left][0]\n", 730 | "table_list.remove(top_table_idx)\n", 731 | "\n", 732 | "# Bottom 5 table shape index\n", 733 | "bottom_table_idx = table_list[0]\n", 734 | "\n", 735 | "# Update last update date\n", 736 | "paragraph = shapes[last_update_date_idx].text_frame.paragraphs[0]\n", 737 | "paragraph.runs[4].text = datetime_now.strftime(\"%#d %b %Y %H:%M\")\n", 738 | "\n", 739 | "# Update top 5 figure label\n", 740 | "paragraph = shapes[top_label_idx].text_frame.paragraphs[0]\n", 741 | "paragraph.runs[0].text = top_df['Name'][0].replace('/', ' / ')\n", 742 | "\n", 743 | "# Update bottom 5 figure label\n", 744 | "paragraph = shapes[bottom_label_idx].text_frame.paragraphs[0]\n", 745 | "paragraph.runs[0].text = bottom_df['Name'][0].replace('/', ' / ')\n", 746 | "\n", 747 | "# Update top table\n", 748 | "top_table = shapes[top_table_idx].table\n", 749 | "for i in range(5):\n", 750 | " for j in range(4):\n", 751 | " cell = top_table.cell(i+1, j)\n", 752 | " paragraph = cell.text_frame.paragraphs[0]\n", 753 | " run = paragraph.runs[0]\n", 754 | " run.text = str(top_df.iloc[i, j])\n", 755 | "\n", 756 | "# Update bottom table\n", 757 | "bottom_table = shapes[bottom_table_idx].table\n", 758 | "for i in range(5):\n", 759 | " for j in range(4):\n", 760 | " cell = bottom_table.cell(i+1, j)\n", 761 | " paragraph = cell.text_frame.paragraphs[0]\n", 762 | " run = paragraph.runs[0]\n", 763 | " run.text = str(bottom_df.iloc[i, j])\n", 764 | " \n", 765 | "# Save the PPT\n", 766 | "currencies_ppt.save('New_Currencies.pptx')" 767 | ] 768 | }, 769 | { 770 | "cell_type": "markdown", 771 | "id": "47616b5b-7c8d-49d3-8fd7-44742bd18df2", 772 | "metadata": {}, 773 | "source": [ 774 | "# Step 3 - Export to Different Formats" 775 | ] 776 | }, 777 | { 778 | "cell_type": "code", 779 | "execution_count": 6, 780 | "id": "f99c1125-2c34-426a-8279-ecc5b80e5348", 781 | "metadata": {}, 782 | "outputs": [ 783 | { 784 | "data": { 785 | "text/plain": [ 786 | "0" 787 | ] 788 | }, 789 | "execution_count": 6, 790 | "metadata": {}, 791 | "output_type": "execute_result" 792 | } 793 | ], 794 | "source": [ 795 | "import win32com.client\n", 796 | "import os\n", 797 | "\n", 798 | "#Open the PPT\n", 799 | "ppt_file_path = os.getcwd() + '\\\\New_Currencies.pptx'\n", 800 | "powerpoint = win32com.client.Dispatch('Powerpoint.Application')\n", 801 | "deck = powerpoint.Presentations.Open(ppt_file_path)\n", 802 | "\n", 803 | "# Save the PNG\n", 804 | "img_file_path = os.getcwd() + '\\\\Currencies.png'\n", 805 | "powerpoint.ActivePresentation.Slides[0].Export(img_file_path, 'PNG')\n", 806 | "\n", 807 | "# Save the PDF\n", 808 | "pdf_file_path = os.getcwd() + '\\\\Currencies.pdf'\n", 809 | "deck.SaveAs(pdf_file_path, 32)\n", 810 | "\n", 811 | "# Quit the PPT\n", 812 | "deck.Close()\n", 813 | "powerpoint.Quit()\n", 814 | "os.system('taskkill /F /IM POWERPNT.EXE')" 815 | ] 816 | } 817 | ], 818 | "metadata": { 819 | "kernelspec": { 820 | "display_name": "Python 3", 821 | "language": "python", 822 | "name": "python3" 823 | }, 824 | "language_info": { 825 | "codemirror_mode": { 826 | "name": "ipython", 827 | "version": 3 828 | }, 829 | "file_extension": ".py", 830 | "mimetype": "text/x-python", 831 | "name": "python", 832 | "nbconvert_exporter": "python", 833 | "pygments_lexer": "ipython3", 834 | "version": "3.9.4" 835 | } 836 | }, 837 | "nbformat": 4, 838 | "nbformat_minor": 5 839 | } 840 | --------------------------------------------------------------------------------