├── .gitignore ├── LICENSE ├── OLD-README.md └── README.md /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | build/ 12 | develop-eggs/ 13 | dist/ 14 | downloads/ 15 | eggs/ 16 | .eggs/ 17 | lib/ 18 | lib64/ 19 | parts/ 20 | sdist/ 21 | var/ 22 | wheels/ 23 | *.egg-info/ 24 | .installed.cfg 25 | *.egg 26 | MANIFEST 27 | 28 | # PyInstaller 29 | # Usually these files are written by a python script from a template 30 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 31 | *.manifest 32 | *.spec 33 | 34 | # Installer logs 35 | pip-log.txt 36 | pip-delete-this-directory.txt 37 | 38 | # Unit test / coverage reports 39 | htmlcov/ 40 | .tox/ 41 | .coverage 42 | .coverage.* 43 | .cache 44 | nosetests.xml 45 | coverage.xml 46 | *.cover 47 | .hypothesis/ 48 | .pytest_cache/ 49 | 50 | # Translations 51 | *.mo 52 | *.pot 53 | 54 | # Django stuff: 55 | *.log 56 | local_settings.py 57 | db.sqlite3 58 | 59 | # Flask stuff: 60 | instance/ 61 | .webassets-cache 62 | 63 | # Scrapy stuff: 64 | .scrapy 65 | 66 | # Sphinx documentation 67 | docs/_build/ 68 | 69 | # PyBuilder 70 | target/ 71 | 72 | # Jupyter Notebook 73 | .ipynb_checkpoints 74 | 75 | # pyenv 76 | .python-version 77 | 78 | # celery beat schedule file 79 | celerybeat-schedule 80 | 81 | # SageMath parsed files 82 | *.sage.py 83 | 84 | # Environments 85 | .env 86 | .venv 87 | env/ 88 | venv/ 89 | ENV/ 90 | env.bak/ 91 | venv.bak/ 92 | 93 | # Spyder project settings 94 | .spyderproject 95 | .spyproject 96 | 97 | # Rope project settings 98 | .ropeproject 99 | 100 | # mkdocs documentation 101 | /site 102 | 103 | # mypy 104 | .mypy_cache/ 105 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | Apache License 2 | Version 2.0, January 2004 3 | http://www.apache.org/licenses/ 4 | 5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 6 | 7 | 1. Definitions. 8 | 9 | "License" shall mean the terms and conditions for use, reproduction, 10 | and distribution as defined by Sections 1 through 9 of this document. 11 | 12 | "Licensor" shall mean the copyright owner or entity authorized by 13 | the copyright owner that is granting the License. 14 | 15 | "Legal Entity" shall mean the union of the acting entity and all 16 | other entities that control, are controlled by, or are under common 17 | control with that entity. For the purposes of this definition, 18 | "control" means (i) the power, direct or indirect, to cause the 19 | direction or management of such entity, whether by contract or 20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 21 | outstanding shares, or (iii) beneficial ownership of such entity. 22 | 23 | "You" (or "Your") shall mean an individual or Legal Entity 24 | exercising permissions granted by this License. 25 | 26 | "Source" form shall mean the preferred form for making modifications, 27 | including but not limited to software source code, documentation 28 | source, and configuration files. 29 | 30 | "Object" form shall mean any form resulting from mechanical 31 | transformation or translation of a Source form, including but 32 | not limited to compiled object code, generated documentation, 33 | and conversions to other media types. 34 | 35 | "Work" shall mean the work of authorship, whether in Source or 36 | Object form, made available under the License, as indicated by a 37 | copyright notice that is included in or attached to the work 38 | (an example is provided in the Appendix below). 39 | 40 | "Derivative Works" shall mean any work, whether in Source or Object 41 | form, that is based on (or derived from) the Work and for which the 42 | editorial revisions, annotations, elaborations, or other modifications 43 | represent, as a whole, an original work of authorship. For the purposes 44 | of this License, Derivative Works shall not include works that remain 45 | separable from, or merely link (or bind by name) to the interfaces of, 46 | the Work and Derivative Works thereof. 47 | 48 | "Contribution" shall mean any work of authorship, including 49 | the original version of the Work and any modifications or additions 50 | to that Work or Derivative Works thereof, that is intentionally 51 | submitted to Licensor for inclusion in the Work by the copyright owner 52 | or by an individual or Legal Entity authorized to submit on behalf of 53 | the copyright owner. For the purposes of this definition, "submitted" 54 | means any form of electronic, verbal, or written communication sent 55 | to the Licensor or its representatives, including but not limited to 56 | communication on electronic mailing lists, source code control systems, 57 | and issue tracking systems that are managed by, or on behalf of, the 58 | Licensor for the purpose of discussing and improving the Work, but 59 | excluding communication that is conspicuously marked or otherwise 60 | designated in writing by the copyright owner as "Not a Contribution." 61 | 62 | "Contributor" shall mean Licensor and any individual or Legal Entity 63 | on behalf of whom a Contribution has been received by Licensor and 64 | subsequently incorporated within the Work. 65 | 66 | 2. Grant of Copyright License. Subject to the terms and conditions of 67 | this License, each Contributor hereby grants to You a perpetual, 68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 69 | copyright license to reproduce, prepare Derivative Works of, 70 | publicly display, publicly perform, sublicense, and distribute the 71 | Work and such Derivative Works in Source or Object form. 72 | 73 | 3. Grant of Patent License. Subject to the terms and conditions of 74 | this License, each Contributor hereby grants to You a perpetual, 75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 76 | (except as stated in this section) patent license to make, have made, 77 | use, offer to sell, sell, import, and otherwise transfer the Work, 78 | where such license applies only to those patent claims licensable 79 | by such Contributor that are necessarily infringed by their 80 | Contribution(s) alone or by combination of their Contribution(s) 81 | with the Work to which such Contribution(s) was submitted. If You 82 | institute patent litigation against any entity (including a 83 | cross-claim or counterclaim in a lawsuit) alleging that the Work 84 | or a Contribution incorporated within the Work constitutes direct 85 | or contributory patent infringement, then any patent licenses 86 | granted to You under this License for that Work shall terminate 87 | as of the date such litigation is filed. 