├── .cargo └── config ├── .gitignore ├── Cargo.lock ├── Cargo.toml ├── LICENSE.txt ├── MANIFEST.in ├── README.rst ├── build-wheels.sh ├── build.rs ├── darknetpy ├── __init__.py └── detector │ └── __init__.py ├── dist ├── darknetpy-4.0-cp27-cp27m-linux_x86_64.whl ├── darknetpy-4.0-cp27-cp27m-manylinux1_x86_64.whl ├── darknetpy-4.0-cp27-cp27mu-linux_x86_64.whl ├── darknetpy-4.0-cp27-cp27mu-manylinux1_x86_64.whl ├── darknetpy-4.0-cp35-cp35m-linux_x86_64.whl ├── darknetpy-4.0-cp35-cp35m-manylinux1_x86_64.whl ├── darknetpy-4.0-cp36-cp36m-linux_x86_64.whl ├── darknetpy-4.0-cp36-cp36m-manylinux1_x86_64.whl ├── darknetpy-4.0-cp37-cp37m-linux_x86_64.whl ├── darknetpy-4.0-cp37-cp37m-manylinux1_x86_64.whl ├── darknetpy-4.1-cp35-cp35m-linux_x86_64.whl ├── darknetpy-4.1-cp36-cp36m-linux_x86_64.whl ├── darknetpy-4.1-cp37-cp37m-linux_x86_64.whl ├── darknetpy-4.2-cp35-cp35m-linux_x86_64.whl ├── darknetpy-4.2-cp35-cp35m-manylinux2010_x86_64.whl ├── darknetpy-4.2-cp36-cp36m-linux_x86_64.whl ├── darknetpy-4.2-cp36-cp36m-manylinux2010_x86_64.whl ├── darknetpy-4.2-cp37-cp37m-linux_x86_64.whl └── darknetpy-4.2-cp37-cp37m-manylinux2010_x86_64.whl ├── example ├── Dog.ipynb └── example.png ├── pyproject.toml ├── requirements-dev.txt ├── setup.py └── src └── lib.rs /.cargo/config: -------------------------------------------------------------------------------- 1 | [target.x86_64-apple-darwin] 2 | rustflags = [ 3 | "-C", "link-arg=-undefined", 4 | "-C", "link-arg=dynamic_lookup", 5 | ] 6 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | build 2 | *.egg-info 3 | *.eggs 4 | *.egg 5 | __pycache__ 6 | tags 7 | target 8 | *.so 9 | .ipynb_checkpoints 10 | -------------------------------------------------------------------------------- /Cargo.lock: -------------------------------------------------------------------------------- 1 | # This file is automatically @generated by Cargo. 2 | # It is not intended for manual editing. 3 | version = 3 4 | 5 | [[package]] 6 | name = "aho-corasick" 7 | version = "0.7.10" 8 | source = "registry+https://github.com/rust-lang/crates.io-index" 9 | checksum = "8716408b8bc624ed7f65d223ddb9ac2d044c0547b6fa4b0d554f3a9540496ada" 10 | dependencies = [ 11 | "memchr", 12 | ] 13 | 14 | [[package]] 15 | name = "ansi_term" 16 | version = "0.11.0" 17 | source = "registry+https://github.com/rust-lang/crates.io-index" 18 | checksum = "ee49baf6cb617b853aa8d93bf420db2383fab46d314482ca2803b40d5fde979b" 19 | dependencies = [ 20 | "winapi", 21 | ] 22 | 23 | [[package]] 24 | name = "atty" 25 | version = "0.2.14" 26 | source = "registry+https://github.com/rust-lang/crates.io-index" 27 | checksum = "d9b39be18770d11421cdb1b9947a45dd3f37e93092cbf377614828a319d5fee8" 28 | dependencies = [ 29 | "hermit-abi", 30 | "libc", 31 | "winapi", 32 | ] 33 | 34 | [[package]] 35 | name = "autocfg" 36 | version = "1.0.0" 37 | source = "registry+https://github.com/rust-lang/crates.io-index" 38 | checksum = "f8aac770f1885fd7e387acedd76065302551364496e46b3dd00860b2f8359b9d" 39 | 40 | [[package]] 41 | name = "bindgen" 42 | version = "0.53.2" 43 | source = "registry+https://github.com/rust-lang/crates.io-index" 44 | checksum = "6bb26d6a69a335b8cb0e7c7e9775cd5666611dc50a37177c3f2cedcfc040e8c8" 45 | dependencies = [ 46 | "bitflags", 47 | "cexpr", 48 | "cfg-if", 49 | "clang-sys", 50 | "clap", 51 | "env_logger", 52 | "lazy_static", 53 | "lazycell", 54 | "log", 55 | "peeking_take_while", 56 | "proc-macro2", 57 | "quote", 58 | "regex", 59 | "rustc-hash", 60 | "shlex", 61 | "which", 62 | ] 63 | 64 | [[package]] 65 | name = "bitflags" 66 | version = "1.2.1" 67 | source = "registry+https://github.com/rust-lang/crates.io-index" 68 | checksum = "cf1de2fe8c75bc145a2f577add951f8134889b4795d47466a54a5c846d691693" 69 | 70 | [[package]] 71 | name = "cc" 72 | version = "1.0.52" 73 | source = "registry+https://github.com/rust-lang/crates.io-index" 74 | checksum = "c3d87b23d6a92cd03af510a5ade527033f6aa6fa92161e2d5863a907d4c5e31d" 75 | 76 | [[package]] 77 | name = "cexpr" 78 | version = "0.4.0" 79 | source = "registry+https://github.com/rust-lang/crates.io-index" 80 | checksum = "f4aedb84272dbe89af497cf81375129abda4fc0a9e7c5d317498c15cc30c0d27" 81 | dependencies = [ 82 | "nom", 83 | ] 84 | 85 | [[package]] 86 | name = "cfg-if" 87 | version = "0.1.10" 88 | source = "registry+https://github.com/rust-lang/crates.io-index" 89 | checksum = "4785bdd1c96b2a846b2bd7cc02e86b6b3dbf14e7e53446c4f54c92a361040822" 90 | 91 | [[package]] 92 | name = "clang-sys" 93 | version = "0.29.3" 94 | source = "registry+https://github.com/rust-lang/crates.io-index" 95 | checksum = "fe6837df1d5cba2397b835c8530f51723267e16abbf83892e9e5af4f0e5dd10a" 96 | dependencies = [ 97 | "glob", 98 | "libc", 99 | "libloading", 100 | ] 101 | 102 | [[package]] 103 | name = "clap" 104 | version = "2.33.0" 105 | source = "registry+https://github.com/rust-lang/crates.io-index" 106 | checksum = "5067f5bb2d80ef5d68b4c87db81601f0b75bca627bc2ef76b141d7b846a3c6d9" 107 | dependencies = [ 108 | "ansi_term", 109 | "atty", 110 | "bitflags", 111 | "strsim", 112 | "textwrap", 113 | "unicode-width", 114 | "vec_map", 115 | ] 116 | 117 | [[package]] 118 | name = "cloudabi" 119 | version = "0.0.3" 120 | source = "registry+https://github.com/rust-lang/crates.io-index" 121 | checksum = "ddfc5b9aa5d4507acaf872de71051dfd0e309860e88966e1051e462a077aac4f" 122 | dependencies = [ 123 | "bitflags", 124 | ] 125 | 126 | [[package]] 127 | name = "ctor" 128 | version = "0.1.14" 129 | source = "registry+https://github.com/rust-lang/crates.io-index" 130 | checksum = "cf6b25ee9ac1995c54d7adb2eff8cfffb7260bc774fb63c601ec65467f43cd9d" 131 | dependencies = [ 132 | "quote", 133 | "syn", 134 | ] 135 | 136 | [[package]] 137 | name = "darknetpy" 138 | version = "0.0.0" 139 | dependencies = [ 140 | "bindgen", 141 | "pyo3", 142 | ] 143 | 144 | [[package]] 145 | name = "env_logger" 146 | version = "0.7.1" 147 | source = "registry+https://github.com/rust-lang/crates.io-index" 148 | checksum = "44533bbbb3bb3c1fa17d9f2e4e38bbbaf8396ba82193c4cb1b6445d711445d36" 149 | dependencies = [ 150 | "atty", 151 | "humantime", 152 | "log", 153 | "regex", 154 | "termcolor", 155 | ] 156 | 157 | [[package]] 158 | name = "ghost" 159 | version = "0.1.1" 160 | source = "registry+https://github.com/rust-lang/crates.io-index" 161 | checksum = "2a36606a68532b5640dc86bb1f33c64b45c4682aad4c50f3937b317ea387f3d6" 162 | dependencies = [ 163 | "proc-macro2", 164 | "quote", 165 | "syn", 166 | ] 167 | 168 | [[package]] 169 | name = "glob" 170 | version = "0.3.0" 171 | source = "registry+https://github.com/rust-lang/crates.io-index" 172 | checksum = "9b919933a397b79c37e33b77bb2aa3dc8eb6e165ad809e58ff75bc7db2e34574" 173 | 174 | [[package]] 175 | name = "hermit-abi" 176 | version = "0.1.12" 177 | source = "registry+https://github.com/rust-lang/crates.io-index" 178 | checksum = "61565ff7aaace3525556587bd2dc31d4a07071957be715e63ce7b1eccf51a8f4" 179 | dependencies = [ 180 | "libc", 181 | ] 182 | 183 | [[package]] 184 | name = "humantime" 185 | version = "1.3.0" 186 | source = "registry+https://github.com/rust-lang/crates.io-index" 187 | checksum = "df004cfca50ef23c36850aaaa59ad52cc70d0e90243c3c7737a4dd32dc7a3c4f" 188 | dependencies = [ 189 | "quick-error", 190 | ] 191 | 192 | [[package]] 193 | name = "indoc" 194 | version = "0.3.5" 195 | source = "registry+https://github.com/rust-lang/crates.io-index" 196 | checksum = "79255cf29f5711995ddf9ec261b4057b1deb34e66c90656c201e41376872c544" 197 | dependencies = [ 198 | "indoc-impl", 199 | "proc-macro-hack", 200 | ] 201 | 202 | [[package]] 203 | name = "indoc-impl" 204 | version = "0.3.5" 205 | source = "registry+https://github.com/rust-lang/crates.io-index" 206 | checksum = "54554010aa3d17754e484005ea0022f1c93839aabc627c2c55f3d7b47206134c" 207 | dependencies = [ 208 | "proc-macro-hack", 209 | "proc-macro2", 210 | "quote", 211 | "syn", 212 | "unindent", 213 | ] 214 | 215 | [[package]] 216 | name = "inventory" 217 | version = "0.1.6" 218 | source = "registry+https://github.com/rust-lang/crates.io-index" 219 | checksum = "82d3f4b90287725c97b17478c60dda0c6324e7c84ee1ed72fb9179d0fdf13956" 220 | dependencies = [ 221 | "ctor", 222 | "ghost", 223 | "inventory-impl", 224 | ] 225 | 226 | [[package]] 227 | name = "inventory-impl" 228 | version = "0.1.6" 229 | source = "registry+https://github.com/rust-lang/crates.io-index" 230 | checksum = "9092a4fefc9d503e9287ef137f03180a6e7d1b04c419563171ee14947c5e80ec" 231 | dependencies = [ 232 | "proc-macro2", 233 | "quote", 234 | "syn", 235 | ] 236 | 237 | [[package]] 238 | name = "itoa" 239 | version = "0.4.5" 240 | source = "registry+https://github.com/rust-lang/crates.io-index" 241 | checksum = "b8b7a7c0c47db5545ed3fef7468ee7bb5b74691498139e4b3f6a20685dc6dd8e" 242 | 243 | [[package]] 244 | name = "lazy_static" 245 | version = "1.4.0" 246 | source = "registry+https://github.com/rust-lang/crates.io-index" 247 | checksum = "e2abad23fbc42b3700f2f279844dc832adb2b2eb069b2df918f455c4e18cc646" 248 | 249 | [[package]] 250 | name = "lazycell" 251 | version = "1.2.1" 252 | source = "registry+https://github.com/rust-lang/crates.io-index" 253 | checksum = "b294d6fa9ee409a054354afc4352b0b9ef7ca222c69b8812cbea9e7d2bf3783f" 254 | 255 | [[package]] 256 | name = "libc" 257 | version = "0.2.69" 258 | source = "registry+https://github.com/rust-lang/crates.io-index" 259 | checksum = "99e85c08494b21a9054e7fe1374a732aeadaff3980b6990b94bfd3a70f690005" 260 | 261 | [[package]] 262 | name = "libloading" 263 | version = "0.5.2" 264 | source = "registry+https://github.com/rust-lang/crates.io-index" 265 | checksum = "f2b111a074963af1d37a139918ac6d49ad1d0d5e47f72fd55388619691a7d753" 266 | dependencies = [ 267 | "cc", 268 | "winapi", 269 | ] 270 | 271 | [[package]] 272 | name = "lock_api" 273 | version = "0.3.4" 274 | source = "registry+https://github.com/rust-lang/crates.io-index" 275 | checksum = "c4da24a77a3d8a6d4862d95f72e6fdb9c09a643ecdb402d754004a557f2bec75" 276 | dependencies = [ 277 | "scopeguard", 278 | ] 279 | 280 | [[package]] 281 | name = "log" 282 | version = "0.4.8" 283 | source = "registry+https://github.com/rust-lang/crates.io-index" 284 | checksum = "14b6052be84e6b71ab17edffc2eeabf5c2c3ae1fdb464aae35ac50c67a44e1f7" 285 | dependencies = [ 286 | "cfg-if", 287 | ] 288 | 289 | [[package]] 290 | name = "memchr" 291 | version = "2.3.3" 292 | source = "registry+https://github.com/rust-lang/crates.io-index" 293 | checksum = "3728d817d99e5ac407411fa471ff9800a778d88a24685968b36824eaf4bee400" 294 | 295 | [[package]] 296 | name = "nom" 297 | version = "5.1.1" 298 | source = "registry+https://github.com/rust-lang/crates.io-index" 299 | checksum = "0b471253da97532da4b61552249c521e01e736071f71c1a4f7ebbfbf0a06aad6" 300 | dependencies = [ 301 | "memchr", 302 | "version_check", 303 | ] 304 | 305 | [[package]] 306 | name = "num-traits" 307 | version = "0.2.11" 308 | source = "registry+https://github.com/rust-lang/crates.io-index" 309 | checksum = "c62be47e61d1842b9170f0fdeec8eba98e60e90e5446449a0545e5152acd7096" 310 | dependencies = [ 311 | "autocfg", 312 | ] 313 | 314 | [[package]] 315 | name = "once_cell" 316 | version = "1.12.0" 317 | source = "registry+https://github.com/rust-lang/crates.io-index" 318 | checksum = "7709cef83f0c1f58f666e746a08b21e0085f7440fa6a29cc194d68aac97a4225" 319 | 320 | [[package]] 321 | name = "parking_lot" 322 | version = "0.10.2" 323 | source = "registry+https://github.com/rust-lang/crates.io-index" 324 | checksum = "d3a704eb390aafdc107b0e392f56a82b668e3a71366993b5340f5833fd62505e" 325 | dependencies = [ 326 | "lock_api", 327 | "parking_lot_core", 328 | ] 329 | 330 | [[package]] 331 | name = "parking_lot_core" 332 | version = "0.7.2" 333 | source = "registry+https://github.com/rust-lang/crates.io-index" 334 | checksum = "d58c7c768d4ba344e3e8d72518ac13e259d7c7ade24167003b8488e10b6740a3" 335 | dependencies = [ 336 | "cfg-if", 337 | "cloudabi", 338 | "libc", 339 | "redox_syscall", 340 | "smallvec", 341 | "winapi", 342 | ] 343 | 344 | [[package]] 345 | name = "paste" 346 | version = "0.1.11" 347 | source = "registry+https://github.com/rust-lang/crates.io-index" 348 | checksum = "a3c897744f63f34f7ae3a024d9162bb5001f4ad661dd24bea0dc9f075d2de1c6" 349 | dependencies = [ 350 | "paste-impl", 351 | "proc-macro-hack", 352 | ] 353 | 354 | [[package]] 355 | name = "paste-impl" 356 | version = "0.1.11" 357 | source = "registry+https://github.com/rust-lang/crates.io-index" 358 | checksum = "66fd6f92e3594f2dd7b3fc23e42d82e292f7bcda6d8e5dcd167072327234ab89" 359 | dependencies = [ 360 | "proc-macro-hack", 361 | "proc-macro2", 362 | "quote", 363 | "syn", 364 | ] 365 | 366 | [[package]] 367 | name = "peeking_take_while" 368 | version = "0.1.2" 369 | source = "registry+https://github.com/rust-lang/crates.io-index" 370 | checksum = "19b17cddbe7ec3f8bc800887bab5e717348c95ea2ca0b1bf0837fb964dc67099" 371 | 372 | [[package]] 373 | name = "proc-macro-hack" 374 | version = "0.5.15" 375 | source = "registry+https://github.com/rust-lang/crates.io-index" 376 | checksum = "0d659fe7c6d27f25e9d80a1a094c223f5246f6a6596453e09d7229bf42750b63" 377 | 378 | [[package]] 379 | name = "proc-macro2" 380 | version = "1.0.10" 381 | source = "registry+https://github.com/rust-lang/crates.io-index" 382 | checksum = "df246d292ff63439fea9bc8c0a270bed0e390d5ebd4db4ba15aba81111b5abe3" 383 | dependencies = [ 384 | "unicode-xid", 385 | ] 386 | 387 | [[package]] 388 | name = "pyo3" 389 | version = "0.9.2" 390 | source = "registry+https://github.com/rust-lang/crates.io-index" 391 | checksum = "7028df4086f1e488a6192932e86de604077ef6b06eac2b0f159a3082c7450c58" 392 | dependencies = [ 393 | "indoc", 394 | "inventory", 395 | "libc", 396 | "num-traits", 397 | "parking_lot", 398 | "paste", 399 | "pyo3cls", 400 | "regex", 401 | "serde", 402 | "serde_json", 403 | "unindent", 404 | "version_check", 405 | ] 406 | 407 | [[package]] 408 | name = "pyo3-derive-backend" 409 | version = "0.9.2" 410 | source = "registry+https://github.com/rust-lang/crates.io-index" 411 | checksum = "4e3c7aaceb685d2560b7c3fc46c152464c181de2baf44e57119ce43d712d1b64" 412 | dependencies = [ 413 | "proc-macro2", 414 | "quote", 415 | "syn", 416 | ] 417 | 418 | [[package]] 419 | name = "pyo3cls" 420 | version = "0.9.2" 421 | source = "registry+https://github.com/rust-lang/crates.io-index" 422 | checksum = "053d66146897d823e8d228758fb0aefac18e8a3024585a1640dbbe885c1b07a1" 423 | dependencies = [ 424 | "pyo3-derive-backend", 425 | "quote", 426 | "syn", 427 | ] 428 | 429 | [[package]] 430 | name = "quick-error" 431 | version = "1.2.3" 432 | source = "registry+https://github.com/rust-lang/crates.io-index" 433 | checksum = "a1d01941d82fa2ab50be1e79e6714289dd7cde78eba4c074bc5a4374f650dfe0" 434 | 435 | [[package]] 436 | name = "quote" 437 | version = "1.0.3" 438 | source = "registry+https://github.com/rust-lang/crates.io-index" 439 | checksum = "2bdc6c187c65bca4260c9011c9e3132efe4909da44726bad24cf7572ae338d7f" 440 | dependencies = [ 441 | "proc-macro2", 442 | ] 443 | 444 | [[package]] 445 | name = "redox_syscall" 446 | version = "0.1.56" 447 | source = "registry+https://github.com/rust-lang/crates.io-index" 448 | checksum = "2439c63f3f6139d1b57529d16bc3b8bb855230c8efcc5d3a896c8bea7c3b1e84" 449 | 450 | [[package]] 451 | name = "regex" 452 | version = "1.3.7" 453 | source = "registry+https://github.com/rust-lang/crates.io-index" 454 | checksum = "a6020f034922e3194c711b82a627453881bc4682166cabb07134a10c26ba7692" 455 | dependencies = [ 456 | "aho-corasick", 457 | "memchr", 458 | "regex-syntax", 459 | "thread_local", 460 | ] 461 | 462 | [[package]] 463 | name = "regex-syntax" 464 | version = "0.6.17" 465 | source = "registry+https://github.com/rust-lang/crates.io-index" 466 | checksum = "7fe5bd57d1d7414c6b5ed48563a2c855d995ff777729dcd91c369ec7fea395ae" 467 | 468 | [[package]] 469 | name = "rustc-hash" 470 | version = "1.1.0" 471 | source = "registry+https://github.com/rust-lang/crates.io-index" 472 | checksum = "08d43f7aa6b08d49f382cde6a7982047c3426db949b1424bc4b7ec9ae12c6ce2" 473 | 474 | [[package]] 475 | name = "ryu" 476 | version = "1.0.4" 477 | source = "registry+https://github.com/rust-lang/crates.io-index" 478 | checksum = "ed3d612bc64430efeb3f7ee6ef26d590dce0c43249217bddc62112540c7941e1" 479 | 480 | [[package]] 481 | name = "scopeguard" 482 | version = "1.1.0" 483 | source = "registry+https://github.com/rust-lang/crates.io-index" 484 | checksum = "d29ab0c6d3fc0ee92fe66e2d99f700eab17a8d57d1c1d3b748380fb20baa78cd" 485 | 486 | [[package]] 487 | name = "serde" 488 | version = "1.0.106" 489 | source = "registry+https://github.com/rust-lang/crates.io-index" 490 | checksum = "36df6ac6412072f67cf767ebbde4133a5b2e88e76dc6187fa7104cd16f783399" 491 | dependencies = [ 492 | "serde_derive", 493 | ] 494 | 495 | [[package]] 496 | name = "serde_derive" 497 | version = "1.0.106" 498 | source = "registry+https://github.com/rust-lang/crates.io-index" 499 | checksum = "9e549e3abf4fb8621bd1609f11dfc9f5e50320802273b12f3811a67e6716ea6c" 500 | dependencies = [ 501 | "proc-macro2", 502 | "quote", 503 | "syn", 504 | ] 505 | 506 | [[package]] 507 | name = "serde_json" 508 | version = "1.0.51" 509 | source = "registry+https://github.com/rust-lang/crates.io-index" 510 | checksum = "da07b57ee2623368351e9a0488bb0b261322a15a6e0ae53e243cbdc0f4208da9" 511 | dependencies = [ 512 | "itoa", 513 | "ryu", 514 | "serde", 515 | ] 516 | 517 | [[package]] 518 | name = "shlex" 519 | version = "0.1.1" 520 | source = "registry+https://github.com/rust-lang/crates.io-index" 521 | checksum = "7fdf1b9db47230893d76faad238fd6097fd6d6a9245cd7a4d90dbd639536bbd2" 522 | 523 | [[package]] 524 | name = "smallvec" 525 | version = "1.8.0" 526 | source = "registry+https://github.com/rust-lang/crates.io-index" 527 | checksum = "f2dd574626839106c320a323308629dcb1acfc96e32a8cba364ddc61ac23ee83" 528 | 529 | [[package]] 530 | name = "strsim" 531 | version = "0.8.0" 532 | source = "registry+https://github.com/rust-lang/crates.io-index" 533 | checksum = "8ea5119cdb4c55b55d432abb513a0429384878c15dde60cc77b1c99de1a95a6a" 534 | 535 | [[package]] 536 | name = "syn" 537 | version = "1.0.18" 538 | source = "registry+https://github.com/rust-lang/crates.io-index" 539 | checksum = "410a7488c0a728c7ceb4ad59b9567eb4053d02e8cc7f5c0e0eeeb39518369213" 540 | dependencies = [ 541 | "proc-macro2", 542 | "quote", 543 | "unicode-xid", 544 | ] 545 | 546 | [[package]] 547 | name = "termcolor" 548 | version = "1.1.0" 549 | source = "registry+https://github.com/rust-lang/crates.io-index" 550 | checksum = "bb6bfa289a4d7c5766392812c0a1f4c1ba45afa1ad47803c11e1f407d846d75f" 551 | dependencies = [ 552 | "winapi-util", 553 | ] 554 | 555 | [[package]] 556 | name = "textwrap" 557 | version = "0.11.0" 558 | source = "registry+https://github.com/rust-lang/crates.io-index" 559 | checksum = "d326610f408c7a4eb6f51c37c330e496b08506c9457c9d34287ecc38809fb060" 560 | dependencies = [ 561 | "unicode-width", 562 | ] 563 | 564 | [[package]] 565 | name = "thread_local" 566 | version = "1.1.4" 567 | source = "registry+https://github.com/rust-lang/crates.io-index" 568 | checksum = "5516c27b78311c50bf42c071425c560ac799b11c30b31f87e3081965fe5e0180" 569 | dependencies = [ 570 | "once_cell", 571 | ] 572 | 573 | [[package]] 574 | name = "unicode-width" 575 | version = "0.1.7" 576 | source = "registry+https://github.com/rust-lang/crates.io-index" 577 | checksum = "caaa9d531767d1ff2150b9332433f32a24622147e5ebb1f26409d5da67afd479" 578 | 579 | [[package]] 580 | name = "unicode-xid" 581 | version = "0.2.0" 582 | source = "registry+https://github.com/rust-lang/crates.io-index" 583 | checksum = "826e7639553986605ec5979c7dd957c7895e93eabed50ab2ffa7f6128a75097c" 584 | 585 | [[package]] 586 | name = "unindent" 587 | version = "0.1.5" 588 | source = "registry+https://github.com/rust-lang/crates.io-index" 589 | checksum = "63f18aa3b0e35fed5a0048f029558b1518095ffe2a0a31fb87c93dece93a4993" 590 | 591 | [[package]] 592 | name = "vec_map" 593 | version = "0.8.1" 594 | source = "registry+https://github.com/rust-lang/crates.io-index" 595 | checksum = "05c78687fb1a80548ae3250346c3db86a80a7cdd77bda190189f2d0a0987c81a" 596 | 597 | [[package]] 598 | name = "version_check" 599 | version = "0.9.1" 600 | source = "registry+https://github.com/rust-lang/crates.io-index" 601 | checksum = "078775d0255232fb988e6fccf26ddc9d1ac274299aaedcedce21c6f72cc533ce" 602 | 603 | [[package]] 604 | name = "which" 605 | version = "3.1.1" 606 | source = "registry+https://github.com/rust-lang/crates.io-index" 607 | checksum = "d011071ae14a2f6671d0b74080ae0cd8ebf3a6f8c9589a2cd45f23126fe29724" 608 | dependencies = [ 609 | "libc", 610 | ] 611 | 612 | [[package]] 613 | name = "winapi" 614 | version = "0.3.8" 615 | source = "registry+https://github.com/rust-lang/crates.io-index" 616 | checksum = "8093091eeb260906a183e6ae1abdba2ef5ef2257a21801128899c3fc699229c6" 617 | dependencies = [ 618 | "winapi-i686-pc-windows-gnu", 619 | "winapi-x86_64-pc-windows-gnu", 620 | ] 621 | 622 | [[package]] 623 | name = "winapi-i686-pc-windows-gnu" 624 | version = "0.4.0" 625 | source = "registry+https://github.com/rust-lang/crates.io-index" 626 | checksum = "ac3b87c63620426dd9b991e5ce0329eff545bccbbb34f3be09ff6fb6ab51b7b6" 627 | 628 | [[package]] 629 | name = "winapi-util" 630 | version = "0.1.5" 631 | source = "registry+https://github.com/rust-lang/crates.io-index" 632 | checksum = "70ec6ce85bb158151cae5e5c87f95a8e97d2c0c4b001223f33a334e3ce5de178" 633 | dependencies = [ 634 | "winapi", 635 | ] 636 | 637 | [[package]] 638 | name = "winapi-x86_64-pc-windows-gnu" 639 | version = "0.4.0" 640 | source = "registry+https://github.com/rust-lang/crates.io-index" 641 | checksum = "712e227841d057c1ee1cd2fb22fa7e5a5461ae8e48fa2ca79ec42cfc1931183f" 642 | -------------------------------------------------------------------------------- /Cargo.toml: -------------------------------------------------------------------------------- 1 | [package] 2 | name = "darknetpy" 3 | version = "0.0.0" 4 | build = "build.rs" 5 | 6 | [dependencies.pyo3] 7 | version = "0.9.2" 8 | features = ["extension-module"] 9 | 10 | [build-dependencies] 11 | bindgen = "0.53.2" 12 | 13 | [lib] 14 | name = "darknetpy" 15 | crate-type = ["cdylib"] 16 | -------------------------------------------------------------------------------- /LICENSE.txt: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2020 Daniel Gatis 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /MANIFEST.in: -------------------------------------------------------------------------------- 1 | include README.rst 2 | include pyproject.toml 3 | include Cargo.* 4 | include build.rs 5 | 6 | recursive-include src * 7 | recursive-include darknetpy * 8 | 9 | global-exclude __pycache__ 10 | global-exclude *.py[co] 11 | -------------------------------------------------------------------------------- /README.rst: -------------------------------------------------------------------------------- 1 | ========= 2 | Darknetpy 3 | ========= 4 | 5 | |Downloads| |DownloadsMonth| |DownloadsWeek| 6 | 7 | .. |Downloads| image:: https://pepy.tech/badge/darknetpy 8 | :target: https://pepy.tech/project/darknetpy 9 | 10 | .. |DownloadsMonth| image:: https://pepy.tech/badge/darknetpy/month 11 | :target: https://pepy.tech/project/darknetpy/month 12 | 13 | .. |DownloadsWeek| image:: https://pepy.tech/badge/darknetpy/week 14 | :target: https://pepy.tech/project/darknetpy/week 15 | 16 | Darknetpy is a simple binding for darknet's yolo (v4) detector. 17 | 18 | .. image:: https://raw.githubusercontent.com/danielgatis/darknetpy/master/example/example.png 19 | 20 | Installation 21 | ============ 22 | 23 | Install it from pypi 24 | 25 | :: 26 | 27 | curl https://sh.rustup.rs -sSf | sh 28 | 29 | :: 30 | 31 | rustup default nightly 32 | 33 | :: 34 | 35 | pip install darknetpy 36 | 37 | Install a pre-built binary 38 | 39 | :: 40 | 41 | pip install https://github.com/danielgatis/darknetpy/raw/master/dist/darknetpy-4.2-cp37-cp37m-linux_x86_64.whl 42 | 43 | Advanced options (only for pypi installation) 44 | --------------------------------------------- 45 | :: 46 | 47 | GPU=1 pip install darknetpy 48 | 49 | to build with CUDA to accelerate by using GPU (CUDA should be in /use/local/cuda). 50 | 51 | :: 52 | 53 | CUDNN=1 pip install darknetpy 54 | 55 | to build with cuDNN to accelerate training by using GPU (cuDNN should be in /usr/local/cudnn). 56 | 57 | :: 58 | 59 | OPENCV=1 pip install darknetpy 60 | 61 | to build with OpenCV. 62 | 63 | :: 64 | 65 | OPENMP=1 pip install darknetpy 66 | 67 | to build with OpenMP support to accelerate Yolo by using multi-core CPU. 68 | 69 | Usage 70 | ===== 71 | 72 | In example.py:: 73 | 74 | from darknetpy.detector import Detector 75 | 76 | detector = Detector('/darknet/cfg/coco.data', 77 | '/darknet/cfg/yolo.cfg', 78 | '/darknet/yolo.weights') 79 | 80 | results = detector.detect('/darknet/data/dog.jpg') 81 | 82 | print(results) 83 | 84 | Runing:: 85 | 86 | python example.py 87 | 88 | 89 | Result:: 90 | 91 | [{'right': 194, 'bottom': 353, 'top': 264, 'class': 'dog', 'prob': 0.8198755383491516, 'left': 71}] 92 | 93 | Build 94 | ===== 95 | 96 | On the project root directory 97 | 98 | :: 99 | 100 | docker run --rm -v `pwd`:/io quay.io/pypa/manylinux2010_x86_64 /io/build-wheels.sh 101 | 102 | Buy me a coffee 103 | =============== 104 | 105 | Liked some of my work? Buy me a coffee (or more likely a beer) 106 | 107 | |BuyMeACoffee| 108 | 109 | .. |BuyMeACoffee| image:: https://bmc-cdn.nyc3.digitaloceanspaces.com/BMC-button-images/custom_images/orange_img.png 110 | :target: https://www.buymeacoffee.com/danielgatis 111 | -------------------------------------------------------------------------------- /build-wheels.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | set -ex 3 | 4 | yum -y install llvm-devel clang 5 | 6 | curl https://sh.rustup.rs -sSf | sh -s -- --default-toolchain nightly -y 7 | export PATH="$HOME/.cargo/bin:$PATH" 8 | 9 | cd /io 10 | 11 | for PYBIN in /opt/python/{cp35-cp35m,cp36-cp36m,cp37-cp37m}/bin; do 12 | export PYTHON_SYS_EXECUTABLE="$PYBIN/python" 13 | 14 | "${PYBIN}/pip" install -U pip setuptools wheel setuptools-rust auditwheel 15 | "${PYBIN}/python" setup.py bdist_wheel 16 | done 17 | 18 | for whl in dist/*.whl; do 19 | auditwheel repair "$whl" -w dist/ 20 | done 21 | -------------------------------------------------------------------------------- /build.rs: -------------------------------------------------------------------------------- 1 | extern crate bindgen; 2 | 3 | use std::env; 4 | use std::path::PathBuf; 5 | 6 | fn main() { 7 | println!( 8 | "cargo:rustc-link-search=native={}", 9 | env::var("DARKNET_ROOT").unwrap() 10 | ); 11 | println!