├── .gitmodules
├── src
├── types
│ ├── Error.sol
│ ├── BytesCalldata.sol
│ ├── protocols
│ │ ├── Dyn.sol
│ │ ├── WETH.sol
│ │ ├── ERC721.sol
│ │ ├── UniV2Pair.sol
│ │ ├── ERC6909.sol
│ │ ├── ERC20.sol
│ │ └── UniV3Pool.sol
│ ├── Action.sol
│ └── PayloadPointer.sol
├── LotusRouter.sol
└── util
│ ├── BBCEncoder.sol
│ └── BBCDecoder.sol
├── .gitignore
├── test
├── interfaces
│ ├── IUniV3FlashCallback.sol
│ ├── IUniV2Callee.sol
│ └── IUniV3SwapCallback.sol
├── mock
│ ├── ERC721Mock.sol
│ ├── DynTargetMock.sol
│ ├── UniV2PairMock.sol
│ ├── ERC6909Mock.sol
│ ├── ERC20Mock.sol
│ ├── UniV3PoolMock.sol
│ ├── WETHMock.sol
│ └── BBCDecoderMock.sol
└── BBCDecoder.t.sol
├── foundry.toml
├── .github
└── workflows
│ └── test.yml
├── .gas-snapshot
├── README.md
└── LICENSE
/.gitmodules:
--------------------------------------------------------------------------------
1 | [submodule "lib/forge-std"]
2 | path = lib/forge-std
3 | url = https://github.com/foundry-rs/forge-std
4 |
--------------------------------------------------------------------------------
/src/types/Error.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | library Error {
5 | error UnexpectedEntryPoint();
6 | error CallFailure();
7 | }
8 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Compiler files
2 | cache/
3 | out/
4 |
5 | # Ignores development broadcast logs
6 | !/broadcast
7 | /broadcast/*/31337/
8 | /broadcast/**/dry-run/
9 |
10 | # Docs
11 | docs/
12 |
13 | # Dotenv file
14 | .env
15 |
--------------------------------------------------------------------------------
/test/interfaces/IUniV3FlashCallback.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | interface IUniV3FlashCallback {
5 | function uniswapV3FlashCallback(uint256 fee0, uint256 fee1, bytes calldata data) external;
6 | }
7 |
--------------------------------------------------------------------------------
/foundry.toml:
--------------------------------------------------------------------------------
1 | [profile.default]
2 | src = "src"
3 | out = "out"
4 | libs = ["lib"]
5 |
6 | optimizer_runs = 0xffffffff
7 | via_ir = true
8 | bytecode_hash = "none"
9 |
10 | [fmt]
11 | multiline_func_header = "params_first"
12 | sort_imports = true
13 | line_length = 100
14 | bracket_spacing = true
15 |
--------------------------------------------------------------------------------
/test/interfaces/IUniV2Callee.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | interface IUniV2Callee {
5 | function uniswapV2Call(
6 | address sender,
7 | uint256 amount0,
8 | uint256 amount1,
9 | bytes calldata data
10 | ) external;
11 | }
12 |
--------------------------------------------------------------------------------
/test/interfaces/IUniV3SwapCallback.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | interface IUniV3SwapCallback {
5 | function uniswapV3SwapCallback(
6 | int256 amount0Delta,
7 | int256 amount1Delta,
8 | bytes calldata data
9 | ) external;
10 | }
11 |
--------------------------------------------------------------------------------
/src/types/BytesCalldata.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | // Why? Because the compiler doesn't like unconventional usage of the standard
5 | // calldata bytes pointer `bytes calldata`. As such, we occupy 32 bits to
6 | // indicate its start, however, its encoding is dependent on the schemas defined
7 | // in the [`BBCDecoder`](src/types/BBCDecoder.sol) library.
8 | type BytesCalldata is uint32;
9 |
--------------------------------------------------------------------------------
/src/types/protocols/Dyn.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | import { BytesCalldata } from "src/types/BytesCalldata.sol";
5 |
6 | function dynCall(address target, uint256 value, BytesCalldata data) returns (bool success) {
7 | assembly ("memory-safe") {
8 | let fmp := mload(0x40)
9 |
10 | let dataLen := shr(0xe0, calldataload(data))
11 |
12 | data := add(data, 0x04)
13 |
14 | calldatacopy(fmp, data, dataLen)
15 |
16 | success := call(gas(), target, value, fmp, dataLen, 0x00, 0x00)
17 | }
18 | }
19 |
--------------------------------------------------------------------------------
/test/mock/ERC721Mock.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | contract ERC721Mock {
5 | event Transfer(address indexed sender, address indexed receiver, uint256 indexed tokenId);
6 |
7 | bool internal _shouldThrow = false;
8 |
9 | function setShouldThrow(
10 | bool shouldThrow
11 | ) public {
12 | _shouldThrow = shouldThrow;
13 | }
14 |
15 | function transferFrom(address sender, address receiver, uint256 tokenId) public {
16 | require(!_shouldThrow);
17 |
18 | emit Transfer(sender, receiver, tokenId);
19 | }
20 | }
21 |
--------------------------------------------------------------------------------
/src/types/Action.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | // ## Action Enumeration
5 | //
6 | // This represents the opcodes for the Lotus Router.
7 | //
8 | // Each option maps to an integer (index zero), and we dispatch based on which
9 | // action is encoded. This allows for tighter packing of calldata.
10 | enum Action {
11 | Halt,
12 | SwapUniV2,
13 | SwapUniV3,
14 | FlashUniV3,
15 | TransferERC20,
16 | TransferFromERC20,
17 | TransferFromERC721,
18 | TransferERC6909,
19 | TransferFromERC6909,
20 | DepositWETH,
21 | WithdrawWETH,
22 | DynCall
23 | }
24 |
--------------------------------------------------------------------------------
/test/mock/DynTargetMock.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | contract DynTargetMock {
5 | event Called(address caller, uint256 value, bytes data);
6 |
7 | bool _shouldThrow = false;
8 |
9 | function setShouldThrow(bool shouldThrow) public {
10 | _shouldThrow = shouldThrow;
11 | }
12 |
13 | fallback() external payable {
14 | require(!_shouldThrow);
15 |
16 | emit Called(msg.sender, msg.value, msg.data);
17 | }
18 |
19 | receive() external payable {
20 | require(!_shouldThrow);
21 |
22 | emit Called(msg.sender, msg.value, new bytes(0));
23 | }
24 | }
25 |
--------------------------------------------------------------------------------
/.github/workflows/test.yml:
--------------------------------------------------------------------------------
1 | name: CI
2 |
3 | on:
4 | push:
5 | pull_request:
6 | workflow_dispatch:
7 |
8 | env:
9 | FOUNDRY_PROFILE: ci
10 |
11 | jobs:
12 | check:
13 | strategy:
14 | fail-fast: true
15 |
16 | name: Foundry project
17 | runs-on: ubuntu-latest
18 | steps:
19 | - uses: actions/checkout@v4
20 | with:
21 | submodules: recursive
22 |
23 | - name: Install Foundry
24 | uses: foundry-rs/foundry-toolchain@v1
25 |
26 | - name: Show Forge version
27 | run: |
28 | forge --version
29 |
30 | - name: Run Forge fmt
31 | run: |
32 | forge fmt --check
33 | id: fmt
34 |
35 | - name: Run Forge build
36 | run: |
37 | forge build --sizes
38 | id: build
39 |
40 | - name: Run Forge tests
41 | run: |
42 | forge test -vvv
43 | id: test
44 |
--------------------------------------------------------------------------------
/test/mock/UniV2PairMock.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | import { IUniV2Callee } from "test/interfaces/IUniV2Callee.sol";
5 |
6 | contract UniV2PairMock {
7 | event Swap(uint256 amount0Out, uint256 amount1Out, address to, bytes data);
8 |
9 | bool internal _shouldDoCallback = false;
10 | bool internal _shouldThrow = false;
11 |
12 | function setDoCallback(
13 | bool shouldDoCallback
14 | ) public {
15 | _shouldDoCallback = shouldDoCallback;
16 | }
17 |
18 | function setShouldThrow(
19 | bool shouldThrow
20 | ) public {
21 | _shouldThrow = shouldThrow;
22 | }
23 |
24 | function swap(uint256 amount0Out, uint256 amount1Out, address to, bytes calldata data) public {
25 | if (_shouldThrow) revert();
26 |
27 | emit Swap(amount0Out, amount1Out, to, data);
28 |
29 | if (_shouldDoCallback && data.length > 0) {
30 | IUniV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
31 | }
32 | }
33 | }
34 |
--------------------------------------------------------------------------------
/test/mock/ERC6909Mock.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | contract ERC6909Mock {
5 | event Transfer(
6 | address caller, address sender, address receiver, uint256 tokenId, uint256 amount
7 | );
8 |
9 | bool internal _shouldThrow = false;
10 | bool internal _result = true;
11 |
12 | function setShouldThrow(
13 | bool shouldThrow
14 | ) public {
15 | _shouldThrow = shouldThrow;
16 | }
17 |
18 | function setResult(
19 | bool result
20 | ) public {
21 | _result = result;
22 | }
23 |
24 | function transfer(address receiver, uint256 tokenId, uint256 amount) public returns (bool) {
25 | require(!_shouldThrow);
26 |
27 | emit Transfer(msg.sender, msg.sender, receiver, tokenId, amount);
28 |
29 | return _result;
30 | }
31 |
32 | function transferFrom(
33 | address sender,
34 | address receiver,
35 | uint256 tokenId,
36 | uint256 amount
37 | ) public returns (bool) {
38 | require(!_shouldThrow);
39 |
40 | emit Transfer(msg.sender, sender, receiver, tokenId, amount);
41 |
42 | return _result;
43 | }
44 | }
45 |
--------------------------------------------------------------------------------
/test/mock/ERC20Mock.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | contract ERC20Mock {
5 | event Transfer(address indexed sender, address indexed receiver, uint256 amount);
6 |
7 | bool internal _shouldThrow = false;
8 | bool internal _shouldReturnAnything = true;
9 | bool internal _result = true;
10 |
11 | function setShouldThrow(
12 | bool shouldThrow
13 | ) public {
14 | _shouldThrow = shouldThrow;
15 | }
16 |
17 | function setShouldReturnAnything(
18 | bool shouldReturnAnything
19 | ) public {
20 | _shouldReturnAnything = shouldReturnAnything;
21 | }
22 |
23 | function setResult(
24 | bool result
25 | ) public {
26 | _result = result;
27 | }
28 |
29 | function transfer(address receiver, uint256 amount) public returns (bool) {
30 | require(!_shouldThrow);
31 |
32 | emit Transfer(msg.sender, receiver, amount);
33 |
34 | if (_shouldReturnAnything) return _result;
35 |
36 | assembly {
37 | return(0x00, 0x00)
38 | }
39 | }
40 |
41 | function transferFrom(address sender, address receiver, uint256 amount) public returns (bool) {
42 | require(!_shouldThrow);
43 |
44 | emit Transfer(sender, receiver, amount);
45 |
46 | if (_shouldReturnAnything) return _result;
47 |
48 | assembly {
49 | return(0x00, 0x00)
50 | }
51 | }
52 | }
53 |
--------------------------------------------------------------------------------
/src/types/protocols/WETH.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | type WETH is address;
5 |
6 | using { deposit, withdraw } for WETH global;
7 |
8 | uint256 constant withdrawSelector =
9 | 0x2e1a7d4d00000000000000000000000000000000000000000000000000000000;
10 |
11 | // ## Execute WETH deposit
12 | //
13 | // ### Parameters
14 | //
15 | // - value: The deposit amount.
16 | //
17 | // ### Returns
18 | //
19 | // - success: returns True if the deposit succeeded
20 | //
21 | // ### Notes
22 | //
23 | // Hard-coding the WETH address would be profitable for single-chain
24 | // implementations, though we're focusing on multi-chain deployability, so our
25 | // implementation will require it to be passed in as calldata.
26 | //
27 | // Also, using the fallback function with no calldata is marginally cheaper than
28 | // using the `deposit()` function, as Solidity short circuits the selector
29 | // dispatcher in WETH if the `calldatasize` is zero.
30 | //
31 | // ### Procedures
32 | //
33 | // 01. Call the `weth` contract, returning the boolean.
34 | function deposit(WETH weth, uint256 value) returns (bool success) {
35 | assembly ("memory-safe") {
36 | success := call(gas(), weth, value, 0x00, 0x00, 0x00, 0x00)
37 | }
38 | }
39 |
40 | // ## Execute WETH withdraw
41 | //
42 | // ### Parameters
43 | //
44 | // - value: The withdraw amount.
45 | //
46 | // ### Returns
47 | //
48 | // - success: returns True if the withdraw succeeded
49 | //
50 | // ### Notes
51 | //
52 | // Hard-coding the WETH address would be profitable for single-chain
53 | // implementations, though we're focusing on multi-chain deployability, so our
54 | // implementation will require it to be passed in as calldata.
55 | //
56 | // ### Procedures
57 | //
58 | // 01. Store the `withdrawSelector`.
59 | // 02. Store the `value`.
60 | // 03. Call the `weth` contract, returning the boolean.
61 | function withdraw(WETH weth, uint256 value) returns (bool success) {
62 | assembly ("memory-safe") {
63 | mstore(0x00, withdrawSelector)
64 |
65 | mstore(0x04, value)
66 |
67 | success := call(gas(), weth, 0x00, 0x00, 0x24, 0x00, 0x00)
68 | }
69 | }
70 |
--------------------------------------------------------------------------------
/src/types/protocols/ERC721.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | type ERC721 is address;
5 |
6 | using { transferFrom } for ERC721 global;
7 |
8 | uint256 constant transferFromSelector =
9 | 0x23b872dd00000000000000000000000000000000000000000000000000000000;
10 |
11 | // ## Execute ERC721 transfer
12 | //
13 | // ### Parameters
14 | //
15 | // - token: The ERC721 address.
16 | // - sender: The transfer sender address.
17 | // - receiver: The transfer receiver address.
18 | // - tokenId: The token ID to transfer.
19 | //
20 | // ### Returns
21 | //
22 | // - success: returns True if the transfer succeeded
23 | //
24 | // ### Notes
25 | //
26 | // Since the calldata of this is small, we allocate the memory for it in the
27 | // scratch space normally used by Solidity for keccak hashing. This reduces
28 | // overall memory allocations. However, it's worth noting that doing this
29 | // occupies the first 100 bytes, which overwrites the free memory pointer and
30 | // the first four bytes of the zero slot `0x60`. So we overwrite these values
31 | // at the end to ensure the free memory pointer and zero slot are correct.
32 | //
33 | // ### Procedures
34 | //
35 | // 01. Load the free memory pointer.
36 | // 02. Store the `transferFromSelector`.
37 | // 03. Store the `sender`.
38 | // 04. Store the `receiver`.
39 | // 05. Store the `tokenId`.
40 | // 06. Call the `token` contract, caching the `success` boolean.
41 | // 07. Check that either the `returndatasize` is zero or the returned value is.
42 | // non-zero.
43 | // 08. Logical AND the success conditions.
44 | // 09. Restore the free memory pointer.
45 | // 10. Restore the zero slot.
46 | function transferFrom(
47 | ERC721 token,
48 | address sender,
49 | address receiver,
50 | uint256 tokenId
51 | ) returns (bool success) {
52 | assembly ("memory-safe") {
53 | let fmp := mload(0x40)
54 |
55 | mstore(0x00, transferFromSelector)
56 |
57 | mstore(0x04, sender)
58 |
59 | mstore(0x24, receiver)
60 |
61 | mstore(0x44, tokenId)
62 |
63 | success := call(gas(), token, 0x00, 0x00, 0x64, 0x00, 0x00)
64 |
65 | mstore(0x40, fmp)
66 | }
67 | }
68 |
--------------------------------------------------------------------------------
/src/types/PayloadPointer.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | import { Action } from "src/types/Action.sol";
5 | import { Error } from "src/types/Error.sol";
6 |
7 | type Ptr is uint256;
8 |
9 | using { nextAction } for Ptr global;
10 |
11 | uint256 constant takeAction = 0x19ff8034;
12 | uint256 constant uniswapV2Call = 0x10d1e85c;
13 | uint256 constant uniswapV3SwapCallback = 0xfa461e33;
14 | uint256 constant uniswapV3FlashCallback = 0xe9cbafb0;
15 |
16 | // ## Finds the Payload Pointer
17 | //
18 | // ### Returns
19 | //
20 | // - ptr: A pointer to the payload in calldata
21 | //
22 | // ### Reverts
23 | //
24 | // - If the selector does not match any expected ones.
25 | //
26 | // ### Notes
27 | //
28 | // For `callLotusRouter()`, the payload immediately follows the selector at
29 | // index four (`0x04`).
30 | //
31 | // For `uniswapV2Call(address,uint256,uint256,bytes)`, the payload is in the
32 | // fourth parameter, `bytes calldata data`, where the offset is at index 100,
33 | // the length is at index 132, and the data itself is at index 164 (`0xa4`).
34 | function findPtr() pure returns (Ptr) {
35 | uint256 selector = uint256(uint32(msg.sig));
36 |
37 | if (selector == takeAction) {
38 | return Ptr.wrap(0x04);
39 | } else if (selector == uniswapV2Call) {
40 | return Ptr.wrap(0xa4);
41 | } else if (selector == uniswapV3SwapCallback) {
42 | return Ptr.wrap(0x84);
43 | } else if (selector == uniswapV3FlashCallback) {
44 | return Ptr.wrap(0x84);
45 | } else {
46 | revert Error.UnexpectedEntryPoint();
47 | }
48 | }
49 |
50 | // ## Loads the Next Action from Calldata
51 | //
52 | // ## Parameters
53 | //
54 | // - ptr: The payload pointer
55 | //
56 | // ## Returns
57 | //
58 | // - ptr: The incremented payload pointer
59 | // - action: The loaded action
60 | //
61 | // ## Notes
62 | //
63 | // The `ptr` parameter is incremented in place to allow continuous parsing.
64 | function nextAction(
65 | Ptr ptr
66 | ) pure returns (Ptr, Action action) {
67 | assembly {
68 | action := shr(0xf8, calldataload(ptr))
69 |
70 | ptr := add(ptr, 0x01)
71 | }
72 |
73 | return (ptr, action);
74 | }
75 |
--------------------------------------------------------------------------------
/test/mock/UniV3PoolMock.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | import { IUniV3FlashCallback } from "test/interfaces/IUniV3FlashCallback.sol";
5 | import { IUniV3SwapCallback } from "test/interfaces/IUniV3SwapCallback.sol";
6 |
7 | contract UniV3PoolMock {
8 | event Swap(
9 | address sender,
10 | address recipient,
11 | bool zeroForOne,
12 | int256 amountSpecified,
13 | uint160 sqrtPriceX96,
14 | bytes data
15 | );
16 |
17 | event Flash(address recipient, uint256 amount0, uint256 amount1, bytes data);
18 |
19 | bool internal _shouldDoCallback = false;
20 | bool internal _shouldThrow = false;
21 | int256 internal _amount0Delta = 0x01;
22 | int256 internal _amount1Delta = 0x02;
23 |
24 | function setDoCallback(
25 | bool shouldDoCallback
26 | ) public {
27 | _shouldDoCallback = shouldDoCallback;
28 | }
29 |
30 | function setShouldThrow(
31 | bool shouldThrow
32 | ) public {
33 | _shouldThrow = shouldThrow;
34 | }
35 |
36 | function setDeltas(int256 amount0Delta, int256 amount1Delta) public {
37 | _amount0Delta = amount0Delta;
38 | _amount1Delta = amount1Delta;
39 | }
40 |
41 | function swap(
42 | address recipient,
43 | bool zeroForOne,
44 | int256 amountSpecified,
45 | uint160 sqrtPriceLimitX96,
46 | bytes calldata data
47 | ) public {
48 | require(!_shouldThrow);
49 |
50 | emit Swap(msg.sender, recipient, zeroForOne, amountSpecified, sqrtPriceLimitX96, data);
51 |
52 | if (_shouldDoCallback) {
53 | IUniV3SwapCallback(msg.sender).uniswapV3SwapCallback(_amount0Delta, _amount1Delta, data);
54 | }
55 | }
56 |
57 | function flash(
58 | address recipient,
59 | uint256 amount0,
60 | uint256 amount1,
61 | bytes calldata data
62 | ) public {
63 | require(!_shouldThrow);
64 |
65 | emit Flash(recipient, amount0, amount1, data);
66 |
67 | if (_shouldDoCallback) {
68 | IUniV3FlashCallback(msg.sender).uniswapV3FlashCallback(amount0, amount1, data);
69 | }
70 | }
71 | }
72 |
--------------------------------------------------------------------------------
/src/types/protocols/UniV2Pair.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | import { BytesCalldata } from "src/types/BytesCalldata.sol";
5 |
6 | type UniV2Pair is address;
7 |
8 | using { swap } for UniV2Pair global;
9 |
10 | uint256 constant swapSelector = 0x022c0d9f00000000000000000000000000000000000000000000000000000000;
11 |
12 | // ## Execute Uniswap V2 Swap
13 | //
14 | // ### Parameters
15 | //
16 | // - pair: The Uniswap V2 pair address.
17 | // - amount0Out: The expected output amount for token 0.
18 | // - amount1Out: The expected output amount for token 1.
19 | // - to: The receiver of the swap output.
20 | // - data: The arbitrary calldata for UniV2 callbacks, if any.
21 | //
22 | // ### Returns
23 | //
24 | // - success: returns True if the swap succeeded.
25 | //
26 | // ### Notes
27 | //
28 | // If swapping across multiple pairs, `to` will be the next pair in the chain.
29 | //
30 | // ### Procedures
31 | //
32 | // 01. Load the free memory pointer.
33 | // 02. Load the `data` length as a 32 bit integer.
34 | // 03. Increment the `data` pointer to the beginning of the bytes.
35 | // 04. Store the `swapSelector`.
36 | // 05. Store the `amount0Out` argument.
37 | // 06. Store the `amount1Out` argument.
38 | // 07. Store the `to` argument.
39 | // 08. Store the `data` offset, relative to the slot after the selector.
40 | // 09. Store the `dataLen`.
41 | // 10. Copy the data from calldata to memory.
42 | // 11. Call the `pair` contract, returning `success` to the caller of this
43 | // function.
44 | function swap(
45 | UniV2Pair pair,
46 | uint256 amount0Out,
47 | uint256 amount1Out,
48 | address to,
49 | BytesCalldata data
50 | ) returns (bool success) {
51 | assembly ("memory-safe") {
52 | let fmp := mload(0x40)
53 |
54 | let dataLen := shr(0xe0, calldataload(data))
55 |
56 | data := add(data, 0x04)
57 |
58 | mstore(add(fmp, 0x00), swapSelector)
59 |
60 | mstore(add(fmp, 0x04), amount0Out)
61 |
62 | mstore(add(fmp, 0x24), amount1Out)
63 |
64 | mstore(add(fmp, 0x44), to)
65 |
66 | mstore(add(fmp, 0x64), 0x80)
67 |
68 | mstore(add(fmp, 0x84), dataLen)
69 |
70 | calldatacopy(add(fmp, 0xa4), data, dataLen)
71 |
72 | success := call(gas(), pair, 0x00, fmp, add(dataLen, 0xc4), 0x00, 0x00)
73 | }
74 | }
75 |
--------------------------------------------------------------------------------
/src/types/protocols/ERC6909.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | type ERC6909 is address;
5 |
6 | using { transfer, transferFrom } for ERC6909 global;
7 |
8 | uint256 constant transferSelector =
9 | 0x095bcdb600000000000000000000000000000000000000000000000000000000;
10 | uint256 constant transferFromSelector =
11 | 0xfe99049a00000000000000000000000000000000000000000000000000000000;
12 |
13 | // ## Execute ERC6909 transfer
14 | //
15 | // ### Parameters
16 | //
17 | // - token: The ERC6909 address.