88 | 89 | 4. Redistribution. You may reproduce and distribute copies of the 90 | Work or Derivative Works thereof in any medium, with or without 91 | modifications, and in Source or Object form, provided that You 92 | meet the following conditions: 93 | 94 | (a) You must give any other recipients of the Work or 95 | Derivative Works a copy of this License; and 96 | 97 | (b) You must cause any modified files to carry prominent notices 98 | stating that You changed the files; and 99 | 100 | (c) You must retain, in the Source form of any Derivative Works 101 | that You distribute, all copyright, patent, trademark, and 102 | attribution notices from the Source form of the Work, 103 | excluding those notices that do not pertain to any part of 104 | the Derivative Works; and 105 | 106 | (d) If the Work includes a "NOTICE" text file as part of its 107 | distribution, then any Derivative Works that You distribute must 108 | include a readable copy of the attribution notices contained 109 | within such NOTICE file, excluding those notices that do not 110 | pertain to any part of the Derivative Works, in at least one 111 | of the following places: within a NOTICE text file distributed 112 | as part of the Derivative Works; within the Source form or 113 | documentation, if provided along with the Derivative Works; or, 114 | within a display generated by the Derivative Works, if and 115 | wherever such third-party notices normally appear. The contents 116 | of the NOTICE file are for informational purposes only and 117 | do not modify the License. You may add Your own attribution 118 | notices within Derivative Works that You distribute, alongside 119 | or as an addendum to the NOTICE text from the Work, provided 120 | that such additional attribution notices cannot be construed 121 | as modifying the License. 122 | 123 | You may add Your own copyright statement to Your modifications and 124 | may provide additional or different license terms and conditions 125 | for use, reproduction, or distribution of Your modifications, or 126 | for any such Derivative Works as a whole, provided Your use, 127 | reproduction, and distribution of the Work otherwise complies with 128 | the conditions stated in this License. 129 | 130 | 5. Submission of Contributions. Unless You explicitly state otherwise, 131 | any Contribution intentionally submitted for inclusion in the Work 132 | by You to the Licensor shall be under the terms and conditions of 133 | this License, without any additional terms or conditions. 134 | Notwithstanding the above, nothing herein shall supersede or modify 135 | the terms of any separate license agreement you may have executed 136 | with Licensor regarding such Contributions. 137 | 138 | 6. Trademarks. This License does not grant permission to use the trade 139 | names, trademarks, service marks, or product names of the Licensor, 140 | except as required for reasonable and customary use in describing the 141 | origin of the Work and reproducing the content of the NOTICE file. 142 | 143 | 7. Disclaimer of Warranty. Unless required by applicable law or 144 | agreed to in writing, Licensor provides the Work (and each 145 | Contributor provides its Contributions) on an "AS IS" BASIS, 146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 147 | implied, including, without limitation, any warranties or conditions 148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 149 | PARTICULAR PURPOSE. You are solely responsible for determining the 150 | appropriateness of using or redistributing the Work and assume any 151 | risks associated with Your exercise of permissions under this License. 152 | 153 | 8. Limitation of Liability. In no event and under no legal theory, 154 | whether in tort (including negligence), contract, or otherwise, 155 | unless required by applicable law (such as deliberate and grossly 156 | negligent acts) or agreed to in writing, shall any Contributor be 157 | liable to You for damages, including any direct, indirect, special, 158 | incidental, or consequential damages of any character arising as a 159 | result of this License or out of the use or inability to use the 160 | Work (including but not limited to damages for loss of goodwill, 161 | work stoppage, computer failure or malfunction, or any and all 162 | other commercial damages or losses), even if such Contributor 163 | has been advised of the possibility of such damages. 164 | 165 | 9. Accepting Warranty or Additional Liability. While redistributing 166 | the Work or Derivative Works thereof, You may choose to offer, 167 | and charge a fee for, acceptance of support, warranty, indemnity, 168 | or other liability obligations and/or rights consistent with this 169 | License. However, in accepting such obligations, You may act only 170 | on Your own behalf and on Your sole responsibility, not on behalf 171 | of any other Contributor, and only if You agree to indemnify, 172 | defend, and hold each Contributor harmless for any liability 173 | incurred by, or claims asserted against, such Contributor by reason 174 | of your accepting any such warranty or additional liability. 