├── .gitignore
├── README.md
├── assets
└── images
│ ├── basemap-quakes.png
│ ├── census-counties-20m.png
│ └── worldwide-m6-quakes-2000-2015-subplots.png
├── bayarea_foo.py
├── bayarea_mapfoo.py
├── data
├── bayarea_zipcodes
│ ├── bayarea_zipcodes.dbf
│ ├── bayarea_zipcodes.prj
│ ├── bayarea_zipcodes.sbn
│ ├── bayarea_zipcodes.sbx
│ ├── bayarea_zipcodes.shp
│ ├── bayarea_zipcodes.shp.xml
│ ├── bayarea_zipcodes.shx
│ ├── bayarea_zipcodes.zip
│ ├── epsg_4326--bayarea_zipcodes.dbf
│ ├── epsg_4326--bayarea_zipcodes.prj
│ ├── epsg_4326--bayarea_zipcodes.shp
│ └── epsg_4326--bayarea_zipcodes.shx
├── cb_2015_06_tract_500k
│ ├── README.md
│ ├── cb_2015_06_tract_500k.cpg
│ ├── cb_2015_06_tract_500k.dbf
│ ├── cb_2015_06_tract_500k.prj
│ ├── cb_2015_06_tract_500k.shp
│ ├── cb_2015_06_tract_500k.shp.ea.iso.xml
│ ├── cb_2015_06_tract_500k.shp.iso.xml
│ ├── cb_2015_06_tract_500k.shp.xml
│ └── cb_2015_06_tract_500k.shx
├── cb_2015_us_county_20m
│ ├── cb_2015_us_county_20m.cpg
│ ├── cb_2015_us_county_20m.dbf
│ ├── cb_2015_us_county_20m.prj
│ ├── cb_2015_us_county_20m.shp
│ ├── cb_2015_us_county_20m.shp.ea.iso.xml
│ ├── cb_2015_us_county_20m.shp.iso.xml
│ ├── cb_2015_us_county_20m.shp.xml
│ └── cb_2015_us_county_20m.shx
├── projections
│ └── epsg_4326.txt
└── usgs
│ └── worldwide-m6-quakes.csv
├── fetchdata.py
├── notebooks
├── Geopandas on OS X and Anaconda + Python 3.5.ipynb
├── assets
│ └── simple-quakes-bay-counties-zips.png
└── notebookdata
│ ├── bayarea_zipcodes.zip
│ ├── cb_2015_us_county_5m.zip
│ └── us_quakes_1990_2015_M4.5.json
├── plot_ca_census.py
├── plot_census_counties.py
├── samples
└── pyproj_blog_itm_wgs-example.py
└── viz_subplotmaps.py
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | env/
12 | build/
13 | develop-eggs/
14 | dist/
15 | downloads/
16 | eggs/
17 | .eggs/
18 | lib/
19 | lib64/
20 | parts/
21 | sdist/
22 | var/
23 | *.egg-info/
24 | .installed.cfg
25 | *.egg
26 |
27 | # PyInstaller
28 | # Usually these files are written by a python script from a template
29 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
30 | *.manifest
31 | *.spec
32 |
33 | # Installer logs
34 | pip-log.txt
35 | pip-delete-this-directory.txt
36 |
37 | # Unit test / coverage reports
38 | htmlcov/
39 | .tox/
40 | .coverage
41 | .coverage.*
42 | .cache
43 | nosetests.xml
44 | coverage.xml
45 | *,cover
46 | .hypothesis/
47 |
48 | # Translations
49 | *.mo
50 | *.pot
51 |
52 | # Django stuff:
53 | *.log
54 | local_settings.py
55 |
56 | # Flask stuff:
57 | instance/
58 | .webassets-cache
59 |
60 | # Scrapy stuff:
61 | .scrapy
62 |
63 | # Sphinx documentation
64 | docs/_build/
65 |
66 | # PyBuilder
67 | target/
68 |
69 | # IPython Notebook
70 | .ipynb_checkpoints
71 |
72 | # pyenv
73 | .python-version
74 |
75 | # celery beat schedule file
76 | celerybeat-schedule
77 |
78 | # dotenv
79 | .env
80 |
81 | # virtualenv
82 | venv/
83 | ENV/
84 |
85 | # Spyder project settings
86 | .spyderproject
87 |
88 | # Rope project settings
89 | .ropeproject
90 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Attempts at Python 3.x + GIS work with pyshp, osgeo, matplotlib.basemap
2 |
3 | Learning about Python and GIS as I go...
4 |
5 | Attempting to do everything in Python 3.x, [as supplied by Anaconda](https://docs.continuum.io/anaconda/pkg-docs).
6 |
7 | # Current status
8 |
9 | ## Libraries I have successfully used
10 |
11 | I've been able to install these libraries and use them on OSX and Python 3.5, via the Anaconda installer:
12 |
13 | - [fiona](https://github.com/Toblerity/Fiona) - friendly API for handling of different shapefile formats.
14 | - [shapely](http://toblerity.org/shapely/manual.html) - geospatial analysis
15 | - [descartes](https://pypi.python.org/pypi/descartes) - converts geometric objects into paths and patches for Matplotlib.
16 | - [geopandas](http://geopandas.org) - wraps up the above libraries with Pandas DataFrames
17 | - [basemap](http://matplotlib.org/basemap/index.html) - Matplotlib's geographic mapping library
18 |
19 |
20 |
21 | ## Plotting data on maps
22 |
23 | Trying to use [matplotlib's basemap](https://github.com/matplotlib/basemap) to do geospatial visualizations.