18 | // - receiver: The transfer receiver address.
19 | // - tokenId: The ID of the token to transfer.
20 | // - amount: The transfer amount.
21 | //
22 | // ### Returns
23 | //
24 | // - success: returns True if the transfer succeeded
25 | //
26 | // ### Notes
27 | //
28 | // Since the calldata of this is small, we allocate the memory for it in the
29 | // scratch space normally used by Solidity for keccak hashing. This reduces
30 | // overall memory allocations. However, it's worth noting that doing this
31 | // occupies the first 100 bytes, which overwrites the free memory pointer and
32 | // the first four bytes of the zero slot `0x60`. So we overwrite these upper
33 | // bytes at the end to ensure the free memory pointer and zero slot are correct.
34 | //
35 | // ### Procedures
36 | //
37 | // 01. Load the free memory pointer.
38 | // 02. Store the `transferSelector`.
39 | // 03. Store the `receiver`.
40 | // 04. Store the `tokenId`.
41 | // 05. Store the `amount`.
42 | // 06. Call the `token` contract, caching the `success` boolean.
43 | // 07. Check that the return value is true (0x01).
44 | // 08. Restore the free memory pointer.
45 | // 09. Restore the zero slot.
46 | function transfer(
47 | ERC6909 multitoken,
48 | address receiver,
49 | uint256 tokenId,
50 | uint256 amount
51 | ) returns (bool success) {
52 | assembly ("memory-safe") {
53 | let fmp := mload(0x40)
54 |
55 | mstore(0x00, transferSelector)
56 |
57 | mstore(0x04, receiver)
58 |
59 | mstore(0x24, tokenId)
60 |
61 | mstore(0x44, amount)
62 |
63 | success := call(gas(), multitoken, 0x00, 0x00, 0x64, 0x00, 0x20)
64 |
65 | success := and(success, eq(0x01, mload(0x00)))
66 |
67 | mstore(0x40, fmp)
68 |
69 | mstore(0x60, 0x00)
70 | }
71 | }
72 |
73 | // ## Execute ERC6909 transfer
74 | //
75 | // ### Parameters
76 | //
77 | // - token: The ERC6909 address.
78 | // - receiver: The transfer receiver address.
79 | // - tokenId: The ID of the token to transfer.
80 | // - amount: The transfer amount.
81 | //
82 | // ### Returns
83 | //
84 | // - success: returns True if the transfer succeeded
85 | //
86 | // ### Notes
87 | //
88 | // We store data at the end of allocated memory. Generally, memory is not
89 | // allocated (as in the free memory pointer is updated), but in the interest of
90 | // keeping this straight forward for modifications, we use the free memory
91 | // pointer to start allocating memory.
92 | //
93 | // Note that we do not update the free memory pointer, as this allows solidity
94 | // to overwrite this memory, saving space. Again, this is likely of little to
95 | // no consequence in the Lotus Router, but modifications may.
96 | //
97 | // ### Procedures
98 | //
99 | // 01. Load the free memory pointer.
100 | // 02. Store the `transferFrom`.
101 | // 03. Store the `sender`.
102 | // 04. Store the `receiver`.
103 | // 05. Store the `tokenId`.
104 | // 06. Store the `amount`.
105 | // 07. Call the `token` contract, caching the `success` boolean.
106 | // 08. Check that the return value is true (0x01).
107 | function transferFrom(
108 | ERC6909 multitoken,
109 | address sender,
110 | address receiver,
111 | uint256 tokenId,
112 | uint256 amount
113 | ) returns (bool success) {
114 | assembly ("memory-safe") {
115 | let fmp := mload(0x40)
116 |
117 | mstore(add(fmp, 0x00), transferFromSelector)
118 |
119 | mstore(add(fmp, 0x04), sender)
120 |
121 | mstore(add(fmp, 0x24), receiver)
122 |
123 | mstore(add(fmp, 0x44), tokenId)
124 |
125 | mstore(add(fmp, 0x64), amount)
126 |
127 | success := call(gas(), multitoken, 0x00, fmp, 0x84, fmp, 0x20)
128 |
129 | success := and(success, eq(0x01, mload(fmp)))
130 | }
131 | }
132 |
--------------------------------------------------------------------------------
/src/types/protocols/ERC20.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | type ERC20 is address;
5 |
6 | using { transfer, transferFrom } for ERC20 global;
7 |
8 | uint256 constant transferSelector =
9 | 0xa9059cbb00000000000000000000000000000000000000000000000000000000;
10 | uint256 constant transferFromSelector =
11 | 0x23b872dd00000000000000000000000000000000000000000000000000000000;
12 |
13 | // ## Execute ERC20 transfer
14 | //
15 | // ### Parameters
16 | //
17 | // - token: The ERC20 address.
18 | // - receiver: The transfer receiver address.
19 | // - amount: The transfer amount.
20 | //
21 | // ### Returns
22 | //
23 | // - success: returns True if the transfer succeeded
24 | //
25 | // ### Notes
26 | //
27 | // ERC20 conformity is a debacle. Some never return anything, some revert on
28 | // failure, some return false on failure. So we check that the execution context
29 | // did not revert and that either nothing was returned, or if something was
30 | // returned, it is a nonzero value (not false).
31 | //
32 | // Since the calldata of this is small, we allocate the memory for it in the
33 | // scratch space normally used by Solidity for keccak hashing. This reduces
34 | // overall memory allocations. However, it's worth noting that doing this
35 | // occupies the first 68 bytes, which overwrites the first four bytes of memory
36 | // slot `0x40`, which contains the free memory pointer. So we overwrite these
37 | // upper bytes at the end to ensure the free memory pointer is correct.
38 | //
39 | // ### Procedures
40 | //
41 | // 01. Store the `transferSelector`.
42 | // 02. Store the `receiver`.
43 | // 03. Store the `amount`.
44 | // 04. Call the `token` contract, caching the `success` boolean.
45 | // 05. Check that either the `returndatasize` is zero or the returned value is.
46 | // non-zero.
47 | // 06. Logical AND the success conditions.
48 | // 07. Store zero to restore the upper bytes of the free memory pointer to zero.
49 | function transfer(ERC20 token, address receiver, uint256 amount) returns (bool success) {
50 | assembly ("memory-safe") {
51 | mstore(0x00, transferSelector)
52 |
53 | mstore(0x04, receiver)
54 |
55 | mstore(0x24, amount)
56 |
57 | success := call(gas(), token, 0x00, 0x00, 0x44, 0x00, 0x20)
58 |
59 | let successERC20 := or(iszero(returndatasize()), eq(0x01, mload(0x00)))
60 |
61 | success := and(success, successERC20)
62 |
63 | mstore(0x24, 0x00)
64 | }
65 | }
66 |
67 | // ## Execute ERC20 transfer
68 | //
69 | // ### Parameters
70 | //
71 | // - token: The ERC20 address.
72 | // - sender: The transfer sender address.
73 | // - receiver: The transfer receiver address.
74 | // - amount: The transfer amount.
75 | //
76 | // ### Returns
77 | //
78 | // - success: returns True if the transfer succeeded
79 | //
80 | // ### Notes
81 | //
82 | // ERC20 conformity is a debacle. Some never return anything, some revert on
83 | // failure, some return false on failure. So we check that the execution context
84 | // did not revert and that either nothing was returned, or if something was
85 | // returned, it is a nonzero value (not false).
86 | //
87 | // Since the calldata of this is small, we allocate the memory for it in the
88 | // scratch space normally used by Solidity for keccak hashing. This reduces
89 | // overall memory allocations. However, it's worth noting that doing this
90 | // occupies the first 100 bytes, which overwrites the free memory pointer and
91 | // the first four bytes of the zero slot `0x60`. So we overwrite these values
92 | // at the end to ensure the free memory pointer and zero slot are correct.
93 | //
94 | // ### Procedures
95 | //
96 | // 01. Load the free memory pointer.
97 | // 02. Store the `transferFromSelector`.
98 | // 03. Store the `sender`.
99 | // 04. Store the `receiver`.
100 | // 05. Store the `amount`.
101 | // 06. Call the `token` contract, caching the `success` boolean.
102 | // 07. Check that either the `returndatasize` is zero or the returned value is
103 | // true (0x01).
104 | // 08. Logical AND the success conditions.
105 | // 09. Restore the free memory pointer.
106 | // 10. Restore the zero slot.
107 | function transferFrom(
108 | ERC20 token,
109 | address sender,
110 | address receiver,
111 | uint256 amount
112 | ) returns (bool success) {
113 | assembly ("memory-safe") {
114 | let fmp := mload(0x40)
115 |
116 | mstore(0x00, transferFromSelector)
117 |
118 | mstore(0x04, sender)
119 |
120 | mstore(0x24, receiver)
121 |
122 | mstore(0x44, amount)
123 |
124 | success := call(gas(), token, 0x00, 0x00, 0x64, 0x00, 0x20)
125 |
126 | let successERC20 := or(iszero(returndatasize()), eq(0x01, mload(0x00)))
127 |
128 | success := and(success, successERC20)
129 |
130 | mstore(0x40, fmp)
131 |
132 | mstore(0x60, 0x00)
133 | }
134 | }
135 |
--------------------------------------------------------------------------------
/src/types/protocols/UniV3Pool.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | import { BytesCalldata } from "src/types/BytesCalldata.sol";
5 |
6 | type UniV3Pool is address;
7 |
8 | using { swap, flash } for UniV3Pool global;
9 |
10 | uint256 constant swapSelector = 0x128acb0800000000000000000000000000000000000000000000000000000000;
11 | uint256 constant flashSelector = 0x490e6cbc00000000000000000000000000000000000000000000000000000000;
12 |
13 | // ## Execute Uniswap V3 Swap
14 | //
15 | // ### Parameters
16 | //
17 | // - pool: The Uniswap V3 pool address.
18 | // - recipient: The receiver of the swap output.
19 | // - zeroForOne: Direction of the trade; "true": zero for one, "false": one for zero.
20 | // - amountSpecified: The "exact" portion of the trade amount (More in Notes).
21 | // - sqrtPriceLimitX96: The Q64.96 representation of the price limit.
22 | // - data: The arbitrary calldata for UniV3 callbacks, if any.
23 | //
24 | // ### Returns
25 | //
26 | // - success: returns True if the flash succeeded.
27 | //
28 | // ### Notes
29 | //
30 | // The `amountSpecified` parameter is positive if the input amount is the
31 | // "exact" amount parameter, but if it is negative, the output amount is the
32 | // "exact" amount parameter.
33 | //
34 | // ### Procedures
35 | //
36 | // 01. Load the free memory pointer.
37 | // 02. Load the `data` length as a 32 bit integer.
38 | // 03. Increment the `data` pointer to the beginning of the bytes.
39 | // 04. Store the `swapSelector`.
40 | // 05. Store the `recipient`.
41 | // 06. Store the `zeroForOne`.
42 | // 07. Store the `amountSpecified`.
43 | // 08. Store the `sqrtPriceLimitX96`.
44 | // 09. Store the `data` offset, relative to the slot after the selector.
45 | // 10. Store the `dataLen`.
46 | // 11. Copy the data from calldata to memory.
47 | // 12. Call the `pool` contract, returning `success` to the caller of this
48 | // function.
49 | function swap(
50 | UniV3Pool pool,
51 | address recipient,
52 | bool zeroForOne,
53 | int256 amountSpecified,
54 | uint160 sqrtPriceLimitX96,
55 | BytesCalldata data
56 | ) returns (bool success) {
57 | assembly ("memory-safe") {
58 | let fmp := mload(0x40)
59 |
60 | let dataLen := shr(0xe0, calldataload(data))
61 |
62 | data := add(data, 0x04)
63 |
64 | mstore(add(fmp, 0x00), swapSelector)
65 |
66 | mstore(add(fmp, 0x04), recipient)
67 |
68 | mstore(add(fmp, 0x24), zeroForOne)
69 |
70 | mstore(add(fmp, 0x44), amountSpecified)
71 |
72 | mstore(add(fmp, 0x64), sqrtPriceLimitX96)
73 |
74 | mstore(add(fmp, 0x84), 0xa0)
75 |
76 | mstore(add(fmp, 0xa4), dataLen)
77 |
78 | calldatacopy(add(fmp, 0xc4), data, dataLen)
79 |
80 | success := call(gas(), pool, 0x00, fmp, add(dataLen, 0xe4), 0x00, 0x00)
81 | }
82 | }
83 |
84 | // ## Execute Uniswap V3 Flash Loan
85 | //
86 | // ### Parameters
87 | //
88 | // - pool: The Uniswap V3 pool address.
89 | // - recipient: The receiver of the flash output.
90 | // - amount0: The amount of Token 0 to flash.
91 | // - amount1: The amount of Token 1 to flash.
92 | // - data: The arbitrary calldata for UniV3 callbacks, if any.
93 | //
94 | // ### Returns
95 | //
96 | // - success: returns True if the flash succeeded.
97 | //
98 | // ### Notes
99 | //
100 | // The `amountSpecified` parameter is positive if the input amount is the
101 | // "exact" amount parameter, but if it is negative, the output amount is the
102 | // "exact" amount parameter.
103 | //
104 | // ### Procedures
105 | //
106 | // 01. Load the free memory pointer.
107 | // 02. Load the `data` length as a 32 bit integer.
108 | // 03. Increment the `data` pointer to the beginning of the bytes.
109 | // 04. Store the `flashSelector`.
110 | // 05. Store the `recipient`.
111 | // 06. Store the `amount0`.
112 | // 07. Store the `amount0`.
113 | // 08. Store the `data` offset, relative to the slot after the selector.
114 | // 09. Store the `dataLen`.
115 | // 10. Copy the data from calldata to memory.
116 | // 11. Call the `pool` contract, returning `success` to the caller of this
117 | // function.
118 | function flash(
119 | UniV3Pool pool,
120 | address recipient,
121 | uint256 amount0,
122 | uint256 amount1,
123 | BytesCalldata data
124 | ) returns (bool success) {
125 | assembly ("memory-safe") {
126 | let fmp := mload(0x40)
127 |
128 | let dataLen := shr(0xe0, calldataload(data))
129 |
130 | data := add(data, 0x04)
131 |
132 | mstore(add(fmp, 0x00), flashSelector)
133 |
134 | mstore(add(fmp, 0x04), recipient)
135 |
136 | mstore(add(fmp, 0x24), amount0)
137 |
138 | mstore(add(fmp, 0x44), amount1)
139 |
140 | mstore(add(fmp, 0x64), 0x80)
141 |
142 | mstore(add(fmp, 0x84), dataLen)
143 |
144 | calldatacopy(add(fmp, 0xa4), data, dataLen)
145 |
146 | success := call(gas(), pool, 0x00, fmp, add(dataLen, 0xc4), 0x00, 0x00)
147 | }
148 | }
149 |
--------------------------------------------------------------------------------
/test/mock/WETHMock.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | // weth9 (`0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2`)
5 | // bytecode on ethereum, compiled w `v0.4.19+commit.c4cbbb05`
6 | function wethBytecode() pure returns (bytes memory) {
7 | return
8 | hex"6060604052600436106100af576000357c0100000000000000000000000000000000000000000000000000000000900463ffffffff16806306fdde03146100b9578063095ea7b31461014757806318160ddd146101a157806323b872dd146101ca5780632e1a7d4d14610243578063313ce5671461026657806370a082311461029557806395d89b41146102e2578063a9059cbb14610370578063d0e30db0146103ca578063dd62ed3e146103d4575b6100b7610440565b005b34156100c457600080fd5b6100cc6104dd565b6040518080602001828103825283818151815260200191508051906020019080838360005b8381101561010c5780820151818401526020810190506100f1565b50505050905090810190601f1680156101395780820380516001836020036101000a031916815260200191505b509250505060405180910390f35b341561015257600080fd5b610187600480803573ffffffffffffffffffffffffffffffffffffffff1690602001909190803590602001909190505061057b565b604051808215151515815260200191505060405180910390f35b34156101ac57600080fd5b6101b461066d565b6040518082815260200191505060405180910390f35b34156101d557600080fd5b610229600480803573ffffffffffffffffffffffffffffffffffffffff1690602001909190803573ffffffffffffffffffffffffffffffffffffffff1690602001909190803590602001909190505061068c565b604051808215151515815260200191505060405180910390f35b341561024e57600080fd5b61026460048080359060200190919050506109d9565b005b341561027157600080fd5b610279610b05565b604051808260ff1660ff16815260200191505060405180910390f35b34156102a057600080fd5b6102cc600480803573ffffffffffffffffffffffffffffffffffffffff16906020019091905050610b18565b6040518082815260200191505060405180910390f35b34156102ed57600080fd5b6102f5610b30565b6040518080602001828103825283818151815260200191508051906020019080838360005b8381101561033557808201518184015260208101905061031a565b50505050905090810190601f1680156103625780820380516001836020036101000a031916815260200191505b509250505060405180910390f35b341561037b57600080fd5b6103b0600480803573ffffffffffffffffffffffffffffffffffffffff16906020019091908035906020019091905050610bce565b604051808215151515815260200191505060405180910390f35b6103d2610440565b005b34156103df57600080fd5b61042a600480803573ffffffffffffffffffffffffffffffffffffffff1690602001909190803573ffffffffffffffffffffffffffffffffffffffff16906020019091905050610be3565b6040518082815260200191505060405180910390f35b34600360003373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168152602001908152602001600020600082825401925050819055503373ffffffffffffffffffffffffffffffffffffffff167fe1fffcc4923d04b559f4d29a8bfc6cda04eb5b0d3c460751c2402c5c5cc9109c346040518082815260200191505060405180910390a2565b60008054600181600116156101000203166002900480601f0160208091040260200160405190810160405280929190818152602001828054600181600116156101000203166002900480156105735780601f1061054857610100808354040283529160200191610573565b820191906000526020600020905b81548152906001019060200180831161055657829003601f168201915b505050505081565b600081600460003373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060008573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168152602001908152602001600020819055508273ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925846040518082815260200191505060405180910390a36001905092915050565b60003073ffffffffffffffffffffffffffffffffffffffff1631905090565b600081600360008673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002054101515156106dc57600080fd5b3373ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff16141580156107b457507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff600460008673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060003373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020016000205414155b156108cf5781600460008673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060003373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168152602001908152602001600020541015151561084457600080fd5b81600460008673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060003373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168152602001908152602001600020600082825403925050819055505b81600360008673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020016000206000828254039250508190555081600360008573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168152602001908152602001600020600082825401925050819055508273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef846040518082815260200191505060405180910390a3600190509392505050565b80600360003373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020016000205410151515610a2757600080fd5b80600360003373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168152602001908152602001600020600082825403925050819055503373ffffffffffffffffffffffffffffffffffffffff166108fc829081150290604051600060405180830381858888f193505050501515610ab457600080fd5b3373ffffffffffffffffffffffffffffffffffffffff167f7fcf532c15f0a6db0bd6d0e038bea71d30d808c7d98cb3bf7268a95bf5081b65826040518082815260200191505060405180910390a250565b600260009054906101000a900460ff1681565b60036020528060005260406000206000915090505481565b60018054600181600116156101000203166002900480601f016020809104026020016040519081016040528092919081815260200182805460018160011615610100020316600290048015610bc65780601f10610b9b57610100808354040283529160200191610bc6565b820191906000526020600020905b815481529060010190602001808311610ba957829003601f168201915b505050505081565b6000610bdb33848461068c565b905092915050565b60046020528160005260406000206020528060005260406000206000915091505054815600a165627a7a72305820deb4c2ccab3c2fdca32ab3f46728389c2fe2c165d5fafa07661e4e004f6c344a0029";
9 | }
10 |
11 | contract WETHMock {
12 | event Deposit(address indexed account, uint256 value);
13 | event Withdrawal(address indexed account, uint256 value);
14 |
15 | bool internal _shouldThrow = false;
16 |
17 | function setShouldThrow(
18 | bool shouldThrow
19 | ) public {
20 | _shouldThrow = shouldThrow;
21 | }
22 |
23 | function withdraw(
24 | uint256 value
25 | ) public {
26 | require(!_shouldThrow);
27 |
28 | emit Withdrawal(msg.sender, value);
29 | }
30 |
31 | receive() external payable {
32 | require(!_shouldThrow);
33 |
34 | emit Deposit(msg.sender, msg.value);
35 | }
36 | }
37 |
--------------------------------------------------------------------------------
/.gas-snapshot:
--------------------------------------------------------------------------------
1 | BBCDecoderTest:testDecodWithdrawWETH() (gas: 23582)
2 | BBCDecoderTest:testDecodeDepositWETH() (gas: 23978)
3 | BBCDecoderTest:testDecodeFlashUniV3() (gas: 39945)
4 | BBCDecoderTest:testDecodeSwapUniV2() (gas: 39486)
5 | BBCDecoderTest:testDecodeSwapUniV3() (gas: 48282)
6 | BBCDecoderTest:testDecodeSwapUniV3Negative() (gas: 48759)
7 | BBCDecoderTest:testDecodeTransferERC20() (gas: 28910)
8 | BBCDecoderTest:testDecodeTransferERC6909() (gas: 38135)
9 | BBCDecoderTest:testDecodeTransferFromERC20() (gas: 33885)
10 | BBCDecoderTest:testDecodeTransferFromERC6909() (gas: 42760)
11 | BBCDecoderTest:testDecodeTransferFromERC721() (gas: 34369)
12 | BBCDecoderTest:testFuzzDecodeDepositWETH(bool,address,uint8) (runs: 264, μ: 21365, ~: 19638)
13 | BBCDecoderTest:testFuzzDecodeFlashUniV3(bool,address,address,uint256,uint256,bytes) (runs: 264, μ: 32923, ~: 31096)
14 | BBCDecoderTest:testFuzzDecodeSwapUniV3(bool,address,address,bool,int256,uint160,bytes) (runs: 263, μ: 37681, ~: 36174)