175 | 176 | END OF TERMS AND CONDITIONS 177 | 178 | APPENDIX: How to apply the Apache License to your work. 179 | 180 | To apply the Apache License to your work, attach the following 181 | boilerplate notice, with the fields enclosed by brackets "[]" 182 | replaced with your own identifying information. (Don't include 183 | the brackets!) The text should be enclosed in the appropriate 184 | comment syntax for the file format. We also recommend that a 185 | file or class name and description of purpose be included on the 186 | same "printed page" as the copyright notice for easier 187 | identification within third-party archives. 188 | 189 | Copyright [yyyy] [name of copyright owner] 190 | 191 | Licensed under the Apache License, Version 2.0 (the "License"); 192 | you may not use this file except in compliance with the License. 193 | You may obtain a copy of the License at 194 | 195 | http://www.apache.org/licenses/LICENSE-2.0 196 | 197 | Unless required by applicable law or agreed to in writing, software 198 | distributed under the License is distributed on an "AS IS" BASIS, 199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 200 | See the License for the specific language governing permissions and 201 | limitations under the License. 202 | -------------------------------------------------------------------------------- /OLD-README.md: -------------------------------------------------------------------------------- 1 | # Awesome-Law-NLP-Research-Work 2 | Summary of NLP related research work in the field of law in recent years, contains paper, competition and some excellent projects, online system. 3 | 4 | 5 | **`It will be updated gradually.`** 6 | 7 | ---------- 8 | ## Outline ## 9 | - Outline 10 | - [Paper](https://github.com/bamtercelboo/Awesome-Law-NLP-Research-Work#paper) 11 | - [Competition](https://github.com/bamtercelboo/Awesome-Law-NLP-Research-Work#competition) 12 | - [Project](https://github.com/bamtercelboo/Awesome-Law-NLP-Research-Work#project) 13 | - [Online System](https://github.com/bamtercelboo/Awesome-Law-NLP-Research-Work#online-system) 14 | - [Question](https://github.com/bamtercelboo/Awesome-Law-NLP-Research-Work#question) 15 | 16 | ---------- 17 | 18 | 19 | ## Paper ## 20 | ####    2017 #### 21 | 22 | - **Learning to predict charges for criminal cases with legal basis**(2017), Bingfeng Luo et al. [[PDF](http://aclweb.org/anthology/D17-1289)] [[Blog](https://bamtercelboo.github.io/2018/07/19/Learning-to-Predict-Charges-for-Criminal-Cases-with-Legal-Basis/)] 23 | 24 | - **Multi-Task CNN for Classification of Chinese Legal Questions**(2017), Guangyi Xiao et al. [[PDF](https://ieeexplore.ieee.org/abstract/document/8119134)] 25 | 26 | - **An Ontological Chinese Legal Consultation System**(2017), Ni Zhang et al. [[PDF](https://ieeexplore.ieee.org/abstract/document/8016577)] 27 | 28 | - **Chinese Questions Classification in the Law Domain**(2017), Guangyi Xiao et al. [[PDF](https://ieeexplore.ieee.org/abstract/document/8119153)] 29 | 30 | - **Legal NLP Introduction**(2017), Adeline Nazarenko et al. [[PDF](http://www.atala.org/sites/default/files/1-%20TAL-58-2-legal%20NLP-introduction.pdf)] 31 | 32 | - **Exploring the use of text classification in the legal domain**(2017), Octavia-Maria Sulea et al. [[PDF](https://arxiv.org/pdf/1710.09306.pdf)] 33 | 34 | - **Predicting the Law Area and Decisions of French Supreme Court Cases**(2017), Octavia-Maria Sulea et al. [[PDF](https://arxiv.org/pdf/1708.01681.pdf)] 35 | 36 | - **Text summarization from legal documents: a survey**(2017), Ambedkar Kanapala et al. [[PDF](https://link.springer.com/article/10.1007/s10462-017-9566-2)] 37 | 38 | - **Applying Deep Neural Network to Retrieve Relevant Civil Law Articles**(2017), Anh Hang Nga Tran et al. [[PDF](https://aclanthology.info/papers/R17-2007/r17-2007)] 39 | 40 | - **Legal Question Answering using Ranking SVM and Deep Convolutional Neural Network**(2017), Phong-Khac Do et al. [[PDF](https://arxiv.org/abs/1703.05320)] 41 | 42 | 43 | ####    2018 #### 44 | 45 | - **Overview of cail2018: legal judgment prediction competition**(2018), Haoxi Zhong et al. [[PDF](https://arxiv.org/pdf/1810.05851.pdf)] [[Code](https://github.com/thunlp/CAIL)] 46 | - **CAIL2018: A Large-Scale Legal Dataset for Judgment Prediction**(2018), Chaojun Xiao et al. [[PDF](https://arxiv.org/pdf/1807.02478.pdf)] 47 | - **Few-shot charge prediction with discriminative legal attributes**(2018), Zikun Hu et al. [[PDF](http://aclweb.org/anthology/C18-1041)] [[Code](https://github.com/thunlp/attribute_charge)] 48 | - **Interpretable rationale augmented charge prediction system**(2018), Xin Jiang et al. [[PDF](http://aclweb.org/anthology/C18-2032)] 49 | - **Interpretable Charge Predictions for Criminal Cases: Learning to Generate Court Views from Fact Descriptions**(2018), Hai Ye et al. [[PDF](https://arxiv.org/pdf/1802.08504.pdf)] [[Code](https://github.com/oceanypt/Court-View-Gen)] 50 | - **Legal judgment prediction via topological learning**(2018), Haoxi Zhong et al. [[PDF](http://www.aclweb.org/anthology/D18-1390)] [[Code](https://github.com/thunlp/TopJudge)] 51 | - **SECaps: A Sequence Enhanced Capsule Model for Charge Prediction**(2018), Congqing He et al. [[PDF](https://arxiv.org/pdf/1810.04465.pdf)] 52 | - **A Markov Logic Networks Based Method to Predict Judicial Decisions of Divorce Cases**(2018), Jiajing Li et al. [[PDF](https://ieeexplore.ieee.org/abstract/document/8513727)] 53 | - **Research and Design on Cognitive Computing Framework for Predicting Judicial Decisions**(2018), Jiajing Li et al. [[PDF](https://link.springer.com/article/10.1007/s11265-018-1429-9)] 54 | - **Automatic judgment prediction via legal reading comprehension**(2018), Shangbang Long et al. [[PDF](https://arxiv.org/pdf/1809.06537.pdf)] 55 | - **Law text classification using semi-supervised convolutional neural