24 |
25 | - [x] Installed basemap via `conda install basemap`
26 | - [x] Created earthquake scatterplot on Earth map layer: [gist](https://gist.github.com/dannguyen/eb1c4e70565d8cb82d63)
27 |
28 |
29 | - [x] Rendered mapviz as part of matplotlib grids [viz_subplotmaps.py](viz_subplotmaps.py)
30 |
31 |
32 |
33 |
34 | ## Working with shapefiles
35 |
36 | - [x] Use basemap to read shapefile and project
37 | - [x] Successfully plotted Census shapefile that's already in epsg:4326
38 |
39 |
40 | Check it out: [plot_census_counties.py](plot_census_counties.py)
41 |
42 |
43 |
44 | - [x] Plot shapefiles that aren't in lat/lng format by first using [Geopandas to reproject to esri:4326](notebooks/Geopandas%20on%20OS%20X%20and%20Anaconda%20+%20Python 3.5.ipynb)
45 |
46 |
47 |
48 | - [x] Concatenated shapefiles and converted shapefiles into GeoJSON ([blog post on Census population estimates](http://blog.danwin.com/census-places-cartodb-geopandas-mapping/))
49 |
50 |
51 | ### Using pyshp
52 |
53 | Trying to re-project a shapefile in Python using [pyshp](https://pypi.python.org/pypi/pyshp):
54 |
55 | - [x] Installed pyshp `pip install pyshp`
56 | - [x] Attempted to emulate example: [Reproject a Polygon Shapefile using PyShp and PyProj](https://glenbambrick.com/2016/01/24/reproject-shapefile/)
57 |
58 | ### Using pyproj
59 |
60 | Projecting coordinates with [pyproj](https://github.com/jswhit/pyproj)
61 |
62 | - [x] Installed pyproj via `conda install pyproj`
63 | - [x] Successfully projected coordinates
64 | - See use of pyproj to translate X/Y coordinates in NYPD stops-and-frisks data to lng/lat: [dannguyen/python-notebooks-data-wrangling -- wrangling-nypd-frisks.py](https://github.com/dannguyen/python-notebooks-data-wrangling/blob/master/scripts/wrangling-nypd-frisks.py)
65 | - See early attempts at using pyproj (and caveat about its configuration): [Getting inaccurate results converting from New York State projection to NAD83 with Python's pyproj](http://gis.stackexchange.com/questions/181667/getting-inaccurate-results-converting-from-new-york-state-projection-to-nad83-wi)
66 |
67 |
68 |
69 | ### Other tutorials to look at later:
70 |
71 | - https://www.pfenninger.org/posts/mapping-the-worlds-nuclear-power-plants/
72 |
--------------------------------------------------------------------------------
/assets/images/basemap-quakes.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dannguyen/gis-geospatial-fun-python3x/a5da0955ff08ee90ea79626b19cb96c843e3df0c/assets/images/basemap-quakes.png
--------------------------------------------------------------------------------
/assets/images/census-counties-20m.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dannguyen/gis-geospatial-fun-python3x/a5da0955ff08ee90ea79626b19cb96c843e3df0c/assets/images/census-counties-20m.png
--------------------------------------------------------------------------------
/assets/images/worldwide-m6-quakes-2000-2015-subplots.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dannguyen/gis-geospatial-fun-python3x/a5da0955ff08ee90ea79626b19cb96c843e3df0c/assets/images/worldwide-m6-quakes-2000-2015-subplots.png
--------------------------------------------------------------------------------
/bayarea_foo.py:
--------------------------------------------------------------------------------
1 | """
2 | A reproduction of code found at:
3 | https://glenbambrick.com/2016/01/24/reproject-shapefile/
4 | """
5 | from pathlib import Path
6 | from pyproj import Proj, transform
7 | import shapefile
8 | SHP_BASENAME = 'bayarea_zipcodes'
9 | DDIR = Path('data', SHP_BASENAME)
10 | SHP_NAME = DDIR.joinpath(SHP_BASENAME)
11 | NEWPREFIX = 'epsg_4326--'
12 |
13 | # set the input projection of the original file.
14 | INPUT_PROJ = Proj(init="esri:102643")
15 | # set the projection for the output file.
16 | OUTPUT_PROJ = Proj(init="epsg:4326")
17 | # OUTPUT PRJ WKT
18 | OUTPUT_WKTPRJ = Path('data', 'projections', 'epsg_4326.txt').read_text()
19 |
20 |
21 |
22 | r_sf = shapefile.Reader(str(SHP_NAME))
23 | w_sf = shapefile.Writer(r_sf.shapeType)
24 |
25 |
26 | for shape in r_sf.shapes():
27 | # each shape has a list of geometry to add to new file
28 | listpoly = []
29 | if len(shape.parts) == 1:
30 | for x, y in shape.points:
31 | newxy = transform(INPUT_PROJ, OUTPUT_PROJ, x, y)
32 | listpoly.append(list(newxy))
33 | ### add geometry to new file
34 | w_sf.poly(parts=[listpoly]) ## REFACTORTK
35 | else: # more than one part to the geometry
36 | shparts = shape.parts
37 | shpoints = shape.points
38 | shparts.append(len(shpoints)) # ...?