15 | BBCDecoderTest:testFuzzDecodeSwapUniv2(bool,address,uint8,uint8,address,bytes) (runs: 264, μ: 35699, ~: 32022)
16 | BBCDecoderTest:testFuzzDecodeTransferERC6909(bool,address,address,uint256,uint256) (runs: 264, μ: 27284, ~: 24572)
17 | BBCDecoderTest:testFuzzDecodeTransferFromERC20(bool,address,address,address,uint8) (runs: 264, μ: 27094, ~: 21956)
18 | BBCDecoderTest:testFuzzDecodeTransferFromERC6909(bool,address,address,address,uint256,uint256) (runs: 264, μ: 31458, ~: 27400)
19 | BBCDecoderTest:testFuzzDecodeTransferFromERC721(bool,address,address,address,uint8) (runs: 264, μ: 27402, ~: 22264)
20 | BBCDecoderTest:testFuzzDecodeWithdrawWETH(bool,address,uint8) (runs: 264, μ: 21519, ~: 19792)
21 | LotusRouterTest:testDepositWETHFromBalance() (gas: 33257)
22 | LotusRouterTest:testDepositWETHFromCaller() (gas: 40737)
23 | LotusRouterTest:testDepositWETHNothing() (gas: 28048)
24 | LotusRouterTest:testDepositWETHThrows() (gas: 46395)
25 | LotusRouterTest:testFlashUniV3Recurse() (gas: 99333)
26 | LotusRouterTest:testFlashUniV3RecurseThrows() (gas: 86760)
27 | LotusRouterTest:testFlashUniV3Single() (gas: 42794)
28 | LotusRouterTest:testFlashUniV3SingleThrows() (gas: 63014)
29 | LotusRouterTest:testFuzzDepositWETH(bool,bool,bool,uint256) (runs: 264, μ: 46560, ~: 45928)
30 | LotusRouterTest:testFuzzFlashUniV3Recurse(bool,bool,address,uint256,uint256,bytes) (runs: 264, μ: 79880, ~: 79679)
31 | LotusRouterTest:testFuzzFlashUniV3Single(bool,bool,address,uint256,uint256,bytes) (runs: 264, μ: 46351, ~: 45319)
32 | LotusRouterTest:testFuzzSwapUniV2Chain(uint256,uint256,bytes,uint256,uint256,bytes) (runs: 264, μ: 64188, ~: 64086)
33 | LotusRouterTest:testFuzzSwapUniV2Single(bool,uint256,uint256,address,bytes) (runs: 264, μ: 36168, ~: 35814)
34 | LotusRouterTest:testFuzzSwapUniV3Recurse(bool,bool,address,bool,int256,uint160,bytes) (runs: 263, μ: 95625, ~: 96840)
35 | LotusRouterTest:testFuzzSwapUniV3Single(bool,bool,address,bool,int256,uint160,bytes) (runs: 263, μ: 53943, ~: 54184)
36 | LotusRouterTest:testFuzzTransferERC20Chain(bool,bool,bool,bool,address,uint256) (runs: 264, μ: 52118, ~: 51599)
37 | LotusRouterTest:testFuzzTransferERC20Single(bool,bool,bool,bool,address,uint256) (runs: 264, μ: 32777, ~: 32694)
38 | LotusRouterTest:testFuzzTransferERC6909Chain(bool,bool,bool,address,uint256,uint256,address,uint256,uint256) (runs: 264, μ: 63458, ~: 59011)
39 | LotusRouterTest:testFuzzTransferERC6909Single(bool,bool,bool,address,uint256,uint256) (runs: 264, μ: 36494, ~: 36069)
40 | LotusRouterTest:testFuzzTransferFromERC20Chain(bool,bool,bool,bool,address,address,uint256) (runs: 264, μ: 59324, ~: 56872)
41 | LotusRouterTest:testFuzzTransferFromERC20Single(bool,bool,bool,bool,address,address,uint256) (runs: 264, μ: 36242, ~: 34404)
42 | LotusRouterTest:testFuzzTransferFromERC6909Chain(bool,bool,bool,address,address,uint256,uint256,address,address,uint256,uint256) (runs: 264, μ: 67528, ~: 61789)
43 | LotusRouterTest:testFuzzTransferFromERC6909Single(bool,bool,bool,address,address,uint256,uint256) (runs: 264, μ: 39626, ~: 37664)
44 | LotusRouterTest:testFuzzTransferFromERC721Chain(bool,bool,address,address,uint256) (runs: 264, μ: 59539, ~: 56564)
45 | LotusRouterTest:testFuzzTransferFromERC721Single(bool,bool,address,address,uint256) (runs: 264, μ: 40899, ~: 40992)
46 | LotusRouterTest:testFuzzWithdrawWETH(bool,bool,uint256) (runs: 264, μ: 36109, ~: 30015)
47 | LotusRouterTest:testSwapUniV2Chain() (gas: 77975)
48 | LotusRouterTest:testSwapUniV2ChainThrows() (gas: 88274)
49 | LotusRouterTest:testSwapUniV2Recurse() (gas: 60462)
50 | LotusRouterTest:testSwapUniV2Single() (gas: 44824)
51 | LotusRouterTest:testSwapUniV2SingleThrows() (gas: 62183)
52 | LotusRouterTest:testSwapUniV3NegativeSingle() (gas: 52585)
53 | LotusRouterTest:testSwapUniV3Recurse() (gas: 121327)
54 | LotusRouterTest:testSwapUniV3RecurseFirstThrows() (gas: 103243)
55 | LotusRouterTest:testSwapUniV3RecurseSecondThrows() (gas: 136595)
56 | LotusRouterTest:testSwapUniV3Single() (gas: 53219)
57 | LotusRouterTest:testSwapUniV3ThrowsSingle() (gas: 68865)
58 | LotusRouterTest:testTransferERC20Chain() (gas: 58734)
59 | LotusRouterTest:testTransferERC20ChainFirstThrows() (gas: 51175)
60 | LotusRouterTest:testTransferERC20ChainReturnsNothing() (gas: 66112)
61 | LotusRouterTest:testTransferERC20ChainSecondThrows() (gas: 58932)
62 | LotusRouterTest:testTransferERC20Single() (gas: 34028)
63 | LotusRouterTest:testTransferERC20SingleReturnsFalse() (gas: 36244)
64 | LotusRouterTest:testTransferERC20SingleReturnsNothing() (gas: 37376)
65 | LotusRouterTest:testTransferERC20SingleThrows() (gas: 35459)
66 | LotusRouterTest:testTransferERC6909Chain() (gas: 75728)
67 | LotusRouterTest:testTransferERC6909ChainReturnsFalse() (gas: 64454)
68 | LotusRouterTest:testTransferERC6909ChainThrows() (gas: 67565)
69 | LotusRouterTest:testTransferERC6909Single() (gas: 42704)
70 | LotusRouterTest:testTransferERC6909SingleReturnsFalse() (gas: 41012)
71 | LotusRouterTest:testTransferERC6909SingleThrows() (gas: 43441)
72 | LotusRouterTest:testTransferFromERC20Chain() (gas: 68228)
73 | LotusRouterTest:testTransferFromERC20ChainFirstThrows() (gas: 60955)
74 | LotusRouterTest:testTransferFromERC20ChainReturnsNothing() (gas: 76046)
75 | LotusRouterTest:testTransferFromERC20ChainSecondThrows() (gas: 67940)
76 | LotusRouterTest:testTransferFromERC20Single() (gas: 38112)
77 | LotusRouterTest:testTransferFromERC20SingleReturnsFalse() (gas: 41693)
78 | LotusRouterTest:testTransferFromERC20SingleReturnsNothing() (gas: 42340)
79 | LotusRouterTest:testTransferFromERC20SingleThrows() (gas: 39496)
80 | LotusRouterTest:testTransferFromERC6909Chain() (gas: 85396)
81 | LotusRouterTest:testTransferFromERC6909ChainReturnsFalse() (gas: 73633)
82 | LotusRouterTest:testTransferFromERC6909ChainThrows() (gas: 77884)
83 | LotusRouterTest:testTransferFromERC6909Single() (gas: 47883)
84 | LotusRouterTest:testTransferFromERC6909SingleReturnsFalse() (gas: 47049)
85 | LotusRouterTest:testTransferFromERC6909SingleThrows() (gas: 48242)
86 | LotusRouterTest:testTransferFromERC721Chain() (gas: 66578)
87 | LotusRouterTest:testTransferFromERC721ChainFirstThrows() (gas: 78701)
88 | LotusRouterTest:testTransferFromERC721ChainSecondThrows() (gas: 85587)
89 | LotusRouterTest:testTransferFromERC721Single() (gas: 37331)
90 | LotusRouterTest:testTransferFromERC721SingleThrows() (gas: 56208)
91 | LotusRouterTest:testWETHSendIsCheaperThanDeposit() (gas: 75426)
92 | LotusRouterTest:testWithdrawWETH() (gas: 27356)
93 | LotusRouterTest:testWithdrawWETHTHrows() (gas: 47439)
--------------------------------------------------------------------------------
/test/mock/BBCDecoderMock.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | import { BytesCalldata } from "src/types/BytesCalldata.sol";
5 | import { Ptr } from "src/types/PayloadPointer.sol";
6 | import { ERC20 } from "src/types/protocols/ERC20.sol";
7 | import { ERC6909 } from "src/types/protocols/ERC6909.sol";
8 | import { ERC721 } from "src/types/protocols/ERC721.sol";
9 | import { UniV2Pair } from "src/types/protocols/UniV2Pair.sol";
10 | import { UniV3Pool } from "src/types/protocols/UniV3Pool.sol";
11 | import { WETH } from "src/types/protocols/WETH.sol";
12 | import { BBCDecoder } from "src/util/BBCDecoder.sol";
13 |
14 | contract BBCDecoderMock {
15 | using BBCDecoder for Ptr;
16 |
17 | function decodeSwapUniV2(
18 | bytes calldata encoded
19 | )
20 | public
21 | pure
22 | returns (
23 | bool canFail,
24 | UniV2Pair pair,
25 | uint256 amount0Out,
26 | uint256 amount1Out,
27 | address to,
28 | bytes memory data
29 | )
30 | {
31 | Ptr ptr;
32 | BytesCalldata packedData;
33 |
34 | // add 0x01 bc the first byte is the `Action` opcode, it's not decoded
35 | assembly {
36 | ptr := add(0x01, encoded.offset)
37 | }
38 |
39 | (, canFail, pair, amount0Out, amount1Out, to, packedData) = ptr.decodeSwapUniV2();
40 |
41 | assembly {
42 | let fmp := mload(0x40)
43 |
44 | data := fmp
45 |
46 | let len := shr(0xe0, calldataload(packedData))
47 |
48 | mstore(fmp, len)
49 |
50 | fmp := add(fmp, 0x20)
51 |
52 | calldatacopy(fmp, add(packedData, 0x04), len)
53 |
54 | fmp := add(fmp, len)
55 |
56 | mstore(0x40, fmp)
57 | }
58 | }
59 |
60 | function decodeSwapUniV3(
61 | bytes calldata encoded
62 | )
63 | public
64 | pure
65 | returns (
66 | bool canFail,
67 | UniV3Pool pool,
68 | address recipient,
69 | bool zeroForOne,
70 | int256 amountSpecified,
71 | uint160 sqrtPriceLimitX96,
72 | bytes memory data
73 | )
74 | {
75 | Ptr ptr;
76 | BytesCalldata packedData;
77 |
78 | // add 0x01 bc the first byte is the `Action` opcode, it's not decoded
79 | assembly {
80 | ptr := add(0x01, encoded.offset)
81 | }
82 |
83 | (, canFail, pool, recipient, zeroForOne, amountSpecified, sqrtPriceLimitX96, packedData) =
84 | ptr.decodeSwapUniV3();
85 |
86 | assembly {
87 | let fmp := mload(0x40)
88 |
89 | data := fmp
90 |
91 | let len := shr(0xe0, calldataload(packedData))
92 |
93 | mstore(fmp, len)
94 |
95 | fmp := add(fmp, 0x20)
96 |
97 | calldatacopy(fmp, add(packedData, 0x04), len)
98 |
99 | fmp := add(fmp, len)
100 |
101 | mstore(0x40, fmp)
102 | }
103 | }
104 |
105 | function decodeFlashUniV3(
106 | bytes calldata encoded
107 | )
108 | public
109 | pure
110 | returns (
111 | bool canFail,
112 | UniV3Pool pool,
113 | address recipient,
114 | uint256 amount0,
115 | uint256 amount1,
116 | bytes memory data
117 | )
118 | {
119 | Ptr ptr;
120 | BytesCalldata packedData;
121 |
122 | // add 0x01 bc the first byte is the `Action` opcode, it's not decoded
123 | assembly {
124 | ptr := add(0x01, encoded.offset)
125 | }
126 |
127 | (, canFail, pool, recipient, amount0, amount1, packedData) = ptr.decodeFlashUniV3();
128 |
129 | assembly {
130 | let fmp := mload(0x40)
131 |
132 | data := fmp
133 |
134 | let len := shr(0xe0, calldataload(packedData))
135 |
136 | mstore(fmp, len)
137 |
138 | fmp := add(fmp, 0x20)
139 |
140 | calldatacopy(fmp, add(packedData, 0x04), len)
141 |
142 | fmp := add(fmp, len)
143 |
144 | mstore(0x40, fmp)
145 | }
146 | }
147 |
148 | function decodeTransferERC20(
149 | bytes calldata encoded
150 | ) public pure returns (bool canFail, ERC20 token, address receiver, uint256 amount) {
151 | Ptr ptr;
152 |
153 | // add 0x01 bc the first byte is the `Action` opcode, it's not decoded
154 | assembly {
155 | ptr := add(0x01, encoded.offset)
156 | }
157 |
158 | (, canFail, token, receiver, amount) = ptr.decodeTransferERC20();
159 | }
160 |
161 | function decodeTransferFromERC20(
162 | bytes calldata encoded
163 | )
164 | public
165 | pure
166 | returns (bool canFail, ERC20 token, address sender, address receiver, uint256 amount)
167 | {
168 | Ptr ptr;
169 |
170 | // add 0x01 bc the first byte is the `Action` opcode, it's not decoded
171 | assembly {
172 | ptr := add(0x01, encoded.offset)
173 | }
174 |
175 | (, canFail, token, sender, receiver, amount) = ptr.decodeTransferFromERC20();
176 | }
177 |
178 | function decodeTransferFromERC721(
179 | bytes calldata encoded
180 | )
181 | public
182 | pure
183 | returns (bool canFail, ERC721 token, address sender, address receiver, uint256 tokenId)
184 | {
185 | Ptr ptr;
186 |
187 | // add 0x01 bc the first byte is the `Action` opcode, it's not decoded
188 | assembly {
189 | ptr := add(0x01, encoded.offset)
190 | }
191 |
192 | (, canFail, token, sender, receiver, tokenId) = ptr.decodeTransferFromERC721();
193 | }
194 |
195 | function decodeTransferERC6909(
196 | bytes calldata encoded
197 | )
198 | public
199 | pure
200 | returns (
201 | bool canFail,
202 | ERC6909 multitoken,
203 | address receiver,
204 | uint256 tokenId,
205 | uint256 amount
206 | )
207 | {
208 | Ptr ptr;
209 |
210 | // add 0x01 bc the first byte is the `Action` opcode, it's not decoded
211 | assembly {
212 | ptr := add(0x01, encoded.offset)
213 | }
214 |
215 | (, canFail, multitoken, receiver, tokenId, amount) = ptr.decodeTransferERC6909();
216 | }
217 |
218 | function decodeTransferFromERC6909(
219 | bytes calldata encoded
220 | )
221 | public
222 | pure
223 | returns (
224 | bool canFail,
225 | ERC6909 multitoken,
226 | address sender,
227 | address receiver,
228 | uint256 tokenId,
229 | uint256 amount
230 | )
231 | {
232 | Ptr ptr;
233 |
234 | // add 0x01 bc the first byte is the `Action` opcode, it's not decoded
235 | assembly {
236 | ptr := add(0x01, encoded.offset)
237 | }
238 |
239 | (, canFail, multitoken, sender, receiver, tokenId, amount) = ptr.decodeTransferFromERC6909();
240 | }
241 |
242 | function decodeDepositWETH(
243 | bytes calldata encoded
244 | ) public pure returns (bool canFail, WETH weth, uint256 value) {
245 | Ptr ptr;
246 |
247 | // add 0x01 bc the first byte is the `Action` opcode, it's not decoded
248 | assembly {
249 | ptr := add(0x01, encoded.offset)
250 | }
251 |
252 | (, canFail, weth, value) = ptr.decodeDepositWETH();
253 | }
254 |
255 | function decodeWithdrawWETH(
256 | bytes calldata encoded
257 | ) public pure returns (bool canFail, WETH weth, uint256 value) {
258 | Ptr ptr;
259 |
260 | // add 0x01 bc the first byte is the `Action` opcode, it's not decoded
261 | assembly {
262 | ptr := add(0x01, encoded.offset)
263 | }
264 |
265 | (, canFail, weth, value) = ptr.decodeWithdrawWETH();
266 | }
267 |
268 | function decodeDynCall(bytes calldata encoded)
269 | public pure returns (bool canFail, address target, uint256 value, bytes memory data) {
270 | Ptr ptr;
271 | BytesCalldata packedData;
272 |
273 | assembly {
274 | ptr := add(0x01, encoded.offset)
275 | }
276 |
277 | (, canFail, target, value, packedData) = ptr.decodeDynCall();
278 |
279 | assembly {
280 | let fmp := mload(0x40)
281 |
282 | data := fmp
283 |
284 | let len := shr(0xe0, calldataload(packedData))
285 |
286 | mstore(fmp, len)
287 |
288 | fmp := add(fmp, 0x20)
289 |
290 | calldatacopy(fmp, add(packedData, 0x04), len)
291 |
292 | fmp := add(fmp, len)
293 |
294 | mstore(0x40, fmp)
295 | }
296 | }
297 | }
298 |
--------------------------------------------------------------------------------
/src/LotusRouter.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | import { Action } from "src/types/Action.sol";
5 | import { BytesCalldata } from "src/types/BytesCalldata.sol";
6 |
7 | import { Error } from "src/types/Error.sol";
8 | import { Ptr, findPtr } from "src/types/PayloadPointer.sol";
9 | import { ERC20 } from "src/types/protocols/ERC20.sol";
10 | import { ERC6909 } from "src/types/protocols/ERC6909.sol";
11 | import { ERC721 } from "src/types/protocols/ERC721.sol";
12 | import { UniV2Pair } from "src/types/protocols/UniV2Pair.sol";
13 | import { UniV3Pool } from "src/types/protocols/UniV3Pool.sol";
14 | import { WETH } from "src/types/protocols/WETH.sol";
15 | import { dynCall } from "src/types/protocols/Dyn.sol";
16 | import { BBCDecoder } from "src/util/BBCDecoder.sol";
17 |
18 | // +---------------------------------------------------------------------------+
19 | // | ## The Lotus Router Manifesto |
20 | // | |
21 | // | I am the Lotus Router. |
22 | // | |
23 | // | I exist for the individual. |
24 | // | I exist for the collective. |
25 | // | I exist for the developers. |
26 | // | I exist for the users. |
27 | // | |
28 | // | I exist, above all else, to empower. |
29 | // | |
30 | // | I do not to extract value. |
31 | // | I do not to capture rent. |
32 | // | I am a political statement, as all software is. |
33 | // | |
34 | // | I subscribe to no -ism. |
35 | // | I wave no banner. |
36 | // | I am an act of defiance against hoarders of technology and capital. |
37 | // | |
38 | // | I bear the license of free, as in cost AND freedom, software. |
39 | // | I am free for distribution. |
40 | // | I am free for study. |
41 | // | I am free for modification. |
42 | // | I am free for redistribution. |
43 | // | |
44 | // | I ask only that redistributions of me bear the same license. |
45 | // | |
46 | // | ___ |
47 | // | ___ / \ ___ |
48 | // | / \/ | \/ \ |
49 | // | / / \ ___ / \ \ |
50 | // | \ \ / \ / / |
51 | // | ,-----,/ \,-----, |
52 | // | \ \ | / / |
53 | // | \ \ \ | / / / |
54 | // | __-\_\____\ | /____/_/-__ |
55 | // | '--___ '-' ___--' |
56 | // | '----_____----' |
57 | // +---------------------------------------------------------------------------+
58 |
59 | /// @title Lotus Router
60 | /// @author Nameless Researchers and Developers of Ethereum
61 | contract LotusRouter {
62 | // ## Fallback Function
63 | //
64 | // This contains all of the Lotus Router's execution logic.
65 | //
66 | // We use the fallback function to eschew Solidity's ABI encoding scheme.
67 | // Documentation is be provided for interfacing with this safely.
68 | fallback() external payable {
69 | Ptr ptr = findPtr();
70 | Action action;
71 | bool success = true;
72 |
73 | while (success) {
74 | (ptr, action) = ptr.nextAction();
75 |
76 | if (action == Action.Halt) {
77 | assembly {
78 | stop()
79 | }
80 | } else if (action == Action.SwapUniV2) {
81 | bool canFail;
82 | UniV2Pair pair;
83 | uint256 amount0Out;
84 | uint256 amount1Out;
85 | address to;
86 | BytesCalldata data;
87 |
88 | (ptr, canFail, pair, amount0Out, amount1Out, to, data) =
89 | BBCDecoder.decodeSwapUniV2(ptr);
90 |
91 | success = pair.swap(amount0Out, amount1Out, to, data) || canFail;
92 | } else if (action == Action.SwapUniV3) {
93 | bool canFail;
94 | UniV3Pool pool;
95 | address recipient;
96 | bool zeroForOne;
97 | int256 amountSpecified;
98 | uint160 sqrtPriceLimitX96;
99 | BytesCalldata data;
100 |
101 | (
102 | ptr,
103 | canFail,
104 | pool,
105 | recipient,
106 | zeroForOne,
107 | amountSpecified,
108 | sqrtPriceLimitX96,
109 | data
110 | ) = BBCDecoder.decodeSwapUniV3(ptr);
111 |
112 | success = pool.swap(recipient, zeroForOne, amountSpecified, sqrtPriceLimitX96, data)
113 | || canFail;
114 | } else if (action == Action.FlashUniV3) {
115 | bool canFail;
116 | UniV3Pool pool;
117 | address recipient;
118 | uint256 amount0;
119 | uint256 amount1;
120 | BytesCalldata data;
121 |
122 | (ptr, canFail, pool, recipient, amount0, amount1, data) =
123 | BBCDecoder.decodeFlashUniV3(ptr);
124 |
125 | success = pool.flash(recipient, amount0, amount1, data) || canFail;
126 | } else if (action == Action.TransferERC20) {
127 | bool canFail;
128 | ERC20 token;
129 | address receiver;
130 | uint256 amount;
131 |
132 | (ptr, canFail, token, receiver, amount) = BBCDecoder.decodeTransferERC20(ptr);
133 |
134 | success = token.transfer(receiver, amount) || canFail;
135 | } else if (action == Action.TransferFromERC20) {
136 | bool canFail;
137 | ERC20 token;
138 | address sender;
139 | address receiver;
140 | uint256 amount;
141 |
142 | (ptr, canFail, token, sender, receiver, amount) =
143 | BBCDecoder.decodeTransferFromERC20(ptr);
144 |
145 | success = token.transferFrom(sender, receiver, amount) || canFail;
146 | } else if (action == Action.TransferFromERC721) {
147 | bool canFail;
148 | ERC721 token;
149 | address sender;
150 | address receiver;
151 | uint256 amount;
152 |
153 | (ptr, canFail, token, sender, receiver, amount) =
154 | BBCDecoder.decodeTransferFromERC721(ptr);
155 |
156 | success = token.transferFrom(sender, receiver, amount) || canFail;
157 | } else if (action == Action.TransferERC6909) {
158 | bool canFail;
159 | ERC6909 multitoken;
160 | address receiver;
161 | uint256 tokenId;
162 | uint256 amount;
163 |
164 | (ptr, canFail, multitoken, receiver, tokenId, amount) =
165 | BBCDecoder.decodeTransferERC6909(ptr);
166 |
167 | success = multitoken.transfer(receiver, tokenId, amount) || canFail;
168 | } else if (action == Action.TransferFromERC6909) {
169 | bool canFail;
170 | ERC6909 multitoken;
171 | address sender;
172 | address receiver;
173 | uint256 tokenId;
174 | uint256 amount;
175 |
176 | (ptr, canFail, multitoken, sender, receiver, tokenId, amount) =
177 | BBCDecoder.decodeTransferFromERC6909(ptr);
178 |
179 | success = multitoken.transferFrom(sender, receiver, tokenId, amount) || canFail;
180 | } else if (action == Action.DepositWETH) {
181 | bool canFail;
182 | WETH weth;
183 | uint256 value;
184 |
185 | (ptr, canFail, weth, value) = BBCDecoder.decodeDepositWETH(ptr);
186 |
187 | success = weth.deposit(value) || canFail;
188 | } else if (action == Action.WithdrawWETH) {
189 | bool canFail;
190 | WETH weth;
191 | uint256 value;
192 |
193 | (ptr, canFail, weth, value) = BBCDecoder.decodeWithdrawWETH(ptr);
194 |
195 | success = weth.withdraw(value) || canFail;
196 | } else if (action == Action.DynCall) {
197 | bool canFail;
198 | address target;
199 | uint256 value;
200 | BytesCalldata data;
201 |
202 | (ptr, canFail, target, value, data) = BBCDecoder.decodeDynCall(ptr);
203 |
204 | success = dynCall(target, value, data) || canFail;
205 | } else {
206 | success = false;
207 | }
208 | }
209 |
210 | revert Error.CallFailure();
211 | }
212 |
213 | // ## Receiver Function
214 | //
215 | // This triggers when this contract is called with no calldata. It takes no
216 | // action, it only returns gracefully.