networks**(2018), Penghua Li et al. [[PDF](https://ieeexplore.ieee.org/abstract/document/8407150)] 56 | - **Legal Article-Aware End-To-End Memory Network for Charge Prediction**(2018), Yatian Shen et al. [[PDF](https://dl.acm.org/doi/abs/10.1145/3207677.3278068)] 57 | - **人工智能与法律结合的现状及发展趋势(State-of-the-art and Development Trend of Artificial Intelligence Combined with Law)**(2018), 黄俏娟等. [[PDF](http://www.jsjkx.com/jsjkx/ch/reader/view_abstract.aspx?file_no=20181201&flag=1)] 58 | - **法律与人工智能的法哲学思考——以大数据深度学习为考察重点(A Philosophic Though on the Law and AI)**(2018), 吴旭阳. [[PDF](http://dffx.cbpt.cnki.net/WKD/WebPublication/advSearchPaperList.aspx?ys=2018&ist=&ns=&us=&ps=&pt=%E6%B3%95%E5%BE%8B%E4%B8%8E%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E7%9A%84%E6%B3%95%E5%93%B2%E5%AD%A6%E6%80%9D%E8%80%83&pks=&pc=&st=year&stp=&ds=&pcl=)] 59 | - **人工智能介入司法领域路径分析(Methods of Judicial Application of AI Technologies)**(2018), 潘庸鲁. [[PDF](http://dffx.cbpt.cnki.net/WKD/WebPublication/advSearchPaperList.aspx?ys=2018&ist=&ns=&us=&ps=&pt=%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%BB%8B%E5%85%A5%E5%8F%B8%E6%B3%95%E9%A2%86%E5%9F%9F%E8%B7%AF%E5%BE%84%E5%88%86%E6%9E%90&pks=&pc=&st=year&stp=&ds=&pcl=)] 60 | - **智能辅助:AI下民商事办案系统的建构——以裁判思维与要件标注为切入点(AI Assistance: How to Handle Civil and Commercial Cases)**(2018), 蔡一博. [[PDF](http://dffx.cbpt.cnki.net/WKD/WebPublication/advSearchPaperList.aspx?ys=2018&ist=&ns=&us=&ps=&pt=%E6%99%BA%E8%83%BD%E8%BE%85%E5%8A%A9%EF%BC%9AAI%E4%B8%8B%E6%B0%91%E5%95%86%E4%BA%8B%E5%8A%9E%E6%A1%88%E7%B3%BB%E7%BB%9F%E7%9A%84%E5%BB%BA%E6%9E%84&pks=&pc=&st=year&stp=&ds=&pcl=)] 61 | - **我国司法人工智能建设的问题与应对(Judicial AI in China: Issues and Solutions)**(2018), 程凡卿. [[PDF](http://dffx.cbpt.cnki.net/WKD/WebPublication/advSearchPaperList.aspx?ys=2018&ist=&ns=&us=&ps=&pt=%E6%88%91%E5%9B%BD%E5%8F%B8%E6%B3%95%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E5%BB%BA%E8%AE%BE%E7%9A%84%E9%97%AE%E9%A2%98%E4%B8%8E%E5%BA%94%E5%AF%B9&pks=&pc=&st=year&stp=&ds=&pcl=)] 62 | - **NLP Based Latent Semantic Analysis for Legal Text Summarization**(2018), Kaiz Merchant et al. [[PDF](https://ieeexplore.ieee.org/abstract/document/8554831)] 63 | - **A Methodology for a Criminal Law and Procedure Ontology for Legal Question Answering**(2018), Biralatei Fawei et al. [[PDF](https://link.springer.com/chapter/10.1007/978-3-030-04284-4_14)] 64 | - **Deep learning in law: early adaptation and legal word embeddings trained on large corpora**(2018), Ilias Chalkidis et al. [[PDF](https://link.springer.com/article/10.1007/s10506-018-9238-9)] 65 | - **Using OpenWordnet-PT for Question Answering on Legal Domain**(2018), Pedro Delfino et al. [[PDF](http://compling.hss.ntu.edu.sg/events/2018-gwc/pdfs/GWC2018_paper_59.pdf)] 66 | 67 | 68 | ####    2019 #### 69 | - **Legal Judgment Prediction via Multi-Perspective Bi-Feedback Network**(2019), Yang Wenmian et al. [[PDF](https://arxiv.org/pdf/1905.03969.pdf)] 70 | 71 | - **基于深度学习的判决结果倾向性分析(Orientation analysis of judgment results based on deep learning)**(2019), 王业沛等. [[PDF](http://www.arocmag.com/article/01-2019-02-004.html)] 72 | 73 | - **融入罪名关键词的法律判决预测多任务学习模型(Multi-task learning model for legal judgment predictions with charge keywords)**(2019), 刘宗林等. [[PDF](http://jst.tsinghuajournals.com/CN/Y2019/V59/I7/497)] 74 | 75 | - **基于混合深度神经网络模型的司法文书智能化处理(Judicial document intellectual processing using hybrid deep neural networks)**(2019), 王文广等. [[PDF](http://jst.tsinghuajournals.com/CN/Y2019/V59/I7/505)] 76 | 77 | - **基于序列到序列模型的法律问题关键词抽取(Keyphrase extraction for legal questions based on a sequence to sequence model)**(2019), 曾道建等. [[PDF](http://jst.tsinghuajournals.com/CN/Y2019/V59/I4/256)] 78 | 79 | - **Neural Legal Judgment Prediction in English**(2019), Ilias Chalkidis et al. [[PDF](https://arxiv.org/pdf/1906.02059.pdf)] 80 | 81 | - **An External Knowledge Enhanced Multi-label Charge Prediction Approach with Label Number Learning**(2019), Duan Wei, Li Lin et al. [[PDF](https://arxiv.org/abs/1907.02205)] 82 | 83 | - **Charge Prediction with Legal Attention**(2019), Qiaoben Bao et al. [[PDF](https://link.springer.com/chapter/10.1007%2F978-3-030-32233-5_35)] 84 | 85 | - **Large-Scale Multi-Label Text Classification on EU Legislation**(2019), Ilias Chalkidis et al. [[PDF](https://arxiv.org/abs/1906.02192)] 86 | 87 | - **Extreme Multi-Label Legal Text Classification: A Case Study in EU Legislation**(2019), Ilias Chalkidis et al. [[PDF](https://www.aclweb.org/anthology/W19-2209/)] 88 | 89 | - **Using Case Facts to Predict Penalty with Deep Learning**(2019), Yu Li et al. [[PDF](https://link.springer.com/chapter/10.1007/978-981-15-0121-0_47)] 90 | 91 | - **Charge-Based Prison Term Prediction with Deep Gating Network**(2019), Huajie Chen et al. [[PDF](https://arxiv.org/abs/1908.11521)] 92 | 93 | - **Case Facts Analysis Method Based on Deep Learning**(2019), Zihuan Xu et al. [[PDF](https://link.springer.com/chapter/10.1007/978-3-030-30952-7_11)] 94 | 95 | - **Hierarchical Matching Network for Crime Classification**(2019), Pengfei Wang et al. [[PDF](https://dl.acm.org/citation.cfm?id=3331223)] 96 | 97 | - **A Few-Shot Transfer Learning Approach Using Text-label Embedding with Legal Attributes for Law Article Prediction**(2019), Yuh-Shyan Chen et al. [[PDF](https://easychair.org/publications/preprint_download/Dbr3)] 98 | 99 | - **A Recurrent Attention Network for Judgment Prediction**(2019), Ze Yang et al. [[PDF](https://link.springer.com/chapter/10.1007/978-3-030-30490-4_21)] 100 | 101 | - **Learning to Predict Charges for Judgment with Legal Graph**(2019), Si Chen et al. [[PDF](https://link.springer.com/chapter/10.1007/978-3-030-30490-4_20)] 102 | 103 | - **Research and Design on Cognitive Computing Framework for Predicting Judicial Decisions**(2019), Jiajing Li et al. [[PDF](https://link.springer.com/article/10.1007/s11265-018-1429-9)] 104 | 105 | ---------- 106 | ## Competition ## 107 | 108 | - **让AI当法官(BDCI2017)**, 2017年, 举办单位(明略数据 & 中国计算机学会)[[Detail](https://www.datafountain.cn/competitions/277/details)] 109 | 110 | - **"中国法研杯" ---- 司法人工智能挑战赛(CAIL2018)**,2018年,举办单位(中国司法大数据研究院、中国中文信息学会、中电科系统团委联合清华大学、清华大学、北京大学、中国科学院软件研究所)[[Detail](http://cail.cipsc.org.cn/)] [[Blog-1](https://bamtercelboo.github.io/2018/10/17/AI_Law/)] [[Blog-2](http://www.52nlp.cn/%e5%a6%82%e4%bd%95%e7%94%a8%e6%b7%b1%e5%ba%a6%e5%ad%a6%e4%b9%a0%e5%81%9a%e5%a5%bd%e9%95%bf%e6%96%87%e6%9c%ac%e5%88%86%e7%b1%bb%e4%b8%8e%e6%b3%95%e5%be%8b%e6%96%87%e4%b9%a6%e6%99%ba%e8%83%bd%e5%8c%96)] 111 | 112 | - **"中国法研杯" ---- 司法人工智能挑战赛(CAIL2019)**,2019年 113 | 114 | ---------- 115 | ## Project ## 116 | update later. 