39 | for i in range(len(shparts) - 1):
40 | listparts = []
41 | coordct = shparts[i]
42 | endcoord = coordct + abs(coordct - shparts[i + 1])
43 | for j in range(coordct, endcoord):
44 | for coords in shpoints[j:endcoord]:
45 | x, y = coords
46 | newxy = transform(INPUT_PROJ, OUTPUT_PROJ, x, y)
47 | listparts.append(list(newxy))
48 | listpoly.append(listparts)
49 |
50 | ### add geometry to new file
51 | w_sf.poly(parts=listpoly) ## REFACTORTK
52 |
53 |
54 | # save to shapefile
55 | out_baseshp = NEWPREFIX + SHP_BASENAME
56 | out_shpname = DDIR.joinpath(out_baseshp + '.shp')
57 | w_sf.save(str(out_shpname))
58 |
59 | # generate PRJ file
60 | out_prjname = DDIR.joinpath(out_baseshp + '.prj')
61 | with out_prjname.open('w') as wf:
62 | # via http://spatialreference.org/ref/epsg/4326/prettywkt/
63 | wf.write(OUTPUT_WKTPRJ)
64 |
--------------------------------------------------------------------------------
/bayarea_mapfoo.py:
--------------------------------------------------------------------------------
1 | from shutil import unpack_archive
2 | from pathlib import Path
3 | import matplotlib.pyplot as plt
4 | from mpl_toolkits.basemap import Basemap
5 |
6 | SHP_BASENAME = 'bayarea_zipcodes'
7 | DDIR = Path('data', SHP_BASENAME)
8 | NEWPREFIX = 'epsg_4326--'
9 | SHP_NAME = DDIR.joinpath(NEWPREFIX + SHP_BASENAME)
10 |
11 | fig, ax = plt.subplots()
12 | m = Basemap(ax=ax)
13 | m.readshapefile(str(SHP_NAME), 'stuffwhatisthis')
14 |
15 |
16 | ## Current error
17 |
18 | # in ()
19 | # ----> 1 m.readshapefile(str(SHP_NAME), 'stuffwhatisthis')
20 |
21 | # /Users/dtown/.pyenv/versions/anaconda3-2.5.0/lib/python3.5/site-packages/mpl_toolkits/basemap/__init__.py in readshapefile(self, shapefile, name, drawbounds, zorder, linewidth, color, antialiased, ax, default_encoding)
22 | # 2144 info = (shf.numRecords,shptype,bbox[0:2]+[0.,0.],bbox[2:]+[0.,0.])
23 | # 2145 npoly = 0
24 | # -> 2146 for shprec in shf.shapeRecords():
25 | # 2147 shp = shprec.shape; rec = shprec.record
26 | # 2148 npoly = npoly + 1
27 |
28 | # /Users/dtown/.pyenv/versions/anaconda3-2.5.0/lib/python3.5/site-packages/mpl_toolkits/basemap/shapefile.py in shapeRecords(self)
29 | # 541 shapeRecords = []
30 | # 542 return [_ShapeRecord(shape=rec[0], record=rec[1]) \
31 | # --> 543 for rec in zip(self.shapes(), self.records())]
32 | # 544
33 | # 545 class Writer:
34 |
35 | # /Users/dtown/.pyenv/versions/anaconda3-2.5.0/lib/python3.5/site-packages/mpl_toolkits/basemap/shapefile.py in records(self)
36 | # 508 """Returns all records in a dbf file."""
37 | # 509 if not self.numRecords:
38 | # --> 510 self.__dbfHeader()
39 | # 511 records = []
40 | # 512 f = self.__getFileObj(self.dbf)
41 |
42 | # /Users/dtown/.pyenv/versions/anaconda3-2.5.0/lib/python3.5/site-packages/mpl_toolkits/basemap/shapefile.py in __dbfHeader(self)
43 | # 444 self.fields.append(fieldDesc)
44 | # 445 terminator = dbf.read(1)
45 | # --> 446 assert terminator == b("\r")
46 | # 447 self.fields.insert(0, ('DeletionFlag', 'C', 1, 0))
47 | # 448
48 |
49 | # AssertionError:
50 |
51 |
--------------------------------------------------------------------------------
/data/bayarea_zipcodes/bayarea_zipcodes.dbf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dannguyen/gis-geospatial-fun-python3x/a5da0955ff08ee90ea79626b19cb96c843e3df0c/data/bayarea_zipcodes/bayarea_zipcodes.dbf
--------------------------------------------------------------------------------
/data/bayarea_zipcodes/bayarea_zipcodes.prj:
--------------------------------------------------------------------------------
1 | PROJCS["NAD_1983_StatePlane_California_III_FIPS_0403_Feet",GEOGCS["GCS_North_American_1983",DATUM["D_North_American_1983",SPHEROID["GRS_1980",6378137.0,298.257222101]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["Lambert_Conformal_Conic"],PARAMETER["False_Easting",6561666.666666666],PARAMETER["False_Northing",1640416.666666667],PARAMETER["Central_Meridian",-120.5],PARAMETER["Standard_Parallel_1",37.06666666666667],PARAMETER["Standard_Parallel_2",38.43333333333333],PARAMETER["Latitude_Of_Origin",36.5],UNIT["Foot_US",0.3048006096012192]]
--------------------------------------------------------------------------------
/data/bayarea_zipcodes/bayarea_zipcodes.sbn:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dannguyen/gis-geospatial-fun-python3x/a5da0955ff08ee90ea79626b19cb96c843e3df0c/data/bayarea_zipcodes/bayarea_zipcodes.sbn
--------------------------------------------------------------------------------
/data/bayarea_zipcodes/bayarea_zipcodes.sbx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dannguyen/gis-geospatial-fun-python3x/a5da0955ff08ee90ea79626b19cb96c843e3df0c/data/bayarea_zipcodes/bayarea_zipcodes.sbx
--------------------------------------------------------------------------------
/data/bayarea_zipcodes/bayarea_zipcodes.shp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dannguyen/gis-geospatial-fun-python3x/a5da0955ff08ee90ea79626b19cb96c843e3df0c/data/bayarea_zipcodes/bayarea_zipcodes.shp
--------------------------------------------------------------------------------
/data/bayarea_zipcodes/bayarea_zipcodes.shx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dannguyen/gis-geospatial-fun-python3x/a5da0955ff08ee90ea79626b19cb96c843e3df0c/data/bayarea_zipcodes/bayarea_zipcodes.shx
--------------------------------------------------------------------------------
/data/bayarea_zipcodes/bayarea_zipcodes.zip:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dannguyen/gis-geospatial-fun-python3x/a5da0955ff08ee90ea79626b19cb96c843e3df0c/data/bayarea_zipcodes/bayarea_zipcodes.zip
--------------------------------------------------------------------------------
/data/bayarea_zipcodes/epsg_4326--bayarea_zipcodes.dbf:
--------------------------------------------------------------------------------
1 | t !