("cargo:rustc-link-lib=static=darknet"); 12 | 13 | let bindings = bindgen::Builder::default() 14 | .header(env::var("DARKNET_ROOT").unwrap() + "/include/darknet.h") 15 | .generate() 16 | .expect("Unable to generate bindings"); 17 | 18 | let out_path = PathBuf::from(env::var("OUT_DIR").unwrap()); 19 | bindings 20 | .write_to_file(out_path.join("bindings.rs")) 21 | .expect("Couldn't write bindings!"); 22 | } 23 | -------------------------------------------------------------------------------- /darknetpy/__init__.py: -------------------------------------------------------------------------------- 1 | from .darknetpy import * 2 | -------------------------------------------------------------------------------- /darknetpy/detector/__init__.py: -------------------------------------------------------------------------------- 1 | from ..darknetpy import Detector 2 | -------------------------------------------------------------------------------- /dist/darknetpy-4.0-cp27-cp27m-linux_x86_64.whl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/danielgatis/darknetpy/1485a7279841716f699d88ce1576084faba902d6/dist/darknetpy-4.0-cp27-cp27m-linux_x86_64.whl -------------------------------------------------------------------------------- /dist/darknetpy-4.0-cp27-cp27m-manylinux1_x86_64.whl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/danielgatis/darknetpy/1485a7279841716f699d88ce1576084faba902d6/dist/darknetpy-4.0-cp27-cp27m-manylinux1_x86_64.whl -------------------------------------------------------------------------------- /dist/darknetpy-4.0-cp27-cp27mu-linux_x86_64.whl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/danielgatis/darknetpy/1485a7279841716f699d88ce1576084faba902d6/dist/darknetpy-4.0-cp27-cp27mu-linux_x86_64.whl -------------------------------------------------------------------------------- /dist/darknetpy-4.0-cp27-cp27mu-manylinux1_x86_64.whl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/danielgatis/darknetpy/1485a7279841716f699d88ce1576084faba902d6/dist/darknetpy-4.0-cp27-cp27mu-manylinux1_x86_64.whl -------------------------------------------------------------------------------- /dist/darknetpy-4.0-cp35-cp35m-linux_x86_64.whl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/danielgatis/darknetpy/1485a7279841716f699d88ce1576084faba902d6/dist/darknetpy-4.0-cp35-cp35m-linux_x86_64.whl -------------------------------------------------------------------------------- /dist/darknetpy-4.0-cp35-cp35m-manylinux1_x86_64.whl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/danielgatis/darknetpy/1485a7279841716f699d88ce1576084faba902d6/dist/darknetpy-4.0-cp35-cp35m-manylinux1_x86_64.whl -------------------------------------------------------------------------------- /dist/darknetpy-4.0-cp36-cp36m-linux_x86_64.whl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/danielgatis/darknetpy/1485a7279841716f699d88ce1576084faba902d6/dist/darknetpy-4.0-cp36-cp36m-linux_x86_64.whl -------------------------------------------------------------------------------- /dist/darknetpy-4.0-cp36-cp36m-manylinux1_x86_64.whl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/danielgatis/darknetpy/1485a7279841716f699d88ce1576084faba902d6/dist/darknetpy-4.0-cp36-cp36m-manylinux1_x86_64.whl -------------------------------------------------------------------------------- /dist/darknetpy-4.0-cp37-cp37m-linux_x86_64.whl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/danielgatis/darknetpy/1485a7279841716f699d88ce1576084faba902d6/dist/darknetpy-4.0-cp37-cp37m-linux_x86_64.whl -------------------------------------------------------------------------------- /dist/darknetpy-4.0-cp37-cp37m-manylinux1_x86_64.whl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/danielgatis/darknetpy/1485a7279841716f699d88ce1576084faba902d6/dist/darknetpy-4.0-cp37-cp37m-manylinux1_x86_64.whl -------------------------------------------------------------------------------- /dist/darknetpy-4.1-cp35-cp35m-linux_x86_64.whl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/danielgatis/darknetpy/1485a7279841716f699d88ce1576084faba902d6/dist/darknetpy-4.1-cp35-cp35m-linux_x86_64.whl -------------------------------------------------------------------------------- /dist/darknetpy-4.1-cp36-cp36m-linux_x86_64.whl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/danielgatis/darknetpy/1485a7279841716f699d88ce1576084faba902d6/dist/darknetpy-4.1-cp36-cp36m-linux_x86_64.whl -------------------------------------------------------------------------------- /dist/darknetpy-4.1-cp37-cp37m-linux_x86_64.whl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/danielgatis/darknetpy/1485a7279841716f699d88ce1576084faba902d6/dist/darknetpy-4.1-cp37-cp37m-linux_x86_64.whl -------------------------------------------------------------------------------- /dist/darknetpy-4.2-cp35-cp35m-linux_x86_64.whl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/danielgatis/darknetpy/1485a7279841716f699d88ce1576084faba902d6/dist/darknetpy-4.2-cp35-cp35m-linux_x86_64.whl -------------------------------------------------------------------------------- /dist/darknetpy-4.2-cp35-cp35m-manylinux2010_x86_64.whl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/danielgatis/darknetpy/1485a7279841716f699d88ce1576084faba902d6/dist/darknetpy-4.2-cp35-cp35m-manylinux2010_x86_64.whl -------------------------------------------------------------------------------- /dist/darknetpy-4.2-cp36-cp36m-linux_x86_64.whl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/danielgatis/darknetpy/1485a7279841716f699d88ce1576084faba902d6/dist/darknetpy-4.2-cp36-cp36m-linux_x86_64.whl -------------------------------------------------------------------------------- /dist/darknetpy-4.2-cp36-cp36m-manylinux2010_x86_64.whl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/danielgatis/darknetpy/1485a7279841716f699d88ce1576084faba902d6/dist/darknetpy-4.2-cp36-cp36m-manylinux2010_x86_64.whl -------------------------------------------------------------------------------- /dist/darknetpy-4.2-cp37-cp37m-linux_x86_64.whl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/danielgatis/darknetpy/1485a7279841716f699d88ce1576084faba902d6/dist/darknetpy-4.2-cp37-cp37m-linux_x86_64.whl -------------------------------------------------------------------------------- /dist/darknetpy-4.2-cp37-cp37m-manylinux2010_x86_64.whl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/danielgatis/darknetpy/1485a7279841716f699d88ce1576084faba902d6/dist/darknetpy-4.2-cp37-cp37m-manylinux2010_x86_64.whl -------------------------------------------------------------------------------- /example/Dog.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "from matplotlib import image, patches, pyplot as plt\n", 10 | "from darknetpy.detector import Detector" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": 2, 16 | "metadata": {}, 17 | "outputs": [], 18 | "source": [ 19 | "detector = Detector(\n", 20 | " '/Users/daniel/Workspace/darknet/cfg/coco.data', \n", 21 | " '/Users/daniel/Workspace/darknet/cfg/yolov3.cfg', \n", 22 | " '/Users/daniel/yolov3.weights'\n", 23 | ")" 24 | ] 25 | }, 26 | { 27 | "cell_type": "code", 28 | "execution_count": 3, 29 | "metadata": {}, 30 | "outputs": [], 31 | "source": [ 32 | "boxes = detector.detect('/Users/daniel/Workspace/darknet/data/dog.jpg')" 33 | ] 34 | }, 35 | { 36 | "cell_type": "code", 37 | "execution_count": 4, 38 | "metadata": {}, 39 | "outputs": [ 40 | { 41 | "data": { 42 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAU0AAAD8CAYAAADzEfagAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvGeQJOd5oPmkq6ws76urve+Znp4ej5mBNwOQAEiQAilCEkmREinuiiK1y4hV7N6utDfYuwMoLcU7iSuRInVaiZJIESJo4AgMPMZivOnp6Zn2vqu7vK+092MIaDfuVqIU4mkV0U9ExVdZVV9lRlTWE+/7fm+m4DgOm2yyySab/GSI/9QHsMkmm2zyz4lNaW6yySab/D3YlOYmm2yyyd+DTWlusskmm/w92JTmJptsssnfg01pbrLJJpv8PfipSFMQhPcKgnBdEIQpQRD+3U9jH5tssskm/xQI/9h9moIgSMAN4H5gCTgD/LzjOOP/qDvaZJNNNvkn4KcRad4CTDmOM+M4jg78FfCBn8J+Ntlkk03+f0f+KXxnG7D432wvAfv/tgmKIjtut4oD8N8EvoJwc3Teee4AAji2gyhKhCMeBMnBsk1kUcIwLFweBQsRHBFMg0bdQHW7cEsuqo0GgmhjCzambmE3bSS3G02RcRAwxSaCDo4AAhKCIFGoF1BsGc3vQkYi7IviYGNbBlWjiuJSqFXrKC6VhqFj6AaKKIMt4AuoyLKbZkMH0wABTBGQHHTbxo2MIxtYlknAGwbJRK9YVO0SgiUQ9CYQXQKOY2FjUy9V0TxedL2G5vJjCk1sQ8SwdEwLXJKC0awjyCrIOo4D1bpBQPFSLJSwsPCrHmQUJI+IZZi4NQXRUkA2adg6jg2oJjYWpuEgODI2NqVciWQ8hYGOpVs4uo3itpBkP6rqAsHCdGwa1QaK4yFXXCcY9GPqDWxLJZlI4gigG2VERUQW3eTKGXyaj6peRZElNMXPWnoNB7AMC0WScBCwHAdBELFNE4CAL0C1VEFVFWpWA0EQEAUHWZaxbXBw4J1REBAEAeHH544gOuiGhSCIiLKMbRgEvAEQTfLFKqoq0rQaeNwaoiShuSTc7iCioyDjom7lKOd0PCENUTIRBBcaYepGjppTI+AKYTl5RAHyWYemXgdbxHYcBAQURbl5/jgOhmki/vj4REHAEUQMw0CWJGRRRhJFGs0GggSCKCILLmzHwjCbWJaD4EgokoCDiCLLWDRxKxq1Zg1JUohGfOSyJQzDpKe9m2azScWuYBlNQoEEkmjTrBjooolkWXj8Xpr1EobgxrYAwaaYL4MjIksiIhAI+XFMm2KtQrNeJ9XWQaNeo1wt0KibBAMhyqUKDjaiIGDbDqIgIogClm0iONKP/9xg2RYuVaJRN4Gbv5/ggGla2Ba4PBKiIODWPOTTeUSXiCAISIpINBIml8lhWoBj4wl4ELGxmhap7m5yKyvIqotiqYTjCNiOhSzLiLJMV8cQgm3TbGRwFAdsi/RMgXytkXEcJ/53Ce6nIc2fCEEQPgN8BkBVXezctQ1BELBt+533EcWbgbBt20jyzZPLcRxcLheW6bD7nlZCCYs9ozu4NHcZSxHoHehnMV8jpkdZyFwhJviYzzRx520C7XFqhRIkG5g1ncuv5kj6Igzf3YFowKw9w10dIxhtGXx2F68duUwmXWXu/CTvf+xW7tt9B29973Vuv2cXY+uXEeJRMDUe2LKb//3Lv0fXjj4aVgO/GOXq5QVu2zXM0WNH+KVf+HXmVydJ9uSZXFSI7ehlanqaD2x5mLeNP+TiqXFape1UqfDQ/g/yV6//kPt6B3C33kLr1gYLhTRmHjp6wgjVNDXNIGLtJLu+zOXFC9TzJqrYQkuwk4E2hemlNH/2/Av0JQZRfDEmjhyhZ+ROQp0m51+c4gMfuJdM/SqCFKQlOMjyhYu0jbbyxpVTbL/1AGUxy9LiDMlwB6F4G9Njs0y9eo3xi4v8x6//SxxbYuLaaUS9gRrdyp73iRx9Pk86v8yWllF+5qFhxt/2snr5GayUwbaDH0X1LuKztmGUi1y8cZ1grJXM0ipbRjuxLItjV19i7/A2XjpykXrVppHLE4pFsBHRbXAEi3KmQrm2gTun0R0cxt3SZK6SxhcKIIqgyDJ6A2zTpqnbuOMuDMdGxEapidRth6ZeQpJDuCMyhiliGQ3uObCbF1//Ps1mJ63dbnQnj18L86EHR6k1I4y2HQDFIdgcYU74E8QbKssuC9tnMRz4OSLqECt8g8nZHKNOiBPj12nZtsirz/spFA3q9joBO4rsVVhZXyAcDrCW3aBqWmiSTMjjwRfwU9cdllaWaQlFEZ0GlWIDt18FxUF1B4kFW3j2xR/wwUceZn5ujZGBfQRCBawsrC2ZLFnj5K0CbcIgC8UsD9x1gIjqo5wt8vN3HOTY9RPIw1tJ2q1Mrk9xeeICH3x4H6/+YIp7HhimlEnjV+Z46jUX105fwsYimmjnFz78Wb76F/+Fw//q18jWZsleqnFqepysb469d3+AiKDxnb/+UyprNrmNMilXCI8m0dPXS249R6FYxbQtvvAbv8bZ4xd58803ERUZRZJR/S4mLi/hCaj4AxpeVaFZdsiuN+nYGgVTx7R0jKJCyWgQDPgJJCVWl0tE24PkajUkFHYfGGaL22LH0B56huL8wQsnefPMKfq0LlIdUX75Y4cQzFVmlnWIHCAqSXiDs8Tb3cw9c4MffGueZ986Of8TueunUNM8CBx2HOc9P97+XwAcx3nyfzTH7/c6u3aPIAgClmW9+/o70oSbEYIsy5imiaq4sAWR4f0pgpE6SquJ1IyyNJ3l1v6duOMC13Nr6NY6PlcYtymh5WW0thSFqSZm1OLy2TcY2b6bqpHjjVPXaBYkPKJN74djaEE3ct7P4sksmekMW3e0cfutI4S7Oxg/fpVsfp299x9kZX2DpdlrKFKQgMfL2twsfr8Gpo+PPPYx3nr5CNFOm40m7PtgkfFLGqauogSjaLJOr7KH//KdPyAYCZMrXMT2COj1PJ+87VPI+9f55hd/SCDVwa9/8jd47ZUfcUfqURbq0xhV2NeyB62zyvcv/Rnx5Ainjh1n/533UkmXSa9loNnO1NmXqdVAL4U59OH9pKxJZnIG/q0NGlaKQrbAkLaXr37pC+x+6BCKy6YcLyM6IkpVJTedwxeAbXsPcvYHlygu6eRVk/s+eohwQGHp8gmm6ku4fCHee9tjXDx6iunMBqrHTzCQw2cE8UVk+uJ3ECLBceNZ9u3eQyowSq58lalrU1jlIYa7u3jq6DdwuVxUaw08mkY1v4ooe8kXc8TDPawVl1AlD25dojZTIpIIU5AKLDtFEloQWRVRJIFyroRieUAV8cc1zFoFwa1iWS7cLg9S06FmV1FUN6pbJpNLEwuLlPQ6xaJArr7Avh2jdPX0cG3sCItFk9v6utizr4cHOr/BXOUkZkniz575Pf71L/4nEsrtTJZfgHoCWRaZLL7BgLsL2Vfi9RNvU9cDnHrzFI7UoOHoiC6ZRqNBuVrBHwkR0Lw4zSaSIjK/nEaSRDpjcdweB0l0I0gO9ZpOvQYzizcQJT+yKJIItdLd76WUU0i0Cty1/xA/fPoE2alz/PYffYljL53kr954EeQ6//ILj3IwsosffO8Znjl7leGRA1iFaRaX5vn8Z/4N0obCteQUYslD/Mo6b2Vm+MXf+A0euO1evviV3+SPv/KX/OKnPo7XCGHINc5OXqK9M8o2axe//We/R6ZaA81HwiOjaAoPPXwfZ94+ydr6Oh7Vx+WxCRAdWltb0Nxuov4YK+llSvkKtaqJbYigNBFViVgsQC69gV5TiLb58bhdYJmkcwaS5bC+vM6+e0dpNvOkC2UKVzPY4RT+3S18+3c/j3vZy9uTY/zwy1+hFgixrSfCvvtvpXPXDvzuJEbDQvWLuDw2V8bPs+oNcflXv8ZE1cfrRy+ccxxn79/lOOnw4cP/cEP+f/D444+vAYcff/zxZx5//PEa8PvAE4cPH974H8154sknDqdSCYQf5+OiKCJJ0rsCVRQFARFRlBAFCdMyMHQT2agzfEcva0WB/PUsa+trnHz1KKnWNhJaDbUzjFHMU6/oNJsGll/ECdZ46qkTPPTAA/T3DXLiygxt3iA/v/vDXFgeZ+7oIp5ciFe/d5zMRpFENMGuA31U6xVeO34Ut+Qm1dHKiSvHuHZ2kUbJwq0YGBKsb1SJtW1BC/mZXrjAenYBy/HiclWx5DYMJ0ADmdYhPzPj0xx/8QrdO0Q8Qgy/GMcsVmmJHaRarjF/2cOe/ntpb0T43jefY/Fynq5IhJ6+XnZ138PX3/o/+INvv0p2yWRf33Yo3MClyBQyOjgWfpeL5dklMtkNfvajn2fGeYGNcJ5GbZWpeYFdQj+NRpBbe/dwy44PMrUyjlR10dCreI0BJl6bxckIFKo6q0aGhlxH8QaQfA59u6N09cXoGg6zUG7i0nQWpuvcuJxhz4G92O4MQW0LjXqe+Y0ig9sO8kcv/Qd82RCf6P/3zCxeoprxkl2tkEhGiHQHWFxYJFffoN7U0fUmjiIgbOgIooLdqCE6Itg1glICn+0mmIxRFRwiSjuZ8gaRZABHsBBkEcWnIigiVEDzelFsFyElwMLsdbAsbFVDMARMocG+jk5ExYspOITDETRVxaP6mZuapGNrkrinh5b2OJps0xG4G0G2cdQGp288RUOfJNG5guUxWKwcpcu3B1/ARcinkRVcDHQ8wJaOIVr6Vgl4IqRXM+i6jSTJ6HWdmE/Dsizy1SKOaWEjEA4HkcUGihJE07y4VAVV0Tiw93ZcLgO94WKgtxPBlMjmMigeg+VcgSOvfZutO/p5zwM7MAt5Xhm/Rjmd4Zc+8UskIzt57uWj6GaYbD7D1cmjfOJT/w4pUcDXFsDxhPja17/M8OAWhJEg7SmVM0dnqYoFQr4ImfkVrLiLQLiFr33ze6wfXQYxwucefwJ3XCTikfCUqxg4NOoVLlw4Ta1ZZ3lpGQeR9Eqawf4eiqUS+bUq18en0RsG5XIVyzLRfAKSaCKgYOkO1apBs9mg3sgjC27Wazl8qoJuNJElFyvLaQKeMHqlTiWrYdd1goNt7BhO8qOX/i8IpvnwY6P49+7DaW9jtbWLwZ5bcRUWyFUX+PazL3D8mWe5trBGINbNuafOYngk5ufWVw8fPvz1v8tx/+jSPHz4sP34449PAn8JfB74C8dxnv7b5jzx5BOHW1ri76bf7zzeiTQF4W9Sc0EQkGUJ1aUiWyaxuMztw6OEhABeP9xz6E4unJ9A87fSGR4hGe9kZfIq1WqdS+OXcXkkjj1/hYDmxdOiUEovI1puvEMK56aXqc5bZPIVdAxSLREGR/pobY9w+foYwVg7pXKdeEeYtaU0qzcyFPM5Er1xms0GHf52Og/ESBfLGIKEKxJF8gaZvnSN7s5WNClJvKvGwrJFbWGKRLCf+I4QuVyDjdUy7kiT7Vt2MdjSx/zECiOeBKbhY26qSoe3j/PLb1HOqVxfHydkb0c08jz4yFauXrtKve6nkapi+gSsUJ2B0TDp0w26/YPMWpcZJIi3aNFm7OSbX3yd2x7soS0wit1cId/IsZHeIL/RpFLVEY0u1uczxGMRPANNqhQJxeNoYRNRdWEKTWpsMJ2dZHUjS6uSopa22LO3l9X8MpahIQhFao0sbp+PaDzGoZFf5JXLT3PL+waRfTolz3nm5ic5uO9uCuIY7akupuauYhsKoUCI1dUsYtUhGutkbXUJr9uH5DgsLa7R6k3iVoNcX7jO3cP3UGIVy2kiiAK1Wh1RERFFgZGerSxkMigGdPpjbFR0PvPZT9OUCowORxjZ0kbEpXBAHGCiXsFplpHRWM3kCHkVRFNjZ/9eIkmFwnqdvo4BDBHsioG/N0/O1NnwjDMzc4W+4M+SDq1Tqc9QddvEnBimqVJ0Zmjp2MNQh4eu9g7OXbqG261RrVQIeF3olknT1unq6iSTLSBJIqal05Jqoz3VgSK5WF5c5sqVqziOgay46O1rY8e2QYIBL9lCGj2vMTJ4kOn8BRqiTii6hbHJk9RUB2/SIBoKMnN9iVyzSLVS4MH77+eZZ/+CucIi/dv3IM5UuX5jgmhoCyeOP0/C08FLl19C0mUaGQenLDM+eZlLZ84yNjaOUrNJF+YYHuhk58AOCo0qVUVgsK8LRJtwOIQoS4QDQdZW0vT2dRKO+PH7NKYmZgkEQvQNdFEsFwiF3OCySMTiZHN5SpU8hinjOBbxWBTVFaTeaCA7TVTNjeIFr1tBRcYT9FBbsamZZTwBL28ffZ61aYNPf/7TtDa7eO1bz3H6tbeZWLrKiYlLDG8fJOH2szS7RKaWwzYdJt4+RmbBR9HWWV/O/kTS/KnUNB3HeQF44Sf9vMDfpOKKomCa5ruCfKe2KYri39Q7HTAsk4JRJxj1cX5yDFUxaY+50WNT9N1u0ZFyWLp4kVAgQDjcxsD92+HMy7R3dPI7X97LxOI0YyemiIT9hFIBStcKPP3EX/Ohj9xHU9BRqjb7duwiOhQgt5Eh2dVKZaWMUFK4+OYYy8UCne0d4DcIx1IImk1caWf1+jK1uoE3JGAXBUou8MVU3B4v3e13sKQfYZsDL69GUCMOhecdkrKXJgU8vu2cffUE5uBWhjo6mckWOHn6RySD3VxeP4I608Ij997Fq2vHiexa5uFDu6iaVdYulijWiriPBZm6dJrte/p55XqGjFviE5+6hyM/GiNycoFg6wHmEiIjt23jrelrfHzXbVy8Ok1WK3P59AUOPng3pldh9+4B3gousLqRoT4ZITrkwSVLbFRytKX6yKaz6FUNV9KPPWYypizxiZ//LX5w/Gs4dZNYwEulmGdjo04o6HDh2nO8XvgWO3cN87X/+n/ib3HTFx/h4N33cGP6LCfOThFIiixNVOjoasWrhHnPHZ1kynkqS00UNcr1iXHu2n+I1QsXCPd7WbeK9PX28sby93Ech9pqgWRbK26XF9uxwSVwY/46rWqMaq3MxNoMH/psH5XASUqVKTo6E+RnEyxtzPNy9Szeym7s2gpN0UWh0aAnHsEx1klss3nzrbNEXAHyTFARapSUDa5cn2D7QIo3vjfHr7//T1mr6/iKy3z/u6/z6EcfZY5JNNGmzfcARecycijK9t1teL77PJYM4WQQQ9BRZIWw28fC0gKt7W3UqzUcvDz06B388C9fwmy40ZsWHo+bvr5ufHGRvv4+Zo4FGNgaxaW04j9YZn56CmFdY8vgHkRDQtA9tAZNEq4wPd19zLXMcezUGYqFHK+/fYItPcPMzC/z1O9/F0Ow6RrYz9burSzMT+JoCTzrKkv1HAN7hujqGWT+2BK5tRJt7Ul29R0g0tqCoBb44fe/RyQQxK1JOB6T3EqO6kYD2blZKunu7qe9P04+v4ptGzz28w8zPT/HemmRhz94DzOzN7g+s0ixVsIXcdEV86M3bQTTIRKKsDC/SnPWZh2LRKtM/+44xYU0ExOLROMpbNUkFvBjFCvc+oH7CCwWOLkYYatg0//AowgX3mKhWWRbUuOl575E0nMASUqhV1ZZN5b5lUce4XcvvIqmu39iv/2jR5r/EJ588snDyZYEoijgCGA7zjsL5cB/vygkSRK2ICDLArLkQnTZuNwOgsukmhBQBAvR5UOqyBDSqNeK5Op5VhvLuL1e6rZOrVRl/OwkyB5SsS7i8TDT6Qo/876P8tjHfoEv/s4XSba0kJ5fRbR8tA0McfnVU4x0bKdSy/GZz/0y3/2j5/jcv/0UZ986wXsPPIizWGBHuBPN5+bgrp28deIYPneUhrNKIBFiZn2ZqbXLrM1fZ3yxjMvxUVmucOed21jJLtPIWyzOTkHTwShraJLFQnYBbyBJrViBksLv/s5/wtfuoX/HTiavXadlpI9LV39AoxJhJLmL7i1tLF9YJhVp4cG9HyKg+Xj5R2fxWP30St1849S3ef7EKUYe8qI2HMrZHBcrpygq67T3dHH61bf51P/6Pogsc/HqDOlCkYN7u3DEEm7BhdcKIGzA5SNXiGtDVLJ1lgppEi0pelqiXJo4QSFTRhQhIPrJbdSpZATcopumrhAOJ0kmklRLMudOXeLihctUzDqrc+uoXg/3vneYYiGPaeeZTl8ha9axtQb9gx0oITfVTB6/laAlFaelcxvX0mO0xiPIHplQPMr6WgZHMFEMh1yhieIS0U0ByeuiZumsZ5ZwZVsQ6iKas4VmvcJiNcdKdp1d2/sY6RkhkehibvEcq9VpbCFCbjZDqa5TNTNcX5qhmiuSaxpcODbB9qG7uWX3YySCbbgkB8sqkRxyY0s2AjWaVYm6M0VJz7C4OsVLZ75NpBkn11hFdntBslhdWkNTVCLxGJLtx+vz0qjn6Yr2UljMU6+USQQ6Gd21DVuNEteizGRf43Pv/32effW73P7gHi5Ovkhrt4eU1o3UVsdtB4klBbRECJ/mYW12lu98+yQ+VePQXfeQXcwjuzVymQrzixkCniCLyzOcGjtKLB5memqC5XyOeDCOaHvJF3K4FIh1RumKJlDDFpLHYXr8GqlIioHhQXRZQtcbqB43ikemoytMaiSJZqjMrS9Rd0CWRPp39SKrGpJkMj23gKBIeEJ+PCGFjvYOVL+GqTexFQckG29Io3+4jczlOrVynWZTQAuCV3ShV0Xq+jpOXuDX/+1v0e0zuXD0KGuLWW4fGaThzxPp7mbbLSOcOfYW9/a14C/v5tyVSyw2Vnjfww+yfCbN5EQWQ3BYXUz/06Tn/xCefPKJw6nWJOAgiDdVKQgCAn8TZb6DKIo4gCiAY0NfZ4T9D20h0RZkfHKWlkSKZKCLfKFEtlwgvTGHZInkmnlkVYM6CLpDW1uMYqmIKTpMp1eRXWX2b3kELRQEr86l0ydx3AK5UpGp8Xn+9S/9G94eO8L+/bfxh1/5E1p3j7Ducnjotr1EE2tE5spIYwVUu8xzC1fQkmFMK0shYzF6m4JUS6GLdeKuINVmmHA9RYc/zutXXmdlch21fQveQDu1RpawW6Kmi2QaFTqGk9w4O41Xldm5rZeGXaHpzuLU4hR5DenSXu48dCt6ssy3/uB5PvuLn+Pi2HFs/wytvRor5Swfe+wjrNcs1p0qvrhNxShQWa1j+iQsv41X8qDKNkEphLetyJkXFwl72vGLGvh0LFtHFpvkZ5rYFQezKeILxVjPpGlPtOLWZMbnL1IoZxgZ2s/achpVdlPKK0RDKbL5RT720cc48qNjTIwvsX/vrcxeXKQ9HCa35JCe36BnS4hT1y4wMNxLtlBDFtxIigxijdW5MrpTJb9UJaFGCHQpvHnxTWxbp62lm3wlg26VcIsuIlqUahEcwUR1q3RvidGV2o3obrA4n2P/nkMcPX2GK9evUDRFqmYNl9RAdcWQNINsep6iXEVTgxhmk/bYAFML41iWi5XlAtk1k5X1eUYHD+EL6zSkLPlqibK6Sq75Mk3BZm7mNHG/l7kbkOibA0lhZSGNX20nKIbIZJvcdfsD5FY30EU3+3ftZnJskfb2FHq9SSrZQlgL8dxTzxONhXjPfQ/RGtuNu9HGymKJRHcC1aUzMTvOuQtPIRoJsqU0u0a34tTbmZy+TM3O4NfiHHnmbS6cnmPf4BDJsEh3W4prl+dZbxZ53yPvZ8vWIZaWF9HNJqIEkqRQb9QJx2PIws21heXleeKtUTyJKE3HxudXWJpdxOfVuPO2uxmbvEIw6mV5ZZlStUqqsw1/NIST19F9AgHNg0/1YlR1lKCPTDYL6HgVPynTS9TfhdmoUmxmqWXrJBNtiIqDYTXxBjUsy03DbJBbyKM3dYZuGWB4R4KxN8cxhShlSeaVt5/lgr7KV77y2wzeOoqsyqQ3NpiYGmfx+iKPfO5XGfIP4hE6ef7UDxi5o4v29jYm355nYS6PIwr/vKT5xS8+ebglFQNAFEFwBHBEBOFmu5Esyzf7syQJx3HAcRBFAduy6fen6NsxQLInRKy7h2e/+TZr+RKaP8D07A0cdwNFUBjePcq1qxMEbZv2eC+6DZ1JP76wG12wKJcs7EadH77yClvvvYdXv/HXpNeLCEqDPbv2My+eRzJb0EIqH//Eh4j53Ay2tvCj499BlgVGCy5i0RjPJPMIbpl6o0FcjfPIx7czcTxPY0PFGzYoLDRImgNs7dtOzbPI1ratLGbz3Lb3Xkq2yYA7Qra8hrBNxF0W2LqrhS3dQ0yPr3HXLXch+Jv89u8+wcPveZAzxzIc+Nlu1tWzrCwu8b6+/0DQ30ZLKsXszCQ7RwcQPBmq6zu4OPnXjJ2ax90SJ5XsIj+/ht1tIEoW5bKNZsHIwN0cO3OePaFHef31E1jrJomhHvp2RlgpQ8XTwOMLsjiXpb9/K5VKmWjCR7K9lXQxTTQUxWk6rEwV2EiLhCIKPT1+Gg2TC2euYlpuwrEUN8Yuce8tt7F8YxJvJEHAZ7JeKyILMp3JDh6+5yFee+tN6lWTcDSK119GaIisnC+zfXiQqfo8gWSUZqVEoVCmrudxqXE0MXAz2lFF3G6VTKnI3n33sH2XwLmrE2SydcIpNzcm1+kbbWfnLVvwyl5sAQr6Cqoks3PgNpy6QzQ0xNpGnkahRmd3imLRxrZknKYfWYpSqa6yMKWzPHad+3b+Kgtrr/D0S0cJRP0YzQxtSS+ZjJv1TJr0RpbtwzvRxK1cPn2eew/ei0oAubYNW8zS7ktxYHQ77R1teGU3LlPn+IvX2LdzJyO33w6qxUZ1jg+/99O8dfYF7vxAC+VmmhsTl9g5NMJQ50783mH2DhyglG0yPj1G0TAZO7ZOo+4wumeYjUaJYxcv861nj2BoGtlShqpe5sqVCyA5qD4Ny3EIhSLML80jqjKm24074iMQD9LV28trb7yK4rLZs3MXowMjFI0SjXqDKlVqtRK+cATV40FWZJqFGoLbxY6OXSTc7WTSG6xU1hDqEmEtSMgdwrBLPPrR9zMysI3zY1cwRJuImkRyoK6XCAV9qKYXu6xiWHV27h9h/lqG3GqBjUadQ++/Da0F9DfniAXd7G/rYnxskWfPvMRTT/816fUFDh14hB9+58/54eunSQQ6OXLkTVazq8yuTXFZQlaDAAAgAElEQVTijfMs3iigSkFMy2R16Z+RNJ988onDrW0tSJKEIIAgiICA49jvyvKd+iaCjSjelKosK2g1h9s//kH+8Lf/gnLZZKWYJeYKYNccVtJp/KEYBb3MaiZHV7yD2qpMo2rRtCtUZJnl0iyd/RGiYQ9tyT6++6Nv4GRmqEXyhOwy/+JffR6j6BCNuajUFmm4mmRqJiu5RUZDAZyQF8flI+vKMecTSK9kqNsGlq0T6nChb7hQ20w8jsi1C4v4tFFyjevMzq4TjEY5c+08daHGzNQlmtkVkj0Roi3duOclKkKTc2c3iPtakGWL0R0t/N/f+jrxQBcXx8/T2hNn+cQUy1N1pHiJwsk8U7mLZGrX8LdZzJUmqVTK7O/6NdSmyp+/8G12H0riyCaNMkjhLIKksr1vC2LNR64yQ7aRR2sGuDoxzT0HH2X054I8+9QpDm7Zyez8PH5COGUv8dY46foKVU+O2eUFYmILBhZyPUpnNIElVzAsnUtni2zd0YNLC2PZNvlaFr/iJZ2fId8Q6Oz2Mj++TjKRIMMCF85f4JGfeR+Xzl4m4I8jyRa7tx3iua++RYcapWtvCiWl0ihV8fojyIEG3qCK26NTq+bBJ5MvNtlz6wjRNh/n3n4N2VQYm0gz0t3DybfO0x2NsNC4gbGqI1ouOpMRMpVFFK9O0jfA7FqFoaFWent7aIu2szBfwK2F0JuQiLZRL4tUiw5+n0RZ0FhvnubcmTxuyc/cTJO1RYUbN2Ty1VWuX12mmheZuD5OqKdEfSXA2tISxdw6siryqfc+wcWTRxBFD0VrhQsXxvDUE6S6PNx9zweQJIOYt4ftW/o5N3mNpjDG+kwFvRTEtG4QjrYR64hg2g2WxsDf6SW/pPLaseMcPHCAC2Nj6FadmflF/F4vg73tqLJJsqcDFBu3S0D1+tC8GrYgsryyyvzCHPc/cAivFsCyLdoSMd547nU+/IlH6dnaSl/3NpZmFujY24FtWuTqVVyyF7fmRhIlBMfG4/JQKtTpGxlhS7yD9MoMD73nHh7cdwg7Y1HN6sytZZlcnmB2foJEMkaL2Xbzggaxga1CvWqhBeIYtQK1QoPZ1SUS26LsOdDC3Pklxs4tMnV9jchvqfznP3mQ6MA25saWmMuUCXh9+P0Jjp18BUlK8sXP/Ecy2XVGRndx5cpFLFtD0MEsa9g6WI7F2vI/0er5P4QnnnjicEdHK3BTmDdbjZx3ZSmK4t/UNYV3+kpvpvFVvUEwlsbSqnRFJCL5EB4nTDazQUM0QRKoNhtcvXIDv+SmpS1OrVnDsRQa1QaxiJv1hQXqlTobuTX6+wYYvz7Nh9/zXnqTvVycm6arv4ViM49kSzRdDpLHjW6WERWFN65MUN1wwDEp5nWKTgNfOIDRNKhf1EB102YnWbqYRm5rwVRLWN409RWVhctLlG2ZvliSimHQHY2ysDbH9aUs+aKGkanSk0ySzy1Rqeocff0sH/+lX+Hq5TMsZTIIooQcD1KvGVy5NsNwWxcLhVlcqoepFS9C/AI4BmJlF6+/9DKl0gY7dvTR0q6RnhXQxVVCgRRd8SSri4usb8ygqXECLh+y6uZXvvBrnLz8Kq1t/bz0zA9oi8XJZVbRBYvV1XUaQhlPXANHYfH6EpJHYH1xicJimvV8nvbOVoa2B8nUrlKu2kiiC5fLw0DvEPOr8zQskZDio5TfwKt58EQC1LIOiZCXaLgNS3AoFJdZuraEvSQx0NNDVpkmMZhAESVMQyRTXkKUJISGBIaEoMg8+KH9BFqynD89gdsOEPVpdCSTxHo1Ko7E7YeGcdtJlq5f4YE7P0ky6GV+OY/sVenr8xOI9xIPJVFcNb7zrf+KS41TLZkoLi8CIm7Nplaqk4q2o7jqzN4oEQ3LSM0kkqrjmC4ssYZt+XGrBmvp67hIsp438FhB/L4Epr2BgpcdgzvYfWsDRJ3vPv0CqioTTuoMDt3DhbETqH6NUnOFa5MTJFtMxHqCuFdheXWFbcN78YaDrKyUyBdtDu58PznrEqODu5lOn6HUyBDytTI3uc7Fc1P83GPvA3RCwRYW1pfRjQaBQBBFdWMLUKvVKeYL7BoZZbC/n1K6gGk22Tu6nY986EP88XPfJNYZw+sE2TtyC9955juYukGxVMGlaAiIKIJAIhTCzPv49N2fJKs2ePPSEd7/2Aco1evUTTdbto1Q8ers3NlLkzx7P3g7W7e0EfL66RhJMTk3R6Qtyi37b0WNqwxu68A0LcgalCtVfEE/a8UyglCgfSTGx2OP8oUvPY1V8hAJKVwfu05rIsDps6cx9QZjSyv8yv6f5ZpWZmV2jVxuAdMy2Ta4hdWpApKgIIsiy4tr/3yk+cUv3uzTfKc/82ZbkfzuCvq7NU3BfreXUxBEECUcUaCjO45iOMxPj9M66Kc32otHCbNhZ9k22o9UF0hEW+np6iVtLmKJNQQktnX0UmmUKZdd2HqdUDxBKhJgx5ZWcsVZ0kqNjtEhnn76z/DX4PJ4hWhHGFG2aNvn4tnnj9DXPkBZmsMTiTFXL2EIFSqWjdJUCbUEuHZljIrUJC/W8clteBWbRtnGMEMkR3w0rTJZMUO+lqEu6ozPr1KtmDzw4N1sHdzNlYsn8bmSuAM+zl08xeLyIuFAB+WyiWjJjG3ME21R6B1o5fjZKdK5Mv2DPaxNj3HjVRGvHWB7m8aiv4grJ/LxD36U9z347/nOXx5n9sYbHOq8kxenTyJXVTQjTFLqZG5mFsFdQRhepjUZ5eL4j7BngyiKQm9nB2tLyxTKTRTZwaclUFw28a0BLL1Bf1snd2zfB6pMotNH06lQKoVwubw4pkGtssGV8fPguBjeFmdmZQY15cWX8nD/+++iIzkCjkW5vMjcap5GtcbiiSwpTwtayoe7RWahskDDqlPNFNnINgkFA/S0hlFqoFoeBg+2kikVyM010UQPftxs98e4cGkMJeAwObtIBwF0tcrrbz/NtfRJtm3dxr6e23np/BgPBFpJO8fZPngfgz3buOfhfoobCulMllptCdu08QUEelr68TclfF4F3WjgCedpVCw8lky9aVAopSkVqmiu7fjdGqWCSb2YwRO2GejvZ7RzhFcu/oDnnnuZK8dW8WkJHnrfY5ycP0esXaBWqhLwaiwvX0cUVQLmLbg6KhTrBTCbrG5U8PjCXB9fwJPaxW998Vd4/30PkcuvceXGFKpPo6+tE6Na4b47RqkUKkwuL3H++kUcx8VA3yCi6EbzuUEETdNoiSTQZBflXIGKaLFWz5BsT/LymSMYNGkLxugfHuI//+aX0WQV23ZoS7bQ0Gt0t/fRnmhhdMsQe+49wNf/9KssLExRzJTREn7ciQCHtj/E+twNSoEpJpauUSg3cK8biL4UdVWmUHbQIl787X6qehWvJuHICu3tMe7/2AfpCytsOTDMcKATszXF7ju6kLa40EpNgnEfF07cIBjzUM2uEwkG6B9t42Nf+E3+6qtfo9awGJs8g6aFMKwKo4MHmb4wgyDISLLI4vzKPx9pPvnkk4c7OtoRRQnHsd/t0XxnvJmaS0iSguMIKLLy4zQdUGVcJRNvZ5Qdux7AyPrQ02Vmx1fx9gjkMlk0QaPu1DEtA1UNEnb7EQM2E6vTyE2Ra/MLDPXsYcvAEGvTE1xaXOPK3Dzb+oeZnZ0lEvNz8OAtaG4TMehFxs/S9XlisQTmWhlvS4rJl+dIdsbYulejkBe475FDnH/9AsO3jSJUGlTUBnbFS6G0BKYPf8xDsZQlEPORLmRYWFlFMMJ4pAj7encQ3+bF797HhWPPEGzpQpezFDN1sgtLmHqDqKeF++6/k3x5jYPb/jdSnVleP3uWqD/F3Ow8juCjVrKIKJ34RS+l3CKdu1Kcu3YUMa8y2C1w/eoUkq9OQ3KoUsYqWggRhVjSRl8JsLX7Tl594VnWLxtESVEvCyR0D3l5jninB09KpLYhIvkFPEEFY0nGIwVxRRusqmVMs4FpezClJvdt30d5cYl4h8bWwW5yC3XKeolwNIIRgK6OTs6NnaJQnqderzC/Ms/KTIHM6TJ+VHbcMspSfYmKu4JH82DoTSRUFNOmJdzKwEAnl88+y0c+9iFOnL7OxdMr1MrQzGe57+BdPHP0OYqChj8Q5uH338rV6cssr6zTNDy4FZXVzCpvX3wFv1yj/9ZBXnj1KG2JMMmuOKsrNX707AVcnip6wwDLRBZi9AdaWVmcQy7pBCIiqgiC4sOUBdSgSmdomF2dj/Kpj/wyL7/9HTq8Q0hGDZwmHakOfvVf/SZmFoKOl53bh/mFj3wSY10kX86TGmphbbbI2sYcfaMJTCFPLrOGJa+h6J04Sh2QqFNneWWdraEedt+/j28//cdcnBhDsStIfj+LqzPcc+9DxFqDjF08S+fQFnqHeyil86TnNjDtBrGWOONXr6J6BArFPLG2LmzRw2p6EY8iUivWWF5apiPSRnZjhRdfepk9O2/BF/aB06S3b5CmZDCzMIGt6lybHidf2wAv2ILJJz7wMfKFAh58vPra0zx1+s9pbevFrfrpT/VQ1yIEA24y2TWSwwECJYOe3QPoVYlYoB2jXsewZGYLC1hKk7wpI2sCDadOMZNHLxvgjSPpCpFQGJsmqlcjEQ8jGgJStcJKZY1caYFoNEhRX2FgIMTlN8eplkRs5+Y18suLqz+RNP+nuQnxOw3t7zSxA++K07Ksd0dRvHlTA8u8uY0uk9uoIBab5C7NUFncoGzUGB5J0pyrsndwF4ulLKblZ2lhg8JSCcHdJF1cp7Oln8ycSVe4GwmV5dwNtodvx9VQ6Qz24tdCRGWBLYl2piZnGOrqRhUEJLGC1xOkxdtKT99u3v7RPIlQK1JBIVHrIFD1cvzoeTr7ByiVVVq2J9GxIVjA50qAy2Z9YYWIOsilS+e4fPYaVtnNri238vnP/Dp6SaRXvoU33rrInoM/w9beBJ/9xKcI+1vwR7poSw7znvfcgU9JsKP3FrpSAr//5b8g7Iph63WSwRSWZfCeDz5K/7b3ML02RlhV0Zo2F09cpzXZyhvHvwOpEmKgwFKtgm0K4FWIelSapQAFY4ag/wbllQYdoR5y1Kk1Khy4/zbUNg8bdZvVvEmxrrAxXSF3Q6B3Vy+D+yI4njpGo0kpWyZfLmFbFufHz9HRliTiizM3vYSDhebyIoQ19PIGy9l5KgUB2dRQCFOXVFxNC81Q6RrqYyIzTjqdJr26RjKSJBqI4Qg2n/3CJ/jIJ29n8FaH2wbv4szFBdKLeTySh6DXzac/83G+8fSXsINx8OgYZoWvfum7VEoGzUor8ajMPQd+FqvpQkQhvVbgzeNvYgjg79J45fUX8LtjuN02qqrhDURxeWMEFT+G3qCerSI0BPJzVSQrjFeLYokmtm2yfccw992/l4tz30N03HisEKIxxP13H+DI0Re5a98+fL4Gd773Nm5/8BBVr07bUIodnXeyMVumrz/GB977STYyDhpJOj1e5HyEqL+B7rMxLYVmqc7+3m3ILguvnaNsOki+MHIozPpahXiqgzeOvsWpt05xy679hAJRTEMg1hoh2arh2E0ajQbd3d0YukVPqoVmsw6SzVBXB46h4w26iKU6yK03yS6b7Nq3n+Gdo1Rtg3KpzhtvHmd9cZ1UTxRPws3gtoNIioyiyXg0lW98/w9Z1BdwRDcNJ0//8CCNZpGmbWLIAkpRZ30qy+yFJS6/fA1BVfneX36PomwxNTHJ6bG3yRrLlLJz1CpVDt66h9237Gb79m2YlsPqRg5HMJH9MlprBMWtIcsudEPC1BVOHDvH6uoyAZ+HzPoqu/dFkJUsAZ/3x+6x/jY1/b/4nybS7OxsRRD471qM3ln8kWUZSRJ//P7N69NlWUZWJGxbR9Bhf+9uFH8C3VAIq17mlybxiilk0cf81TFCrRohLUksFWF+fomtnbtYXLvKw4cepCnliPjDRLb2Y1oNPC6Jjp0JDLGA6QZHSuLu0Tl15iI9W0aZGDtDb1uK+nqR62+P41cFklt24oSTbExeIK2XqS2tYVZktJCLl3/4Gl4ljKwkkOR26uYSiUA7sXiUvoG9hAIebFtiavoSP/Pwr/NHX/oKH/3Yv2B4Rysv/j/UvXeUZelZ3vvb+eyTY52qOpVTV+eenu6Z6ckzGs0MkkBXCCQjIRASGJBAgEjXxr6WsS+S8cKAuPhyDSJfBVDWjMJoQk/umencXV05h1N1cj47b//RkwQGxl62Ee9a+49vh7XO2fv7nvU+3/OGLz7K1cvPsbk2RzqZolipcfzIBKmERzadYWlhha2dOTwvCV4N27S4584J6t0OV5cuIYe6PP3oJRLhILfefgvnvr3KTfdmGLgjR6VqUXK6RKMaPckkSjiAZdURLJ1gUOPCmTlqTpuO1iWYqxAblmm0VmgZJsGYiGHX0BQR0RaYHN7HDQ9O8PjTT7NXtOk2GgiGjKWoqAjYrklS0ljN19gtlFA1kYAepNaukHD6cSSZu++5gRe+Pku9UWBwoA+/EEcNa/ROJ7i6vMyB/aPslfOM9Y/z9GNnSPZHKbcuMDE2zktzj3Kl7dDcUZF8gWajCU6Hsy8sYqsh+vfrBIwUw9EDRPGpOiWmj8do5wPMzc7ROxCh07Jx7A75vS6Hb97PTq1K1O/lGw99hUg6S8e0sG2XYFDjeG6UvfIG3UyUugCh3jE2NysUGg1qzSqlMmzvXGByLMa50xt0DYmf+OFfZXJc4FN//Ze4TZkTw2+nb1BlYblIz5FBhAbsVirEkzovLjyKKKW4tPAkp04cxqw5tMwOZkBie2cVPdjDSn6e1IBCbMgiNZrh01/6GkE/iFX1CHgK9ZZDpCeO78Di9jxHTx5mbWeLitskFU7ieSKxdBBR0FjfWCebTdMBFFXDsdvk83lswAuKyKLP/pF9qLJC3WqxtrmEIwsk9QhjU/tIRGKs7yxz+MQNJFPgIjK+f4hEUCdjq1B1mF89S6Gxhb3t0ZAt0qEkhfIOC8vLZEYkIgkFPQaFwjakIzSqu6RyUSb3TxA0fTQ9iSpF2Ny5xvzCOotLy5gdB8ey2dpZw8Dktp5pvI6J6XuUK01K5Tr1eptUT4TiXp5gSCGg9VHZCLF0voTgqy+HOQpv2NP8rgDN3/iN3/jY0FDudfuVwqtepeu635GTDte90uthSGCaHQRB46ff+wG03AAjo9PE43GUoEx2cpSRsUk254t0gm3KW9v09Q7hWV06hQYTxw9TKBQI9CZQD6u4pRJNv8xeZZVKu8s3nniOwdQgHbOJZun4tRaFzSb98RTlJYuKLVMp2kRGDhB2tiGwx6mbbmNmdhE3GmdoeD+eZ0JXQteGcQiD7NKub9G0DHar67RrFrfedoS1jU3e/b3/jKXFBRYuPM89P3ScT378P/Gvf/V3mTx0itOnv0U06BIIhGk01jh54w2komMkc1HOn19h3+BxTFOlf6JLtbJCcS+IUU/gdOBtb7mT1d1V5isXCQbD3HrnEGee26HcKlOzaojNAP56h5SmE1AF+oZ6ee6xq0RSY6ghG1e20XSZhmcQcEPookYqk2GvVsP1HHzHR4tIbO3kadYSBAIGqp0mFNSwVAnBchBdF7PRgXCSltGgY7Wo1GuIhsbho5Pc9sAxzp59ErGWxPW6yEGZxppJTzbCuflL/MLPvJ+9Up1Gp0p5q4pniARiGrgq0VCcuWsltq5U6TZNDKeBKEGj3kBW2kiBFJ5poSdMMn0DPHvuNPW6T7licu+tt9E2GxCwaNS7BANBPFHBoMNw3xhe2aVQalFumciyjOI4lAs7HB6cYqVYQIiIdGyHdCpHsVUBQaBWqhJPeewffSu18g49ySFSuQiG2eAzn/tPqI0wB3I3cOebxxkdmeTBB36MP/vi7zOdnmJxZQlZtzBcj3i4j6HcPq6eO0vX8ehWTAa1ARY7yxSrBrfecAJJcXF3VL5++gVOhG9krbVJvd7GqLpsrC8xODnI2tVVJvdP8OJzLyB1XBI9CfyOhCdDMDqAJksY3S6i4yM5CrLkE1YF6rtNiqs7TI6M0WiU8T2btlUnFA5SrebRQzqSLdN1LPYKebwGtOoWk/19PPPMZc6/dI6bjtwCdpiRoTGq8iaRSJAwccZu2Y8mhxntibJZ3ubC1Qu0LYN6p0ky1cP6tXUa3Tal2i4SAn3hDB3fQ5PDzF+7QK3ZwTRtjLaJ1eriui0OHJwmPTzM6sYaluAhSwKpVIJUJgGSz9S+MfqHspRqZUJShM3ZFrIkvwyaPlv/lEDzE5/4+MdyuV6AV+n53xSEXqHqkiRdzwryPERBQpGDCIpMrb2AFK/QE9O5ZK+yYheoBBo89PRjHD66j2Ktxu1Hc3Tb2wxmB5BiIbbKRXQ9wIWlRYLtOAdS9/HM4hPUfJuD7gQf+on3kTeXWLi0QKAdorizh6BF8ANRtJE0Dx47CIMq40eizM6c413338vFK/OoQgi/pmCj0d+NUa1dxkmMoiguJ0feQqu7gB+xMFoimUiFtdU8FjLTE3fSMJosL7zI0ksxfurDH6feKtMlyIEj+1ldvEBACXPhygonTozSqQVoi5uYHZHC7iInbn2ArrvDhed36doex2+4h3i2Tqm8QiAn0Q3Afbfcwxc/+yL6iMxuewevbmFLcP/tN1KXrucQP3X6HIFQBGWogeuJRAIaux7kMmHaVpVENsWLl5cxfJVYKkWj3GJvew+FXvbdKHDxhUUGczJKOEPL6NCpN2hUG7Rth64o0GiWcQUbJDC6HSK9HldnFmjv+hg7Fjpp3LaBp3fZqBdRVI+VpUW2q1uouorfEkjE06DadLolSlsCL124RiQaQRGT+GobWZKxbYFQKI4vSPiddey2zFrlPKIQRw8LtDstfvqn3se5s6usbW6hqTKeHcUSyphdmcm+mwkHZFbX24QTCURsylubxEIi0XAIrSeG5IPpBrC6bepulXgkitXwKe21SeSqdDrbLDfm8b0IVrdM6UyLX/jlH6c3l0TUdMK6jms1OP3U51nd3ODAviGUbpByIc/kaC9PzDxFsKeXOw7dh6YkWWms8abQW3FSXcrFVeSgTSMUYHwwze/+0R8z1Z/jgXtuY0jI0u6auAF4933vYGF2h5HENEpFRAkFiAdzVDs7SIrP8vwaAUnl/e/6IVRFY7tboCN79EZ72T+5n0Q8jSRoGJ6J6VkYzS6yKBDRwqhCmE63QbKvh/6DWaSQSrkeoD8VJRDQUKMKJjrLzUXqpV0GJm5kePIwN2cP8tU/+yzLXp5sPElET5FJxRkeGkQLXA8BapdrtLcdpvaNs9vcxjObBPQQ1b0ufQM58F18Fwp724xPDhELRTj9hYcolwuM7RsnmgwRiccRJI9ms0U4EqLa3sPxTBpbMkbVw/eEV1MP/+mB5kAfgiCgKBrwcvFSUfiOwh2vz0d/NSfd7yBoCu9831soDDV5/quPk9JjGFKDg8ExrLbL/oP7GE3kKJDAEHsYHfKoNU2yQyFCbobC1gIBWUUONAmHgzhmjfg+i2c3n2ezaKJVBZ668gz9R2/GErtocohIUmZu4yoLc1cQgz5+OMuF9U0O901Q2q6THB7H9SQOHh1gfOoIO/l5WmtN3v+B7+UvPvMnLM1ucs8NB0h4fbhuEDXR5fjAj5GO91LYeJR/9v5fRQ00qHCe1bVvEo8H+fYj32BoII0hFFic3eFtbz/Cn3/qS3z4gz9CXd6iVkiju7fz7h/4IPO73+TYmwcIDMDhfcfIBG4j1QeDySHuf+BGLq1dYSLdz/iRKUy/jLFp0Aq62JUmaiCJ0OvQccCqGchumJF0gM3qHkghukabbO8wq1eKuAWbcFAl0U4zdscUZ19cIqyGCEb6qRl1VleW6TbbJNIpTBGcbo2QHrleENjxUV2FSC2HYkm0iybllRrpYJCdSpWmYoBnIKo+fUdH0cJg+zaiJbBV2CUQlcnm+pG1Fq26j2t18KgjSxFkQcK1XUKZKshdDHOPA5P30VQKlDdtulaX3/oPn+CZc3/B+RcvkUr2MD44jqtUMbsh+nsyqHGLS+fWKOytgOHTapQIh9P0pIdY2cozOJRjdW6bnoGDdDoVTKNCu91kdPwgUTmFqOn0je5hFAcIR8NUmk1+9N0/jqLX0WWVhcUzZJI6Zy89SrI1Tlgf4Isvfp3jU4PIwSwz+VWiioIqetSbZUwUNNNhpvYM6bEMdBXCUoi15We58lSdD/3EOyjUTSaO9TIV6WdUnqJcKXDP8CHedcPtnEjt497pw4QiJkpWY3VxAauu0jYNOtUGx/cf5um554gEgkgdBZE2I/smqBtdyq0Ssgq1ep2w1oMeiBHV47ztnu/lc5/+S/ywyr6haXQ7hGfWaVUN1tfyyIkg9cImR48dIT0QYap/nLpQxpUEtssVJtI9pLKTDPROoOkyxWIBsSOysVOht2c/UxPjXH3hMtnMAKdG7ufhJx+iUKozd3WW/r4Mhb0ip958O6VWiXQ0heM5BHMp/ICE50rU6i0arSbtSoNquUi8J8zsxR2MvI5ih/C5Xqza9/1/aiFH10Hzulfp4fsesiy9ev31wpAoit9R1ENSJfBt6PikujqDmQxt2aJV2WJxb5kTN57i+XOP0vFVpICIT4K5a48zOjTE8kaD2w71srti0juUYGlvkWtntzgam2bXaBCXU4QMm816m4Cv0XTz6F6GhJXg1G1DpBNpzs88Q0jK0d+XpLDeZKdYpRh2EUyZsGjxyCPn+fIz3yJBjPtv7OHX//S3UM0sk9PDNKVNUqFhbjz1bmrOWSYPn6Kvp8iVlXOMHUpSap2mtqQj9IQ5/9hDpIcH2VzaRssq6K7I3PwWYlVnYHKMq2unGbjhdnKRFmIkwBMz36BRtQjLGqH6EYZ6gzQHXiAu9nDp4R2s0Bpaahwhk0erK6y1q7QbDZZ28kR7IsgBBV2EcEKmUFwjm8pSNRoElDhzs9sUl7t4QYlcqj7Klm0AACAASURBVIdQByRNoBGxkGyRcDKEUW9SLzXQMzJhLYwqge+5uPiIxvUMFFUX0YgzOpDEdwTmXlojGQ8T7kuyvLNGti+DpzuIksTe3gb92T5UAogyBOMqlm1RbVSoVm0E2wVB4aajJxAlj0bdJhyJYboGmhTBd0MUCwXCWpJYr02tUmd4fIhvf2ueaDiAbGksXF5j/7Ej1Gsmx26cpm40uHyxzIFcL54UIBzW0HSR9GCc+XNrmL7Lvn03UzNtGrU1VMVF9APowSihaI7qzjnG+yTc2nEE3SMY7icXj4PYwhDD1Je22VlvsZXvYKo+PXqaA/sPsjmzQ6G5gxwJsWFcIx4fJIhE3ehg1Ry8cIm+UAAtEWJna4nBoWOMHx+nqdSZGp+iVDGIBW1u0Q4Rl2Ai04Md0ggKIb55+iF+++mvcPXqPAO5cRaWlwkENDRJ4LHHHiOSyhCSNR68714W1hcoNLcwDA0x5BCUAqiigmTLaC0bwVA5t3EGB4mQppCZSGMITaLKELXyFo5ps7l8lo3ZMi89M8vhQwcpvFTmyaeex6jY7OYXSff3YaclaNbIt2r0xBPoAY07brwNzZdQgipaVGZpfo6HH/o8iifRajUZ2z9IMNNLXA5TrFeQLahVCqixAHokhmDK2J02VqOB2TbJZnLUqmW2lmsMDIzT2vGoux4a8DJysrX1xkDzf3oR4v8Ri8Wi/i2njgPXC3K8Yo7jIMvyd+xrvkLZAVzXRQsoSJJEVFF58IPHqAc7FK7OcPPIrXzxsa+SzPSTvn2CxlKT3WqewZ4MoZ40/s4ONbXMPfFTbF3aZPyBcZ7fnEVZVSmWC6xUthE7QfYdzbLdqCPbDmE9weyTW9xwz2Fmauc4Mn2AUnWXy9e2OXHDNJGMSnHF4cq5df7VD/0EAdUmp0p85vLjPD2/TYwYWiTDUG8cyy0RTEk8/tUrvOmdU5QqRUyjiJg/QZsNlMQkMV3hzoPjPHv+rzl+x/eR7JdYOFdE83Qe++pDHBwe5P7b7sFSLeqGiRU4RL1wja3tPIEjbQobJY4cPE7QVXH6XuBw6sd55Nk/5NjYDTyzdok7et/GV5/9FB1NR/ZEioVd0r19GEYLOaDiCx2sahNBl6jVSpjFAI1dG03LMnYghSALCJ0Og8Eoq/UmVatFIpvGEVzcjkN1r0w8GePO43fy6Fe+ga1beEGwXZ9YOk6rUSahRrgxd5zPffpLRCMJjp88gim6VJpV0Dv0DCWoOTvMXWgzOjBMqV5HlwC5hKDpGLaBbUEkGMGzBTRPYv/IjcxtzeEqFRzZJB7KEYmGGO8fplTrksrFKWyWuPTSFUZGByitbRFQNcSwTssqcOLkcUIRWFlvw2KC4RsTVDpNFlZWELwuAVmlUDc4cXQKo1zBDfZSLM3zpx/7Clb3H+yW8L/FUukW3/jKH9AbHcTP75GIDtGNZ/i5f/HzdOMSvg6dSgnb87n9gbuo75aZGBlmbmmBYDpMq9NGlHQGentxLIOtxR36plMYvoRZanDyyEGuzi6hRXW6XZP87hqby9uEZRW5X2J/3wnKW3XuPnWCpe1V5orLZGI623sltqo7vOO+u9jda7K+vsLQsTFuvuEOvvjJP2GutcvQ5DCj45NEQzHktovnW2iiyszMzPUIhliUttkmoscxXLCrJuFkGMPqIjoWSlxHEWT2tvK4pkmr2UWQFXzHxMUnHcxSfqJOJaihiq+Vozzz7Pl/nCLE/yP2if/w8Y8NDeVezS1/PQV/RSkHviMzSFGUl8UiCcdxMTom7/zBtyLOtqh32pyZuUZ0MMnyzjL9E3Fu6B8j3Cujbpqce/IZMr39NEoV9lZs1AMiT2y9iFluIqlhosMJTkxN0N+fZfuKQW8mw8GpKc5+5SwTU2McPnQng3fkKG+tE5cz3Hj77cw8sYqrZDg6MogqtxgZSTF3eZE1a5XtWgfdinLsjlvo61WotHdo1StcvLrE4OQkG8UN8mtNhnoHGRmLk5nyOZge4PC+I3TFHfxmgkS8Q7qnQv+xOLXYZeRmmgtPXuLkySMYjkmj1GJ29tvUBAmXDbrBNttrcxw5PM3ZlRWKKz0Eep+laSpcuJyn03R46FuP0htP0sVARCUUjqBoKplkBAkRRTeQyym6vkkg6eOoBtF+n9iEhO8axHWVvv4INdekHu7Qlw3jOBJ+x4WWx1AiR2e7y5UXLuHbHvFcDMPpUmt0kH0JyRUJEWXhwiZGx2X0YA/r9W0qnTK+4yGKNvVSE8/XiEb6UFWb3tE473vf/Xzl82cYmEijqhoyEq7n09fTx/TIPiaGsywVX6K118ORqf381Ad+hXS2wFD8PVTMc1iUaRtlJDtIuyGwu1okm06gZsLUdyIEwttIdppTtx5FdXI8c/pRghmVttMmoEh0KiZqUKeU3yLbG2djs4gouLz4rY/8I6+k16zbUfmXv72GEghSnNthMDhEMJZh7uxlbh4/zOWVq2Sn+skdHCIcDFPcq9FuG8SiQSRdo1ip0dPfg9WwUZUQhVqZuB5jdy1PIKnR8bt4eHiOxPryKrVyHVmLUGxWec+PvIO77rqL2246RV86h90OkK/usb28jdM1yQ2PEs8oWK6F0xEo7jTZXV+nN9pLKpCmtpIn05PErTboOF1ET2b+6hIGLoViiXA4Qq3epNVsYfkuJ249im80iaoqnq1Sa9dxHYtwJIpjmoTDYZqdLpFYAi2k8fP//mM8+VcvIkoCjuu8+s7e6J7md0ec5uuC2K8P/VdFn9dTc8/zXhWKbNu+LgZJ14t6qKqK6UgowyG6HYeTN5+kVW2RDWVoL9iU87toiRbDtw1x600nyaV72XfyFnoHc3hlje2nNklKY2xfrLD9ZJ7ZmRIbi0Ucq8NTjzzNY998kZ2mxXB2CNPfZPviPNTjqGqK5fw57r3/VmrGKjNnrhIOR3nyygwLfoenZhfBEjl+4m6ExBbzGxdomzUyPUNkMoM4fgWzrRAP6pSKNUzlEk2zS0ursta5yNNnHiV0dx11eI9la4f54hXOPPwcWt3DEFMsre8QjWQYHurlwPAUR+/RyAyPc/LUEU6cOkE338QyXA4fczFD8NIjOwiKhat1mTp0EEt38AMx+of76R/KoQVlJFnA7xp0ixWQO9x2+80Y7Q6i4xFQwpgtBUXup162WdsoUXYbCK5LqdFgfXUDp2IxGM3SLjXxuiZ6TCUxFseQTdpdg6gQQ2yJBLoBdDOMabYZmEzRtGq0vQ5iQOLETTeiB6JoUopsJIcWgN16lXBKwhE7/NRH7yYY0ogEdQKKTDCo4VgmouBzduYMXVPhV375g9x99338zh/8JM8/u0qix6BcXSQcyKAHhwiE4gRjIQjJFOtl5ubm+flf+GlUsQ9VDxBOZsgMOwQacWol4/ocdXVc38Mp1nG7IjUTUtkcEv/4jO1vWpMt2g2butlm1yjTMGr82od/nPfccoIH772XYEhGlFwcx+XQkaNk+3JcvnaFnY1NgqJCp1VG0SVcyeTw5DiObeN6JSRVw/VESrtVqsUCdsdGdFQ6nV1+9hd/lGKhzrXlGTpKCykrMzDQj1c3kXyBdCRNdafI8088xx2n7kERAxQ385jlOk9dOktSC6GqGl2zQ61ZQ5Q8qtUqm5ubFLd2EW2XtdkF7E6bfUf38+Y7b6O2mme3VObwHbeRTIcI6UEc22draxNJEtje2aLVbLK0sMzI4BDfeuybdHGxWgaCIL16vFH7LvE0P/Gqev5KVaNXgtllWX7V03y9F/qKyZKIomqIgk9rqcly5ww3nXyQR599FFfwScaytPMdrJBFYiJLXaugxxW8eIfKbBExUqelu0wkRphOTCH4MhMHUjSNFo12C0UKkU6l6VpdBNvDdQSa7QZKO4K1Uadb3KWy3mX28St0djps7lY5NHo3pqHx/Jmv0CoYdHYl9n2/ycKLdUKmQL5YpD89iie4lDarDA7FSeoRUplenE6CvcoWfsAidzgGSg8DQYmYOIWs95LeOkQ2czenT1+k73CHhUsbmO02a6vrTIyNslnwABvTqDGQuoHTzz/DeLSXi0smazM6zc0C3brFvvE76JmyuHJmnem+XvS0wt7uDvF4gGbjulhj1hssndnDaYrcfdubqXQLmE6HpBKnJx0k0+/jBVtYDY/xyDSlFYF0OILalShuFSk1qtSMKn3DfeTbu9iCi9BWEKsQEQOYTRvBNRk4EGe3u0I820OqP4WsS2xu5tneK6FqQYy6ixjpEkwJTO7L8dK5bxJVbuHS1bMU92o06zU836E3kWY0N8q3zzxKTy7H09/+NlawQaFdodTd4OyZrxAPD3PL4bcgiHXWNzbQlCiaKNFsNAmqYcKxIGNTfVy5dpWR/T2c/pOv8/n/7zTTd2fxbY9cf5ZQNEHQgXZXQo3G2T9+lGtXX2LmzIf/N60YAfhhIPn33vXz/2KTfG0OrW+IqlVHCUT4yX/3c3xh+xlWtzbYXV1lOJ1G1eJs5zdJpiKoAY12tUOrXL0e/N3VCOsx1vbWCXi92I0gttWkN5NGlQNInkA8kCadCPFbP/On3Jy6n0vVJwmG+9gpVKh2apitbXrCOj/3oZ8lbvbj2Q67e13+6Pc+SyweZnAkQSSSQpQklEiAk7fehC12qVfqrK2sIboKqqLhOx6aphBUFSTJo39qGKnTxhLaRJMajzzyCEa3ieuJeC6IvsPu1i7BYIRaqY5lWszOLtKz5bGS7xAMBHH91xo5bm5s/9Pa07z9jpuQJAnHcb4DFP9m24vXj13XRddCuL6HIvhYdocP/uh7uVZ4Fto2e0aR3NAwY7FJdtRVorLKzpaLbZo0yxaJCRNXapMIDOP6Fv1yjq31DfRwkEqpwujICFulBY5P38dTT72Eve1x8L4xmKwS2zxOYmSbTvYlNvJhYsIh5hfP4xSzRMQu4WSQ2dVVOqLHffeeYKl2Fmk2ghTxoBXFdrp07BahUIh6x8Ez6wzmpllaPY9pCag6EOkiNELce9fbWCs2se0yy2sXGErfgFHYo2K02b6wyJGpCVK9QTp1gVJlkxOn3sVzW0+Q6k9iNw2mDuzn0W89jCUF2HhilUiql/3vVggmdMKtKGKgl2zW5eLZK8iiTSSTZn2ryHh/DiFvUWkUyN3cz/LSGhFN5/b0rczaV1nZ2aTlZBAck26lSWWxSlzMks32XS9sEoG9wi6N7RYhRUNKiNhVj0wsjCx61FptsqP9FJq7mKJPT2+EaDxCxzW5dnGFZDqGIrqMD4zz/NmLjB3KUqu2sVsqyYTHbqWKafjk+tNkUnFKmwWy8T5qxh7xnj42FkvEg2GaXok77riPR08/zL1338NwLkGnYnPm4jzVXYejvdNsFPL0DMSxJBmDXUKxLCGpwNKSzEhwmG1jiUND76DqL6JHPBy3TXGzyvHxNzFzdYvUsM6H3v1Lr5vVI8AfAff9L1gxArAITPy9d/3Qz96G37X4uX/z49i7LfbyCmv5PCsblyh3q8QCOrbTRQmECSYC2G6HsJfB7Pisr83zbz72r7n4+BXG9yvkcm9hq/U05YJOc2+Xa1svIfUEuHnsDh59+DF2dl7i87+3xNbsLP/2oZ/nwXd8H+fPXGZl8SqBsIRvO+h7A7hJDUWp8sgjLzI6nIOQzOj0EFoixL6pMUSry+X5S4i+ydLCFq4jkk0P0umayAEZy+mQSUapVPcYGhtlazePJ5gM9vfjdGW6tkO3baOJMu16nUK+giAHsG0Dw+nQNzBOZjbAcqOLJwPeax1wn3/u7Bva0/yuoOevBa/LiKLM9Z91/ZAkBRC/AzBfAXpVVXF9G1kW8EUfPJ1YNMy+/klO3PR9HDw2RKDHZ8e8hEcLMQwT4/uZmjjMHSdPcmzgLmrlGl23iJeIsFTYIN7RGeuf5si+WykWW4T8LI+ffoxYNEL6gMn2WofQ8j6KxTahcYdSR6C24bFwpoi9GyeoC1TW1tl5oYlmJkjIDrSzxJaH0XSVStGi264zoE8RC4SpWXuIwgbxwRhPXniE2a08Ijr3HrofeS9MUA7z5JfWqaw3qG1WyGhDDEd0Rm4YAMek1jLYLVTIr5dRQwqKFCabNuk/lEIOghius1JYYUiM0tPWiE2JHH5nHE0M4JZ8sCyEwjoXH73G9+tHGJAH2NgqMzo2TtUq0Qk3cApB/K0+UkmNjl3lC8+eQ9Sy3HnHTUidGp7n4YoVeg5oKNMWO4Um5d0Cc1dm6foGwUSAodFRgkYATIeA6mDLBm1Z4onnnuTE9GFcuY4oQsNrsLuzw103vZXwiIqc1Lm2fI1kVqe1C54t4jUlaGokwkNkMz2ktRCZQIB9Ewe5cO0CoajGTn6VoXiERDhMp1YiGtshJvRy7cIccw9fof7EBj3BXqaHhunpncZputy0/zg37Z8mogboNCtcvbbOodSbOTb8PdR2FwlbAqPhMWJCnGa9QSTZR6OV56ZDh7mx74H/jhnv/MO3/E8wu2bQNRz++Hc+y1p+kVTfLlvLS/hCBVEUabTalCsdxnr7CEcVRgai3POmg0SaHqeO3UtPdJLRkyKJsZtYuPolfv/Pf4+vfelPKRU2qdYKGGWbp7/5dXJbKbI9hzDDFlKkzYn+/Tzxx4+xvVOiYws08nXioQQ3Zm4mZpm0rQbxaB+9Q0kOZQa5dP4cb7rtPn7m7b/Jw1/6Bn6zy+bOGloohmgLVNtNmoVdgk2FzMkxNjaLCEhsrKxC1ydADENQ8UUB0REJexpyMIgSjGKXu1Q2i7iSha5qWPUGC17j+hfwJXwEREnGR/iHXuer9l1Dz4eHB/D918SeVwLY4RVazqvnX1HVX8kMEkUR33NRRJFDByewJZMe12GnVERPBgkoA9i+xcrqCrFAlNJehVRoiIRhc+uhU8S7fYwoOS4unUEaVxkQ+hjtn0TzZY6NHadeaFDfKhGvHsCmiyMkGE05XFpt0C30Ut3qUCp7KHoKWTA5fHCa9FgSdBcMn1i0B2dgiUJeoF6y2HLqGM0txECQXaFMRI6zWV1Al2Ps5ktIXgCrJvKD73wf58/OIrrbbG8vM3ViikTcYPbyHJuFGmZN4diBo8zNzRNLJHA6NqnMAGYywbZhMffcBXpyfUzGxthdXcHxfQbH0jgBEVVPo6gektTGasZ52/T3sNZc5uTdD3Ax/wL1moPREDl+8CBnvz3Pm961j3MXFgjrw5Sbq5TqsLRYpNOOIEotbGwsycfzZCQtQCoQBkEiroUJ2DIrV2YIxSPEBrNcWN4lm03hWi3CfTqYGl27TqPTwrXj6LgY3W2koEK3UcM2VayGieIr+CUPLesTHoGo79HY7GDXfWp1j/nFOSQpgh5JYXod7EaYVsNEUlV2N3w6xnWW0UuAkKXy2S8/yuD4UcrFPPv2j6NHA3ztWw9RbjRodU0WZ2ps1x7m0sIzHDp4O+/9/p+lXG5ydPRBdjaLLM3M8J63f4TR/jEGhpP83x/XX57R7wOeAf4K+ATXW3HdDgwC/wfwFWD05XMffd1KGAEOAWOA+/Kz7wf+FfAF4C1ADPi3wEe4Ts+fAW4Djr/8/Gv2Lz8+TyKlsLHSJl/vsp6/wuziFtHMAIJrI/igBhR642EefXiGWKhLo6jw0ff+OpcuPsZXvvppnnhsm0ce/xzPz1yjLzeNFouwuTNHKJyl43V46133o3V0lrpbPPTs5/jW2UfZLbVJChFqfp1Ot4HjKmjhKL/47l/isatfRk506esP887bfoB0qIfnL16g2iiQjqo4Yhc7KDEYH2PnyjoNwUOuWmRGRmiGbTrLe4hCGaQAlm3SPzhMq2lw0/RRQkqEaqtBxa8hdR2a3QoEfeTeID16EkWSaVRaeK0AATGI57kvB7b7IMDWxhurcvRdQc/jiZh/99234zjOq57k6wt3AAjCa8LQK6DpeR6SJF3f8/RdFAnuuucEQqyF6vRw6C1lZhptylcMOvUSKTVHD1l6sykkD4otG01XEVyboCKytOsx2CexuLBFZa+L4xrEYxkcujxw3x14apfLz11iQJ+k3Vcl1Bnk8uI11lslhg5PkegJcOnMs0z05Ki1KkxND/Dk15+ld6KfglWmvAO3/0AUFZm1r8c4cpPGs6evsNeq0XQ9YrpGOJJBVyPsbu4yOTLBysoKXjjKDabESysLBAfTSIEuTc/i4MBhPFNAkgRmr17gyPAYh24a5mxxgX/+4P/Js2e+xsVSnuLWBsGEQDyZodso0NV9REXGwaEnEUBzodbew2gJZHuHWazOI9thon6M4wcOMfPVFapskD4WZXlljdHJKTZn1zG7GtFoFDFkkN8toCZ0rEaXn/vwB/i9X/k8nguYPorqE06n0UJtfFlDcC00NYqvWOx2G0Rlm6X1MqG+FLc+mMEqpokmHByvzrVzJQQ7QtBXaNc6JIZVUqNJao1tjE0FvyixUVmnf2qQ7c0Som6T6suA0uTcEzvceOgQgUyVTrGXla01NEHiUDTKwVSKLUtjud1kaDDLzs4OAyPDFOt7zC+tYrkesmSiKzkCkTpD2Qj/7iOfQ3HTdJtVbF8gqMcRfBNBkPCxifZkXzerR3iNnq9xHSTfB/y/XGdRL3B9X3Lr73jmPwJ/DnwemAIuAwNAitfo+RLwE1wH1Jv+1rr6jT+/nStPO7RbXTI9KYy6QL25y4EbJrEcMCwbSXdJSmlmLi2BpSCEN/jB47/EeuFZmuEuKTHDtcUVNs0NTt5yHKNb447xO1mdz7PqztNqW0wqB9gUypzI5ahVs7zzrTfxx5//FJv+Ls1KA8d30AM9uHsXye4/SDa3j8svXiARDFIp1SmLXbxOl4FMH15AoNEukS+W8eUgGSFCvlqhLXrogstobpCpqWkKzTU2dzd517t/mK9+/qu87Z3vZGd2jZmZZdSwiBh0MdoWkhwg6arsNsuISMh+iI2ZNqqvI4geCK85Z888/cIbouf/S7pR/veawCstel2uU/Lr4Oh53ququSS91ljNdd3vUNIlScJ1XCzPI18skIqDWZlH6EyTdhM0RookixLt+TbxIQWjWsP3dWxEGttVdB3yYouqlUOtRejpnWDfZJrNtXlMq4nthvncp7+E22kiyDGEAym+8AefQ9fSvPs9byE/t8X88gzSYoO+1D6mx8cQHZeXLj9NNBGkbe6Q8ny0jMDeeoeYqtA73s9TZ75JvdCH4I2SDJn4roXZEAmkBPon+lhYWySUCGFUK1xVbGL7srjhEHElgdhpslsocHDqIPnSHo4IhXqFF583WS4W+JT3WWxrA0tJEh9NYYsGpgxuUMOy2kQ0DVUI4zkyUrCA2BTwwj53jt3BxqUVOrU2mcwgjc0CjVYdZaiFGkiiB1VMo0I8GiWUyZLfXUOVA/gVmYgep9aW+Pcf/n/IpIbwrSaCJhPKRmhYeRbnHa7NLnL/bW8hmWvh+S6dRpNoOkGiJ8Hb338vJWuZEzcfYGHpPC8+vIbuZtFMkZXVVWLRNHudbWqbe3SKbTwjjmw79E0n6RpVMpksHapYbhmjDZqu8gPv+QBf+MYfUWtXARHDFVmulunJxljd2qPsdfA223QNi8KVSyRScSKRBPVGi0QqgWV0wIgQj45TbBQYjPaR6humXi3jCVXwwPcDCILyBmb6x4DQG1wVfwT8JrDv5fHRv3H9r4E/AL7Bde/0b9vC+X4CgR2CgUHawjz/8VMf4dzzRSzH5slvzlAq1sjkwsytrBGLJPH9IjUvzFznJbpagW5dpCoomJaIbAZpeybTfftImIPM7syi9UhMn7yZzpqFUPcYunGa+43beHT2c2zYe1TtBvFoisZGFdxNOuEBLs/sIsyVkf0CO00VwRYwMIkqcVa2NwiEI1hNi+FUlvX1JptqDQufX3nnj1G+sMq18DIHeo8QS6komszMxavokSAXrlwCE57+3BnqBnz/L9xOVDS478H7efKTn6bgtwARr9tAFtIIvBKf6b2KNW/UvitAEx8cywauU/BXwFJV1Vf/0CshAb4vvBrw/npBSJZlTE9gdWULvbeXaCDElScb+JqFVLYIKkksr8V2tUoqrqHFFexymWg0Tb5Q49JKkUcefpz7736Qx555llgswfLSJYYGMnzPgw8iaxkieg/l8jZLi6uMHbyTgGfzxJMvEkj1UtxY4APvewcvPHUWu90LNtx659187ZHPIogCTnAAzU2g1FsUtIt0G22O3nUjSjtF4libzUsC579ZQBZ0WuUmLcfERqVheLSjGn15lZVSkUiqgJEKoNgpQskYF65dBhUmj06zdukahtHl8OQEDb+CK4Ma9ims7xBIaciCRpk6ohxEtEOkBgSWVmfA7SDpCq26wX/++idRYyrpcA7dznD5zHMoA2GqcQe5vYekGJi7cUZuGWLm8hXkPg/ZCBIyMiw/t0k00cNk5jBaLohv9SJGRWp2m0DLITLY5b/8l/eiKDE+/5+/jVNJoId1FFVERkWPW7z0xfN01+DSmXkEuYsvFvGMBBMHJ9hd6ZALjTJTmCMZSIDUpn9/ho2dPGl5AtETWVpqMH0oyZnTi/ziRz/CxP44H+z7db7w2d+k8ZIBioijypzJVxAEkbbtk5BFJEWmsFOk1jZIRAOk4zHqzSayAFOTfdSaGzScddYKHpKmk4sP4VgpHLcNggd+m39Izb5Oz9+obQLjf8/13wF+hL8LMAGiUYOhwUFefG4VRR7moz/yBfSAimG6RGMaCjKtUofxYyKnjvbju3fxmT/+MvNr1ziw7whN82luPTTC6IePk3+uw+m10/zQ9/4sSmM/VxdfoB42uXBlhqsvztHXE6Ev+X4Eq8nmw7v4ikDM0pEMjw//839FaWeHz1z4FEHBQxbANXN0Oy2shkFf7zCru1toioBZr6OFJeSYhK07BBqgB+CX//qTPPqXn+R7q+9lsbHES9/Yw0eiVCjR3KuBI/CH/9cnWPuza8zVbc4/co3pQ8N87nf/irXlTeTe6PWCVgrSIwAAIABJREFUK4QAEV8AkBAF4W+Jz/+QfVcIQZ5/nWa/vuvkK+D5CoACrwPQ17KCXh+CJAkCriGQi02g+gmWaqtUamU2dgt4bQ2h4LK3KuC242yuNdnarbOZL5BvVGhUGwxnVM499zjf9+ZbuGHfIO95+/1cvPI8M9dmGRs5itgFXdbR9RwjY1n27RtFlkXsZpu7bjnCt772LGk5Rm5kiLy7wnJ5g2g8SlDup7ZhIuRNfvjUr7F//y18z5vvprkXZeJoETu0w9RxkVhMRfRsBEckKoZIhqLoqsaoqyP0BRgYT9EJWDi+RywaJpkNoAZ0RE2jaxh0Oxa+6OMlRFxVwTR0DJr4lo+uazTNOrKgIQsiSkBAU3sQ5RSiMIQfVElpKQxBQfTjtFsWsihhR3yEtI8qpLA88H0Nc89hfWMRWXcxLI9ASGWvUGV88ignjt5MuHeYrt/CDwmYaod0bwwxEOLYzUO4nQDfePg8wWgENW7SMxLnwL4JQnqQ2ZkZet0bSFVHeWD8ATJaGtWVyI0NYMou0VAMu6EQVqMI3QipQI69cgmVMKIpEJGi9MR0AmKEvmQvE7l+nj3zeZJJkYAUIBWNE1IlWuUqtu+hhgPE4mkqtQaaFqIvm6XdMsj2JDC6TWJaD7bhYtsCnhGnUF+lYS8TDgdpNHbx3Sqy6CP4Djh/01P5by3C158LAZ3XjV2g+LrxILD896yavwa+DPzu33mHWXe5/FKHbLoPyRPRtDajw3F64lECmkI0HCTX308hb+H6Dn/4J5/C0xUcLcSl+QVO3nKKqXsG+Ivf/xMu7l1CDkb4jT/9bWr+Ol2vi+jL6KEYN526hQ/95AdoNNpoQzARzPDshUts71aRe0J8/fnP8P9/7deRW3GatQ7pZIqW2UTzZXxfYGtzF9EXkCQFTZGRJIXdOQu3ApnRQQKxILdoad7/7o/y3l/7Eb709S9z8eoMviwyODiIaIssbm9x8qPvo+DsImBhlnwWvrXAx97xId4cGicWjBHRI0iucp2hAq7v4boeoij9Hd/rv23fFaDpONeLDMsvp1AqioLvgyQJiOL1DpWvgGogEHiVll8Hy5dVdjmAgINoB5lbLRCZ0JBDaTw1hJLrx9JUklP7iKWjlJ0u7ZKN1UjhS1lUP8abbrkdWU0gJoM8/thTLFy9xvLsOifG3kT+wgVqL7xIWzSIqTpea5O+doTZ5xdoWxG0uI0g9tI3GKa1XmKx8RT1zAzq9DzStIvc1BFqXWRq/NZf/OJ/Ze+9wyQ7q3Pf345Vu3Lu7urck7p7oiZphDQaZYFAIoMAG4FFMmAbjE1wwCbbYPsY44DBljnkYDIIlONIo9FocuxJPdO5K+ed9/mjuidIshmwzzX3uXc9Tz1d9e2vqr7a/e13r/CutZjaVcQq1di66QZKokYmMMC933sc12mTjUVRRJUcgoqGU9UxBA9HcBFViZARpjkjIdgi+YkSlVIRq24ycWYKJdBJcOUws36HLruTv37zu+mfm0Go+6jl5hh/uszTXz1N0pFx5QKnpg5hVm0I6fQoaznyozmi+Q58RgJT8tiRewC6TWpuifJEg/ntIvM7LJIbZGamC4SJEze6aOVdHMch5+m0gidg0yTJVIj+9Fqk7hbrXhrlynUSN9zgJxnfzHVbBrnlN6/jlte+kJte1UcgE+Dtf7SW4Y0henph/5E5XjC6Gq0ZI9vRz9jJKSJhjYCXYq6QI+PvR3FjTBysIk7G6HOG6ZT70Dwfg9k+7JbK6KphHr7/JziiTtXcjlPQCckiPlemtzNOZzSB5TXxKVq719DkBLnpWUYHBsE0QZdwHQMVkVbOYKBvDU5VIOzvxDZbmLLE9PhpyrMN8vmz2GL5Wbu6Azj1n+z65YAO/BSwgI8DxgXH3wL8KW3fpUfbp1m44HgWeIA2aP7T835DxN9BOh5BVET6+3uJJjTqXpHLX9TNy9+2ki3XbKZSPU7QUXj4J036Mz0kwwpd0SW86JY4q9YN0Tpr8bZX3Y7RLKGaEqLnx7CPotoZZrQJtqy+goSW4lvfvJtPfuKveNvb3sIDO3fTKUSJhCX0coWzubNEukeIOBLdvf1UGyb9S/pp6Q1MUcTyS/gQwNQJKyrYDl/8yUO8+BVX4xdbZJb24Cp+/L4IQ93DnHjmJEuXDmE7CpOnZnntTa+hgwDdDZmV160ioEqoto+JmQZjKyP0vOU6soZErWXhOSIiHgIeImK7SeNi8vklyq+Fee44Tps+5FpI4iIz38Nx3HPguKhhmqaJKJ7XLhezh9pBIxdREdl6Q4wnTzVJ2Ks4euxHBONR3IwfNebH0GTKJRcx0YVcLlNrlWmYLtOtEqHeAM98bxep3gQyNoWCieEU6YpnOFSo0Rnw4RsIYtVaVDNniUejRIsWobTAmYnH8VvdVPokmmdOI7sZihNF6vkmr7/5dXz9219F68swsinHQCbCqSNn+fxdD/Khv76Gu/7pfih2ITVt/FII0zQwAirFskEo3oWrFpCQ8GyRbHqQY4eOUa810KIakhACK4RjwcCKXiJRjZZUIZvspFYvkUwN0do7RsgXYfroflasWsVcs0gwvARJn0eOCfibIjt+/jDZZD+Rvm6avnme/M4z3Hjr5UxUThGLdqGIVXyKTf81nZQNi65wu+hBvdAgFvez8roQV9/awyNH90LOYPX6UZZcVubkd6qc3X2Y3IzE2L+JvO6P91F0XSbOnMIs+5FaDfY//jDrrnwlpw9PEO0eRYof51sPmzhRieRolrpS48nvneXGrVmevl9n7vAkyUgSW/cTCCeJ04OsSAiigVk3Cakh1IyJJ8DJx4vse/gBJEnEpzmgOhQn/bSsWZKpGI28wcbeLTgRi0bVolx20EtF1o6OoNQlQt0xbnvFbzF+9jhTx46RUR10fx5bPUE6tJWJs9O0mga1ZPRZu/pDwO8A76cd/X62RIF/pA2OzsK8nguO/z5tEL0JyAPDwPef9Rl9tIHzGkBZ+Kzz8pm/vOsSrr6PXMKci+UT7z3//F9/6Xf/5xJPFbjlDa9A23OGB76/g/RAmObJSRLRDmwRZFvENW2eeWI3sXSSwmyR6nQN3bYxLJOTpSm6+hPMzE5xw2uv5qt/8df89IH9fPKDd6KdnuXA7nE0fxTXdRCEdmHzC7nflyK/FqAJ4HkgiIute9uo3+Zocq7dxXnt8rxZ7nnn1WpVjoJg49S7KBzaRcCLcf3IVYSiGQ6d3MvDB54ARyWQTBAOaPi0MLqp4Ul+9uzL0dfRz6c//gcoUy6f/PI/c2z6NCtXbiDQGSS5OsFVt/Xz0Ncfo3tFmvmJBmemmggpP+LUNI42QENwCRoO+bEy/rTLhtUjTConGOdnZLUlbL2uj8Nuic98ajeyqdHfOcA//q+7ifpG0fEQYgr1hoUhWCiOhaKK9PWlKDagUa+DK+KTImgBH6ZpEhKjJONJAsEwst9G9wxUXUDxSfgFG1GUkYQgEclHedpFQyE72uRkLo9f6mDs0BlWXd/B+K4iSj0AUZGmVMYuWITmojQOuwgBjZ7kUsreaQy/n3KjiSTIeGYCxZMJaAVcx2HN5Rs5evYAclPBdcMcmjjL+Pw81181yr4TR+mWhlgbVzk1c4rJiRq+mVu5cluIknEEc/0kjzx5hInDFWrZvXi+CC/ZchNPHXySk3vGUDothpJDjJ2Y4Lrrr2HPY/uQnCghWcbvBpAsFdWvIHgym5ddwcEjJzgxOYUvaRBPRckEO3Fcg5n6FIqskemSSXZ10Gy0aDV11m3oYaY2x7KtN7Bx5Rr279zO6PBGzpw4yviJkxRnZ+mJZsnGu0mkNBxs5hpV8o1x4sk4y4f7EQXfs3b0Sxcei/IHPFfetPB4vjkSbbB9PsC9UCsaBM487zX1iY+/F0UV0fUmhtzkre+6kVz9IPGUjOuFmZ09Rauk8NQjM9zxjqspF1tMnSozq08RDnTz0+/cja37ePfvvJevf/UrKGqAWrHGyLIe3nrNnbzps3cwOLKGwzuP0hFLU3NN7n98B3d9+GM8sPsxqm4dJRxBb9UJ+PwIuoDp1lk+sJyjpw7TaDhUq1XikS70epVCo8n2H4wxUyrwmr+9nS9+5H/xyW98CicAg7E0k6rH9PgMwWCQVCrTdtOlFPKNMv6gjFGv0SjWiWVjrBtYyf4ThwhLMldcu4Jv/vTHZNUuZFldwJa2SW7b1kX0xkuRXwue5sc//vE/j0ajBIJ+YJGTKZ4DxsUK7qqqLvA42+AKwrmixIqiIAgOpimCp3PFC2PMzM4S1bYQWrOZjcGl6GQJpjeTjgwSjmYxXRVZ6UTxpQmHYvjECCcfeIgX7j5MYN16Nr3qDpYNdEJXA8kfZecjRxlZl8VWG4hFmZEly1CrATLCUpYMRxhZGeHgAQF3IkiqkcU3pNI7EqU5VmH0smvwD05iaxalqQr6nEBUjWA2lqC6Uer1CrlqBdUXaJPg9SbBSJx8vUyuUMFBYq5eIm+1kCWLMydOk5su0JmNs3J9irlchanCJNVChUahQtj26O3qIRFNoUkOj+3YDw7M1l16emIc+vE8SloiKKap5ZuASMtrEF0qYRUd6sUmZ49PsHX4CpSmgFWEhhXGLEYIItN0HBKxHoKdLVzXo+6cZNauQcPmJS+/jZ5kCjI1jh7W6ZeX0hvcxNiqpzh1NMfZwyK/fcd7OFj/MI89s4u1y2/gsXsfYUn0FvriS1HCAvvnt1NySxhRC7/WwxJvNb3LswiGytL+bl75+pt5ZtfTpJIh4tEokqiQTXYSkEMIqkjTUOnqzNDRtwSvKTKYydIUKkRjKeKxIHbLT0CM0pqBybOzrOkfRPb7mZt1qNenqdSLWE6IDatW44/4mJk+SSTcydFTJ2g1jxJMyXiWRHXeT6VaZHZqnn/7xn+eofP/tLzjrQaxUC8dXRIve/G7yQS3MnkCpk8ZpLslarkUpl4hk0zz0N3HkZUaBHQ2b+xBmvQozcCmy5OsXBfn+quu4frrVlOZrXJgZp5HDj5IgAStio3ZdGjpDh4GPYkI4+UcTVcnENCoVXUE10GWJSzbwJElKsUqiDCyZCmi46JLCvl6kdtveQ13//A6Nmz8GmkXfnLgARzRoi8cxVCgUdcp5So4ooPm19DrNVqug+u5KIKI5ArIPhFfUObs9DSKIlOXXMKSjCAqQADJ0y7AlvNdIoBLTqP8tQDNT3ziE3+uKDLdPV0YhrEAjCCK0kX+y0VyO/CcoJEkSciChuVVKM7N0NObRaTChn8+wNq//jKh++8l8t17aZ06yuSajeyfmubwE/s4fWIXdt2gOxWhVJum98A+0OtsHr0GaVWK0Y0JnnzmOFHCLO3Nos83qeRUhm6OIOczdPb0khoVCMaq7H20yMrBDEuWdRLLpjAaDQ6fOsrwVSYtqYnmvIDvff4soeZVdEc24hPThASJhJZBtGJ0+ftJSmmEqkPaJ9OcL1OaKhLxQui5MqoIuC6yEiYeDDA/PYkoZyg08ngSGLUWPkXB1m28moDRnKZwxkBoFihZTQpNnTN7C3R1hpECDnIyjE8WmLPmCQYEwt0pSqUmcTGC2bKJelGCIZgtnqLpSIRFmWxngqPTM3z0Q1+i5P2Qln+KcDTAvr0nUZUwoYgfo2owkTuEdtblNYlXYQ9rbD/4bbTOIKsid/Cqq25E1mY4sy+MqVcZO3MGLZigK9LBof0PsGTFdZyZ2onk+IgFYiwbGaI8N4FXH6BVPEQ63MmRncepOTo9nT04jkzAr+D3qWzauI4d+w9xcnKCwkyVudNFMrEMswWwdQ8t4KFqETS5j76uEfSyS6K7h5OleZYMXIYQmcO1HTp64wysTTA+NUYsEadzqJvBkVFmpwoU8odR4gaK00Fvn0oo0EG91eJfvzz4P3QFPb98+zvDyGKKDRtWk0xmkRWHnu5ulvW/gLhwOf2xLfQEXkS2YwPLBjaTVl5CVzDC9odqnKnYvPHdN+IETYLJDJ/7mx/w7X+/h1teto76mWmsWh0nAqXpaV796lso1/PYnsXLbr2dyvQMdcFDb9iIjoAsS/gklWxfH7nTM6zuH6WcL3L5FVfze1vfz44H78VoCRybOszx/e9gaOCvqIYMsvEMggMhL8a+g3uIhTpwRI9KpYEnLQKeC7ZNMhJBViTC4SCeCMFIjFK1SsSvYbsGfs+P5QWQXAWRdtfbtol+3nI9e4mg+QvNc0EQ7gJeAsx7nrdqYSwBfIs2G3cceI3neSWhvYLP0k5daAJv8jxv9y/6Dg8Pz2236V0krLf9mN65H7T41zTNhf5A59MqzzVgE0VESSEgpDhz9yTbrXv46O48n111HRvUAA3HJCO5VDMdnC5OEdEEBCtDymejekU+/ZYbkYUW27d8jkr4D+laWN+7X/M8i25wnkFitR9XbnnutGGAI+3ndf6Gl1/xi87GLyvj5541Wyrf/Om16EadlihwZH+L/kwLY7bIqqFlHJuYJpWQyJ00CPcoTO2eYPt4gatuXYbqCVTMOvF4nJpUIjkQoWSXqTeqRINxYukhJqfmMNwGXekQX/v2bew6cJKBjV3EwpAcUrh51QvJt47iWAKHf1QjvfE6Zl65i6n9c3THR+hH4Wtf/Bg71oTILEsxP+bDjXosH17F+O5Jjlcf4lW/8R6+/v1/QworCEj4fBLP7P4+3dEXsqJHoOPt67jvW8fxST04sydoVmtsWDtKsZinM5Pm2OljlIsVOjIDlPITeJbM8WNjbHvBTZRrYcrNCTxkbFOkXG3hiwRQMNmzfS/Xb3sZp44orBjSODNR4dT4ND41xO7d97L+qm0kkg6rVm5g58NlfJKMbtSYOGWhhRsUy/X/7n/sf1lcz2XFqjQ4YLstZElD8DRcwcRVBFwMZJ9GxIkSjSQQJcB+IS+JvpC624DSMUbSIfY8doiYmkDp9Pj5D3ZityyIDhCRKkRHNY6N7ScViTE9c5rLlq5k386n8Nk2vlCIektHcF1cW2BuOodlenR09bPr0H6eOPoML7/2jTi2jJD0US632QOxniilYgNVUrCVMG/Y+nr6N69hz307aTTqhLUoqqIgeBa0bHyqiqhICJ6N4Em0mi0E2UaULBQ5iCD58HQXdaHppCAIiIIIePwqyT2X4v38EvDCZ419EHjA87xltD3RH1wYfxGwbOHxNv6jsN6zxQNBVpCchXzyC8jrwDl60YWAek7zFEQEXGzLwBZ0FFHBsmp0b7yCjvs7uOcFL2b1a1/Lj44f4W5fhR+aM3z303/KFe5ZPvbiZbxu4yZWb5xjWyZI6/f+jZ2fOYEVNi9p2b9uEtBMookQqpJmut6kYVU4OzvFbENn3cq1rB3sJ5KOILoyhZMGWiBGKhlGLnVgTjps6BuAVJnCk2Xy+5pE5RS2aeGaEAwnaTR1WjWZSsHh+M4YL736DWS9YcKWH7ccJ3/mca7c+ApC6SLr3hJj5W/mEev9bF36MiTJR+14mOs3dLNsZBjTTBHvCaNJEY4eOUCjZBB2L+fH9/4Uq6VAPYU8uYIViU34AyESQ2Pcc+rz7D+0k6XLehFdl0RcY8WKHoIBG1Wyyc2N0WgJFOZLKK0QIdnH29/3GwQSIQ4df5qkX6BT66aeVynPzSPKBldt2YYmunzozbcys+8ZHn30awiyn5OHT1Aoe8QiXUzONZkdzzE1Pk0wUGXztgzpLglHaTHf1KnWDZo1h3hU/5/eAuckEdM58Oh97H3qIVzJQ1wg37ueC4JCaT6H7AaQkBAlt127QXTxVIimXbrTQdLxdcR9N3LNNe+mV/tNfv9PbuP6m1fxzvfdRsrXIOj30efP0u9fz2b1Zt74xt/Dmi0zLxi09Aavv/XlyIZIQNMAkdzkHB1dPRya282a+OWMTKX5wGfeQz5UJBXxc9PAtQCEXB8f+9jn+e2b/5C//u0v8OEvfRrZClCszRFVQzh4NKstZJ9MPBEklohQLRo4lk21odMyW4g4pMMhojEN1zGIJMJgSyiyD4RFGqPQNtWRwbuU5IS2/EJN0/O8RwVBGHjW8Etph+wA/jfwMPCBhfEve2343iEIQkwQhC7P82Yu4XuoNxrImnwOMBf9mYtZPxeWjTunYXrgOKCoIu5ChXdBEjn8s3vZ4qnMnZwg/LmvcNVdn+CP3/+nTNYa/M1HXsWapSG+9+QPeafvaoSzq6km9mOvT2J+Zh3M/vCST+Cvm0znZ1k1ugXVCHNm93YERURxLZ7e8RRdmQxn8wVESyOkBdBGAoze0E/5UBk3G+eZsSmCpkimu5f54/PUjTnSkRiGYZKrTOCPwFT9JKEu8Gk+ds8cQG9VGAxk6Z724w728LUff4ZV60bIzeV55IExlg+p3LfzIbLL1pFv7WGg912cnLuH3hGBiZM56nqOjkSGctGgIxhlthKjMzGDWddZP7yN0f7lVJUpxif2s2J0A5s23c6Dj3yZnqtXcXC/SaHcQreKVOfrbFoZQZM1ViwfIDsUZUnnG/nu17+P3pTB7yOxbCVeLs/KdC9nDz/NElGhOnuQ1avWsWvH/YTjvUiCwtTULD09A+zd+wRStUBjbgLdHkXRLI7u3U+0J08DF9fXJN6VQjWzIJX4x8/9iFAixq0vuYnt9+ygpuRYu+Jqtj/xMNdet41AwI9P9iNIsGv7o+RmckxPzWPaDq1Wi3KxhOM4OI6F53kYhsXgkiEURHTbZv2WdezZ/yTLRhKUpkD0CSQzUTxBIBwJUpo0SUVSOJaL2WpSyLewZA8Rod1cbtHNhcDY2BhXZrILYwrzs9NIsksoEsHvCyEK4OHiISIJMm/47a0cGxNY2qUy9mSZeHAFr3nTSxELISpmC0202ff0IXYePUzaFKilIvzwvh+hRGWMhknT0Llq21W4dQdZU2iuFClaLtlinIqq05ibJ7ulbdtFOvr4wj98gjtvuJP3/tlbSXcGeXT73cSSMfK5En6/ioRARAvTqlWJyGFa0jT1hkej0SCZjqGoIkgeruSS7Eyily0EMYztnFeIFrMNLywCdCnyq0bPOy4AwlnapDSAbtqpDIsyuTD2HNAUBOFttLXRc+Z2oVAi25/F89qR38U2Fxea4s8muwuiiOe244mLICsIHoIq8PYX/yZ7vvtt5i8L8/W//zy5eouj+TPIvSoPHr6HkYiB9HORfdvG2DnYQtnaQ7U8wZoL1nn77fCHfwgbNly8/v374a/+Cr785V/xDP4Cec974MYb4cUv/uXe5wtojI2NsbLnesLxbiRnkkQ8iSQLmEaL/v5epsaLRGMhys0i3oxDV/9Siq0ZWmWdcrOBNVlCUoOIERVRUFEkgVx9Et1vku7upGWYuD4FUZbbNCnXQ1nayZOP7UJdGuapZ44xfNlKKrlZ+gb6yZ9xGBka4rEDZzk89wB+ouzevYtQ0MeqVVdxfM8UetPPpFnl+sveTKl0Gl9fAGoi//LPn8OIn6BneYJSwcA08xiegBEqY7k5Qr7L0Xwq8ayPVmOGgZFu4pNnkUQ/st9qpwdKTZAljh4fw9N14sEge7Y/yZD8Alp+kVx5ho6eATIdK4l2d+BTJGqVOutWrOLqy1/A6qUb+cd//zyjI314VZUH7t1LcjgNPgPVk+jtslEn41BzCYfaRTv2zR7mhmu2IksCff09OI6FqoYQBMjNzDM9kWN68iipRJpGQ0fGJr0k3Q5qqgEkScY2LQLBKI1ak1ypTLlg0yio7HpojqUDg6QSGYJo6HaNVtGiXqnSk+4g3dXJmTNncFwHyb9I4VvkIy62wFZxXRZ4ilCuFDHMMtK8Ap5MrVKhZ+kQlimTCseJxoPE/WuQXT9Xbo5yzdVRarqBoLp0dQxBa4alK02efPIJcp6F1BQoNJrIfj+maSJJEoVSnquuvpL9Tx1gamKW+co4b7n5raQjQ9z2hpv4yMc+CoAWSTES7ebnX/x3QtkgZ3M5tFCQQqWMz6fiyhKSKGDqLbLZLFgtZMmH3qwQ1vxIImQ7uwhHIxw7c4SGqRP0pfGUdoaht0BlFAURF/ei7MJLkf8y5cjzPE8QhF/aMeB53heALwD4fH7PdkymZubI9nad42UqioJlWYvzL+JmiqKILIs4jne+r5AnIokKSCIGPXxz6T0kX78ccUOAmwJhXixtoBSQaJoVhipx+r44ReX63dgb+ommy2iHOvj4776Hf/niL17/mjX/9wDzvyIhXxRVDlFpHsWLNKjnJUKeja1btBp1kn3d5HUdrTtA4UQDUVeYNI+R3ztPsiuMf1UIJenj6J4xBuPDuDWR0ZFhDrtHySzpYXq+ieKFiKQdSnNVMokYsZUhHt69F7NHwbUaKEaYPTuOkoxpfO9HX6c4aTKx5zSdlzuk+5IM9HXwzJcbVPwmS4bL6F6BilOiOifwQO2rGGYnkiGiqWGioVXUBAtfbQnlEzZnH5tBaXq4Ro3V1yzBdEsM9gxz8uhRSvkw179+C+7TTzF2aoaxiVl028RFQHGgPlfCs5o08/Pc8VtvJyi5nJ6cp15uImXiPL7j5/T397Pv5ElecsutHNzzNNufeohNG65mMJnFtstYchPHUJg70UIMeAyvtJkd99PTq9CR3cjTO3cBMKz0E9XSNFo5hgaXEgwGMQyHRqtAOJ4k2zPCfN5AkKNoIQe3WSMUi+FXfYTDISqVCn4/2FYBF4dILIpp2vT19TDQE2fVquUoqoroiDy1Yz8tq8V1V25lZuY0x8cOACI2IsMrR9rgCHgL0eJGrcny5csB8DwHAQnPrVOv5ZBllWQyjiTDqYkzrFgxTKlUQMAk3ROlMLkCJQLl0jyxZIh62aJVrVOeHMNWTWyjQiAWxqkbRDJJTFNHkCRqjTqNVp0Hf/YwqXQIUaqgmRm+v+dR3JmTHKvuo6DXAMhN7ievyJQTFar5FrrpIZsu8WQCs9HC9qBlVwj7QhhuCy3sIEz62TDaQ90s03SanJ04hZIPEEwoqGqQ/BELzwFRAkEBpzWcAAAgAElEQVSUcd12Y0bBE5EkzkXQL0V+VdCcWzS7BUHoAuYXxqe4OMG2Z2HsF8qilqiqKoZh4NFurKaqbV7VYn7oIkC21enz1ZAEoV3IQ1JkBAFawhjln7dovFElMWMQWZ/C/u5OpJ17yX3gtbzs9/+OzRvW8Pvr72Ty8Twvu/w2fjJ2N9mOUWDfr3ha/ufl2DNHEByV0XU9dHWkMDUVu6yjSiJ9Pb08kz+Blg2Rs8qE+kTAJPdUnfCKFE7ah1ko0Tw8g6jD9GSBqC9MKp7C1TXm8jXsFmy4wuXI5CRCQOZU3kAsB1EkBUc0iCgh5qfzbLt2I54D+XKJWmGCgAaatRmzBYXxpciCRTTm59H7nyaTXIYsyOTtOqZvHkVuomWrXLbiNnIzdU5OeQz4U6TSGtaEyc6Hz/DC111J1b8XuaPJZKjJUflp3vzSP6Bc3EN8jcnkkyKqHCOaEIm4Aj5XoGHqyFoU3XU5NlkERSLbMYQmTFGp6fQPrqVRa9E3cBnHTuZoumkkR+P4VJ2hoc3sfToHokc8uAYlpBAIh8gdEfAHBCzR5czxYzTq7Zt87JpVaHIMQ1c4NXsSwzCwLAs1ECQWqZDsDvPylbegKAqSKBIMaBiGg88ngQeuCbpuMz9TplarMTU5QzAqEYstoTOVZHpmnkhMoZArEAqn6U0NcOz4DLYlYVqh9nWiufQM9J/LELRdB0WUmTg1wdLRgQVtCyzDI5Hyk0z2g+BSKjY4c2qG9MB6Tp85ycqRVdj1EjVdINkdYzpXRyZEs1xGdKqgpIl3L+HDH/ww8mCCraEk21v7qep1RNfGL/uIJjP4bI0rL1tHax7ETpmav0XKziJvGEaIWUxOzQHg6VGCmkW8I8OsVKKFgW4aKFIASdPQdR2fmkSxRSozZdRshtUjCc6cmiKQ8jM/N4/q9yF4IHngF32IptROLRQ8XM+7gAsuYTsO4qV3u/iVQfNHwB20C/7dQbtA4OL4uwVB+CZwOVC5FH+mIIDr2siKD8uysW0HWVXOmQ6O4yCLCz4Zr33HXARNuLj9heu6yIKAgkzm+uW0HB/f/ur/5gMbPoT6jWlmpQSP/dGj3PWpf+XQvh3c/b3vEgiJvOlHn+EDf/hxPvdn76fEGy5a39Gj8LnPQaEAV10F730vHD4Mn/gEfOc77Tnz8/D3f9822z0PrrsO3vlOeOUr4W//FoaG2vNKJXjd6+Cb34RYDB5/HL70JZiZab/+vd+Dzc+t8sXdd8O3vgXFIgwPw/veB52dz52XzaSJJrrIT+eIBsG0G8xNTZEJBdFbDRL9EcqWRViKMlPJ4Zo15IgAioeiCPi0GC1/FdFwGRzI8Pj2vWAYdLx8JXOnx+jO9nP82BlwNPpSUU63mkznpqhUXeJ2iOhwnGDE4uCeKW69bTMzT8yxZeNmZsdNMM8ykN1EtiNCYl83ChIhWUZVRVBAacF0c5JgqJOE3eDxJx8kQJQr1l9Jpy9MdniEmTNjvP+OOynrEqnBTsbsQ6QH+miMPcLOyZ+xQrqWrk1Fpidc7LyGZdu4okTTcwkE/Xieh950MEWRsF8kVy2je34UzYctWZiiRzCogSISVeP4fBIz5WkCHSHsoo0aCBII+SiW5qjXJRR/C8GMYTkJKvkZYqkMAMrZMao9ZXyxOL3RHhRFQRRk/KqGKLZ3ru0aVEplPA/OjE+iKArJeIJI3I+kyAR8Mn2RGIIQZ/WmwXOcdseCSCKD49hEk53YDQHdbtAX7MY2qrieh2ObJLvDCErbDMdzEdsBY2amcwyvXQYI4Lk0Wy0k0UIR/ehWg/ETU9hmhGrZYiJ3gnA8QVRUqc2dYWSJTDTiw3U0jJaLaCtoqNhmi3e+5jd58JkH6Qz3khLmcGQZ0THRkn7MWoNbrn05K4ayTJ8qstw/wLe+ew/XbrqKPbXdtGyBSKDt2oinJPSWixoJ0hEOMNuaQgvEwPXQXYM1q1Zgztk0KmWaXo3OcJBEsJul2y7jqYMP41ODuIJAQNV4/atfyQ+++xNk14/ptqPrF9arcN22pWouWLSXIpdCOfoG7aBPShCESeDPaIPltwVBuJN2OsIiKedu2nSjE7QpR2++tGUsZva4NOoG0UQQwzAQBPl8GiUe0kIvdG8hiv7spmuiJCPSTlaXBI9WzscN051c9qrf5YmX/TGbozeSU05x0LMIH5/niiuXQHCYdI/Cd74mcPzgCT7+7X/nLz598eruvx8+/Wnw++GP/gi+8pWLfZyOAx/6EKxfD9/4BkgSHDsGigLXXgv33Qdvf3t77gMPtOfFYnDkCPzFX8Cf/3l7rFCAVuu5Z+fxx+FrX4NPfhJ6euDrX4ePf7wN0s+Wvq5eKvMVRBPGj8yw/8BetqwfpdVqgiAgmwr2VBNSHll/muOnTyHPOgRCGYyZOmFNQXPjBCIJVEXiRS++lt1PnyB9uMmyZDfFuRKBYBpZtDly7BT1+TqbXnQLRaYoNCt0ZNOYhR7KE7Pc873T9KSG0A0f4ZDFkV1n6Yl288jh7fiCoCoBsrEklSmbyfE6Dj4kVJIhEbwA0aiG0PCx+6mT0DIJyftouBLF8kFe8do7ue/7PyJ9W4DpKYtVw2vpt7o4O3OYqdkSrqizLNMBjkcwYnJ23Ka3M4jR0qmrTcqWjKcb6E6FVCRKMuHnb/7h+wSjEWZm5hCQmJuZ48zkJJdvXs273nkHrgKSaFNpRIgnOzDtEh3xAaqNAvOTRQKhMEWzvSfzf/JPnG2MM/Tv/0CHuhRdN/BwsEwdUfIQaCdkdHSmMU2dbHcaw7DQNN+5fB8PEIX2JWoaLqZpnjMjgyENCRG/KEPSRRBi7StJOJ/O2c6ia9ei9UQP0ZPA8ejuybBInPEEBcln4snLqFtNJKkP3a5j2w6aJ9GY8rFX38uLbr8eb0agMm8QSYeQ/GBoXeiNCg19Fp8YoZCfZ2XHEGIgzO+/6z2cPTsJapQTu5/mpttfSiDTQ21yhrDm0oq7vOU9v4VXMPG+5iN7hcYpKwvA2uXbuHrJddR0gfHjO9g79QR9gz08te9ptHSA5Yk1LB8cJJJJUim2SGlRvv/tf2B/YpJAxxIkyyBqmhRocvTAMSJKljx1FNHFFcDz2lXTXM8D0UHwPBTp0vXHS4mev+4/OHT988z1gF+6u9QiT9MTPer1OoGg0m6hcIGDdjHN6Vyl9gsCQ89ug+G6LhXZz4H6BM7sY1ybWM212/+YAz/fQ+ybA2wdHuTKOyWajTB7Dszw4FOz/OsXv8Ob3nIHtcpz7zgvfzlk2goEv/Ebba3zQtA8erQNeO94RxswAVavbv+9+Wb4yEfgbW9ra9T33dcOLkFbe3zRi2DjQtnT9H/QMvvHP4bXvx76+9uv3/CGNojOzj5X25QFm4DPo9mERCZBb08Xa9ZuoFmcYd/e3SRUjcJkhYzcQ90oko4myc/mODl2kqBPxQlrlMtlOjo6AJHZuXlmZ2fpWZKFukQ4GCadjDNdO0211iDVGaYxNYHPbvLm2zdx11e+iVqOE+wMkfKSbB1Zx4/v+zlNu4UpuHz/wYeIxfzICQlP9jh1PE+EDkJKEk3wE5KjdPhjtJwZlmYHKE21SGd9jCxfQbNSo1gucHJqC1/6yt9zxcZtjM8/ztabw+x6TGHWr1NuVUnHIxg+Ea9aJxbuxW1oDPTN06q1UCWZzkwHMaOGaXkIig9ZjdGsF9i/7yCxdJzZ2XkCWohYNMqSpUO8/vZXI5pRlvRlCPo9gtEYtapOveajZpQIhbqIJGsIskJrZoGvefg0YX+d6sETREa6yXRmKBYr2LZFtiNNqVij0Wii6zoeDpKk4Per52rKwiJ52zrnplJUP4tG1YXBXkG4eO+fHz9vgS3WrK1UytTrF3NKC/kKTdPEsnUa5jSj64eoVkp0dPXTyM9wdvowD957H9dvuwGf62N69hS9fQM4TgvXEbFsFZ9fwlAkLEcmGApRyldIJNN0Dq5gdGQpgqbiqSLhdJh63URvmYQwiISCdA3EuemFr2bl0Byf/iy85pZXk7NbHP7JTwikkqwOX4fP8uFwiJVmlltvexmmG0B1FLo9kbJdItG1hG1b1/DY/Xczr1hIYR8dRIiGw8wLxnmKImB55y3U9k1F+H9h7vlCmwtPgPHxcfr6s+hmu2XqhWC4WK39QrL7Yoplm7/JuU2l2D7yjk3gHVvJF7o4WT/N7NoALJeJOYN89u8O8MSD97N0+TD1RomX3HIrD9z/KKr8XL7WhWDW0QH5/MXH5+fb49Lz+EVGR8Hng717IZmEqSm48sr2sVwOLr/8F5+eubm2VvlPF7BePa+9jmeDZk9nL2qXwqOPPcn87CxdmU5+9LN7iIcCdKS66BRFdNXDOFNieMVKfvbQowQiXYQFPzNTEwS1PhBkFJ9Kq2nQbJhIkoJjC2xasR7DblBzGjhNlYHuK2kZ08znczRcm3/5l4dxrE6OPTrB6Itk5opH6I4n2LplC/c++hA1dGQhRGFWpzHVYEn/UpaE+ljTNcLs9AzZwT70WoFqsUixmaCWL6BpEqcbVc4cbFf4iegi/Vk/1235XfacOMhsIUJ+dw456qfaqiJ6oE5L+BoJxIaJ6J9h8+YRHGMtz+zbiypJ6M0aUdmP5FNo2R6eY+F4UKvU0SIhbrjhOlKpBBNnz3Li5GkqxQkGuw2OHXkSTQ0hBiwq1RI9vb3EwhEi/gpyuIdde/aTyo4CUFIUev0DaMl+wrEg9UYVUQRNCzIzM4emaYiijKq2FYRquUK6I7UAhi71aqO9r2WtbVUpEuDyfCXMXPfimgzPJwLt6yQQDnHZ5vV4jgti+4KxXQnNHyPgeZTmbfYdHcN1TOYmq0yfncAvh8mfLjGxbIanntzJG195B4buoUpBLFEn1TnI+JlTvOCqmzl7ZhxXkEmkIsxXStiKTNOwEU2I+ByqeoNAKo4q6QRUMB2RTS+9gupMld7hdsGSb/7DXZyoHuFU7jgf++jf8cxTO9iyaR2rVv0RoUiUD33wvay/7RpesvRaJMHFJyjc+LrbUUMBlCeeoMOfJuLroV6c59Ceo+jVGKIg4NLWvhVRxnIEWAgEsZBSeanyawGaHmC5DpLnYTk2uq7j4l5U3UiW5XPtMBZB0rbbDaou1EZt10FEIChqeJ5Aft88TqvE+Hdn2BUZJ1INoiZc5qfK9A33cPDIQVYMrqG/r4uTp46iN5vPWV/ugjKH8/OQSl18PJNpjzvO8wPnzTe3NcxEArZtg4XYFuk0TE//4vOTTre1yxtv/MVzW3aBUtNgdNMgjumwf89+4vEYxUKOoF/AEWJIARWfDaZe59YbruVbP74ffyCKIPmoNS1ERaXRaNCRTqA3bcJaiNxsDt1oIAkOgu3iswS0kInr2Gxc9xIeOfJ98qfrjPStou+mFbRac6QTMpYJBw6OEepIIzVrjCaGGc+NMbr8GvJTdcqVeSrhEn6fQEBsIMd9lHWVJb1LODN5Ast1GYpmwLbo7ejCsCUKcxVQDbatXYe8VyCVG6AhVZhPuHjFIko11K71GPZ4wZYNHNk3geibxTKr+AJhAgERATBaDXz+EJVKns5smpHRFeQqBXbseIJINESroRMMRVi1Ygmq4LJyZCNjR8ZpFD20UIwrN12JqLdIZ9L0Ln0Rf/apvwS37Zdb8c0vEvT7cNJBLMvCMAzwRBqNFoGAD9cBWRZotZq4rkt3dwrbdsGTaLSaICi4gkgsIuPhIWDhec9/uV5SAV2PhXiA264F4gC4CEj0ZJNYDjiWxcrBAbojMer1OnPFPPFwB6bpYDYqPPDd7axaPcrcbBlNbRco6eiKUm0ZROJDnDwzScUUWH/lZSBCGBcEEWwL2RNozObRohEkojiWRaWlE4t0gisgJ/x4ShiAvvXLGd91lL//2Pf40h//LYcqB7jy+pcRCvu46+8+ipbQmZ2bwjeSwBcNoXsWUcHiJ//8BU63DrDv+BF++Lcf5l0f/AOaio1eE1BEH6LrIkoSpuUgiyKW02YOKOIvV7Dj1wI0YbHAcDuaVSlWSHQkzvUCurCF76J2eWF2EHCOv9m+OyvYkoNhCVROwdhUHtttsvnWNZyaFZnf3SSaGGBuZp5a7hBPTT+AzzNxDFi/ejMX922BH/wArriirTF+9atwzTUXr314uA2IX/gCvOlN532aiyb6jTfCW94CgUDb97kot9zS5oBu2QKXXXbep9nXd/Hn33Yb3HUXLF0Kg4NQr8OuXc9dB4DrdCBiorfKhP0xXrDpWvYcOoyUBk9yEAUF1fXwbA/d1Gm1mly+bpT9x8ZxHAvXdYmEAniOjdEyKeVKpJJduLKL7hg4lkGhXGf8QIl112SRUYg0LCLFNJctfwHJWJzT05N0ikvRwjZ6oUFIi2JbNQJBDQ+Zwc7llKdybBhdQ73cw2hPNx3JBJOlEzy66zCGq1IuHkNAwrE8Zs0CmgBqUSTuj7B6NIvZEpiemme4P8tApo9ozeOh2f3EpG5mJysk4hoEYPvO+7niiq3tlrFDQ8zNFRAsj4HuELFIBx4i+4/UqbeqtIzmAksD9JaJaZq4tQZhTaVUmUV3WyxdkUIlhGHPMTN+HL8vzRf+5V/JDK7gS1/9Mm+943cAmJUskoEAcdNCR8R1QdN8OI6BbTsYhokggKZpGIZBvdFCECRsy8O0TTRNQ5JEPE86Z0b+MjUfn0+8C7FVbBe8wQNR8AhqCq4qIIQ8Uj3tJoeCB64Fhg7f+dbdpNQkZsFGbzUY6MtQLtVxXI+gJjE1UUSLRFFUA0e08QQJyRMQXA8lEMR1HFzDxHIskBRa9RiKUGP29FE6MkE8MYbQUIEgfllBiPs5cmgXAwNDbN18PZrbi+vkeOHW2/jhoa8xsKIfLypSpIFUd9FDCje//k3wNZmXvOYN/OCJp7BFF0lUEZCQEPAWEmQkQcQFJMH7pbpQLsqvRWM1RVW9ZKYLUQRVFgnIMhs2r8e0rXOAuWiaw3mAlCSJRYao53kgtulHiqIgyR6eIaD5MiQVHStSJrgKwpLNnE8lc3gDcb+E7BloPh82Ao4oY5ouvevOu2Vvvx1uvbWtKebzbdP6ve9t+zEvjJ7PzbV9nQcOtF9ffz387u+e/43ve1/bNP/GN7jIFHjssfPR83j8fPT82eT2e+9tR9zn5iAYbPtUP/CB/xv/jf9f/j8lXifp6AOMrBsGXBAWOyIArn1us85M1bGaFqbeQlVVghEfqa7YQlIJOHab3oMICC7eBZvcExZSoEWpTbH3HDxHBEvAsy0kwcF1bQT8iFEZs1zmCx/9CK/+xJ34ywEE1SEoBhCdEHYgQH7+BOFIFlcH2zGQZAdd8tBsAUmAz/7pn9C/totHJndAyUc+D4LR7vrgLMZPPA9PcHGcBUaO5/HzBx+8pMZqvxagKSuKl0ikQJIRXAdFFLj+hm0Yhn4uSi5I57OALiwa2q7y7p0DTWhrq54r4pcEupaFWbYqyz37vk1vajmDodXMFWcJNoIE7TjIIuF4BF9Ywm7ZdPd0Yiiv+G//jX/5l22z/s47/9s/+iLZdc+fYNs2cZ8PLaRRLBeIx+OUGzWOjY1RNGeJxSKkNIVao4wkiqTiCVqNJhOTOUotj/6BPgRTB9FhdmKGeCiBGg9z5MQU69esZe2qlTRaNoFImHA0Rlc6gCDKTM3MIYsiTdOgWq+hiD6KhTxLBvvxUHE8G9008ByXVqvVzvjCQ5J9eKJDpVDANE0QBWTXBVFC0zQ8r4YiSjQaDURVANEh05UhHHTbF6TZQpJdOnoiBAImqcByCo0mR/dPMjXVoCOZYnpqnmgqwQ3XrWT/jgOcPu0wWyyjRE3q9TqhaIKvfusBavUSHgusDSTyuVm+8cWPUq9W0EIasiATibrEogEG+3vBU3nruz6LEsswONRLuivLB9/3fo4eeoZUehBP8GM7LTxBxtAdoqEYhXylXepQkrFFqNYrdCZ9/OWnPsIzu/YR0cKEghqqrBCJdKMFmiQSCa65dRlXXf5KXDGyQB8S8QTzorxpAQHHawPZhTrU+QDShdxmgYcfFti27dJN0/9Mzlt90Pa/tv2mgrdgKXrtFZ7XeNvYY9s25cocsWACNRCgXq4iTpWoZkQCamDBHSejOCqua2PINooQRBPBUmTk/0Pdm0dbep3lnb89fNMZ77ljTapSlao0lEqTJRljI1seY4wZzdDgTgAnhCzGxiGd0CtJZxHAJKyVDk6H0NCLMBhoBmMMNtjEso1lG4+SNZVUKtU83/me4Rv30H/sc2+VgO42HZIl77VqqVR1695zvrP3u9/3eZ/neX1NURTh5ytNpxH8ws+/iyeiZxCXE9bOlygpaYzBeBeCuvdTn94AiTgHH/7YI1850yiZRnq8DZigv545CiV3PvztAWp/WV65vZyxRFGEM5YkTlDSc+3SCu2liruPfRWPf+Zxbrn9QWbTvVBCEmUgIc9LahujnODEs+e5+e6/9lX+/15Xr4aM8pe/DKXRf+0aLCyipjgSEczv2YfwkCJ57RvfzOe+9EmsK7ly9RyLSzOMRyPquqLVarGwsMDF46dZ39pkqddFarjv3ruJZMSF1Ws8/NBr8NZx8eJlEqGoiyEmH7N51ZNXJcZ66rqhcRbnPZGKSSLF2VPnyeuGuikx1tLrBuwqSRLSKMLUDXv37WJ+ZpY8zynritJW9Hq9ANuUC2ipaPcdi/0BL5w7hahnuLa5hXOOsmjQUcPZU5sszC5x9PacwcISWTzhnruW2L20h8lkjaI4yR/98XHuOnIP3/29B2llu/nUX5zmt9//B1y5uoG3DuEl3gsiragrR7eTcu7SVSLlGVYFrTRldROSeMLp00M6Hc3Dr3stn3rsWT7y4T/n3gfC5qnLiM2NEcaPwHXwKidLJEW1RrcfE0UJwipK59ncWuW3fuu9PPnk01hrOX7iBK96xStQWnPh0jNEaoBz8NhfXKAefYTX/p2vBZ+Gc8KLg6OjQkkZjDmId/7c2hvdw9xfOTt/G8tPu9IhnwljaJxzILheEf414kGtNWnaxtMCIEoS4pt2cfL453EuZW5pF0kiIbVhKq2SJFKxWm2xYLtUQpDEXYwxRHHEX/yXP6Pbn+WO1i2cOHmRrNOlKfLQWPZT05LpklLh7BTr/TLXSyJoekLUl97jI4n3kOc5URLtlOTb881v7J5D6Bxud9hjHeHd1KDAGTyKugAjGpLRXu4+8go2ro2ZTReRceiaSQnSGLTXRCpCyL/dR/IrvxJK+Le/HXbv/v/++v/atbB3b7hF8VRVEbTMMiKe0lbuv/e1PPLnH2T/LXdy7swTaCmQkWY0HpKmbfbsWiCvauI0YWHQB+dpyoKF+QEz/UXSOCXPJ8TCMTs/oKodM3MzrJ08RZq1qastVteHHDhwgLm5OVaXr4HzzM30qKqKvMo5dOAQly5dQguNEJr1a6tcPn8Br8KF2O52KIdj6n7O5sYaxIrFxUV0EnN2fIVz585wbSUDqdi1aw9J2uKOw0dJWglbG2vM7zqGsJavftXtVGXDTHeGN735CNeubHHu3DIXN67AU54jd9Tcetdevqf7d/noo4+x56ajbG5usjkas7y8TFEUNGbAtc0R1pWk7Rizskza6aKUQDhBN2mzMvK8cOoUK9c2+M3feA/waxib430PZ0DqdYRPKXKNqZk2dWrirMY2mlRLfue3fhulBPfc9wBf8+pZmqailaS8+rX3c+stRxmtOt7/h3/M1bMf55Of/Dj/8qfeDYDzCnVD1JQk2wkenuvSwBunvP5NDSq+3CUQ+GkYd44dM3HwO9mlFyCmQUuI61zrbqePncYtqSNMKnn+0c/i0hZRb5601efyqef4+J9/lGymxT/96X/F7sUlGtegtKepa3ScUlUND772dcw+u8ilE0/ywvgSdeRQEoQLZiXbSZmUEuuYNp2/wmYETcMmeEFT1RAlXLlyjZsPHdgJkhKBmZqG3sjRvNEi7saNYK1BIdAiRWztZu/CzWw1BfGiICpaNBRYnyA9JO0WibYMZnpsFZO/1Xf2jneEX/+9VmVCmRIlKalIKSc5ThsSHTEeb9Jqdfjav/NNfPovHiVpDZC+5NrVVQ7ctJeqMBzcu5vHX7hIUTm0yijrMa1uBxmltPsDlI6xMoIoYrUxeB9RrQ/JerNIoVnc12Fu9y60VKTtHrfftYeLFy9SliU6S+kkbZZXc9LWPJPJBCdjWt155pdaGNfQNA3WOfr9BWItGCws4quG1fU1vC/IOgssLXQoqgbTbHFw712cP3eGSxfPkpcTtIy4/PxFHrjrGE+feIoDBw6gEGwMt2i329y2b4nf/8ATnG23+bOPTjiwb4HHnvsSpUmopiX5/FKf2449iPSQlyPycszu3XuRMZw9dZqL185x6NBhVpZXUaJAaM39D9zDeFTyhS8KzpyCj3/yfTzwwBtQogfEZJ0aJT1CJiF4CY0ZSbR2/Kt//hNsbm7y8pe/nLo21EXJeDymigtOPAuLcyWzu8b82Dvfwb/52X/PnO1x+coFcBlxGjHT7+5IjN1UWlxbQzQ93h6PlDAcDul2u38jTuLfZHmxPaIs2Mxt58CeabBi2sH3f7VKBImUBtBoJdl85gWE9uyZ1Tx/+Qz92d3ccfvt3HX0Do7de5Tzq5fwg1lMEmOa4bRxZZAqIXeOw3fewb75JR559HPk+RaNlEjlEM4j/I0jc7b/+5XG09x+uN7u3IjLV65y6PDBncD4lykBVVVNR11Mie5C4Jy9bt7BNtFX4jZ62JakI5bImy2kj0k7LQIiYMF5aqsYFY7KRFjTQ+nhf88H8LeynO1TlsHTcTQa4c3UUs8YcmOJdcTm5jpeKh78qq/hU48uU4xLXGUpqoYsiYkFzM/0GQ0niL27aGrHeLLOzOwCi50Oo7Ik6bQQtkYojVIaL1JkUQISqUIJ5ZxnKx/T4Eg7Xdr9WTY31rDOk7bbOOfoTH0GOt2MoqWzn2EAACAASURBVCqJoohWnFKZBoen1e8z2togSmboL/Uoy5K8WKfV6dDqZyzM38Sps6ewTY3WbeYWDiKAbL/luUsnufX+OxhPNnj8qadI0pQ7D9xMEV9BtSO2yiFSxZjY4qIsdLMjhbOWlfWrnLt8Ho2g00542YMP8P73/zGNa9i3ex8L3T28/70f4dDBw7zu9Q/wF5/7LHGUMTvX4c1f9xb+07vh/NkVbrtti7k5jRSe4WYBPiaOGsDhHMSx5tzpM3zgg+/nZQ8+QG0sLQk37d7Fnpv2sLa2xisfPozwmgsnDZ0DNfc9cBdffOJJrl67yB23PUAUxwhCBmmMYX3TMBwOEULSbYXqbHa2C4IXsU3+m+w/70KVZ0Hq7Z/jEF6HRr0P4ZMbBpptL+8BG8JRU9dc/vwTyERQ5TX7dt9MnHSpfMNoUvHxRz9Blkhuv+9l4AU+SXEOvBM0pkJFEounvTSPbxoy72m4/vNuhPaEF38jsw54iQRNAeA8XokQ/LxnfX0T4UESPDM9ITB6rqsegmIoBEkhRKhJ5PUbzEuIpObKuRVuP3oPxtSk9Qw+CpQDqcALgZCSxkhGjcU5zbUrv4xzjn0HvpPVy++jtjXeGpxzNNYRx3GgQ0lJp9NhNAruLEiJt5bFxUWkFDhnsKbGuIq8KmmMm/p+KrRMUAiKcossSRFCsbU5IU1T0jRlfrZDHCkcjvW1EVGasLq6zmAwCDp9IYPpalMTRWGWeZ7nNL4MUEWcUAmLUAolNGiCrt9DGiUYY3jVK9/Ah//0d0miGGMFQgn6rYQD++Z4/oXzrG1tEiuJkjHtTo+Va5dRaYvaWJxtiOMwajkvC/bvO8DG2jpry6vIOMI4i45TiklOrz9ga7hMEsVga4TwOGfIsiz8vq7oDLq0221GoxGdVkoiAy+3152lkh6Mpd3u0GaGcjLGuIaVrQofd2i1FDae8PjpJ3j04/+Fw8e+ivGo4Pzv/RGuViwvL3Pq9AvgWkSRoGkm9PttOp0ZkqSLlCXGVkTRtKEiDHgNQvLC86f5w/d9jLvuPEZvZpZnv3SJU+oCD973Ci5dusB7fvW3mRRNGDcNmGkC8Ccf+AQf+pNPIFXDqXPnkRG87vUv45UvfxOHDt3M0tJusG0++Kd/wKEjh0EpBoMBtx05zNE7buOhhx5ic7jBT/+vv8ba5FHe8qZv4/E/eYrXvfZVHD95Bq0MWRYRJMhyJxgmOmd+VoeEQraQUkx5nuJFZt7/LYKnQkLt+J1f/y1On36BWGuSKCbJYlrdDvsPHOCVD78CnWVY+2IVjrMlmAvAEUSiWV67Qr8r2BgXLM53kE7QCEEaxzjr2HP7zeA0VoLyCiXBqylnWzi8t5z7+OcovYVYI2zgeAu33SWbVqy4qYTyKy7T3L6Ftrt7Dp2lpEJRaTV1cm8QSu74ZkZR9GIJ5TTt3lZHeO+m9COFtSMcEY3Ncc5gXIRKNI0JX9vUHqEcQieYqkIQIaZAkVcanEdGMVI4EhmGzUsPzhg2JzVapztuTGVdsDaZoFREJjyGnM899jk+8+kLXBwPYf05vFQs9m/l+3/oe2gaTWk83jnSqIV1grwsOX1pgjUhg2hMTRwHL8Dl9Q1cY4izlKIoiGNJXQ6Jo4jGJ8R6BmcnDPMRsVY0tiGvQtNFRyk6msrIHBgSKpmx1O0xGo9p7WqjleXOI3eQZLBxrSHtJSTSESc9ov4SeZ5jhMZKT6Rb1FVF2upx+UrALuOkh44j8jzHG09NzeraMkJFlHVOmqbEcYqpasZbm9gpvmbLnLKudw505UHHEc5asjhjPB7T7s/QFCXG1sHLU0parRDofv5//3WefPoZQPKpT5zCe8+73vXTdLt9Tp04zubGMkfvvYNed4YoStjYqJB1w+pok631NU68cJLPP/EEioi0lXHg5j2gIx5++HU8/eQzvHDqORYmS7z+Da/BOkUcp9ResmvvYRrjcELivKcqc557Dm6/537GW2OstcwMbqOsC86erDjz3CMobei0EzY3x2xurjM7O08cpei44W3f+BZElvOFT3+Bw7fu5WUPtfjS5+/jljtu4uTJk2jpmUyGxKbPySdO0m7N4JI1hBAkcRstDELFeLq4yBGlCQ1gii1aWRePwCLQnp3ujEdMMz+QwgRZ87ZhsZchoZl6OtwYa733CGtASIxSPPr+j/LCiePcd/+9HLr1blImiLRFV0OzGPHZP36CC8+8D5UVfPsPvg3PHNIbMBGm/DzReAgcQeclZuApixE1Gb6qEHGMbxqk0NTRhFtvPxyyraLAUIOOUVGG1AqMopSK/Nlz6Dhipa7DaHBrQ3lOgAik1BhnsAEz+LJj1UsmaG6ny85f98ccTQpUGk/LCo8X0zcsXuy6vO2CJKXcwXS2NaXb2eg2xUAphfUCYwxNYxkM+oGrpaAoKmBblhYeYlEUO27xSmqaJhDAa+fBOdI0xZkAK9R1TRLHVHWNihXD0qOTDvtvepBnF4eUaczlSyW61WIw250GMo/3gkF/Dm8hihR1XTLOJ+goYLXtKGSz4bKIKWpHUVjqGqRMUTKmLCxoQ+PGCGnQKsG7IE1V2iKVxjq/c9FYa+mkKQcPHkaNN0FnWOtwCITw9PtdJhsjlBI0xiAlTCYFSIjTlPGwCPQgESgkN910E8tXV8iLCp1mzPf6lNUY4ywOQpCpa6SUrK2vI2T4rLPpZWBMIE3HcRzUX85SlxahJFJqpFYBcrCBIeGFoNVuoyQMBn2+/du/lR/6kR9mY30Laz1xHJO0Iuqq5OUvfzmra1f44pe+yKFDh1laWsK4EbGS3H7HQap8N5UtWNlcZWlxL+PxmEcf/RiDuSVeeO4ZIhUz2nL8vbd/K02d00oFtWmYnxswHI4p65raeJqm2VGpjUYjhAqZURR5OirBeo+pN6lKQV168qIgThOapiGJQ3bYn+limjt4/Ml/ztp4F1cvriCcp6kFvd4syIhz5y4S984x6O8JPpmTGZx12MpjowHWG6wa0TMGaWtUmnDt2jJ6tyZO2ijvEDIwHAAEFu+2DYr1Dl3JA267ypMO8FjvkWzLNj1eBQNxaeCTn/oEr3vNa5ASaneF1TVBYVeZaWe0xy3ueWA/H3v/pxFDwwc/8CHe+tbvAqEoy4pYHOHxz30GgPUzF3j+xDmEgvmbZ5k0FcqZ0JSk5uZjR0BkmMZSVjlKeuIoQwDWNiggkooTL5ygNg1qyhPd3vvOXacuKqWw1uC8+bJj1UsiaO5gDf7Fksiz5y9w+523U5sqlOk7YK3fIbffyNn03u/cksDO1zslKPOCXrdPq9vi0pVV0izGTgpqU6FUxCjPsSZ8ryiKqOsQQHWa0TTN9FZtphluE25csY2HCIbjyTSAe7SMEY1lpuvIkkVaieTlrznGBz7wBZpak3Tg2tWzrG6s0ssGCCG4dnUdoeyON6iMNKZxJJGizA2eGBDkhUXEYaNGOsYJT7vVIktjtCxYHQ+xlCQiJc36VAYkYbNUVYWOkp0AX1vJzYfu5spzj9LtzuOFY5SPWFSQJS3272nRakfk1YjVjXWywQJITVFWJK02xpjgEzluKPKw6XYfuCl0oIebRCrw34wxOFdirSXPc3qDWYp8jLEOm5d0Oh2aqqHV6lDXNU1jaabllKlq6rKhrkuyrL0DjaQ6Zm1zDSE911auorVmMpnQ6bbIyxItZQjSAs5dvMDC0jz33/9yWq0Wx48fZ3NrBS8zyi99AeEEXkomkxE3H9zNr//nX2Pv0gLtpMP3/aPvoygqhuMNrN1Ca4urJVoKhBS0MkU+qaiLHGcEURwu/GK8hRCCsXM0jZ0eVoNtBIgKYwu0jmhMgReG8WQLqffTne3ywQ/9Il/7pu9jbW0Ff2QXp0/+Gc8ev8y5cyv0+se55/6X8+/e9RniRGP8OnmzzMzMDEmSccu+PczPz7O0Zy837T/IxGgWsyUmo0vENy8Aw5DdNQlVEdLG4Vq+U65HrSjY2EmJnFZ/SDElq3vElOfkfUhMvAxZ2rv/xc/y0ENfQ2UqbG256+grOM1jbJ7fZP9tS6hojktXcr7lO9/CL/zcL2Ozhsf3fpbbbnkZayvLeCrufPANAFx85glUaejNLzHoDqgKg5OWRAlcZrnt7mM4GyOVoDPTI5+U22EB6w3CgbKeFzavUicW3XhqKXDIqRGzQ0uF9aHnoYXE/A16Yy+JoAnXSbc3dsUvX13mtjvuCDcBOmAmO3yqGz3x3E4XTE2zzRvNipWSbG5s4H2L9a1NTOMpRQDiq6rC2pLGerIs2zm02/jWaDRG6yC/SqIIYwz1VN7pp8Ha+JChKaVI4pQ0iZmfG5CKMameo7Sa933sCyhnENEMlSmZmekSRRE/9KN/l7e+9a3cf//9xOkiWsVEkaAswihjUxisDS72ZprlKp9Ob0hLlgmGk5zhJKecrPPIxz7CZz77KLGSvOnvvI1XP/xGPCpw5ZRDRTF5HuacK6ExRjMpC9pZj7wumG132djYoPYVVd5w9domcRqz//C9bNSKsq5Dpl56nG1IkhTnobKO+blFhqMJzguQGoPf8QuoahOeqXCsra0jBLSz0IwbjiZTCIYdx/40zjDG4G3I4uI4BWA8Kej3ehTThpepApWq3x/ggMloRLcdLOAipUJZ326zORwjrGXYjLlp3wEO7D9ChcCVayAcZVFz8uxJjh09yk/+q3+NFpKjt9/JM8efQmUpu+bvpD/TZXn5KpUtGA6HTMYFqUqY7w+I0NRFycZwK2zPuqa2BmNqlAZrapwIVYx1Au8SpHIoH+EF1GXBfffdx6lTp7jz0DfygQ/8Krcdu5n1dcvr3vgwH/iTP2d+rsczzz/H6XOXiFPLzMwspnG0Ozcx3AqSzOeONzh/jiQ5i5Z/glSCJEoYN5doZW1mZ+eZmZnhpv172LUrzGlP0py01QomvU5gqgnGOcoSLDZUK0LvBNMkSXbOG95A7ajKCUU5otfvc+e9d9Nvd7n/oVdzv1O895d+iV0PDFg736PT7XLXHUf58Kf/kK/71m/mC599jNnZFu1ui9VyHehw8NBeFmbfyNX1DUzSY6OeTJMjReMairIhyzzB5w3SpEXTNCgsWkYICZQG20mw9QTpCUKAbdWg3ZYugbMgpEDJLx/jfckEzRsD4PYq6wpT19RNTZJIrAs3xLbyZzvljqIIpt6BsF26e8BhnAclyTfWedWDxzh78Spx2mJrMqLT6TAcbqK1Rk2/T1VV2LpCTh9NO82omwJvg5ogSMLY0cUHmoejqiriOKK0DePNCZNiTI3GNxs4sYtydZXh5U0eeM038cyzn+Dy6ip//P4/5D/8/HuQUvL4F7/E8uZnieOYN7zhDZTleJoRhu6ylJIsC93xTqfH2vomUnnKstkpt/fessjV3zyDsg1Rusj62ojJyGDJUSrAGMPxeOdCaWhwMmJiPAhJmraI44jaNNx86Ai9OGF1c0jayTh/cYO4PY+RGm8cQkJvMItraqzQzM3NUVUVpnLIKCZyYX6TVMlUQheeWZS1SVEoFbi0RWOIkoymLDFO0GoF4ru3BrxgfrDAqAgmKjrSRKlCRzHaOibjAqzEO8VwXFKUJbODAfv27CbRivOXr6DjlMYalPP4KQfXeU9ZFLztu76NX/uVf8sf/cHnmJ1f5PDBezn+3EnuPfYynPGcOPk87c4MdV2ytCtj//5d3HH7Hs5f3uDixYsIoZhM3Yi8De9xNB7zyKPwpte+nqYOiraL5zf46Ec/yvLmCrfddhShLJWfhOfiIFEJ+SjnTz/4YZ587HHe+vWv4tv/h+9mbX3M5auP8cE//QCtpE8xXuOppx8nTlNYi9haHaG0Q/hzwYfTe3TURilBpEGKjE6WIWWJULPkWZurF2uUWuGJzw5JsxO85i3wc+/69zt7WfhyB/IatDWtboter8dNhw+ysDBHt90hSeZAJmyur1KveX7jF3+Fwa554lThsLR6XU4cP4Gh4ffe89u84zv+IR/66C9xz93fSFGU7D24wMJTM7gSFueXcL5guOwZ3BwunPTo3cjNVXZ3u+AisJ6tzU28mBAPIvJyDYQlVTMgNVKGHgcS3DZjZHnIuq8C93MKS0m5LcWeSrOlovFmp2z/ctdLImhOQ+A06F3Pk7VUbCyv0pptTzNRdsri6yYGUy0617txO7ZXsIO9nDtzgqWFr2N9ZZnBfBuZWDa3SoSKMNZi6hpnDK0kI05UwO+AXreLnmKKrSxmfWOIFwEaSNOQ8UXO0UqT6aiOgtwSut2bIzIxw8JthvnBrWj5RXYfvJW1csjV5z/F+fNn+fwTj7Bnzz523zzDHd39XLh4jv/8K+9mNBrtzJtZWJxlY2MjYK8CDhxYJM9LVleHWAPf/LavZ2tri+98+9/j8194Du883/Yd93P2zGmsHxLFHaxtsLZBJwFDTJKEpprQNJK4vYjxlnxSoOMY3Yq5trzJ8YunuPO+lzE71+f8hWtsbm2Q9ecop/LW0TjH09BKeljjGecjtMooxuHZ2aYK3XulqJvpsDwHwllSHdM4gdIxHkGn26csCoaTnE6ngwGSJKW0jlarA0KwtDjP8soao3GOjDRpd8BkOKH2iizNsFLjUZy5fBnhYZKHbD1ONHGsKKcmGU1Tc/rCKb7lm99KpB3f/yP/kFMvnOPWWw/jTYL1giiL8bHAOkGnNaC2PZ45cZXJZBI8L0WETjM6UYoxNVhHu5OxJEOFcvDWW0mkZDDTQz1c89UPHaHdbrG4sJurV7a4cmWNi5dP8cgjn2RrdQsv4OSzZ6nGJY8+0uV97/0U1qU01ZiF/gCXj7h29TJ7ews4ZckijZQa4Vs0skYIgTE1wgxxtaQRbRo1ZjTZmp6lGC10KEttw969c1y8vMZrgAvnziOEoNVqgb+OPV/s9FByRNOs0/3MBZoip2kqqsZSVU3wAnUTZvqzHOlkqEixtHeJlZUVPv4nX2LPYcmu7jwySei2ezi/SkmHo6+8k5v2HWRSSKpySNzSHDjskHUwrQ2c3i5V1CLRCryn390FpHjrcfkI6SyNLRmOh7Q6/dAwbZpgEBJFnPnSE5TCIbygdhLhw76T/q+6QgmhvjKt4f6yJnb71+XLl7lj6ShOhulx1lr8DSohPyWq/mWyu3UOpYJDUqQUQmlirZif7RGnmmYtx9rQZXfO02oFjWur1UJpKMsw6jMfT9BRyCTKcqqFR1A3zY6Za7fdpq5rut02dnqARptbyCrI6T7yyK/z0Y9/iTOnTqN3f4k7772b8dWnWb10kt/4zfeQRCmjYUFTTVhYmEPp8EEuLM6C9yjpmZvtU9c1aZpSjjVa9lic7zIz0+Hkc2f45rd9CzOzBf/pV36SKM74+Z/7T8zOzvCe9/wi3/ldP4DWobwq6ppWqxVw29IiVMLMYJ5UTDDGsm/fPuZ2L7G+vsmKc1xbXebEC8cRpMStxdAVd4rSGtpZTFXV1MJQ1xV1U1Pgd6CDSCosoWLQUu3MZrFYXBU+w1jFGBOyZakUGENRllgs1rswonlYk7Q7rK6u0m53mJRFeC9NTdrp7nzvOE5Dg88bslZKO8pw03G4Wml0JKibkiiJOXfuAhfOX2Xfvv3Eejd1uYazA6wZkqQtGlvTeEcSpQwnOYUpgwmMMniXkGUBPkhaCVSANRgEVR1MrJ0X6DiINNqtGazpYk2bjWsFSkYcvGUXhw7t4k1vfCurG0OsdywvL3Pu9AmuXS7JTcH5i6fZu2vAfUfv5siBBWbaA4ZbJZ1BSrEFzlesrJ3n2vkheTGmLAs2qoq6LkFYYi2pTIXSMaUvkEiaqqYxNVevXsXYacN12ATGQllg3WSn2su2NogE1E3JOE6pq0k4S0KAl8TaI+MZTKSZjAtkFLiiSgu+57u/nvXhFm9+sMP/+Vu/wPytPTauSObvipm/aTdbFy7QbvXodcXUVb6N5iKwhBuu0UQJdVlSTn1AhZIUdkQSZ0TSUuRdYmnp97toFeGlIs0yXFPinOPc6RcwNiRT7oYpnDsxx2+X6A4h5F8JpP9v6yURNLfHXWw3brbfgHENl9fWuFMKjLFILWHaOf/LGOiOWkiEcRiIqVZdSJraoVPBF4+fZtKU+KuSJG3T7+uglTaOWIeBTStrI6Rq0FHA0Gqbg84oGxM8+aKY4dYqaZoyNzePlDIMespajPMKFYVAIaQgVjMsvqzFP3nLr/Jd3/Fj/NP/+Uf5337xd3n+iyeYbF5FWA+1QkhFJ82QrQxnwDaexlbEcYwSGikE1lmk12BjirImij2mtmzimJmZ5ZOf+BS33/rtzHY0J55/nu99x7fysz/1y/T7Xd7973+Kn/iJH2P/gd38zLvezWRck08q3voN38LBQ7fh2nOY8ZAojinrgmtXllHesXtpF6YaEUnPoLfIpbJhNDFkWYs0jhiPJ/R6PfJ8gow0QiW4ukZ40EphrCdJU3pJC+8MjSlhqgZpTB18U21wsqrKZvq5q6CWqR3WOrSQRGmHvKgoqwo2hqEszodEkcKYanohxNMyC0BS11DXBRBgl62qBCfwIiJOdfCsBDY2VqhMw+HbD1LbkjjtYIVARyntJKHTatN0aooq8F8jFQ6acw4dxXgLadzCGUvTNGRp8NMUus0or4nbA8a2pjU7B95QCUmaphRFThQpqmLCYLaHsSXd7CbuOHIYZ03opHf7YC3WVdTVBKcadh+YoXENKEO3N+DYA7fR7iukiEL5KVKEd8Rao6IUbwy2cYzzEdYYxltDNjY2GG2NWV9dAd7HAwdvYTQaURQFtbPUtcEJaFxDaS2gyJsK46CwBl1ZVBTjpELREFlLNWcYjbfI2ilHd99LuTHGNQ1DOeIbvu3bKIoJmysjjh47RlXF3PJVR9keD+m9C30IcQyA9uL+nTOudERTV1R5QZa2KYuCKEnIJ0NckrC1HGhd2z0Ih6etMp7++Beg52mmTJjGWfy0+pRTTbybxozamR3F0pezXiJB88XjeW9c2xInIUSY5hdHWGsAgZIRQrobvk7slOqhKaSCFZT1aG05d2GN7myXbtZGKkVTV7jGoJSmrLZIWjFRmiJFn3rKQFBxG2REp9emNhVlWdIfDHAWjPVUeb7TQEqzNo0pw+siZrBvL7//f/04Ol/gla99mNps8ebX3M2nP/8ZhutrKCXI0pSmtnR7Ay5cuIgQkjhLsbVg7Cpe//qvwQvBzTffTDvL6HQ6bA5HWJfzi//x/4CtgspEvPq1b+b4c89y/OlnGMzu5pGP/gZ53lAVJbPzA977++/jX/zLn8AVnl4yYLT2Ah/+o4/wtd8ww+49+9kYPsF8f5bOzF7qYszhW26i2rzCifMnA5COQ2OJ41bgi65usGfPLuI0xloTDDuMCXin9gjvSJOENI1otSJsLajLSSihppedNw21q4iiBO8cSRoGn5mmDt3paeVhfFDRgA4DBQU7wVHKYEbh7HRMiQjGFKNRThzHNI1lW/DhfYOzlvGo5LnjJ4gTyVe/8tVUtaUoarTW1E2FFB6tNUXVsL45JFYaPxVNaB1jp9mrUgqFQmtAKnSiaKbUHZWCiDRSKQbJAKE0szN9hFBcvHie/mCWprEh024KsrSHUQ6pwNSWKIrZKiZ0shZehsmKLumwXhjG4wlaWtZHa5A2iHQP3W4bhKIRwcXHCYM34WLw2pPNBaxYd2IWD+4BpdBoPvXY9/L3f/Kd+GmzMaoFjhCEVGMoRhPG4zH1sOTRRx/l5MmTXN1YQwiFUhGFtbimZrS8wbnnzzBopzz/9GfYtecIs0sDimHOheMXAcfM7j5ZO0WIqemOFNMhcwLpt7E3UK2pWs95vBQopUmjFKSgPzMTLuVODy8gEYJIuOmMMAUSzLPXqHstnLiu6pNSgr1OO/Le46ZMGzXFcL/c9RIJmn/9CjeNpigqvHBoHXiS242MG+WVUsoXZaqCKe/TuWnZVnPlygqd2RkmeYlOYqTzxFFE7Sz9dou0lTEuckajAqWCM3WcJsGQtjIUVR4A8yiacsIs3W5/R9IZKD2KqqjJWjHMrPCxD32Er/2OHyVSkKR9jh67nff+we+Ct3gfYRqH1hH33HM///id/wu9wUxoeCkxPaCWSR4CwM+866f4Z//snzFXNOjI8tM/++/odEOpPZlM+Nxn3k+aDPiNX/sD2h2JUprF+Tk2hxucO3eBd77zx3nt1zzMn334EeKoDcKidExerzEcF8z3HHmV00o0WRyRznTorGWs1yWTfIt20sG3e2xubnHXXXdx7doVbG7Ae9rt9rQk11RVSZYl5HnJxuoK4yjCGEeShKZQq9ViY2ONJAnKpKIISqi6rne67Wkak4+LnT+XPkwsdcLRSlKapkFKDQiiSJNNR7t6L/HekSTxjh47cCcD1pXEMV964mmapmHv0jzHjt1DszOJ0NM0YVS084IwIIEwu3tKRbOuRkiPFAGfjRJNNb0ImqbZUd00ZUMrSbHG4yKHVorN4QjvBLv27KUoJmRZRKIToniG4eYWvX6LLI5Jk4TxZEJeVURJjHCeTqeD9TF1U5J12mSRpK5L1lct6+vPA5L5+UU6aQutNZ1OB5VlU4Wco2kkUkGS9ajroIOvfICgWiLCK49tLJUWwdHcWmKtUP0WWRbRuaXNtz54Z6jwlodcunSJZ589wfGnjnPp0gXKScnG1VWeeewp7n7ZfQzXnwl2biomVRHWNRy54xDFJMc6aMUJVkCRV0gdfHFD4tShKasdY5HpxPYgjbSeqgp4q1Ry51KtbOBrewSN8Fw8c55yNsOvb00D5Dbr9PoSSiJdOMPe2L9uisj/43rJBM1tovr2g7iecTouX7rKvgO7pyW5nHb33PS237aKu45pbutcvfdIrahMQRYnLC9f5tZjR/GupmkqbFXTn5khMuCtIt8ImE2EJ50q6rz3DGb7XL50lXa7uxOoy7Kg1WrRNAFD2jZCaJxHqYaiGfIv//67ef03/jxvYBPCXAAAIABJREFUesVutjZWEVFG2hacP3uGdiejqh2tbIF7738Z3/BNbwOvKcoaFUdgHEU5DqwKJUBJ/qd3vpNnT5zgjjvuYm3tGq3OAKFAqAipLR/76Cf5we//J/zAD9/Ob73n14gSQ1EUSKnJJxUr15Zx9hN0ZlOeeGyFf/zj/4j+wiJVpUiTTqCT6IaFhb08e/JZLp45ztziDAvz8yTJgMrGnDh9nkMHbubyxdA86PW6YcbNZExRFCRxSlHm1NbgvWd+bo7RcEhlGqrGoCPF2uYGadaibhqss6Ttzk65lMSBEmVMKFFr06DioMLyxuK9YGtraweDFkJQVSVNU7K4uEhZ1lRV8OqsmwolI6IoXKbWNigZce70qSlZP2d+cQ9bwyHW1dSFxVuIkwwVR2RxipByKnCIkTIEKimD0YYQgryoECJIfLf133PzE/7BP3j7X7/RX2LrYx+DpD/zN/xXKbAI3Pe38AqyF/3fgf0eX+VYwEtJ493U6s5jbTjTrW4HrAnltvdEUbzD146s48yTzzKuy+vOStPkaYehg8dZFyYuCRVaz19p3XO4Xl7Di42GrXdcuHCJfQd27/x90wS6j/MGb8XO6IvrUylD2r8js1RgrUeqmmKS021HOG8RUcxwOEQrRSWHHNp/MxrYLxc5c+4cANIKhpsj4jgof7ZfW6fVxnlDpDWq3ca6Bo8lSSLKRtDvzbK45x4ef/xZXnlnByc1nahFPlpm7969bGyto6OEN37dN/PQQw+BN5SmCBlFHZx+QFJWAduc5CWR1hw7doxPfPyjPPDAy+h0B2xsraAiiXENk9GIEyefY+/B/fybf/tufvv3/iPPPvl0yI6FZm5ukZXlTYwtecvXvZHHn3yE4WSTH/j+H6Hs3Uq1OULVluXlFfbuPUSsJHt3z/LkU8+ytJTQ0vCqr3o5eZ6jk5j1tU0mozHWe9I0I4nTYMDRDtm3F4JrK+toKUIDq2hw1hNHCdY44ihh3BiqutkJgM560lYbpSLyfEyWROR5IMa32hm2cSRJRrvdJoqiHYOSOE7Z3BxSFNsD+QQChTHbtDSFdQ1FUXLl8nl6/RZ79xxkY32LmUEHCLr3uszxriaSGcNhKO/0lJ+rtcR5g0DhXGBQJEl4DUKCMWEf/szPvh+lPNKF7Hp2doFxEX52XVdIBWkanlUcpcRaY23FdmMiTRLiKJ0SsUXo+kpJnAQDDryiyA3eKaJEowmCCGNqVGSwXqDjiMh7tFZ02wnWNiRJghWWsiyZX1giSiOefgbK0VYYB+E9VsVTnNGjXdBwb5eySkWBG9ztXK8KpjJnnAhYapxivaNpKpJkSoPCM5mM6PTmKfMxkdLUUzqWQcDUB9d6h3EONeVdyikV0BmLFYCzSKXIRzm2qVGRJkkS6jrQvuI4RjnJs88ch7jeUf9sO7NvZ5NSMnVwdwjktDL98tdLJmhuB6MbFT5iatCxLV3czvK0im8IkH6Hp7idrSKu8z3D95gOYMMyHA7Zs3QA6y1b44LGBfdwYxVnzl6hk2Qk0nD74Vu4tAXr65voOCZttZHC7vDZijwEs9CpVCgdsoyNzXV6WY8rV1aou5u8482vozY90k5DpCKK1WHInlTEYHaO1zz8BvA2YHg6KIzyYkwSt/EydISLoqDX6+FsRV3XvPqhV/GhD32I177+m4iiiKZp6HRaCOl5+umneP7iCc6f3WTv3r08+cXHwwTEy1fYs3cX/d4cG5trPPrJRzANNNbww0++g3e8/du47cDt4Byj4YRJv0bqlCJv6HR63Hr4Ns6ePcu5a1cQXmKk5MiRI0H1kuecPX8+jJpNE5w1SBUFyMIGhkFjDVES8ECkwpoa4R3tdnsqJggGJ24aaPK8JE1TpJa0ZDSVc9ZIqVGxZjwekxdj2lNeZ10HTMoagfGGxlRkWYoQcucZeVxwfMpzWu2UI4dvo7GGra1RwPCUYm5ulqIK88VbSUpelRRFQafTm8pGw37MuiHIWmtJ05SmLnf8EIICKkVYQ5KmXL58GScisnabmJimaZhMJmStDk1tgiesDlCD94JJVVMaO/UnrYmlREsXIAPR0DQVSjZBDmgkRoSAJrQHGxPJmDpvaBRkSgd83mq2ihKUoN+fo9kcs1kGG8T19TX6nallnNBY64miBCOKaXkfzHrLOkBjpg6OWVprhAEnFEprqqZEOovWgiTqYEwDHowCmaaMxhVKBjaF96CVJIk03kz5k1PvzcZD4wkOWt5irEHoMA0uJFKeLGvj8JRlHcbkTJViQsUUtsHK69LsG2MMhIC5/XfWWrQX0yTly1sviaApuO5mJJR8UcaJBx3HKOLwxjwBU5Jqmp2wQzGSqDCMywcHIu/91I1b04iaqrGcOfk8i3OdoG7wDi2DT6fxkjiWVK5iY3PEsJowWISZQRsvJM7VCCExpmI4zKfNI4uKNGUxIYlb5JMxUiguXjrJ6TOX+cFveEuAAcQmvhYMTU27N0uUaMpc4F1NmkiKyQiLpzYNsYpCJjOFYTrtDKVEcN6RAuckRV3zpje/kU9/6hHue+AhvLdI5/kf3/7NPP7EFR6492EGc13+47v/NUq2sHbIf/iF3+GxJ/+cD3/wvcGNx1mssZiiRNg2p85bEi5xz+23smsuoqy3aCcxy6ur7N9/mPl9CRsbKW0TM24MzkLWSjh79izrK8t0+7OMJiXObs+kD5uy1ekyHo+JVDQNiFnAmXVClARruFYrpWkszgVAvmksaSsLB8YYkihlMhnRbrdJM0mkNGWe0+3N433QfCeRCs24duiipzJks0WZ05lyaJOkzUc+/IFwuIg4cvReHAIdx4Hwno+om2nJX2+iVRzoWXGMVI7RKKfb7ZJEgjKvyLKMNG2Bt1jrUWrKlRSCshwGuKmAqjTEseTyxYvs3rPEJB/R6bRYX1uh0+lQDIcMBv3pM3A4JFpDUw9JszAZNInSF6nc7FRG7KxCKEFjIVKayimUaGh3JL1uFow8Ikm/32fblzaOY0bjjJVxwHJfOH2NXmeI1po4EjueDbWp6Pd6xHHMzGAOjccaT+VHlJUPvguEUQtCCbSOgp5dTqk8N0xdULHGKouW2c4Ehu3ZQTIWCO+R3hPLBDs1pNnR8qupFFhNKU03qP62g19Z1kRJgnCeuhfjXIWxITg64UIjz04piU7gp5xNrwW18V95mGbQ7gQNq/LX1T7bHUrvLZPJhLSVEMVqepO76SZ6MRZhrQ3luJ9iGDfIoyRgyzHzM302hhuhK94JWN5okofpg1IQZzOsba4xWARnPY0zJEnEaDRifn4O5xxVFZyHQukXB0Ku1kSp4OrVmuefO8FXv+Ih+lODWOcbrJEo3UVFCY5AlRiO1jHVVGrnwVQNadIKtv6ErEarQEj2zk3lm8Fx6fKV87wiSmjqnCjJefqpEywu3MnLv+qr8dQ8+OCDPP7YcaRKQEiO3X0/p06e48rlF9jY8Jh6wvd+73fTn52j11skMqvTzezo9/tsXr6ERBIrjRQJ/X6f5soKlWkjFDxz/DmSJKI9WGCcF6TtThhXW5TTBlx4LkmSTLNrRV4WeAODmRk2R0MiHTTi8bS0D1JLETxOq3CoS1syPz9PWZaUZUktJXhPlmbkeR6qAAlZpKc+AeHfgyTLMrRWNE1DXTm2tjZQSnHw0OGwj1Bo4SirnG63x3A4JI5jup0B3gcaUZIkDLeCgkypCK0ldVODcYzH452JAqGpVdHtBnghTVPG4zG7du1mZWWFJElYXl5mMBhQFAXdTp+6KcNzbZppR1ohvSCZUmg2NjZYmF2gLit6M12KokCpcGyjKKIqSiDGekddhmecak1RW6Kx5KabbkJridIB1zONY2trjaLwNM00O3eSta1JCCjG7dgTxmmACcqiZN2v0263QXqEDxdEXZSIKMBWzgW13PaZ3W7iBKYE1xkT9jqUZt31ERzbgVqIAC0450iylP+buveOszyt63zfT/ilE+pUdXd1dZ6cehITYACHoIAKCqjsghjuct2LmMXFNb28rrreu7qGFUwY1rSrIqY1oGQUCYMwgRmGGWZ6Uufuyif90hPuH8/vd041wmXYhX2Nz7x6uurU6VPn/ML3+YZPiJyblddtdSmlDOyzZuKtowjRCDCPzm8xdTVjWzUswTlGs2U6td87AZiw4X0+66kRNJtGrdZ6dgBbQQ5rLdbWnD5zkiuvugop52V5YEE0vbAGHO0bOmWrbiSEQ6kYLUAlCdJYptOCKE5JO2Hi6pyg3+lS2ZrpdIqIc1Qagm1VBWD1aLSNlmLW56rLAu9DYLCl4TU/8G2kW5sXfrB/+JvP+Hm/qf1icx1e+6rP+3hNFxb53Z/9Fa6//jr+6A9+n1e84sV85B/v5MUvfg3HHj8Z8HXTCVtb22yur5H1+jhbMRlPedGXvgTHOd70i79BWVX88Z/+CWnS4/Vv+EGGWyO838dwOGa6PWF5YQ+drubwkf0Y69m7d5nOoyc4M0mAMOjpDRYYbo5JkoR8OiZJwzRfa413rSht0CwsyzJMw6nI8wmDhV6YnkpBkQdlKGfCRR3FspHbk0gt2B4NGyxesMPVem6FMhwOQykvJSAwziBE6PNZCwKPUJpHHrqf1fNn6Xa73PL0Z6OiFFcHnGiWdsO1pGKipENZ10RKsLCwyPr6OoPBUoB7bW0BEXEcN+V4CKzGejyGTrdLnGSMx1OKckS/3+f02TOzDTyNuxjrKcqSJO2G3qUUCCOpm7ZNUQRGldaaNOtS1jVZJ+P06dMhG4xj+v3+vA/c0FSdBCkrTFGRZF22ts8RxY5uL2HfymGq0jCZVBQFbE+mTIocFdMgUiJwYIVkkteUtSeaaKppULpKKsdkNKaqCw4dvJhYZ3g8m6ureCGJY02apuG81xbbiINrFWPcDg3PhtIYRRFlVc7QBjury5bjPmvZEXDPAtEQJBw6jhA2BGUlJLW3KOBjf/UuclOAtQ1czeEaIaBWgSoQLJqA2gbVf2mZ5s6J+c6dIVwUYWJ+/vx5Lr3sMhTiAoO1drU0KqUUorl5Zj0L6XFSIb2l8hWWxuLXOtI4YTKZYKjJywIZaSbjim7aA8LNW1cFcRwjCb2n6TSYNCVRRJpl4eL+9ID5RVyd4RadrMfNNz+dm264jfvuuZfnP/eVjCYT7rjrY8G10QsePvYo199wLcPtMWlcsXRgP/l0yMMPr4ZhyOKA6SQIaYwmOUmWUlWGSGbEUnDg4BGOXH04ZDfa4eqKg/u6HB8L6loClvPnz1NXBq8UOokoizHeOrRKSNOMug7qSs4E47uqKJvqzTAZDYPQiY5QWqClonLhwi6KooEUBRUpbx1C0/SRqxnfW3jIkhRTO6JUUhSmAb1X6CjCC0VtDEksOXbsU2xurtPvL7Fv/xG2hmPAIbQg0kEU2hGwuHEck3Uzzq2uhdJWxWxuD6mNReqIIs/pS4lpMsz2Rg++6ZrBYDC/TpJQWud5ThTFlGVBp9NDa8325iZxHNNJ45Bt1zWdXi8oSDXScePxGFOFQGitRUXhmo3jOOgyaMWkKLnh+qNM1rdJE02vm6CjQ2RZwiOPPc65s/ewsLib86ubCKFwKIwLMmrWGJy1SC9xjdJWli6wvNQniSVb62sMNx3dbsa+5WVwFcNRzmg4IVYxQsDmaKsJSo4DBw7glGhIB8GuVyICo6/pS7odGyqA0nqm51BV1YW46x1sv50JEzRxwlmcBG0c9999H8Y7UuuZiHm1Gdoe/tNM1UJ/NAwgnzxO84tjFvI/sXbSKGeBUzQpv5DUlZ3h6QQqyLJ7OYMpWftpB9LOJ93WuZCx4rHUnD17mnwyZn1jlVOnT1CUU6JY0e91SKSmymskoTzqdmLKfAouTB3zyYQkSeh2M8bjIeur5xhP/vdbY1R1AV6ztbWFTmIqG2T+y3Kbxd5uvPd83/e9gQMH9jEajfjhH/r3VHXBLTdfzfHjx1FR4ONmnT7f/4M/Rr/fb0SNQx/v6NGjHL7oMJWIIFvAO4mQmr3Li8SJIIkUuICZTNJ4pjka64jFhQVwjjKf0EkTOmlCN0tYGvSJtSSNI9I4Jo0jYq2oygJvDXWD70zTeMalrqpiVoU458DZUG6qUPYpFQZIsfR4U9KJFVGk6PY6aC0bPKxHSxHYJFqya2kP21sjrHcNiL1gfXON4WSI9WGY5YVjfX2z6cEGfcwkyfDeMy1yhAxVSFUF24/wfkPAH4/HbA1HVMYyHAfFoLKZBtfWUluH9UGrtdPpBrhapMO0uCkzoyQmSuJGqCVszFLKmRi1jlOMcQihyPPgJnr/Jz5JlE44cCiA6MfjIaurqwwWlijLjJMnh5RVgnM9qtoT6YBFlioKGgAiCF8sLCyQJAlnzp/CVFP2H9jLlVcfZd/BA5w5e55HHzvHQw+cYmOtZjgu2dguMF7T6+9imlsefewEa6tbjWRbwId6LGWVz6qDtr3W9mnb71uoWYB16Vm12XqAlWU5m9y3gj0hAEMkVBDp8AYjGp9zP39Ou9rYYK2lNv9CBTva9elueaGtFwJpHKecOXOOyy67BC/tPLDODsZcsOMC1H/zdVXXoYT3hoc+eT/PfPZNYUfNgl5mXZdsbGyQxhm7FjOyOLx+r9thfW0b1Yh0xHGME47RKJSkWmvMkxAwfQ1wCPipL9CxyrIMUzk+9KEP85znPZcHj32Um255Nq/+hlfw2LGTdBY11157LX/952/FC0llSr73e76PH/iB/4Ot4ZTOoE+qUoRIyHOPjlywTo1jrr7ycgYLXUqT42UX3ekhTImIBXt3DajKc+A6pGkAp6dpiskrvBQ4U5MOFjBVhXGWopiS5zndrMeo4epnaURdlBQm9B+zLAnsmDhsUG3VEMUa4aBuyAOtYn+Aoyj6WUaWZQwGAzbOn2Gaj8DX1LWjKkwzuAs9ye2t8zz++KPsWlrimc/8ktkEVchA+dS6wX3SwGxaqmRDqBAi+K4LIYjiCCkcuKZ9kyQ42g0flAyBoqqqGee/rgOsqqpMaNk6F6b7XrC2tk5vocfEFKGlZOYQvKKu6EQJXkgiFZwJnLOzKitSiiztIYUmjh2nz4w4e/5eFnsJEoXUiqqGylp0pPASKjfB1ACORIMVqsnCPOW4pq5gREFVViz3NZur62wUj+KcQWLYtbjE4q4+00nJ9hSK0uKEocrPMVhcINaa1fNDtjZHPPro46SZ5sCBAywtLYVkB2aiIO3aea/6BqxuqoYsIAPUSkOwp2Zebnsf3rdWEl8b6qUu1eaQWgYZOOECT16IeTxwzBMrCOpbuC9g0BRCHAZ+H1ghTF1+w3v/RiHELuCPgYuBx4FXeu83RUj33gi8BJgCr/He3/X//1v8DFeplAjTYBmaNDJ4kWIwnDhxgosuOoyO5gcsapg7ckeQDKIC8xNRETBhCEmSLFBVI/YMFjFKsnb+PP3uAIRHWEcUB5gJtaC/G7a21ti/vIcsSRlNxmwVNZPhiBhJJD22LhhPqid9wL9Qa7i2CkguPrIfgeLggYt56x+8lZe+9Ku47xNv4QVf/lImU3jaLc/grnv/G2k/Id6e8L4/excf/vhddBYHfMt3vI6ldIm93ZhNUWKnMbu7u8kiRSfRaOExrsBu58ga8ihmYXAJe9Q6RVQwKkuMsVRVxUI/4BqFSplORhjbTJGnBoFEaYFMFBof2EhekaQxxhZorZiMNhE4alshhUY4SywjjPMYT8AyysCpTpIAgK8mFT6v2Dp9htxM6fS6xFHMpAiBt6oLNApRGT75wH100gwpNTfddCPrwyJkiqUhifQs++j0F2bgeq1DmR9GGgpr6pDh1RV4QdxsosYYKhfgTL1eD60lw/F4NigcbW/PMqpOkzVWVcm4kelbWBzM+uOBXRaydikUnTSITyMERVWgZDyfAUShDVWZHMqgVi/FAvm0wpgMFYchTxQpSqbEQiO9wBlLf6FPbRoIjvGB7RZJsrSH8aHlUNuYh04HK+Oss9Bka45qU+A3RlR1QZxks+Gbcw67PWX3ngFCpQzHU4rCkEw8dbXJJx44Ra9n6XYzdi0uk6Ux3W6Y8OPjENhs2BCKqgo43Cqwg2xd4Yydzz2UDGiZhk4rnOX0oyfwoyk4j0JivUR4h8fO4kXokdodPdaQdH0+Pc0nU54b4A3e+6PAM4HvFEIcBX4IeI/3/grgPc33AC8Grmj+fCvwa0/+7fzztbPH2U7AdrKH2jWfpu/EaIaftTuKc46iKptdvsN0OCTLMhSesnJYISmqGuckppnKF6VjOJly/wOf5NzaKtI5FjoLCOGpmnK9l6X/Kx/xf2oJJcm6Ha666ppGnFhw5ZWXEccRL3/p1zIebTPa2qbX6/Gf//PP0+8PeMHznskrrrmWW7s9FreHvPu//z4n77mbtXoSKItkOGGhu8S214yFpoi7mE6fqrdA1FnEu4hhmRNlHbJuHxVHDPoLVFUwQVMqRhAjRegRtjTPohgTqZDdTSYjqqpkmg/RkUeKin17l+ilA/qdJWLdaW6OMImNegH2sqvbZTheZTRaxfucSTVhLd+kSB0+k0xdwfpwlch4yCsGcYZTlihxTDc2WIgDbO3c2hAI4tStB3d7U21vbiC8I1KSqijwzbBl1i8XAeKEc1R1gakqYq1J45hut0NdVzhnyZIkAPxx9HpdsixlYaHfBNKmZaDlTHG+DdSt8ESWZVR1EQRlGpyy9zQ2LY2GqvFY79i9axd7du0O2Ekci70OvRh6KmK0tsl4aJEuoZh6NkcTnFRsjiZsNRJ+M8aTCO+lLGvG42lAtAhFp9sNm5fzGAe1dXgh0VECBDJJJ+tiao818MAnHyGvHZZgm9If9JhMayQ9vFlivK155Ngap46f4olHT7B6dj1I/OUVZVHjnUCpKCAQ4iRY2RCqjHbKXtc1qlE9K4opLtY8dt+nMGJeehtjMG5Hm67Bcnsn8E4EmUKxU0Lyya3PGTS992faTNF7PwIeAA4CLwd+r3na7wFf03z9cuD3fVh3AItCiP1P5s3snJq3f4evQevAR5aoC6aGVV0Ez3SY9ZTa1wlN+fmgqSxLHJaiLtkajsk6CV4InLRBVFbGFHlJqrocuWgfAErJoBIuY3SUYIoJC72Upb176A36rKzsJY7/ecJ+N3Az0AdeBRQ7fvabwOXALuBlwOkdP3sncBUwAL4DeB7wW5/hWBljWFtb4+y5k/zFn72VLEk5dPgAf/rWP2Q6KTh79iTW1iwuLhJHPb72pS9jZSHlxIfu4MZS8OWix1dPFddOclK/islrOkvLgT9PyfbGGabTdTLVpSxqamuYSiijYNdR1yWx90S1oZyMg0f4NAeXU+ZDnCmpTY4pC2INvWyRQW8ZLft4N0UrQ5p4TG5xxmNrR1Wv49wWWk3pZZ0gpoKgY8Z4l3Nm7SxpPCDWfbTs0kGwlHRYUBmJ7ZHajIEeIDoRpXZMXElXp/zDh97Dg8ceZozh+huOYnxOkY+oqwLnDKaqURLiSM0dKQmSf0kSA540C0Ix3hrSKCaKNMJ7jKmx1mBMjZaKbtaZlZWDfo9OEs99n8ZDyjwPyk4iMFKUDFl0p9PFeyiKEu8d4/EImglvXQftyslkMh+CErLNIq/Y2Nxkc3uLvCzYLs5Q+3WW9yuuumqZ595+NbsWDYkyaNkMVbzEG4tpLF3avmFd1yRZiqktSdZBah3osFLhfNA+VVFEZSxeSJARtSUMlTyoJMYrTXdhN8ceO46OAh11d3/AzddcxA1XLJIy4shyzLNvupgjBy/l0P6LiWSoTtZWz4Xz4mq0BFOFz5zn+SyoBXhaDC7cz957Ot2UGvjkBz/G1FTBgNH72d+mKckdNLYdzFxrnW/1K75IbpRCiIsJhNOPACve+zPNj84SyncIAfXEjn92snnszI7HEEJ8KyETnUnoF0UVMHYE8Y0gDupnsALnHCdPnmR5367ZUGhnb0LJaEdAbfFYhBK/WcYYJtMCi+Hs+gb3fvx+Xvyi27njn97BkYM3cNklR5gYwWhb0BnAxsYZVs9NOXXyPLc/5+m4KKFwhvF4jCdMg5O0c8Fxqgg7yOuB7wL+Eng18IPAe4EfJgTHa4HvB74eeD+wBvwr4HcJwfRXCAH2mz/zuWBxcRGpal71yq/jjg+9j6uuPsqLXvQi7rrzY1x1zZXceeedLC/32bVHcvTKq5kUI+5+/L0c6i/iyopRPWb7HX+Lf+874YoryK48xB9/6IP0fUVnkJFmCYMDi6SdLmk8YM/u3SyJjPTxU4x6S4x2d4gP7GVx94CyrhiuriNFQpIkKBkhRYLWlrKcIkSOyQ1Kd5BE1LXBYQJ/v5pSVBOsTUJ7RiqiTFDVDoRhoyrIfIfdvWVstT1THIoGHYrxlCDPXaFjja1rqi1LEmnMqCDqeHY9dh5z+ixi9wIf/ocPcH51gy9/4csRWiGb/qFSMXGs6ccpk8kkTOhdMO7SUURZGPq9AbUpkULjbI2QHq2CsIfWirxh2PR6PaqyxrrgKVU0N71pptTBLsKTJNG8L147cA4ZRehYNYIkiqoqZ8ImkQoe6kU+QWpF7UNJPqka+JuOEHKRrTxi66ENBp0tlJQMOh2WFlOETHn8xGrI2hJNmgYHVetqysrQ7XbDxL+R2Wul0+rKEsdzryyl44ZzL9AqBNS8qMLrlKFCO3DgEONpjrUx5zZOkZ4KDp6mUuS+5vjqCYQoZ5+v1+1y8OAKWrqm7RladcjgWdQKuezUHIiiiLoscaVH1BXbkzFWO0xpZrjZqhn0tFnmbBDl5zbg8EVSORJC9IA/A17vvR/uTGe991609o1PcnnvfwP4DQCllG9PiGvNm4KzTfu7Q5kuBevr6yyv7GEm0KHEDOSKb3XyQsO8daHES5wF7wLrKIoUb/mzt3D3PffR7Qx49ctfxNr6Y3ST/fh6xPLuZUQ05YoBjLZGTEc5S4MeK3sXuPvB8+zVKdIJrA1DkE+fvN0B1ITNmRzGAAAgAElEQVSgKQiB8Bean/0B8C2ELBTgPwFLhKbw+wmB9Ouan30P8HOf5fiNhyPKqMLYKVnaR8qQXa+urrK5sYq3l3PjjTdx4sTDPHH8MQ7u6bB2+jQKxagBn5vcs+gkdaRRT5zg8UceYI+OWBIL1OMKnRhGp4ZMonUAjlmH3rNM76ufw+JCF+88b/7t3+ZTj5zGGljZ2+PsuTHLy0usr29y9ZWXc+LUSS699FJ0BN0spdNfxDtDlnZZXFpgaWmBbielKCqUjojTpAEh7yaKArHhkEqZkhNJA0lKjSPrdKhLj487WCFJrMI5j0Ggo0Cji9KEeLzKM3ctkywsc//WJu6yy3nowUd40Qs8nTjB6bnRnDeW9a1zYXjTmMJ5Y3FKEccaj8WbmtyGDK2TxMRx1GzgnkSH663KpygV4YRgs4EU9fuB7pnFCd5bBKIZQNpZZdUOpspiOgNcB3HgYHwWyufxLDOUUmJFjbVB1SnPc+LU4fOSTjdlVIDCMhxu4FWAgU3LYCOiI4WzgjRrCBS6GbC1vWAVk8YxeNH4aOUzDn+blaVpGgKSsw1WNJoNz6bTKZ0048677+XSay6jzmti28X5gmoSAqIwCq17VFaQV1Mm+QkSrVjeu0i/28VbR5wmlDscYVtpQe89roEo2bKmXh1SJwpXu2A57OciHW2/cieMqR06hddi5sz5ZNaTCppCiIgQMP/Ae//nzcPnhBD7vfdnmvL7fPP4KeDwjn9+qHnss645RGjew2wPjBABriClwnkYDsNF007fvHcYY2dNdwjZpLWWOEqDGpI0MxCtd44sS5A6QquURKVUW9u8/KVfykc+sE13bwerprztHe/k9Udh48yYiy66iN5ih/H2Wd7z/n8iTfp8y9c+j+1RTTEt/9nnOU1IrXd2SS7a8bObdzzeA3Y3B+j0px040Ry8z7S01nSzDmsbE5wtuPWWm7jv/mNcftkl3Hbb01lfX+fAwYs4es115LXlr//k97iyNuSLGVVZ0pMRsracSAR7pwoZK5KpYjuKGIrN0N4oLUqaxlslpf+NL+BxpVl5Yos3/MEv0d+7zLiw7Nm9m+c/70t4+MFPcdnlCVdccRn796+wtrqNtbfy3//wLfzID/8o737X27nxhpspi4J9Kwd49LGHSaJl/uov/4a18+uggnGeQCHVFCE829sjSlXxS6/8JvavDTn5vvehIoWINCKx9BcWKLxHDpZx3hElHcRgEWKN8rDx9w9QjLY4ojw3XXE91ctexqrdUeY1IhkttKnlvkspGQ9D5uicYzgcsrJykKjTIXKezc1NIuVxlsCU4cK+u1ICCEIlnU5n9rqmrmZIAFPXgZaZZIy2NkMp2QQCfUGLKYiPeDw6kjhnA2jcGIQ3dDsLlFVBojS+qkApJluWwhaBzZV2cLkCDHEkyMsx/WgxiGUQgqawYQAbRREo8NR4r1DN5LqoK7QOdtrOBVWnqsxROg5DXGQzwdeMRtuNaZ5nZd8hHr37Hp77nGcHubsqwteSGovRFdKFybY2CVpnjLaGGLeOXInY3twi6SiWlpbCZtSU4y0cqUXORFLxsX/4MGNhgoK+MRgbssy6rmcOAO1yWIK9jgtCPlLzBS3Pm2n4fwUe8N7/wo4f/RXwb4Cfbv7+yx2Pf5cQ4i3AbcD2jjL+s64ZX9k6HA0uS3q8l0Fp2Xu0jgKMQAiUFkymAeDblj6+UemuylAWGRtA0NJLjK2QWuKNQTvF9vqYH/6hH2ewO+XsMOfGp72EgwdKnJvivOfg4SuBP+PaW64jTiKyLOHcuTN83Vc9C91dpLd8AJ9UQSjh05rI+wlB0DMPnMeBy4ADwBM7njsB1glBdj+hlzE7Jp/2/c7VG6RYWzDYFfpG06pieblPnGoqH3H23AkOHz4UZPLKkq+87ghXsJ833nM/ZT6hVhHJYIEzG2tcvBShuhky7RJ5ED7F2AotNIezLsPxiH5XcmozR6mI33vb35It9alNSaw8+RTe+c73B1RD6bn/3idCn9lLhqMhWml+4j/8FEoJPviBj9Hv9RmNR1x+xVU8/tjD9HoZphYzVZ92hWwqRlddfuiP3o4tC/7dd7+W4r/8NllPE68KpCpBCkp9OmhAeoGW4bWsVNjKYGvLvgMHWXnB8/n4rj4rSYovPNNyRKQThNIsLS0zGo6RXUExyTHO0un0ZpWEHiwwGg1ntia7MjDSkkRdpBAURUHdqBzFsWoUjzRpBHVrz5EXpGk8s03JkgRb1UyMoaoCPlHrGHAzkLfHYhsAuFY0fPMapKObZURRQl5sB70CBHUNsQhZZxRLyrKmqyusC/RH6yTduMN0PGpEQkALyMtGtEQG/QYtJEo6nK3AW6JIY11JUYahUZpmYYAkPUoK0khTTAy1q0hijRcF4+mQpb4mu/xqHjmxRm/QJYk9SZKRF0EZyVqIVEJpJqxvFSFjruD8+jkOHz5IJCNqM6EoanTcQaECIN4FlSfnDbVz3PHhj7JJHrJ3G5xArbdNgAxDrHmWGYbmrc6mdQ5jvrCCHV9CaKvdJ4S4p3nsRwjB8q1CiH9LiAOvbH72twS40TEC5Oj/fDJvRAj1OZ/jnEPLaMa00JGa9zOVAuFnWWb7WJh8huawNBIXOerKUlaavCwRkzFZJ2VYGuKeJNI9hJqHu/6ewNzwWPYc3tNAmhyFXSXtaqyxoC4Mms8iHNg3EYY5fw38E/ClhN7mq4FvAK5pDuRtBNxWj9AD/R/AVwNvJjSLP9M6fFHQQPTeI5qysJ9ewb2fuJ+bn3YtT3/mZdiqC3LCI6fXOffRLR46/hiX6JhyKaZMM2595ddw5ZfcytraKvfd+zBnT5zhox/8MJtb61wRx3zd3ss5uf8guwYZo/GUOO2SJBnXXn0txcSwubnJ1tYWRbmN8w1awasLOL5KRdTWAlEQUABG4wKlMo49/AQ6UiAlu5eX8F7MRRicmtFhy2qMdcFn6Md+5o387Ku/gZN/926k9ChTkiiNrR1OQOKCUpCOFWNXBdJDlDDUkksP7qdjPEmq0IOI6dqQtJOQpj2m0ylLS0tMiikFRaAV4hiPA8Kico5eU2KPt7e4/JKLOHtulTgbBPymjBks6NnU1voAuq+qin4vvL4SGm8hUgFaZGuHisKwpZd1yBtTORQ4b5AqWOe2Pbky93hv0DqioAQlyKuy6U0GDn+SZlRVQRRLkjhQS0MA1ZRVhWr0aCtjSBq0CSJUdEVRhIGW1ngfqpkWVF83QSWKVaO4b+mkGZM8D1Wfciz0d1NVhl6vy3C4TV1BL+6QRWM6SYdjDz3G0264jMlwkyjKMFJhbEFtIkQEta0RFWyWnvG2Y3v0GFo5Dh1codcJc4Pa1SSxwtOU10qgnWQjL6hljnNBBtIaj6dlGYbg+OlInLY8D3jeJw8bFJ8PEv6LtaSUPsuy9utmx52fMBXJ2c3kjGdlZYV9+/ZiqREEILRUc4pVVQSMYICtBAyWqYOA7bScksgYU0suueQSXvw1zwmsDxmjo1Bu4ULpv5h+PWPzP2bCs/goiBUIj1U1WBAiwvmSr3nJN1zwmT4GvJawc7ykeewKArj9zcDPApvAs5vv2zL87YRe5jngGwlT+O/gMw+D/iWsyd49/OWv/jR/+pa/4FVf/wriOCLWMXle0u31sF4RxSHQKdQsQJjaY0wQmBiPp5RlzvrWOnWZo6zFPPgw9swa6/d/Cj0tsUuLbKeKsTecPHuGfpzgm3IO74m85eiLvowjX/llPO+25zApx0itcU4gpJlBWXBJA0KvZlVMURSzqXpVVbgapA/ZYV4F2mXa7ZCPJzPGSpHnDAaD2VCp2+2GYYbQs+t7azhs2GVdkkYbNAyO7FyxXkZEkQ70Uz3fnCOtEVLTX1jC1CVJM6gxbtRYfFi0CveUtWZGO/Y+OJF6JdFScuDAyzl16s+pG3Un70BG4T2aMmiIIjxeaJK42wD8W0tcSVXZpv1Qk3VCT7MoCpQO7997i7KepV17EVrz4COPcvToUYSrsZVAaEvtx2i/SBRFwcCwysnSPlHikBYiLRDWYGRgju1dWSaSit6gR7cXkRLx/d/7H9genmXiCupm6FOZcsYUbCFls37oBUMhhdQRH3z/e+703t/6ua7ppwwjqA14cKEgcft3e5JUJJv+0jJlVSJFm2GGfztTQJIaBVR1halt03CPyIdTjJywsrKbZz7ranA10ndDw99XeBTSuRlDoComzUEW6GaSb5GYqkRHKc6aGUB257qVEPA+0/q25s9nWl8JPNR87QjB9DP1Nf/m794yu9FdU9aaMniiv+lNb+J1/9d3opKS9777oxxa2sula5u8+7/8MlmSIGPNwcuexoH/93X0hGJLVPR8kJ8T0uGMh9phC4PqLoAIsCARBW+m9ry050zSOBQisd7Mzp9x8NKveDWDQZ/Xfvu3IH3wr5FCEyUBGRFafw4BCB8gOEqD0g5tBD6VpF2Nlz2WbUrqY2oi/HNuJM9zHvpvb+PBt70Xff1FLF5ymNuuv54rLruUv/+rv+GOP/oL9iiNchLlHZeeGPLca67g337T1/PLf/gbjEabCKlQF7gRGkQkSJQHgplakhGm5UIQJwKfGYQXpD5iQXZnWYteWQLmijrtDSpVcz37Ztrc8ql3OKl6Z+Y0QqEpiwAzKqtQ8ldlSZ6HYJDnOZKSSMH25mmUAFMGy5MkHcyGS7UdzTcDHyblKtJIFSTz/KzPbwhGoHVIDJwnr3JipQNjSkfEUUY+rRj0u3jfMpIkg0FQmorjmLoCUGjVRYiKpcUug6UUX3YZ51MqM+XiQ4d5+MH7eNp1lzApHaJepN+NGG1ugVXEwMrufYymE5YGu9hc2yTLuiQyYX1LoZVk/XxJr5OyuX2aQ0d2M9woKFxFbauZeVp7HmAuFjIbKLODti3AVpZOr/9Z7sh/vp4SQXPnDbiTAgltKk3TO/SznayqAiujMuVsYmcbNkFd1ygZgLq1qYI6Mx7h4eIju7ntGTcTpR7ntqjrPvgJOpJ4J5CyrTPDktiGkKFw5A0FC5RMMDZHy+Tzksr/XOsdhHI9I2SjnsAo+PTlbKMGJSKcD86NQoV+2Wtf+1o+/KF/4unPvJEbb7yeweomD/79+9FpzETAQCv2v+x2qrxisyxI4wjb6YIPmZeUBSRQJTGpsAhn0XGEd5oaF/x6lMW0vTZRN5QKiXW6EbP1M5qFswLvWiNVGSiHDQMMke8Y+l24UXolGohLhEIQxylIj3RB6SjSHW573dfzjG99FcgQjFKpGWeSl33jv+aazZKH/vbdICLGyjE8d5p3fO+P8hNv/mne9+73cclll7Pv4D6wzW3gJZ4S4zyyUcbxtIMd8D4Ed+uTRr5OInULfQPE/Nq1jaAy0Aw7BM5BVc8FKy50G/BgQAqBkxUqVSx0FfhGCMQ6lEqbfzMgQs+Ok7U1rQxbeyyVUninsY3bp/CSurEgqZ3Fu8GshbK8kgGt9TXUtUXKqJkpeMCCn9KJFTBtxH7D+arMlDiVICy+ClAykLhCIGvL6Y0tkJvEaUSURuzqxixkh0lcyU1fcjmToWZrM2eSwsKuLv1Esrrm6GQJo7VzSFcSJzEHlhe48oqDlKbGC8fWWoHxMZNhzvE77mMr38QpKHfw0kM8uTBwziTsGsZgawv+ZNqD7XpKBM12taIMc1C7nINQnZthNuNYs7a2RpTEIFqfmLafYRsOcbhxQw9Ssryyh9uf/SykHJJ1BFZ6jLBURqBSQ+1AigQvoHZBKn8RqGybOYGXGcLVRCJQ3BwWRBU8fL5A68OEfmcFHCX0N7PP8DzfqP9Y67CzzEZiTY3AcfPTr0XKJfbsH/PInR/k+CfvodaKBd1HVzVnHnyYy248ykbHMy4LfuLfvYFiKjh3dovlvYt0Fzt86e3PxvgpKwf286zbn0e5vQ1akcUJk6KaC0iIYCuAV3hR4AiqMTOGFlNEM10VQmC9B+/CjUeA9giClWsIOg6BxjmDkKBkQEEgNUY5Mh+8fIgUNQIrILGGWAsKkSNVh6KccvyBB9AYfCfmNa//Tv7rr/4qKxubdM7nPP3W29na3CZWHUobbIERIGnUrAQINASvRJwvZ4E9UlM8MhAjbIAsOREk6Nr/okhBE5SEb2E9GqFVENOWgspWAdrkg/CwcD6AsF0D3VEKKRrFHw/O1TNYUNFI6MlGycfZ1h2zIXoIQYsCtNY2GpiK0pnw2aTEiyDqHcdmFlAtYWAqhGhcQBv5NR3hG3F1Gc2HKh2dUtcF4Ej7oRzGCzSCxSzFuy7Cd/BCs7axzvnxBO8EcbTAR//xON2FbQ6tXM/Ghub8+SEsdMlHUwZLkpUjR9geT7HCU+QOJYY4L+gNFlB7LfgOIPnrD/0utckpTB0sj63dkV3OBTrmG9qFlWGWZZ+pWPys6ykRNJVSdDodxuNxoDXOcGsBrykI/iNSSLzzjWlWQRQHXLP3HuMNVWnQOqEua+IsDbagVcVFlx3iltuuxcsROu5QCUeiQpM8kiXK9ea6fl4gZTpjGUmpZ8ICQgRypRMSa0qUSvG1vaAk+F9dP978+VyrtJCmCb42qOb3C2fxWmJ9hjSGN//azyK942UrF5P2FtGVpau7qG6K3xzS1Z71fMLP/9wvo1gmjkr2788Aic0lH7njE2SdlAfuO8773/VRvvv7vodTjx4P/WSbs7i4t7F/aJRpnMUIgXeBWle7kIUFTUuBa3qHisbj3ILHIdvMsnEeDLoBFULKwCG2gY6IyxFOU9C2cCTCeyIJXilK4dEuJtquefDOj3D2wfu5cmkvx86e4dSt13D89DpLh/Zxxy/8Cs/8mR9h375F3v6+9/Gi259OUdfEUQbSo2aVQ8BfOh8ytRYK4W2gzUoh8DK8X+k9voHiCBlwwaKZ9AYny/bMzYVlBFHoAonAV5n5covGchaHQ+OdRQuJa4YxlhC8QgAAqTxI8M5S+8aZsY0CoqEUe4XwAu/1LJh6H7xxnHMBrYJHNsIl3nvixgIbghh3+J2AD9hGgWwyWQCNNwH1EnotirXJVgDty7BhkkhSQrAdVmPiDDYrz9rjd5GmPXAxnzq9hVCS8aai8B4tJfk4p9NZJEsSkqRDacN9boRFTmpOTbZCsG7l3wj0UikkNpyIcG5m7SQxU4333pN1erR10JNZT4mg2b75paXBLLPcqaEHXCDQ7vBM85w4janrMjg2ett47NREUUaiFN2O4ite9ULqoiZJFE5IEIYkCrAOJQLWTZkKJ4OXjCf4PjdiKshGPAHmLAIBCK2ovW20Oz+PbeoLtJJIY+s5VhXACIv2HuErRBrxAz/+g7zk9q/itd/1dD46qTCRhHJKR0k2P/Uw7/+pX+JUNWJU1AgjKXKH1jFRHPpgW1tDtrc2Q0aP4yd/7CdYXz3Py776xSwuLbD/8BH2HVgJdsgq6DMKHXB8bVCDttxuWgjCN0o98z7T7ByrCwVp8b6ZkgZhiuB74PHNRqm8n4nSKlEjAC9jtnd57OgJpJew0OMZr3s9Cy7mDX/+2/z+y17LPiMwx0/hDl3EzVdcRZb1qNw4vH+7w25FtH2x5vw216BkR29sp210k33N379sP0Z474CQ8xJeiLk2pCBpnuvxPjDjWu699wJralpjGGCexQqB20lm8R5r53TiOWtw58Q40AfxARo7CxgCwKG0mGGmRRPUXchfQqAWjVWEb1pZvrXbtbOkRqgo9Isjh5CqYeX5psoIGXXeVpBSYKsRKIVVDpzAGMjXt/E2fIBzw9UwXUcjZfAOqp3HbhY8XqxT+RJbFw0tMnycnTJ0NL+rPcbOz4dZKtLY8nMrlbXrKRE0lVL0ep3AHZdtX8ZeIPXW+sWF8j1kMvgwbAjle+g5JcrQSSTPf/4zSDMFsqTbS4JJmQyG894JkqjJFppXFrYG0arGAy3JqBFLkFKiZgKoIKXHm2ZXl5JicUC6tf2/5XgVi4PZhDfRER6LkhECjfUKZBFod2dP86Pf9DJ+7Xd/hyP9AdGkZM0bClUzWkh4aLyGrg22lnhvwVuU1Fx39Hruu+/jWCdI0h6mcf/MpwVSpLzrPR+gmg55+de+jMn2BocuvoiF3UtIAd5UCMC0dxkgnGn6R815lDSyf4G7PVt2zoWelauzwBpotR6PUArvBE42vUchEC5FOqi8xH/yU5ik5MDSPvJjJ7jkK57PdlVSKsGX/eHP8cD3/wwf/KGf5oW//pO4lYP87dveybOfcztCW7wLJAshRNPbnl+PQCjD2yROiBn0JcQCMdvsmw8Ugo5rgopws4DfBlipmt91AbFjbuNijQ+/sMFPzpZrb3KBl6LxhXcIEeF9GzTlDCvcbvhtHy98vvYVmkGeuFB3MjCXQpYmWjMy2k0kbFbOtfz4gK9uP4PyqhHeUFTGolSQyKORzgtLU9kKEFS1CaLIcYS0HucUVTOrME0f2OPACxRRY4gYcdfHPwaxZrKeo5ss088sc1pihpvpcYbH3cwGZzwt0HFjm/0k11MiaCIEXkiEkhfsBkK0HiPBW6TNQCGUL0FFBhShbhAIuqnmX33tVzCttgJEw8fNVR5gBd3OAsOtEZPSBAVqP0HqCGZc9daHRLPraXD8sWMNYwBgLno8y0YcqEjxOz/9owgh+LbXfT9v/s2fx1o7s31wNrAWWktiIefZq7FFMCnLuo0xlyGJ43DBijAoEDuQBeG4KFRlUaiZz0vtDVpXiLiHIyOKI974f/97vmz/bXR7C1T9AaVdY1tFyOXdPLh5lizuY2tDpRRuMm3UxUfccceHgl6nMeAUSaTJOorN7RIVRQiVkmWOUyePk0Zw9uwZvvKlX0VZVAjZZJDW0/bWrWntJ5qun7ez49fqI3rvsd40QScME7zzOG9BBIqelDpkqyhA4IRHIYIGpQ6NHFzNnW95O350hk7t6F5/KTUO40p6pWP3/gN84Ox59u9d4thv/iX7v/ubOXv6DNQe4+2Mrue8C5kq82EC0DBL5gOXnUVd0Gyci8mEDyZBGrxsP2cTrARBUZyQBbVqS+FJTUB27e8J+pztYM17oLkmffO/4OHdTuPb60vseE4IdgH7Gq5BQfsU0XxGMQs44TM2NGQ8QuwQ6nUhIEsh8E2gDbO/HS0MgneudQFpYGsDrgYvd9RlwXO8rRqsrajzAo0AIXGCUN4Tfl/gwkusbaQhneLE8YcYrU+RzmJFqLoCKSIcg5nFBa0ThGiQBWYHYoIGl/vk1lMiaApoSpm2NAqK1KGlOYchtaudOrbufUknwdZT9h9c4YUveBYiqtBopI6I4xQhBN1sQJYt4oVDUyGUwEmNEq1Mlw5wmDabbHZ1rePZCQj9uGYXa0o3pdSs19SWTmUerBpqV1EVoX9Xunn51l5oroE2SRkA06Cp6zJ43mTdRgbMUtfmAn+TFoMax0HZuyod3mmuvfFSfv3X/xP/4T9+N3/x13/M3n1X0FmOKBU8PDrLkasPsTEsyMsJadxhbWsDrQJLJIn0DJ0wnU7x3jOdTkmilNd88zexvCfh7971bu76+INMy4Ld/QHbG5uc9A7jK37rV9/MzbfcShyngY3l3OwGXDu9seOGlggd1ISCEEM12xidYxZco6jpm0mF9xIvPEIYbFU3ugKyGaxoQOHKKSqK6HvPjQsX85G338vhA/vZ++3fwHB1G+0teSrx421u+fHv4LFfeSuP3/0AR9fXWdm1xH133s3Nz7yVST6eXWdSCQRtH2zehNkpntuKD7c3Y3uOQoAKYh7QBlFHe8u1ZfIs6u64vgNMKDzUPuosO3qRn+1GkkgfrkMhPbapnmXz+m2V1F6/cva7o6aPbHcEytDfD8fdN2CIpvxqn+MdNNloI/k5H7jY8LmF8PMBmTWzXms7qZ+hJlwYvoVhoMNZN0PCVPV0dr8HWFYVbKSt4PobL2e4OeEDH7yDOFtkWtQNmiYE2UCTnA+FW4FrR7jnu93+5z2TeEoETd9MF6WiIduHx9trs+1BQLMDN1acQUy1w9NuvJbLLz2M1ROMmOK8RkcdpIQ4lvS6e1AyBRFS/KIo6HQ6SDR4i5e6McYSSB+C2LyVGuGR6EhjTImToZyfZYAE58udF2R74Tk3n94pGWEbuINw4SIUHmwTPKf5hNGwYHu0xfnVVc6d3aK1s80bfnub3SSN6VgQbvBolVFXAtfd5if/47fzu7/1a7znXWvs25uycdrTvfQAV+iER848zvbGmNI6IiIiL5BOgBEYESiowstGcGEMSMp8RJbA+XPHeMbN1zAcDnn4sXPkRcVgYRfLu3fRSTWVjBl0FhAqbYKFReoQROpC7OjRhZ5xgUWI8oLNsN10wuYSVHOcCwD38LXFN2WptTXKhd5WpBKU62Dx9IqSY6tP8DsM+dmbnoEaS9YfPcV4uM0kn2DyMW5S4Va38Ye6vOfn3sxlr/03nD+3zR//0Vt54YueOyNYWC2aoaRC6WQuINMwsAIWdS6M2773dogZKiQoqroJRKG3t7NqmN8E80BsGvk3AGNaFEKgQUJoR9R23hPeGcTb3p0QAtlIozlA7Sj5Q8ZvZwF5DrdprHdnp0TOGNke2/SWQbSBUXoCjKFRu/dzyGBYbkflGL73TcbqbCiRfSNx5w0gRXhX1gSh4GaoFScRRV6iVJhZKKUwec0kL/BO0tktePWrX8G99z7ER+66l263S1HkM01Wa8OMYmcVKxs74G7WJ047FNU/15D4bOspETR7vT7Pec7zEc5Q1+UsrZbKBZtQMTdJm06nTKfBIP7qq6+k30+46NIVrDbEdJEolIrwIggkZGkvAFhd04y2irwYknY74IJbHY2tqGuk8Z1lljUo7/DOY6q5mrzzHo+aNZMDtjGUjADCaYSS4OsmWAiskU1FpqgAhcP5nMl0irGWO+/6OMOtKcPhkNG4wJRToijBeRWyhOZGKMscHdH4u4Q2QpxU7NqzzO6u5oP/cBdPPBxx3Q2XsLW5yVOwJtUAACAASURBVFk2ORil3PfgJxiOGoqcEyQLHaab2winiBJFlnW59cabuO66S/m5X3wT6AQqx5nz55lMcrytuPuex5hOLDdcf5TzZ9c4cWaDffsW8DIh0lBaQSQtDhHsJJqWR03YLIKMmp3drlKIpuxr+pZu3n7xIgrVqK/ZOWiTIsj/SZE0VhUdpFdEUqBdxNn772FYRDz7Oc/j/rsf4Ybne+rKEyd9DBFCaHI7xD/tKPHDD3P65CPs+9QqvaUBSdJhfW1MlqVMJgXOaqybIEhwpqIyhigJ9hdbw02eOP44k9GE06dPcc+992LrUDWHviXsWV7gmmuu4rrrruO6G25hz5699DvZrHzUMlA1a1MitZ9D7ZREiQThPSVBKNh7OSvxW/WJVuF9DtVqWHANvlKKdqMVWG+ZKYPhkV7hBE2jo92smAXGgFCeT5iUj2aDHy/MbGiE34GpdqKxojFIa3HehKTEW7yYCwCHJ1tsFXjh3jdccDuvpnwzYEIqvE2IowRjKryrcNYhYk3P9dlc38QLz3p5lqsuWeHRY322xmOytENhC5SI8dbiVTPYEw7rPMo6jHVIFYdWmvwXVp7rSLOyfz9KOIwtwhBIgGyDl/d0Fnp439h76posS0iSiOF2TpRmJDJCCh34ukoQ6wxEibOgZRf0FGM9Mppy/Il/ZP2MBlUQxQLR9DNUQ1Pbafh0bvVdF/SvQhYRgNRtyaxl0D9sU+THH/8LTO2YliGoRVGEVQURGkyBrRKMhCeOGx554kTwMTEKW2vWN86ytLvDTbfczP79+0nTFBUF6MrWVihzjz9xhrW1DUCyNVzl3Il1nnbD7Vx57RLf8Zpf4sjhS7n84GUkWtDtJmysnsRbRz/LMM5SA+PxlCTJQhZnHaPtMfv27+LgwQV+5v/5AX7xTb/KyTNjsrTHL7zxzfzrV7yQj931ccoKytpy3dGjfOSf/pFHH1tlsDDm7LkNbrQRRw5eHtTWo4S6Ab97p0HUeC8xMB9n+FCSJzqaYevMDo6wcALngzycs+0N3QjGehkA/s2mUlYQa8MlheR9kzOsLC1z6OKrmRiNUwJvLAiDJ8b4mPraI5w/e5KjOqH+6Ed5YiGlWO7xZS94Me997zv50Afv4MiRi/HCsLEx5NyZ09xz78cxxpE1MmwAgkC1PLxyOc6XgVXmBVoFBs4Tx87yxCMnecfb3kukE4qqxFrL4cOH+fIvfyF7V/Y0Q5igremcI9UpQtYgQfq4ySY1CLMjo/Wz67CVRFRaIPUc3L5TzBuXNiykpnWgW70GwIk5jlQFlfR2RNq+lqnC9F5IiXDznrwQnraz64RpMmaNViGzi7XE2CkQKjK3U9+Sasb59sKG/i6Ect4HWwpvTROYQUiLp8Z5i3UhqA/2BH/6zc1tjLW89OXP50/+5O9wFmwhsLJAaEFlPEqE3q21Dqk01swJFe39/qTi1ZN+5hdxaZ2wvHwZwjuE9CgFCIMWAWSeRHEY6jRAXu+CAGnYlYtg7FXZ5jk13tWUZhOdSAQJPt6EqkM5foCPffR97F+OUeQgkv+PujeP0uy86/w+z3KXd6u9u6sXtVrdLam1WNZqS5ZtsCXb2MTg4cAQTOzAOCR4AA9LCHPO5DAkc5JhhnAgEIgzTE4w2BjHJCzeZBvbsiVLtvatpW51q9V7V3XtVe92732W/PE8932rgWDxR07Me849VW91db3ve+99fs9v+S6IaD4V+h6Gmswi4oi0pYejiajxDqWSKyhyAS4Ss9QYJKbb4UZ3BGmqogqufNZYjHKsbgx4/vglun1BJiY5efIkP/C+d3DT624CBBvrPYpiwP6r93HixDEOX3Mj1lom2lNcd+gwqxurXLhwiSxtsbxk+dH3v5df/82f4pUTd3HNNTfw+luPMDfZYaqjqIqChQunyaRG65SNXpc8b1BWofQcDvo0mhkzsy3OnjlNu+lJGPKD73kn/+Hjn8UZwdA4vvbw0wyrIAa9vrLGgw8+yLXX7efo868wv3uWzfU+KysXGPTO4JwhTYPWJMDCpYcoB6H9obXGkUYtgfHCllIilQ4CxioJ/a/6/IokAN1FLPuRoX+X6jhcEOhUIk3F2WoLNT3NdTtm2XnzEVZFj7I0WOupBn2qqqCioJSa5I23sPn5R0nOnGGYKr58bINbHvgC/8vv/y4/8sM/xBe/+ABnzp6Pzp11NqbY3FpHSsn87t3MzLWYnJwMQrqNKYwJ4sHOVwz6BUVRsLrSY2FhgfPnL6LThImJNmfPnuWP//gTI/XxD33oQ+zbtw/vPaUbgjBBKV0XAXEgLHiNqjVi4zRJSIkzQdjYeQMuC+iFMggaW8B4j5frQOgZSgl+GO7RyUlYX90gz3OG/d5oLdRtMDuauouRcI3woWc6xlLXGa0KSAER9EnzRtDbzHQn4iItQtXDLYfzBufCGqlMSJbKssSJagSRsn4YkhEXoGaSJNhU+NAHRQXq9MTEBNZauoNN3vWu72FtdZOvffURvE5imywMg52LTC8BSd4Iw7Z/oCfvd0XQTNOE/VftimUG4QZxJS6m9IptAdNbpIg8WqVI8wbeW9LEYb1hWPaxtkAqRVE5MumpSklDrfPis5/n4K6dDMs1nE6Bjdh/DDuwkjLcFGrc1FSijMBYgfJBkso5RuWyBwyr+EDlAKByi+GDuRZKShSWcriGlzlrm/DtpzcpjcVVcPPrdvNPf+S9ZK0mp06/wv333cdg0OXYC0fZWl9kupOyuPg0wyI0wxcvPon1CefPXeLOO+7mjW96Hd3+aSSTPPL1YwyGXRYWLzDTOsCw3+XCuYvMzc3R3egjUXSLkHVpnY/sUpVStDsNTp48yerqMkcO78aYWkKrxDm4eOky7VaDrf6A4bAkSSW7d+/h248dZWmly77d80xP5OSNPhKNlA580KOUdplWlFizHmwchBlnEWUzYgstxgZdRgBTlKPM3blqPEgSGd3uAGs8pgp9KOmhkaTMXvYcuPte1l98mkZT8+1nv0E3y5BKkSd5mK7jqSpD1XPB7mJK0rbQkhlrpxephl3e8MY7OXToIE8+/Qzzu/YgsDgf7sUbbzhMp9OkMzlBu93Eo0i0RsvAaEJklJUlyxJmZiaQUlPsH3CbvpaqqlhbHvDKK69w8uRJyjInz5tIKfnEJ/6YG2+8kbe85S3keR5cUgtLEtEczoOUDmdDFuilCKQPIUgyMBSAAN+PG5HHiUjxxCN8wNriA65TeD9qoyZJMqJUeu+xlYlZrBlBc4ISUM2OM3gz7luOeqvUJa5FKqI483ggiBCBJupqLGmUfpSaROTBltoohlWBNSXhbqh7pYFu4r1CINDeo3SQ4NNe47wnVZqqAutLpmea3HnX63jq2WOxBK+CHmmkWzskk5NTZFmDwlRX9oW/w+O7ImhChbGLMZMIMI+AcUvGqmsuDIOE9FQmBDtrBcY60iRhWAX1laLooTUIH5z3UrHM6tJxFrdeISNBuAGNXDG0IHwTITRCuGDe5ImZpqLuo40gTyIWLHVfqIamOIe1ORI/CrSpbOG9wMlQwkml0K0Wzzy5zolXKgYDya7ZHbz//e9jpXuBS8uvcsPczVy9d5bPfebj5FmPLB+iBChpSHROIl10RwyYyUbiceYYLx8/xZe+ovCmwzcefpSDB/awY3qKjY1Fzp85y6lXzjEzN0OWp5TDAuE8aZ6h8ybWeobJkHa7TWUdp8+c5dz5S7x65ix5muFMFRdEWBi9bkGaJeR5Sp5ndLf6vPV77uHpp48zPSPxZglFRqIcUoxB4VpUeNvHudD4V7KJ8AItJc5vAYJUgk/kCJUgMwhoCoWzwYHRO4GnoJknsYcnI0bT45KE/YuGZx55goMp6G88Tff+GZJBEaErIEdtGEnVccxaRfKeW7jw8CW2FKQOPvfnf8Hxc2f4yle+AhIWFi7zcx/+Z1xYuMRwOODQNVeTqgm2eutcd+gQVTXga1/9a+647RbWu0uAI5EaTIPOZIc8b6D1HjY211krusxMO3a/6S7uuuNWdJpx+fIyjz/+OMNhxQsvvMjLL5+k0Ur50E/+NFlaIUqJTpKgb4kimIgHjdkaFxrY/GqEPvA2MJNQxCpJonQVg1csQ+UYzG1czX6ToyFrjUuty3ApTBhiUU++A+phDOD3oaUA8WeB5gsB8ecEoY8ZqzEpxEjx3doKZ6JXlDEBruY8zpZ4KUcTcFuVCJI4VLUIoWl3WjhTcuniOZJMopIs0Dw97N2/i/nde/mLv/gsjVYbT1CpQmq88+TNNolMsP4fYXmOD+l2JHXhnUcJha1BuoHOOprqBfGOELySJOxaWqVUJmguOmOQskeSJixefAxZrpIpw/TOnGJg6GQaMyiB0KAWwiK9Cu6E+NHOCeCFDxu49+F+dQ4pxYhqZr1DKxPvivr91U3v6FlEwle/fpG1lfCe3/32e7n5xmsobY8dV12Pk+f55jc/x3RHML9jinJgw7TTW4QBJ4YkicKVZbQn9nTaTYR3bK4VPPboWYSXTE5OcvjQIQSOYhhkyvbt3sdmb5OJqQm6QpD0h3gcvd4WeR4IBZub6xy+9Taeeuo5rju0j0tLq/SGFiUJqk+yppMKrHPMzM2itWJ9fZNb77iFBx54kMk37WV6QpE0FcqDFBYXF6hUHiFTiDYkwkfDOxQSOWKXWAwyDoWcDx41xAyvtohFCrw1ET6i47ADOgs9jtzyRr704F/z5vvuZeuRJ+n0W5RaBGqsEAhKhPQ4rxBiQJWnICSXepscev3r+b2f+Al+6l/+EtN79vKjP/6fcu2RQyye2+DaQ/N845FHmJ2eQArL5vp5BoNFnnvuODMzTW66qYH3J5icAJWERS78Bt6v0O06Ll82ZNHSI01mQBjyPMVLx85d03z/938fa+sDPv7xj3Po0CG2Nrr8zm/+FrffeQ3zO+qy2qNU8BPSaSNIxxWhLM3yhERnJLpJsz07mrzXautZ2kHJFlIopExi5poEdg6MsanOxQ0ywqLEuKKKSFAQ4JxAySDyLYUGas93GzPOkCOGuVFkIEW/ITmif9ZDpjjkkx6UjQB5h7NFFJMWoV0XXSVlFApRaUZVCRrNCdIkrN3N3jo6kVgT4EmpBiMMH/7pn+QP//BTeBlaDNaLoEk6LFF5aFOU5WvX0/zuCJoQskgYMSeccIGbHEHAXkiwDqnqoUwQIMVJdAKDYkCSZxRdgZAluB6r555AVT2M96RodBagConOEKLCS4kUoMmIxQ5eeJTQ1LSPRCiciK1uL6+AjIS5YxhKjNvhMDQFiZ+kMFvkUvOlr53l/PmEYrjFz334JxCZ5uULi1xeXKTdeAStHHMTJXnSphxexnmHJgCFhQqa3N5bZCoiK6IKMBIJn/70MWZ37+L6aw/TylKu2rOLi5fOsLleUvYN1m3RaLSwlaGVpWwkCpEkVP2KtbUVrFHce/etfOvbDzM52eLchRVa7ZCRmUqQpAlCpCNgfrPRYG19nZ2zc1y8vMydaYY1hn27Zmk015DKIVwol0TMViSRo+0cGh+phzW1xuLr7GlElwwuoFpHVpATmIg/DFCXJMBknME4ENJz+SvPc+4HbsI7RfPVizTvv4lNJUnCLYL0YHBkKsEphzI5QrX4iz97hrxn0C+9SKoTfuWfvJ///eGvcO78abRscOcbrufRr36BXK1jhudwvkcjhz3zJVUlaDYc3hejwCKdjK4DYVothKPdlnTaPegorBsiZId+T7KxDtMz8yAT5iYz/uUvfwTr4X/7g48xPTXFo4+dYN98k3vvPUwnXcRrjaSLFh7nN0hThS8vY0qPkYq+EGytSZSoPbW2Qbi8iU8lCBUqASO45V448dxvhsGKl/S6jjPnBmx1Cyanmlx9YA/NZhOdZiS6HXv6wR8oTZoolaF0gtYpWoUApBId6ahRpAXCWvYuqnPJANUSOrS0nKeoCKB1J/FUSB2CusZhrMW4AImrN0/jQMkUfIJxgsmZPRTWgi+RqSVYGWWUss9mb41/8p+8kz/59F/SntpBIi1JZ5JGq01VhuGydf/IaJRQIjmDdx58IzANvEcTdhprLErKADi3EkHoaYbdNwS70gzIpMT6dbY2X2LouljTCxfSV/jA22dioh3sV2O57UVUqAkI+3BChKN2sAwkBzHqXwaGyNhHfXtWWueamZikcpt4Dw8+scar52HPdMK73/tj6GaTTmuCpUsXmZ5cJ9GORAedxUR6Kgdp2kSIIu7cxMnplRlwEFDweKE4c/oc6yvL3H7HDaweW+HChXNsLS9z2y23sLm5yflLi+zatYuiLALcxzjW1tYQUjM/v5PzFy/zjnfcz7cfe5SN9S5SaYxxWCdpaB08V6Ib4LA/4O6772ZjYxEpFMsXLvPO+9/CM0df4Y137WHh1DI75xMajSAYXV+nEb1ZBNC69C6yWsZlkRJiPD/1gSLpYeRLU392azzCgU9SlC1Iveaed/8Qf/7pB5i96yBLD30L9+OvwwmDkgblg+hK7kElJV7s4NNfeALvpqlUyloy4NSgonniZeTEBLfpnBllUIOjPPnQQ0i1QSKaKAFSBMyllIIkTVE69ghFGBIFYH7kXSuFF0F9vdV2KDTW9JC6YHLCMb8voyouUpVtljc01ge73A//9PspC8Vv//bvkKRH+OznT3HHbdPcc3uBryZBFKBAeBuCs9chu5ChXJaK0APczryipnwGGJAQEpWEc5+mBuvDzZ4kFZ1pjxAZwjmcOx1QDENJtwzIBYuJgzyNICgy2QizUiqQUlxkHznnMDahNLV4i6EoCrJGjpSKNBrbqeg/JCV426bZbJKmGd4HurOSKgiSmEg4oUFh1ijcJKISSNliz+5rqGxFMSwDKWQ4oJISgYFOxfvf/0OcPnGGp188zezcBJnOcER0gHntAPfvjqDpS6guxNTcjrBlpQ3PnQBPmEBLp/GEAYBzbiTAK4RibWEArkueWipX0GrkVJUhkQlCWGzkrdfyWjiHRGOpoUSBMhZKxfCop+TbvxexmR1uyDBZ3Q5U9r6H0A3OnnK8cPQcW5uGn/rge+kPKrwqOH70i+SZp5lDkuoI2JV4hmipmJubY23tHHU5FAL4GDwdvoaLvXJ5Fak1Pmvw5c89ya79HWbnWrz1bW/n3KlTXFxYZLNfkPf6TE60YXWDbrdHUZbkzTDJXbi0zNbWFnv37gV/iaIM573RDEZZVRUkv/I8BxyPPfYYP/uz/wWbawsMtwrmd0/z5S8dZWlhjdtv20+jkVKV/bFy1LZzGHpwciS04SJVNpTqYVBRU2hraHXN5KjZJkqEzLUwBmUrMp/SazSY2jPP3OuP0OqusJxa8kogVQspElTiUAKEynnomwsUVUa3v4iWirtefzdJVVJcXGCy0eEtP/BOirmEbvcEqa5I0NG6N6AaLQEDqaSOkm0OpcdZsvMW4cKGLlFI5ZE4pPToZAbnDUJapGwikzVaLYuzDVZX10iyHXQ3LFOzU/zav/41/vW/+TUOXnM9Tz+7wqHdN3LgyAaUEimaYVORAuGr0TrwhD6v8+NNpr4GllrLM2gN1Oy2TjuNAzhJVWqkCtRVYVOs9yPzMdeoNSlrPGVAsvhoyeFszejxAahubRjUaEOeBplH54Pvk7UVQjmkD2LGzg3wJiBDrdvi8uUKZ8WoNRSw25o0bWKdoKqGGDSN1h6mJ2ZBlAwHksm5aSYmGuBTtHQMix7DYZ/CVKwtrrBvf5sXX1mj3ZrGWIGxRRAUUX+XAOPf/fiuCJreD6jMczFzTOPJSoJajxCx3IiZppQB90coXb0PpvCDfoF3W0gk1iRoFAErGxrMWiuU9yglGQ6HcXdTeEJpHUrFYJNqsUFWjghUHtODokKPH2HnwoCCK25QJzSVEHz9kYukvsVHfvoHmJk/QLsoeOKxLzPRqdDKobwGV5IogZYKJSucT9mzZx+bW+euCMRQ94ficCr2nX71X98bMhsqNvqST37qBQ7uv43nXzjKwqVz6KTB6kaXufl5BqVnY7NHb1jgveDGIzdx3fVXs7He48mnno8B0oymr+0s55333csXvvRFNjb7EcsXAtnv/s//kY9+9L9n6dJZ8k6Lx584ztUHZti3v4OQm2RpG08Z37cCbJCw83ULBEK6FDeeeI3DX69pemPFKx+zfawbZTFNnZBYcKe2ePLYwxy1BW+/uM7wjXtI/JCk2UBLhZYeK8GqSX7/o1/EyRZCGvI046Ybr0ckjuvvfB3JpZ2sPPg49pabuTHbyzFxgYHtIYsmSWIYDYyFwfkAe6qqUMKE3nWE4cSBjDHheZIoREQMWLVB3WbQoiQR0NQTtPZ02TmrcK7k+Zf62GKGjeEq/+Kf/wozcxl/9Mef5E++8G2mvj7FL/7cDZjhClpahO/gpEQRskkn3KhvWGsl1GskZPUSh0SJcVBtN1v4GuDeUhFyJ/CyxFmJxaOFxvky9JcjELwGqtd40e2MoMqWWKuoSqgKi3FVCKrCRgSMx/pi1N5Swo0aXEoO0Bk4K7AiKj6h0AqMDZYcufIMnSAVFzClRKgJdFKxsbHBzEwLpKZyKWQtOh3NhJXs2CVweN7w9vehdE5RhqFqLVr8f3/6o68pXn1XBE2JJFUdRjWcCpmmVOMyXCg7muiJaBlQc7kFgjx3FEMVpLfEAOHzcHG8DtTIKLRgrQ3BVIjosR5vNueROrAkpNAjr2TPWH/QOhfolj700eo5P1f0OWGtp/hfP/oYSqT82A+/m5079nLu7GkuXnyBTnuIljlKOaQq0Sr0SaUMn0MLR783GDNjvEf6OguObQKpRmIO0gTwL9Jw4dUJpqd38cUvfIbOVIf9Vx8myRKmZ7tcvHCRoqhGmFOlFDfdcDOtVokUProfOqRMcLai08h5+/e+jSM3HCLNFP/Xn382GNJVhkYzw0rJq68uMDObsXxpkWYbdu0uGfbWyafiddumQSF9nKeKmo8so6JV3RoJ2bQJdeLo+ej/1xJsEUOI8yTCk/qEtdM9TCUovCE/epzu3jlUorCZoCGrAK1qXMMff+xbeNVEazh49U1MTmtuuPZWBquX2NNYQx/qsnf3XVz89gmuP3KQ9HQBV2UI7bE+R3mLFR5vxQgJUFahh6eEw9XVQC02EltKgsAdD0pZjVElJfDkeYvzFy6ye34WrQfAMre+vmRlUbGxJJGZRPqD/MgPv5ff+I0/ZOduw7/794/ziz9/B4W7iBYDRFRx93XG7kWszgh3uAAiIkRKHVEgjO5rqbIwbMUiVUWtA+FJgyGhJFJ/k6hOBQiHlz46GfiIZonams5jgjR/GPDKEi0C7dKzTUykHjh5H6mZcV4hgleXVw58HtasB6iCHQsOa1IS+pw8+XmmJq5j1753oBKJN57VlQU6k1PofA7hcpxQQBHsPIHCKJR1OCUorMUjEf+A6fk/ENb5/83DC0BUIEwoC2SY4oXvLagwgRYkAaPpk8DEiIcUGUqmJDrq//kUi4v9npgxbitXms0mSib0h8NA3ncOY8poimUoTTVSVzHGBNaM8dGkSSGlHgXs+kLbwF8A4ItfepHZ6QP84LveRdaYoFv12dg4SiMr0VqSZCVKgdQBzyilG00FhRAsLCxgTDnCUKpoGncFEFzqmG2G/ppOFTv37AWlueuNb2QwLGm2Ouyc38Hhw4dIkoRqGHZ7qZJRz3DHjhm63U2E8OR5itaSt7zlLdxzzxu5+YYjtBoZ1193GC2gthVJkoSd87O8dOxVGs0Jet0uL77wCrtmDjDVmYqLLjJ3GMNW/ma5mCgdP4sY6QxcyUVndE62H0oEX/FUSpSTvPPut3PcFbz1ljcw7C+T4lFCkhcO6zWt9g7+7a9/in7RJ0kVe+b3MjmTMTe3n7XNVzlwsCTpbCKkJp00nH/5OM8/9QRrz6/SFG10lgbfolSgE0+SCtJUkaQhmwtECz26XkIERS2ldFBnSnQYdqkAG0qVJksEMpF0+wVXX30VIg3gfqlSGn6SnbvWuPEGSZp02NxaQ2nBL33kn7G8sE4lJnnh2WWSbCdSZEFeToYptYrT8aD+pEf3q4yUWyFixRZZP+MTHbRO8WmgLtax1jsUHinCoZWIcnYxq/Y2DPycGX3vTAWmQNgS6Q0hNwuHkNXoABMOUY5eP7RvFDJiOqWMrQxRgdcBSohCZgIvErTQnHr1aZy8RFkFzCzCsLG5BH5IphXWGNAZ0mdolwVNVm/D6wkQ3oX3/Bof3xWZpkAEqwnvCMK1Qc1CUHuK13qaMQuRvu4eoVQ9GIFWp8n66hZJ9IuRMaARA6aXAuU8Fy6vsnvHLM5YCu/jTu1BBM1CV3mEikB1U4z5srIexNRTyXChrTBolTHoh15Pv7+XcniJQ9fO05zdw8mTzyKrAYIyljAZOnXgDR6D8wJlw99HDOgNFwGFp8K4Ab6qPWzCVyklla2wtouWFWnSob+yyBMvhKBoXOhd5XnOwQOH6Hf77N8zj7IFa32D1oqytDz51Dc5cM172Ltnik5rirm5OW659fV40yNPM1qTwTa1qQUf/OA/5Qtf/CY6a+J9ANo/+fRTlKbi9tuuZv/Ve9joDUl1iRIJjnLU1pASnFWoGk6kREAoRLSC9zLAkRj3lAUKF6FIKBHUy7WK9hcaXBiarTzyEqcP7WW9HDA1P8lE+1rWpETrElyC0m1+/bc+R3NiGqzjuhuOMD0zwf1vv5/nnvoa115tEXqIsAKXwLA/5K0/+Qae+9ol3vSu78U//jhr9xhSlWFRYVAVkigSBCbxJFLhCfxlBxjhETaYpQmlgwVFFMXwUoAwJEmGEm2STkFZDcmyMWLDKUkuUrwfcPt1gief7SP1AfKJhF/9Vz/P7/3ux3jgEc+3n1vipz6wj1TmSGGBJsobfJR9E6rutcvRkKpWNvJCU4tXK5lGcWQbCR610IcgUfUwL1rIQBQOkZFbruP6ihA8azHOY2ywYnEuIhfqoZSXN7wa1wAAIABJREFUkRYZ1puPPU2B2oY/GWuFjmKEUEhh8TIkKtJ6kuigsGd+Byef/Sx7Dr4ZOXkT1nrarWmWzp5AivNMTs0gsxYAw7JEJzIOIQWmDHqeSZK91nD13RE0oc4oArZr+8+IuMlQZdQXLQ4FCIKx1hqUTEaDWONDW9uJcIGlkBjvEcbibTVSttZaY2p/bgQ+DoMSpUdsCnDI2oubMVY07Nr1PD0jVZKhDmD2y+fP8VP/1fuQWYelhVfBLJGmEucVSnuSRATxCqHQKgYCEbjvklCvzs8fZmXtJbxJUVlQ764HJt57pNYo1SRNKrwQSH2E4WCRyU6Li+fOsXPnTq6++mqOHTvODdcf4aabbkJpwfrRkzhr0Upx/vxF1ldXedf9b2N1dZV2a5LZHTsxRXcktuFFEAeZn9/DdUeu59LCMufOXmI4DA6Ep145w7UHd2Oc5RsPP8t99+4nk5sUToepJYHn7pxBuNCPqpwdlbLWhZIqfKbYK4uYv9q22dpxbzNgCi3NNEdoy5F9t/LAZz/DG952D5tPH8W+bRIn+8iihc40/+P/8Hkmd+zHy4I77no9w2KDO265jUsXHuPg4dBLk6RY45HeIyZyitKxsX6aFx+fZeb8Cuk916Dpk3gYqCyIrYQ7k0YjQScCY6GWN5feEyjxksraaIkR5a4laJVSGMHi4mn27JlH66AVKuL0O3QrgpePFX1ed9eQb3z1KDt3X01zxxw//8s/we/9/qepqornT1a84aYdCCqEGiJpbBPZTeL6kTFzFAgV2xuSgMWi1pJ0SB1JA5F9jiNA3Ah43ZFWqHcRYiexVDgf+NxVFaqx4FsVUx0pEVKgR8PSsQpScC6tBcXrVR9lIYWLKAvimgArooByLSbiBcNhwZ6plFcXljnx0mPcec8udHKQXrVBqjMaicC7TUxvHakVE+023Y0eru73GoMxJc3Jydccq747gmaNxfSjGTFC1JcrBM76ouMCZjOI2QqcqQJ7sd7JZLgAMcFEEBYpRNS/1MxOR5vTRAelcSmC/5DwBPm4atQ/DVN1CDdftCzYVkHWmNF+b4u8FSxcf+xHv592M6NXlCwsnGZu0mCrABbXUqHicEtG6SolBUpGIVoBiZJMdHZwafFZEtUMC0jWGW60zEWjlAYqvDRYN8fuvQlLiwusra3RbHXY3NwkTXKk1BF0bUcHwPJyEABpNVNsmY3tHUQyCmBBrKHAVI6zZ0/jfMLmVg8pQnbxyiuvkr7nPk6evMDrbzwEiaCVTJCp8ZS13WjipQX0SLncehetCaLAdJ3CETdQNdatFF6PeqGOIBvnjaWR5UzN7kfvniGdmaB57CTd1QrdTrDFFseObjA5N4tKK64+sJ+qKnjTXW/mlRPfYnbGYAeaolgJG5YIAdlWFa1WgyP3Xk/vm2fo/OT7aD/0dS7eneBdQeVS2l6GjVkFcL23UUxZAbGcDYMrGQKpCD5BNezbmiDtt3v3LrI0ClVXQXpNCIHQDmyA3wgtUGaK73t3yqMPVayrkmbbceTaPbx6fpk/+fgF7vqNSYRrIOwsXg+DmLcARAh+YbONSYiIeGTG5zeIbDvwLmb74+tQqx45b/BexWFouIbOG0xlsd5hTJiUB3SZDAZsNXvO19Wji58RwMV/D2srvJ7DY8PGIcIwUrix5GLoxwdDGik8TgSq5tZWDyEk7bbkpaNf5cgNCqV3Miz6dBo5SgpajZ1s9Xo4k5PnHq3S0Ubc7W2yuTnWUf1Oj++OoEnIoII8/1gyv45NQSLMxqa2HO/GBHEPEY2phAqTyqrcluhbj7MmTJhjaZ2nim53SKuThyGQD81g6QVOBumsOuXd3gv11Lg3NRqogEcrg1WKhx4+z68A+/ZP4azi7Jlj7JgQeN/DiyTohRLxlYQgUvdGQ8kayxdhEDo6HSZi9FnGIrQ2oAycQWAobZOZuRs48flPYEyPZrNJliWcOHGCiYkplpaWOHb8JV45dXqkKRjOq2B5dYNUSopySGeigcQjVFzIzlIMyrjZCLwznD17nkG/T6uRg/MsLS4zNzfHD/3Q9/D0ky9z/OUhd98hES5Bq1rIGYTQeJngbPRq8YEY4J0DLcPEVo4hSmHR1EEzvN+x+VWCMAn6zBbPnXiR/Kp5msLR2JGST3WohEJ0PM9/sYcVkjyVzEzN8O53vovTpx7ndTdmSHKcVRRVEnrh0qMVVBasMDTzjOmpCS595jGO7NnJ4UsDVvdLhpXDSTmyl4ACbzWl6VELS9dVk8PjTELSHFu3GGPIVJOVlbN0JtIwJIo1bGg1Oawoka6BVg10OoNwiyiluPb6PTz97PNMzR7kzW+8i137TvLgg9/mD/7j83z4Z+4iI9hEWAJF1YttUmw1O0uOqzUxkmKrtp13Edk7UV0q3i4uqrXXnucBTmSwrooKVeNEJWSlZowwsSYOVscJSMguxyV7II1YBAInBLaKrTohEDJAuJwEzdgmxKGYnp7GeMXs7n0IBal0nD/zeaYmX8fExI0IlSFswsD0EYmhdJvYMmHghuF8KEFRWYp/jIwg0DFghF0plMMRLekESqbj/qQa4/eEUEjvAwwEycRUh9WlLTyC/rBPEhvg+OBrjvCjwBzUdBwiidqCQsRs70psZg0RQfjR3zAxKwQJZcHATvLYt48DYDwUBUxkXaRwVAaEikyY2DMSUiKFRQctuxEeNdUa4Q3nLx6jle/G+4tBUxNG50XEvcMZh8CxupKyvHqGQb/P1HQTU4bPt7W1RZI0SNOUgwcP8tyzL0QVocBht8bzxNMvsHfHLLNzTfqDkpWVLe6+5z66wwLvKxp5k7X1Vay1fN877+OLX/4qL764RpYrsizjIx/5WS4vLpKqlMnJSZ57cQEhdnPLLUNS0YyXT4bSfCT+VX8cG4ZANZxoG98/TJ3Hm9X2zy8J7KSlp5ZZWjnP5mybnSsbNN6xl8vJFq20xb/5tw8xc1WD6endXHfoCK7q8dLRBzl4oES40As3uksqc8rSkasEqTwNYxFoum1HnntOvfQQ1/zgr+CPn2KoVhBljyTRKBcFc4XCGoVMUmqJtnqj9UoxHHg6zZxaw0BnOb31Hrff9joK0wtT67oOjZ8/CC9rnLHknQHe1Tqxl7nv7XN86zFLmXmu2nUNF879JZOd2/nkn57hPe+cGEHlqlhNhADnMZHnbcow+HRVUBe6dx6OH39+1AqRajzolIlGyCvVqMawohA4JWJbr7+WsAuWwvXrCyWRI83Pcf8tBGYX9T9FMHur208ytupkrC6lq4tINBJrDUmiaE9McGlxg7QV++ciRYqCYf85+oPjXLyU0sg6aDULvsRUBc2OxpmKbrfLcFiONot/QKT6//8hROCyBmie3JbdheBopUD4+ExuE9IQQTI/pPWMLnpVVVRF7danEIIxhMgJlPCkaToGTQsRs5xtgqqji7sNuF6XT7HMqX+uRYPnj56n3Z6DpR7OpSwtLzE3JShKi0pyXMxSpdBxWiyRQbcFhaTyfiwqK2F9Y5GDe97A0vJFJPWQYCymUL+2UgnN5i4ee/YoO3fuZG19gTTLKMoBzjkGgwH9fpdzZy+Q5w2KokYLGKRWnD1zkc3VNaaXM67aPc/y0joHDt5Aoz2FlorCBK+jqioY9Lu8+S33MDczSa83QEnN0eef5aYbr2U4MDgLN9x0hJdOvsp9b/1+1lafjRe4VuYNrRZHVK4PyEYgSIXVi7I+/2EwGOA5vm6ReImxlnZzkgPfcz9PPfpNhjplcPYctK9iwiR85eHT7D2wl8Gg4OCNe+h2F3j3992PEseQok+j0aHb20LKCaQIIGqhNGVVIHRYlLkFnOP2H7yLEw88yv79B9i7pFiYyXAyYDK1F1RYnJMI5SEiAbx1GBEGWKUzIIMmqpSgkwSlNcOyj0zDvaRRo2sLDiVb9Lt9WpMtvCuwhF67K9t0mhlPPf4Ed7/tLiYb0/y3v/oR/uBj/ycPP6T4sR+9GzMYexTVTpmBOmmvCAzS2eB7zgscOLDvCpxlFa0mysIwGBTYkXlatS0TjVoAEU8bbD/iUEcEkZcgzB0osfU1ra1q6jWMqAd/NcRMAgYZJfCsv2KbpeavQ5gFSCWYnmwhUoX3QdMzISFVTSQlRhYkQtLrXqQabiCo6HYduDD0woHzIhjYvcbHd0XQtNbQ7V4O5SlupHQTMJE1tIFRz81Hytf2Em6kvSg1ZWlJdMhuwkKLjafoUe0ArYNVhBUa4W0cHEm8A+stdTnjsCPzLxChP+NBiBJcoHQKb3jgC6dJ402y2evS6y3RaRQIKbHOjHQ4lQwAe4TDSVDCIPBkWUY5GAaDNaCTeibaCUsrKaL2ZqGeRgeokidFNyWLpyFvKBYunMM6R2+4ETYhZ9ixo4kTknMXzlOWJd7Xkl1hEDYo+gzLAscEVe8cU52cV4+/yN6r9oO0tKdmwwRUJPS6A4wxDPsDdu2c4fCBfSQyLKTPvnSSnTM76G8VfOADH+D3PvZJds16fg0oKx+CkRN4F/p9df9ORoGGMdMpLBzhbWi7+HANcAE+kytPicCVFVllmbqwhhUl1913mFXXJU1nOP7qKTY3Sm646Toqa3j/Bz/A+eN/zUS7h1Wanu3H3nWJ1opOJ6hrDQaOrJkE+qVIsIlFX9fi+F99g96EY4/dhdm7Qqub08s2sFaSYOkPPY1O7Ne6wIZJSIIIsw2JgLUFUjZYWthg1+6pKBQDichjEAnIjbIsMbogb6Z4JDpr4MqSTE/wqT97gDe96U388i/fzee+WOAmlmk0chbOLHDw8DV86/E+99y+A+sGZMk0lsG2LCqshbqxJQl0SoBcT1I6i3UVHkPIoS0y1eQqCYHLebIssGbGjCAfJ/C1Ids4y3ZRYANfX2+3raUV12ugKQR8pxhXks5d6UIesNiM5gxYh0VQdgc0fEKj0cA6F5SdIE7yiS0viaMi01ns80isj84L1kcMrasV8F7T4zviNIUQuRDiMSHEs0KIo0KI/y7+/BohxLeFECeFEJ8SIohcCiGy+Pxk/PcD3/FNSEmeN0iynCRrkqVNsrRBq9Wm3e7QaDRpNls0Gk3yvEGeNWk0WmRZRpIkUfA2HQkTZ9mV0vXOb7M7jbuclMHoPhJccM7gXAmYbX0gQsnl40K+Io2vS0eHVZ5du+eZn58HYGlhkWbTMD8/jxABzhAwaAFPx7a/UAdk4S2NRoPhsI8xDiUlG5tLQalejvtNgR3TxkmFo8VgkHHs2ElOnXyFJMvIssDlTWN2uLq6zKmTr9Dt9mKfclwmjTMHx+rqKlIJ2q0c5wsG/Q02N5fp9zbAV0jhSKVn8cJZ7n3jndx85DBKWfIsQWtAODY2NpjoJJw6+SqNNGFtPXKbExCVxdgiMjxsOA9iXDVccc9tM/Kusa8iZvY9G/QeL1/scvrpo7SsZH9jkvSqHWiveeSJl4OEXa6YnGoyMzXHH/0fHyVvGqyr+5D+is02eC1VgdJqAOJzJ3DKc/d730znzAqcGzC3ZdBqg2bRpJuVV5ScQobeqNgWPACsKVAqoSwqlBaU5RBjy4ABru9Npen1evF+SUbvKwxXBCsry/zYB9/Gzj2CQXmBfVdtkYgOUmf8zD//aYq+49OfegYrNpByCuMKajRKeHvbM3h/xfuuYo/SOReQDbE3uz0jlFKPSvTaFC8cafw6NssLv5OidYJOAqdc64hj1WJ01JjjJElGVsZB9T8Z/X79tf7d0b2AoN1uR1aeGH2ekVus9KP1oqREyGCfI5ULbTghRvdUSKOuzGj/vsdrAbcXwNu9968HbgW+TwhxN/DvgN/y3h8G1oAPxd//ELAWf/5b8fe+49uQKkOqDCUb4dAtlGwgRR5YFDJ8TXSLNG2SJOOAqbWOPGeJznSoRoQYqbUJFdgnAfkfynGkIE1rcLUGocJkti6TaqVuXXtCi9Hv1gBcrRRSGbaqoMBy222vB2A42GJ+XrK6ukxVVczO7kARpuZSEoDCoV0+ulEkHuuqYPgmwo3S7a1RFEUIrjIEWOFByT7CN/HJOl978DSr6yt4pynLkmJYYY1Ha4lWgqoogzWGlyidjkDy9UTVu/Cp2+02e/bMs3f3LEoa1lYvYs0AO9xk7fJ5jr3wOL7qcvORA1SDFfpby2gqKltihGdmapqyHPL1h77Jw19/hH/xMx/mxRePAbDenQmvK3KUStBKBvELQnkWvo8DIutGjoX1lB/G7RItFY2kDfPXcvblY5hMUS2vsNWRNBqCrzy4iFIJBw9dxWAw4OYbr+V777ke77p4Hxlhdnuw9pE77skbknYrx1YSpEJY0KmmfUMLv1vwzPoJLn29S5WE6zDfH40qx9dGyLhQCeB9IVCioiqhKB3tdh7M5VwtzitRSc7K8iqdqUnSRopCkKQqmMlFJtHUdBNXQaY7KD/FjYcS+t1XWV9fZaopuWrfHhoTc1gfHFeT7EoxmcC6qVfbuBQHqGxUT7eWyhgqY4IJoA9Zs4h+WF5E0KVQo8NHZpcX46AcglpINgJULq5DWW8kDhk3rkAICImBUgo/qqbk6L2LK9aeRqmEPGuTZg163QFb3W74fSW3/W6EU0kQ3lAWW4F1J92ocgtrLwZo/dpTze8YNH141PP4hBr8BW8H/iz+/GPA++L3PxifE//9PvEduqxhZ0iRIkXIBIRGoIPQgkzjkWw70hBYZHbFiUx0hrWeLEtGu8gVmYCI/s4jxkroeeIV3gWmkXdpPC11JiJiXzSUTyo2yqVKRuyLZ15YY2VpmT275wDYOz+J9H2EgDRTXL50kZmZufj5stFFFUKNKJjhAgqsq4ImoLWU1QAtW+F1hI43WYISGkePJ765gWMHO3a2aTXao+yxked4a4I4iSkY9PponY5sGWrrX2B04zoElfEkSUan1UFLTSdv46uCTiNBupJEeAZb67hqgPLgnWJ5bcjFi+usr2+GEi7v0Jme5pmjz/Kv/utfAOCV8zmf+LOjWOHRlYSIOVVKIQgSunUv24V2UwhuBLC0s+NeZ6oMXdPAXO6TTDTIGhn2uikQa7x4umJiaoK8oWk2m7znXT/A0qVnUSwhfZPKBG8ZvI4Bq7bdrWEtHu97pFlCv1tRCUlVVCD7HHxrh/MrXa6//4dZ+IMT0KmodFBdz1M5Kk+D3W1wdJRS0mhk8bpYsjxByNBPTmQSr23KysoGO3bs2NZiqqshwrWKgzLrhniCLYS2bW6+KcGXwWH17ffdzLAc8Pu/+xwy6wdf8G1DF+eCvYSx5Wj6XcXpeWkNlYvTcOuiQlIMgm58f26LCVdULD7qpDofgmWd0Y8C6Lav3gi8lXivRhntdkRH2MxrvLYYHz5kl4JaGEWhdbiXs6wRJAIjLK1mRyVaoqWgt7VJEuFX+JAwKBG66Ur4cFzREPj7H6+JRimEUEKIZ4DLwJeBV4B170d173lgb/x+L3AunlwDbACzr/UN1cyFkBEyOkTUYByJZ8ST6aODJF6O/i3LspFIcJ01BsbBlc1wLxVCaS4tLLO2tsHa6habGz22troj46xhb0i/P6TXG9Dtdtna6savG2xudtnsdjl+dJ39+/YjRYAttJsWW5VUZoAxJVLB4qUFJAJTOYZRuqowcXe3JtpLBLEF5wzDokAlKc32LEJpkFG1WwpKX3DxfIPKTdHvD4OAqggUx3argfSOVqtBq9EAa6hMMco66uw8SRJardZo+NLt9imdoF84Nrd68WbMWVpawlrL/Pw8eZ7S7wfhjjTJKUtLb2g5ffYS0oe+6pHr9vDyy8+xtLzKv/+ffguAD/7kf0Z78lq6/X2IRjdskDoBKZAR2F1vfFLKiBGtedvjaa4QnkFVsXFpQPvcErpy+F6fibsOIpzik3/6OMaucsMN11GWJY9986vsns/QqWd5aTWqEylM5bERUG+ti3dS6IlZa/GuJM/zoOhNijGGgWgxfXiSP/yLT3Djj38ApxNEEmwutA4ZjiKoyAMjhEaSJOAz1tZWwNmRBa13Am88m+vrzMxMgLCBrrhtILQdXxmy1yYgKUvH4tICO2bblP0eK+s9BsN1zp5a5pvfOkVlc7TIrkgaRi0D50eBytQZ/d+YbIde87h8/ZvD0b/ra0262B4g5d9IXGo4Fl6MkwZqrLP8W6/3d71WeL+e/qCI7LeIgvE+unyO/w6ECiZLdSC5+FCpjKo7GWB8f3NT+E6P1xQ0vffWe38rsA94A3DkNb/C/8tDCPFfCiGeEEI8sblZIpHUODDH+INsLy/G7zpOu0WClMGWVWzLPPO8SZIFQdQQPMUVfy+IC1j6g5L+wLKyukWjldJo5WSNJo1GgywPTe8sy2hkOY0sp9ls02g0Qn+13SBr5OSNDquX2xy+5iCVCa57zXaPLEsCzzwVKO3IG0GANkkVrfYESZrTbLWD2INSI+pakGGr0FlKt1cwM7OHYWkYlob+sGRQVDz/rORbT11ivbDBzc+10IknT0Np12o22blzJ81mzvTMFFpLqqqgKAcjvGqe58zNzYyeK605fuI0WXOa9fV1yirg72bmdrCx1cX6YLI1PTsXFGJMQWUMz714nDNnz6MT0GnFnbfs4K47DvKXf/4Z7n7rmwH4/d/8HX7xl/4bHvjKs1xYPDCqFGSEX9VlnrNgvQjOMLG0C0cNujd0smnmTvS58K1vsYuMLV9R7W3y9FFLc2qKsiuRWnH7Hbewf38T5bfwaKZ3NBBCsbU1oNcNE3NrrsyivANhczwlKqlot9sY4zEyBParv38HkyfP8Phvf4zpj58j9UOcg7yRocW436aUIlESVxlSpSkrxa5dO5BRmk3LoI4khWd6qoV3Q5SwIXBHYkcduNJUxkCbce7sZfr9Ps1Gmx37duJsj+uu03jZwJk277j/dg7dtJ8v/NUprAlokJA9X1mO1+iL7UFy1DNnOwSMcVUkY2B0VwYXKUSAAW7zbQ8okZDt4a5MVJyvqD3Atv9+gBrxtwLn9hI9wJMAETZ548IcQMpAFhBCxATBj2QJe/0ttATnhygd5htyhFaIfP2oF/BaH/8gwQ7v/TrwNeAeYErUuvghmF6I318AroofVAOTwMrf8bf+g/f+Tu/9nRMTWehHqLCAlEwQ1OwbMf6eJHzg0QVyYbIqfWCQoEhFaDy3Ou0xzzb2jqwX4HUsT0IwqzyBbeODtYJWUX6NcQ9tXE6PVXm0CPqMWSaYmoWpqQwdA632Fq8saaZG/TtEAOQKKryHVmsCnEATBkRKSqTwKJEGvKDKaCrB5ctn0SKo0w/LaZ56TmLlPGsrAzaWN2g2J8hzQUM3mGq3mJ6ZQCVqJHfVzDNarRZ5ltXnPbzHKLzhnKHRyMizjMFgwKc/8yW++ugzPP7My/T6fZQArTyDfpdzZ87irSNvtun1C/qlZW11g6oMQspX751gOOxz680tbr1xNydefjlcJeF44DN/yS985BdYWG/xu3/wMMPhkK0NyXBg2djs0d0o2djosro65PLSOpcWN7hwYZVz51Y5d3aR068u8srJJY4/dRa/1WOShGGa4m7cxYvHl/nzBx4FJ7jq8F5MVXDd4euZyAxb/QFlOaSqLL4sSbUgb0iMVaytlRSFCjJv5AFPmKdkjSmUzqjMgLzRoLsBVSJBtLjxPXeQNgWte95DThuDRxcOmeZ4GbQ2UWHQZWyJyqKdh+tjRYUzDdY3++hMY4RjaKpwXxI2JY/EGhXU371n8fIqa+t9hJTs3z9Du9UAUWJtD6FyDh3oMNFIGRQVNx85RNUb8EeffBbEcvTdsXhnGFn9RleE2k0yBIHQ40eqWOGNueqj0tmJkK3KcdbosTjv4zFuB7ht7C5UTcMc9xEDzE8BBokH5yOf3Y/6qKO/FZo38T6MECad4YXClJa0kYb14w1a+WCoWBp6/SGmHDA5MUtpi2hVI4IbptoWjAF8QAy81sd3hBwJIXYAlfd+XQjRAN5BGO58Dfhh4E+B/xz4y/hf/io+fzT++1f9FWni3/tasVHL2O3Re4RkTMXaNgEHYgCN2QgVtWtlmiYYb0KPFEFpDU2d44wduTAKmWCKAZ1OZ9uOVkMb5N96b8C2HVDjhUOrRtCZTMbN5yCwWsNI4ruORmNCCKQqGQwNUxPT9PvEHpgNH8V7EJKh3SBvQsJ+tuwCKXOcOyuw1RzPPf8MZemYnJwK2ampOLBvL1U15NLiAnkeMKhJEsD7jTR4ywyHQ7qD/hWTc2strVaLoqhoNBr0+316A89zR4/xprvvQpYW7yDTiq2tLdbXN5mO4gY15jNJJWkq6Ew0cd7QzBNuv/NqePY0LMDsjjZZpvjrL3+ZX/z5X6K3ucTaBkx1higpSBptjB+SuRaCIMtnqUYZjxBBoAGZcOYVyf9D3ZvGWJqd932/c8673bX2qq6e7p7unn3jMlxFckiToqjFErRQkilRlCnJgeFIQBwjDvIlEQIEhqEACeI4i6xQsmRakhWFDCWKkkiHQ5EUaXI4mhnO0pyZnpleq2u/VXd7t7PkwznvvTW0EFJAPoxeoNGNRt2623ue85z/819u7F5iMZa045Tnyi5Xb9XUxn83a2trnL9wB9s3rmLMmDr3qhhjptR6gnOhC3EpQigmoxFWQ1lpsizDydHMzUmYDGMccdQhNxOEhjiR7C6tcu6db0b82p8w/OG7qDMYlxWJi32eTTh+GldQTCVRJtA2Ik1a5NMJC4tdjDH+OYTnN1qTzWSCKs4YjweMRhM2NzcxtUbXtafICB+i5g0nYrQtuHnzkN7yItoZjo/GbN7WJ066mDIsERfWk/QNhKdXelPu5p7+/zqGN//2mCXQGA07Meti/aIIBbYxymFu99bI+04enedrydOCTmbpNhizYF4PGs9P5xxLSwsMh0OW21noPsWJx/p7Ji8LHn/sUR588E6ErcHWmMb0Woggdm0w0v9/eZqbwG8L379K4A+cc58WQjwH/L4Q4r8DngA+Fn7+Y8AAHMwaAAAgAElEQVS/EUJcBg6BD33npwhGFDa42xiv9HE2mA0ENYmYHYGax/ki6v9PIIQGJCKOiYXGKYEkCo5H3nw4koI0jnyUrDGUxZh+t+d//wwWaNxXOPG7X60asEZiRU0RfD08ZSNAvCdoRX4haG9nJsOkWNZYIymnE5xNSFsxdTmcPRfCa7F13UGrLZ7/1jLOJFy7dZ2Do5sYo4iimDzPWVzqMRkX1FrT6/VwzpHnOWVdkKYx+XTqz53G0k4zvwMH5/rj4xFKxeR5GTYa36VP8xoN/O//+vf4+Q/9GAu9jNFon26/x/7BAe2FJYpaczgYBpqKJUtaLC4uIqxP0Vxbsrzv3XfB167x2c88yh133M673vFenn/uaf7BP/gn/PIvf4Qf/cEHuH0zBj1GyDh8x+GIGyIqEBqHIIpTrI25++7zbK2dItOKP/vk/8XbXn8X584u8fzVbbTxUsj77r+L65e+ysYpi9AJ1jhv+iE2aGgpiNIPcVox1kKkYuraMBjA8vKyN1EhD+mfkrLOsKUgWUsQq8v8Dz/zUX7gH/8yG196lJtv7lC6Fi6aUpsaG1zLj0fQ7aTIZIBwGflkghQlW9f3SdJodr80Wm5nFdYopuWUxX6HOI4pJsNZpnmv3fKDwCTGOkckQUQlS32BVBHG1hwODrnr1DqVS8GGNFQh/JE4YJtSgtUEXnRzmmuagpMNwokCCqEAenloE79irZsJSxp1U1Mjv725EcKGNd2so+ZIbBHOeqvDMIW34bHKnWiSjA7eAxG9hQ7j4RAhFEoamqInpZhhqZ1Onze96U1U1dAPO4VFOS9C8CmYXjd/chD13VzfsWg6574JvPGv+f+X8fjmt/9/AfzU3+hVAO5EbG4znDhpUsEMh1De3CFEU8z2JgdCeQK0EwKrclQcYwobQGJNliTeSy9sLFJKVlZ6lEVMXoxJM0kk/FigUTPAPG5hbrXlCea11WC93C1JIqZTj2kK6QnpUoITzkvbZtNAQMdEUgAVUkiqoqS3sMLwYI80jXGMkZFAxAlf/Q+GxdU+V69f4Wh0xPBYEke+ky7LkqtXr3JqY4VJUSIk9Pt9er0eg+MjWmnGNBmzZw78De4gayWzIVlRFLOu0zmvkqrrGqMrT/Y18PkvfpW3v+kh2mlCb3GBjoGrN65Sasfh0cRvFkKQJhEKQdqWxFHLY0fO41Z3Xljk+q0tHn/qSb7+xFd46P7X8Tv/9s/4+b//47SSCb/4U69H6sp3AUqEzjYLTjR4WZwwxDLihV//fY5Y4OiBO3nb3/0QanXKs08/Qz4tkZFiODxi98o2p1eWwfj4XqEcSfxqjqquU5Isw2pA1AihaLU7SJXSaqUcHx9T5pqVlWXquibNctKkz/beDosr57ntB76H460btG9VuHSBo+mAU6JDqyURUYxmyt4BtE8VWB3TbXVRsQYUaboU5nqxt4hTip2tAac2V7CuANuQxptb239fUTiya1OhhMHUGlM4zp7JuL7jj8sPvu5ejof7fPGrz3LfaZ9tb532CiQZhROGt+NTSrF+AW7cuOFVWmHYZm3DNLG02u3AY/V6dOMEkqArVwpBPKP2SaE8J1oIbNPm/rVrvSnEMgxnQZLgQiKtEnb2O11gItiGHO9gMi1ZWI1ZP3WKYpqTZoI0TWddb/PHGIMShkg21pJBfs2cvdF8zN/lYRh4jSiCfEXRr556BVdv3/E1DF0bTIWdL5L4BXFyyOPVNwopE9rtLpOypCgCsRtQgU5khefJJUnE8bBE1x6fdEH103yGJ6k5zd+zL8b4PBh/WazxbacT3iBY2xLnvP+jQs1eo8+a9Bp3D5grjg+P6feXGA6PEAridJEvfn7A8tkLPPPsJRAVg6NDnEmx0hs/FFVJEit2dnaYTCacO3eG/uISdVkwLfIZbtnpdMjLgrLQYB1RkLJ5hdD8WFaWZQhQw2e7qIiDwRGvXLnOQw/cSZrEVFVFVwiqgzFlUSMjBdbRasfe9CIkDcKcOvOmN21in9jl6499hQ/97N/j0rPf4v/5/B/yAz/wUX7nN/9XtgYVty0psJ4PiJBUjHEkfgHbiEJo1qWibRIWtUV+6yVefPEmd/zieb722DWEkqSpJ1ePJldYXVRYVwEKJX1XJ0USiohDxZKinqKsIo4VxgLGDxa0ruh2uywtZty6dYvl5WVU5KgKw+baafYG+9z2hg1u/ebj3P6+R1h/8hLbtxmi5QxEiTElcdxidbVDnI2JXAclLXEEiJg0bWFMTZa1uXnjFkvLC5y70KeuamLRAefNJHx6nJzhgTaoXpSTOFM2foKsrUQ89+IRWTtifX2V4fGAg0NJ526PsQshMK5HUVSze7U2BBwxsE3cySGRh5GiyDcC1ulwr7vgI2BmR/G6aBguwhdyYzzbgbn9ohCegykVM0USQJxks383bkciCMxngygVn0hpCK+BiKryQX/ddkZVTXGJ73CbQERfAwRWe1MbicUIC1a9CipANM/13Y93XhNF01rNeHow2+UgYCi6ZsaXNK+2jfI/YxDByMPTHjzn1jnH4GhEWTvqqSGOYoQgdFje9dsJDwo7Y6hrTVlrusLvdkrOjwmm0UQLTnzdzI4TlW6OWCe4ZqRoZ4mDP6G1c193H2mqsULgnEJYi1CgIsvRdEzW6WPNEv/bxx7jne/4fi499wQ7WwNqKyingkjkyGSBSntMsio10zonz3PiJGNteQWHJUkyP0ywYtappEExJKWc4ZEnN5yiKIjjmDIkT5rApzyeTJFRC11XJElGXo9pd6EobvlcoWrK6koX60qEyED5o0+znyz3FO9/90WSqMfvffwPOX1mk8u/8TGibpsP/8LP8Ru/9bs8fH/CD33gfpAWJWNevgaf/OTnsQ7qGjDwcNbiYdUhkwXdtM/H9y5z6ZMVuzeH9Df6nNpc46EH7iOJYFTWuHqJWHnMVik/OVUY4uYkY3Q4FuPxNBGBiMhamWcxKMPp289gDIhykZ1ih9XFHmubfb7xwjadu2Kmr1wh/caLVH/vnXzij59maSllY2WZ1VVBbcb0bAcXVzhpMU4RqYTDwyl5MeGuO1Y4f+4C1lWYWiGFRiqNscncyAOgcTIPAwzrHIYYJ0uskaysevqMdrCxscGTTzzBc89O+MC71v0AxDmUU3STTlAYGVLpsNp/Qe12+wRjZd5pGu38oFVY0ARyuwiP8/eNbmnv5oSDQOkzxiFpzZuEIKl0GG/BGN5XVdV+mo5FCe+T6jBIM6cveX5pGDxJxeB4zMranR4TDkm0UZT8R/cyeLqRs2XwP/VJAiI8vxQq4LTN/OJvWacphCJNOuHfHjz2XoRzoLrZ2VzoOOc31KuTIJsryyLGuWWgx1irca7BjmwIoPcqHCkSnKhQ1iuK/DHEEQdigJ/f+OOSimTAhcBJR2QdWeTzYtK0RV75DkHImgjr4zHCIIuApQkpQSQ4NJWpwaZMRzlpT9FWMVWZ87t/8ASPPPJ9XLv6Als3dkHEWFN65Uqrg5QKU2mMroJk1GM0e7vbPFFWLC0sc899F9m6eY1er8U4j+l1Mg6PBiSJ50fWmnCkcd5iTsgZ9Qnr7fSSbkaVFwgirMgYT4ZEkURrw3SaI1PFYPuYrJVQljULfYUQBl1q4iQin/rOppbnmUxyFhfGvPfhezi9cZ7106dp9xIuXriTX/7Qn7F39RJf/F/+G74mDY8/t8fKapfVtdM+G6YQpA4utjLEwTELWcbQGjq9Nu9/+4O8cn2AriFrtVno9RD2EAxcvTVke2vA297+MKPxMVjHYDDCAf3uMs9depbxdEQcten1esSR4JXruyRpxMb6Eje3thlPhrjKcu+99yId3Nx7Eqk0i+11lnQH8fzjfPSN7+RXHv0KR4MJ7/neN7M/jZgeWu4+uw7yCpJFVCS4db3k7JkOC4uKPjFFfUwU+Y1aCpCBduVtEP017zIJ9mjC3w8OhG3has3ucUE+HpCpDWJpGI8KLj1zAyHuDAMUG/yRDTasA2McM0OcoA2fYZTNSWrmaSsRyiDDKa3B6a3zuVq+gfCTCazflGwY5IA/xkMwRrZB/24NFg9XND4EWB/D4URjSuNxVGN9bFxtDMtLSyhVsn9rzOaFM7iqQkQnaEpC0SQ7CGex1Djp3790/vnBoWneY0PM+u6v10jRJBjqgt/BwsBHzh1RTmI8hC/55OUwIX/af4AqVrSl5ZBxeHzgqQlFJBtHHZ/hHCeATrEu9lVypjf3k735jjkHzq3zLjKNBExrPaNESAzalYjIRx5gPY3K31YWXOFlmDLFKsvSch+nDdrB1asV9971dp599ln6vUVaWYfxNMcYQ5zMycDGWpzwR+qTG4q3g4sZjUaMRiPabc87PTw8RDhLK00pCp+p3mr541tZ5jRcuTqYySohMdqhopid/QOOxyNq69C1ZjA4ZjgcMh2NydIUiWNhoUcUeZut2hpcHTMp/ILfvlFzcHyFXm8JF8P1px7n6p9/kds2z7Er/pRP7/4qP/L+70dcmdB68CK3bQIyoizL8P40m7XD6AqMxtWOaRqxvnke4i5JlqGoIXTTMRVJMuXeewVvuOcsurxBu+UYy5gkc4ioJqn3+bvfdw8yhqo0oCIqXfJ33nEGlFfiKHcRIQSlA5FNSYsUiru4dVjw/LOvcCxTVt/0Rp546ineu7rB8JE7eeHJb7K5ssa1a1OGu8d8/wfu5db2t+i1z3LbuQhjhsiAJ4oQ8yFDWucMqm/uaedQyjuxO+v5hUJEFHXN0WACQLfbpdeP2dhYZWpibF152IX5MNOe4Gk2sn57Yup9EqKx39aACOtCTDB+2hw2WTsrNUHzLaSPLj65Jp1DynkHe/I3ey5nM3CSszUMDQQmZhu6//lw1JeeXuWHZFM6aYIOdKcGh1V4bLwq8/DeggGIYzbwko5w2ns1mf67uV4TRRMkSs55hA0NQ8r5m1LyhMJBhAF1sEvzb1qipDcWaDhpRAWoJrTeZ5a4QEmKpENEEilSosgwdYqXX9milXXIWjFRyEYZjQs/ebNz67I4jn1om1BEUuGE86TjboNepyip0BakNN770vqwOCEESpogFXNINUZFHu/55GeusbeTEyd9VtcW2draYTSZ0u93qeuEySTHOYu2GhVH6KIijgVCRESxJFMRpS4ZDA/4+uNHLHQ7GLdDkngsr7/Q9a7rOCI8qbfdzjxFSgiUcpTVdHa8mU6ndHpdxpMJX/nq11jfWKUqSk6trpKoiCzLEGVNqUsfPBZmZ0pJzl14kE9+6ssAXN56mli0WVhMMTbnwR98gK0vPEF16xaFddwWaW48+RTf+wt/n7ff/RAvHd/k6suP8qk/eoIf/sAb+JPPfI7ItejJLpky1Mby3GiHfdnjDz7x+VeRsdM4RtQKoRNEXTONRohYQRSxKMfYRKHEInlS4kTkHeujMXXl3YrGokQ6yXKvj5EJhy9v8Sd/+nlu3qpZb3VYbi9Q65yqNnTvbvHE1Rc5KoZ85MGH2O6v8P7//L/gjz/9Wbb+6nOsL7+Zl68knFq+l6x9QF3lxFEXKRKsFhCdGPY0AYBAM/DECawR1LWlmPppf5qmqFjRX/RHcmNHGKdQcc10pOm2Mz9cwUtogVdBNLNjrzmh7XdmNjOYecY2/y8cs/TK8Ar9WGEOiUnhfHPgHEjPlfTr2L8XJcKI15k5u0cKZoOD4MRuAh5pbGOerMJ69T9jHGANkYuJ2zEC6xkxaTSznPNZ7ArjHFJ5ForDP5cTFjezH3Sz1yjEvOv+bq7XSNH0En4gDEf8/9jmmD4jBBH4RvpEWl7zM3ZuEhB0DbMdrqFBCJ+101A86rpCyYTJxLF/OODU5mlsbclaESoMMSLlddpRyFj3EcCOylbgJNXYBzM1pF2A0fQYG0li2aGsc4TIacLuhBWBuByctesYkR4zrVvs7sEb3vRmXnzxRXZ29oiiaEYDShJ/BBao2c3ugLo2bG5ugLAUo8mswBtTU9uMg8ERKyvLqDjCGqgq78QexYqqLoNcMvF6Y2PCpNTv7lJ6mpZSiuFwSJTESAd7+wcsL/VZX5Xc2tmm210gSyRJJGf8zyf+6kla3Y3wppc5PjqiyLdIopKkHXHhXW/i8h8/zngiSHXC/tGAL//L3+H8P/ooi7ef5QsvDmm1Wjz1jW02lh4gjXvsbl9mQ6UcliPe+TPfy1c+/klWNk7haosJyg6sQYsRUPkFrxXa1Zi4RtRhY6ZEiIK6rhAOapsQWUHLCaY7bW5ducHnvv4oJTUPnb+Ht5x5G2+4CEU5YWwmTPM1DoYH7N+6yW0bq7zzkQ/yxP/5h7x1eZmnbt7iI7/4UVYX1tjdv8Rv/87v8Z633sF7PnCOWKwisOjaEif+e1LShtoxd+aSEqpKUxQF4GilGf2lbhAsGKytcVZ560QE1hUkSRY2ULzBsjnhVORCF3iCMucTLE+4BoXjsJAi0Iu8DFJYhzUG1TBHTEAwA2Qm8Ef6SEi00B4TNfqETVuIDg5rsFntdkY9Clk9VocmqTlFNkNh7yVqjIcWhBRURUl3sesjRKxDa0uWhThgFKYOHSs1IkBPDd7avAbnPPOmCWD8m7gcvWaK5mwfc75Jn8sq3awo+mm6x0lmxPeZ/EnNdi4hQrKdUyysdDncHoXHSnD+C6trULGXs00nNYuLC2xurLJza5s0MjPjVBX5I4Z/vCCK/c2d0MZg6KiYojQUuWZ5tQfA7WceYW+wz+7uFU5trJLGFaUug4sPSJfgqP0gSpXs7S3w1ccGXLh4hldevsZgcISpLd1ejzhW5HlOp9PyRxUH2tZ+MIBCRZKq0j7StpWRRjEqkoxGI0xVs7O3j3OO8XhMt9vF1A27QGJt7TFOWki8RVhRFNQNnUvJUJhLylKyu71Hu50hJSzLJTY2T2ExlNWU4WhArFKsNSAjVpfabO+N/HdqIM5iJBlvfPit5JXl8a1XyBeWWWpPsfsFS3JKsrbMS7/9cd7ysz/Pz33oH/FHn/1X3HfPEqlQbI3P8/Lvb5E6yc3U8pUv/yU/+ePv4Xf/78dYasWobitQTCSDo5huW+LkEIT3TcU4BBolEiYTzd7Vklcub7F9dYdF22Yp69DNOmQcI3XN25YXaeuYG9evkN0bceWZbXbGe7zrR9/LfQ+2+I1Pb7NkN5iQc2O5z87RiPWr1/ifPvFxRNxlYMb82q/9Mx599Is88oOb1HkX2RriTEScOLQpiJIlKiu8t6uG4XBILBWtXgZCBp/IKVaU/sgtjdfA1fOC2HR7RVEC2cypfYaP4gcxHiu0NBLKk7LB5vdIKbHGGwvLptgJkCpk/QTetHDeXg9nA19U4IxGBv9TxNwQx69r3/I069c6hwztpyf2C4T0OOurT8o2dMgCJxUxkiTrgJ6SxCpgqhIrJGVZEkXe4DtJYrSpQHtllnQeWrPCBjPwuT7dO07BzKX8u7heG0Xz24jjwk9aABt2n1e7oDS7ss8GOmlC3BzVfYGNRYuFpS77t4bBjMqzNISMvFtzbrHC0OkBVlLkxywvZGg7nr0egYHZzscMb5VCeAxKlOSl4Xg04qxaBGBv76uoVs3aZhspB2EaGRIHrff0c9KBaPPJT+3ghEHXNePhmIP9faajmiSVHB0dIWUUjtBet1xXJkwj/eZQFDVJUqKUoN/rkCQxWZpQ5lOmeU47TdjbO6DT7nFwOCRLFVrndLIWUeRd7rNWgq0tQikWFhZwjKibjjSKqGt8HG0UUVY5ewclSknWNl7POx55B9evXabTGiCRyBiEiBCu5J6z/jN84J6Ml6+OOR6MeOHFFzkcHOBKxzhz3ByU3L/exwzG6OMhZ7MWlz/zCV6vfop3js7y1G99lv1YofInODUaw0KbZ/aPGGenefHFPborfXRxTBb3McbLBavqiFLECNWCseDgxjFXn3iJaqxZ7C0SyYRIl6yj2IgX6CQJiXRM60MOjOHM/ee5/XUXYAEyNyVJY87Z82QtiXUlqUj4vttezze/9k3i3QOujj7NzuYKl5/9K5ayDqNeizPJMo997es8/Lr76Gfv4quPf5mLd8X0uh47t1qwPylYXOyH4aBmYbGLsC6YYFufoErjUGTwjDaJrj3J3GN+IIUhn9b4oum7vzRN/CBSuBl1ab5+Xo3hNdjnSTPo2Zoi4H8nHisbBqDw3aozIUxOSj+l/rauMgCiKIQ/EYiTuVcea/NGJ8pLODH4EZQLa8/LqoW2TMuCbr8z2wistf4+VQnW6GDtWGFtjRIOYQwnlUZemHnCHMTMEwW+2+u1UTSZF/oGsLXOIWVyghM+l1U6G3SxTofC6R+nnATR7Jw14IhJvELAqBDZW2G09u45wvPCMunVAjo3pJmiMiADpumjEOZ0owZsdkKETjim04ZxPqGRryatLtbkSCcQLsUJh3IOa2OEyrEuB9Hl5p5iVKRkiWBalORlRa29U7lzAqM1aScNeGrIbVEOow3aWSwVEsV4PEaKiCTJqCuDjDKSLMU4TVFqwFJWEwSOojBB5eINDrQ2pHTQeoxSgl4/wxhNVUVeQhiMnRv3bKygnUUU0ylV5TX8t992GptXRPEYGsMJFL0Ff3tdOCO5ePsmR8cFTz95BRW1EUiKwwS6GVeN5txCj+xwzKGtmR7t85f/6l9y5/e8j3OTmLWlBW5Mb9FVEblNeMWW/PT33sblbw1wxRjjIsq6IELgiGl/yzGuj7n19A1MoWkvtdmMexS90JnVBWnUJhOKNgnXx3tkd66iz64gljocxTEyPySdWpRNWCgcXW2IK0tx65jDa1Pq4jr3r26Qnelxq6p4aThl1Ipxcexhisry7Lee5Kd/6q1cvv4FXv/Q9zOun2Y6LcjSiMl0m263DTL3mBsGo72jv7OB42o0Tkm00UgMtfXsDR2GgMbW4GIiKvIqRogJuYlI1SIbZzKMLYPxtPbYe+N0JP0Rurl8ofFdoxQxOG9m4Y26vXgBZ2eDGjebJ3gbvyZS1zqFpMH/w3p2TYWF+mTzE3BS60TIt/dKOM9fNuFUKDFOEklwRlNaqKcl7XYr/Iam+BmclKAijCtpqUUSBLqyWJFhrY9LcdIrknACKyRGWnAhY+xvcL02iqYjOI/gi17ggCE8h+vEj3nyq/ARu37jS2k4YyI8HkBKX2yETNi8bY0bV/cx1t8IurbE8bxDdRha7RbOOCZl4TvRmVGtwpigCBJmxse01htRIB1vevM6N68UjI/9x6l1gpAFUuU4FMLFaEpUlKIrSdo6j3aSz3/uabSDUVlR6xKlFHVdhucVM4s7pRQ474KztrLM7t42xaQMm4MOzvWSyWREr9NlOBxy4eJZtm7dIC8t1XjOIPCxA54b2yiYpIpxIUJ2ob8wM2bNxxMmuacN5XlOliUBE/WFVFjDcHjI+nJM1E7Cd9gYwQoaWUfj19ntxbzjkQfRLmI6Lvmff/3PueuOe7BlzaXdXR5YXMMcjVlBQbfN5cce5aG3P8JjX/kSy1Kx0O5wxJD/9D/7CQbTQ+66836ee3HPx+lqiZlWuGnNjS9/k2yjR78FaSwRusBWlo5IcUp4/mk6pb3SJ1lYQDw/QI4q0m9sk03H3PHOdxKfOsPRwR7XhkeM11eId4e0n7zMVFqsLZDEVPvHDDLHC0XJIEuJ4xQjQl67GrG8eJHJaESWLHBt60tos8sbHnwXl771JEJWTI8kg/0RVek7xSzLPI828d1TLBUqSRmPSzqdFijfJFjT0PCkbwhUipVeqTOdjukuptx95yZKpkGvnoYTWFhjFjgxPRck3jQDL9ZwRoThiJvhnNaIMGNoRAsiFPiQzyW9aYdpjvkn5JJe1uhxTdMUUxzOOkzzc7NJusEgEM6FqbpDa40QCuvmg14Z1shM8kmz7mOOB0NGw32ypGSWW6QkdTB1ttYf/HVtaZzdm3nEd3O9JoqmEB78no//nY/WpSGu+0m1ED5jRoaWfYbp/DXv1xqHlDEOSW9tAXt1h0hGsw9KB2Iv0pNg6yqnrusgbfN8MfA4i4rViWOL/3qUirG2RDh4/UOLPPn4Zca5L06jccbSSoHRPrK23Vmh076NSI555fo1Dg5qHv3cDcpKh8xojZKe+tNM55VSlKUvpOiaVitjeWETKSVV3SeKIkbjKVVVUddleJzvOjudDts7+8RJi8Ul/zk1JiXNEbauq1Cka46Pj4mjiBYx40nBUq9Dr9dDrq7w4osvsbKyQhRFHBwMSCI1MzIuypy1uIPRE2Lp9VazT8mZGZRhgihBCoOQJaIs6PcScCmnTp3i4OCAU+cexljD8JUt9LBgM7JEScaLz3yT7kKb1ShlZ2eHwyzmT3/7E5gKYpcS1wKhSxayDoneQT9/lY21syBqWtJSZBWCmGGWkcQxUwl5JJlOamQVUe4XtM9d4OsvXOLOB+5n7+aIwVHO9OYT9PoL3i7u2j5RdUT0hj7TdoIWbY7GGUfVkLquWV1cZvfKtzAmwgiLkgprY27eOGRh8Tx/8PFP80v/yftweomi2Oa+B86x0D/H1vYXMGUbIRy1SUCUWGNwNsMaQ+0M+dhzf0ejCTp8ulprvz6sRpuSsmzR7dzGaLjNzZs7xInmzGnLzZtbNLk8r87Y8icBpRT3A7s7A5LIe5lGcWBjSq9EksHGTkUxqhGVoOc2c4EjrFQ0wy29RPmEU1FIpvSnyBM5Qq/CVhv6U1DnhAKN85QnkFjn6HY7YCwikoGf1ZhvAFgiGWOkY2NjHV0d4tk1AuMsygaf1kDAbx6ntT4xyf/O12uiaDpnwfpYB2RQPziH045ICayVSBmOiEKGTrRh9NcndsyTuOgJYFdKjHFMRxOyLA2gtzpRpCGSghpLq9uhLifz3ymMj/mNXu23Z7XxXF0c3XZMmrQZT/3goyw8lclLGj1v7tbuY8SuQ3cx5bd//XGSpI11CVU1DDdmPTvSCOHtrRqvyziOKcqcs2e8z3NR5tS1Ic9zn8nbpccAACAASURBVHponfctDEOi8XTkj6shBiSKEurap0qmaeINPcoypF8KyrKkrirqQrGYpOwfHtNud+n3lwAfxLa87CMrBoMBUkKv0/b8TulCfIfFWJ9tNKOBhaIZCek7PO2xvEjFCClZXj5DXpVgvIRWdRIGQiMWWtw6HpBXCVORsx4nTKZTPviRn+Mzn/sLrh3kJLTptgXtxS5KQntqaBFx9KWv0xYaWpLCatLCkVOzKyqildOU1nHl+g0WOhlLUZ9+0qIlO7z/obcz3t1GLVk66TF3nV9gpZ/Sv22VnfEBqVqm7hj6dKiE4jd/9d9x4dwSUa/L5a8+xYXbNslDhIXEUVkfjLZzs8cvfPRngW0iGSPiPep6nVeuPssDd36Y5698hkgZvPU4yERR1wbjBBFQRx63NxakiWZQDVYjjEIowXScehwzztjfHSGU5NRGRied85ybNWHMHOZqursoijBOg5NMpxrVQFCYmU9BXhREyt+LAKPRMb1+d1YA545N/vnSKJ4nTyrvJBQJiSDyxHMEUvrN1AT5pM9/FwhnPDfUevxUB4ZMHEdE0V8vZvHL3HuPdjopVXEIQjM7hVqLVOEobxu2gDcfkd678TsXqnC9RoqmoyinYSLYELVhBhIK341BkEKa5sgu0ToKX5r0ed9izvVsAN9hfoyzguXlZab5CIEMQDLBdg6cNiwvLlFUlcd/3Py5/djP76rzSf7c3SWykr3dMc9fugFAUUiKSYKz2zjnTQO60Sp1NOBjv3GZTm/NH42lL7I+ZkATR3J2FGmoRtLW5HlOt9tlMDhgZWWFTqfFcDik12tUVP4oX9c1URIijOu5S3gcAtWa479SEUqZmZTSWAtSMqkq7OERzjkGhyPOnz+PcZLxtORCd4EoilhbXURYx3AyZWN9lTRNaXcV5XiPSDWAenMTNlCGDequ1KuLqIL6aIpzgjvvPMO3vvUCb33L23ly/Bj7UYuzC0sMdndY75+h6ElaO2M++5l/j6kmvK2/6ociVY0I3fm4LhFJhrAa61IUMVJHFHFMnUoWTy+jD/fIB4fciWS9k7B4tk28uUhnTTIyE1qtNW4vBXHSAtHioMhxrqDX6SJsTlorUI7UaP7pr/wK/dUWo8ERL95xyGf+9LNIN0KpNqfv2GAwPOB9730X5+86oJ5IUtXBYHFVhJBHRLLL5Zt/hrAbnL/jIpcuPUYUt0FZhDR+gIEkjsLGrhRCNV1aBNYiSFFRwuFuz69kF7G7e8jiap+zp3pU5XR+DwM4ibbzgtN0i3EWIZxCCEccR5536RzCmplxRq/X8Xgjjtr4ZACEP8Gkaew3Czdfe55W5Atu02nW1nNgTyZS1qbpWAOn0glM8HAIL9KzOkpHf2GZNI2R8dxrF89Yp6EoSSkwJgdRhiGa/xwdmmaA7DAoEaAqF97V37ZOUwhJLDOQYEX4wJzEGTn7AhLZdH4C60oIriWmMUO1ljRJ5jMwYdDWt+7t3grj3WtYU3keWUOyFWL+e4z/0k2tvZFAM5iyyk8IbSDCBozHZ8F4cw9bKd7+rtt5/rnrABwfjdlY7iNbByAkwiWgBtzYSijoYo+GWFsH27ryBE5qSZIEo72LEjT4EBwfH8+oRJ1Oh06nhRkOybJkZsRQ65Ik61LXNVr7zjWK59zJ8XhMkiSzyTvUr+62oyhwQH0RffnKK1irWVlZYevWDvfdfTsL3RaxELg4pt32jvF1dewhDasDx8//fhm+DX80jMBojCvBxdiq5nD/FhfOnWX3eIe3vvNhHvvLx+mvbTI4GLItS376H/9Trl95jtXVHno44ng8ZutrzyKOpmhKBJGfxEYS22px6ByOiGTJsnaqS3s9o9NL6XTatLoJR6ZH6c4yNTkq812LyfeZmIxEJLSrFHptbt68zrlzZ1iMQLgRdZLgbIwwEWlWMjyO+NSf/zkf/vAH0aJDHF3hv/6v3o1QFcfDhP5CjTMXSVSJKluIWKONI05CUbEtYIgtE1BbvHD5kF5vA5AcDK4RxZ4yZEzthRH4I3HDWZbK+YQX65BRQq0SjkfHYDT9hYSd7UOcdrPhoS9gFiHFSdfCIG/0mLMKAxWh7MzII3jK+O/QhigJHCpq3JCst6ej8uo9Y+fHcukIrL2Zxl1JgRFyxpNGKaS1fj+VLnSA4FwU5I7gtMNWNRsbiwyPx9SdlETMzW+amtCcMiMRUwfJsffg9ablHnsNTml4mA+88TfO+WHXd3m9JoomeDDbq4C880lzFEdYIumCxMwDM/IEntk4uBnXPGZOipXOa84dEqssVV5hw+90zhDFsee8CYmKBQZFnjtGZckrl494zw/CM5e2vE8lhl7Hd3YyUmRR7C0AIkFLJNx1cYWXL+8B0FqOuHU04eJCShr3sWXGRAl+6998klO33UFZe6xUxtYTkbVHq6SMg/lA5Y8Z7Yy6rJAShpOSvnUU0ylFVYfiJr0blJeGBJKwJYljnPMBWkVeneC0zvmtSZwxzXOkCnw35aGAtBURyZhal+iqpix1iObtIKIYlbRYWuj7jScSJAnousTW/pbExRhrwlDBfzfOCHTApaWMqTXoEm4/7W/hbz5+nXe+5T5arTa3LS/w5jcusrKywZPPXGJpucPXn36Jn/vJD1KNhyzcfSdf+vQf44485UsbSWe1zwtXdnBULK23+eg//Ai7t14giUusKxmLgglTbCLACToi80NG50jSDrURWBWxPxnRqmvOnF6jLscIVWFFi8gljMYjFvsKYxS9VsaHPvgTDPc0p85e4vS6whkFtmY6rTweLEtQbSpXgzHESUI+tb6TUwZHBLr2C9rljMY3qOuUBx94N9986lFkBFGaoE3pi4jQIAwCFfA+RaIiDDk6TtG14mhwHZklPHCnLxwqdP7OOYRTWMLwMlxzCCrCOe014aEASbzMUIW16KTCMHdnF3gRic/ZCQUnpEH6Dm/ONJGRv1e18Vn2fvCjscaAFTNnI+/ipHx3G5IrtbXEiVebZUmLotRk7baHgowvzsywVq9512aCROKExloHGFxgBczYRU3dMBonFNL9LRsENWCuz/qZ7yAagXQCHTQ+TghvGuBkODG72fFB4SWLzTXPQpZIEXFqc53da8dIGbhtMpqRhEUI28pdgVIxnY7knnvOAK9w7tz6DEdRwndjTgqipgBJEGbE6c2IVuKff3N9g5eef4FyrYVWu1Su5v/42NMs9E5TlflMkmmMoaoqb/elFFVVMJ2Ow87f8pNq6VU8xhj29/eJlWQ8zWm1WqysLHP9+g1vUjtzYC+9A3ue/0fOL42Tke8Y1Gw63263qWuvRb/r7guMhyN6nTb5dIipalqtlG6vQ6ok/Z7PmxeRREaC8XgXq0ucMRhtcDKfdemmcYqKc5xR3idRKuIQL/KBH3grn/6zyzzw0L08+ujz5GXOuYt3sbZWY+qM++8/zT//tf+RrJUynRzTihWPvPvv8BMf+UUyoXjm5Sv84b/7PX7sLe/l8Zt/inMJ60u3kySL9HprlPoVIpf4DVLNVVv+tJH6qa4V5JMhrXbE5vIitSuQsvIRyNESUnhvzV6vB670BO5kwJ//0aep65oPf+QB6urY6+KJaGUZpjKoRAY80IT88sb6EKrS4qRACZ9rDhALQ5LVPH3pCyTJIu1ei4PDHaLA8rAm8vh6gCKFqtFasHWtQ+J6OHeVy8/vMzoq+aV/8jBRnGCaHB7n14o/Q/i1ZANtCUKxwnnPSuH/Ns55HZ4QM9nknKv8ar32X5c8OYdpbCigc224VyiFlybnG7l0XpLpGTT+xSWRYlpojDHsHexz+vbbyCdTsszfg9bLWAJG64UYEkukXDAlgZOmPn52NM879w5mEnHCdPw7Xa+RoonX41rtKQ9unl9iBUgX3IGayIvGyEMA+AGIBJya4yW+OCqs8c4s6xtL7G8dhYIZiL7a30JSKWpTkbVbDIb7GFfjrO94W4lDCH1isFQRywihQjFyYKSkJTU/9uP3wj/fZjSsOHPmLLt7+5y7vctwnNNpX0RbxaTYI5UttNWheBEGQWXAG72/ozYV0kW0Wy2mk3IeTyFAJinGwvUbt+gvLDGdjAAbPBqzGX7Z3ChSytnR21hLWVVo42i320QRtFotel1Bu93mwfvvRzhDv51ysLdFJCBJA8UoyrBVBa02UZTiKBgd7ZCPcsqiwpkaG56rYQAA6HIdKQuqWiOSiEj6zubM5ioPPWAoq4z9YkStJdevj6jzZc6czRhNt/lvf/W/5Pf+8NO8/ZF3kyYJV27c4rNf+gvOnz9PJ0354M//NCudNj/1Ez/IY489Tibg6pVtHnrgAV66ehM1y3u3s+OiEIqyFAyPR6ysLLGyponjCOEqMtXCaAcywWrHeDqglaXEcQ0mQpNT5pLtm1N++EffxRPfeIn7711ACkFlIU4UUjrKoiJrxSD8qcJarx3HCHyDpHwX2kzEjcLWGhmDcbscHGak8SqRSimqfYScEIDLMDiNkLFmmnc4HOwQxxGj/BabG6usbUypp35Db4qRm0VVhNTWGUPdMx1Omr7YgBNa25QuwJkZZOQC+b6ZGzgaH8zm9/nh7snC2gTkNVPxmVN8Uz1NGPIai1MCb3AaPGdlRFVoFpeXAEsapZhKo4UKU36P8zpkwIJ12Iw8cd06H9WrG5PioMUXwuGs/zyiv20ySiH8kdcFomxzxQF3cKKZeNlwbDDzYZezNPb7zs7pB0KANd57M5aKGjBOo2QCEPz4Yqw1VLrGOYs2JUkqkTJheOzjJxqibqPFbUw7BHglhFKIWIKJ6XX9zr63e8T586sc7BtGw4hPfeoZ8moZYwxJ5Mn2GJ8lFEXRLKM6CvLGuqpI05SiKGhlKU2om+dsRjjnKEsfUTGdTMAauq0O07KYdZJxFGGNQSo1oxbNdvrwvsrSa8+zLKHXbXP69GkWeh3arRRhSnS346VpTWKmVSRJhpMhPdJqFhbbtNIR1sUIG2HNHGfyXolQ5DcxNkUhyEcTdFVjbMV4VNLK4Lmn97nndXfxze2/4vCwjdU5SbbOJB+zvTXk4de9wWPHRrK2eYr1M+sc7B1ysH2D0bRFnnW5/ewZLvz4Ofb39rhx7TpvesPrMFWHpDdGKYujxooOwkE+rpGJY/V0H2dyFGlYWD4xlCgBZxkOJywvL6BNgbEG6WKQEcejHJU4zpxb5D987Qb33beINppKK+JYkMSKmgSHwBqvLVdK4ptKj8VaLzILkBRYPJfVGRAiJYoF2u0zHUsuXribazeeRyoTWB++K6pNiziTREpzeDQlUhk/8iMPgc7DdNh3VDrAVc2ikYFyM+c0CzBNx6Zn3pqNlLiua+Jo3pA0p8Lmdcy4kieHKapRLNlgKcfMeb0xJ2k6Ur+2vJk1IuCusrGwMzgXcXQ05NSZsz61M6zDqqpot7uYYHisJFS2RIamyzkxc236dhaBf/MumCc76upv2SAI5m9q3t7PM0wgws7MSy3NVL158x4jsQijZqcCT+oNi9fUoGJk4lBWoLUPp6qd99nTte9ClIDFpQ57O2PSrAuA1SHBTgj/RfrwS4zzA6zaAdEx0KcZ6n/5q3/F0vJ7yLotjiYp1p1FJmNMXSNJafJJGmqO1hXW2tmN2RRIKWMODgezztFoB4pZUU3imIVeFhxmJHnlC7HW/qZKkmQmv2xUPU331zxPp9PijjsvcMeFC6wsLdHtpCgcxaSi3+9DlELIirbGIWSE0Y7aVjg7xZkRSqYoq3zyoKxOQCz+ufrdDkL6YV1XSJAdtE2I1SpFMWahv8wnP/GXvO0d7+OFy8+yut7j6adfotVqsbp+iuee/gaHB7dx/vY7uH5rC+s0t58+w7k7HoQUjo8mPPXCdarK5yKtrazyzPNXkPIMX/3yMzg0cQS1uUK3E3Owt4c1Pi66122TtvwALokzT2Wziv7iIkmq2N4+9r6jONppRlFHXH1lyhvf/Hr+xb/4TTbP3IFxiiRrMT0e08qCbR9e8mrwvNvaNGocgkzQm1NIoTytRozBKYRVgXoWDIK7GVeuP4kzbZLEwym6FrT7XR77ypTK7mGriieffI7pMObiRYuremgmNFLLRgTR+FkaHdZas7yaU48QWGdmChkdXGak9JSnOVV5boLT3MOvovjhBzj+kjPXpDkv0/NEzUy+GaA0wvoO00SPjUqytEN/MWU8HtPvNQo5r+rJy5o4TWbdb/O5Gesdj/wJ3dcJJ3yYGsG0p+GIGlMTs/CdStTseo0UzWbnmZNVAX9rhZ2pKYDOMctYbiBri/HMgxM8saqqyLIudV0SK0GlJZubG+xcH/hjkvD52HnuycMuPI9EMhznrCz1/WsIC0BIi2qeQ4CwoesEpE0pnZ6rCkTM/sGEu+5c53Off4y8HqONIYlT6qnxoLsE8MRh8FhL03H6HVmgTUESx9gQx6tUhNY2xJZKWq2UhX6bVCnyomZc5lSVmKkxjPHczKY79gbLDa6nUBLWVpdZXlxkYWHBB6OhEQF/i9IMRIyQitoa8qpAYKlNQZxmZJHBmBIha6TweJgLShIhxGwSlLUFWkMiEq/ekYpIKJSNSDqLdC7UfOhnvodHv/A0587ezeh4Sl5rirLAyj3e8j0PoWTK1s2rXHruRbr9DrdubrO0usQbH7qDflbTa/fJ84zj4ZSbewO2BxNMOWXl1BKra4uMhgM2T50iSUuUXJkxM5yuwbZx+AiIukopyzqcLiRGVwwmBZWpKSfH7O45nrl0hR/68R9iaekCN7cKnnj8Cmnaot0VbJvpLGtJKcXiUh/n8gCRJESRREiBUhIhI1qtlGI6RUQhuTQUD+G8usq6KUq2ETImLyparQ4Iw80bNSvr53jlygtMjn30ycamoC4nxCIhUjFV41YVGgkTNkrp52Gz4njyBILwemzfab6a5zk7wluPVZ5sWppNePajYs6DntfaprPE/x3+ba2bFbSZpDH8HSctorRFYXJipTwmGXnjHan8INdpSyuTlHnuN4dQnLX17mizTsr5W1IyL5jNZXXynctUuF4zRVOEblKKk9iCt79HBOoPDQ1nbsbbuI4LocKXKrHOEmUtKlvjlEHLGJVm9FcW2Lm5hS17WGmpK19EkljijMMhca6g21FoG3Yh578UnMC2/PHZaEMifM6QiiPqSswiNPxjXubLX+mxeeYs168PSDsd6nqC0xKkxoRwK6UUVZETxzEmaH9nN3AAzvOi8AUzCk7ywlNRfNF1YCTGWTbW1sl1wWRcobVEKf/ZKNkmTiOElKRZxjQfU0xLIhRRK0PXkvXVZbIkTO1ri6L01mUiRQpF7TzA/tKVG4zHY7Zu3CCNWrz14U02TgejZUoQMZJkflyT4fZyMUnkF0ZsU5ySSEL+tlBIYs6eNXz4J+/mn/33/5577nk95y5cRMaanf0t/uLLT5GmLeIs5eKd56mnNSsLPe6+P6PVHvoFbnLyNKWbnUfbEbqGcT7g6tYNnr18g71bOyz1OvzSP/woO1efZqlrsdEAoTNE7I/McdZhXDhWF7oYm+OSEmMkVQU++GuJrFuwPVxieXGT7/v+93PllZtcOJ/jzCFJrBAiDgF8zaRZY4jATcEUVLUM0bl+AHF8GNPtLjA+OMDH6laentWcQqwhcgpjBNZMEaJPITRlfjd5fpVez/H5R7/MSvs8H/zgGQ4P2khpiLOMSPrpcJrGIPI5fSjyDlfGNn6FtT/BWEOsnHc7D7MFpeKAi6ZY6weWSA/1aK0D3zGYcFj/uqFZr42E0lcraS1OaU//EdrLMq3wTu8hVWGuaTdYHIPjmrIasHzqNCqCqq5pyQQtHLEEYnCmxOkuSmbUeoiRnovpbBvpJI4aIww4HV6fQkhPt7MC4kpx5UqTn/Sdr9dI0bQIaiRmNqjxhHVPQzK1xjaRvicwnZnJx4xrKGeUCW0M1kjipI3RBpQkkj063UXG2ruAWyGIpMRqjbEVpjaoKGWxl7C97TFNo/9f6t482Lbsru/7rGEPZ77ze/cN3f1ev1a31GoNTWsgAkGQJSShCGOEoewixkVCYZdTGEwIxBUKB7DLYAdTdpVjHFLY8QAWRhJmMKgsCQShNNFSS42Gnt883PmeYQ9ryB+/tc99im3UVEiqs6u6+t77zj13733W/q3f8B0gREemDb7SRCMZiDOWoIRPa2zE+2YJW/jO7/gG/s0vP8mv/tpvk5c9YQ+lTNK7LiOVEr2znOiuQ0qSgErTda21BFV/4tc+GI2o6wUHB4cURjMa9Ng/PGAymXDzxh7eeJpGJoN1s+D0mfs4PDykWswYD0dkxlLNhH45r2YcHh6zvr4uf88oXN25DSbRBO9pasfh/h32j/bxbkYVDxmvboNqicGKDmMSTIEuI++oqoEYM4IyaG1lUhuU3FNUcgDNKIeKH//JP4fJe3zsDy7zy+/9KDFqzp/bRnnDzs0d1OkNHvuqi0zWIqNySFMv2N3dYzSZkBV9fvanf4pXPfIaHnvdI1jT53Dfcen+h/nWd30X589t8aWnnuT4OGO0omkbx8pwhPeR2WzGwUHN+tpEJrC5oa7GLOY1xowwmWM2a7BZyac/8UWe+NTfQWn4q3/12+mVisyuQqyBSNMG8qLLZDSth8yMUd00Ov1LTPqRxJqtrS2Ojw9BldK775hVxokkG0A4Rcxajo7vpc40i6Mel2/ssjJ6JZONywzKdfKEk3RNoHZpDdSB6KW0b1sJlFafZJe7N8XZNEZoW0ckYpQlEJlOBReM3k3iH2HJkTemTK6qonQfkfVpjCHEKrGKdAKrR5RRBN/DJ6k47+oUfAXqFBN+MoYaqzJcCDRtw+apLdABHcEUGfP5nHI0SOs1w/tAXTn29nf43BPP0boFm5ub9PoLBoMBZZlT5pYQI0VeyLqMQ1CgWk1RGD76B3/4oqPVSyJo+uA5Oj4gRo/zJwGkmgunum1bGucxZExWhmSJC66MTMaNMSljlMlxCEHU1ZOlb+On4gipLcPxKju3r2Fyiw2INqCWiWEIAestUc04PE5CFTWUmaZ2NZkVNSRRftFpgiXanJkxdFxr1xzwVY/ewx8+sZABQDNPLo96CTVaUg05YWbou6BBXbmznLArhdEaawQqNJvN0BoWdcNgKLYVwUVGwxI9r5gtHDFly2VZMj0+XL5nWZa0lWdRVxwdHZHneWIGtTStI7caQjIcS3qD3ivA4huP1ZoHXnaOvPA0jSO34qctWUK57HctqafREFUr+FgVRaMxNfQtEFTq5TIh+hZXz3n4lRmvf/1f5PbtKfOZBN/Dw0P2d4755MeeYPv0OezgiFu3bvH0089iQs2p0+e4Z/s840nBL/yzf8W3/fk/y3/59W/m2ecu8/jjn+b69TGjyRBlMz73uV1+6V/+Cr0+zOdw4Z4Nnr28QyZkG1ZWC3b2JJCsrpZsbawyGgyZHs/46jdc4K1vews+TFF6hmsEbqTSxDkEEp1UDmWstHNMRCu/3Oy7dlQMYqc8GAxSoGmSiVokxowYWjSBxkewPVw74fJzT7N9ZoUPfujz1E3ge7/vayibGShxGDURnBItWNAEe7hsX0kP8gShUg5nlP2kyI4ieilplVJsbo1T5bNBjJ1gTdfuaWmaZKMxnRG8xvtkqheTr3ja7JVSZMYStUvruyGzhizLKbIcZU3ivltiBBcMeT4kL/dp25Zeli9V5vrDHq33WJOn+2gIPtAvSh597EFCdDSt5+hIczxrqdtAk81RKjInElRN8Fb0Kdqc3VBy85YBTpSf/rjjJRE0lVJYk6fspl3238aTYQoiMVEYRe2nOyIQosBnQgjMZsfSD1QQZwrXKto2oo2DaBM+z5D3CnRUNLFNakaaGCyhdQSlmdYtn/7sZQB+89efp9cPjIc5mxurHMyOGY5GqGjoDXosFjMu3H+G4FrydDfreUHVTHE+Yg1E79MUUYlVhVFJcNWLK16yIlhald6FeWvbVghgWUZZluR5zvGxXGdZlgQUs+kChtBWNRfvvYdZNefpZy4zm3vq2lNXFXmek2UyeW+aBo9f9qxu3rjFysqYfpR/j8ZijBh+Na3Hhcju7i7z+ZymrXjg4lku3jtChQW5yjBByiFpFbfLYN+VakZHjB7SeuHTazoR5EDrG3KTUzcNMTvEYAitpmCVdn7Myigw6omc2fapMTzQx4UJ6ArVjPAPbfPObzhHzARCosj40R/7bd705jdDzFjUO5w6NeLG9V3mi8BwZMA0nDqT8RM/+W7q6Dk8nLKxvoL37ZJrrbWm9RVKibf30cGU0dCiYsB5QwzPo6ITFESrUXlE1D0cWmcQNdrIhmhUoG5h1Ovh2mqpMqU68z4DeTIrAy18ft1toFkyW8vI9IBFdZpr16+wtjbmc5/9IiuTU/y1v3YfWVYRwoBoFlI9+Uge7xLW8KvLtkkIAW1O7C6yrEDFk81bddhJFQkhio2JqtMThwTxju3DyVoldD15SwxdpWSJpL8VY4I8sVwbcDetMlAvWnxQeKe5/NRzXLhvG5vn+LYh6+x8dcTo7GR6rlq0crgwo1dKwlFm0OuJ35XWDTqWkNTro7fEBEcyus/v/d5NXKbhRVboL4mgCRpjS0CR28QPjXdbVfiTEjYIIDmmwZC5CwyfZ2qJxRKhC00PBciHFyJij6puEp1KNCLBijV1oGcsdcj50ucb3vbWbwLez+p6nze+6VHKXkazmPPgoA+Aa8TcCR2xZkCRJ28iPsHK2kOUhzcw9iptkyhd1ix3YRJP1rUtWvu7Fs1Jln139tmJAXcgaYDBoCcwJa1o25b53FPonF5PYEIPPXiRT3/mCzivOD4+ZmtrHULLzs4eJssZDEpaJ/f2+HjGYrHA6IL+oECZnNoFqukxe9Oao6Mjom+Zt3fo9RUX7j+FyRfUzmCJeNN5zThyVdA2Lf1+ubyGJmhsWGCKkhBqai+VQIgy7XTe4ZVDxxW0bYGW4I5RSOkVtChbxcRlYInP8AAAIABJREFU9m5ADBMaDmUQFwNl2yMqh7Wa7//+t/MzP/NhLr7sFG97639Fbgzvf//7edNX/xd89MNXeOc734jRwrY52j9ka2uVejFbrjl5pj29VhE8HB3tsba+TtvOicYsTee0KqTnHqMgI5LFrtYatFhMiGcODIY5R0dHDAclIXYbltw2pRRKdz9TLBYRXcp0X9upDFXUBq6+nzs7+wzHmt//6Gc43JvxyCMZeYjEuiTaY0IoqZ1QfLOEepDe3eHyOVEaoooo0w1dWpz3ZEbgb0rrpBucXCaVgSgVBCqgo0cleF9QXkrqKPYRMn+IROqU5XrxmTdKiCgJYhKUF1pj8Et6Z4gBazQ1AR8rNjfXmFc1O4f73H/+FB6p6KSlIRtw27bYzFLXU3qlRqVWAFGRRWm/RQJRN0tQv0ERVY1mlV/79QNeuOqxeQbNi4uaL4mgqVJg8JD8OjoGg2DJNFnyLvFEpQja/Ue/D8igIaq7Ag4IBCFfTnONFXhCcOpkrhY11mqOjyp2j2u2t05x+fKXAHjH274WpxtCcJTlGKLCaoPOutJAJ7m2DvIAtau5fu0Orq0w1uBSCRNlxI9SEug6jOZ/dC0KsWdQHYtF8Hyi7SmyYIXNksZlSV1NGQ2GVIuW2WzB2uYaNov0ehmLSrNYLMjv8hvqpp4xClbzaDpnsagZDgrwEJIf0mw244kn/oher8f5s6eYjE5zanOdWzcOOJpNGQ77DIucw6N9zp49Czhce0ie50wXDUVyz5zVhp7uE7xhPFzBx5rZrCLPewQnoiHW9mhci44B5yIqike3j9KG0YpEfqgTrGpBaEtpX+hAY2uMVRBgbcXyje94hC8+dZtLly7xqx94H5Nxwcc/9nt813d+CxvrGUG1zBYNG+urVNVMxFKCJ7j+EtrmcjA6I8/7xDgnKIeiJIaItYYOC6kzobMSxczL2gSz6crjEHFI+R1DQGmThCQcWps0yBSxGqUNNi/Q1hJCIzhPX1JVYz7y0d9n7/gWly5eYv9gRtFrePs7X01npIbXGCvYUBU9MZhkOhAgihsqCPQHfwIhisFC1LRNxJgCvBcUhLLLZ0sn6wkiKJNaTBGiPpFY6/wm09y7e7qW6176+SZN8LuBp7D+vPKpxwtaV2SFIuiM1imGgxXaJpL1xB/LWnGAjUp0FbK8pG09eZ7siFVqDwnlJQGOkr0FRhAC0eLqPhWHZH2Lq/9/NghSaJTJUbpBe+GFEyOaQj4Aj/DOlSVooWHJ8FjUDBQiWlrrZplR6mDS5M4Qo1ikyu7psGUPQs2ikl1U6chiseDGCxHVlHxp/7O8+tFXA7B/PBVPbNPHlkkf0nuskia+TVNt8aJJYOAIVy7PGYxFEFi8gYJcUwqYKpU+OmWP3QIK6TU+xpP3TiVMV04FFfHBkRcZVSUQl1nV4puKWzu3GK+s0OuNOLWxyuVrO8wWU46mU7TW9HuZWGZEyAtDCIqd/Vt87OMNb33LWxj2suUmdmt3T/yTJpsMx+u85tWbWCsCxSqe9FzPaoHYFEUBmWxOHTYUfpPh8GuJvqZXFLQh+bQYz/Wbd+gNe/SKnNt3dtje3uapp57i/PnzXL96jUDkaHbE+e1NdnbucPPmbXr9jNDU5DYjLw3ReTbXVzE2kPc11hoWVLz+sZfx4Q9+kvm8oq1avvVb38Nf+W+/G+Ut/+43/iF39nbZ3FhlNmuEnODApum1Fj4f0Wt27+ywvl4QnMXSQ8UTOm8MEFXGIPMYU9O0nRi2p14oyoElBlE0VwpmR0cEVTIcDcjySFUfY21S3DImWT5Ablt8q6haR69/mqOjIS5ssr19zJnzfX7t3/0urprxl7/zMYyv8NqidA3aYIJDRZlMtyoItE5bjG6WLaIYAVUvNWWVCumaQWlxbQwxoskJSdOAWC/xmU7ZpaC36Xy8giXqWUpOHDFkAsQPGVpkhZctGdkgxBOVIB4+USsCjhg1Wg+JKlCEPrP5PoPSUjtPrA29IkPRQrBYW6ByRT0/wmifaJOG4JObLSetPJN6x5K8FGTa84UXKm7vHdDOFKgJsPOi4tVLJGgG8uAJTtOaLDElQEcvE2pR+ZfAkvCN0olURLvEwpKHgWhwYmhNLfgvkry/bGFo1ePc+ft44akXMPkRi3nLfFYzXwy4cvUyqysrvPrRR+hPRJxjfWMFSFCLVOpYbZeWw51Ya0AnjCJcvbrHeHXM8fH+kpe7lKsLnbGVXPvSRvWu426wcAdID+Fket6xgiQjkqDrnMMSKXLJgM+eOcf1azcYjRZUjefq1asM+32GwxUJ5K1n2O8Jlz5Gbt26xVNPPUX+igcY2UzwoHlJiI4y4UL7iaKptULHE/1EaaOIFF0n1KCUIrQJJ0iArEdURqxDVEuR5dx78cISIbAyWaVqHS976BGsyXngZSu4FJhD27CyeooHLr2Cqp6DDzz55GdZ2zqPazyjVZGty3KNsopmIdJzP/jf/xA//VN/mwcu3McXnvg0/+Sf/FPe/va387a3/iX+7fvfR5aPaN2czz3+Wba3T1PVgRu3nmVzc5Wqqji1tclsOiTPS2xeoZRFK01ULSYGMIHZQjHoW5zPBXAdW7QpcGGGUgVKWdkkCfTHPaztU9VzdFAYLZJqSgn0BpQoAilL7eaUxRmuvdBnZ2+HWX2ZEGt+9zeeYNAv+ev/49dh2Cc0mVRnQXK9JgTAppJcgOLBNQmXKMBywWKWSa6v06H0qZ/u0pQfXDiWCjA4oiqkVEdhoiPiUFFJWIoRlCZ6k7g/GWiHiy1KCcAfBL7XYUWld+vAgPMJXZF46TLldwRvk1laV821lJkFa1OanBw2tcXHIAZvMUq/Nejls7XEKUdRelJUeKe58sJV2rmlocWo+YuOVy+JoBlQLLQI4pqkFo1WxNqe4DRjtXy90gKbUFETKNJPPcG4FEzaVIlEjDJETALbgg81pvDM6orSFmhTgCp44YXrPPq6xwhuztrmCjqTW9O29bKxr4wiz3toZVGmLzutzkAFmralYyNcvbqbAkhYep6Larqcd8fKIU0jO7bO3aIH3Wu6oNZlm8sFnksjPC/LFIADWZFjlabMcwaDEVpr1tdXuXVrl7Z1zGcLAfyGCEbjmobgumlm4MO/8ztcuHBe7n0axr3sZZfS4jsBQqsoqvhSVme4tiKzJpnNxeRaKA8JJEhYmroaYyjLEu9O6HPetZjEyFm+Xilyawh48kyM5VT09AcreNfw2Ou/FoeUW6K0k0mFYjTDYS6KOj3Hn/vmP8uvvf99nD61hs1y3v+r7+O//gvfy9e+6d188tOfYLK6xZve9BA3br/Axtkx2/c8RF7IRlTPZ1gbqBbHTPestDKOjgixoZpPefjhhwhG8cznLjM7PiQ4z+raGIWl1y9YVIpev8DaPr0yw4eIby1NK6LaOpPAItjjgG/ls2gbj48TDg5y2jZjd/+Ismf43Q8/QZ6XvOGNp8jtnLryGN0jxgUdWNzHu4DnoSBG8crJ8ruDYlyy14Al4kQ2O3n2gvOoOICgBDutWnxqW3S0SPnlzlmBu36uaL24bDato/PyESB8V57nhJAGuzFCMGnGKxlTVbdo4+gVJQYZBltjOZ5VbBSroBqCbiCeEAmcb4lBlMOIwsTqnquAAi2KXkZZdKZ4+FXn+fQXP81gbfP/nfJcyVb1SeBajPFdSqkLwC8C68CngO+MMTZKqQL458BXAbvAt8cYn//j311D0OjQ4shxTaBtPTFK3691Nb1MLFpRHmtWJIAojVaVBC4NVWdslmX4RmG0UA+NFa+QiEKHMdHkTI8V87CA0OPy88e86tGXY7DMZmKFK4ZkUJZr6CzH6JwsHyR+u8Hm5bInqbWh8TWTVRkSffJTn+feC/cmShqcAH7lA7U2SyV5lHMNnT+1BM08z5d9z7t550oJDzjPc45nc6zSTKcz+mVBnovD5trGFgpD08j5B9/SLwuOZ3MZGNVCwXSuocgs4/FYIElzAdl/+Hd+nze+7rUMh0PWVtYxmcUasQWOqWUg1+zQRjKrzsdIa02uToZcHSC/rhdgThSsnJONzpgMlCbP+8xmM/qDQRo2aHr9vvSrtGycUmlaAYabgqzMKZVaZqp0lEEtmZEyOVYbLlx6BT/8o6/hp/7Oj/PBD/0HNjfO8y9+6V/ybe/5Dt76je/mgx/6KJNxzermBoYRrWlwrsZoTX+8wnw6pzfc5MxoTF3XaK1wLpLnlrZZEKJi+/TrEr8/eXdjWEyPsbklhMhwOAR1kvXYsuX69avYDMbjEXluuX1bEAw6ws0bf4Sx69y+c0jWO2Dr1Cne98u/yXBlwGAkveTnnu4Ji8ZWZEYmzwLhycgyqX6MFrFdlVmqRozY8ixfTum7TXy2sCglbZcQPSp4lMpBOVT0eFdLL5BIkVkJG0mAQ5wlfWpf+rQ5giVDeUWmFa6Vfr4yGqs7D3OPQYIqgLICWfNOgrdrNdbI11bLfTRaYbMed/aOGY9zSqtoatH09CFIhtxl67BEQcgTGJeMKx9zAnPWTjn+yve+geHpr+fqUzv845//+RcVC/8kmeb3AZ8Hxun7vwv8TIzxF5VS/yvw3cA/Tv/fjzFeUkp9R3rdt/9xb+xCj4/8QeTihXsYjUYCnO0byiKjntc888zTnD6doxV4X6PNHNBoE8h1QaYzjMnxTYMG2ioQ+oFmIcroJg6XJcHu7g2UNYzWxrTTHjdu7vPIo29gXs9ZWd1kXZeUvQEr2gAfYLzxAAoRqvAhGdunRmsIAZNppkdT8v5ExIuBC/dfol7MxTFHd/qCSdxDdbxeJ2o/+CXNrCtF7sZoCgi+u1PyfdM4wbRqTa5K5lXNYDDAWsPe3h5bW9s8/vjjVPWCLLOsDIWHPp3PmB9Oca4Rql/jmE6ntG1NkVnKUnZta6TUHA5HBJI9RQpQrfdoYyV7SGfe649OMmDEVC3LTyh4HShapqqaJjQpq27QNsObXCahrk4la6CqHM43ZMaCjjjnl2VW4OTrDpaV5zkhngjpCu4zE0fONvD9P/Q3+Zm///c4Pn6e2h1S/+s5W6fO803v+FYOjxWf+czHGA0XxKjp9/vs7O0yXlnFZIa8KHGhAeNE19UYqqZiNj1mMhngYk2MhmAUqTakGJT0hgOqRY3DoLSAvr1S9MoJ9z0wYb44XELJsmID19RcvXqZ/f0t9qfPsbq6ytXLd/jkJ57AZJEf+uH/jrbqAXviGqk8KGHKKR0hBKJvk3hx4PrV68QYKHPNvDkmOk+WK9q6ARU4ONgF4ItPHy4rGucceZ6gafWCwaDk3vu2CU2F0vL3XGyI5CmhcRBkGBeTB49RlhArmsaJlXBsUUaj0Am7KTHWsyAkkL1vhPcevMI1GSH2JbHIRD7P5snuxmhsUbKzc8Tp02vcvHmHrY0crSImEU5khnGSQYNw0RPiGa+O0S4HJevOtXM2z/wp0yiVUueAbwJ+EvgBJRHoG4C/kF7yz4AfQ4LmN6evAX4Z+EdKKRW/jMT65UeIlje/47tp6jk2ppM3mtnsMleuHHP67OsZjCaoKBxnZRpcs6Bup1y59jS9cshw1KOaH0L0tHVF4+dk2Yjp8T6TSeTwaI/ReABxBRUznnv+GSb9NbbP3se0yrjv4qOyeLNCejBpil/2Ty8HMqbDUYZA01SYTDK61bUtXHRLKwGjI1ZZgpGdrq7SBFJrskwUh7IsIy6BwHHZt7kbViQl+knpJIvAc7dpFQh4nagwSpOXPY6Oj7lx+wZbW+tE71kZT3jq6WcYDKSHubd3QHQebw02z8l7BdF5qkXL8fRw2RqIMS6zRRGiVeS2JMQofjdKsVgsyIo8bSA5WkufNjcmlXOgsxwbu/6tBJWqqrE2p65rQiYOi3mWEWhTn0pU8b2PCfQvCtwqKW3HqHBBys0s7yclHyUwGSxat6ioaBaycYSoede73s3/9r//U4wNjIZ3cK3mdz787/nqr/lm3va2d/PvP/JvmeQlkcjG1imck82t19OINa2I7rrgyG1OKAcpMCQF9BhQIRKVFyxuu0iMGZd68jH15kSJqpov6K/1UFEzO1qwWMy4ce0W+wc7nDq1zs6dHZ783NOsrA75lvd8E1atocophNO0/gCtBiic9FDbGghEZZLtr2frzHm0DrhmwVBviu+4bxM4w7Fx+j7g47zq1V+XptIWH9ol1G/v9hHnzm8xmx+wc3hIVc1QOrJ7p8J7cSINIXB4tM+9589Qu1sQFXle0tQLMlswHo9RWhxT+8MRJpujdSb0TG+oao+2BZkVlTHnHYohR4dT1jclcBZ5X1wulUYlSvFkdYMsGzCZNGg1kx6nD7gOa5paWl3LS98lLKLIRakrRPL+BsoMiPmffnn+D4AfAkbp+3XgIMbY4WWuAmfT12eBK+mhc0qpw/T6/+xoKs9zjBZJLaUNrl1gUOzsTdk8cx/90VC0BrVgxerG0Cv76HyLB15xCa2hrmsmG3Y5FDk+PmZlZYX5fM7qaMBm60Absn5JPV/wje/6RmrXcvPGHvddOIdvBJwdQysM9wSiN+VQBkBevEoyoyG2lL0xi7oGo2lVhjWWJuG8tMoIcY5rRXqty4q6wNjrSathMZsvJ9WdCLFAgTxK2eUuaZCeYAwhlUMnbKIsyxgOB9hcbDmuXLnC0eExPkjpNK8WTBGZrPlsQdEruXTxAtevXiUasESyAEWRMS5LDmcChNc0aN2TnTgpQ2mlRZ/GWEwuAbKfAqwyljzv4+uaMisI6mRxmWSnnBU5bV2T2R5ZYjHp0InzOlxolxjVLFh0YZnNZgxj5Hh/j0XbsH72XoI1ZDaZ7UXhDytssgr2KJ/6V8HT648Y9EbUTcM9917k7/30P+CHf+SHqKrPovWTxBh59vLf5qEHXsPrX/NO7PAUH/mdX2FtQ/CHpijQeQbRkhWZKCllsg6H+Zijg1toNSJTmsovsEbWStAWQ8RHjwplGvQEYm6xxhKc5szqJf7w8T9gNC65fPkmt+48z7lzG6yvbPMbv/mbDIYZ2UDz/T/wg1hb0oYGpQvBdOqBqJxHQwwiAaiVBh0FMZKUixaLBbbIiCGIFkFmsFrT+BN7bJsNMdYRosNqscT23rN1ZsSi8WTlKmfuXUUhjgLnL2pUFDGdu/18PA3eOzSauq6pqobNjVP4ZkbtWo6P5ii1Sp5Le+bWzh0O9hZU7TGXn7/D0cGU/cPAcDhkNDG84WvO0I+W3AV6pcUl1SwRKo7sHx7x/PMHFHlgPCqpZguKwZgiCaaI4LXgapVpkmaDhlBjdJ+WwGBwL81CSBEv9viKQVMp9S7gdozxU0qpr3/R7/yV3/d7gO8B2NjaJip5uJp2Tp5bXNNwaus02vRoQyvlXlBLiqTNDfVMJP07IYGTElhM1JRSbG5uMjs8JC9Kqtbhm7b7+/T7fe65Z7g0IAPJpnzrlhxdY3OiD+RlSZYH2qYCJTL8VVUxmUzExIxwF0QIUUV34kTZ9fK6v9u2LU0jJWrHK5ehil3+3/vESmnbBEtJuNUYUeFEIbsoMqqqQsWCO/u3MCZjf3+fBy5dwBqFthnT+Uz81EODaxVZvsJoNBD1cAQgr4B+v0RlOU1bQajpD8dkNic68LrF2nzZNnBtoKrnjAZ9ZBJqqapKfGCIgos7+awpy774sg+H+CQFFkIgiyqVhJ1dc+p5KVgcHhDqmk999jOsDsfYXs4Xn/gE9z