117 | 118 | 119 | ## Online System ## 120 | - **法信(智答版)**, 人民法院出版集团、中国司法大数据研究院和北京国双科技有限公司, ---> [[法信(智答版)](http://www.lawiask.com/#/)] 121 | 122 | - **觅律搜索**, 北京幂律智能科技有限责任公司, ---> [[觅律so.legal](https://solegal.cn/)] 123 | 124 | - **度小法---法律智库**, 百度, ---> [[度小法](https://duxiaofa.baidu.com/)] 125 | 126 | - **北大法宝**, 北京北大英华科技有限公司、北京大学法制信息中心, ---> [[北大法宝](http://www.pkulaw.cn/)] 127 | 128 | - **法律智能判决系统**, 黑龙江大学自然语言处理实验室, ---> [[法律智能判决系统](http://47.95.219.130/)] 129 | 130 | - **法小飞**, 哈工大讯飞联合实验室, ---> [法小飞-微信公众号] 131 | 132 | - **秘塔翻译及智能检索**, 秘塔科技, ---> [[秘塔翻译及智能检索](https://metaso.cn)] 133 | 134 | - **包小黑法律咨询**, 杭州实在智能科技有限公司, ---> [[包小黑法律咨询](https://110.ai-indeed.com/)] 135 | 136 | 137 | ## Question ## 138 | 139 | - if you have any question, you can open a issue or email **bamtercelboo@{gmail.com, 163.com**}. 140 | 141 | - if you have any good suggestions, you can PR or email me. 142 | 143 | 144 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Awesome-Law-NLP-Research-Work 2 | Summary of NLP related research work in the field of law in recent years, contains paper, competition and some excellent projects, online system. 3 | 4 | **`It will be updated gradually.`** 5 | 6 | 7 | 8 | ---------- 9 | ## Outline ## 10 | - Outline 11 | - [Paper](https://github.com/bamtercelboo/Awesome-Law-NLP-Research-Work#paper) 12 | - [Competition](https://github.com/bamtercelboo/Awesome-Law-NLP-Research-Work#competition) 13 | - [Online System](https://github.com/bamtercelboo/Awesome-Law-NLP-Research-Work#online-system) 14 | - [Question](https://github.com/bamtercelboo/Awesome-Law-NLP-Research-Work#question) 15 | 16 | ---------- 17 | 18 | 19 | ## Paper ## 20 | ####    2017 #### 21 | 22 | 1. *Luo B, Feng Y, Xu J, et al*. **Learning to Predict Charges for Criminal Cases with Legal Basis**[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 2017: 2727-2736. [[PDF](https://www.aclweb.org/anthology/D17-1289.pdf)] 23 | 2. *Xiao G, Mo J, Chow E, et al*. **Multi-Task CNN for classification of Chinese legal questions**[C]//2017 IEEE 14th International Conference on e-Business Engineering (ICEBE). IEEE, 2017: 84-90. [[PDF](https://ieeexplore.ieee.org/abstract/document/8119134)] 24 | 3. *Zhang N, Pu Y F, Yang S Q, et al*. **An ontological Chinese legal consultation system**[J]. IEEE Access, 2017, 5: 18250-18261. [[PDF](https://ieeexplore.ieee.org/abstract/document/8016577)] 25 | 4. *Xiao G, Chow E, Chen H, et al*. **Chinese Questions Classification in the Law Domain**[C]//2017 IEEE 14th International Conference on e-Business Engineering (ICEBE). IEEE, 2017: 214-219. [[PDF](https://ieeexplore.ieee.org/abstract/document/8119153)] 26 | 5. *Nazarenko A, Wyner A.* **Legal NLP Introduction**[J]. TAL, 2017, 58: 7-19. [[PDF](http://www.atala.org/sites/default/files/1-%20TAL-58-2-legal%20NLP-introduction.pdf)] 27 | 6. *Sulea O M, Zampieri M, Malmasi S, et al*. **Exploring the use of text classification in the legal domain**[J]. arXiv preprint arXiv:1710.09306, 2017. [[PDF](https://arxiv.org/pdf/1710.09306.pdf)] 28 | 7. *Sulea O M, Zampieri M, Vela M, et al*. **Predicting the law area and decisions of french supreme court cases**[J]. arXiv preprint arXiv:1708.01681, 2017. [[PDF](https://arxiv.org/pdf/1708.01681.pdf)] 29 | 8. *Kanapala A, Pal S, Pamula R*. **Text summarization from legal documents: a survey**[J]. Artificial Intelligence Review, 2019, 51(3): 371-402. [[PDF](https://link.springer.com/article/10.1007/s10462-017-9566-2)] 30 | 9. *Hang N T A*. **Applying deep neural network to retrieve relevant civil law articles**[C]//Proceedings of the Student Research Workshop associated with RANLP. 2017: 46-48. [[PDF](https://acl-bg.org/proceedings/2017/RANLPStud%202017/pdf/RANLPStud007.pdf)] 31 | 10. *Do P K, Nguyen H T, Tran C X, et al*. **Legal question answering using ranking SVM and deep convolutional neural network**[J]. arXiv preprint arXiv:1703.05320, 2017. [[PDF](https://arxiv.org/abs/1703.05320)] 32 | 33 | 34 | 35 | 36 | ####    2018 #### 37 | 38 | 1. *Zhong H, Xiao C, Guo Z, et al*. **Overview of cail2018: Legal judgment prediction competition**[J]. arXiv preprint arXiv:1810.05851, 2018. [[PDF](https://arxiv.org/pdf/1810.05851.pdf)] 39 | 2. *Xiao C, Zhong H, Guo Z, et al*. **Cail2018: A large-scale legal dataset for judgment prediction**[J]. arXiv preprint arXiv:1807.02478, 2018. [[PDF](https://arxiv.org/pdf/1807.02478.pdf)] 40 | 3. *Hu Z, Li X, Tu C, et al.* **Few-shot charge prediction with discriminative legal attributes**[C]//Proceedings of the 27th International Conference on Computational Linguistics. 2018: 487-498. [[PDF](http://aclweb.org/anthology/C18-1041)] 41 | 4. *Jiang X, Ye H, Luo Z, et al.* **Interpretable rationale augmented charge prediction system**[C]//Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations. 2018: 146-151. [[PDF](http://aclweb.org/anthology/C18-2032)] 42 | 5. *Ye H, Jiang X, Luo Z, et al.* **Interpretable Charge Predictions for Criminal Cases: Learning to Generate Court Views from Fact Descriptions**[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). 2018: 1854-1864. [[PDF](https://arxiv.org/pdf/1802.08504.pdf)] 43 | 6. *Zhong H, Guo Z, Tu C, et al*. **Legal judgment prediction via topological learning**[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018: 3540-3549. [[PDF](http://www.aclweb.org/anthology/D18-1390)] 44 | 8. *Li J, Zhang G, Yan H, et al*. **A Markov Logic Networks Based Method to Predict Judicial Decisions of Divorce Cases**[C]//2018 IEEE International Conference on Smart Cloud (SmartCloud). IEEE, 2018: 129-132. [[PDF](https://ieeexplore.ieee.org/abstract/document/8513727)] 45 | 9. *Li J, Zhang G, Yu L, et al*. **Research and Design on Cognitive Computing Framework for Predicting Judicial Decisions**[J]. Journal of Signal Processing Systems, 2019, 91(10): 1159-1167. [[PDF](https://link.springer.com/article/10.1007/s11265-018-1429-9)] 46 | 10. *Long S, Tu C, Liu Z, et al.* **Automatic judgment prediction via legal reading comprehension**[C]//China National Conference on Chinese Computational Linguistics. Springer, Cham, 2019: 558-572. [[PDF](https://arxiv.org/pdf/1809.06537.pdf)] 47 | 11. *Li P, Zhao F, Li Y, et al.* **Law text classification using semi-supervised convolutional neural networks**[C]//2018 Chinese Control and Decision Conference (CCDC). IEEE, 2018: 309-313. [[PDF](https://ieeexplore.ieee.org/abstract/document/8407150)] 48 | 12. *Shen Y, Sun J, Li X, et al.* **Legal article-aware end-to-end memory network for charge prediction**[C]//Proceedings of the 2nd International Conference on Computer Science and Application Engineering. 2018: 1-5. [[PDF](https://dl.acm.org/doi/abs/10.1145/3207677.3278068)] 49 | 13. *Merchant K, Pande Y.* **Nlp based latent semantic analysis for legal text summarization**[C]//2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, 2018: 1803-1807.[[PDF](https://ieeexplore.ieee.org/abstract/document/8554831)] 50 | 14. *Fawei B, Pan J Z, Kollingbaum M, et al.* **A methodology for a criminal law and procedure ontology for legal question answering**[C]//Joint International Semantic Technology Conference. Springer, Cham, 2018: 198-214. [[PDF](https://link.springer.com/chapter/10.1007/978-3-030-04284-4_14)] 51 | 15. *Chalkidis I, Kampas D.* **Deep learning in law: early adaptation and legal word embeddings trained on large corpora**[J]. Artificial Intelligence and Law, 2019, 27(2): 171-198. [[PDF](https://link.springer.com/article/10.1007/s10506-018-9238-9)] 52 | 16. *Delfino P, Cuconato B, Paulino-Passos G, et al*. **Using openwordnet-pt for question answering on legal domain**[C]//Proceedings of the 9th Global WordNet Conference (GWC 2018). 2018: 106. [[PDF](http://compling.hss.ntu.edu.sg/events/2018-gwc/pdfs/GWC2018_paper_59.pdf)] 53 | 16. *Shen Y, Sun J, Li X, et al.* **Legal article-aware end-to-end memory network for charge prediction**[C]//Proceedings of the 2nd International Conference on Computer Science and Application Engineering. 2018: 1-5. [[PDF](https://dl.acm.org/doi/abs/10.1145/3207677.3278068)] 54 | 17. *Medvedeva M, Vols M, Wieling M.* **Judicial decisions of the European Court of Human Rights: Looking into the crystal ball**[C]//Proceedings of the Conference on Empirical Legal Studies. 2018. 55 | 18. *Undavia S, Meyers A, Ortega J E.* **A comparative study of classifying legal documents with neural networks**[C]//2018 Federated Conference on Computer Science and Information Systems (FedCSIS). IEEE, 2018: 515-522. 56 | 19. *Elnaggar A, Gebendorfer C, Glaser I, et al*. **Multi-task deep learning for legal document translation, summarization and multi-label classification**[C]//Proceedings of the 2018 Artificial Intelligence and Cloud Computing Conference. 2018: 9-15. 57 | 20. *Li S, Zhang H, Ye L, et al.* **Evaluating the rationality of judicial decision with LSTM-based case modeling**[C]//2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). IEEE, 2018: 392-397. 58 | 59 | 60 | 61 | 62 | ####    2019 #### 63 | 1. *Yang W, Jia W, Zhou X I, et al*. **Legal judgment prediction via multi-perspective bi-feedback network**[J]. arXiv preprint arXiv:1905.03969, 2019. [[PDF](https://arxiv.org/pdf/1905.03969.pdf)] 64 | 2. *王业沛, 宋梦姣, 王譞, 等*. **基于深度学习的判决结果倾向性分析**[J]. 计算机应用研究, 2019, 36(2). [[PDF](http://www.arocmag.com/article/01-2019-02-004.html)] 65 | 3. *刘宗林, 张梅山, 甄冉冉, 公佐权, 余南, 付国宏.* **融入罪名关键词的法律判决预测多任务学习模型**[J]. 清华大学学报(自然科学版), 2019, 59(7): 497-504. [[PDF](http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.21.020)] 66 | 4. *王文广, 陈运文, 蔡华, 曾彦能, 杨慧宇.* **基于混合深度神经网络模型的司法文书智能化处理**[J]. 清华大学学报(自然科学版), 2019, 59(7): 505-511. [[PDF](http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.21.015)] 67 | 5. *曾道建, 童国维, 戴愿, 李峰, 韩冰, 谢松县*. **基于序列到序列模型的法律问题关键词抽取**[J]. 清华大学学报(自然科学版), 2019, 59(4): 256-261. [[PDF](http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.21.007)] 68 | 6. *Chalkidis I, Androutsopoulos I, Aletras N.* **Neural Legal Judgment Prediction in English**[J]. arXiv preprint arXiv:1906.02059, 2019. [[PDF](https://arxiv.org/pdf/1906.02059.pdf)] 69 | 7. *Wei D, Lin L.* **An External Knowledge Enhanced Multi-label Charge Prediction Approach with Label Number Learning**[J]. arXiv preprint arXiv:1907.02205, 2019. [[PDF](https://arxiv.org/abs/1907.02205)] 70 | 8. *Bao Q, Zan H, Gong P, et al.* **Charge Prediction with Legal Attention**[C]//CCF International Conference on Natural Language Processing and Chinese Computing. Springer, Cham, 2019: 447-458. [[PDF](https://link.springer.com/chapter/10.1007%2F978-3-030-32233-5_35)] 71 | 9. *Chalkidis I, Fergadiotis M, Malakasiotis P, et al.* **Large-Scale Multi-Label Text Classification on EU Legislation**[J]. arXiv preprint arXiv:1906.02192, 2019. [[PDF](https://arxiv.org/abs/1906.02192)] 72 | 10. *Chalkidis I, Fergadiotis M, Malakasiotis P, et al.* **Extreme multi-label legal text classification: A case study in EU legislation**[J]. arXiv preprint arXiv:1905.10892, 2019. [[PDF](https://www.aclweb.org/anthology/W19-2209/)] 73 | 11. *Li Y, He T, Yan G, et al.