--------------------------------------------------------------------------------
/data/bayarea_zipcodes/epsg_4326--bayarea_zipcodes.prj:
--------------------------------------------------------------------------------
1 | GEOGCS["WGS84",DATUM["WGS_1984",SPHEROID["WGS84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]
2 |
--------------------------------------------------------------------------------
/data/bayarea_zipcodes/epsg_4326--bayarea_zipcodes.shp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dannguyen/gis-geospatial-fun-python3x/a5da0955ff08ee90ea79626b19cb96c843e3df0c/data/bayarea_zipcodes/epsg_4326--bayarea_zipcodes.shp
--------------------------------------------------------------------------------
/data/bayarea_zipcodes/epsg_4326--bayarea_zipcodes.shx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dannguyen/gis-geospatial-fun-python3x/a5da0955ff08ee90ea79626b19cb96c843e3df0c/data/bayarea_zipcodes/epsg_4326--bayarea_zipcodes.shx
--------------------------------------------------------------------------------
/data/cb_2015_06_tract_500k/README.md:
--------------------------------------------------------------------------------
1 | curl -O http://www2.census.gov/geo/tiger/GENZ2015/shp/cb_2015_06_tract_500k.zip\n
2 | https://www.census.gov/geo/maps-data/data/cbf/cbf_tracts.html
--------------------------------------------------------------------------------
/data/cb_2015_06_tract_500k/cb_2015_06_tract_500k.cpg:
--------------------------------------------------------------------------------
1 | UTF-8
--------------------------------------------------------------------------------
/data/cb_2015_06_tract_500k/cb_2015_06_tract_500k.dbf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dannguyen/gis-geospatial-fun-python3x/a5da0955ff08ee90ea79626b19cb96c843e3df0c/data/cb_2015_06_tract_500k/cb_2015_06_tract_500k.dbf
--------------------------------------------------------------------------------
/data/cb_2015_06_tract_500k/cb_2015_06_tract_500k.prj:
--------------------------------------------------------------------------------
1 | GEOGCS["GCS_North_American_1983",DATUM["D_North_American_1983",SPHEROID["GRS_1980",6378137,298.257222101]],PRIMEM["Greenwich",0],UNIT["Degree",0.017453292519943295]]
--------------------------------------------------------------------------------
/data/cb_2015_06_tract_500k/cb_2015_06_tract_500k.shp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dannguyen/gis-geospatial-fun-python3x/a5da0955ff08ee90ea79626b19cb96c843e3df0c/data/cb_2015_06_tract_500k/cb_2015_06_tract_500k.shp
--------------------------------------------------------------------------------
/data/cb_2015_06_tract_500k/cb_2015_06_tract_500k.shp.ea.iso.xml:
--------------------------------------------------------------------------------
1 |
2 |
8 |
9 | Feature Catalog for the 2015 State-County-Census Tract 1:500,000
10 |
11 |
12 | The State-County-Census Tract at a scale of 1:500,000
13 |
14 |
15 | cb_2015_tract_500k
16 |
17 |
18 | 2016-03
19 |
20 |
21 | eng
22 |
23 |
24 | utf8
27 |
28 |
29 |
31 |
32 |
33 |
34 | cb_2015_06_tract_500k.shp
35 |
36 |
37 | Current Census Tract State-based entities
38 |
39 |
40 | false
41 |
42 |
43 |
44 |
45 |
46 | STATEFP
47 |
48 |
49 | Current state Federal Information Processing Series (FIPS) code
50 |
51 |
52 |
54 |
55 |
56 |
57 | National Standard Codes (ANSI INCITS 38-2009), Federal Information Processing Series (FIPS) - States/State Equivalents
58 |
59 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 | COUNTYFP
69 |
70 |
71 | Current county Federal Information Processing Series (FIPS) code
72 |
73 |
74 |
76 |
77 |
78 |
79 | National Standard Codes (ANSI INCITS 31-2009), Federal Information Processing Series (FIPS) - Counties/County Equivalents
80 |
81 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 | TRACTCE
91 |
92 |
93 | Current census tract code
94 |
95 |
96 |
98 |
99 |
100 |
101 | 000000
102 |
103 |
104 | Water tract in some coastal and Great Lakes water and territorial sea
105 |
106 |
108 |
109 |
110 |
111 |
112 |
113 | 000100 to 998999
114 |
115 |
116 | Census tract number
117 |
118 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 | AFFGEOID
128 |
129 |
130 | American FactFinder summary level code + geovariant code + '00US' + GEOID
131 |
132 |
133 |
135 |
136 |
137 |
138 | American FactFinder geographic identifier
139 |
140 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 | GEOID
150 |
151 |
152 | Census tract identifier; a concatenation of current state Federal Information Processing Series (FIPS) code, county FIPS code, and census tract code
153 |
154 |
155 |
157 |
158 |
159 |
160 |
161 | The GEOID attribute is a concatenation of the state FIPS code, followed by the county FIPS code, followed by the census tract code. No spaces are allowed between the two codes. The state FIPS code is taken from "National Standard Codes (ANSI INCITS 38-2009), Federal Information Processing Series (FIPS) - States". The county FIPS code is taken from "National Standard Codes (ANSI INCITS 31-2009), Federal Information Processing Series (FIPS) - Counties/County Equivalents". The census tract code is taken from the "TRACTCE" attribute.