217 | receive() external payable { }
218 | }
219 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Lotus Router
2 |
3 | The Lotus Router is an embedded virtual machine which treats instructions as
4 | DeFi protocol interactions, primarily automated market marker protocols. It does
5 | not take fees, it does not extract rent, it is not upgradeable, it is
6 | permissionless, it is free and open source software. It bears the AGPL-3.0
7 | copy-left license.
8 |
9 | Built with experience from the frontier, with solidarity for developers of
10 | sovereignity, and with a love for democratization of knowledge and software.
11 |
12 | > Work In Progress, Do Not Use Yet
13 |
14 | ## Why?
15 |
16 | Searchers and Solvers alike employ people like us to repeatedly build the state
17 | of the art in router technology.
18 |
19 | Searchers and Solvers alike justify secrecy with "alpha decay" and other pseudo-
20 | academic terminology in order to hoard the cutting edge and the capital which
21 | comes with it.
22 |
23 |
24 |
25 | We grow tired of building the same software again and again.
26 |
27 | We grow tired of signing NDA after NDA.
28 |
29 | We grow tired of repeating ourselves.
30 |
31 |
32 |
33 | So we the Researchers and Developers write this software with the intent to
34 | democratize the cutting edge of router technology.
35 |
36 | So we the Researchers and Developers write this software with the intent to
37 | liberate the secrets of a parasitic industry.
38 |
39 | So we the Researchers and Developers write this software with the intent to
40 | expose the elegant simplicity which hides behind bytecode obfuscators and the
41 | mysticism of our local elites.
42 |
43 | ## Disclaimer
44 |
45 | Multiple organizations may contend that this technology was stolen, or that it
46 | is the subject of trade secrets.
47 |
48 | However, we the Researchers and Developers formally declare this software is
49 | developed explicitly on our own time, on our own hardware, with our own
50 | software, and with our own knowledge accumulated from both educational resources
51 | and through our understanding and interpretation of the bytecode which exists on
52 | the public blockchains.
53 |
54 | ## Implementation Details
55 |
56 | Batchable actions:
57 |
58 | - [x] Uniswap V2 Swap
59 | - [x] Uniswap V3 Swap
60 | - [x] Uniswap V3 Flash
61 | - [x] ERC20 Transfer
62 | - [x] ERC20 TransferFrom
63 | - [x] ERC721 TransferFrom
64 | - [x] ERC6909 Transfer
65 | - [x] ERC6909 TransferFrom
66 | - [x] Wrap WETH
67 | - [x] Unwrap WETH
68 | - [x] Dynamic Contract Call
69 |
70 | Other features:
71 |
72 | - [x] Unconventional Encoder/Decoder (inspired by bigbrainchad.eth)
73 | - [ ] Transient storage call stack constraints (inspired by bigbrainchad.eth)
74 | - [x] Virtual Machine Style Architecture (inspired by, yes, bigbrainchad.eth)
75 |
76 | ### Call Diagrams
77 |
78 | #### Uniswap V2 Chaining
79 |
80 | Chaining Uniswap V2 markets entails iteratively calling pairs, forwarding the
81 | output of one swap into the next pair.
82 |
83 | - `Lotus` transfers `TokenA` to `MarketAB`
84 | - `Lotus` calls `swap` on `MarketAB`
85 | - `MarketAB` swaps and transfers `TokenB` to `MarketBC`
86 | - `Lotus` calls `swap` on `MarketBC`
87 | - `MarketBC` swaps and transfers `TokenC` to `Lotus`
88 |
89 | ```mermaid
90 | sequenceDiagram
91 | Lotus-->>MarketAB: transfer A
92 | Lotus->>+MarketAB: swap(A, B)
93 | MarketAB-->>MarketBC: transfer B
94 | MarketAB->>-Lotus: return
95 | Lotus->>+MarketBC: swap(B, C)
96 | MarketBC-->>Lotus: transfer C
97 | MarketBC->>-Lotus: return
98 | ```
99 |
100 | #### Uniswap V3 Chaining
101 |
102 | Chaining Uniswap V3 markets entails recursively calling pools, settling each
103 | market in its respective callback to the router.
104 |
105 | While it is possible to simplify encoding control flow by calling iteratively,
106 | recursion saves `O(n)` calls.
107 |
108 | - `Lotus` calls `swap` on `MarketBC`
109 | - `MarketBC` transfers `TokenC` to `Lotus`
110 | - `MarketBC` calls back into `Lotus` with `uniswapV3Callback`
111 | - `Lotus` calls `swap` on `MarketAB`
112 | - `MarketAB` transfers `TokenB` to `Lotus`
113 | - `MarketAB` calls back into `Lotus` with `uniswapV3Callback`
114 | - `Lotus` transfers `TokenA` to `MarketAB`, settling the balances
115 | - `Lotus` transfers `TokenB` to `MarketBC`, settling the balances
116 |
117 | ```mermaid
118 | sequenceDiagram
119 | Lotus->>+MarketBC: swap(B, C)
120 | MarketBC-->>Lotus: transfer C
121 | MarketBC->>+Lotus: uniswapV3SwapCallback
122 | Lotus->>+MarketAB: swap(A, B)
123 | MarketAB-->>Lotus: transfer B
124 | MarketAB->>+Lotus: uniswapV3SwapCallback
125 | Lotus-->>MarketAB: transfer A
126 | Lotus-->>MarketBC: transfer B
127 | Lotus->>-MarketAB: return
128 | MarketAB->>-Lotus: return
129 | Lotus->>-MarketBC: return
130 | MarketBC->>-Lotus: return
131 | ```
132 |
133 | A broken out, more intuitive diagram breaks the `Lotus` router out into its
134 | three independent call contexts.
135 |
136 | ```mermaid
137 | sequenceDiagram
138 | Lotus->>+MarketBC: swap(B, C)
139 | MarketBC-->>Lotus(1): transfer C
140 | MarketBC->>+Lotus(1): uniswapV3SwapCallback
141 | Lotus(1)->>+MarketAB: swap(A, B)
142 | MarketAB-->>Lotus(2): transfer B
143 | MarketAB->>+Lotus(2): uniswapV3SwapCallback
144 | Lotus(2)-->>MarketAB: transfer A
145 | Lotus(2)-->>MarketBC: transfer B
146 | Lotus(2)->>-MarketAB: return
147 | MarketAB->>-Lotus(1): return
148 | Lotus(1)->>-MarketBC: return
149 | MarketBC->>-Lotus: return
150 | ```
151 |
152 | #### Uniswap V3 Flash
153 |
154 | - `Lotus` calls `flash` on `MarketAB`
155 | - `MarketAB` transfers `TokenA` to `Lotus`, if any was requested
156 | - `MarketAB` transfers `TokenB` to `Lotus`, if any was requested
157 | - `MarketAB` back into `Lotus` with `uniswapV3FlashCallback`
158 | - `Lotus` transfers `TokenA` to `MarketAB`, if any was taken
159 | - `Lotus` transfers `TokenB` to `MarketAB`, if any was taken
160 |
161 | ```mermaid
162 | sequenceDiagram
163 | Lotus->>+MarketAB: flash
164 | MarketAB-->>Lotus: transfer A
165 | MarketAB-->>Lotus: transfer B
166 | MarketAB->>+Lotus: uniswapV3FlashCallback
167 | Lotus-->>MarketAB: transfer A
168 | Lotus-->>MarketAB: transfer B
169 | Lotus->>-MarketAB: return
170 | MarketAB->>-Lotus: return
171 | ```
172 |
173 | A broken out, more intuitive diagram breaks the `Lotus` router out into its
174 | two independent call contexts.
175 |
176 | ```mermaid
177 | sequenceDiagram
178 | Lotus->>+MarketAB: flash
179 | MarketAB-->>Lotus(1): transfer A
180 | MarketAB-->>Lotus(1): transfer B
181 | MarketAB->>+Lotus(1): uniswapV3FlashCallback
182 | Lotus(1)-->>MarketAB: transfer A
183 | Lotus(1)-->>MarketAB: transfer B
184 | Lotus(1)->>-MarketAB: return
185 | MarketAB->>-Lotus: return
186 | ```
187 |
188 | ### Encoding Scheme
189 |
190 | The encoding scheme reduces all statically sized values to their smallest size,
191 | in bytes, and prefixes them with an 8 bit integer indicating the truncated byte
192 | length. All dynamically sized values are prefixed with only a 32 bit length of
193 | the data. There are no offsets in this encoding scheme, so objects are parsed
194 | in order with a pointer incrementing continuously while parsing.
195 |
196 | ```ebnf
197 | ::=
198 | | ("0x00")
199 | | ("0x01" . )
200 | | ("0x02" . )
201 | | ("0x03" . )
202 | | ("0x04" . )
203 | | ("0x05" . )
204 | | ("0x06" . )
205 | | ("0x07" . )
206 | | ("0x08" . )
207 | | ("0x09" . )
208 | | ("0x0a" . )
209 | | ("0x0b" . ) ;
210 |
211 | ::=
212 | .
213 | .
214 | .
215 | .
216 | .
217 | .
218 | .
219 | .
220 | .
221 | .
222 | . ;
223 |
224 | ::=
225 | .
226 | .
227 | .
228 | .
229 | .
230 | .
231 | .
232 | .
233 | .
234 | .
235 | .
236 | . ;
237 |
238 | ::=
239 | .
240 | .
241 | .
242 | .
243 | .
244 | .
245 | .
246 | .
247 | .
248 | .
249 | .
250 | . ;
251 |
252 | ::=
253 | .
254 | .
255 | .
256 | .
257 | .
258 | .
259 | .
260 | . ;
261 |
262 | ::=
263 | .
264 | .
265 | .
266 | .
267 | .
268 | .
269 | .
270 | .
271 | .
272 | . ;
273 |
274 | ::=
275 | .
276 | .
277 | .
278 | .
279 | .
280 | .
281 | .
282 | .
283 | .
284 | . ;
285 |
286 | ::=
287 | .
288 | .
289 | .
290 | .
291 | .
292 | .
293 | .
294 | .
295 | .
296 | . ;
297 |
298 | ::=
299 | .
300 | .
301 | .
302 | .
303 | .
304 | .
305 | .
306 | .
307 | .
308 | .
309 | .
310 | . ;
311 |
312 | ::=
313 | .
314 | .
315 | .
316 | .
317 | . ;
318 |
319 | ::=
320 | .
321 | .
322 | .
323 | .
324 | . ;
325 |
326 | ::=
327 | .
328 | .
329 | .
330 | .
331 | .
332 | .
333 | . ;
334 | ```
335 |
336 | As an example, the following is a representation of making a Uniswap V2 Swap
337 | call with some arbitrary data appended to the end.
338 |
339 | ```solidity
340 | bool canFail = false;
341 | address pair = address(0xB4e16d0168e52d35CaCD2c6185b44281Ec28C9Dc);
342 | uint256 amount0Out = 1 ether;
343 | uint256 amount1Out = 0;
344 | address to = address(0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266);
345 | bytes memory data = "deadbeef";
346 |
347 | // Solidity representation
348 | abi.encode(
349 | UniV2Pair.swap.selector,
350 | canFail,
351 | pair,
352 | amount0Out,
353 | amount1Out,
354 | to,
355 | data
356 | )
357 |
358 | /*
359 | // Solidity ABI
360 | // length: 288 bytes
361 |
362 | 022c0d9f00000000000000000000000000000000000000000000000000000000 // UniV2Pair.swap.selector
363 | 0000000000000000000000000000000000000000000000000000000000000000 // canFail
364 | 000000000000000000000000b4e16d0168e52d35cacd2c6185b44281ec28c9dc // pair
365 | 0000000000000000000000000000000000000000000000000de0b6b3a7640000 // amount0Out
366 | 0000000000000000000000000000000000000000000000000000000000000000 // amount1Out
367 | 000000000000000000000000f39fd6e51aad88f6f4ce6ab8827279cfffb92266 // to
368 | 00000000000000000000000000000000000000000000000000000000000000e0 // data.offset
369 | 0000000000000000000000000000000000000000000000000000000000000008 // data.length
370 | 6465616462656566000000000000000000000000000000000000000000000000 // data
371 | */
372 |
373 | BBCEncoder.encodeSwapUniV2(canFail, pair, amount0Out, amount1Out, to, data);
374 |
375 | /*
376 | // BBC ABI
377 | // length: 66 bytes
378 |
379 | 01 // Action.SwapUniV2
380 | 00 // canFail
381 | 14 // pair byte length
382 | b4e16d0168e52d35cacd2c6185b44281ec28c9dc // pair bytes
383 | 08 // amount0Out byte length
384 | 0de0b6b3a7640000 // amount0Out bytes
385 | 00 // amount1Out byte length
386 | 14 // to byte length
387 | f39fd6e51aad88f6f4ce6ab8827279cfffb92266 // to bytes
388 | 00000008 // data byte length
389 | 6465616462656566 // data bytes
390 | */
391 | ```
392 |
--------------------------------------------------------------------------------
/src/util/BBCEncoder.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | import { Action } from "src/types/Action.sol";
5 |
6 | // ## Decoder
7 | //
8 | // Inspired by the calldata schema of BigBrainChad.eth
9 | //
10 | // ### Encoding Overview
11 | //
12 | // Statically sized calldata arguments of 8 bits or less are encoded in place.
13 | //
14 | // Statically sized calldata arguments of 9 to 256 bits are prefixed with their
15 | // byte length (as an 8 bit integer) followed by the argument, compacted to its
16 | // byte length. This is to handle the common case of the majority of bits being
17 | // unoccupied.
18 | //
19 | // Dynamically sized calldata arguments are prefixed with a 32 bit integer
20 | // indicating its byte length, followed by the bytes themselves. This is worth
21 | // exploring in the future as to whether or not the upper bits of the byte
22 | // length are unoccupied enough to justify an encoding as mentioned in the
23 | // statically sized calldata arguments above.
24 | //
25 | // ### Notes
26 | //
27 | // This encoder, while in the source directory of the Lotus Router and its
28 | // libraries, is not rigorously optimized, as the encoding scheme is meant to
29 | // reduce the cost of the smart contract entry point, given the unusually high
30 | // cost per byte of calldata. This is largely in service of testing libraries
31 | // and more offchain periphery will be developed in the future to ensure users
32 | // may interface with the Lotus Router in a reasonably safe way.
33 | //
34 | // Also, the encoder largely uses assembly nonetheless, as Solidity does not
35 | // support fully dependent types, which would allow for run-time
36 | // parameterization of value byte lengths.
37 | library BBCEncoder {
38 | function encodeSwapUniV2(
39 | bool canFail,
40 | address pair,
41 | uint256 amount0Out,
42 | uint256 amount1Out,
43 | address to,
44 | bytes memory data
45 | ) internal view returns (bytes memory) {
46 | Action action = Action.SwapUniV2;
47 | uint8 pairByteLen = byteLen(pair);
48 | uint8 amount0OutByteLen = byteLen(amount0Out);
49 | uint8 amount1OutByteLen = byteLen(amount1Out);
50 | uint8 toByteLen = byteLen(to);
51 | uint256 dataByteLen = data.length;
52 |
53 | bytes memory encoded = new bytes(
54 | 10 + pairByteLen + amount0OutByteLen + amount1OutByteLen + toByteLen + dataByteLen
55 | );
56 |
57 | assembly ("memory-safe") {
58 | let ptr := add(encoded, 0x20)
59 |
60 | mstore(ptr, shl(0xf8, action))
61 | ptr := add(ptr, 0x01)
62 |
63 | mstore(ptr, shl(0xf8, canFail))
64 | ptr := add(ptr, 0x01)
65 |
66 | mstore(ptr, shl(0xf8, pairByteLen))
67 | ptr := add(ptr, 0x01)
68 |
69 | mstore(ptr, shl(sub(0x0100, mul(0x08, pairByteLen)), pair))
70 | ptr := add(ptr, pairByteLen)
71 |
72 | mstore(ptr, shl(0xf8, amount0OutByteLen))
73 | ptr := add(ptr, 0x01)
74 |
75 | mstore(ptr, shl(sub(0x0100, mul(0x08, amount0OutByteLen)), amount0Out))
76 | ptr := add(ptr, amount0OutByteLen)
77 |
78 | mstore(ptr, shl(0xf8, amount1OutByteLen))
79 | ptr := add(ptr, 0x01)
80 |
81 | mstore(ptr, shl(sub(0x0100, mul(0x08, amount1OutByteLen)), amount1Out))
82 | ptr := add(ptr, amount1OutByteLen)
83 |
84 | mstore(ptr, shl(0xf8, toByteLen))
85 | ptr := add(ptr, 0x01)
86 |
87 | mstore(ptr, shl(sub(0x0100, mul(0x08, toByteLen)), to))
88 | ptr := add(ptr, toByteLen)
89 |
90 | mstore(ptr, shl(0xe0, dataByteLen))
91 | ptr := add(ptr, 0x04)
92 |
93 | pop(staticcall(gas(), 0x04, add(data, 0x20), dataByteLen, ptr, dataByteLen))
94 | }
95 |
96 | return encoded;
97 | }
98 |
99 | function encodeSwapUniV3(
100 | bool canFail,
101 | address pool,
102 | address recipient,
103 | bool zeroForOne,
104 | int256 amountSpecified,
105 | uint160 sqrtPriceLimitX96,
106 | bytes memory data
107 | ) internal view returns (bytes memory) {
108 | Action action = Action.SwapUniV3;
109 | uint8 poolByteLen = byteLen(pool);
110 | uint8 recipientByteLen = byteLen(recipient);
111 | uint8 amountSpecifiedByteLen = byteLen(amountSpecified);
112 | uint8 sqrtPriceLimitX96ByteLen = byteLen(sqrtPriceLimitX96);
113 | uint256 dataByteLen = data.length;
114 |
115 | bytes memory encoded = new bytes(
116 | 11 + poolByteLen + recipientByteLen + amountSpecifiedByteLen + sqrtPriceLimitX96ByteLen
117 | + dataByteLen
118 | );
119 |
120 | assembly ("memory-safe") {
121 | let ptr := add(encoded, 0x20)
122 |
123 | mstore(ptr, shl(0xf8, action))
124 | ptr := add(ptr, 0x01)
125 |
126 | mstore(ptr, shl(0xf8, canFail))
127 | ptr := add(ptr, 0x01)
128 |
129 | mstore(ptr, shl(0xf8, poolByteLen))
130 | ptr := add(ptr, 0x01)
131 |
132 | mstore(ptr, shl(sub(0x0100, mul(poolByteLen, 0x08)), pool))
133 | ptr := add(ptr, poolByteLen)
134 |
135 | mstore(ptr, shl(0xf8, recipientByteLen))
136 | ptr := add(ptr, 0x01)
137 |
138 | mstore(ptr, shl(sub(0x0100, mul(recipientByteLen, 0x08)), recipient))
139 | ptr := add(ptr, recipientByteLen)
140 |
141 | mstore(ptr, shl(0xf8, zeroForOne))
142 | ptr := add(ptr, 0x01)
143 |
144 | mstore(ptr, shl(0xf8, amountSpecifiedByteLen))
145 | ptr := add(ptr, 0x01)
146 |
147 | mstore(ptr, shl(sub(0x0100, mul(amountSpecifiedByteLen, 0x08)), amountSpecified))
148 | ptr := add(ptr, amountSpecifiedByteLen)
149 |
150 | mstore(ptr, shl(0xf8, sqrtPriceLimitX96ByteLen))
151 | ptr := add(ptr, 0x01)
152 |
153 | mstore(ptr, shl(sub(0x0100, mul(sqrtPriceLimitX96ByteLen, 0x08)), sqrtPriceLimitX96))
154 | ptr := add(ptr, sqrtPriceLimitX96ByteLen)
155 |
156 | mstore(ptr, shl(0xe0, dataByteLen))
157 | ptr := add(ptr, 0x04)
158 |
159 | pop(staticcall(gas(), 0x04, add(data, 0x20), dataByteLen, ptr, dataByteLen))
160 | }
161 |
162 | return encoded;
163 | }
164 |
165 | function encodeFlashUniV3(
166 | bool canFail,
167 | address pool,
168 | address recipient,
169 | uint256 amount0,
170 | uint256 amount1,
171 | bytes memory data
172 | ) internal view returns (bytes memory) {
173 | Action action = Action.FlashUniV3;
174 | uint8 poolByteLen = byteLen(pool);
175 | uint8 recipientByteLen = byteLen(recipient);
176 | uint8 amount0ByteLen = byteLen(amount0);
177 | uint8 amount1ByteLen = byteLen(amount1);
178 | uint256 dataByteLen = data.length;
179 |
180 | bytes memory encoded = new bytes(
181 | 10 + poolByteLen + recipientByteLen + amount0ByteLen + amount1ByteLen + dataByteLen
182 | );
183 |
184 | assembly ("memory-safe") {
185 | let ptr := add(encoded, 0x20)
186 |
187 | mstore(ptr, shl(0xf8, action))
188 | ptr := add(ptr, 0x01)
189 |
190 | mstore(ptr, shl(0xf8, canFail))
191 | ptr := add(ptr, 0x01)
192 |
193 | mstore(ptr, shl(0xf8, poolByteLen))
194 | ptr := add(ptr, 0x01)
195 |
196 | mstore(ptr, shl(sub(0x0100, mul(poolByteLen, 0x08)), pool))
197 | ptr := add(ptr, poolByteLen)
198 |
199 | mstore(ptr, shl(0xf8, recipientByteLen))
200 | ptr := add(ptr, 0x01)
201 |
202 | mstore(ptr, shl(sub(0x0100, mul(recipientByteLen, 0x08)), recipient))
203 | ptr := add(ptr, recipientByteLen)
204 |
205 | mstore(ptr, shl(0xf8, amount0ByteLen))
206 | ptr := add(ptr, 0x01)
207 |
208 | mstore(ptr, shl(sub(0x0100, mul(amount0ByteLen, 0x08)), amount0))
209 | ptr := add(ptr, amount0ByteLen)
210 |
211 | mstore(ptr, shl(0xf8, amount1ByteLen))
212 | ptr := add(ptr, 0x01)
213 |
214 | mstore(ptr, shl(sub(0x0100, mul(amount1ByteLen, 0x08)), amount1))
215 | ptr := add(ptr, amount1ByteLen)
216 |
217 | mstore(ptr, shl(0xe0, dataByteLen))
218 | ptr := add(ptr, 0x04)
219 |
220 | pop(staticcall(gas(), 0x04, add(data, 0x20), dataByteLen, ptr, dataByteLen))
221 | }
222 |
223 | return encoded;
224 | }
225 |
226 | function encodeTransferERC20(
227 | bool canFail,
228 | address token,
229 | address receiver,
230 | uint256 amount
231 | ) internal pure returns (bytes memory) {
232 | Action action = Action.TransferERC20;
233 | uint8 tokenByteLen = byteLen(token);