* **Using Case Facts to Predict Penalty with Deep Learning**[C]//International Conference of Pioneering Computer Scientists, Engineers and Educators. Springer, Singapore, 2019: 610-617. [[PDF](https://link.springer.com/chapter/10.1007/978-981-15-0121-0_47)] 74 | 12. *Chen H, Cai D, Dai W, et al.* **Charge-Based Prison Term Prediction with Deep Gating Network**[J]. arXiv preprint arXiv:1908.11521, 2019. [[PDF](https://arxiv.org/abs/1908.11521)] 75 | 13. *Xu Z, He T, Lian H, et al.* **Case Facts Analysis Method Based on Deep Learning**[C]//International Conference on Web Information Systems and Applications. Springer, Cham, 2019: 92-97. [[PDF](https://link.springer.com/chapter/10.1007/978-3-030-30952-7_11)] 76 | 14. *Wang P, Fan Y, Niu S, et al.* **Hierarchical matching network for crime classification**[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2019: 325-334. [[PDF](https://dl.acm.org/citation.cfm?id=3331223)] 77 | 15. *Chen Y S, Chiang S W, Juang T Y.* **A Few-Shot Transfer Learning Approach Using Text-label Embedding with Legal Attributes for Law Article Prediction**[R]. EasyChair, 2019. [[PDF](https://easychair.org/publications/preprint_download/Dbr3)] 78 | 16. *Yang Z, Wang P, Zhang L, et al.* **A Recurrent Attention Network for Judgment Prediction**[C]//International Conference on Artificial Neural Networks. Springer, Cham, 2019: 253-266. [[PDF](https://link.springer.com/chapter/10.1007/978-3-030-30490-4_21)] 79 | 17. *Chen S, Wang P, Fang W, et al.* **Learning to Predict Charges for Judgment with Legal Graph**[C]//International Conference on Artificial Neural Networks. Springer, Cham, 2019: 240-252. [[PDF](https://link.springer.com/chapter/10.1007/978-3-030-30490-4_20)] 80 | 18. *Li J, Zhang G, Yu L, et al.* **Research and Design on Cognitive Computing Framework for Predicting Judicial Decisions**[J]. Journal of Signal Processing Systems, 2019, 91(10): 1159-1167. [[PDF](https://link.springer.com/article/10.1007/s11265-018-1429-9)] 81 | 19. *Yan G, Li Y, Zhang S, et al*. **Data Augmentation for Deep Learning of Judgment Documents**[C]//International Conference on Intelligent Science and Big Data Engineering. Springer, Cham, 2019: 232-242. [[PDF](https://link.springer.com/chapter/10.1007/978-3-030-36204-1_19)] 82 | 20. *Liu Z, Tu C, Sun M.* **Legal Cause Prediction with Inner Descriptions and Outer Hierarchies**[C]//China National Conference on Chinese Computational Linguistics. Springer, Cham, 2019: 573-586. [[PDF](https://link.springer.com/chapter/10.1007/978-3-030-32381-3_46)] 83 | 21. *Yan G, Li Y, Shen S, et al*. **Law Article Prediction Based on Deep Learning**[C]//2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). IEEE, 2019: 281-284. 84 | 22. *Li S, Zhang H, Ye L, et al*. **MANN: A Multichannel Attentive Neural Network for Legal Judgment Prediction**[J]. IEEE Access, 2019, 7: 151144-151155. 85 | 23. *Xiao C, Zhong H, Guo Z, et al*. **CAIL2019-SCM: A Dataset of Similar Case Matching in Legal Domain**[J]. arXiv preprint arXiv:1911.08962, 2019. 86 | 24. *Duan X, Wang B, Wang Z, et al*. **CJRC: A Reliable Human-Annotated Benchmark DataSet for Chinese Judicial Reading Comprehension**[C]//China National Conference on Chinese Computational Linguistics. Springer, Cham, 2019: 439-451. 87 | 25. *Bi S, Cheng X, Chen J, et al.* **Dispute Generation in Law Documents via Joint Context and Topic Attention**[C]//Joint International Semantic Technology Conference. Springer, Cham, 2019: 116-129. 88 | 26. *Pan S, Lu T, Gu N, et al.* **Charge Prediction for Multi-defendant Cases with Multi-scale Attention**[C]//CCF Conference on Computer Supported Cooperative Work and Social Computing. Springer, Singapore, 2019: 766-777. 89 | 27. *Zhang H, Wang X, Tan H, et al*. **Applying Data Discretization to DPCNN for Law Article Prediction**[C]//CCF International Conference on Natural Language Processing and Chinese Computing. Springer, Cham, 2019: 459-470. 90 | 28. *Kang L, Liu J, Liu L, et al.* **Creating Auxiliary Representations from Charge Definitions for Criminal Charge Prediction**[J]. arXiv preprint arXiv:1911.05202, 2019. 91 | 29. *Zhong H, Xiao C, Tu C, et al.* **JEC-QA: A Legal-Domain Question Answering Dataset**[J]. arXiv preprint arXiv:1911.12011, 2019. 92 | 30. *Yuan L, Wang J, Fan S, et al.* **Automatic Legal Judgment Prediction via Large Amounts of Criminal Cases**[C]//2019 IEEE 5th International Conference on Computer and Communications (ICCC). IEEE, 2019: 2087-2091. 93 | 31. *Li S, Liu B, Ye L, et al.* **Element-Aware Legal Judgment Prediction for Criminal Cases with Confusing Charges**[C]//2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2019: 660-667. 94 | 32. *Visentin A, Nardotto A, O’Sullivan B*. **Predicting Judicial Decisions: A Statistically Rigorous Approach and a New Ensemble Classifier**[C]//2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2019: 1820-1824. 95 | 33. *Branting K, Weiss B, Brown B, et al*. **Semi-Supervised Methods for Explainable Legal Prediction**[C]//Proceedings of the Seventeenth International Conference on Artificial Intelligence and Law. 2019: 22-31. 96 | 34. *Kaur A, Bozic B.* **Convolutional Neural Network-based Automatic Prediction Of Judgments Of The European Court of Human Rights**[J]. 2019. 97 | 35. *Ferro L, Aberdeen J, Branting K, et al.* **Scalable Methods for Annotating Legal-Decision Corpora**[C]//Proceedings of the Natural Legal Language Processing Workshop 2019. 2019: 12-20. 98 | 36. *Li S, Guo B, Cai Y, et al.* **Legal Case Inspection: An Analogy-Based Approach to Judgment Evaluation**[C]//International Conference on Artificial Intelligence and Security. Springer, Cham, 2019: 148-158. 99 | 37. *Chitta R, Hudek A K.