162 |
163 |
164 |
165 |
166 |
167 |
168 |
169 |
170 | NAME
171 |
172 |
173 | Current census tract name, this is the census tract code converted to an integer or integer plus two-digit decimal if the last two characters of the code are not both zeros.
174 |
175 |
176 |
178 |
179 |
180 |
181 |
182 | Values for this attribute are composed of a set of census tract names. As such, they do not exist in a known, predefined set.
183 |
184 |
185 |
186 |
187 |
188 |
189 |
190 |
191 | LSAD
192 |
193 |
194 | Current legal/statistical area description code for Census tract
195 |
196 |
197 |
199 |
200 |
201 |
202 | CT
203 |
204 |
205 | Census Tract (prefix)
206 |
207 |
209 |
210 |
211 |
212 |
213 |
214 |
215 |
216 | ALAND
217 |
218 |
219 | Current land area (square meters)
220 |
221 |
222 |
224 |
225 |
226 |
227 |
228 |
229 |
230 |
231 |
232 |
233 |
234 | Range Domain Minimum: 0
235 | Range Domain Maximum: 9,999,999,999,999
236 |
237 |
238 |
239 |
240 |
241 |
242 |
243 |
244 | AWATER
245 |
246 |
247 | Current water area (square meters)
248 |
249 |
250 |
252 |
253 |
254 |
255 |
256 |
257 |
258 |
259 |
260 |
261 |
262 | Range Domain Minimum: 0
263 | Range Domain Maximum: 9,999,999,999,999
264 |
265 |
266 |
267 |
268 |
269 |
270 |
271 |
--------------------------------------------------------------------------------
/data/cb_2015_06_tract_500k/cb_2015_06_tract_500k.shp.iso.xml:
--------------------------------------------------------------------------------
1 |
2 |
7 |
8 | cb_2015_06_tract_500k.shp.iso.xml
9 |
10 |
11 | eng
12 |
13 |
14 | UTF-8
17 |
18 |
19 |
20 | Series Information for the 2015 Cartographic Boundary File, State-County-Census Tract , 1:500,000
21 |
22 |
23 |
25 | dataset
26 |
27 |
28 |
30 |
31 | 2016-03
32 |
33 |
34 | ISO 19115 Geographic Information - Metadata
35 |
36 |
37 | 2009-02-15
38 |
39 |
40 | http://www2.census.gov/geo/tiger/GENZ2015/shp
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
51 | complex
52 |
53 |
54 | 8043
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 | INCITS (formerly FIPS) codes
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 | 2015 Cartographic Boundary File, State-County-Census Tract for California, 1:500,000
80 |
81 |
82 |
83 |
84 |
85 | 201603
86 |
87 |
88 | publication
91 |
92 |
93 |
94 |
96 |
97 |
98 |
99 | The 2015 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files.
100 |
101 | Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
102 |
103 |
104 | These files were specifically created to support small-scale thematic mapping. To improve the appearance of shapes at small scales, areas are represented with fewer vertices than detailed TIGER/Line Shapefiles. Cartographic boundary files take up less disk space than their ungeneralized counterparts. Cartographic boundary files take less time to render on screen than TIGER/Line Shapefiles. You can join this file with table data downloaded from American FactFinder by using the AFFGEOID field in the cartographic boundary file. If detailed boundaries are required, please use the TIGER/Line Shapefiles instead of the generalized cartographic boundary files.
105 |
106 |
107 |
109 | completed
110 |
111 |
112 |
114 |
115 |
116 |
117 |
120 | notPlanned
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 | Boundaries
129 |
130 |
131 | theme
134 |
135 |
136 |
137 |
138 | ISO 19115 Topic Categories
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 | 2015
149 |
150 |
151 | SHP
152 |
153 |
154 | Cartographic Boundary
155 |
156 |
157 | Census Tract
158 |
159 |
160 | County
161 |
162 |
163 | Generalized
164 |
165 |
166 | State
167 |
168 |
169 | theme
172 |
173 |
174 |
175 |
176 | None
177 |
178 |
179 |
180 |
181 |
182 |
183 |
184 |
185 |
186 | California
187 |
188 |
189 | CA
190 |
191 |
192 | place
195 |
196 |
197 |
198 |
199 | ANSI INCITS 38:2009 (Formerly FIPS 5-2), ANSI INCITS 31:2009 (Formerly FIPS 6-4),ANSI INCITS 454:2009 (Formerly FIPS 8-6), ANSI INCITS 455:2009(Formerly FIPS 9-1), ANSI INCITS 446:2008 (Geographic Names Information System (GNIS))
200 |
201 |
202 |
203 |
204 |
205 |
206 |
207 |
208 |
209 | otherRestrictions
212 |
213 |
214 |
217 |
218 |
219 | Access Constraints: None
220 |
221 |
222 | Use Constraints:The intended display scale for this file is 1:500,000. This file should not be displayed at scales larger than 1:500,000.
223 |
224 | These products are free to use in a product or publication, however acknowledgement must be given to the U.S. Census Bureau as the source. The boundary information is for visual display at appropriate small scales only. Cartographic boundary files should not be used for geographic analysis including area or perimeter calculation. Files should not be used for geocoding addresses. Files should not be used for determining precise geographic area relationships.