234 | uint8 receiverByteLen = byteLen(receiver);
235 | uint8 amountByteLen = byteLen(amount);
236 |
237 | bytes memory encoded = new bytes(5 + tokenByteLen + receiverByteLen + amountByteLen);
238 |
239 | assembly ("memory-safe") {
240 | let ptr := add(encoded, 0x20)
241 |
242 | mstore(ptr, shl(0xf8, action))
243 |
244 | ptr := add(ptr, 0x01)
245 |
246 | mstore(ptr, shl(0xf8, canFail))
247 |
248 | ptr := add(ptr, 0x01)
249 |
250 | mstore(ptr, shl(0xf8, tokenByteLen))
251 |
252 | ptr := add(ptr, 0x01)
253 |
254 | mstore(ptr, shl(sub(0x0100, mul(0x08, tokenByteLen)), token))
255 |
256 | ptr := add(ptr, tokenByteLen)
257 |
258 | mstore(ptr, shl(0xf8, receiverByteLen))
259 |
260 | ptr := add(ptr, 0x01)
261 |
262 | mstore(ptr, shl(sub(0x0100, mul(0x08, receiverByteLen)), receiver))
263 |
264 | ptr := add(ptr, receiverByteLen)
265 |
266 | mstore(ptr, shl(0xf8, amountByteLen))
267 |
268 | ptr := add(ptr, 0x01)
269 |
270 | mstore(ptr, shl(sub(0x0100, mul(0x08, amountByteLen)), amount))
271 | }
272 |
273 | return encoded;
274 | }
275 |
276 | function encodeTransferFromERC20(
277 | bool canFail,
278 | address token,
279 | address sender,
280 | address receiver,
281 | uint256 amount
282 | ) internal pure returns (bytes memory) {
283 | Action action = Action.TransferFromERC20;
284 | uint8 tokenByteLen = byteLen(token);
285 | uint8 senderByteLen = byteLen(sender);
286 | uint8 receiverByteLen = byteLen(receiver);
287 | uint8 amountByteLen = byteLen(amount);
288 |
289 | bytes memory encoded =
290 | new bytes(6 + tokenByteLen + senderByteLen + receiverByteLen + amountByteLen);
291 |
292 | assembly ("memory-safe") {
293 | let ptr := add(encoded, 0x20)
294 |
295 | mstore(ptr, shl(0xf8, action))
296 |
297 | ptr := add(ptr, 0x01)
298 |
299 | mstore(ptr, shl(0xf8, canFail))
300 |
301 | ptr := add(ptr, 0x01)
302 |
303 | mstore(ptr, shl(0xf8, tokenByteLen))
304 |
305 | ptr := add(ptr, 0x01)
306 |
307 | mstore(ptr, shl(sub(0x0100, mul(0x08, tokenByteLen)), token))
308 |
309 | ptr := add(ptr, tokenByteLen)
310 |
311 | mstore(ptr, shl(0xf8, senderByteLen))
312 |
313 | ptr := add(ptr, 0x01)
314 |
315 | mstore(ptr, shl(sub(0x0100, mul(0x08, senderByteLen)), sender))
316 |
317 | ptr := add(ptr, senderByteLen)
318 |
319 | mstore(ptr, shl(0xf8, receiverByteLen))
320 |
321 | ptr := add(ptr, 0x01)
322 |
323 | mstore(ptr, shl(sub(0x0100, mul(0x08, receiverByteLen)), receiver))
324 |
325 | ptr := add(ptr, receiverByteLen)
326 |
327 | mstore(ptr, shl(0xf8, amountByteLen))
328 |
329 | ptr := add(ptr, 0x01)
330 |
331 | mstore(ptr, shl(sub(0x0100, mul(0x08, amountByteLen)), amount))
332 | }
333 |
334 | return encoded;
335 | }
336 |
337 | function encodeTransferFromERC721(
338 | bool canFail,
339 | address token,
340 | address sender,
341 | address receiver,
342 | uint256 tokenId
343 | ) internal pure returns (bytes memory) {
344 | Action action = Action.TransferFromERC20;
345 | uint8 tokenByteLen = byteLen(token);
346 | uint8 senderByteLen = byteLen(sender);
347 | uint8 receiverByteLen = byteLen(receiver);
348 | uint8 tokenIdByteLen = byteLen(tokenId);
349 |
350 | bytes memory encoded =
351 | new bytes(6 + tokenByteLen + senderByteLen + receiverByteLen + tokenIdByteLen);
352 |
353 | assembly ("memory-safe") {
354 | let ptr := add(encoded, 0x20)
355 |
356 | mstore(ptr, shl(0xf8, action))
357 |
358 | ptr := add(ptr, 0x01)
359 |
360 | mstore(ptr, shl(0xf8, canFail))
361 |
362 | ptr := add(ptr, 0x01)
363 |
364 | mstore(ptr, shl(0xf8, tokenByteLen))
365 |
366 | ptr := add(ptr, 0x01)
367 |
368 | mstore(ptr, shl(sub(0x0100, mul(0x08, tokenByteLen)), token))
369 |
370 | ptr := add(ptr, tokenByteLen)
371 |
372 | mstore(ptr, shl(0xf8, senderByteLen))
373 |
374 | ptr := add(ptr, 0x01)
375 |
376 | mstore(ptr, shl(sub(0x0100, mul(0x08, senderByteLen)), sender))
377 |
378 | ptr := add(ptr, senderByteLen)
379 |
380 | mstore(ptr, shl(0xf8, receiverByteLen))
381 |
382 | ptr := add(ptr, 0x01)
383 |
384 | mstore(ptr, shl(sub(0x0100, mul(0x08, receiverByteLen)), receiver))
385 |
386 | ptr := add(ptr, receiverByteLen)
387 |
388 | mstore(ptr, shl(0xf8, tokenIdByteLen))
389 |
390 | ptr := add(ptr, 0x01)
391 |
392 | mstore(ptr, shl(sub(0x0100, mul(0x08, tokenIdByteLen)), tokenId))
393 | }
394 |
395 | return encoded;
396 | }
397 |
398 | function encodeTransferERC6909(
399 | bool canFail,
400 | address multitoken,
401 | address receiver,
402 | uint256 tokenId,
403 | uint256 amount
404 | ) internal pure returns (bytes memory) {
405 | Action action = Action.TransferERC6909;
406 | uint8 multitokenByteLen = byteLen(multitoken);
407 | uint8 receiverByteLen = byteLen(receiver);
408 | uint8 tokenIdByteLen = byteLen(tokenId);
409 | uint8 amountByteLen = byteLen(amount);
410 |
411 | bytes memory encoded =
412 | new bytes(6 + multitokenByteLen + receiverByteLen + tokenIdByteLen + amountByteLen);
413 |
414 | assembly ("memory-safe") {
415 | let ptr := add(encoded, 0x20)
416 |
417 | mstore(ptr, shl(0xf8, action))
418 |
419 | ptr := add(ptr, 0x01)
420 |
421 | mstore(ptr, shl(0xf8, canFail))
422 |
423 | ptr := add(ptr, 0x01)
424 |
425 | mstore(ptr, shl(0xf8, multitokenByteLen))
426 |
427 | ptr := add(ptr, 0x01)
428 |
429 | mstore(ptr, shl(sub(0x0100, mul(0x08, multitokenByteLen)), multitoken))
430 |
431 | ptr := add(ptr, multitokenByteLen)
432 |
433 | mstore(ptr, shl(0xf8, receiverByteLen))
434 |
435 | ptr := add(ptr, 0x01)
436 |
437 | mstore(ptr, shl(sub(0x0100, mul(0x08, receiverByteLen)), receiver))
438 |
439 | ptr := add(ptr, receiverByteLen)
440 |
441 | mstore(ptr, shl(0xf8, tokenIdByteLen))
442 |
443 | ptr := add(ptr, 0x01)
444 |
445 | mstore(ptr, shl(sub(0x0100, mul(0x08, tokenIdByteLen)), tokenId))
446 |
447 | ptr := add(ptr, tokenIdByteLen)
448 |
449 | mstore(ptr, shl(0xf8, amountByteLen))
450 |
451 | ptr := add(ptr, 0x01)
452 |
453 | mstore(ptr, shl(sub(0x0100, mul(0x08, amountByteLen)), amount))
454 | }
455 |
456 | return encoded;
457 | }
458 |
459 | function encodeTransferFromERC6909(
460 | bool canFail,
461 | address multitoken,
462 | address sender,
463 | address receiver,
464 | uint256 tokenId,
465 | uint256 amount
466 | ) internal pure returns (bytes memory) {
467 | Action action = Action.TransferFromERC6909;
468 | uint8 multitokenByteLen = byteLen(multitoken);
469 | uint8 senderByteLen = byteLen(sender);
470 | uint8 receiverByteLen = byteLen(receiver);
471 | uint8 tokenIdByteLen = byteLen(tokenId);
472 | uint8 amountByteLen = byteLen(amount);
473 |
474 | bytes memory encoded = new bytes(
475 | 7 + multitokenByteLen + senderByteLen + receiverByteLen + tokenIdByteLen + amountByteLen
476 | );
477 |
478 | assembly ("memory-safe") {
479 | let ptr := add(encoded, 0x20)
480 |
481 | mstore(ptr, shl(0xf8, action))
482 |
483 | ptr := add(ptr, 0x01)
484 |
485 | mstore(ptr, shl(0xf8, canFail))
486 |
487 | ptr := add(ptr, 0x01)
488 |
489 | mstore(ptr, shl(0xf8, multitokenByteLen))
490 |
491 | ptr := add(ptr, 0x01)
492 |
493 | mstore(ptr, shl(sub(0x0100, mul(0x08, multitokenByteLen)), multitoken))
494 |
495 | ptr := add(ptr, multitokenByteLen)
496 |
497 | mstore(ptr, shl(0xf8, senderByteLen))
498 |
499 | ptr := add(ptr, 0x01)
500 |
501 | mstore(ptr, shl(sub(0x0100, mul(0x08, senderByteLen)), sender))
502 |
503 | ptr := add(ptr, senderByteLen)
504 |
505 | mstore(ptr, shl(0xf8, receiverByteLen))
506 |
507 | ptr := add(ptr, 0x01)
508 |
509 | mstore(ptr, shl(sub(0x0100, mul(0x08, receiverByteLen)), receiver))
510 |
511 | ptr := add(ptr, receiverByteLen)
512 |
513 | mstore(ptr, shl(0xf8, tokenIdByteLen))
514 |
515 | ptr := add(ptr, 0x01)
516 |
517 | mstore(ptr, shl(sub(0x0100, mul(0x08, tokenIdByteLen)), tokenId))
518 |
519 | ptr := add(ptr, tokenIdByteLen)
520 |
521 | mstore(ptr, shl(0xf8, amountByteLen))
522 |
523 | ptr := add(ptr, 0x01)
524 |
525 | mstore(ptr, shl(sub(0x0100, mul(0x08, amountByteLen)), amount))
526 | }
527 |
528 | return encoded;
529 | }
530 |
531 | function encodeDepositWETH(
532 | bool canFail,
533 | address weth,
534 | uint256 value
535 | ) internal pure returns (bytes memory) {
536 | Action action = Action.DepositWETH;
537 | uint8 wethByteLen = byteLen(weth);
538 | uint8 valueByteLen = byteLen(value);
539 |
540 | bytes memory encoded = new bytes(4 + wethByteLen + valueByteLen);
541 |
542 | assembly {
543 | let ptr := add(encoded, 0x20)
544 |
545 | mstore(ptr, shl(0xf8, action))
546 |
547 | ptr := add(ptr, 0x01)
548 |
549 | mstore(ptr, shl(0xf8, canFail))
550 |
551 | ptr := add(ptr, 0x01)
552 |
553 | mstore(ptr, shl(0xf8, wethByteLen))
554 |
555 | ptr := add(ptr, 0x01)
556 |
557 | mstore(ptr, shl(sub(0x0100, mul(0x08, wethByteLen)), weth))
558 |
559 | ptr := add(ptr, wethByteLen)
560 |
561 | mstore(ptr, shl(0xf8, valueByteLen))
562 |
563 | ptr := add(ptr, 0x01)
564 |
565 | mstore(ptr, shl(sub(0x0100, mul(0x08, valueByteLen)), value))
566 | }
567 |
568 | return encoded;
569 | }
570 |
571 | function encodeWithdrawWETH(
572 | bool canFail,
573 | address weth,
574 | uint256 value
575 | ) internal pure returns (bytes memory) {
576 | Action action = Action.WithdrawWETH;
577 | uint8 wethByteLen = byteLen(weth);
578 | uint8 valueByteLen = byteLen(value);
579 |
580 | bytes memory encoded = new bytes(4 + wethByteLen + valueByteLen);
581 |
582 | assembly {
583 | let ptr := add(encoded, 0x20)
584 |
585 | mstore(ptr, shl(0xf8, action))
586 |
587 | ptr := add(ptr, 0x01)
588 |
589 | mstore(ptr, shl(0xf8, canFail))
590 |
591 | ptr := add(ptr, 0x01)
592 |
593 | mstore(ptr, shl(0xf8, wethByteLen))
594 |
595 | ptr := add(ptr, 0x01)
596 |
597 | mstore(ptr, shl(sub(0x0100, mul(0x08, wethByteLen)), weth))
598 |
599 | ptr := add(ptr, wethByteLen)
600 |
601 | mstore(ptr, shl(0xf8, valueByteLen))
602 |
603 | ptr := add(ptr, 0x01)
604 |
605 | mstore(ptr, shl(sub(0x0100, mul(0x08, valueByteLen)), value))
606 | }
607 |
608 | return encoded;
609 | }
610 |
611 | function encodeDynCall(
612 | bool canFail,
613 | address target,
614 | uint256 value,
615 | bytes memory data
616 | ) internal view returns (bytes memory) {
617 | Action action = Action.DynCall;
618 | uint8 targetByteLen = byteLen(target);
619 | uint8 valueByteLen = byteLen(value);
620 | uint256 dataByteLen = data.length;
621 |
622 | bytes memory encoded = new bytes(
623 | 8 + targetByteLen + valueByteLen + dataByteLen
624 | );
625 |
626 | assembly ("memory-safe") {
627 | let ptr := add(encoded, 0x20)
628 |
629 | mstore(ptr, shl(0xf8, action))
630 | ptr := add(ptr, 0x01)
631 |
632 | mstore(ptr, shl(0xf8, canFail))
633 | ptr := add(ptr, 0x01)
634 |
635 | mstore(ptr, shl(0xf8, targetByteLen))
636 | ptr := add(ptr, 0x01)
637 |
638 | mstore(ptr, shl(sub(0x0100, mul(0x08, targetByteLen)), target))
639 | ptr := add(ptr, targetByteLen)
640 |
641 | mstore(ptr, shl(0xf8, valueByteLen))
642 | ptr := add(ptr, 0x01)
643 |
644 | mstore(ptr, shl(sub(0x0100, mul(0x08, valueByteLen)), value))
645 | ptr := add(ptr, valueByteLen)
646 |
647 | mstore(ptr, shl(0xe0, dataByteLen))
648 | ptr := add(ptr, 0x04)
649 |
650 | pop(staticcall(gas(), 0x04, add(data, 0x20), dataByteLen, ptr, dataByteLen))
651 | }
652 |
653 | return encoded;
654 | }
655 |
656 | function byteLen(
657 | uint256 word
658 | ) internal pure returns (uint8) {
659 | for (uint8 i = 32; i > 0; i--) {
660 | if (word >> ((i - 1) * 8) != 0) return i;
661 | }
662 |
663 | return 0;
664 | }
665 |
666 | function byteLen(
667 | address addr
668 | ) internal pure returns (uint8) {
669 | uint160 word = uint160(addr);
670 |
671 | for (uint8 i = 20; i > 0; i--) {
672 | if (word >> ((i - 1) * 8) != 0) return i;
673 | }
674 |
675 | return 0;
676 | }
677 |
678 | function byteLen(
679 | int256 word
680 | ) internal pure returns (uint8) {
681 | uint256 adjusted;
682 |
683 | if (word < 0) {
684 | adjusted = uint256(-word);
685 | } else {
686 | adjusted = uint256(word);
687 | }
688 |
689 | if (byteLen(adjusted) == 32) return 32;
690 | else return byteLen(adjusted << 1);
691 | }
692 | }
693 |
--------------------------------------------------------------------------------
/test/BBCDecoder.t.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | import { Test } from "lib/forge-std/src/Test.sol";
5 | import { BBCDecoderMock } from "test/mock/BBCDecoderMock.sol";
6 |
7 | import { Action } from "src/types/Action.sol";
8 | import { BytesCalldata } from "src/types/BytesCalldata.sol";
9 | import { Ptr } from "src/types/PayloadPointer.sol";
10 | import { ERC20 } from "src/types/protocols/ERC20.sol";
11 | import { ERC6909 } from "src/types/protocols/ERC6909.sol";
12 | import { ERC721 } from "src/types/protocols/ERC721.sol";
13 | import { UniV2Pair } from "src/types/protocols/UniV2Pair.sol";
14 | import { UniV3Pool } from "src/types/protocols/UniV3Pool.sol";
15 | import { WETH } from "src/types/protocols/WETH.sol";
16 | import { BBCDecoder } from "src/util/BBCDecoder.sol";
17 | import { BBCEncoder } from "src/util/BBCEncoder.sol";
18 |
19 | contract BBCDecoderTest is Test {
20 | BBCDecoderMock decoder;
21 |
22 | function setUp() public {
23 | decoder = new BBCDecoderMock();
24 | }
25 |
26 | function testDecodeSwapUniV2() public view {
27 | bool expectedCanFail = true;
28 | address expectedPair = address(0xaabbccdd);
29 | uint8 expectedAmount0Out = 0x45;
30 | uint8 expectedAmount1Out = 0x46;
31 | address expectedTo = address(0xeeffaabb);
32 | bytes memory expectedData = hex"deadbeef";
33 |
34 | bytes memory encoded = BBCEncoder.encodeSwapUniV2(
35 | expectedCanFail,
36 | expectedPair,
37 | expectedAmount0Out,
38 | expectedAmount1Out,
39 | expectedTo,
40 | expectedData
41 | );
42 |
43 | (
44 | bool canFail,
45 | UniV2Pair pair,
46 | uint256 amount0Out,
47 | uint256 amount1Out,
48 | address to,
49 | bytes memory data
50 | ) = decoder.decodeSwapUniV2(encoded);
51 |
52 | assertEq(canFail, expectedCanFail);
53 | assertEq(UniV2Pair.unwrap(pair), expectedPair);
54 | assertEq(amount0Out, expectedAmount0Out);
55 | assertEq(amount1Out, expectedAmount1Out);
56 | assertEq(to, expectedTo);
57 | assertEq(keccak256(data), keccak256(expectedData));
58 | }
59 |
60 | function testFuzzDecodeSwapUniv2(
61 | bool expectedCanFail,
62 | address expectedPair,
63 | uint8 expectedAmount0Out,
64 | uint8 expectedAmount1Out,
65 | address expectedTo,
66 | bytes memory expectedData
67 | ) public view {
68 | bytes memory encoded = BBCEncoder.encodeSwapUniV2(
69 | expectedCanFail,
70 | expectedPair,
71 | expectedAmount0Out,
72 | expectedAmount1Out,
73 | expectedTo,
74 | expectedData
75 | );
76 |
77 | (
78 | bool canFail,
79 | UniV2Pair pair,
80 | uint256 amount0Out,
81 | uint256 amount1Out,
82 | address to,
83 | bytes memory data
84 | ) = decoder.decodeSwapUniV2(encoded);
85 |
86 | assertEq(canFail, expectedCanFail);
87 | assertEq(UniV2Pair.unwrap(pair), expectedPair);
88 | assertEq(amount0Out, expectedAmount0Out);
89 | assertEq(amount1Out, expectedAmount1Out);
90 | assertEq(to, expectedTo);
91 | assertEq(keccak256(data), keccak256(expectedData));
92 | }
93 |
94 | function testDecodeSwapUniV3() public view {
95 | bool expectedCanFail = true;
96 | address expectedPool = address(0xaabbccdd);
97 | address expectedRecipient = address(0xeeffaabb);
98 | bool expectedZeroForOne = true;
99 | int256 expectedAmountSpecified = 0x02;
100 | uint160 expectedSqrtPriceLimitX96 = 0x03;
101 | bytes memory expectedData = hex"deadbeef";
102 |
103 | bytes memory encoded = BBCEncoder.encodeSwapUniV3(
104 | expectedCanFail,
105 | expectedPool,
106 | expectedRecipient,
107 | expectedZeroForOne,
108 | expectedAmountSpecified,
109 | expectedSqrtPriceLimitX96,
110 | expectedData
111 | );
112 |
113 | (
114 | bool canFail,
115 | UniV3Pool pool,
116 | address recipient,
117 | bool zeroForOne,
118 | int256 amountSpecified,
119 | uint160 sqrtPriceLimitX96,
120 | bytes memory data
121 | ) = decoder.decodeSwapUniV3(encoded);
122 |
123 | assertEq(canFail, expectedCanFail);
124 | assertEq(UniV3Pool.unwrap(pool), expectedPool);
125 | assertEq(recipient, expectedRecipient);
126 | assertEq(zeroForOne, expectedZeroForOne);
127 | assertEq(amountSpecified, expectedAmountSpecified);
128 | assertEq(sqrtPriceLimitX96, expectedSqrtPriceLimitX96);
129 | assertEq(keccak256(data), keccak256(expectedData));
130 | }
131 |
132 | function testDecodeSwapUniV3Negative() public view {
133 | bool expectedCanFail = true;
134 | address expectedPool = address(0xaabbccdd);
135 | address expectedRecipient = address(0xeeffaabb);
136 | bool expectedZeroForOne = true;
137 | int256 expectedAmountSpecified = -0x02;
138 | uint160 expectedSqrtPriceLimitX96 = 0x03;
139 | bytes memory expectedData = hex"deadbeef";
140 |
141 | bytes memory encoded = BBCEncoder.encodeSwapUniV3(
142 | expectedCanFail,
143 | expectedPool,
144 | expectedRecipient,
145 | expectedZeroForOne,
146 | expectedAmountSpecified,
147 | expectedSqrtPriceLimitX96,
148 | expectedData
149 | );
150 |
151 | (
152 | bool canFail,
153 | UniV3Pool pool,
154 | address recipient,
155 | bool zeroForOne,
156 | int256 amountSpecified,
157 | uint160 sqrtPriceLimitX96,
158 | bytes memory data
159 | ) = decoder.decodeSwapUniV3(encoded);
160 |
161 | assertEq(canFail, expectedCanFail);
162 | assertEq(UniV3Pool.unwrap(pool), expectedPool);
163 | assertEq(recipient, expectedRecipient);
164 | assertEq(zeroForOne, expectedZeroForOne);
165 | assertEq(amountSpecified, expectedAmountSpecified);
166 | assertEq(sqrtPriceLimitX96, expectedSqrtPriceLimitX96);
167 | assertEq(keccak256(data), keccak256(expectedData));
168 | }
169 |
170 | function testFuzzDecodeSwapUniV3(
171 | bool expectedCanFail,
172 | address expectedPool,
173 | address expectedRecipient,
174 | bool expectedZeroForOne,
175 | int256 expectedAmountSpecified,
176 | uint160 expectedSqrtPriceLimitX96,
177 | bytes memory expectedData
178 | ) public view {
179 | // why? bc `-expectedAmountSpecified` in this exact case overflows :(
180 | vm.assume(
181 | expectedAmountSpecified
182 | != -57896044618658097711785492504343953926634992332820282019728792003956564819968
183 | );
184 |
185 | bytes memory encoded = BBCEncoder.encodeSwapUniV3(
186 | expectedCanFail,
187 | expectedPool,
188 | expectedRecipient,
189 | expectedZeroForOne,
190 | expectedAmountSpecified,
191 | expectedSqrtPriceLimitX96,
192 | expectedData
193 | );
194 |
195 | (
196 | bool canFail,
197 | UniV3Pool pool,
198 | address recipient,
199 | bool zeroForOne,
200 | int256 amountSpecified,
201 | uint160 sqrtPriceLimitX96,
202 | bytes memory data
203 | ) = decoder.decodeSwapUniV3(encoded);
204 |
205 | assertEq(canFail, expectedCanFail);
206 | assertEq(UniV3Pool.unwrap(pool), expectedPool);