78GqoqUhQl2hp8hCL1WpU1iV4LKrNkwdC0gnEdTaQv+ff/l5/lb/yNH+DU1gb/4UMf5M1f+xaefPKz3N69zSsffSOvffXLON6fc23/Oazt0ywgK0TURasck1n29vYYDod4b0FZdnb3WFlbwTUt2giRwc2b1OsVO2OhN1qMiswXBzx7+XOcPbfG3t4eN249y/nz56nmFb/1W7/C9rmzPHf5OX7iJ35C7jsarePyHsGJ5oLRHavmRMlKYdDJoA8iIWm3Cn3Xk5t8+T5GZwliJDTIGFlWNi+88AL3X7ogbBo0aIsU2p0CWVwmGBqLsrJplGVJvz9M619aNGsb69LfTsfm5iaTsYDsH3jgAap5xcFRYH50yBe++Ay3rzZsn9H4PrjQoEy5vI8xRvIi4/SZVVw1FUWwwnB4tLNsdzWtp5qLNbexYnlsjCEzYE3BtAk8tvnVCVnwpytC/Cbg3UqpdwIl0tP8WWBFKWVTtnkOuJZefw04D1xVwhObIAOhLztijD8H/BzApQdfGYVCmVGw4GB/l9XVVawZc/XqdVZXJ0QtwF/v2lQWNolGKHCiqDQqiWCcTJxhPp+TFyV7ewesbW6gghiuLRrPpD8ihiCTVpMRoiP4gLEGnaA7PmqI0LQBAVhobF6yc/MmG1ubKXsU1fTOf8WgmNc11lopXzOTaHOk4C5qK52VQVnKdLiuF8tsVGstwVDFhAzRIiemVHovtby+LLMiOuL9EsKyurrOC5efYTweooJi+/Qm0+NDfIC929dZX1/n4OCAfr9PWRq2NzcICs6NV9ExMpvNURuRzFqUycjKQQIey7l1g6yOyQVQFNJ6QGkJXqHraeb4EOn3hUqpjfC0Y3BkNiOzJ6IlzjmsgbqtONi5RXt4xPlTGxACbaixzQGLw9vowYSwCJhMvJpcEZjPK/qDkRimRYVBBhtgQBmO5wv6/THTRc2P/fhPEXzNj/7NH+aTn/w4TV3x+td9NYd7uzRt5DWvfYxz26cpypxr165xeHhIv9+nKArqppX+tinwFKisROc9lCkpylJ6xlZ60YI5bmmqwHQ6pa5bTp3a5AtPPskzz36RCxcu4J1h2B/wvvd9gK1T21Ruwff94F+HmDE7rvBBcJ5EodwqZTEGEcFWQlNUKv08mjRJbqQXaHLJIK1IDArdNbkkhK5Q1BhdSF9Ud4A+CYgXLz4g7RAVCTEX8ndsIQr0DATr3PlTKaUJySJXa5jWc0bDIZ1ATZfUCEJEGG8uCA0yn+QMx5ZYF5w/d5b/8/c+RTWvGbza0OuPsAi9NCp5hnzj6WVHRCvr3sVIOeqfwPiUIgZhzgVvcW1iFoYAJjII6/hgaF0QY8AXeXzFoBlj/BHgR+Qc1NcDPxhj/ItKqfcC70Em6H8J+ED6lV9N3/9B+vcP/XH9zO7wrQPd8MzTz/LQg6/AOUfbOjY3N5OArQQak2hswShccsjrhicxKIzJaBLFcakbqTRra6KcHtuGalazuXVa/HmsIrdSKhplcXOHi5EsKbyjMpSVMiTH4KKjrR3rG1vEAG0IWG0wVnYwgOnsCGMUTe3IMvN/w4udCCjLFPuEEdTryXlUVUUIXh5+L5zqLguV9xAriX6/z/GxDLuaqlpm2w899BCLxYJXPPwIjz/+Kcb9HqMypyhWqBY1G+sTjNVsrd2L8+leqUivLFOPDBkQ1RWdEEoTTwzrXAiUxZAs3TfZqR3VYobN5b77GMmSYIc2FqulZLMmo3XuriynY5fI5metDBPyvKDePEPVG7F/+xpGKW7vHkhP+NYtHnjlpnyeQXqXbXVMpjTtYkqtNNbkRGNp2wZoyIse2vZYVJEQsqS+o/mf/tbf5YtPfYp/86//FZ/5o0/SLjxrG6u4uIAQKYqCixcvMh6sUeSRujpi0O9x7ObcvLIHKA52a4wOHO7Nl33q/d07jFfH3Lx5ncde+xjOLbhy9QXu7N7myrU1jC7YXL+HT3zic1y/fp3Jyjqrm1v85e/5LtY3z+CCMOEmkxE7u7eZrK2ktaClbxoDaHH8jEpjrFRnGCvqXSZf9odd48gyhdJZUsD3iMBI6rXbQnqdUQnw3CepQxSDfo+Pf/zjvPKRh0CJun3wEFSLBmxWCizPWEwyLMxy6Y2GKMgB58UaOAbRd+0qrxgjMVO0HgxjvG+oW4cqeqwMI295xxu58vwd9vem9PoRm4spYggKo3MOD+4wGTcEn9iASkvFt8RlJusOBBusTWIhOQ1ZZGvjElrZ5NbwFUPU8vh/gtP8H4BfVEr9BPA40M3rfx74P5RSTwN7wHd8pTeKEfLMcO3K89x/8UF2dvYoB32MEs6qDxGTKFN13dLr9VBavFjk5nu8d0TPsnzvoAYxCuA3hDTtViZhML/cdD6EkDyciyQqILttnpeQQLrKhzS8mNHZYGptUDrDaMWikgDWK0paN0/CDCyhOl3p2ZXjXZCTwdDJTtfx5r33Qpksy+VwxnsvfioIt/jc9hnm8znz+VwUlZxwcm/duc1oMmRjY4PZ9AibZ8Qo97DILJPJRBRoGp1aHGLypqLm6HBK2e8x7A/AB2Fh6Xw5gDJas2hqaZMocVdxjZPMPzFmTHIYlHukqVvp9zYJRpVlAruq63p5zToJiCgFBMN4fZP17dNsbp9Ba3iZToIPtMts13tRAW98g4gvB1QMNIvF0mFTRMQjSktABgjapgfK8vCDb+Zv/c+v5xd+4R9x/erTRB359V/7IPdfvIcHH3w5zzx9hdB+gfF4zPb2NvXcsLU+YTjcxmSF2E63HowlN5r3vve9vO0db6dtPWtra3z8U5+kVw6oFg0rq6tMpwtuXL/Mc88+TdnTzKsj3v51b+ct3/CNVI0nOOG0BwVBQetjciJQZFkufuRBIDoxSu9V6IPqRL8yYWIlo+v0HLzYdnAixrFcU6k0V0oEfr0X2mrbtrziFa+kLHPm9RyDQL9UIjWYpa1FEuqICq0EbK5VSGteRIGLrFyqfS2pzzESYobRAR/cslppgkLbklPb6/z2b32OcxcexoWARUnl5lMLLDTSNoiCVDX6pHVlojpRlNItBIVwVAJ1tOTFCJ9sg/8kx58oaMYYPwJ8JH39LPD6/8RrKuDb/mSnEXj+2S9x5vQ2EMh7JVE5qqalyDJcI/2Yqmro9/vL3zLGEL3DuZYi+YV3P787uwNoGocKnt3jms1TW0QdiVp6MzEKvzuzOnG5xVoVBOcYowyA9vf2yYqc/mC4fP+oFSGIMZqTYKx9AAAgAElEQVTNZXFaa1nME8a0bXGuWQbILJPXFEWxvI67GRldIO9246JX0C+yhL/L6Pf7DEZjjDEcHR2RZRmXLl1iMh5z6/Ztrl67Iq8tM1nosxmPPPII165dJbcFvX7ENw3NbEE+6KFzJVPVDIJXHB/N6Y8Cr3zlq/D1nJDseLvzkvM0VLXAg5wWaT1rc8R8K5VfWhETXi5Ela47QrBodeJxJIpPkkGF6CAajNEYA7nJ8T6SDyZpA0r8Z58LVbYAEyEETxmLxBhTCVrTwVscuBYXFpKRRGGItY1HW0tUBh8lK/3z3/LfUJRw9cqz/PN/8XNcuXKN/b1jqqomBM+Fi/eyee06uS0YDETPsarmZIXFYqhci0YxWVvnE5/4FPNFK4Ifxwe88MJn2N/fJ3hFUWqOjve4eOki73r3N7OxeZY6WCpviTqDILYiOgScayj7BSazECVIBhKiQMuAz0cv0nxaLddcGzw2DQyX2pzxpPd/97Mh/9fLqbmyKZtVIVVyhmeffoZz95wVGqnWKMQWJURHnpepYnKgU+9XS/9USnKIXqWBb7ZcR91rxEKlYtAbJxyxxjvpUeeF5u1vfzuffvxjvOpV95BrLa6VOuIyR1S5nGcSGAHpIMiFJdp9jCLQEhxCJNCM++fxcUiMogil+FMsz/+/OKqq4oFLD3K0mKGUTHKjr9FW0daV9E60YjQZS0rvQzKsEpZJkfeZz+cUvfIuJZOkfRkd89mU0XAFY/uUQ5nQ1nVNaJvlrpRnGdWiYTGvEY+nzkTKM5tNGQz76KygSP3Hjtng8RgbUDbn6vMvAPIQ+wi+bQlBhhyubQneE5NikXOOpmmWrIUsTWQF0G7RRjCba6srDHolg8GAra3TGBR39u6A16yvnuHc+TOMx0MODg7YWlunqSvWVlbJVKCZLxgPhtR1zdbWKabHFeNxn2uXX0C7Gf3hBB9bnG/JewV1aLDAYjFn9/Yuo1ITrEW3GVm2Ipg6IMSKssjITJQMPwkzhGDRJqYM2WDt3RvPXdauSi3xgB3bSGtLZ5HgfYu2OaiAsUJnbzrAchC7DJKeYgiIKo9yZCYjBoUznkwLHEmcCaUd4IKohofWgRUutlsc08aGpqqJztP4FoPmO97zHpp6xs2bN7l8+Xn29yI3r9zk5uXb2EwydtcGKi8uk4t5y6DIl37aucnRJsHGQo/D45vkReR1rzvLQw8/SjlYRfe26PfWuH7jkK1Tp/Gtk7URW+iU1BQM+j2RvdAR58VK2kWHCqLyZTCi9qQhRI01hUDgImij0UEk0gSAL/dPm5OgaWwPOHENiNHjosNkJSrpHPSGq7KB5YoTxSOF95VkqNqiguCQVaZwrpLedWxEqV/rlHEmJInV0qNN8ojKdiLBJaiINy1ZbplXgaaZMe6d5slP7/GaN/TpmxG+OaKpAdOKv5dBBH3CSelvkkZFBGLoAO/ybPeL80Sf0zSdrcddLKevcLwkgmav12OxWKCVXXKzNdA0LWUuni1W6+WH2k2cpT+olmW11lpU3hOo1eNRBoq8ZH9/n9U1ye66nbYzHusgSoP+KA04/HJBdT478/k8icRKOttNamUyGbm9u8ulS/cDkmlKD7JjXvgv+y/clU02TbMsozoG0NJjJikT5XnOcCjB7+DgkO3tLZyLXLzwEHsHd3jyySfJjCUvDCsrKxhjOH36NPv7+0wmkyVnvd/vY03LeDymPjpmOjtChUhZyn3p9/vMZ4eo6GWAZXJ6WqwpFosZOpP7tWgWDMpe4lQnSKvWiQEn5XWMniYhFdpUmi/ZTSHIFFWl8j52tiURlEkKQvFEoCRK+Sgal47c5KAlQ8VYNJoQ9fI6syzx4lF4r08YVr4RgYgcMKk0dE7gTs7RNg0utDRVS17Nmc93GFYzLg0fYlFNuX1rh+PjI2aVDEZs31IGgToNx0PZHOgmynNq58iU4fS98Jp7Xs5kZcCplfsZDFfI+2N0NqBXDrh5486X9fmIJ+LTaIU1NvG/04YRSVkaKCX9QqFFmqXwS8cQE5B/p5hlMCZIWa1PMqulw+pSHNmQ5xaFzBG01pw7d462nougR5BKgtDRfTWkNoFYWXS9d2ln+RiWn2fHHAski927/n73rHnviVrQFb1en14+ZHNjm/f+0nt5+SOPMJg4Wu9BtTKXCplI3WlDJKS2g6JNEnmibuFRaXORIWxBG0lVzUm74MUcL4mgGUJE2YzYtmithLrlPYPBiFs3brK5uSkvFHgWVVUt4T3z+ZR+otz5GASTpSJRC07R1Q1f+tKzPPq6x3A+0oYUbEPALwHjgbLXS+o7GhuFhgbg2wbXtuRZIUHSB1CQZ4nlkqbr5++5iHcHgJxfWZZU1Zyy7HNwcIDNMiIiy6XCiS95V5r3egI874LoeNhLrCHFvfde4OrVq4zH4pjXOM/x4TGf//xnOXv+DPecP5seCnAJ5mTtgMlkks5njlaawWBI7WqGkw0GZY/dnTvSH85tYuTIeRwfHzKarHL67BnqZs5wUNDLPUfzI4q8JIuR4Bu8k8GNRonfTNRLAWWZgqe+VZCNrPHtcqNSOiaMX8AkcVkxlOuyUi0oBkmfEo9dRC6ImjzLaZpODV+hwl1GXtrhgyALBsPJMpBk1hJcEkxBEY2Ih0lGFilKRYkjJv52Zods33NAb9BfwnCsNaDrJfkhN5KZCS4wDTkMEBRN45LQiyazPcGSdj03I8pB1uZsnz1HnpfLIcndvXatNRpFPavoD8QhNfogkmyRZF8uWXcnehyC9HW9V6ldYsgSrEZ66x60SgwZEgsrggpolS3fB+ySXaSU5satPe45d0YstIkoJOsVRXeF1iHdO1HripE0lEpsHquWg9umajGFFkWiDsKUApcxmVQdWsQ+FtUCrz3vec97+MCv/gZ/5h33YKLBZjWuiqgsaY+EmLjwHaA9dsAOAcCFgAoBHw2tLglt8lpPydeLPV4SQRNSv8q1eAP1QnjQUlZupX93dzFjHFpbvFfLibMIAhuZwoMMciI8++yzvO51r2NeVxgrGLlggBiZzabid5JbWu9QMQUyRC4OYDAYJFZPg80ylIrLjKauhb7YVi1VVVHkbnktVV0hGpz5UkT4y7KnTqADlu2CjsZmjKGaLxiNBtx///08//zzzOdz7uzsYvKCabVgbbLC2vqKZKGDAXVdU5QlwYsQ7+H+PoPBaBmcvfesTNaYNw0rkzVmR7vUTSUwp8yitaHXyxmNcq7e2GFv5zYPPvQwSjmqxZTxpCREWCz26Vnh+retlFZN3aB1B6eS4EIMtG2HJxQWk7UFvq2T0GknD3aCORRWkVA0m0a0NcuyBKOIrRdH0DSd19ZCCkoxJltaJdARGbwZmtrR659UDRKsZEAVQgRtRTrNt6nE1BAzkME0VXtE0dco68hMXwKIDRD6KN1pU2bIwN+j9IkhGsZjrbilYvIEHRN90NwmVfuoISqGgzF5li83ixBO+ttaZbS+4fDomP5gnIaUTsrNFJQCSogHMS5Fq2PUFDqXgVJwWCNarBJMxJLX2q4Hny/XZHefjFZ0Bn4dPOye8xe5ffs2m1sTLHKPGi/PCyoQdRABjnRtCtH13N/fJ89zJqOxQABTW0bHLoiazk8tPeMx4SoV3qulDYjG8/IHX8EHfuVDvPnNr2Jzs0eW9QmqIkSB3GWmkEpRSV+8riXB8tFBEJTOos0ZOkOGzDG69fJij5dE0Lw7NQ7O0ev1lgGpqQTA3vmMdAGom/h92RAlsR601jQL8b95+csfZj6fojOLd1J+adRyAXVZkRiDSa8SLwZoAHt7e6yurpJlGQeHhwwGwpKp6gWjQZ+bN26ysbGBsqA7IzFIZb5wu7sA2R13g7iNskhdKx9y0zQ459hcn3D2/L186UtP433geDqlah1razl1E9jaPkNe5JT9MfPFPFlhlFSLKSFN0Du1d5MVROXYPzqiP5gInMRkZL0e0+kRd27e4p5z96AS/q1XFhxPj1ksFvQLg2tqASznMD2a4ULOuL8OZY/WBzA26SHKjt1NxrtgtfQg8h6TFfjQUpYy0ItBLemWEtA0Pk2HLTbdI7V8LxUixIRxNRJ8tFZigWDkXuqEIih65bKlc7fUXtQKjAz/FosFuVapuxBluILCKI/JRsJ5xwgBIBqIQXRf07rTpmN7AapOn3PEuXrJ2VcxT3JrTmQjouhWKpUT4wmwv1sbolcg59uVtGXZT9eSsqikMhWDx2ibph9yLzslKgVYY3FKoYJP90cGn9aqJYHD+65dpJeDOfn8ukxV4ZKu5p07O6ytj8nznGZRYfJkQREVyhici9JH9ZKLhhhZXV3HuWYprrJYLOj3hzhq0SSNJza/QuV0J+cSI9HJpuvaBa/9qoe4/4FLHBw+Q4yeo5knxII7d46kdeAl0x6NRuzv7LK6NuHwcJ/ts2c5Ojjg6HDOuYvb6Lvizokw94s7XhJBs2MVBO3QURbyaDRKQHWxDeiYKHfrU8rD2Sx3ZR/8MqC62nHf+fuonSeomuhbgeok7uqibRkMpC8nXGkRfPC+FdpiwlOurK3TtC2RllF/gNGdB4nlmaee5qGXPcSirmibI67c+CIgk3HnG+raM5/Pl5jMoiioqmoJOZKenPTcmrbFVzIYWl9fxwXHzs4Ox9MZ3jmqugabMZ3NeOUrX4PNejjAeYUyBbNFS1YMBHCuDYP+SFR5lGVtbYODg0P6vSEBTZEPOHWmT25FEcY3LdPjOWW/R1FkrK2L8tG15y/z+je+luee2WVlRWxWh4M+s+MpR4e72KyHspY8HxKVFdO09BlluaXtsn4s2ihMJpl0W1XkuQQUbXXq35llULA2E/GFEHBNuxwkxAjGpv6TCsnJ84S732XqSsvvt22bhExs6hcbVHrfDr9XZJa8LIheIGfaGlzjsblF6ZbQiLiyUiEJhziiz1AYrMmwmUBlMlsSfRTNVq2JIWX/RZdBKiBbZnOy7kMKnieMMYEImaVnj0oq5CuTNbm3vhtQJh3O1CeOIg7F0ndIRfZu32Dj1FbCchqpQFNS4b1boj2yvFzeu7ZtlutV4EDyvQuBQVHw2te+hqqe44PA8YISewy0xrc1WVbIvTbSttIIPlNaMJ4sK5ZtCx0LAgIHVHfB0LQyCWKlRTpTi8aDVwatA4qaza3zKO0oB+BcYGX9PEXeE63StKGdOy8ix6dOS+uu6J9n7ZTnzL33E4PFtycmjP8pXdv/3PESCZoB7xOlsPGpR1knVWcwWU5QNb4Vnw+bZYQkeitGVzHRMBWuabjywlUeeOARqmpGE1r6eY+6qbBWk2mRVev1BjhfY1SgbVpqBaoVj+i9gxM/lXpeC6FEg4sBV7Wy4EzBfRcusmgrgnPoIueLX3oCkB07z3PpJaaSbTadLq93GViyQhZe6ueVwyG9fkGMjv2DQw6Pjpc4zqgVwQVsrti5vcud20KyatrPUBZ97rvvAnXlWF0pqX3LpJeTZ4aqbimzgvWtMxwcHVIaRdNUxFiQlRO2zt7H7StPcTjdxfkhmDX6ecHW1haLRcXR0QE2zzg6PEQVGcb0yIYZ47wnWbs1zBdTtCnIeyVNU6XepMIkOqO1MphpmwajLDYvxMJCa6ztE7wntwXWQtWIYIT4decpyIg1h1KgEuawDULmg/+LvfeIkS1L8/t+x1wXLt3LZ8t1dRfbTPeYnhmSGkcjaAgSkEYYQFyJGhEChgvtKa600kLaUNBAACVCGwmCABmAICEHCQJIcCEBNKNxmp42VdXlnst8acJcd4wW3zk3IqvHVEMkVAPwFhKZLysj4saNc7/zmb8RtfaAiMhaY9JAMdA0zbTJStZtp6GhG5P6TeqZAtjEiS5rjbEQvMYai1Y5c0b6tEamtSE4NAVucKhChiNKGWLQGB0oK4FRGWNErkyrSUAaRK5MfOI16/Wa1dEMneiNU5sJpuEJWuiAWot2qDEGP0q/V3MAGI9Ctz25fw+0YuzEq8iYgjFESltSFOogUMiASa4L0/MoJVChCDT1nICw515dXvPg4TnoiPYlzg1ofLLoEI3VcfTYwhCmTU2BUmhrmC3mDMOIUWLPwYFFjfT13dTndy6gjaKqFIXXtH1Hc1Ry8eyaR48eice9SkyfKCLFgoGWTV4ZMAmDWllD7yuCNxAN2so1G5xgOD/r8bkImrlPeX1xzfnZGSD9sugDlZVsMjhhrnRdR11VUoonzvLYd/gxgNV45/jKV74q1MhUzo8JJzkMPeCmHU1UnCXDmdUNXvX0fcfx8fFUDhaFEcwhgb7rWM1meG/5nd/+Fl/9ka/g0805KDexe3J/Lt8cEkTiXr0oScDlDEkgSFDXFePgRBwkyZ2B0CxdDPSDvMYHH7zP0fEpzjl27YayqOn7gbfffpvtTnO8WmBipCgNOg0Xqqri/PycVxeXqdEukm+UFcen52h9xWaz4fjefYgS0JbLJe12w5tvvsl3v/Uu1WyOMYblcslv/MZvcHp+j2Yx5+Z6w/0HT+i6jmFI9NYgcDBAGCgJkwnc8XofB+EGb8ZrqqqibhaE4Cc8YUjUvPx57K/nvrzyyRRMpVKZuC+3DokOzo3ppuxRB0s/8/1Hn4NPhARdmQZXSXosD6akZ7b/DA8zSFnPfp8NphaBtQXe7d9bYctprWRZwNH1KMzUcjqsrnabjbgv+iQuM8HlRB8hM17kGqQebVo/g+un6knegtqrWWkzbRy5RyzreK/loLUWqb6EFy5sJeyc5KwQRhH8yNlvURT4IMQFXZQQBOK1W69TMHTYsiKEPZ8+Z7tFURxcdy1i22VScE9/8/jxQ9q2E1vkA2TNYStGnks0RpU1uDFQV9WEKIC9pYw6WF9/1PG5CZpD23G0XKKipu9bCluiSs24200CuDc3NxOomJSdbbuWyhYoq/Au4Mmwlg5baMIgpQqkAY8RjF1ZywfXu57V0RGda3GpvJChT2oMq4iKERc8dVMAgffff5evf+NrDDkYuxGKyIsXL+68J2HaREJQEw1SvhKbIYlyVJWICDsn0Jy+HynqSkovEBVtrVitVjJwmleMrpVgYWG3vWEYO7bbDW994Q2ur2/56jtvU2hLVaVMNkqvabU6JsvRBSzaNFT1iuNTjdGiKlSdCM8895ZfXrzgO+/+Lo8fvEHTzCm04ckbr7PtOpp6wfKNE6IqZFjnBrw3KRjItciCKKMbJlm8vNCNhpvdFYVWDEOkSHCrHLDyd+nFSd8OlZSEUjtAAT75SKlEVVVK1HBicEnNXAJv3/dp0/RTmW+MnQLIBL9J99A4SG+6MAaVfJ4CTNWB1pp2GJhX9V7yQQlj63AgK0SMQFEkGb0pGMla2W63NLMCqw0RjS6KPRpAZZ2BjuXiJP0uZavpNUxhEwQoBekkR+edtIByoLY2Xx81wY5ExHm/ySuVWD0BYB+IRdjDcf/hQ55+8gn3790jpOunLTKkil7uF+dRuuT2Rjy2iBYszKzw6JtGoIQmBb10JsSY4WqCoKmqaiKrqHRuygd27S1dGzg+XjG6LbAnYOSNpiw1zqXWgAtoW7CYHzPZgbNnD+kfImh+9r/853j0fS+LNmHtpAfV7xdM8Ow2Wx48eEBRFxRmP/xpykrKYCKvri6Zz+fSR9R+wj1qw/S8deql9e2OGCPz+VyyzrQLbzYCYcrMHWMFGrNoZhijuHz1ksePHzO4YbIQVUpRlyXbndAoM2upKArJQoeBcfAy5HD77FJocXuVo4zRzADdthVFmIzV9G7g9OSI5WKGwlFYCONAXVo0kdv1Nc+evgBlGH2grhu0MXsmTGSPZ/XjJBRc1XOqeoGtagY3EkK8c07WWqqmxCEDqZvbNe998AHWlPSjm7KlTAdV+aZMN7bVsnFprdntpIw+bLzfP7vHyckJZ2cycCtKM9nhSuAQ5R2BsuwHeFrrSS0KmAJobgXkx9sk/jx0kvnIAEQ2UqVAp+GHMQZtlFjcpowmb2r7oYHGFkY2ckLqcQrf2aj9l7z/vS5Cfv480MwBsW1biJ6yMNONm695/jlDkcqynDDAn/5/GZ3Rd8M07BpDTMpUBmMKiqK6I2YzDeDQBKS9kIN5vr65NZAfZ7RseLNUdejcQ7Um/W1W6BdVsqPVsQx79KEwsCOzj7S2d9AN+8FuPKhYINu9yGcg1jGLxYJvf/u7ZFKEUjI+y+ed34dINgq8qSzrabM7fO3DSuGPOj4XQbOqKilB/YAxiq7bydBkt2W+ECuE1fGSvm/xw5ik0EAT6bsNVWl58fw5D++f40dHURWoGJLwRRocebGa6PodMU3OCR4dA/2wIwyOq9tXzBYNzo9T1idZngTOphJR1dm8pm1Fbq1pGpTRODdwfHwMQNu31HWZFIQEfxcVKKMxhaWqGrKcWtu2U3A3xrDdbikrO4HRQXqpBiWbxTjQ7dbU1rKazXjnS1/gyeMHzBcyFLm4fMGHH35IUQnuU2nJQoxJZaqWvpIpLC6MOKKAfG2DLaqkg9hOU3+QbOvP/9k/h1cwEClXx3ztR3+MswcPKetZyuQEgpJLIWutwIKAoqqmDO/s5GhiQUlft0GZiqJIoil2X1bDIfB6L+Sso+BRVfBU1ggXexyILvVD3UDTVFRVkabB4h1TlMJSqusy9QSlFNcRjBJM7tDuiM4TnacpK0orrBLZQCS4Rif8f5NSyV1CLOQp+mGwMUZ6hXmTVFponLaQ6XDf7Xj+/CnHx8fJ4VPgNv3QToyi3NYR8QtRXdd2H2RBTxusMQbvZM1XVSVIARCaYEzOlKZIeqPy6HCQTXovTJ+oEC8sZSiKClL/WEShLcfHp5BwqUI53otoF7ZCFzZ9hnubE5W8uvLrNk1F1w3T5iQaEv2BzUskA+Dl2gkFVxGo6hIfet555x0uLl7h3D4bFqWvfVtBa7BW08yX0waWmU856fm0lfYfdnwugub+CIyuo24qRtcxb0qeffIxzVzA6yGIT3dpTYJ7gOt2fOf3vs29s/t07ZZh6PB+xHspD7tuh3eygLa7tfRuVEATKY1mffsKo8VC4s033yQyQvB4t1dyrgr5gL7//sdUpZT180UjJWcQqqTRaupBZjB+UUgJUtclVSV85aIoWC6XMtyJe/3DrutYr7cpCxGhDoNCx71jpdyIUBjLF15/jQdnp+B6nO9oKiuDn27H5auXex1FN043sEv+K1N5Fy2L+Ql1cwLaYq1ktLe313gvcKm6XuAc7NYD3/iRr/PWW28zXxwTsUQlXH2t5btBSbmopA2SS95hGDg+Pk2ZUTUFkrIsQQvQe0jnpjATXGqCTdkMgwkTr1jsxFMfTUequsAWwl7KmVFpLDYN5cpSMrSmFksSW2iUlr6v+DZp6rKimVVoTYIB+SnTNamt8+msyForm5sKU2D03rNJlslZczJ/ziTxGTeMGB1YLuc8fvyYqiooqwKV0CNNI9C2jBLJthg3N1eQjdO0mrJNa8vp34d91BhFhzVGGYwkNuE0HAP20DRjEoyL6fkj4r9jtLxGLvOV1ry8eIUtyzuKYtO1SdmtNgXKWGIAU1aURT31tGOME1QOJONHeYwW4RF/kJUfakmI0YrGmEik58mTJ9NaOewDW2tTL1QIJzmog+B5BfpW39mUP8vxuQqah4wIrTXX19ecpcGQLgQ2QvRJQ7Jgu97w0Ucf8Y0f+WraPRI+sdDTTitTbMk4q0rgEHnxO+eY1c2E6xyGgb7vqZtyb3GR+inXr65444032O12EywkZ0Xeey4vL3nt0WMAkfhXivV6fbDbiT5mURRsNpvphsg3nrB47HSD5LIiL0gJGgN920EI4oro/CQaUVUVQ7sjOM849lxfX0vQ0PubwFrLbrebFpUxBUrbKZOomjopSO1xpD6K5F6MispWHB8fpyGanfB8h+WiTSWg1noSA9bWTNAuadSL55K1JdqqybMoRjUFF7kx797YWXc0Z8B50BejBKLcTsifWz4Pq3QKDJJ1kmh+d/7GWjabDe12lwnKByX5vkTVWjZRqw06YVIXzUzgbOnvrbWCMT6gyOaglPu0xhiGsZ8+C4H7iHxZ3ojyOebnUEp8dCY304PjsHQ/hDDl15L3WqT3YKUVliKod3HKXA+Dbv4SzvrIdrsVeq2VNXPv3r1935UfxDoeXo+cUOTgWhQF2ZlUCB1FOk915/3t2z7Fned1zoGKOCetr2EYpurFqKzwJK9f1zXLeYNNmNK8jvJzZrzqZz3UIej6/6/ji+98Nf4H//F/kbJAOZ/trQx9cjZnMBJ0rJS4Xdfx3ne+w1e//mOS3qOkrElSYy6J8jrnmDULiILVKlWBRwY7KGG0aAymrNKidAxdjypK3jj7Fax58Yed+r84/sXxx/oYx3t88PGv3WEDheCISUhFgo+nyFNmlTYeZAr/6vIlx0nrM6aNwzmH0SNKkSrExJSLA8oLY0irRKPVB9AnJYmPioKOEHaZBOVuHKiLGmGXaYhRnEkRMQ5rC15dXnNy/56gBJKuqYoabQ2D09j6FKMLmQUQMark5npNVUui8tf/+r//T2KMP/VHXbPPxfQ8kih0WqFjZL1ec7Q8JiB4PastfnTMZzXb9S1az7h4fsk7X/kR2Y1TJjE6GR7JMMWglRcDebwoDMXIoHsUmqooCFFxfXVD1cywpEy0c6kv5Hlx81/jR0dZV4yDZ/ROZOrKxLdG9CB3m5FZU/K73/4H/Np/9Gv8xE/8Sfq2nahdxihubtZTf87lIYuSnpoMhAw27bK73Q6D+OAslzNOjo7Ybte8ur4lRsVbrz1i6EVAxBYlV+sd73/0CbPZjJtrmST+1b/yb3JyepQEYOX8nXO4KPzgeMCKKkqF8g7vxJzLxZ7N9TXBee6dP8T7yPn5GbPZgma+xNgCrS3brsU7Ka+vX11xdHQCZIaFCMD+6l/7a/xnf+s/R6U+ZB58TWVeZu8UJS7sQepV2UzVgDBZ9myZcRyx2uATdjMPuUQ5qWhX21EAACAASURBVCIQp8y2KpspW/XsefGHZfbokAl6yqp8FOO8Q7jS7c3VlMW1my2Lo2Ns3aBC5OLlc+4/eISLAiPK4tiEPfTMJs55TGN5nT5rP4jDZZb6E3xsizGFiNgkvraKQne0VtMOrZS7CToGCebkRkF7KEkebFkQnDCGphJUeaySyiXbQGQqrz6oSoqyxHs3ZcKjc2m9qinbL0tLXc+mx06WHlYJ0J/ch7ZMbgNGZOdCkrLLbYKLFy958PCcrhOnVaXFyygPznJllnUKjJZBltxHGu8Up6f3WV9vKGcWrYVSuus6Kj1Hm5LgNWVRMAwt80VNt95SNcmh4Y/bIAhUWpCRF8+ec//e+cFikPLYFpph6Cirgu9957ssFguUMlPpHaKbyu6+bwnOo9PEttttEwawmoYj0TuGtuP8/Jz5ckZhNBcvnk+BTieu8NNnLxh6R9ttURLGUQRG10tJ1Xf0Q0dZWVbHIpARY5wQAQKfGO6UDyErlYe93mE2YGvblkUzo6lqZrMZTWK9bLsWH8WcbLfbcLScM68bbm5u6JKa0G4nLYb5fC4LNyh8lBsoZ97D0DE6Jz7QebrrNQHNEMChMXZOUc0oqpLnFy/ZbG7Zbre43idVfLmOJ6sli5lw95WWIYgyGh/v4uVyq2Tvma6nkjX3tUBKzDzdz4/Lz5P/HuD2+uZO4/5w6pxbGcBkYJdLSHFj9JNvU95gc1k7UVs/VbZrrTk5OaFM/buj1YKqKqZzk5dPHlEqW8VmnKAMJQXV49ImLlmQd6lNoBTOjygN290GlbK9XJ5HH9KaaqeB2iS8Qe6ZjndaQSDCHvmcJkB9YNI3OPw6vMaHLbJ4wMbLzL38mgDzxYL3331fRFW8x4dR8Lja4mNMDqXSTxWFfiWT9Kin8hng7OyMZ8+eTdP3GKXqzJ95oe+e49TPTdRQCIxjz3vfe/9O8G+ahqg0WpVAtqF26X7cI0T+2E3PFeDGgd16w6NHj9jtdgQi224rGZg29N0WEz0ff/AhX/nKV5jNZnTdjibhEEXsVzB1dV1ji4QPVFCXAg3CO2EaeZGCKyrpp3g34oMTjrnRIixrFW7oef311xldT1UVE3cWApbI1eUFdV1zerLE+5HHj8SQc7vdkk2sQhBZNRVFUDZT40JwwulOCz7GyDAMLJdL3DimvqL87SfPn9Gmfug49qyWM5bLJU3TsG07rq6ucE78rmfzkp/7+T9NUVj6ccAkgRHnB1nQShHDgFZBANAErBGIkjaGqp6hlOX46B5aFTx6dJ/N9ob1+oZhGAkDDJ3cSFevXnLx8hm3r16wms9YziuGYSclldnfEL9fj2w/6CkBDdpMpAOZrscfCLwS5AqOjlYUhZ2C7V3co55ok1lNaRj3G2sIjtms5ubmZpLgyz3UHKScE25533UMfY9ChjMZpoIVFZ4mMYhOTk5kEJT7qkahFRSlBCwR39WTIHXuG5ZlyTD0GCMT3qoSHDAhENxITFJ21orXUVVLVnTx4iU+5CxQBFqmZMCN+KFHJYnFfM2t1hC8OGQeyBTmgSRw57zyJpJphhKs1J3PU+47z5Mnryfqq8GaknHMwH6pJnyUDXE2W6BtgVYGjGX0kfV6y24j1ZEIc6u7MCTS9TQKWyj6vpUqJa0t+bw12nhsEfmJb35D7Kl9mBS3FIao7DQrqKsFREXVNFPm/MMMgj4X5TkxUqCp5gu8j4w+YG1gPm9wfqDrWoyOdO2GL3zhbcHm4dHKCxi7qigrmZTlYY6JERVl2FFYzeAhRidK3xGOz04ZnUdbQxg9Vgk/etttWS6XvHp5wXy5oh12SZswefsY6aG4vhce9nbLctGkIJx385RJpGAOTMOpLH2Wd2xg+uDyjrdaraS8SLv7yepI+jsx8PjxQ6ITSFPwhrYX5tDJ0Yr1dscv//IvC33QecahI/oSFOLTnuArxhiG3Rqtod111FXDOLQYq7jeXE7uhsOw4/JVj7Wa2+sbgvuQxfyWB/efMI41t9cXeC9wrlk153vf/Q5Hyzm2rHCBaRBkTclms8GYfZk1DXO0mW7WfCPL4EXaKkVp6AfJlOfzOVVR0rLFFJYwOApjiQrcME6ZiNWGsR+Y1TXBGLxzhBTU6rLEhcDR0dGUTbk7KuKiwWhMwWJRTBWCLUWSztpSJsx+z1YaR0+R6LCFNgRFYqAlYQ83MvoRWxTCmbeGMURCwmc639GUDU5pttst0eppYKY0+OD203z2gTBnrMYYQrYtyFm1Meikw2BQSXfSid6kdwQlUnlCPFCEwASXGseemNZjLofLskyQQDNtZtnuwuoZv/nrv86Xv/YnZGNRNsGH9opeZVkyOtFhCEmLuq5rqsKgYiDgOTo+lpaBNjKMU2nAR67KPPPFDGs1bhRGlkzYzT6Ih3bSn4iatOmYqfWjVcB5kYXsk7B19nv/rMfnItOMScZ/7N1UysnvZVcsSwG7/8N/+A+TtNQewlPXNcbKpHqz2bDdblGaxIGW733fs9lsGEaBHdze3u5vmFQu9n1P3/c0TYXzI8+fP6VJ0/ZhGGQxpyb0drsVClkILBdz2s2W0vzg/pODQQbjTs321GPNR/7AjTHJEnjk8WuPhNGk4Gi5Ahd44/ETfD9wfn4mATDuYRXHJyt+4ed+nroscEOPT+VSn2iK2ZhOYFsCqN5sr0AN3K6vePbx+zz9+H10dIz9Dje0XFy84ObmhpfPXzAOA9fXr9i1ay4un/H06VNWq5WUjsHR7VrefPNNri8uUJFpmp3f33q9/oFyMJdeuYTu+34qLw9Bx/nz7nvB8OXg/2lSQFYLypAmkOwlT2onBfdEv+26boL0ZLFdYDqvvu+n58xluveBfhilN5kogJnAkO0d8mPzppfXATBlt845VJrQ56zuMLNrmoamqaZWQghBsJNas1gspsBlUoDN1wUl3kGHyuyHlF58oEj91Nxfzud8mKnnbPPT4Py8rg/vnRDg+vp2Eh/Jf5Ovu1KKtu+F4HHwOhmidOgbtF6vD9oee7veQxbUixcvBGuKGOiJVUXOFOWx3a7fZ49xD0PKh7yfYro+P8zxucg0s/qM1h7nRtQoArZt21JbMfG6fHbFn/9X/jVUYRiCSzCYiNXQDx3zRc315TVHqyVhHAiGSSwhemhq8QnyRB6/9jqjd/jEpQUoZ7MEYvO8+73v87Wv/xib3YaqqKQ0qirCGHj18iVNU9EOntlcMJs+aqq6Yb29AaAoLLuhxXkHUYzIlDpgg6DSDegIPlI0K2JUHB2f0g+Oo7N7dLueQhtWxydcvnjGk9ce0o0db3/pbdrtFev1hhcX15yulhyfnPPVr/8ITTMTtSQfUYigM8B2e4vSnrYVjUprLet1x3Ildqfz2mBOBUrU7bY45QmjY7Vs2HVbghp5fvmCo+WKp892XBUXNLMVJj4mxMgnH7/k5CRiTc3547dAK4pyluwmZGp6794pmVppzH4QYcuCcZQgliFB4xilaV+WiaMs+Mx5M2O93mBtCrqlKCsJ5EVJz7cssEa8yctqJkZiWlOWNYMX6cG6LGV6egDlMcaIngEyWHBjj7WSJRtr6btu6lOX1qLxKGMYNluOT1Zo1zN0O25u1lRVw/zoeLppg2Lq5wYsuoiUaNwo1rrOOUxjiM4xm88JJJ3ScaRJ+qFjiDCCKgxVbdHBSa/OalRQ2HpGiB6tRIxYrB8GCqPEtycENFrsmJOGA4jlyCFm0yfGVYgx9VbzwClne1kLNVKXDaPrMIXhp3/mp4jRMYQeW8zBuxSMAkaBtYZoGoZxmzLbsL/2hTg2KGU4O7nHxauXLFeLSRJQpevnvWw2x0dHvHz2nEeP76e+sAKfjS0CAcfJ/VOurzbUzYpoKrSqgIjzJMZWIRJ9E275s+tpfk4yzTidvNaimn57e4vSgXbo+e3f+h0evf4GVVPvG9Upc2rbLUYJBtJqRRild5cXKUGwXM45qrKhqqSUJoZJfs456S96N3J5ecU777wz4blkGhmnxrQMNEo++eQTbm9vBXOZ2gKnp/cAAdKOY7/n7BpzJ+PIO5tkAns2h2Q++516vlqitebho8dUdc3bb7/NbtdibclqteLs7ITV8Qlvf+nLLOZHjIOn6wYGHxjdHrumtQxFtNaYUiBX1awhoECnfmZZ0SxX1IsldT2jbGYJw1kmSbsNXbdjHHuMVRgdeHX5nKaqOTk9Yru9pR9aYox89PSTSVQ5v687A4qYVYWKhJerEia1SotXU5SGYRT9gNy6yJVHN/TTlNx7L0O/jDE0hm4cMEWRpuVC7XNuEIsLBaP3U+ZijMDMxA+c1D/c+4FfvnrJbrvdn3PGoCoJHrPFHB8kqEsWKHTbXJ7mjRL2WVPOeDNNsK5rvBNZtxj39EXRJ/C4BJDXhUErsGbfH83Z6T6r39umHPaDQxSjNBc8LkkoRiVssTwsykOsO+yrxKbRWujI1u6fNw/jcsvngw8+oipKVNy3pfZ0xtSjjzKgym2EXClIxjtO2E3JajVR7dXoM5ZTsvPfh0J7AGwfu57lvJF+ZuDO9fAxTe7Vnqf+2Tuan5NMM8TA9fWrqTQdxo7lfEY7bPn+Bx/xp/70LxCIDP3A6OTGnM0WbHe3nC6PuN0K+2I2Lxm6Xso9xVR+KBUpbIEpRNPSpIu9W+8orPStxIhWc3Z8igsO590E6s1K8UoJxuzq4pKvfe1r3K5vCCGw2224d/aAp8/eB2C7uZZJcrpRSmPvQF1y41mRSqf0vesGqkoJaNh3CCXQ0dQNL148Q2vN+fkDjPa8fPkSU1ga03By/IC2G/AhUjXLBEgfsMn22BY1Xecoy8WUUeSyN5ethwE+RM/t7TUn986lfecHFquXvHj6jF3XYsuKzvXUVcPu+50oyLjA+x+/z2Y78JWvfQ2l44SZ3U98k5c8Gh9BJddC7z1FWRIO+roZUO69WDmo1KPTVjyAjDFi6ao1wYlDo5S5aur/yQYFZSkDNGstjsyDZyqFc+7gYyCmz0jbOA12qrKhH7uJ1tr3o5j/4Qm6kJ5hkEFe0zSIyK+mG0Rnc+gHrFaiUIRnHPMQpSdG4WJHSJ9NxBaihm/KAmWLO8OtvCZvbtaSvRPRtsAHJ8OP4GkSJRmkDLXWopNU2tQKUKCVCDm7zqGNDCetqRKEKwVRLepGuY/qxn6acCurEQEVCXzHy2P5PJNC1zDIAK6pJLN1bkzVwyCi2zbghkg4QDK4MDKbzfYlcz6HEFCpleK95/75+STgkz23AhGDeJg7N0jvMzLx5Q8Hi1PsCWC1qE991uNzETS11hwdHdH1O0xRUWLxYeA3fv03+dmf+zMMoxD8tYEaK01dIlWhub29FvXtskTXhaheB0Uza+h2bWKCFLS9cHZHJRNUHcGFyNhJc7sqK7773Xd5/fU3kvagmTIcYwr6XYspDa9eXvDWW29z8eIFi8Wc6/U189Wcq5trFovk4RIj/mA3zRlH/n/5y2a2B7K4cx/s1asLZnXB+b1TLi5esN2myW4hH9fNesPgPNtdyzt/4sust1tMUaBMJcrgSoSbu9Ezn6/wDpq5md5T7hsHL+/TBkc/DMJtdo75bMbxiSx4q2EYdjx69DbjlzuMkelmO/Tc3mxYrVZUTSO2IMpidYWPwnBZLpcA0/c87CmqgtCHafe3pkwUyayu4wmeNFDYky9c2Gcuu64TRhGgSxFC8VqhiJ+CFBVTJaO1CI/0reicDoO7g8UsikJ0NiNoHQloTk+P8dlALA22qirRBrUiaEtVFPRuTNN80fecBjTR08xq/DBOKAmTNH12uy3z+Vx+ZwN40EY2b1uVae3dpW3mLHQcR5q6ZkgMt2wQNgBjGFFRtCozC+yQZSQbSvL/CZFx7ClU6tkGRxjdNPDJOgG5H16W9RSI5bwgRoVzI2fn53z44Qfcv3+fotgz/AYvA7GqqigSvEsQJUKrDURms1WajEtQ67pOerfRM4kMalEUM0qJYE5ZU1YV7dCLfkDquZoobYt2GKiaU3Sxt8v+QTKP+Edle5vPFK8+81/+czxCjFPgk+ASePrRx/zsz/wcwygsAZOwlUoponf44BjGjg8/eJ/Tk5NpYqaUpN2imi275tXN7YSxy6n+MAzURTlxvF+9esWXv/xldn1LuodkoSpDdB5jFbvdjkePHk2wjFevXomVA6ImI8OAPRtJJY3CoPeWC/n1Y4zJdvWgd5cFLgpLYSy3t7f0u5bdbsfp2Qk311dT4Lm+upHXdJ44TVMV2lqMLqirOSgLyqJtQVnVjE5Awygtr20LXPD4EFkul1OgWd9usEUlSu7NnLJeUNYrmvkxZb2kmh2xWJzy8NFrnN9/xHJxgqIgRpMMw/Q0PYb9Ys4/j4NnPluitMWNoqKutZ5ETdAKZfQkcDKO40TlNLqYQOoxRoICf6ANSVLqydAlyAroSa7Ok0p2ncRU9gpG+e/yc6l0Tjm4T5tdxnTGfZmqbGpzWJMgFnv6ZiY4KC3A7xz454tGBooTCeLugAz2VMQJgylkcE5OTqYWwKGb4rQRHeBOq6qiMHaifuo0Tc+bxWw2S69bTMEn/3vCMfo9pTi3KPJ5TUMbBWen53Lfpc8yEKdBTIyRruu4vr6eHmOseKEHdNLQlGxysVglRtAeqnaIIzXGsFqtuLm5me4rqd6yspQnJnHjbOt9eL6H1zd/rp/1+FwETQWiH3kgTvHFL30Ba2uBDJWGoWvph24KLtvbNS9evOCtt96i63aStRXColCYaSLeti3z2ZLsPZJ7hpLZyc5mjOLo6ISbzZr5coGAzLcIJ1g+jKFrUcown8+5uZHgtVqtUqZip8UFpNeQ0rjreza77f4mD2FaQMDBYyJf+tLb/MRP/NiUmTVlxeZ2zXIuQ6pHjx7w7NkntH2HMpqz8wcYLX2ettsRAgy9S7hMYQK1bU/wcmM3jeAaF4t5UlIS4ePVaklRGoGUWEUzb4h4yqpCW8ViJQGuaY5xwRKxzJtjrG7wI1TFDILBKDvh/gTxIH0tEZGt7/Cix9T+qGsRcLi9XeOJks0ZnYYchXxpLdJjNlsjJ8C72/fFgko3QJANUMrkmDJjnT4jpp5pDArvo8gIhpiUqLKyugRoFwPKGDxx0q3UWoSC905gkrlnixZZe/k5YgpsozwmrbtDVEUG1ltTopTFjUz6Bnc3WJUcOZn6oZeXl+iDdXXYN8/rLQfjjDTIzJwMzbIJH1smHdlPD8dyRm6tTe6j5QQByn+bD601y6MVXbsXu8mlMUY470prmvlMuO7KoFRmEqmpn5tfv23bPetnypKjQKnwDN5RzcT+2yTJx3zNrDbUzZyqan4AwZAP6WWGlHl/9qD5uSjPAaKLbPtbri+eszo6B2/ph+fMZjOGfqQwht57grVUjWL74ponD14HQBtDNJrt7XraNYMTcPN8IeIZQRT/8b5L6s3ggsMP0FSW3jmsKejbbiol3NBRFJp+aDFFyaKe8/zVK+azBePQ03UDy6MVbRew1mOsSMMJSLvDIQBffHaeNFSVpR+GaReNgFbS7zo9PaWpC/rdSFnZiU43n8+5fHXBbLFE15rQex49+QI+FOiyFguAZo4bepQOFMYy9j3zecNsVhOjoqrqBI4Xya3Ra3z0jKNjt9txcnJCVcLJsTgGKqMJLmKNxWqLKQw+Sr9Men6KeiZlTz92Irzhs3iwIQbx2JbPRyirMcjPyipkq1R4BSEojk7OpKzGUiYsp3NSHpazBRFLCELZbMwiZZmiEm4S28aYImW5kvX64MErjC0Tq0xA8/kGqpuGwor6k/MRjWhkaq1BlygViFE0Nn3cQ5zKlD0WxuBUJCrLrmuZrU4IaiQSMQdtgbK0Ajb3bu++qVMQjEqCRoh446jnNf2oJdgcqgZpjUehC8kgC1WzvbxguVIUCRonGpaJcaUMhWrQSrRDTZHyo5DZU3f1K4euY17VKKPQhQSxkLDOsob2uGFjjFQshNSCcOiUKIQQ2W63nNVnYnDnRcvSjSJIY5UiJtdX5zvwAjnUKop4fEJWhBBYzBt2bU9d1/JZCO4fDRSqnAD+0SmssoyJlRZixAWLMrUIOmvxWYK7Oq7SgkhSeH/cMk1QGO0YdjfEIGVBVUmwmLBySlHXJe1mzbMPP56mwUNqjvftluBH3DCmwGcnDFouf11SWped3LNoZrz33nsUVSlK3Wqf/ueyuWu3tG0/YetKa1jf3hBjZLFYMQyOspAPYuglsypMSVPNpsyKKIBfYwyLxSInU1PzWynDvXv30EpRFxV+FD+artsJvtN7rDbgAtoryqpODIsZKkLftbhuRwwdGkfwPVWp0CbSD2IlPAw7nOuIPgghwBZopSgLO3npdF3HxcWraZofowibjN6x69ppt4c9tlIplZACbmprZAZSPmLYT03FwOyQ/rdXLTos+Q4B75ltlzNolCHEu2rb2hS4pMp0WKJO5xDjnddxUfzOI1rKaTQxAdNdFBHfw6zNmGLKco0xSWtyD8jPGc7hYz6d3WTXgOnfKShmkeCcBY/9MGWHqCiA9AR720Nk1FSR5Gwy98RDcngMSsR/JdhJJheVlNE+Slskt0aUkpbIZrOZsMkAQR2U4YAbxdsHrabHWlOS7YCVUty/f3/K+g6z1kN8Zm6FZDynANTNpM2570mX0xDVxYAuLENCH+TrfHR0xG63I7tqorMY8t5B4PBzOMzi9xjNP2bK7eKRveZb/8/vcf/hE7TWrDfS96jrGm2E/dC2LWWhMEhZ1/c9ZVPTdR1NVaMTFa1pGnwMHB2forXdT28Lza7v2PU7qsJweXHBN7/5TYGoGHVw40sZI4HWgbac3rtPxLNbb1jNF6mnJf7O3gvE6R//o/8bgJOTJd/85jc5P1+ymJfYcs96efO1JxwdL1guZ/gwJhBzwzd+5Oss6wXESN2UXF9fM3hZHN//6EMiSgZiUYQJmmbG2dkZs8ZwdlxTF455rTCMKDqyeCtRUVaCBfz444/ZbG8YerH2WDRCIx1dL3Ch1Os9PT0VREGhJ6pidtKEPSohB608nCiSL3zmj1dF0klMRmc5W8mDDDcKjMR7jy2lv6q0lT6X2cuoZRO0KZuKiqxInnVT96V3Eu6dwNiSSYrpWZpaO4fSBqOtBAVtxDs8+Qxpm7nNe8k7yd7keriQMkX2m2vfSVsiM572w6fUftFmwhYHFRLZQKfs8C58pyjExwa11+HMgTmzjEJwrFYLbCWIhOleSZPtHKQA1tsWdAl63x7J7ylvAkVVsdntmK+WKWmp9kQEWxBDmKivkGBDB+Ejhv1zuhC4vLwUObiY5e2SnbHKhnolZVELoyyS9DGl1SWBtJINDaElG71/n2VZTUMmpYRSWRTFpGwUo5J+/oFXVH7sYUa5h2SpySPpsxyfi6CpteJ/+h//F37qp36OgEoKMxX9INJRgssruXdyStu2nNw7IyomyIwPouZeliXbbcvV1Q1EobcJpa2Ybr6yaFgul3z44Yecnp2x2Wzo+54wCgXO9UMCXieoizLcu/+AXddT2IrV6lgyxuVKdnYDxMCv/9Pf4J13vgwIAPlnf/bP8I1vfJV/6Wd+muVqxur4iKZpKMuSBw8ecHJ6xNnJKcYY3n7rizRNw836mmfPnrFcHE03I1rRu5G273j05DXe+MKXsKbk8YOHPLx3wpOHJ9y/t6QsA6UVqAvAzc2a7XrL5nbLs6cvsbbk+PiUd999VwZM/ch7771HjHHaqbPdxGazobDVxDTZD6jkhsk3T16Ey+VRgrOUlFWD8xGlLdtkbVFV1ZSZjN7hY0TbUgzrUrYp0+C53HQuiO+SVglHWBKVxsUg/U6tGLxkHkEJeDxnWZKdiTq43JA5kEkPU6lIWYofeswKSQf4vsMsNfPNJwqtyoFUk6l7sIdvSS+8ndg0sFfrz8FH2zIF/QMN0jRYyZCiyhafyszUFDDz733ImXzWjox3nk98xkeiG4XaGdxBlrvPHvOUPFdFMaSp98HfxBixaTPIHvaHA6o8uMrMIWstZ+f36IaeoipFlPogwPlUhitlkpqVhTSg1KZIYh9S7puyoJ7PUsDP/eJ9n1NOIkybaFnOCKGgH1Vq0+yHhnnTzkfOduH3m6r/wcdn6mkqpd4H1oAHXIzxp5RSp8B/C7wFvA/85RjjlZKr+Z8AfwnYAf92jPGf/mHPf319zV/+N/6KLAzXQyixppCLG2UHbddr3n/+kre/+AbbTUvUGje0dDc3HB0vxWiLSFNW2CI1rEOW6hrwPjL4QFVYjlZz/OC5Xt9SlTN0BJs0OmVxZy4rrDc7mtWItZpnz55zvDyWKalyycu84PLimtdee40HDx4CYIoGKDlZnTFbLvj+B0/xLtK1Ijbw+MFjPgofEbyiLkUBvus65qs5dV1yenrC8xcfc3JywmuPHlMYy/37D9nsWrqu44tvvUOMATcMXN9cUFUFi8WCrh2J0U0lzwcffMBsNuP09JTN7Zq6rnnrrbe4ubll17bYqqauGmJQNNWMTz75ZBJQhuTEGff+Odm7qO/GCf7k3cDoAs1M4FZyU4vZ1m0nDCll9CSGLBhBNZEPYhS5N4VJqu8aXWhsFMZMURQy7Vd6CtqH0+FpulrsTdg+faPkwKy1KApBsjEhorXZg8FRIkPoPYQ4uUUaIxYSKAkWVXI0lAADfvTc3Nxw/vCROD+m4Jbfr5x0vpcEYR/iXn9AGQVRYbTFjV40ExKCIDg/0RqjSoMktc/uvd+rmmfgvNA5R8Gw4qkrqQAiYRpQwT5IeO8xhWW+XEziy8bc3SykHysSaodC0T76RJcsJvFqEAbQJ598ImImHIqviOANMdsyK4JX04anlJL+sk5IiwR436xbZvMyBUshr0vAE8/0GNTk2WVMRVUfEbxIFH66ND/8WTCpBx/QZzh+mEHQn4sxXhz8+28A/0eM8T9USv2N9O9/D/iLwDvp608Bfyt9/wOP4+NTug7GuGFM0mau8cwIvgAAIABJREFUDZTzSlJzo/jed7/LN370x+naFo/seLtuRzMT1oQfHdV8Rtv2HB2dsLm5paxFGiyoSDf0zGcLqnLOu+9+m/tn96EwRCc0R+/9pCItvQ4Y2pY333yLdd9SFprV8Un6e4vWhrKUDfL5J8+4//C1qXz9+te/yW/95rd58viE5xeXfOGtLwpGtHfYKAOURbPg+mrN1e6Kn/zJPyW+Nbpn3sxZzWb85E/+tPSwQmRcb9httrzx2hugDDc3N1ijpRVRzbhZ36K34k6JlqxjVlu+9KUvTDu8947N9pbNboNWBdttSzlruL69wVrD8dERSkVWKxFN8SFby5bc3t6KdqeRbGq323HUnCQ2S8N2u52A31kVWylFM5ffjUE0HXNGZG05BcyyLCnrCqImqD1XOzrxve66jrKZ4UY/PfcUxONdJplzHq33LpZd11HXDYNPcK6oiJPNrAwf8Y7NzS3L46OpvxVCmFoMWmvB8SnBkAYiY5IjLIsqZbI1Z2dn+0w3PYdsBhKedM7c0BMDJwRHNrEjOSMWRYEbpNrRNvc878Kd5HcSIHc7wTMKQqFMVEMpua2CwhTSwvAjZVmgYhKOSfee1loETrxQWbfrTSrNUzadXEDH5FOVcctaI1Ae9j1pKaf3BIWzs7Mp643Rotgbo2WxE1B03VY+My12LofvsbSZs19PVVTGjebP34eARvrMry5fcu/BGyhtU0r7g8dhdRFjJLhwJ5j+Ucf/l+n5LwF/Nv38XwJ/HwmavwT8V1HO4v9SSh0rpR7FGJ/+QU8UYiDoDuUUTT2TQUjyu5k1Jd/79u/x1a99navbKwqjsMbgupaTo2Oub28EujJreHVxxWJxlIDohUxzkf5JSAorLz55jycPX2e920r/yogdrLKKbhzEDtg7Li5f8eT1N2h9C36k7wUobSrJFLreYZXj44+e8/iNNzk5ORF6JvDFr32Z//Rv/k3+zE/+FPW8YNdtefzkCYqAiTCbVXzw/ff5i7/4F1itjhm6nsWsxjvp/dXaooqGy5cvObt3zGK1ZH50zLbd0TQN2a9GhjcZVxqSL48lowVCEK/vrtuQdSRlUtih9RbdltPN9r3fa1kcrXj5subo+BRrC5r5jJlRzOZLfHD0w47z83O6oadtd1gj3tfZZyWEQDcMDGOk0IGqTIG0mtO2wiSKIU2qTUGhLdoqxiFRGss0OfURbUp2/UBZpSFeCBRFhQ/9PotL/xmbbsIIJpnY+cFTNjUueIrCgIfej2kwaPBjQBtN1Jqj0yOCV1grIO2iqIgBlFW40VM0DdqmnuMwTlCh4IXN5XVg143c04boQmKCBaILmELLWSaP8KouBbDtsyiFutMq8MGhrMb1Yhxniuz9I2pceSpmjRgAiuB2QmwEn2A8EasD1laiv6Blol0U1QRbUkq8zoOTc8t95r4VZ9fRQFnNGF3WFy2Jbj/E8j4SdQStJ7955SBzVbXSWBt5+fIF5+f3iXGg71uquiD6HLA8IQi7bxg6ivQ5alMzjFtKW6Fx7Ha3FEXD+nrNrFlgLESliGFEY0WE2DvQmsdPHtI6hR/3OqCEOA0Tc3C8I2KiIfh/9nqaEfjflFL/RCn1q+l3Dw4C4TPgQfr5CfDhwWM/Sr+7cyilflUp9Y+VUv94fXtzB4dVVRW7rpXvux1PnjxJvTUp0XIzfLvdYrXCDSPrm1sWRyvQmiGB4POE12rD2fEJbpQdfLPZTGm51qIklClmzjnW2430bqInJIWj3MsxxrBerwUOsduIqEg1S6X9HmD8+PXH3O529GMEZ3FOaJLOe9p24I033uR4fsR8VnF6MqeuNPdOTzg9PmK326B95MmDhyi3n/7NZjOyIPN8LuiB1WrBYjGbtCiHYZjUnrquI+Pdrq6uEid+nLQmh3FLUSiKQlHVYty1WKwYXU8g0I8j4+jI3tHL5SqJEJeTStCQhmXZ4ygPIjbr3cSg8Qf0vZwFThlZAk3rYm9pnG/gnJEAe6hLlNI6+gAhCf6GKHCmNFQhuRHKzWsYBkfQmrKSXmbu7R1OTsWOVzLrw6wjZ7R52JT7ZDm7zdjHZlZz2NvLQ5RDJhjcVfTJ/Gf0DwKu82Anb0aHKkMg0+/ROwGRH0yqp7I9Rno3EtDEdF0PB1M+xolAcEgM0fZTCulmn+3mfuLhYOowCOVpeG4T5P8vmqHpHA68hGLcUzWNMdNaiDFS2Bo3RkYv8C1jFcvjpVgT+yjDm7jvKefXjcpMSvU/EMTS7w77sfn3h73OP+r4rJnmz8UYP1ZK3Qf+d6XUtz51MlH9MOhQeczfBv42wBe+9CciBNCGwlg22w31rOHm6prNds39+/eJ0WOxuPRBlGXJzu1QyIVeLo/Y9oNI8iM2FqujJSF4hnZHmSa+Dx89Yb3bYo1Bx31fw2jLMIp462yxYD6XjDUMI6dHpwzOM58tuL654vjkCB86nr54zqNHT4Qu6cMEuTHG8K/+67/E3/3v/wcuri+5f3zG9lqshpvFjJPVEaVVrBYNoxuwhYEAFxcXcoOMPU4XdK2UZYuViEiEUW6cZ8+eY7VANEbXyoLVMgUex1HK6FIWe13XnJ+fs1wuaXc9ysqiF4tewWhWVYUbFZtdR1OvefLm63SD56huaHt5zaqpCB76BF53YaCaNQxDR9SWSKTtR7T21PWMoSin6aeAli0xKNpdP90YeegTCBRGSvKgZRghDoUBpSH4yDh2VFW4E0gz86OqKgxSMex2O6qmFszt0GON9ER9DOAjRVkREyA922jkHmk2vpvWqA+YosSlHqfWkjUekhOGrqeeaeqinEpq5feT+sNgCOwHLgpU6i+qNGyaQNwpsMc4m0pVF/0UTJVSE1V0moJHYbaJQEgOepIRGqMn8Y8JvTAMwr5SKvVNJaPPPW0fPVrv6aBuTOLJwRCVnLNN7zmfe4yyiWUVK6UUjx49mtZaNiKUa56DbyAG6U+G4HBBQYzoZDWtkuKU63tsUbDeyno11mBMwm1q8D4xl6KsKZsQCJkR9OleZv6eN+hPf05/2PGZwmuM8eP0/QXwd4A/CTxXSj1Ki+4RkB3IPgZeP3j4a+l3f+CRhSvyrpYb0rvdjtdff/2ghyFvfjabiWpRVWGMiAH03V6B2xhzxwLVWsvLly9ZLpdsu1YWHjpZm8r/z7JfecfM6uuHk7rMh23KirETz2UZBlVYqycNx/v3zpnPl3zl619h23dc3lwRvGdoOypdoHDM6oKrq5doFH07cHMjFg67dsPt7S0vL1/w6vqKfnC0bUsInu1uw8effDRl4MPQTa+fBS5Wy2OWy+V0LpdXr3jx4gUXFxesNze02x19K77xwyB9rN22ZUhsq77v+a3f/B2+863v8d57HwjGVGu221am1+xpduMoPdQ8qJDdWpbU6uhomkwGJdlmztSsLdHJBXP0e5Wbwwwg2+e6UcQ4CmNxw95JNAePQ8GRnFULyHrf8zoEZYNkpHlirRNmUGuBE/kYJhWctObvZJDZPCwfi8Vi6sMdTuCnabbda1Dmc/ExTL3NKXuMsiaDl6B8qMB1mG3HtEHnxxZFQd/3U693gpqxx70CmKJicIGARuya7eRhZLRw7q0paRN6RJg6e0+g/Nqwt/HIVUseEAosa49aEGyzT+s3JISAn5AMh9c2w5KywM44DsQoj80ZrPTQaxHpEHG+NIXPmXryZdd71thhP/hOzDl4bz9MlgmfIWgqpeZKqWX+GfhF4