225 |
226 |
227 |
228 |
229 |
230 |
231 | vector
233 |
234 |
235 | eng
236 |
237 |
238 | UTF-8
241 |
242 |
243 | The cartographic boundary files contain geographic data only and do not include display mapping software or statistical data. For information on how to use cartographic boundary file data with specific software package users shall contact the company that produced the software.
244 |
245 |
246 |
247 |
248 |
249 |
250 | -124.409591
251 |
252 |
253 | -114.131211
254 |
255 |
256 | 32.534156
257 |
258 |
259 | 42.009518
260 |
261 |
262 |
263 |
264 |
265 |
266 |
267 | publication date
268 | 2016-03
269 | 2016-03
270 |
271 |
272 |
273 |
274 |
275 |
276 |
277 |
278 |
279 |
280 |
281 |
282 | true
283 |
284 |
285 | County-Census Tract
286 |
287 |
288 |
289 |
290 | Feature Catalog for the 2015 State-County-Census Tract 1:500,000 Cartographic Boundary File
291 |
292 |
293 |
294 |
295 |
296 |
299 |
300 |
301 |
302 |
303 | http://meta.geo.census.gov/data/existing/decennial/GEO/CPMB/boundary/2014gz/tract_500k/2014_tract_500k.ea.iso.xml
304 |
305 |
306 |
307 |
308 |
309 |
310 |
311 |
312 |
313 |
314 | SHP
315 |
316 |
317 |
318 | The cartographic boundary files contain geographic data only and do not include display mapping software or statistical data. For information on how to use cartographic boundary file data with specific software package users shall contact the company that produced the software.
319 |
320 |
321 |
322 |
323 |
324 |
325 | html
326 |
327 |
328 |
329 |
330 |
331 |
332 |
334 |
335 |
336 |
337 | The online cartographic boundary files may be downloaded without charge.
338 |
339 |
340 | To obtain more information about ordering Cartographic Boundary Files visit http://www.census.gov/geo/www/tiger.
341 |
342 |
343 |
344 |
345 |
346 |
347 |
348 |
349 |
350 |
351 | http://www2.census.gov/geo/tiger/GENZ2015/shp/cb_2015_06_tract_500k.zip
352 |
353 |
354 | Shapefile Zip File
355 |
356 |
357 |
358 |
359 |
360 |
361 |
362 |
363 |
364 |
365 | http://www.census.gov/geo/maps-data/data/tiger-cart-boundary.html
366 |
367 |
368 | Cartographic Boundary Shapefiles
369 |
370 |
371 | Simplified representations of selected geographic areas from the Census Bureau's MAF/TIGER geographic database
372 |
373 |
374 |
375 |
376 |
377 |
378 |
379 |
380 |
381 |
382 |
383 |
384 | dataset
387 |
388 |
389 |
390 |
391 |
392 |
393 | Horizontal Positional Accuracy
394 |
395 |
396 |
397 |
398 |
399 | Data are not accurate. Data are generalized representations of geographic boundaries at 1:500,000.
400 |
401 |
402 |
403 |
404 |
405 | meters
406 |
407 |
408 |
409 |
410 | Missing
411 |
412 |
413 |
414 |
415 |
416 |
417 |
418 |
419 |
420 |
421 |
422 |
423 |
424 | The cartographic boundary files are generalized representations of extracts taken from the MAF/TIGER Database. Generalized boundary files are clipped to a simplified version of the U.S. outline. As a result, some off-shore areas may be excluded from the generalized files. Some small geographic areas, holes, or discontiguous parts of areas may not be included in generalized files if they are not visible at the target scale.
425 |
426 |
427 |
428 |
429 |
430 |
431 |
432 | The Census Bureau performed automated tests to ensure logical consistency of the source database. Segments making up the outer and inner boundaries of a polygon tie end-to-end to completely enclose the area. All polygons were tested for closure. The Census Bureau uses its internally developed geographic update system to enhance and modify spatial and attribute data in the Census MAF/TIGER database. Standard geographic codes, such as INCITS (formerly FIPS) codes for states, counties, municipalities, county subdivisions, places, American Indian/Alaska Native/Native Hawaiian areas, and congressional districts are used when encoding spatial entities. The Census Bureau performed spatial data tests for logical consistency of the codes during the compilation of the original Census MAF/TIGER database files. Feature attribute information has been examined but has not been fully tested for consistency.
433 |
434 | For the cartographic boundary files, the Point and Vector Object Count for the G-polygon SDTS Point and Vector Object Type reflects the number of records in the file's data table. For multi-polygon features, only one attribute record exists for each multi-polygon rather than one attribute record per individual G-polygon component of the multi-polygon feature. Cartographic Boundary File multi-polygons are an exception to the G-polygon object type classification. Therefore, when multi-polygons exist in a file, the object count will be less than the actual number of G-polygons.
435 |
436 |
437 |
438 |
439 |
440 |
441 |
442 |
443 |
444 | Spatial data were extracted from the MAF/TIGER database and processed through a U.S. Census Bureau batch generalization system.
445 |
446 |
447 | 2016-03-01T00:00:00
448 |
449 |
450 |
451 |
452 | Geo-spatial Relational Database
453 |
454 |
455 |
456 |
457 | Census MAF/TIGER database
458 |
459 |
460 | MAF/TIGER
461 |
462 |
463 |
464 |
465 | 20150101
466 |
467 |
468 | The dates describe the effective date of 2015 cartographic boundaries.