207 | assertEq(recipient, expectedRecipient);
208 | assertEq(zeroForOne, expectedZeroForOne);
209 | assertEq(amountSpecified, expectedAmountSpecified);
210 | assertEq(sqrtPriceLimitX96, expectedSqrtPriceLimitX96);
211 | assertEq(keccak256(data), keccak256(expectedData));
212 | }
213 |
214 | function testDecodeFlashUniV3() public view {
215 | bool expectedCanFail = true;
216 | address expectedPool = address(0xaabbccdd);
217 | address expectedRecipient = address(0xeeffaabb);
218 | uint256 expectedAmount0 = 0x45;
219 | uint256 expectedAmount1 = 0x46;
220 | bytes memory expectedData = hex"deadbeef";
221 |
222 | bytes memory encoded = BBCEncoder.encodeFlashUniV3(
223 | expectedCanFail,
224 | expectedPool,
225 | expectedRecipient,
226 | expectedAmount0,
227 | expectedAmount1,
228 | expectedData
229 | );
230 |
231 | (
232 | bool canFail,
233 | UniV3Pool pool,
234 | address recipient,
235 | uint256 amount0,
236 | uint256 amount1,
237 | bytes memory data
238 | ) = decoder.decodeFlashUniV3(encoded);
239 |
240 | assertEq(canFail, expectedCanFail);
241 | assertEq(UniV3Pool.unwrap(pool), expectedPool);
242 | assertEq(recipient, expectedRecipient);
243 | assertEq(amount0, expectedAmount0);
244 | assertEq(amount1, expectedAmount1);
245 | assertEq(keccak256(data), keccak256(expectedData));
246 | }
247 |
248 | function testFuzzDecodeFlashUniV3(
249 | bool expectedCanFail,
250 | address expectedPool,
251 | address expectedRecipient,
252 | uint256 expectedAmount0,
253 | uint256 expectedAmount1,
254 | bytes memory expectedData
255 | ) public {
256 | bytes memory encoded = BBCEncoder.encodeFlashUniV3(
257 | expectedCanFail,
258 | expectedPool,
259 | expectedRecipient,
260 | expectedAmount0,
261 | expectedAmount1,
262 | expectedData
263 | );
264 |
265 | emit log_bytes(encoded);
266 |
267 | (
268 | bool canFail,
269 | UniV3Pool pool,
270 | address recipient,
271 | uint256 amount0,
272 | uint256 amount1,
273 | bytes memory data
274 | ) = decoder.decodeFlashUniV3(encoded);
275 |
276 | assertEq(canFail, expectedCanFail);
277 | assertEq(UniV3Pool.unwrap(pool), expectedPool);
278 | assertEq(recipient, expectedRecipient);
279 | assertEq(amount0, expectedAmount0);
280 | assertEq(amount1, expectedAmount1);
281 | assertEq(keccak256(data), keccak256(expectedData));
282 | }
283 |
284 | function testDecodeTransferERC20() public view {
285 | bool expectedCanFail = true;
286 | address expectedToken = address(0xaabbccdd);
287 | address expectedReceiver = address(0xeeffaabb);
288 | uint8 expectedAmount = 0x45;
289 |
290 | bytes memory encoded = BBCEncoder.encodeTransferERC20(
291 | expectedCanFail, expectedToken, expectedReceiver, expectedAmount
292 | );
293 |
294 | (bool canFail, ERC20 token, address receiver, uint256 amount) =
295 | decoder.decodeTransferERC20(encoded);
296 |
297 | assertEq(canFail, expectedCanFail);
298 | assertEq(ERC20.unwrap(token), expectedToken);
299 | assertEq(receiver, expectedReceiver);
300 | assertEq(amount, expectedAmount);
301 | }
302 |
303 | function tesFuzzDecodeTransferERC20(
304 | bool expectedCanFail,
305 | address expectedToken,
306 | address expectedReceiver,
307 | uint8 expectedAmount
308 | ) public view {
309 | bytes memory encoded = BBCEncoder.encodeTransferERC20(
310 | expectedCanFail, expectedToken, expectedReceiver, expectedAmount
311 | );
312 |
313 | (bool canFail, ERC20 token, address receiver, uint256 amount) =
314 | decoder.decodeTransferERC20(encoded);
315 |
316 | assertEq(canFail, expectedCanFail);
317 | assertEq(ERC20.unwrap(token), expectedToken);
318 | assertEq(receiver, expectedReceiver);
319 | assertEq(amount, expectedAmount);
320 | }
321 |
322 | function testDecodeTransferFromERC20() public view {
323 | bool expectedCanFail = true;
324 | address expectedToken = address(0xaabbccdd);
325 | address expectedSender = address(0xeeffaabb);
326 | address expectedReceiver = address(0xccddeeff);
327 | uint8 expectedAmount = 0x45;
328 |
329 | bytes memory encoded = BBCEncoder.encodeTransferFromERC20(
330 | expectedCanFail, expectedToken, expectedSender, expectedReceiver, expectedAmount
331 | );
332 |
333 | (bool canFail, ERC20 token, address sender, address receiver, uint256 amount) =
334 | decoder.decodeTransferFromERC20(encoded);
335 |
336 | assertEq(canFail, expectedCanFail);
337 | assertEq(ERC20.unwrap(token), expectedToken);
338 | assertEq(sender, expectedSender);
339 | assertEq(receiver, expectedReceiver);
340 | assertEq(amount, expectedAmount);
341 | }
342 |
343 | function testFuzzDecodeTransferFromERC20(
344 | bool expectedCanFail,
345 | address expectedToken,
346 | address expectedSender,
347 | address expectedReceiver,
348 | uint8 expectedAmount
349 | ) public view {
350 | bytes memory encoded = BBCEncoder.encodeTransferFromERC20(
351 | expectedCanFail, expectedToken, expectedSender, expectedReceiver, expectedAmount
352 | );
353 |
354 | (bool canFail, ERC20 token, address sender, address receiver, uint256 amount) =
355 | decoder.decodeTransferFromERC20(encoded);
356 |
357 | assertEq(canFail, expectedCanFail);
358 | assertEq(ERC20.unwrap(token), expectedToken);
359 | assertEq(sender, expectedSender);
360 | assertEq(receiver, expectedReceiver);
361 | assertEq(amount, expectedAmount);
362 | }
363 |
364 | function testDecodeTransferFromERC721() public view {
365 | bool expectedCanFail = true;
366 | address expectedToken = address(0xaabbccdd);
367 | address expectedSender = address(0xeeffaabb);
368 | address expectedReceiver = address(0xccddeeff);
369 | uint8 expectedTokenId = 0x45;
370 |
371 | bytes memory encoded = BBCEncoder.encodeTransferFromERC721(
372 | expectedCanFail, expectedToken, expectedSender, expectedReceiver, expectedTokenId
373 | );
374 |
375 | (bool canFail, ERC721 token, address sender, address receiver, uint256 tokenId) =
376 | decoder.decodeTransferFromERC721(encoded);
377 |
378 | assertEq(canFail, expectedCanFail);
379 | assertEq(ERC721.unwrap(token), expectedToken);
380 | assertEq(sender, expectedSender);
381 | assertEq(receiver, expectedReceiver);
382 | assertEq(tokenId, expectedTokenId);
383 | }
384 |
385 | function testFuzzDecodeTransferFromERC721(
386 | bool expectedCanFail,
387 | address expectedToken,
388 | address expectedSender,
389 | address expectedReceiver,
390 | uint8 expectedTokenId
391 | ) public view {
392 | bytes memory encoded = BBCEncoder.encodeTransferFromERC721(
393 | expectedCanFail, expectedToken, expectedSender, expectedReceiver, expectedTokenId
394 | );
395 |
396 | (bool canFail, ERC721 token, address sender, address receiver, uint256 tokenId) =
397 | decoder.decodeTransferFromERC721(encoded);
398 |
399 | assertEq(canFail, expectedCanFail);
400 | assertEq(ERC721.unwrap(token), expectedToken);
401 | assertEq(sender, expectedSender);
402 | assertEq(receiver, expectedReceiver);
403 | assertEq(tokenId, expectedTokenId);
404 | }
405 |
406 | function testDecodeTransferERC6909() public view {
407 | bool expectedCanFail = false;
408 | address expectedMultitoken = address(0xaabbccdd);
409 | address expectedReceiver = address(0xeeffaabb);
410 | uint256 expectedTokenId = 0x45;
411 | uint256 expectedAmount = 0x46;
412 |
413 | bytes memory encoded = BBCEncoder.encodeTransferERC6909(
414 | expectedCanFail, expectedMultitoken, expectedReceiver, expectedTokenId, expectedAmount
415 | );
416 |
417 | (bool canFail, ERC6909 multitoken, address receiver, uint256 tokenId, uint256 amount) =
418 | decoder.decodeTransferERC6909(encoded);
419 |
420 | assertEq(canFail, expectedCanFail);
421 | assertEq(ERC6909.unwrap(multitoken), expectedMultitoken);
422 | assertEq(receiver, expectedReceiver);
423 | assertEq(tokenId, expectedTokenId);
424 | assertEq(amount, expectedAmount);
425 | }
426 |
427 | function testFuzzDecodeTransferERC6909(
428 | bool expectedCanFail,
429 | address expectedMultitoken,
430 | address expectedReceiver,
431 | uint256 expectedTokenId,
432 | uint256 expectedAmount
433 | ) public view {
434 | bytes memory encoded = BBCEncoder.encodeTransferERC6909(
435 | expectedCanFail, expectedMultitoken, expectedReceiver, expectedTokenId, expectedAmount
436 | );
437 |
438 | (bool canFail, ERC6909 multitoken, address receiver, uint256 tokenId, uint256 amount) =
439 | decoder.decodeTransferERC6909(encoded);
440 |
441 | assertEq(canFail, expectedCanFail);
442 | assertEq(ERC6909.unwrap(multitoken), expectedMultitoken);
443 | assertEq(receiver, expectedReceiver);
444 | assertEq(tokenId, expectedTokenId);
445 | assertEq(amount, expectedAmount);
446 | }
447 |
448 | function testDecodeTransferFromERC6909() public view {
449 | bool expectedCanFail = false;
450 | address expectedMultitoken = address(0xaabbccdd);
451 | address expectedSender = address(0xeeffaabb);
452 | address expectedReceiver = address(0xccddeeff);
453 | uint256 expectedTokenId = 0x45;
454 | uint256 expectedAmount = 0x46;
455 |
456 | bytes memory encoded = BBCEncoder.encodeTransferFromERC6909(
457 | expectedCanFail,
458 | expectedMultitoken,
459 | expectedSender,
460 | expectedReceiver,
461 | expectedTokenId,
462 | expectedAmount
463 | );
464 |
465 | (
466 | bool canFail,
467 | ERC6909 multitoken,
468 | address sender,
469 | address receiver,
470 | uint256 tokenId,
471 | uint256 amount
472 | ) = decoder.decodeTransferFromERC6909(encoded);
473 |
474 | assertEq(canFail, expectedCanFail);
475 | assertEq(ERC6909.unwrap(multitoken), expectedMultitoken);
476 | assertEq(sender, expectedSender);
477 | assertEq(receiver, expectedReceiver);
478 | assertEq(tokenId, expectedTokenId);
479 | assertEq(amount, expectedAmount);
480 | }
481 |
482 | function testFuzzDecodeTransferFromERC6909(
483 | bool expectedCanFail,
484 | address expectedMultitoken,
485 | address expectedSender,
486 | address expectedReceiver,
487 | uint256 expectedTokenId,
488 | uint256 expectedAmount
489 | ) public view {
490 | bytes memory encoded = BBCEncoder.encodeTransferFromERC6909(
491 | expectedCanFail,
492 | expectedMultitoken,
493 | expectedSender,
494 | expectedReceiver,
495 | expectedTokenId,
496 | expectedAmount
497 | );
498 |
499 | (
500 | bool canFail,
501 | ERC6909 multitoken,
502 | address sender,
503 | address receiver,
504 | uint256 tokenId,
505 | uint256 amount
506 | ) = decoder.decodeTransferFromERC6909(encoded);
507 |
508 | assertEq(canFail, expectedCanFail);
509 | assertEq(ERC6909.unwrap(multitoken), expectedMultitoken);
510 | assertEq(sender, expectedSender);
511 | assertEq(receiver, expectedReceiver);
512 | assertEq(tokenId, expectedTokenId);
513 | assertEq(amount, expectedAmount);
514 | }
515 |
516 | function testDecodeDepositWETH() public view {
517 | bool expectedCanFail = false;
518 | address expectedWeth = address(0xaabbccdd);
519 | uint256 expectedValue = 0x45;
520 |
521 | bytes memory encoded =
522 | BBCEncoder.encodeDepositWETH(expectedCanFail, expectedWeth, expectedValue);
523 |
524 | (bool canFail, WETH weth, uint256 value) = decoder.decodeDepositWETH(encoded);
525 |
526 | assertEq(canFail, expectedCanFail);
527 | assertEq(WETH.unwrap(weth), expectedWeth);
528 | assertEq(value, expectedValue);
529 | }
530 |
531 | function testFuzzDecodeDepositWETH(
532 | bool expectedCanFail,
533 | address expectedWeth,
534 | uint8 expectedValue
535 | ) public view {
536 | bytes memory encoded =
537 | BBCEncoder.encodeDepositWETH(expectedCanFail, expectedWeth, expectedValue);
538 |
539 | (bool canFail, WETH weth, uint256 value) = decoder.decodeDepositWETH(encoded);
540 |
541 | assertEq(canFail, expectedCanFail);
542 | assertEq(WETH.unwrap(weth), expectedWeth);
543 | assertEq(value, expectedValue);
544 | }
545 |
546 | function testDecodWithdrawWETH() public view {
547 | bool expectedCanFail = false;
548 | address expectedWeth = address(0xaabbccdd);
549 | uint256 expectedValue = 0x45;
550 |
551 | bytes memory encoded =
552 | BBCEncoder.encodeWithdrawWETH(expectedCanFail, expectedWeth, expectedValue);
553 |
554 | (bool canFail, WETH weth, uint256 value) = decoder.decodeWithdrawWETH(encoded);
555 |
556 | assertEq(canFail, expectedCanFail);
557 | assertEq(WETH.unwrap(weth), expectedWeth);
558 | assertEq(value, expectedValue);
559 | }
560 |
561 | function testFuzzDecodeWithdrawWETH(
562 | bool expectedCanFail,
563 | address expectedWeth,
564 | uint8 expectedValue
565 | ) public view {
566 | bytes memory encoded =
567 | BBCEncoder.encodeWithdrawWETH(expectedCanFail, expectedWeth, expectedValue);
568 |
569 | (bool canFail, WETH weth, uint256 value) = decoder.decodeWithdrawWETH(encoded);
570 |
571 | assertEq(canFail, expectedCanFail);
572 | assertEq(WETH.unwrap(weth), expectedWeth);
573 | assertEq(value, expectedValue);
574 | }
575 |
576 | function testDecodeDynCall() public view {
577 | bool expectedCanFail = false;
578 | address expectedTarget = address(0xaabbccdd);
579 | uint256 expectedValue = 0x45;
580 | bytes memory expectedData = hex"deadbeef";
581 |
582 | bytes memory encoded = BBCEncoder.encodeDynCall(
583 | expectedCanFail,
584 | expectedTarget,
585 | expectedValue,
586 | expectedData
587 | );
588 |
589 | (bool canFail, address target, uint256 value, bytes memory data) = decoder.decodeDynCall(encoded);
590 |
591 | assertEq(canFail, expectedCanFail);
592 | assertEq(target, expectedTarget);
593 | assertEq(value, expectedValue);
594 | assertEq(keccak256(data), keccak256(expectedData));
595 | }
596 |
597 | function testFuzzDecodeDynCall(
598 | bool expectedCanFail,
599 | address expectedTarget,
600 | uint256 expectedValue,
601 | bytes memory expectedData
602 | ) public view {
603 | bytes memory encoded = BBCEncoder.encodeDynCall(
604 | expectedCanFail,
605 | expectedTarget,
606 | expectedValue,
607 | expectedData
608 | );
609 |
610 | (bool canFail, address target, uint256 value, bytes memory data) = decoder.decodeDynCall(encoded);
611 |
612 | assertEq(canFail, expectedCanFail);
613 | assertEq(target, expectedTarget);
614 | assertEq(value, expectedValue);
615 | assertEq(keccak256(data), keccak256(expectedData));
616 | }
617 | }
618 |
--------------------------------------------------------------------------------
/src/util/BBCDecoder.sol:
--------------------------------------------------------------------------------
1 | // SPDX-License-Identifier: AGPL-3.0-only
2 | pragma solidity 0.8.28;
3 |
4 | import { BytesCalldata } from "src/types/BytesCalldata.sol";
5 | import { Ptr } from "src/types/PayloadPointer.sol";
6 | import { ERC20 } from "src/types/protocols/ERC20.sol";
7 | import { ERC6909 } from "src/types/protocols/ERC6909.sol";
8 | import { ERC721 } from "src/types/protocols/ERC721.sol";
9 | import { UniV2Pair } from "src/types/protocols/UniV2Pair.sol";
10 | import { UniV3Pool } from "src/types/protocols/UniV3Pool.sol";
11 | import { WETH } from "src/types/protocols/WETH.sol";
12 |
13 | // ## Decoder
14 | //
15 | // Inspired by the calldata schema of BigBrainChad.eth
16 | //
17 | // ### Encoding Overview
18 | //
19 | // Statically sized calldata arguments of 8 bits or less are encoded in place.
20 | //
21 | // Statically sized calldata arguments of 9 to 256 bits are prefixed with their
22 | // byte length (as an 8 bit integer) followed by the argument, compacted to its
23 | // byte length. This is to handle the common case of the majority of bits being
24 | // unoccupied.
25 | //
26 | // Dynamically sized calldata arguments are prefixed with a 32 bit integer
27 | // indicating its byte length, followed by the bytes themselves. This is worth
28 | // exploring in the future as to whether or not the upper bits of the byte
29 | // length are unoccupied enough to justify an encoding as mentioned in the
30 | // statically sized calldata arguments above.
31 | //
32 | // We maintain a running pointer `Ptr`, which is incremented as parameters are
33 | // parsed from calldata. This is because the encoding scheme is tightly packed
34 | // such that the exact position of subsequent parameters is unknown at compile
35 | // time. We do this to ensure tight calldata encoding, as callata is quite
36 | // expensive.
37 | library BBCDecoder {
38 | uint256 internal constant u8Shr = 0xf8;
39 | uint256 internal constant u32Shr = 0xe0;
40 |
41 | // ## Decode Uniswap V2 Swap
42 | //
43 | // ### Parameters
44 | //
45 | // - ptr: The running pointer.
46 | //
47 | // ### Returns
48 | //
49 | // - nextPtr: The updated pointer.
50 | // - canFail: Boolean indicating whether the call can fail.
51 | // - pair: The Uniswap V2 pair address.
52 | // - amount0Out: The expected output amount for token 0.
53 | // - amount1Out: The expected output amount for token 1.
54 | // - to: The receiver of the swap output.
55 | // - data: The arbitrary calldata for UniV2 callbacks, if any.
56 | function decodeSwapUniV2(
57 | Ptr ptr
58 | )
59 | internal
60 | pure
61 | returns (
62 | Ptr nextPtr,
63 | bool canFail,
64 | UniV2Pair pair,
65 | uint256 amount0Out,
66 | uint256 amount1Out,
67 | address to,
68 | BytesCalldata data
69 | )
70 | {
71 | assembly {
72 | let nextByteLen, nextBitShift
73 | nextPtr := ptr
74 |
75 | canFail := shr(u8Shr, calldataload(nextPtr))
76 |
77 | nextPtr := add(nextPtr, 0x01)
78 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
79 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
80 | nextPtr := add(nextPtr, 0x01)
81 |
82 | pair := shr(nextBitShift, calldataload(nextPtr))
83 |
84 | nextPtr := add(nextPtr, nextByteLen)
85 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
86 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
87 | nextPtr := add(nextPtr, 0x01)
88 |
89 | amount0Out := shr(nextBitShift, calldataload(nextPtr))
90 |
91 | nextPtr := add(nextPtr, nextByteLen)
92 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
93 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
94 | nextPtr := add(nextPtr, 0x01)
95 |
96 | amount1Out := shr(nextBitShift, calldataload(nextPtr))
97 |
98 | nextPtr := add(nextPtr, nextByteLen)
99 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
100 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
101 | nextPtr := add(nextPtr, 0x01)
102 |
103 | to := shr(nextBitShift, calldataload(nextPtr))
104 |
105 | nextPtr := add(nextPtr, nextByteLen)
106 | nextByteLen := shr(u32Shr, calldataload(nextPtr))
107 |
108 | data := nextPtr
109 |
110 | nextPtr := add(nextPtr, 0x04)
111 |
112 | nextPtr := add(nextPtr, nextByteLen)
113 | }
114 | }
115 |
116 | // ## Decode Uniswap V3 Swap
117 | //
118 | // ### Parameters
119 | //
120 | // - ptr: The running pointer.
121 | //
122 | // ### Returns
123 | //
124 | // - nextPtr: The updated pointer.