* **A Reliable and Accurate Multiple Choice Question Answering System for Due Diligence**[C]//Proceedings of the Seventeenth International Conference on Artificial Intelligence and Law. 2019: 184-188. 100 | 38. *Wang H, He T, Zou Z, et al.* **Using Case Facts to Predict Accusation Based on Deep Learning**[C]//2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). IEEE, 2019: 133-137. 101 | 39. *Vacek T, Teo R, Song D, et al.* **Litigation Analytics: Case outcomes extracted from US federal court dockets**[C]//Proceedings of the Natural Legal Language Processing Workshop 2019. 2019: 45-54. 102 | 40. *Wang Z, Wang B, Duan X, et al.* **IFlyLegal: A Chinese Legal System for Consultation, Law Searching, and Document Analysis**[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations. 2019: 97-102. 103 | 41. *Yang X, Shi G, Lou J, et al.* **Interpretable Charge Prediction with Multi-Perspective Jointly Learning Model**[C]//2019 IEEE 5th International Conference on Computer and Communications (ICCC). IEEE, 2019: 1850-1855. 104 | 42. *Duan X, Zhang Y, Yuan L, et al.* **Legal Summarization for Multi-role Debate Dialogue via Controversy Focus Mining and Multi-task Learning**[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019: 1361-1370. 105 | 43. *Wang Y, Xu M, Wang L, et al.* **JEDoDF: Judicial Event Discrimination Based on Deep Forest**[C]//2019 15th International Conference on Semantics, Knowledge and Grids (SKG). IEEE, 2019: 36-43. 106 | 44. *He C, Peng L, Le Y, et al.* **SECaps: A Sequence Enhanced Capsule Model for Charge Prediction**[C]//International Conference on Artificial Neural Networks. Springer, Cham, 2019: 227-239. 107 | 45. *Bansal N, Sharma A, Singh R K.* **A Review on the Application of Deep Learning in Legal Domain**[C]//IFIP International Conference on Artificial Intelligence Applications and Innovations. Springer, Cham, 2019: 374-381. 108 | 46. *Bhattacharya P, Ghosh K, Ghosh S, et al.* **Overview of the FIRE 2019 AILA track: Artificial Intelligence for Legal Assistance**[J]. Proc. of FIRE, 2019: 12-15. 109 | 47. *Bhattacharya P, Paul S, Ghosh K, et al.* **Identification of Rhetorical Roles of Sentences in Indian Legal Judgments**[J]. arXiv preprint arXiv:1911.05405, 2019. 110 | 111 | 112 | 113 | ####    2020 114 | 115 | 1. *Zhong H, Wang Y, Tu C, et al*. **Iteratively Questioning and Answering for Interpretable Legal Judgment Prediction**[J]. Association for the Advancement of Artificial Intelligence, 2020. [[PDF](https://www.aaai.org/Papers/AAAI/2020GB/AAAI-ZhongH.7101.pdf)] 116 | 2. *Li S, Zhang H, Ye L, et al.* **Prison Term Prediction on Criminal Case Description with Deep Learning**[J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 62(3): 1217-1231. [[PDF](https://www.researchgate.net/publication/339488726_Prison_Term_Prediction_on_Criminal_Case_Description_with_Deep_Learning)] 117 | 3. *Shaikh R A, Sahu T P, Anand V.* **Predicting Outcomes of Legal Cases based on Legal Factors using Classifiers**[J]. Procedia Computer Science, 2020, 167: 2393-2402. 118 | 4. *Xu N, Wang P, Chen L, et al*. **Distinguish Confusing Law Articles for Legal Judgment Prediction**[J]. arXiv preprint arXiv:2004.02557, 2020. 119 | 5. *Garofalakis J, Plessas K, Plessas A, et al.* **Application of an Ecosystem Methodology Based on Legal Language Processing for the Transformation of Court Decisions and Legal Opinions into Open Data**[J]. Information, 2020, 11(1): 10. 120 | 6. *Polo F M, Ciochetti I, Bertolo E.* **Predicting Legal Proceedings Status: an Approach Based on Sequential Text Data**[J]. arXiv preprint arXiv:2003.11561, 2020. 121 | 7. *Polpinij J, Bheganan P, Luaphol B, et al*. **Identifying of Decision Components in Thai Civil Case Decision by Text Classification Technique**[C]//International Conference on Computing and Information Technology. Springer, Cham, 2020: 11-20. 122 | 8. *Peng, D., Wu, Q.* **LegalCap: a model for complex case discrimination based on capsule neural network.** *Soft Comput* (2020). 123 | 9. *Huang Y, Yu Z, Guo J, et al.* **Legal public opinion news abstractive summarization by incorporating topic information**[J]. International Journal of Machine Learning and Cybernetics, 2020: 1-12. 124 | 10. *Zhong H, Xiao C, Tu C, et al.* **How Does NLP Benefit Legal System: A Summary of Legal Artificial Intelligence**[J]. arXiv preprint arXiv:2004.12158, 2020. 125 | 126 | 127 | 128 | 129 | 130 | ---------- 131 | ## Competition ## 132 | 133 | - **让AI当法官(BDCI2017)**, 2017年, 举办单位(明略数据 & 中国计算机学会)[[Detail](https://www.datafountain.cn/competitions/277/details)] 134 | - **"中国法研杯" ---- 司法人工智能挑战赛(CAIL2018)**,2018年,举办单位(中国司法大数据研究院、中国中文信息学会、中电科系统团委联合清华大学、清华大学、北京大学、中国科学院软件研究所)[[Detail](http://cail.cipsc.org.cn/)] [[Blog-1](https://bamtercelboo.github.io/2018/10/17/AI_Law/)] [[Blog-2](http://www.52nlp.cn/%e5%a6%82%e4%bd%95%e7%94%a8%e6%b7%b1%e5%ba%a6%e5%ad%a6%e4%b9%a0%e5%81%9a%e5%a5%bd%e9%95%bf%e6%96%87%e6%9c%ac%e5%88%86%e7%b1%bb%e4%b8%8e%e6%b3%95%e5%be%8b%e6%96%87%e4%b9%a6%e6%99%ba%e8%83%bd%e5%8c%96)] 135 | - **"中国法研杯" ---- 司法人工智能挑战赛(CAIL2019)**,2019年 136 | - **"中国法研杯" ---- 司法人工智能挑战赛(CAIL2020)**,2020年 137 | 138 | ---------- 139 | 140 | 141 | 142 | ## Online System ## 143 | - **法信(智答版)**, 人民法院出版集团、中国司法大数据研究院和北京国双科技有限公司, ---> [[法信(智答版)](http://www.lawiask.com/#/)] 144 | 145 | - **觅律搜索**, 北京幂律智能科技有限责任公司, ---> [[觅律so.legal](https://solegal.cn/)] 146 | 147 | - **度小法---法律智库**, 百度, ---> [[度小法](https://duxiaofa.baidu.com/)] 148 | 149 | - **北大法宝**, 北京北大英华科技有限公司、北京大学法制信息中心, ---> [[北大法宝](http://www.pkulaw.cn/)] 150 | 151 | - **法律智能判决系统**, 黑龙江大学自然语言处理实验室, ---> [[法律智能判决系统](http://47.95.219.130/)] 152 | 153 | - **法小飞**, 哈工大讯飞联合实验室, ---> [法小飞-微信公众号] 154 | 155 | - **秘塔翻译及智能检索**, 秘塔科技, ---> [[秘塔翻译及智能检索](https://metaso.cn)] 156 | 157 | - **包小黑法律咨询**, 杭州实在智能科技有限公司, ---> [[包小黑法律咨询](https://110.ai-indeed.com/)] 158 | 159 | 160 | 161 | 162 | --------------------------------------------------------------------------------