471 |
472 |
473 |
474 |
475 |
476 |
477 | U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Geographic Customer Services Branch
478 |
479 |
480 | originator
482 |
483 |
484 |
485 |
486 |
487 | Source Contribution: All spatial and feature data
488 |
489 |
490 |
491 |
492 |
493 |
494 |
495 |
496 |
497 |
498 |
499 |
500 |
501 |
502 |
505 | notPlanned
506 |
507 |
508 |
509 | This was transformed from the Census Metadata Import Format
510 |
511 |
513 |
514 |
515 |
--------------------------------------------------------------------------------
/data/cb_2015_06_tract_500k/cb_2015_06_tract_500k.shp.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 | U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Cartographic Products and Services Branch
7 | 201603
8 | 2015 Cartographic Boundary File, State-County-Census Tract for California, 1:500,000
9 | vector digital data
10 |
11 | Cartographic Boundary Files
12 | 2015
13 |
14 | http://www2.census.gov/geo/tiger/GENZ2015/shp/cb_2015_06_tract_500k.zip
15 |
16 |
17 |
18 | The 2015 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files.
19 |
20 | Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
21 | These files were specifically created to support small-scale thematic mapping. To improve the appearance of shapes at small scales, areas are represented with fewer vertices than detailed TIGER/Line Shapefiles. Cartographic boundary files take up less disk space than their ungeneralized counterparts. Cartographic boundary files take less time to render on screen than TIGER/Line Shapefiles. You can join this file with table data downloaded from American FactFinder by using the AFFGEOID field in the cartographic boundary file. If detailed boundaries are required, please use the TIGER/Line Shapefiles instead of the generalized cartographic boundary files.
22 |
23 |
24 |
25 |
26 | 201603
27 | 201603
28 |
29 |
30 | publication date
31 |
32 |
33 |
34 | None planned. No changes or updates will be made to this version of the cartographic boundary files. New versions of the cartographic boundary files will be produced on an annual release schedule. Types of geography released may vary from year to year.
35 |
36 |
37 |
38 | -124.409591
39 | -114.131211
40 | 42.009518
41 | 32.534156
42 |
43 |
44 |
45 |
46 | ISO 19115 Topic Categories
47 | Boundaries
48 |
49 |
50 | None
51 | 2015
52 | SHP
53 | Cartographic Boundary
54 | Census Tract
55 | County
56 | Generalized
57 | State
58 |
59 |
60 | ANSI INCITS 38:2009 (Formerly FIPS 5-2), ANSI INCITS 31:2009 (Formerly FIPS 6-4),ANSI INCITS 454:2009 (Formerly FIPS 8-6), ANSI INCITS 455:2009(Formerly FIPS 9-1), ANSI INCITS 446:2008 (Geographic Names Information System (GNIS))
61 | California
62 | CA
63 |
64 |
65 | None
66 | The intended display scale for this file is 1:500,000. This file should not be displayed at scales larger than 1:500,000.
67 |
68 | These products are free to use in a product or publication, however acknowledgement must be given to the U.S. Census Bureau as the source. The boundary information is for visual display at appropriate small scales only. Cartographic boundary files should not be used for geographic analysis including area or perimeter calculation. Files should not be used for geocoding addresses. Files should not be used for determining precise geographic area relationships.
69 |
70 |
71 |
72 |
73 | U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Geographic Customer Services Branch
74 |
75 |
76 | mailing
77 | 4600 Silver Hill Road
78 | Washington
79 | DC
80 | 20233-7400
81 | United States
82 |
83 | 301.763.1128
84 | 301.763.4710
85 | geo.geography@census.gov
86 |
87 |
88 |
89 |
90 |
91 | Accurate against American National Standards Institute (ANSI) Publication INCITS 446-2008 (Geographic Names Information System (GNIS)) at the 100% level for the codes and base names present in the file. The remaining attribute information has been examined but has not been fully tested for accuracy.
92 |
93 | The Census Bureau performed automated tests to ensure logical consistency of the source database. Segments making up the outer and inner boundaries of a polygon tie end-to-end to completely enclose the area. All polygons were tested for closure. The Census Bureau uses its internally developed geographic update system to enhance and modify spatial and attribute data in the Census MAF/TIGER database. Standard geographic codes, such as INCITS (formerly FIPS) codes for states, counties, municipalities, county subdivisions, places, American Indian/Alaska Native/Native Hawaiian areas, and congressional districts are used when encoding spatial entities. The Census Bureau performed spatial data tests for logical consistency of the codes during the compilation of the original Census MAF/TIGER database files. Feature attribute information has been examined but has not been fully tested for consistency.
94 |
95 | For the cartographic boundary files, the Point and Vector Object Count for the G-polygon SDTS Point and Vector Object Type reflects the number of records in the file's data table. For multi-polygon features, only one attribute record exists for each multi-polygon rather than one attribute record per individual G-polygon component of the multi-polygon feature. Cartographic Boundary File multi-polygons are an exception to the G-polygon object type classification. Therefore, when multi-polygons exist in a file, the object count will be less than the actual number of G-polygons.
96 | The cartographic boundary files are generalized representations of extracts taken from the MAF/TIGER Database. Generalized boundary files are clipped to a simplified version of the U.S. outline. As a result, some off-shore areas may be excluded from the generalized files. Some small geographic areas, holes, or discontiguous parts of areas may not be included in generalized files if they are not visible at the target scale.
97 |
98 |
99 | Data are not accurate. Data are generalized representations of geographic boundaries at 1:500,000.
100 |
101 |
102 |
103 |
104 |
105 |
106 | U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Geographic Customer Services Branch
107 | unpublished material
108 | Census MAF/TIGER database
109 |
110 |
111 | Geo-spatial Relational Database
112 |
113 |
114 |
115 | 20150101
116 | 20150101
117 |
118 |
119 | The dates describe the effective date of 2015 cartographic boundaries.