125 | // - canFail: Boolean indicating whether the call can fail.
126 | // - pool: The Uniswap V3 pool address.
127 | // - recipient: The receiver of the swap output.
128 | // - zeroForOne: Direction of the trade; "true": zero for one, "false": one for zero.
129 | // - amountSpecified: The "exact" portion of the trade amount (More in Notes).
130 | // - sqrtPriceLimitX96: The Q64.96 representation of the price limit.
131 | // - data: The arbitrary calldata for UniV3 callbacks, if any.
132 | function decodeSwapUniV3(
133 | Ptr ptr
134 | )
135 | internal
136 | pure
137 | returns (
138 | Ptr nextPtr,
139 | bool canFail,
140 | UniV3Pool pool,
141 | address recipient,
142 | bool zeroForOne,
143 | int256 amountSpecified,
144 | uint160 sqrtPriceLimitX96,
145 | BytesCalldata data
146 | )
147 | {
148 | assembly {
149 | let nextByteLen, nextBitShift
150 | nextPtr := ptr
151 |
152 | canFail := shr(u8Shr, calldataload(nextPtr))
153 |
154 | nextPtr := add(nextPtr, 0x01)
155 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
156 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
157 | nextPtr := add(nextPtr, 0x01)
158 |
159 | pool := shr(nextBitShift, calldataload(nextPtr))
160 |
161 | nextPtr := add(nextPtr, nextByteLen)
162 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
163 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
164 | nextPtr := add(nextPtr, 0x01)
165 |
166 | recipient := shr(nextBitShift, calldataload(nextPtr))
167 |
168 | nextPtr := add(nextPtr, nextByteLen)
169 |
170 | zeroForOne := shr(u8Shr, calldataload(nextPtr))
171 |
172 | nextPtr := add(nextPtr, 0x01)
173 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
174 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
175 | nextPtr := add(nextPtr, 0x01)
176 |
177 | amountSpecified := shr(nextBitShift, calldataload(nextPtr))
178 | amountSpecified := signextend(sub(nextByteLen, 0x01), amountSpecified)
179 |
180 | nextPtr := add(nextPtr, nextByteLen)
181 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
182 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
183 | nextPtr := add(nextPtr, 0x01)
184 |
185 | sqrtPriceLimitX96 := shr(nextBitShift, calldataload(nextPtr))
186 |
187 | nextPtr := add(nextPtr, nextByteLen)
188 | nextByteLen := shr(u32Shr, calldataload(nextPtr))
189 |
190 | data := nextPtr
191 |
192 | nextPtr := add(nextPtr, 0x04)
193 |
194 | nextPtr := add(nextPtr, nextByteLen)
195 | }
196 | }
197 |
198 | // ## Decode Uniswap V3 Flash Loan
199 | //
200 | // ### Parameters
201 | //
202 | // - ptr: The running pointer.
203 | //
204 | // ### Returns
205 | //
206 | // - nextPtr: The updated pointer.
207 | // - canFail: Boolean indicating whether the call can fail.
208 | // - pool: The Uniswap V3 pool address.
209 | // - recipient: The receiver of the flash output.
210 | // - amount0: The amount of Token 0 to flash.
211 | // - amount1: The amount of Token 1 to flash.
212 | // - data: The arbitrary calldata for UniV3 callbacks, if any.
213 | function decodeFlashUniV3(
214 | Ptr ptr
215 | )
216 | internal
217 | pure
218 | returns (
219 | Ptr nextPtr,
220 | bool canFail,
221 | UniV3Pool pool,
222 | address recipient,
223 | uint256 amount0,
224 | uint256 amount1,
225 | BytesCalldata data
226 | )
227 | {
228 | assembly {
229 | let nextByteLen, nextBitShift
230 | nextPtr := ptr
231 |
232 | canFail := shr(u8Shr, calldataload(nextPtr))
233 |
234 | nextPtr := add(nextPtr, 0x01)
235 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
236 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
237 | nextPtr := add(nextPtr, 0x01)
238 |
239 | pool := shr(nextBitShift, calldataload(nextPtr))
240 |
241 | nextPtr := add(nextPtr, nextByteLen)
242 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
243 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
244 | nextPtr := add(nextPtr, 0x01)
245 |
246 | recipient := shr(nextBitShift, calldataload(nextPtr))
247 |
248 | nextPtr := add(nextPtr, nextByteLen)
249 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
250 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
251 | nextPtr := add(nextPtr, 0x01)
252 |
253 | amount0 := shr(nextBitShift, calldataload(nextPtr))
254 |
255 | nextPtr := add(nextPtr, nextByteLen)
256 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
257 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
258 | nextPtr := add(nextPtr, 0x01)
259 |
260 | amount1 := shr(nextBitShift, calldataload(nextPtr))
261 |
262 | nextPtr := add(nextPtr, nextByteLen)
263 | nextByteLen := shr(u32Shr, calldataload(nextPtr))
264 |
265 | data := nextPtr
266 |
267 | nextPtr := add(nextPtr, 0x04)
268 |
269 | nextPtr := add(nextPtr, nextByteLen)
270 | }
271 | }
272 |
273 | // ## Decode ERC20 Transfer
274 | //
275 | // ### Parameters
276 | //
277 | // - ptr: The running pointer.
278 | //
279 | // ### Returns
280 | //
281 | // - nextPtr: The updated pointer.
282 | // - canFail: Boolean indicating whether the call can fail.
283 | // - token: The ERC20 address.
284 | // - receiver: The transfer receiver address.
285 | // - amount: The transfer amount.
286 | function decodeTransferERC20(
287 | Ptr ptr
288 | )
289 | internal
290 | pure
291 | returns (Ptr nextPtr, bool canFail, ERC20 token, address receiver, uint256 amount)
292 | {
293 | assembly {
294 | let nextByteLen, nextBitShift
295 | nextPtr := ptr
296 |
297 | canFail := shr(u8Shr, calldataload(nextPtr))
298 |
299 | nextPtr := add(nextPtr, 0x01)
300 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
301 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
302 | nextPtr := add(nextPtr, 0x01)
303 |
304 | token := shr(nextBitShift, calldataload(nextPtr))
305 |
306 | nextPtr := add(nextPtr, nextByteLen)
307 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
308 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
309 | nextPtr := add(nextPtr, 0x01)
310 |
311 | receiver := shr(nextBitShift, calldataload(nextPtr))
312 |
313 | nextPtr := add(nextPtr, nextByteLen)
314 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
315 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
316 | nextPtr := add(nextPtr, 0x01)
317 |
318 | amount := shr(nextBitShift, calldataload(nextPtr))
319 |
320 | nextPtr := add(nextPtr, nextByteLen)
321 | }
322 | }
323 |
324 | // ## Decode ERC20 TransferFrom
325 | //
326 | // ### Parameters
327 | //
328 | // - ptr: The running pointer.
329 | //
330 | // ### Returns
331 | //
332 | // - nextPtr: The updated pointer.
333 | // - canFail: Boolean indicating whether the call can fail.
334 | // - token: The ERC20 address.
335 | // - sender: The transfer sender address.
336 | // - receiver: The transfer receiver address.
337 | // - amount: The transfer amount.
338 | function decodeTransferFromERC20(
339 | Ptr ptr
340 | )
341 | internal
342 | pure
343 | returns (
344 | Ptr nextPtr,
345 | bool canFail,
346 | ERC20 token,
347 | address sender,
348 | address receiver,
349 | uint256 amount
350 | )
351 | {
352 | assembly {
353 | let nextByteLen, nextBitShift
354 | nextPtr := ptr
355 |
356 | canFail := shr(u8Shr, calldataload(nextPtr))
357 |
358 | nextPtr := add(nextPtr, 0x01)
359 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
360 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
361 | nextPtr := add(nextPtr, 0x01)
362 |
363 | token := shr(nextBitShift, calldataload(nextPtr))
364 |
365 | nextPtr := add(nextPtr, nextByteLen)
366 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
367 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
368 | nextPtr := add(nextPtr, 0x01)
369 |
370 | sender := shr(nextBitShift, calldataload(nextPtr))
371 |
372 | nextPtr := add(nextPtr, nextByteLen)
373 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
374 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
375 | nextPtr := add(nextPtr, 0x01)
376 |
377 | receiver := shr(nextBitShift, calldataload(nextPtr))
378 |
379 | nextPtr := add(nextPtr, nextByteLen)
380 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
381 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
382 | nextPtr := add(nextPtr, 0x01)
383 |
384 | amount := shr(nextBitShift, calldataload(nextPtr))
385 |
386 | nextPtr := add(nextPtr, nextByteLen)
387 | }
388 | }
389 |
390 | // ## Decode ERC721 TransferFrom
391 | //
392 | // ### Parameters
393 | //
394 | // - ptr: The running pointer.
395 | //
396 | // ### Returns
397 | //
398 | // - nextPtr: The updated pointer.
399 | // - canFail: Boolean indicating whether the call can fail.
400 | // - token: The ERC721 address.
401 | // - sender: The transfer sender address.
402 | // - receiver: The transfer receiver address.
403 | // - tokenId: The token ID to transfer.
404 | function decodeTransferFromERC721(
405 | Ptr ptr
406 | )
407 | internal
408 | pure
409 | returns (
410 | Ptr nextPtr,
411 | bool canFail,
412 | ERC721 token,
413 | address sender,
414 | address receiver,
415 | uint256 tokenId
416 | )
417 | {
418 | assembly {
419 | let nextByteLen, nextBitShift
420 | nextPtr := ptr
421 |
422 | canFail := shr(u8Shr, calldataload(nextPtr))
423 |
424 | nextPtr := add(nextPtr, 0x01)
425 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
426 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
427 | nextPtr := add(nextPtr, 0x01)
428 |
429 | token := shr(nextBitShift, calldataload(nextPtr))
430 |
431 | nextPtr := add(nextPtr, nextByteLen)
432 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
433 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
434 | nextPtr := add(nextPtr, 0x01)
435 |
436 | sender := shr(nextBitShift, calldataload(nextPtr))
437 |
438 | nextPtr := add(nextPtr, nextByteLen)
439 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
440 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
441 | nextPtr := add(nextPtr, 0x01)
442 |
443 | receiver := shr(nextBitShift, calldataload(nextPtr))
444 |
445 | nextPtr := add(nextPtr, nextByteLen)
446 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
447 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
448 | nextPtr := add(nextPtr, 0x01)
449 |
450 | tokenId := shr(nextBitShift, calldataload(nextPtr))
451 |
452 | nextPtr := add(nextPtr, nextByteLen)
453 | }
454 | }
455 |
456 | // ## Decode ERC6909 Transfer
457 | //
458 | // ### Parameters
459 | //
460 | // - ptr: The running pointer.
461 | //
462 | // ### Returns
463 | //
464 | // - nextPtr: The updated pointer.
465 | // - canFail: Boolean indicating whether the call can fail.
466 | // - multitoken: The ERC6909 address.
467 | // - receiver: The transfer receiver address.
468 | // - amount: The amount to transfer.
469 | // - tokenId: The token ID to transfer.
470 | function decodeTransferERC6909(
471 | Ptr ptr
472 | )
473 | internal
474 | pure
475 | returns (
476 | Ptr nextPtr,
477 | bool canFail,
478 | ERC6909 multitoken,
479 | address receiver,
480 | uint256 tokenId,
481 | uint256 amount
482 | )
483 | {
484 | assembly {
485 | let nextByteLen, nextBitShift
486 | nextPtr := ptr
487 |
488 | canFail := shr(u8Shr, calldataload(nextPtr))
489 |
490 | nextPtr := add(nextPtr, 0x01)
491 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
492 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
493 | nextPtr := add(nextPtr, 0x01)
494 |
495 | multitoken := shr(nextBitShift, calldataload(nextPtr))
496 |
497 | nextPtr := add(nextPtr, nextByteLen)
498 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
499 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
500 | nextPtr := add(nextPtr, 0x01)
501 |
502 | receiver := shr(nextBitShift, calldataload(nextPtr))
503 |
504 | nextPtr := add(nextPtr, nextByteLen)
505 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
506 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
507 | nextPtr := add(nextPtr, 0x01)
508 |
509 | tokenId := shr(nextBitShift, calldataload(nextPtr))
510 |
511 | nextPtr := add(nextPtr, nextByteLen)
512 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
513 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
514 | nextPtr := add(nextPtr, 0x01)
515 |
516 | amount := shr(nextBitShift, calldataload(nextPtr))
517 |
518 | nextPtr := add(nextPtr, nextByteLen)
519 | }
520 | }
521 |
522 | // ## Decode ERC6909 TransferFrom
523 | //
524 | // ### Parameters
525 | //
526 | // - ptr: The running pointer.
527 | //
528 | // ### Returns
529 | //
530 | // - nextPtr: The updated pointer.
531 | // - canFail: Boolean indicating whether the call can fail.
532 | // - multitoken: The ERC6909 address.
533 | // - sender: The transfer sender address.
534 | // - receiver: The transfer receiver address.
535 | // - amount: The amount to transfer.
536 | // - tokenId: The token ID to transfer.
537 | function decodeTransferFromERC6909(
538 | Ptr ptr
539 | )
540 | internal
541 | pure
542 | returns (
543 | Ptr nextPtr,
544 | bool canFail,
545 | ERC6909 multitoken,
546 | address sender,
547 | address receiver,
548 | uint256 tokenId,
549 | uint256 amount
550 | )
551 | {
552 | assembly {
553 | let nextByteLen, nextBitShift
554 | nextPtr := ptr
555 |
556 | canFail := shr(u8Shr, calldataload(nextPtr))
557 |
558 | nextPtr := add(nextPtr, 0x01)
559 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
560 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
561 | nextPtr := add(nextPtr, 0x01)
562 |
563 | multitoken := shr(nextBitShift, calldataload(nextPtr))
564 |
565 | nextPtr := add(nextPtr, nextByteLen)
566 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
567 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
568 | nextPtr := add(nextPtr, 0x01)
569 |
570 | sender := shr(nextBitShift, calldataload(nextPtr))
571 |
572 | nextPtr := add(nextPtr, nextByteLen)
573 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
574 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
575 | nextPtr := add(nextPtr, 0x01)
576 |
577 | receiver := shr(nextBitShift, calldataload(nextPtr))
578 |
579 | nextPtr := add(nextPtr, nextByteLen)
580 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
581 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
582 | nextPtr := add(nextPtr, 0x01)
583 |
584 | tokenId := shr(nextBitShift, calldataload(nextPtr))
585 |
586 | nextPtr := add(nextPtr, nextByteLen)
587 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
588 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
589 | nextPtr := add(nextPtr, 0x01)
590 |
591 | amount := shr(nextBitShift, calldataload(nextPtr))
592 |
593 | nextPtr := add(nextPtr, nextByteLen)
594 | }
595 | }
596 |
597 | // ## Decode WETH Deposit
598 | //
599 | // ### Parameters
600 | //
601 | // - ptr: The running pointer.
602 | //
603 | // ### Returns
604 | //
605 | // - nextPtr: The updated pointer.
606 | // - canFail: Boolean indicating whether the call can fail.
607 | // - weth: The WETH address.
608 | // - value: The amount to deposit.
609 | function decodeDepositWETH(
610 | Ptr ptr
611 | ) internal pure returns (Ptr nextPtr, bool canFail, WETH weth, uint256 value) {
612 | assembly {
613 | let nextByteLen, nextBitShift
614 | nextPtr := ptr
615 |
616 | canFail := shr(u8Shr, calldataload(nextPtr))
617 |
618 | nextPtr := add(nextPtr, 0x01)
619 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
620 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
621 | nextPtr := add(nextPtr, 0x01)
622 |
623 | weth := shr(nextBitShift, calldataload(nextPtr))
624 |
625 | nextPtr := add(nextPtr, nextByteLen)
626 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
627 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
628 | nextPtr := add(nextPtr, 0x01)
629 |
630 | value := shr(nextBitShift, calldataload(nextPtr))
631 |
632 | nextPtr := add(nextPtr, nextByteLen)
633 | }
634 | }
635 |
636 | // ## Decode WETH Withdrawal
637 | //
638 | // ### Parameters
639 | //
640 | // - ptr: The running pointer.
641 | //
642 | // ### Returns
643 | //
644 | // - nextPtr: The updated pointer.
645 | // - canFail: Boolean indicating whether the call can fail.
646 | // - weth: The WETH address.
647 | // - value: The amount to withdraw.
648 | function decodeWithdrawWETH(
649 | Ptr ptr
650 | ) internal pure returns (Ptr nextPtr, bool canFail, WETH weth, uint256 value) {
651 | assembly {
652 | let nextByteLen, nextBitShift
653 | nextPtr := ptr
654 |
655 | canFail := shr(u8Shr, calldataload(nextPtr))
656 |
657 | nextPtr := add(nextPtr, 0x01)
658 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
659 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
660 | nextPtr := add(nextPtr, 0x01)
661 |
662 | weth := shr(nextBitShift, calldataload(nextPtr))
663 |
664 | nextPtr := add(nextPtr, nextByteLen)
665 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
666 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
667 | nextPtr := add(nextPtr, 0x01)
668 |
669 | value := shr(nextBitShift, calldataload(nextPtr))
670 |
671 | nextPtr := add(nextPtr, nextByteLen)
672 | }
673 | }
674 |
675 | // ## Decode Dynamic Contract Call
676 | //
677 | // ### Parameters
678 | //
679 | // - ptr: The running pointer.
680 | //
681 | // ### Returns
682 | //
683 | // - nextPtr: The updated pointer.
684 | // - canFail: Boolean indicating whether the call can fail.
685 | // - target: The call target address.
686 | // - value: The call value.
687 | // - data: The call payload.
688 | function decodeDynCall(
689 | Ptr ptr
690 | )
691 | internal
692 | pure
693 | returns (Ptr nextPtr, bool canFail, address target, uint256 value, BytesCalldata data)
694 | {
695 | assembly {
696 | let nextByteLen, nextBitShift
697 | nextPtr := ptr
698 |
699 | canFail := shr(u8Shr, calldataload(nextPtr))
700 |
701 | nextPtr := add(nextPtr, 0x01)
702 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
703 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
704 | nextPtr := add(nextPtr, 0x01)
705 |
706 | target := shr(nextBitShift, calldataload(nextPtr))
707 |
708 | nextPtr := add(nextPtr, nextByteLen)
709 | nextByteLen := shr(u8Shr, calldataload(nextPtr))
710 | nextBitShift := sub(0x0100, mul(0x08, nextByteLen))
711 | nextPtr := add(nextPtr, 0x01)
712 |
713 | value := shr(nextBitShift, calldataload(nextPtr))
714 |
715 | nextPtr := add(nextPtr, nextByteLen)
716 | nextByteLen := shr(u32Shr, calldataload(nextPtr))
717 |
718 | data := nextPtr
719 |
720 | nextPtr := add(nextPtr, 0x04)
721 |
722 | nextPtr := add(nextPtr, nextByteLen)
723 | }
724 | }
725 | }
726 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU AFFERO GENERAL PUBLIC LICENSE
2 | Version 3, 19 November 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU Affero General Public License is a free, copyleft license for
11 | software and other kinds of works, specifically designed to ensure
12 | cooperation with the community in the case of network server software.
13 |
14 | The licenses for most software and other practical works are designed
15 | to take away your freedom to share and change the works. By contrast,
16 | our General Public Licenses are intended to guarantee your freedom to
17 | share and change all versions of a program--to make sure it remains free
18 | software for all its users.
19 |
20 | When we speak of free software, we are referring to freedom, not
21 | price. Our General Public Licenses are designed to make sure that you
22 | have the freedom to distribute copies of free software (and charge for
23 | them if you wish), that you receive source code or can get it if you
24 | want it, that you can change the software or use pieces of it in new
25 | free programs, and that you know you can do these things.
26 |
27 | Developers that use our General Public Licenses protect your rights
28 | with two steps: (1) assert copyright on the software, and (2) offer
29 | you this License which gives you legal permission to copy, distribute
30 | and/or modify the software.
31 |
32 | A secondary benefit of defending all users' freedom is that
33 | improvements made in alternate versions of the program, if they
34 | receive widespread use, become available for other developers to
35 | incorporate. Many developers of free software are heartened and
36 | encouraged by the resulting cooperation. However, in the case of
37 | software used on network servers, this result may fail to come about.
38 | The GNU General Public License permits making a modified version and
39 | letting the public access it on a server without ever releasing its
40 | source code to the public.
41 |
42 | The GNU Affero General Public License is designed specifically to
43 | ensure that, in such cases, the modified source code becomes available
44 | to the community. It requires the operator of a network server to
45 | provide the source code of the modified version running there to the
46 | users of that server. Therefore, public use of a modified version, on
47 | a publicly accessible server, gives the public access to the source
48 | code of the modified version.
49 |
50 | An older license, called the Affero General Public License and
51 | published by Affero, was designed to accomplish similar goals. This is
52 | a different license, not a version of the Affero GPL, but Affero has
53 | released a new version of the Affero GPL which permits relicensing under
54 | this license.
55 |
56 | The precise terms and conditions for copying, distribution and
57 | modification follow.
58 |
59 | TERMS AND CONDITIONS
60 |
61 | 0. Definitions.
62 |
63 | "This License" refers to version 3 of the GNU Affero General Public License.
64 |
65 | "Copyright" also means copyright-like laws that apply to other kinds of
66 | works, such as semiconductor masks.
67 |
68 | "The Program" refers to any copyrightable work licensed under this
69 | License. Each licensee is addressed as "you". "Licensees" and
70 | "recipients" may be individuals or organizations.
71 |
72 | To "modify" a work means to copy from or adapt all or part of the work
73 | in a fashion requiring copyright permission, other than the making of an
74 | exact copy. The resulting work is called a "modified version" of the
75 | earlier work or a work "based on" the earlier work.
76 |
77 | A "covered work" means either the unmodified Program or a work based
78 | on the Program.
79 |
80 | To "propagate" a work means to do anything with it that, without
81 | permission, would make you directly or secondarily liable for
82 | infringement under applicable copyright law, except executing it on a
83 | computer or modifying a private copy. Propagation includes copying,
84 | distribution (with or without modification), making available to the
85 | public, and in some countries other activities as well.
86 |
87 | To "convey" a work means any kind of propagation that enables other
88 | parties to make or receive copies. Mere interaction with a user through
89 | a computer network, with no transfer of a copy, is not conveying.
90 |
91 | An interactive user interface displays "Appropriate Legal Notices"
92 | to the extent that it includes a convenient and prominently visible
93 | feature that (1) displays an appropriate copyright notice, and (2)
94 | tells the user that there is no warranty for the work (except to the
95 | extent that warranties are provided), that licensees may convey the
96 | work under this License, and how to view a copy of this License. If
97 | the interface presents a list of user commands or options, such as a
98 | menu, a prominent item in the list meets this criterion.
99 |
100 | 1. Source Code.
101 |
102 | The "source code" for a work means the preferred form of the work
103 | for making modifications to it. "Object code" means any non-source
104 | form of a work.
105 |
106 | A "Standard Interface" means an interface that either is an official
107 | standard defined by a recognized standards body, or, in the case of
108 | interfaces specified for a particular programming language, one that
109 | is widely used among developers working in that language.