LeBvwf8SvqzXwH+bvr57wH/lpLjTwM3f1g/Mx/WWpQxuOC5vr7ie7/3u9y/d49216GTio5BrF/X2xajC9pdz2bbszo6wxR2KjdckCFC27ZUVUFVNbz2+pvcrG+xZYFNviX5xgAIMVt6ahn2oNm0O+rFEZ64l9BCDMI++ehpUiWq6Ha3qBiJCbTdbQeOV2f8/C/8Wb7+Yz9KHz0ffPIxm27k9nZDcJGj1WoqYzabW7p+x7Nnz5jPlrz+1pvU84qbzQ2bdkfwmsLOeHD/MW++8Tbn5+ccHx9zfHxM0zQcrU5YzldYW9L3fVKUcfTjkEo7h0qahhPveT7n9PQ4sTtgHHvWmyuePvuI58+ecXt7TVMWtNstTz96yrwWOlr2KTJFOQ1Idm1P14/4INPVkOiqObiYFCDyBnQ4XT707N4vfvk8UFGsDhKuT+AsIu5xKKF3CP0Reb1Miws4PwrfOso4ZspUEwTKxyDsFq0Eu2mE3jcNmSZpMocxikPpNa0lyB1Ok2Ff7k2wImUkSJqDLDbuA0sOHvkrb/wZvpNbTIelcPZPD85PkKGyLCmq/eaVe685M50sQNL10iBOBkp6+i46mqaRsl+raViXA2IIgW4cpi9PnPQcYjjwWU+BSCdarZxbjXcx+ZDrCcyvsFgrTC2PZMguaGxqEzRNg6bAUqIR2ufV5cXUPnBjkOCpS6IqhMn1qfLcGOnfJvW7u0f6vVH/bMvzB8DfSRfaAv9NjPF/VUr9I+C/U0r9O8D3gb+c/v5/RuBG30UgR3/1j36JxKgZOypbcHV9KSrl3kMqVcqyJDogKmlo+8jV1Q33Hz5CGUvXt+ikLqONTE7nizmbzS23V7fSh5vVECEEj1EabYy88uhpmoqrqyuOFiuM0kQ0hQWUpm7Eca/btagY+Oj5U9566wus210yLRuT/FgytAdUUFy8vOIX/8Jf4kd//Mf5P//B3+db734X1z1hnhb24DwrG+mHlpOzEz786BkvLy8oygccna5YrI7YbUe+9bvv8eDxAx4+fkCMkZvbC0pb4ZzoicrN53HIIhqGEVXulbmbpjooQYST/+rVK+pZVggvZPK63tD3W6raMvRbvvV7v8vrr7/OyckJu92O+fEC0o0UY0xOhB5r/BSIt9utqOrMS+oDRk6elJZlNQWVcXSTyo1WGq00Kka8YoKvHGZ1OdDm/nKeoGqtMbYQp9CUgQ1DPwHIiZ7CJHkxJdhP7wcEKJ8zsmwvIdPY/LwqZ89RCwzIagwCtJZhjriIEvePkWDqxCIjhCkI5/fghmR4FgNlEuDlINsRLr142y+Pj5LM2pBcQDUx7uFFGd9piyxIkgOWThniXot0sVhMEnMxRohgjWFIQs3ei7ByztQ5qLLc4CbG3Hy+nPyuMka173upLFT25kn4UyPB/Nmzp5yfn8lrRE3fjRSlGA+SAu7gksBLauXEIIpNFhFq2Y2Cm10dLZJGq8j+RYWYA4aIdwFj9bQ2rJUKJQd92G9Y+fhhJufwGYJmjPFd4Md+n99fAv/y7/P7CPy7P9RZAF4Bo+fV1TXLZomdz8UGXSmUh350zOoG13dYLVqEj157IjuzG0XGv6qkfEIRkpH8xcsr3v7im7RtL4CIGKkKafYPnfj/qMLiXeD46GTCnvnop0XgnUBUqlrjnKYfA633nJ4dcXVxyWyxTE3ojFFTDEPLojlGhYKT1T1ee/sRH3zwAd/96ClXux2Lpubx/TNevnjF0WrJ5cU18+WC0QfcqCmrhrLWDO6GXt9weWVYHZ2gjfQMr19dUpdpwOSkNKvqGcaO2Ki4WV/x9JPnbLdbjlcrFquVOHLWIpwxm9WUVqNDxEToxp6Io55VeGcobMXp6YrlqsKYyPHxMS9fveT03gluDMQITony+Bgcs6qi6yQQ1c08DSOyB4tgMIOLbNots6omoNnsdiyXR+LWqAxDkAU/9D2NKkUwI+nyxDikICo3R04MYhJ5CUTQMIz9lKEZoxi7EVVaoeAlqM3Qd8QIzbwkWIHOZNiiCupg+OPRPsmiOS8uivD/tvdmMZYl6X3fL5az3Htzr6ys6urqZXqG5GhGFMWZoSWaAi3IsGERhuAHPVCwYUGQYcD2gwU/GCQECPCj/SDZBgzLO/xgy7LkRQIBQZYp+kGGQZmSSHGdmaa7p/eqrqrc7nbOicUPX0SckzU9nC6A3ZkDZACJunkzK2+ccyK++Jb/9/9fAcUrBUGokFBI/jAqqHRFTIWq6EPxpH0MDK7H2Dbp+ogB9dEnzsuICnK/dALF57yi0ZJrVEZh0EQn6YVFu2C7WbG7u8AnsprcBglMPMVUNCEIBV8c8KkirpSi1iImSPCELqTOpI4QPLYyJXRWYWRkyi2fdtYQeycts0YTUFhjCX6AqDjcv4MfAlGJtG7TNAQ8KlZgnOThM6FLjGR56UgiMFZQm0Y8bGMY4opKV1hl6buNqNXGFm0avHcJRZI7l+SZlZZRh9iIEEoh7kXM5s0h7Ej5oszpmE9LAbZK7s73Xck59v2Gxd4+y6VUunUlecmcn6xszfn5JQ8ePGC12qCVhF0uDiXhP5/PhQg2jNosueIsGtOi6Ghtqpaamrd/901ef+OLEDXd4PBIP69OzDwgebvHTx7xoz/6o3znO99B6cDufMGP/IEv88G7H/Hxkyd8HIUZZ7265NWXH4AeePb0jPv377O/uMBspNo4a2b8xNe/wVv/3zt8/OQDjo/v4sOWg8Nd3nrrLfrOo5K4WDg7TbRaO+zOZ3wUByojcJ7NdkXE44eO3gWOjo5o53ssl0s+/vgZ600iE/ap9W64pG1neH+HnZ0dNhsRnBu6HqVH8mLnRBdertsUrsSqmej8oATSoTTzxQzvBuqsbGg0PnkC1loiSf0wPRNtRB0SKIbSB4dJ3lvBdaYQN7N+RwK1qbHKgrVS/AmA9+gqgcgT5KffdqVQAqoYuJCqu2oS1mutGdxQPsPoSoyKtWy268KJkNvypEIssLq8UXMlWyrxHueEUi57bkYLiuPx48ccHR2NnTyJ9CTbeK2M3IvKoIN0TOV+67FFsipFlxgl5ztrKjwC2+mHgTp5Y+KZj22jITjBs8aYMLAa5wYMIo6WUyPCDyAFLJU8YchAfMVytUKryGq1ZLG7kwo4UsERfbDMYiT/b3AOq8G5KGvWB6rKCpY3SMRUtbOkuDDQd1v8VjGbzRHOiVFhM6boIqT1UQwl6fALI9b3044b0UYZY8R1PdskzwnQbftkVJa0Vc12tRypxnygXezQbXva+YxNt6Vum2IwcxFkf190yDOwuu8ltDTVyDXYd74A2zP3YNvOCQEGaTJOBQDHk49P+cLrP4RWNU0zY+gD7Ww+IWqVsVxvuHPnLuenp9w5PKC2moO9+/zYH/oGP/XP/XFmi5b1ZsO333qbs/Wab7/zDueXa4JSPHr0mN/55rcxpiFGw2bV4x188Uuvs9yc8/HTJ1hb8+z0Am2kvVCl6ugwCP2YJMx3+NrXvsHXv/51mnnD/v4ufb+lbVtOTk5YLBZ8+OgjHn38GLTilddf4969ezx8+ICTkxO+/OUv86Uf/hInx3dp2oqLyzNUlPZSlGi3W6tLK6tsKCkQtK0wTY3a5Llve45KFeu+7zk4Oky9/SMUprKSuogTkHoIAVuNPJfZE8xGOuem1aRbx6bqsUsa7KXoouUwqqoKU1k0V7uLsgJiIRFOeeoCaYlSlFIT5EV5P/ed+zDxRFWZc4HW5LVS6NBGyM+0oPLqq6+WPHBuafWDK3lMSbmk3K1zKGMLEYcyurRCShVd/n6WIcmGoq7rIhcT0vMquWFGarqcBni+uJahbtPQV554KsCg2dmdM99ZALBY7NANoxdcNfUVTxgkn22Mwdjx/uUoI8Oe8pe1ltnuHk27S1QjRWPWx0KPBCf52vK1T/fsixjNG+Fpxhj55m//Dj/xja/z7OxUiAeU4ezZKXv7uyzPL4jRM5/P+eDRY155+Kp4k23Fcr1MHuOATw89k/TePTmm7zvQspmqpiYvsJzTUUqVnFHeuM4Jm3PebMSBACksjYAnRl0MbdaBySGRtTVHR0dsLi/wg0uiYPsMEVonC3LwPX4IDK6iqWrOL5acn5/zysMHvPr66zz++AknJyecXwgIf/NUaO++8967dJttErwfqOsm5dDkkPBemMubeoZWNYtFw8mJtHe2s4Xkk7oOH+HevbtSPV+vuVxtGLxnVjU8eHDC/v4hVTJas6bFmGwUG/zQp7xyIn12il6BNprtthPvLYHmIUF6slpnonerTV0Ifgt20I+wm6zTkxd7zsnmsDAveKWUeDjpaz6fTwxT+n2tcT4UhUxbWSJD4lcVIxmDhI2DG9DZQKc2P6XBD+MGCz55oMETUmUXKHIX2fvKc1Uqda1oLUZaC95U4sfMIDRWeSVEhf2dXTxCYBwGR9RgK7m2vOZEkEzo53KVOx9g2uSDa/Rus5SEC4Gck/Ap36nU2JKZUwa551yrXOgZWzZhbOdURli4lFLSYTe48uzy8zq8cyetoVokgo1Ja7W+0uVV2ZrlZgPeMZs3GOPT+sh7L2LtKGExDB5T7aCoCC6OBjPPU1/tPZ++nhrOTztuhNHcbtb8wa98lYvlZaHfOjs/Z393r0ijzmYLLlZrXnv9Cyl/mMhtqwYVhJC273vatuX999/ni298iafPntA2M6rUVeJ9JyHmMFDZHM4LgYKPkh+THuuYMGUKCAQfOD095fjOEaKY6FmvelHyQyqgsujkYZ3cv8cH773LYtaijJymRjes+571esndk0Oc77m4uGC1XOK6nrC3g4+Ky3XP//UP/h9efvllPj69YNhuQL1G07aoSmGait9681sMfc/B/hFVLRrhBwcH6GiIMfD+++8za88Kwe/e4QGbbstHHwk/aVSaWVQ8OxONlYODA3b0jNlskaBTM+qmoa5bZs2MGMXQ7+8fiAeRNkHV1EW0KiQDs1lvMEaz2N0rzzcLgBlj0NZgtDB0h5hb7sZe4ymGTilpvPNeOAWm+Mzsdfo4QkuMEeq9bugTwF06UzxSwSfEJGI2pO6pFK6lVIBzAlIfiRxU8YTz3LKHYqxOWMVKcmUo+s22ANKfp6UrVf58XSETTmRDM3rPzjlqY+k2W6hkvdVVxXboRU3UGLzNZL2WmBRGrRGMoh8ctrSs6pJGMUm6d+g2qAnVXUTSJCqGwpRvrZVuoUjKI/v0+5T+9BBCadn23mOihMNajwcJWg4ApaKw7udClc36W4FN12OURevcqaMk4rAChQoh0rQVCiVdcfMaHyIuEb0cHRxxuVbEqMncC9P7Pi385Oc3hRJe6Q76FONGGM3iKaqAVoq+G9jd3U1gc8FlfvzslJcevAza0KcQXBbHyHE4m804Ozvj5ZdfLpjKbttjoqeqLTV16V7xxrNaLrlz5x5dt6GqBQ4i1ffM8CKL4+NnT9hZ7Ca4ieRNd+czOjckwayWrtuUh/X06VMePnzI448+ZDZr8EFhK83+fAfv7/Dm/j7z+Zz5vOWXfvEfoIlcLEWIbL3dUJma/jvvSgLcey4vN2x7x/GDQ7RVLLeXaK9Yby6xrubk7jEffvghX3j1NQ4P91itLllu1pw+PqVpZqz7nvl8zsOXX2EIXirnswV3j1+W/FBVcTjboa5bqspQ1xWbToTEalszDHJAZOKKZibGMjjPbL5D1w1UjeSAh23Per3Chcgs0ZZJR/LIyh9VZH2+Yn7nAJKiZK5iZ6SESqiJmHZlphCrq6ts4Tk1knGK1QSwDuCCl4KiNqVIAaN0Q1YLiFEO3ZxTrZQBpcZ2STOGeVVVSfHKigqpqSwoxWw2K/PKv+u9T6Qxco3EqwQiTVMXDzujHYzWEAMaeO+DD3j11VcZtsLiVFeim+5LHrCi38izEr0gX2j8qmosIpWKOFnyeDQg+UAYUlFoxC2KsZweZiEkNrAo/08lb16KfmoSDgtJsSQPFETJda5WK9pZjU9417quRYZFqZLbFKZ4g1GKYZDioneiZllwuQgBSd1YfvPXf52XXvuDKd97lfptulae93ynGM7fd3D7Zz0igJae8itkDCGzwNTMdxZEAtv1iiq1fpnKjtyORqFClv4VCI1WYkiNFrIG5xzBO3bmC9bLDYd3jtn2G1wYiN4ldUCf+rZTwanbMvShaMnooPC9Z5vAt0IWEmjrGToJZmki5xcitHZxscQN0PUi5qaV5Ws/8eO8/sNf5cf+yE/x4MF9dvZG4bFhGGjbOZerJZuuZzM4Pnj2jGfLS87OV1xerHnlwSsYo3B+i9GK1WrFF774BhebFeerNft3Tji6cwdtFevtJavlOZfLC1yU63r48usYU9HO99k7uMvu0bGIVM0bdCN42cpYXKqMdl1P2y4krRA8td0lhNHIKRUhSpeR1iI9vNhpC9ejqSqUnmrPGDq3wWrJFWsiOlWkrdGEfosKHhU8rdXCtoTDWAQlDxTwez+UHJ9WhhAhIgxVKC8dKiD5OSVkvqaypeUyKtBGYSvDzv6OMBuFiYFPeb+pp2JL+KfBIBtVKwYCxlbEIDnJqOSa+6ETVEe86iVDOgwUgsP0ARUDLkrbp2ksrlvi+q3Mw0iBqGkrjFFj+6MVZi7JzdeE4LB27D7KBtMYhY4waxc0lcH1vRiA5GVrTNEPij5p67iYuhOi3HsP3jnBJBf+yjGPSxR4liOmhoaQPFPpid/dW5R7qaIwRKlQpXQY6KixVvZ371wiUlYJuaCxtagu+D5Sqwqja+4/eFXuRyWFvTg5mOTyrrZ7TvPNIrUB8dM7mjfD08wnsk3dJQBucIQIdS3dPPdfvo/QxNVFGjYEISbO2LP33nmfV159VaqtwZQww2j5eVVV9N0WrQJHRwdsk5RvJtpV3qOA9fqS+byFIO2Y9+7dAwKuH1JrnU1gZ5Oqq4G+37JcCn/kYjZjSMDyjCncXezgw8DOfAerX+WNL9zh3Q+/wxs/LBycb775LaL3rNdrumGdjFVHXUtOdbvtefc7K6rKMFvMaZpdtJVWtqZpefTRY+6eHLO8XJXupgcvvYbWmmenTxl66fZp6gVK1+zOW/b39yWEqTTNXDRybGVotEVr8ZyUUSyXl+wd7IGR6u1ydSaHUuIptdYy+MySX0nuzYq2DAjXpUnhZNu2rLcbDg4O5JkYWzwMlGboHZVJujwhMoRIbQ19vxV4D7rAUGCsiGoUfnCJJNgDCcysDAEvGFB7uHx+AAAgAElEQVQz8ndmzxYmvc9IfvO7cl0x6+XIIbHuhLvVM+b1BCMZE+v+qNVulJYDQAFBmPBzYabkfKPgUlXiAVXB4/xAHAJ7u/vJ8MXCGbrdCjlF9pYqbYqCZAGua12KRCNUKxTrkD3baepAil5T6yFMTEpZ0KJUGbUYN4GaefREt0hn4g6lUD4Q8eBjkdglMdDnws/QjWmbLJ0REcNZsKSTKr2qLNF76qphYEiVcMVsvssQdKnwKzXOIxtOGCOKqWcZY3jumr//uBFGU+AoY46h66Rn2Jqa5eWKk5OT1F429tzmAkxdWTbrDe+88w4/9mM/LlrL0UsYmdoLl0spFnXbjqZtePut7/DgwQOhY4sR7wUorACLYm8vi6ttOD4+oes65vOWTddh64rHjz/mzt27RARG4v3AetXx4MFDYCRlcK4XiY7URkbUKFXRNjP6riM6zz/7Uz+NMYYvf+UP8O1vfov5vOWdd99mc3lB3zkiHmsNGIfWYiAGt6GqDF0XRTqjFmmQi+WKbdezv3/A08ePCgv7yd2XMHXFzu4+oNlZ7AkZcBjQylInj2Tbb5nND+g76XRSVnF5eYmtK/FmBhC+WD3pupDWNZUPnyAb1LlQOmAyFZq872jrJnXjUEKuEDw+5c0iEP1AXbfJi5G+ZaWjQNOilhrKpAIqxTDJcRlFEkJLzPJKcr1Zn0dCbjGeVW3xgxOGID0y0RdvKFfA4/izdi7dUc65IqWilWF1uWR/dw/nB2Gi7wd8dKjocINA2UwltGtPnpwKBaLrx1SCcwQfqWorhUJEJbSua9ZBmPTlkKoYfDb+EtbGmA1yoKpM6f7JXq2QkVhi0u358MMPuXfv3hXkg9aiHpmLUjkVkTug8j1xMUAM0gQQRiq4bMS998QwEpXkcNh76TgK0bFcLlnMZmy2K7QJhCHIQRkjMeRqvMxFTQo7bgjUTYXyA95H/ODRBkIYn9cn9fxP55IN6YtCjfK4EUZzyv85dL2czkS22469vT2B1TDCDJqmSYltMSKz2YyvfvWrrDZrCB6lKQ8yw1By9bXvBh68/BLODTDk/tModP1GRJlMupnPnj3j/v2HLBazCZRBc//+fQYvHJFdvwVEt/3i4gyQAlXT1NR1mzgd5wWist30HJ8csLw84/j4GBeEImv/8Jhv/MShwKq0IfQrwZdqCL7n7OyMYfDlQbt+IMZAoMJUYnT2D+4wuGecnp3xxg99iXfffZft0NPqmtZKnivzY853ZqzXa2btIi2mXH2XdlKPtJK6EDk6usPQu9TuOFYdra3pvWNnNheWc2NxTghDhJFCnqnWwiKU6dCMUvgg2D6jNd5JesUUwHos3liMEbwnxAHvRXAMleE+FCB7htPs7OwQvECfeu9SLU/A8CrTsEWpfttKmJCUGTc9QO9SpV4JeHw0CmO7ZPbQyvWFyN7eHj44rM3a4qmSG3TR9/Heo4LicG+/QLJGNEBiUh96MkGvtfXYapnm0XUd2mZEQ4/SEW2g1hIaB+eorWXTdcWrG0NU8TBzlJEhemORauTQnI7p9eYheFQxmrWpr+SHzcTIBkadoL5P800A/BhjighrVAjUxuCGLJPsU7EolpRdXdd4J3tPK4OJBh/Nlf3+SYYxvz+tnP9gG03GJO2UwkqhU8tbDi98ORWzlK9W8OTjpxwdHZcQgTiyS6/X60TOKp7pMAzUTZXwhRrvJLSzdYXWDjeI93J2dsbDh6+W01qMmaaazcSbQeaxmO/w5Mkz2sNFeVDtfE7Xb1HDKA/gvJzks8WC7bAhAs1sn8P5PDENLchwqLrdxbuldAvt77NJ6YInTx9T2YbKKE5Pn9J3HShTUht1O+P+g5fTvYt85as/mhZki1bCXakx2Lpib28HY2qhtevWtO0MtACUrdXFy9jbswmlUKOTHGvGUXpiCsMH+n7LbrOPqoT0Fh3IGjs555zvxZMnH7N3fOeKR3MlKa8NTSPXtVqumc1btBV529oqIZ1AEDs5tM5ep8B7HC7KMw2J5cf1XSFo9l5ynZGMzeTKHIoR0xTt8+zFGTvq6gAFxxl9RE/SBUpNKrdBiRR63qBKWOB1EnCTIdhC5xy+72kXbcItBj56/ITj46Oy0Y0WSYiIpH+ePvqIg6PDlOIIpRI/TTPUdZ3o9hTr7ZajoyO893Rdx5B73AlopXHeUdsqeZ1i+IPzKJ28uBBxCUupzdg3nrt4qqqS0DwlC1VIFX8v68WHgbZtefThR+zti8SJD4GqyDML45HWQo83uH5iFMVBkBhH44LCeYf3SKcfOWJVxDjS/02RCVNQfv7Zi4wbZTSdcyUvdXFxwf7BYbrIRKeVRJryhQO88847vPLwVWTlSx4sBiGyzSQGPgZsXbFcrzg6OJR8UfR4DzolmJUSjwMfsNbQtnOGwaP1WBQwVcXgBRKhFFSV9H/fvXuPy8tzZrOGy+MT/ty/9q9c3428YWN5fFK6Z3KY1ycJY6MN4K6c+MUbSwda9iKFnsynavWonzNCd8awOkN5QjLCfSLtmBro4EfDlz93+roYTz96lc9j/aZzAAQp0Xfoqi7pAzHKsl7yHGFkL5f8rPB+RkbmH1lzGtSU0zP30sdpcMbdu3fFoEzmMs2nC6Yzk3fEgkvOn2WLoR/xr6ICMAWWqxH/GMEG5LrSHLRShe0ohABm/JlS0j5a9m7KLbdtS1PP6Ie1yP1OeFmzZyzIgogx6RnF8T663uODEDRLHnN85lPPM1/D9Pnle5Sf4Q8c5AhIFVBH0xiG7YbjwzuFSEBrwfpZa1mtl8zmC4zSdJue117/YloAfQkPbGWorMVYXdosN5s1R4cHuMGlhLXwlTklsgWmMkSvaOvI6ekpi8VuWeh5YzrnaEgSr0T63tG7gf26YrErrYZ/46/8V6gQJf+WTkxIoflW9MmNrTFWcqEuxESiO7BZb0uOaTvAzqLh/PRZQgjEEkYK9Emq/HaiyW2qmuAGgnfCqlMZQuiJUYoF3vWsN51onBc5B1tgVIJZBY/ASjI6AHTi71T4mDR+dCLAsBEbR2Ye9Ajohtz6GCHJilTW0MxnGAUoYTdH6jECGkdC5xgFVG6S16t8TaUdRJHpteoqptNay+B6ggopM6AwUQpG2mg8Ai9SCKONEygDIfW95+esktdpjJE+dE2hUAOwSrpulPd0rqNpZqXo490guU8fCIltXe6BJoakQKmyfk/KNQ5dIl5WBJ+Mf5U7W6SKvWgsBIetpJmidx1NlaIkbXEIRAegcx3WCBPUXHthojcVOsHnnBMvO4RQZEpyUSh7nM4h4HcnFXeVCuj5mXoE7B59IFrZRxZF0EKC4yLYBNpHj5XrqBTKxFTDEJkbCNggBUePp51VEKXbTAx+T9NIesxkoFEIVKamnRncypW8LonNKBfipgdxxtzGOOUNkIU3PXg/zbgRRjP35M6aOefnpxzsHuCeA57K4hwEzB4hIl0Ml6uL5G4biL6cnn3XY4JsuGk+U06xBFGJYJInE4KQDTx9esrh4WHyNrwkm/1Q2gNz8t3ahmHYsLd7QAZ/5/zTrE0dRkYorpxz9J1jZ2+/nHTeu+IBhBhRWPaSZx1CYKepiV7+j9J1KrDISbnZbNjdadPfSYQLOhKxWK3oO+EghIAP29K9U2nF3fvz4ql77/ExUs/mGF0nz1pTW5IAmcVa2G43dEMvcBQzso6LmJY8v6pKxQQ0gSD5N+cLHlAnIouL1ZKDgwN8iBgiyo7dQASPqQ3eB7ynGCOYtr9Ji97z+SjvfdEBlxxqVqZMG8eMeuJTD1EpkYeOUaQzcsqAPG+dWiu1EObmVt8wONQkNyZtjFnozNFWdWJaCkLK3HUoFamqprQeaiC6mHJ3EWWk/Tf6Qe6b90j0L0xLOddaty3n5+epGQGUqiRNoIQ+sakqKhMExJ+RKQlhMgwDTVUXbKtK+eWchuoT3+xYZZcDZLte4pR0SlVa0A3ybCUM9zEW8uQQAjql2VBXPXVIXnaUfvbTs6ccHByUfSufKYUda+vyfCVikHsmOdjI+eUao1s5+PTIyZqf7/OQo5yTzmG7zCe+sKd5Q3CaqdXJeZpZK5T2w1DIM2KMid5f2N37vufx48dsum3JZUnbVygyDBlGlJPPQhR8FfgctSr9uUpLvkpu9pgI11r6q5WxifpNuADdINXDaW4k07C54IWf0PUJz5g4BHUFUQsjSwqPVJT2vqadgzKEqDi/WGIq6YioqxZ05gC1xKho5wuadkbTzqialvl8joqaKsmYVlVDU89oWzGG2tQ07YzVpme12Ur/t5buHFs3KG3wQQ4QkyQrArJwRYLACt7VKtqmwvthUlEdCyMCwRKZ1WlSfppDWq8Fyyla90PxCFwnuNdpq940vHJuIFMF5oqzyhIXyYgWYuGU51T6atidpTRyrzlQQsDnCwS5eCWf7crfCEGKTHVlsNUYsot3KjnfDCqX1xXD0BXSkRDAR+mqyoWZUnGOEW3HzqPoxQOczWYEJ6mizOd5eHinGMLsKSkMddUiTHO67I2MSMn5RpUo3nZ2dopH6/2QYF1jbjkE4T7NRDhVNbYuTlMb+SCKjFFZ/jvTcF/233gIWmtZLEbc5rTAZm0t7FFp5EgvP89hEAmW0YSNrbR5/ldszOT751+/aEHoRhhNgLaZ8ezsPG10Aa7nlrScJ8lFos1qzb179xKnnlzCVFMmkzYMw1DgRjGMi19CUVtyRHkhnJ6eJiZuXTaTtVYYXCZebzboe3vSKqgQ/ea6roUSy9ok2VCXE28x3y0bKWu0W1uj0vVt+4HMZn58fAIqJuIRXULn3PXU1G3Jc8n1a+qqTcZADEXVNMIJWs9p6hnGVNi6oW3maGUxuqKqmoRjbUoFFiULc7vthePRaEzWO68afAgs5nNMLRtIGOD70YvQY7gMY4Elb7SswwRgkqFVAazVAiuKogjn+w4d5d8w9GQCYIzGqLypvXiJhLIWMgzqEzdNYgnyLpR0Q4xCwGG1KT3hAm+MqRghFepMi5YNrhQumkRJpxIRiFDv5WvOxiST8Oa8ueQWjRA6F6wkZBRqvn8ZF6q1xajIanlZ1lA2gpmpPa/LjF2e5vJGkLt8hnRPieZW32/LNee8b0YSaC0pnvVmhdDjDXSbTTFKxhis0pP/M3Kd5oNAKuwxKRRsS+eWYpRjkRZnX+5ZJuaRVNWoD19VjRCVxyAHf9SJuzPnoPWV656O6ftKCacuuRD4Cb//e40bYzQfPXrE4Z0jUDopCFblwRljCi9hv91wdHTEepnlKEREyySGb6m2+0LAkanmYoxF/yWHwNkoi/yAZWexm34nyzqIV0XUCYwscqTGKPaPBKze9ZviJXgXCYPk44QpKRQPM0SXSFeFz1M6LzR12yaWHzmNM7zEKs3QbQVeEhwpZSV/U4HRCq0o3KC2llDZWql+e9+PC00pnjz+mKMj6VU3VhHiROALynVrrdl0W2az2aT4kGR4q5qgpOe6FEN0oLZGurS0QmnZXH4YCwuySeQe7u8fYk2V9Jk8vu/KZrF6ZItqZzX9sKWqJT/dD0Jdl41xdD55pg5SeDmthsqXl7A1sXM/X2zKYf7U08wIi7yRs6E3VfbOK3yIKFvhJhCb/GwyoP+K8UjyGdo2hMR9ig8JASKM5CIY10vYn1MI1qCMsOo/ffoEfBDD2fXUxoIXHIHYJcH0Rjw+DFxeXrJeS7PFZrMpaz8/88Iq/1xoGkmMUlbA7NkJ2a62nJ4+xVpF5wZc17NZrsr9rqoqAd8DVW0KO3/2KLORnRZk8v+9vLwsOfa8b4PzuKFL/eryu80s8QKgCUGDFszpNKoJYeyXz4dffva/l4GcRiTfb9wYo3l0dCQueTJmJbnuR9EmpSLL5ZJnz55d8WSy6x6j9A/n/3N2dpbyoaKjkz2zvBEEkyje1tnZRQrLZTPm02vEJOaCiWa9XpIxZEWOYPIvUSd+wsByuSwnvUBvGLsdgE3Xy+bRBhUDbd0kgyUbdt7OsEYRw9jxkT2MEFxK2UlxQevMGgQ+5NPaQhQ98+12i1FgtaKpbArTckVUp7BavtWJlstYkTmubE03SFjc9z0+pFxcUg0twzvaCbvRtCJrtC3GJATJe06r0rkIlp/7lEUqb/a+76XtUmsB3Adp7xtzVCPofdrV8/xmnSb+p2HkFCyfmYO01gxOYC4xxsQ0bwoZcTGObgrwFqypUL+lwiNyUFgl0CA/UVP0QWA+qT6Ej5IckIPaJQXV9H/T/xlzdalIlRjLc1V6Pp+XBo/cFDK9D7nCPj08Pwm/WNc1s9lMwPi+L88pBPHwIXVaJm8xpvbKfC/yPslrYjr3GCP7+/tFI8ukYk5khPqV3viJBzr0uX6hr8z/+Wf9/HOfjun+/oH0NLNusxCzithYgV7EgBu2fPDe+xzsCdkFSH4n8wNaa3G+Y+g3gBim4ztCfdb1Q6kCRwKpoYHKzjFGvLB5u0BXJILS8bY4F9BGqphVPad3nqpp6TZ9CmkMSkfWm2XqM96y7dbYegz1ghePxw+OoZMQxXU90Q3YhO3zMRQar6HrCV6MblYMREec34qhZNTZcUEMsQ8DKni826I0VLZJIZ8HHTk6vispCVThXCRaFLJRlfbFA5H0BoWRSKGJOIhSPKtMjbSBu7SQU2UYlSrwgdpqAZBnyJDVGBUYXIKymNEwo8TbHCLCF5k639pmjqkasIbG6HTNFcpYQuzF0zJgtGZzeYHGyYaLMXkYSZM7IN6JEuNEGBi2nRhCH6RtsduicSVvqDVJPmXgcrVG6YDKukQKPGPRMRsR1CRUjANaB7QOJaxXKmIqqeT7GIu3iY4EPF4HoroK1PZDSL3vmbJNM180xODQifuTiaGOymCqqqAIsvT1mFs2BFS5j9lKR8I4f0QvqUpyxtmJEGB58tiMppk3mFoaISRnm4xhIm12wyAifkail4x1zcxiWdKkqoQEOadHMi1gCImcOUa6LiETtEEHyQmLDdBXDgOpYUkjQkwFy3zYy++PHUNKqSKBnO/vpxk3xmiGEAQi4j2X52fUbcVqtSqG84MPPuD1118XTZ7gS5dBPl01RmAI7RzXSdK967rUvz0yyShsCZeGoaPvJTdZaSWtXIMrNzafnN3Q03nJY3Zdl4ozChc8237D0Hsq25REe66OuuBp500CNkseySXOwaiVMIgnL1bAw5F+2LLeXJRFnkeeS24zLGGjjeWEdq4vIRWMXvh7773HcrksC6UssmSArZbul7z58yKaks7m3KpwN4RSXKvrWgpq1hCArtsgzNmjJ5F7rLfbrcBIkv5837krkUQJ5ZD7WbUzskCbMgmWk3CHuQ9bPNGsuT5CskDmGYLIS4CQYtR1TVDiwWmVmKyswdRVkodWZVPngqAWAFPxRqbqlzmkDyHrfI967sKirpKXmXOP4730iDaQqRqaek5W/pzmQ4cIEc3B0V1M3dDMF2y7HqUiH3zwHpmlPHvmGiRPHmMqTI3FovwvwNvvvEUIjq7bsFqtRPwtrY18fSMwXNbrCNxXJW+aMdRaW6pJnlgbUhvxWJDNhbj893M6ZbvtODo+xjnHo0ePUNriEwm4HxxaKYmIlBStun7UqZpGKjLX8fX0mp/3Osv1JcifnRS2vt+4EUZTiR6AnLx9R91UBeSaH8IP/9CP8OjRoytuvk88gs45ttst2+0W37vEytNS17Vs6gJQhn5I2j9AO2t4+vQpzgX6YYtPRiJDlK7kYtI8Dg8PSxUvb9Qc6ucQXjg3x4T+MHTEREgg2igJc0luJ9vS9RusVik3OEof5M04PR19GEDJnDNxSDawUzC4tIU6dnd3i/GbhnPDMAghccpbZrGsTIknRQpfDFu+7zAWuZpmVjZa/ny5H8MEpJ0hIwGVuoimlWxjqkLakD2aGEW+FwR9kDed5BerQsOWQ7j5YpE6xZI0RgJD24S28EFYpvCjxG4+k6Yg5+eB1QbZsBk6xXMVXUn3jEWWaXg/zaEqldSOJj37tsqcnoAW5EPOIedn1TQNurIcn9xlb/+AmLx5tOLk/j1RYU1zL7IYpAPKj/m7/Cymz0OeX1OYwlRiQ5oSeeRcY76urIs+S/A7g6LSkqPOI0SJQETCw7G8uCy55ZwSqKpKagApHTcMA5vNZiTPSWtYIEuefrtGRZHE6d13EwfndT01mtn5yevp+d8p6SPn8P3wXX/ze40bYTRRsnC7fnNlU+eLPj8/5/zygmYmHl7euM45nB8KHEMrw8Vyyd7e3hXv5UofaqriGmOEkOPunbR5Uq4LUlEJttt1SaZrrUU7/PKSrusE1qFsqV7n07epavptlwhvZWE1bX0lP2P1GNIpI9XFodtOQqRUVdYRUfdzxeuL+JKfKteUF4OCqm5SD3juzXeFmCF7ReOiEcORvTejNH7o5XRHFTKGsoBJHq81IvqFeJhTmM4QPL13Eh4mnKCIYbuSVzao8neiVvioGEIqxpCRCxFPKvR4x+ACKozetyoHhRQqZvOGqjJYLbCg4HyicAvs7MyLgSs5YRWkUs8IkZnmQKFAPBlB/pKSmP6dDBlTMRTDFdzYU51HTAJtsphk7rN2cSW0zM+z/J8Y2fZdSS2J92mIaiQsnhpFWacwpkvGaMMYU0ipY4w8fPhw/LmV1lpltPCO5ty8iiW1Ya0lJnym64RSziYClmHonguRFVUlh9xmI3wApXfcVvRuKMXeyjbl8Kyaphzw0xSFcw5b2N0rAlwxelIFlyzW9B5mx8Z8Vwg/5m9DCKje88Hb73wfIzWOG2E0Y4w0sxZVGxHBQlFbqfY9fvyYrO8ip5AuOim1rbCmkvdVRFnF/sEeJGxlMcBp9QfnaCpF9A7vBs7Ozliv1/QpTNfWoq2l26zZrlc0lWV3d5fgPOdPn3H/pROMUczmAgXKFGzbzUo6c9y2hIJdl1T9nAcP201Xui+MMcX77Z2ED0d3Dr8rfBi9XT/Ry3GjLo8VSIZ4d4Jt09pCFLiW1vDuu+8W6YkQQpFbMEoq68ZIKsFWo4aN1lp655US/kmrU/V7oKoEqUBUnJ2dkQtcpYijcn+6TeHUSJPWzFrC0Cc8oBiAXC3NXl42iufnpwyJbTzqSFAaFylQm2yQ8gbPoZiKQRQ2VRSYfbqPtdEJ3C3E1iEEKjNKbeTNJM0C4t0YYxhcx3a9lpBfRSmkWaFdE9q0MfSWCCTJTfi+HL5KmXI45UJjICYPTRMnnwlX2zgFaiVfXdelZxjImN1h8Fecg6GTQ6+2FUpnjXZL121QKrJeL4HMTK/xqVCVYWP5a1rIUWpsCJBrMSWHmq99s11JRBRdqlYr3BCEDUsJaUdUY8NCjs5ijAy9RGlZ06t45lpT1S3rTTfyaCaqufzcptRvU4crzz93P029zPwZAK4fcNuOt7715qe2VzfCaColBLYhRrLIVgiwXq958OCBsMckGBGMbN2EKNAELx7N5eWlhAQqlEWUN1UO7UIQDezT01MOD45SDtIw21kUb2Na7c65u6Hr2W63ZWPkiqBzie4qjAYiRhG5zwtxuVzStnMEP+i5PDsvRmY+n8vf7XpJSmfQeUoNCKGspCTyNRld4XyEmCl2x3Bm2v8bQuDk5KQYzJxvneZ0MqQEH4oXlQ37mNNKvcdxXIz5vpZq+pXQTyU9eAd+xLZOQ1eQjSTYWzMBkI+92ZkKTUWpVqtAmX/OfU49h/y+dBcJ1CSnL7z3kLqZ9CRSeT6MHtETgsTIf0Op0TOfejL5++z1jl1CIpmSr2vqzeaf53u2Xq8J0RGiSwzvY6wrXpL87upSDB5QDqqcJsmGKK+TfGjm5zifz0vKq4TbJX8txDZFBVaPuOSSA5/s1Xyvq6qS8JmRaWqKHxYPcoRe5WvP/3+avum6TiLK8/Mr3nY39CJR0wvSRbh0ryIfnq98T3Oa+fvptUx/TymRIV4ul99ll77XUC9Sav+shlLqEvjmdc/jE8Yx8OS6J/EJ43Zen37cxDnB7bxedHwe83otxnj3+/3Sjeg9B74ZY/zGdU/i+aGU+pXbeX36cRPndRPnBLfzetFxk+Z1I8Lz23E7bsft+EEZt0bzdtyO23E7XmDcFKP5X173BL7HuJ3Xi42bOK+bOCe4ndeLjhszrxtRCLodt+N23I4flHFTPM3bcTtux+34gRjXbjSVUv+SUuqbSqk3lVI/9zl/9n+rlHqslPqNyXtHSqm/p5T6dvr3ML2vlFL/aZrnP1VKfe0zmtMrSqlfUkr9llLqN5VS/+4NmVerlPqHSqlfS/P6D9L7X1BK/XL6/L+ulKrT+036/s3089c/i3mlzzJKqX+ilPqFGzSnt5VSv66U+lWl1K+k9671GabPOlBK/U2l1O8opX5bKfWT1z0vpdSPpPuUvy6UUn/huuf1Pcfzjeyf5xdggN8F3gBq4NeAr3yOn//TwNeA35i89x8BP5de/xzwH6bXPwP8HUABfxT45c9oTi8BX0uvd4FvAV+5AfNSwE56XQG/nD7vfwZ+Nr3/V4F/K73+t4G/ml7/LPDXP8Pn+O8B/yPwC+n7mzCnt4Hj59671meYPuu/B/6N9LoGDm7CvCbzM8BHwGs3aV5X5vh5ftgn3KCfBP7u5PufB37+c57D688ZzW8CL6XXLyEYUoD/Avgzn/R7n/H8/hbwL9ykeQFz4B8DfwQBHNvnnyfwd4GfTK9t+j31GczlIfCLwJ8AfiFtpGudU/r7n2Q0r/UZAvvAW89f83XP67m5/IvA/33T5jX9uu7w/GXg3cn376X3rnPcizF+mF5/BNxLrz/3uabw8ccRr+7a55XC4F8FHgN/D4kSzmKMuQdy+tllXunn58Cdz2Ba/zHw71PYMLhzA+YEwgDzfyil/pFS6t9M7133M/wC8DHw36V0xn+tlFrcgHlNx88Cfy29vknzKuO6jeaNHlGOsWuBFyildoD/BfgLMcaLmzCvGKOPMf5hxLv7Z4Avf95zmA6l1G9M2JkAAAJUSURBVL8MPI4x/qPrnMf3GH8sxvg14E8C/45S6qenP7ymZ2iRdNR/HmP8cWCFhL3XPS8AUu75TwF/4/mfXee8nh/XbTTfB16ZfP8wvXed45FS6iWA9O/j9P7nNlelVIUYzP8hxvi/3pR55RFjPAN+CQl9D5RSuR13+tllXunn+8DT3+ep/BTwp5RSbwP/ExKi/yfXPCcAYozvp38fA/8bcshc9zN8D3gvxvjL6fu/iRjR655XHn8S+Mcxxkfp+5syryvjuo3m/wv8UKp21ohr/reveU5/G/iz6fWfRXKK+f1/PVXu/ihwPgkdft+GUkoB/w3w2zHGv3yD5nVXKXWQXs+QPOtvI8bzT3+PeeX5/mng7ydv4fdtxBh/Psb4MMb4OrJ2/n6M8V+9zjkBKKUWSqnd/BrJ0/0G1/wMY4wfAe8qpX4kvfXPA7913fOajD/DGJrnz78J87o6Pq/k6e+R+P0ZpEL8u8Bf/Jw/+68BHwIDcgr/eSTH9YvAt4H/EzhKv6uA/yzN89eBb3xGc/pjSBjyT4FfTV8/cwPm9YeAf5Lm9RvAX0rvvwH8Q+BNJKxq0vtt+v7N9PM3PuNn+ccZq+fXOqf0+b+Wvn4zr+vrfobps/4w8CvpOf7vwOENmdcC8fr3J+9d+7w+6eu2I+h23I7bcTteYFx3eH47bsftuB0/UOPWaN6O23E7bscLjFujeTtux+24HS8wbo3m7bgdt+N2vMC4NZq343bcjtvxAuPWaN6O23E7bscLjFujeTtux+24HS8wbo3m7bgdt+N2vMD4/wHkkZgre/PzIQAAAABJRU5ErkJggg==\n", 43 | "text/plain": [ 44 | "
" 45 | ] 46 | }, 47 | "metadata": { 48 | "needs_background": "light" 49 | }, 50 | "output_type": "display_data" 51 | } 52 | ], 53 | "source": [ 54 | "fig, ax = plt.subplots(1)\n", 55 | "ax.imshow(image.imread('/Users/daniel/Workspace/darknet/data/dog.jpg'))\n", 56 | "\n", 57 | "colors = ['r', 'b', 'y']\n", 58 | "\n", 59 | "for i, box in enumerate(boxes):\n", 60 | " l = box['left']\n", 61 | " t = box['top']\n", 62 | " b = box['bottom']\n", 63 | " r = box['right']\n", 64 | " c = box['class']\n", 65 | " color = colors[i % len(colors)]\n", 66 | " \n", 67 | " rect = patches.Rectangle(\n", 68 | " (l, t), \n", 69 | " r - l, \n", 70 | " b - t,\n", 71 | " linewidth = 1, \n", 72 | " edgecolor = color, \n", 73 | " facecolor = 'none'\n", 74 | " )\n", 75 | " \n", 76 | " ax.text(l, t, c, fontsize = 12, bbox = {'facecolor': color, 'pad': 2, 'ec': color})\n", 77 | " ax.add_patch(rect)\n", 78 | "\n", 79 | "plt.show()" 80 | ] 81 | } 82 | ], 83 | "metadata": { 84 | "kernelspec": { 85 | "display_name": "Python 3", 86 | "language": "python", 87 | "name": "python3" 88 | }, 89 | "language_info": { 90 | "codemirror_mode": { 91 | "name": "ipython", 92 | "version": 3 93 | }, 94 | "file_extension": ".py", 95 | "mimetype": "text/x-python", 96 | "name": "python", 97 | "nbconvert_exporter": "python", 98 | "pygments_lexer": "ipython3", 99 | "version": "3.7.1" 100 | } 101 | }, 102 | "nbformat": 4, 103 | "nbformat_minor": 2 104 | } 105 | -------------------------------------------------------------------------------- /example/example.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/danielgatis/darknetpy/1485a7279841716f699d88ce1576084faba902d6/example/example.png -------------------------------------------------------------------------------- /pyproject.toml: -------------------------------------------------------------------------------- 1 | [build-system] 2 | requires = ["setuptools", "wheel", "setuptools-rust"] 3 | -------------------------------------------------------------------------------- /requirements-dev.txt: -------------------------------------------------------------------------------- 1 | setuptools 2 | setuptools-rust 3 | wheel 4 | -------------------------------------------------------------------------------- /setup.py: -------------------------------------------------------------------------------- 1 | import sys 2 | import subprocess 3 | import shutil 4 | import re 5 | import tempfile 6 | import os 7 | import zipfile 8 | 9 | from setuptools.command.build_ext import build_ext 10 | 11 | try: 12 | import urllib.request as retriver 13 | except: 14 | import urllib as retriver 15 | 16 | from setuptools import setup 17 | 18 | try: 19 | from setuptools_rust import RustExtension 20 | except ImportError: 21 | errno = subprocess.call([sys.executable, '-m', 'pip', 'install', 'setuptools-rust']) 22 | 23 | if errno: 24 | print('Please install setuptools-rust package') 25 | raise SystemExit(errno) 26 | else: 27 | from setuptools_rust import RustExtension 28 | 29 | 30 | class BuildExtCommand(build_ext): 31 | def finalize_options(self): 32 | build_ext.finalize_options(self) 33 | self._build_darknet() 34 | 35 | def _build_darknet(self): 36 | tempdir = tempfile.gettempdir() 37 | darknet_url = 'https://github.com/pjreddie/darknet/archive/master.zip' 38 | darknet_zip_file = os.path.join(tempdir, 'darknet.zip') 39 | darknet_root = os.path.join(tempdir, 'darknet-master') 40 | makefile = os.path.join(darknet_root, 'Makefile') 41 | 42 | os.environ['DARKNET_ROOT'] = darknet_root 43 | 44 | retriver.urlretrieve(darknet_url, darknet_zip_file) 45 | 46 | with zipfile.ZipFile(darknet_zip_file, 'r') as zip_ref: 47 | zip_ref.extractall(tempdir) 48 | 49 | if (os.environ.get('GPU', None)): 50 | sed('GPU=0', 'GPU=1', makefile, count=1) 51 | 52 | if (os.environ.get('CUDNN', None)): 53 | sed('CUDNN=0', 'CUDNN=1', makefile, count=1) 54 | 55 | if (os.environ.get('OPENCV', None)): 56 | sed('OPENCV=0', 'OPENCV=1', makefile, count=1) 57 | 58 | if (os.environ.get('OPENMP', None)): 59 | sed('OPENMP=0', 'OPENMP=1', makefile, count=1) 60 | 61 | if (os.environ.get('DEBUG', None)): 62 | sed('DEBUG=0', 'DEBUG=1', makefile, count=1) 63 | 64 | process = subprocess.Popen('make', cwd=darknet_root, shell=True) 65 | process.wait() 66 | 67 | self.include_dirs.append(tempdir) 68 | self.include_dirs.append(os.path.join(darknet_root, 'include')) 69 | 70 | self.library_dirs.append(darknet_root) 71 | self.libraries.append('darknet') 72 | 73 | 74 | def readme(): 75 | with open('README.rst') as f: 76 | return f.read() 77 | 78 | 79 | def sed(pattern, replace, source, dest=None, count=0): 80 | fin = open(source, 'r', encoding='latin-1') 81 | num_replaced = count 82 | 83 | if dest: 84 | fout = open(dest, 'w') 85 | else: 86 | fd, name = tempfile.mkstemp() 87 | fout = open(name, 'w') 88 | 89 | for line in fin: 90 | out = re.sub(pattern, replace, line) 91 | fout.write(out) 92 | 93 | if out != line: 94 | num_replaced += 1 95 | if count and num_replaced > count: 96 | break 97 | try: 98 | fout.writelines(fin.readlines()) 99 | except Exception as E: 100 | raise E 101 | 102 | fin.close() 103 | fout.close() 104 | 105 | if not dest: 106 | shutil.move(name, source) 107 | 108 | 109 | setup_requires = ['setuptools-rust', 'wheel'] 110 | install_requires = [] 111 | 112 | 113 | setup( 114 | name='darknetpy', 115 | version='4.2', 116 | long_description=readme(), 117 | author='Daniel Gatis Carrazzoni', 118 | author_email='danielgatis@gmail.com', 119 | url='https://github.com/danielgatis/darknetpy', 120 | license='BSD License', 121 | platforms=['Linux'], 122 | classifiers=[ 123 | 'Intended Audience :: Developers', 124 | 'Programming Language :: Python', 125 | 'Programming Language :: Python :: 3', 126 | 'Operating System :: POSIX :: Linux' 127 | ], 128 | packages=['darknetpy'], 129 | rust_extensions=[RustExtension('darknetpy.darknetpy')], 130 | install_requires=install_requires, 131 | setup_requires=setup_requires, 132 | include_package_data=True, 133 | zip_safe=False, 134 | cmdclass=dict(build_ext=BuildExtCommand), 135 | ) 136 | -------------------------------------------------------------------------------- /src/lib.rs: -------------------------------------------------------------------------------- 1 | #![allow(non_upper_case_globals)] 2 | #![allow(non_camel_case_types)] 3 | #![allow(non_snake_case)] 4 | #![allow(dead_code)] 5 | #![allow(unused_attributes)] 6 | #![allow(unused_must_use)] 7 | #![allow(stable_features)] 8 | 9 | #![feature(specialization)] 10 | #![feature(proc_macro)] 11 | 12 | extern crate pyo3; 13 | 14 | use pyo3::prelude::*; 15 | use pyo3::types::{PyDict, PyList}; 16 | 17 | use std::ffi::{CString, CStr}; 18 | 19 | include!(concat!(env!("OUT_DIR"), "/bindings.rs")); 20 | 21 | #[pyclass] 22 | struct Detector { 23 | network: *mut network, 24 | metadata: metadata, 25 | } 26 | 27 | #[pymethods] 28 | impl Detector { 29 | #[new] 30 | fn __new__(meta: String, config: String, weights: String) -> Self { 31 | let metadata = unsafe { get_metadata(CString::new(meta).expect("invalid meta").into_raw()) }; 32 | let network = unsafe { 33 | load_network( 34 | CString::new(config).expect("invalid config").into_raw(), 35 | CString::new(weights).expect("invalid weights").into_raw(), 36 | 0, 37 | ) 38 | }; 39 | 40 | Detector { network, metadata } 41 | } 42 | 43 | fn detect( 44 | &self, 45 | img_path: String, 46 | thresh: Option, 47 | hier_thresh: Option, 48 | nms: Option, 49 | ) -> PyObject { 50 | let thresh = thresh.unwrap_or(0.50f32); 51 | let hier_thresh = hier_thresh.unwrap_or(0.50f32); 52 | let nms = nms.unwrap_or(0.50f32); 53 | 54 | let gil = Python::acquire_gil(); 55 | let py = gil.python(); 56 | 57 | unsafe { 58 | set_batch_network(self.network, 1); 59 | srand(2222222); 60 | } 61 | 62 | let image = unsafe { load_image_color(CString::new(img_path).expect("invalid img_path").into_raw(), 0, 0) }; 63 | let sized = unsafe { letterbox_image(image, (*self.network).w, (*self.network).h) }; 64 | 65 | unsafe { network_predict(self.network, sized.data) }; 66 | 67 | let num_ptr = &mut 0 as *mut i32; 68 | let boxes = unsafe { 69 | get_network_boxes( 70 | self.network, 71 | image.w, 72 | image.h, 73 | thresh, 74 | hier_thresh, 75 | 0 as *mut i32, 76 | 0, 77 | num_ptr, 78 | ) 79 | }; 80 | 81 | let num = unsafe { *num_ptr }; 82 | 83 | if nms > 0. { 84 | unsafe { do_nms_obj(boxes, num, self.metadata.classes, nms) }; 85 | } 86 | 87 | let list = PyList::empty(py); 88 | 89 | for n in 0..num { 90 | for c in 0..self.metadata.classes { 91 | let nbox = unsafe { *boxes.offset(n as isize) }; 92 | let prob = unsafe { *nbox.prob.offset(c as isize) }; 93 | 94 | if prob > 0. { 95 | let b = nbox.bbox; 96 | let class = unsafe { 97 | CStr::from_ptr(*self.metadata.names.offset(c as isize)).to_string_lossy().into_owned() 98 | }; 99 | 100 | let iw = image.w as f32; 101 | let ih = image.h as f32; 102 | 103 | let mut left = b.x - b.w / 2.; 104 | let mut top = b.y - b.h / 2.; 105 | let mut right = b.x + b.w / 2.; 106 | let mut bottom = b.y + b.h / 2.; 107 | 108 | if left < 0. { 109 | left = 0.; 110 | } 111 | 112 | if top < 0. { 113 | top = 0.; 114 | } 115 | 116 | if right > iw { 117 | right = iw; 118 | } 119 | 120 | if bottom > ih { 121 | bottom = ih; 122 | } 123 | 124 | let item = PyDict::new(py); 125 | 126 | item.set_item("class", class); 127 | item.set_item("prob", prob); 128 | item.set_item("left", left); 129 | item.set_item("top", top); 130 | item.set_item("right", right); 131 | item.set_item("bottom", bottom); 132 | 133 | list.append(item); 134 | } 135 | } 136 | } 137 | 138 | unsafe { free_detections(boxes, num) }; 139 | list.to_object(py) 140 | } 141 | } 142 | 143 | #[pymodule] 144 | fn darknetpy(_py: Python, m: &PyModule) -> PyResult<()> { 145 | m.add_class::()?; 146 | Ok(()) 147 | } 148 | --------------------------------------------------------------------------------