110 |
111 | The "System Libraries" of an executable work include anything, other
112 | than the work as a whole, that (a) is included in the normal form of
113 | packaging a Major Component, but which is not part of that Major
114 | Component, and (b) serves only to enable use of the work with that
115 | Major Component, or to implement a Standard Interface for which an
116 | implementation is available to the public in source code form. A
117 | "Major Component", in this context, means a major essential component
118 | (kernel, window system, and so on) of the specific operating system
119 | (if any) on which the executable work runs, or a compiler used to
120 | produce the work, or an object code interpreter used to run it.
121 |
122 | The "Corresponding Source" for a work in object code form means all
123 | the source code needed to generate, install, and (for an executable
124 | work) run the object code and to modify the work, including scripts to
125 | control those activities. However, it does not include the work's
126 | System Libraries, or general-purpose tools or generally available free
127 | programs which are used unmodified in performing those activities but
128 | which are not part of the work. For example, Corresponding Source
129 | includes interface definition files associated with source files for
130 | the work, and the source code for shared libraries and dynamically
131 | linked subprograms that the work is specifically designed to require,
132 | such as by intimate data communication or control flow between those
133 | subprograms and other parts of the work.
134 |
135 | The Corresponding Source need not include anything that users
136 | can regenerate automatically from other parts of the Corresponding
137 | Source.
138 |
139 | The Corresponding Source for a work in source code form is that
140 | same work.
141 |
142 | 2. Basic Permissions.
143 |
144 | All rights granted under this License are granted for the term of
145 | copyright on the Program, and are irrevocable provided the stated
146 | conditions are met. This License explicitly affirms your unlimited
147 | permission to run the unmodified Program. The output from running a
148 | covered work is covered by this License only if the output, given its
149 | content, constitutes a covered work. This License acknowledges your
150 | rights of fair use or other equivalent, as provided by copyright law.
151 |
152 | You may make, run and propagate covered works that you do not
153 | convey, without conditions so long as your license otherwise remains
154 | in force. You may convey covered works to others for the sole purpose
155 | of having them make modifications exclusively for you, or provide you
156 | with facilities for running those works, provided that you comply with
157 | the terms of this License in conveying all material for which you do
158 | not control copyright. Those thus making or running the covered works
159 | for you must do so exclusively on your behalf, under your direction
160 | and control, on terms that prohibit them from making any copies of
161 | your copyrighted material outside their relationship with you.
162 |
163 | Conveying under any other circumstances is permitted solely under
164 | the conditions stated below. Sublicensing is not allowed; section 10
165 | makes it unnecessary.
166 |
167 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168 |
169 | No covered work shall be deemed part of an effective technological
170 | measure under any applicable law fulfilling obligations under article
171 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172 | similar laws prohibiting or restricting circumvention of such
173 | measures.
174 |
175 | When you convey a covered work, you waive any legal power to forbid
176 | circumvention of technological measures to the extent such circumvention
177 | is effected by exercising rights under this License with respect to
178 | the covered work, and you disclaim any intention to limit operation or
179 | modification of the work as a means of enforcing, against the work's
180 | users, your or third parties' legal rights to forbid circumvention of
181 | technological measures.
182 |
183 | 4. Conveying Verbatim Copies.
184 |
185 | You may convey verbatim copies of the Program's source code as you
186 | receive it, in any medium, provided that you conspicuously and
187 | appropriately publish on each copy an appropriate copyright notice;
188 | keep intact all notices stating that this License and any
189 | non-permissive terms added in accord with section 7 apply to the code;
190 | keep intact all notices of the absence of any warranty; and give all
191 | recipients a copy of this License along with the Program.
192 |
193 | You may charge any price or no price for each copy that you convey,
194 | and you may offer support or warranty protection for a fee.
195 |
196 | 5. Conveying Modified Source Versions.
197 |
198 | You may convey a work based on the Program, or the modifications to
199 | produce it from the Program, in the form of source code under the
200 | terms of section 4, provided that you also meet all of these conditions:
201 |
202 | a) The work must carry prominent notices stating that you modified
203 | it, and giving a relevant date.
204 |
205 | b) The work must carry prominent notices stating that it is
206 | released under this License and any conditions added under section
207 | 7. This requirement modifies the requirement in section 4 to
208 | "keep intact all notices".
209 |
210 | c) You must license the entire work, as a whole, under this
211 | License to anyone who comes into possession of a copy. This
212 | License will therefore apply, along with any applicable section 7
213 | additional terms, to the whole of the work, and all its parts,
214 | regardless of how they are packaged. This License gives no
215 | permission to license the work in any other way, but it does not
216 | invalidate such permission if you have separately received it.
217 |
218 | d) If the work has interactive user interfaces, each must display
219 | Appropriate Legal Notices; however, if the Program has interactive
220 | interfaces that do not display Appropriate Legal Notices, your
221 | work need not make them do so.
222 |
223 | A compilation of a covered work with other separate and independent
224 | works, which are not by their nature extensions of the covered work,
225 | and which are not combined with it such as to form a larger program,
226 | in or on a volume of a storage or distribution medium, is called an
227 | "aggregate" if the compilation and its resulting copyright are not
228 | used to limit the access or legal rights of the compilation's users
229 | beyond what the individual works permit. Inclusion of a covered work
230 | in an aggregate does not cause this License to apply to the other
231 | parts of the aggregate.
232 |
233 | 6. Conveying Non-Source Forms.
234 |
235 | You may convey a covered work in object code form under the terms
236 | of sections 4 and 5, provided that you also convey the
237 | machine-readable Corresponding Source under the terms of this License,
238 | in one of these ways:
239 |
240 | a) Convey the object code in, or embodied in, a physical product
241 | (including a physical distribution medium), accompanied by the
242 | Corresponding Source fixed on a durable physical medium
243 | customarily used for software interchange.
244 |
245 | b) Convey the object code in, or embodied in, a physical product
246 | (including a physical distribution medium), accompanied by a
247 | written offer, valid for at least three years and valid for as
248 | long as you offer spare parts or customer support for that product
249 | model, to give anyone who possesses the object code either (1) a
250 | copy of the Corresponding Source for all the software in the
251 | product that is covered by this License, on a durable physical
252 | medium customarily used for software interchange, for a price no
253 | more than your reasonable cost of physically performing this
254 | conveying of source, or (2) access to copy the
255 | Corresponding Source from a network server at no charge.
256 |
257 | c) Convey individual copies of the object code with a copy of the
258 | written offer to provide the Corresponding Source. This
259 | alternative is allowed only occasionally and noncommercially, and
260 | only if you received the object code with such an offer, in accord
261 | with subsection 6b.
262 |
263 | d) Convey the object code by offering access from a designated
264 | place (gratis or for a charge), and offer equivalent access to the
265 | Corresponding Source in the same way through the same place at no
266 | further charge. You need not require recipients to copy the
267 | Corresponding Source along with the object code. If the place to
268 | copy the object code is a network server, the Corresponding Source
269 | may be on a different server (operated by you or a third party)
270 | that supports equivalent copying facilities, provided you maintain
271 | clear directions next to the object code saying where to find the
272 | Corresponding Source. Regardless of what server hosts the
273 | Corresponding Source, you remain obligated to ensure that it is
274 | available for as long as needed to satisfy these requirements.
275 |
276 | e) Convey the object code using peer-to-peer transmission, provided
277 | you inform other peers where the object code and Corresponding
278 | Source of the work are being offered to the general public at no
279 | charge under subsection 6d.
280 |
281 | A separable portion of the object code, whose source code is excluded
282 | from the Corresponding Source as a System Library, need not be
283 | included in conveying the object code work.
284 |
285 | A "User Product" is either (1) a "consumer product", which means any
286 | tangible personal property which is normally used for personal, family,
287 | or household purposes, or (2) anything designed or sold for incorporation
288 | into a dwelling. In determining whether a product is a consumer product,
289 | doubtful cases shall be resolved in favor of coverage. For a particular
290 | product received by a particular user, "normally used" refers to a
291 | typical or common use of that class of product, regardless of the status
292 | of the particular user or of the way in which the particular user
293 | actually uses, or expects or is expected to use, the product. A product
294 | is a consumer product regardless of whether the product has substantial
295 | commercial, industrial or non-consumer uses, unless such uses represent
296 | the only significant mode of use of the product.
297 |
298 | "Installation Information" for a User Product means any methods,
299 | procedures, authorization keys, or other information required to install
300 | and execute modified versions of a covered work in that User Product from
301 | a modified version of its Corresponding Source. The information must
302 | suffice to ensure that the continued functioning of the modified object
303 | code is in no case prevented or interfered with solely because
304 | modification has been made.
305 |
306 | If you convey an object code work under this section in, or with, or
307 | specifically for use in, a User Product, and the conveying occurs as
308 | part of a transaction in which the right of possession and use of the
309 | User Product is transferred to the recipient in perpetuity or for a
310 | fixed term (regardless of how the transaction is characterized), the
311 | Corresponding Source conveyed under this section must be accompanied
312 | by the Installation Information. But this requirement does not apply
313 | if neither you nor any third party retains the ability to install
314 | modified object code on the User Product (for example, the work has
315 | been installed in ROM).
316 |
317 | The requirement to provide Installation Information does not include a
318 | requirement to continue to provide support service, warranty, or updates
319 | for a work that has been modified or installed by the recipient, or for
320 | the User Product in which it has been modified or installed. Access to a
321 | network may be denied when the modification itself materially and
322 | adversely affects the operation of the network or violates the rules and
323 | protocols for communication across the network.
324 |
325 | Corresponding Source conveyed, and Installation Information provided,
326 | in accord with this section must be in a format that is publicly
327 | documented (and with an implementation available to the public in
328 | source code form), and must require no special password or key for
329 | unpacking, reading or copying.
330 |
331 | 7. Additional Terms.
332 |
333 | "Additional permissions" are terms that supplement the terms of this
334 | License by making exceptions from one or more of its conditions.
335 | Additional permissions that are applicable to the entire Program shall
336 | be treated as though they were included in this License, to the extent
337 | that they are valid under applicable law. If additional permissions
338 | apply only to part of the Program, that part may be used separately
339 | under those permissions, but the entire Program remains governed by
340 | this License without regard to the additional permissions.
341 |
342 | When you convey a copy of a covered work, you may at your option
343 | remove any additional permissions from that copy, or from any part of
344 | it. (Additional permissions may be written to require their own
345 | removal in certain cases when you modify the work.) You may place
346 | additional permissions on material, added by you to a covered work,
347 | for which you have or can give appropriate copyright permission.
348 |
349 | Notwithstanding any other provision of this License, for material you
350 | add to a covered work, you may (if authorized by the copyright holders of
351 | that material) supplement the terms of this License with terms:
352 |
353 | a) Disclaiming warranty or limiting liability differently from the
354 | terms of sections 15 and 16 of this License; or
355 |
356 | b) Requiring preservation of specified reasonable legal notices or
357 | author attributions in that material or in the Appropriate Legal
358 | Notices displayed by works containing it; or
359 |
360 | c) Prohibiting misrepresentation of the origin of that material, or
361 | requiring that modified versions of such material be marked in
362 | reasonable ways as different from the original version; or
363 |
364 | d) Limiting the use for publicity purposes of names of licensors or
365 | authors of the material; or
366 |
367 | e) Declining to grant rights under trademark law for use of some
368 | trade names, trademarks, or service marks; or
369 |
370 | f) Requiring indemnification of licensors and authors of that
371 | material by anyone who conveys the material (or modified versions of
372 | it) with contractual assumptions of liability to the recipient, for
373 | any liability that these contractual assumptions directly impose on
374 | those licensors and authors.
375 |
376 | All other non-permissive additional terms are considered "further
377 | restrictions" within the meaning of section 10. If the Program as you
378 | received it, or any part of it, contains a notice stating that it is
379 | governed by this License along with a term that is a further
380 | restriction, you may remove that term. If a license document contains
381 | a further restriction but permits relicensing or conveying under this
382 | License, you may add to a covered work material governed by the terms
383 | of that license document, provided that the further restriction does
384 | not survive such relicensing or conveying.
385 |
386 | If you add terms to a covered work in accord with this section, you
387 | must place, in the relevant source files, a statement of the
388 | additional terms that apply to those files, or a notice indicating
389 | where to find the applicable terms.
390 |
391 | Additional terms, permissive or non-permissive, may be stated in the
392 | form of a separately written license, or stated as exceptions;
393 | the above requirements apply either way.
394 |
395 | 8. Termination.
396 |
397 | You may not propagate or modify a covered work except as expressly
398 | provided under this License. Any attempt otherwise to propagate or
399 | modify it is void, and will automatically terminate your rights under
400 | this License (including any patent licenses granted under the third
401 | paragraph of section 11).
402 |
403 | However, if you cease all violation of this License, then your
404 | license from a particular copyright holder is reinstated (a)
405 | provisionally, unless and until the copyright holder explicitly and
406 | finally terminates your license, and (b) permanently, if the copyright
407 | holder fails to notify you of the violation by some reasonable means
408 | prior to 60 days after the cessation.
409 |
410 | Moreover, your license from a particular copyright holder is
411 | reinstated permanently if the copyright holder notifies you of the
412 | violation by some reasonable means, this is the first time you have
413 | received notice of violation of this License (for any work) from that
414 | copyright holder, and you cure the violation prior to 30 days after
415 | your receipt of the notice.
416 |
417 | Termination of your rights under this section does not terminate the
418 | licenses of parties who have received copies or rights from you under
419 | this License. If your rights have been terminated and not permanently
420 | reinstated, you do not qualify to receive new licenses for the same
421 | material under section 10.
422 |
423 | 9. Acceptance Not Required for Having Copies.
424 |
425 | You are not required to accept this License in order to receive or
426 | run a copy of the Program. Ancillary propagation of a covered work
427 | occurring solely as a consequence of using peer-to-peer transmission
428 | to receive a copy likewise does not require acceptance. However,
429 | nothing other than this License grants you permission to propagate or
430 | modify any covered work. These actions infringe copyright if you do
431 | not accept this License. Therefore, by modifying or propagating a
432 | covered work, you indicate your acceptance of this License to do so.
433 |
434 | 10. Automatic Licensing of Downstream Recipients.
435 |
436 | Each time you convey a covered work, the recipient automatically
437 | receives a license from the original licensors, to run, modify and
438 | propagate that work, subject to this License. You are not responsible
439 | for enforcing compliance by third parties with this License.
440 |
441 | An "entity transaction" is a transaction transferring control of an
442 | organization, or substantially all assets of one, or subdividing an
443 | organization, or merging organizations. If propagation of a covered
444 | work results from an entity transaction, each party to that
445 | transaction who receives a copy of the work also receives whatever
446 | licenses to the work the party's predecessor in interest had or could
447 | give under the previous paragraph, plus a right to possession of the
448 | Corresponding Source of the work from the predecessor in interest, if
449 | the predecessor has it or can get it with reasonable efforts.
450 |
451 | You may not impose any further restrictions on the exercise of the
452 | rights granted or affirmed under this License. For example, you may
453 | not impose a license fee, royalty, or other charge for exercise of
454 | rights granted under this License, and you may not initiate litigation
455 | (including a cross-claim or counterclaim in a lawsuit) alleging that
456 | any patent claim is infringed by making, using, selling, offering for
457 | sale, or importing the Program or any portion of it.
458 |
459 | 11. Patents.
460 |
461 | A "contributor" is a copyright holder who authorizes use under this
462 | License of the Program or a work on which the Program is based. The
463 | work thus licensed is called the contributor's "contributor version".
464 |
465 | A contributor's "essential patent claims" are all patent claims
466 | owned or controlled by the contributor, whether already acquired or
467 | hereafter acquired, that would be infringed by some manner, permitted
468 | by this License, of making, using, or selling its contributor version,
469 | but do not include claims that would be infringed only as a
470 | consequence of further modification of the contributor version. For
471 | purposes of this definition, "control" includes the right to grant
472 | patent sublicenses in a manner consistent with the requirements of
473 | this License.
474 |
475 | Each contributor grants you a non-exclusive, worldwide, royalty-free
476 | patent license under the contributor's essential patent claims, to
477 | make, use, sell, offer for sale, import and otherwise run, modify and
478 | propagate the contents of its contributor version.
479 |
480 | In the following three paragraphs, a "patent license" is any express
481 | agreement or commitment, however denominated, not to enforce a patent
482 | (such as an express permission to practice a patent or covenant not to
483 | sue for patent infringement). To "grant" such a patent license to a
484 | party means to make such an agreement or commitment not to enforce a
485 | patent against the party.
486 |
487 | If you convey a covered work, knowingly relying on a patent license,
488 | and the Corresponding Source of the work is not available for anyone
489 | to copy, free of charge and under the terms of this License, through a
490 | publicly available network server or other readily accessible means,
491 | then you must either (1) cause the Corresponding Source to be so
492 | available, or (2) arrange to deprive yourself of the benefit of the
493 | patent license for this particular work, or (3) arrange, in a manner
494 | consistent with the requirements of this License, to extend the patent
495 | license to downstream recipients. "Knowingly relying" means you have
496 | actual knowledge that, but for the patent license, your conveying the
497 | covered work in a country, or your recipient's use of the covered work
498 | in a country, would infringe one or more identifiable patents in that
499 | country that you have reason to believe are valid.
500 |
501 | If, pursuant to or in connection with a single transaction or
502 | arrangement, you convey, or propagate by procuring conveyance of, a
503 | covered work, and grant a patent license to some of the parties
504 | receiving the covered work authorizing them to use, propagate, modify
505 | or convey a specific copy of the covered work, then the patent license
506 | you grant is automatically extended to all recipients of the covered
507 | work and works based on it.
508 |
509 | A patent license is "discriminatory" if it does not include within
510 | the scope of its coverage, prohibits the exercise of, or is
511 | conditioned on the non-exercise of one or more of the rights that are
512 | specifically granted under this License. You may not convey a covered
513 | work if you are a party to an arrangement with a third party that is
514 | in the business of distributing software, under which you make payment
515 | to the third party based on the extent of your activity of conveying
516 | the work, and under which the third party grants, to any of the
517 | parties who would receive the covered work from you, a discriminatory
518 | patent license (a) in connection with copies of the covered work
519 | conveyed by you (or copies made from those copies), or (b) primarily
520 | for and in connection with specific products or compilations that
521 | contain the covered work, unless you entered into that arrangement,
522 | or that patent license was granted, prior to 28 March 2007.
523 |
524 | Nothing in this License shall be construed as excluding or limiting
525 | any implied license or other defenses to infringement that may
526 | otherwise be available to you under applicable patent law.
527 |
528 | 12. No Surrender of Others' Freedom.
529 |
530 | If conditions are imposed on you (whether by court order, agreement or
531 | otherwise) that contradict the conditions of this License, they do not
532 | excuse you from the conditions of this License. If you cannot convey a
533 | covered work so as to satisfy simultaneously your obligations under this
534 | License and any other pertinent obligations, then as a consequence you may
535 | not convey it at all. For example, if you agree to terms that obligate you
536 | to collect a royalty for further conveying from those to whom you convey
537 | the Program, the only way you could satisfy both those terms and this
538 | License would be to refrain entirely from conveying the Program.
539 |
540 | 13. Remote Network Interaction; Use with the GNU General Public License.
541 |
542 | Notwithstanding any other provision of this License, if you modify the
543 | Program, your modified version must prominently offer all users
544 | interacting with it remotely through a computer network (if your version
545 | supports such interaction) an opportunity to receive the Corresponding
546 | Source of your version by providing access to the Corresponding Source
547 | from a network server at no charge, through some standard or customary
548 | means of facilitating copying of software. This Corresponding Source
549 | shall include the Corresponding Source for any work covered by version 3
550 | of the GNU General Public License that is incorporated pursuant to the
551 | following paragraph.
552 |
553 | Notwithstanding any other provision of this License, you have
554 | permission to link or combine any covered work with a work licensed
555 | under version 3 of the GNU General Public License into a single
556 | combined work, and to convey the resulting work. The terms of this
557 | License will continue to apply to the part which is the covered work,
558 | but the work with which it is combined will remain governed by version
559 | 3 of the GNU General Public License.
560 |
561 | 14. Revised Versions of this License.
562 |
563 | The Free Software Foundation may publish revised and/or new versions of
564 | the GNU Affero General Public License from time to time. Such new versions
565 | will be similar in spirit to the present version, but may differ in detail to
566 | address new problems or concerns.
567 |
568 | Each version is given a distinguishing version number. If the
569 | Program specifies that a certain numbered version of the GNU Affero General
570 | Public License "or any later version" applies to it, you have the
571 | option of following the terms and conditions either of that numbered
572 | version or of any later version published by the Free Software
573 | Foundation. If the Program does not specify a version number of the
574 | GNU Affero General Public License, you may choose any version ever published
575 | by the Free Software Foundation.
576 |
577 | If the Program specifies that a proxy can decide which future
578 | versions of the GNU Affero General Public License can be used, that proxy's
579 | public statement of acceptance of a version permanently authorizes you
580 | to choose that version for the Program.
581 |
582 | Later license versions may give you additional or different
583 | permissions. However, no additional obligations are imposed on any
584 | author or copyright holder as a result of your choosing to follow a
585 | later version.
586 |
587 | 15. Disclaimer of Warranty.
588 |
589 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597 |
598 | 16. Limitation of Liability.
599 |
600 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608 | SUCH DAMAGES.
609 |
610 | 17. Interpretation of Sections 15 and 16.
611 |
612 | If the disclaimer of warranty and limitation of liability provided
613 | above cannot be given local legal effect according to their terms,
614 | reviewing courts shall apply local law that most closely approximates
615 | an absolute waiver of all civil liability in connection with the
616 | Program, unless a warranty or assumption of liability accompanies a
617 | copy of the Program in return for a fee.
618 |
619 | END OF TERMS AND CONDITIONS
620 |
621 | How to Apply These Terms to Your New Programs
622 |
623 | If you develop a new program, and you want it to be of the greatest
624 | possible use to the public, the best way to achieve this is to make it
625 | free software which everyone can redistribute and change under these terms.
626 |
627 | To do so, attach the following notices to the program. It is safest
628 | to attach them to the start of each source file to most effectively
629 | state the exclusion of warranty; and each file should have at least
630 | the "copyright" line and a pointer to where the full notice is found.
631 |
632 |
633 | Copyright (C)
634 |
635 | This program is free software: you can redistribute it and/or modify
636 | it under the terms of the GNU Affero General Public License as published
637 | by the Free Software Foundation, either version 3 of the License, or
638 | (at your option) any later version.
639 |
640 | This program is distributed in the hope that it will be useful,
641 | but WITHOUT ANY WARRANTY; without even the implied warranty of
642 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643 | GNU Affero General Public License for more details.
644 |
645 | You should have received a copy of the GNU Affero General Public License
646 | along with this program. If not, see .
647 |
648 | Also add information on how to contact you by electronic and paper mail.
649 |
650 | If your software can interact with users remotely through a computer
651 | network, you should also make sure that it provides a way for users to
652 | get its source. For example, if your program is a web application, its
653 | interface could display a "Source" link that leads users to an archive
654 | of the code. There are many ways you could offer source, and different
655 | solutions will be better for different programs; see section 13 for the
656 | specific requirements.
657 |
658 | You should also get your employer (if you work as a programmer) or school,
659 | if any, to sign a "copyright disclaimer" for the program, if necessary.
660 | For more information on this, and how to apply and follow the GNU AGPL, see
661 | .
662 |
--------------------------------------------------------------------------------