120 |
121 | MAF/TIGER
122 | All spatial and feature data
123 |
124 |
125 | Spatial data were extracted from the MAF/TIGER database and processed through a U.S. Census Bureau batch generalization system.
126 | MAF/TIGER
127 | 201603
128 |
129 |
130 |
131 |
132 | INCITS (formerly FIPS) codes
133 | Vector
134 |
135 |
136 | G-polygon
137 | 8043
138 |
139 |
140 |
141 |
142 |
143 |
144 | 0.000458
145 | 0.000458
146 | Decimal degrees
147 |
148 |
149 | North American Datum of 1983
150 | Geodetic Reference System 80
151 | 6378137.000000
152 | 298.257222
153 |
154 |
155 |
156 |
157 |
158 |
159 | cb_2015_06_tract_500k.shp
160 | Current Census Tract State-based entities
161 | U.S. Census Bureau
162 |
163 |
164 | STATEFP
165 | Current state Federal Information Processing Series (FIPS) code
166 | U.S. Census Bureau
167 |
168 |
169 | National Standard Codes (ANSI INCITS 38-2009), Federal Information Processing Series (FIPS) - States/State Equivalents
170 | U.S. Census Bureau
171 |
172 |
173 |
174 |
175 | COUNTYFP
176 | Current county Federal Information Processing Series (FIPS) code
177 | U.S. Census Bureau
178 |
179 |
180 | National Standard Codes (ANSI INCITS 31-2009), Federal Information Processing Series (FIPS) - Counties/County Equivalents
181 | U.S. Census Bureau
182 |
183 |
184 |
185 |
186 | TRACTCE
187 | Current census tract code
188 | U.S. Census Bureau
189 |
190 |
191 | 000000
192 | Water tract in some coastal and Great Lakes water and territorial sea
193 | U.S. Census Bureau
194 |
195 |
196 |
197 |
198 | 000100 to 998999
199 | Census tract number
200 | U.S. Census Bureau
201 |
202 |
203 |
204 |
205 | AFFGEOID
206 | American FactFinder summary level code + geovariant code + '00US' + GEOID
207 | U.S. Census Bureau
208 |
209 |
210 | American FactFinder geographic identifier
211 | U.S. Census Bureau
212 |
213 |
214 |
215 |
216 | GEOID
217 | Census tract identifier; a concatenation of current state Federal Information Processing Series (FIPS) code, county FIPS code, and census tract code
218 | U.S. Census Bureau
219 |
220 | The GEOID attribute is a concatenation of the state FIPS code, followed by the county FIPS code, followed by the census tract code. No spaces are allowed between the two codes. The state FIPS code is taken from "National Standard Codes (ANSI INCITS 38-2009), Federal Information Processing Series (FIPS) - States". The county FIPS code is taken from "National Standard Codes (ANSI INCITS 31-2009), Federal Information Processing Series (FIPS) - Counties/County Equivalents". The census tract code is taken from the "TRACTCE" attribute.
221 |
222 |
223 |
224 | NAME
225 | Current census tract name, this is the census tract code converted to an integer or integer plus two-digit decimal if the last two characters of the code are not both zeros.
226 | U.S. Census Bureau
227 |
228 | Values for this attribute are composed of a set of census tract names. As such, they do not exist in a known, predefined set.
229 |
230 |
231 |
232 | LSAD
233 | Current legal/statistical area description code for Census tract
234 | U.S. Census Bureau
235 |
236 |
237 | CT
238 | Census Tract (prefix)
239 | U.S. Census Bureau
240 |
241 |
242 |
243 |
244 | ALAND
245 | Current land area (square meters)
246 | U.S. Census Bureau
247 |
248 |
249 | 0
250 | 9,999,999,999,999
251 | square meters
252 |
253 |
254 |
255 |
256 | AWATER
257 | Current water area (square meters)
258 | U.S. Census Bureau
259 |
260 |
261 | 0
262 | 9,999,999,999,999
263 | square meters
264 |
265 |
266 |
267 |
268 |
269 |
270 |
271 |
272 |
273 | U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Geographic Customer Services Branch
274 |
275 |
276 | mailing
277 | 4600 Silver Hill Road
278 | Washington
279 | DC
280 | 20233-7400
281 | United States
282 |
283 | 301.763.1128
284 | 301.763.4710
285 | geo.geography@census.gov
286 |
287 |
288 | No warranty, expressed or implied is made with regard to the accuracy of these data, and no liability is assumed by the U.S. Government in general or the U.S. Census Bureau in specific as to the spatial or attribute accuracy of the data. The act of distribution shall not constitute any such warranty and no responsibility is assumed by the U.S. government in the use of these files. The boundary information is for small-scale mapping purposes only; boundary depiction and designation for small-scale mapping purposes do not constitute a determination of jurisdictional authority or rights of ownership or entitlement and they are not legal land descriptions.
289 |
290 |
291 |
292 | SHP
293 | PK-ZIP, version 1.93A or higher
294 |
295 |
296 |
297 |
298 |
299 | http://www2.census.gov/geo/tiger/GENZ2015/shp/cb_2015_06_tract_500k.zip
300 |
301 |
302 |
303 |
304 |
305 | The online cartographic boundary files may be downloaded without charge.
306 | To obtain more information about ordering Cartographic Boundary Files visit http://www.census.gov/geo/www/tiger.
307 |
308 | The cartographic boundary files contain geographic data only and do not include display mapping software or statistical data. For information on how to use cartographic boundary file data with specific software package users shall contact the company that produced the software.
309 |
310 |
311 | 201603
312 |
313 |
314 |
315 | U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Geographic Customer Services Branch
316 |
317 |
318 | mailing
319 | 4600 Silver Hill Road
320 | Washington
321 | DC
322 | 20233-7400
323 | United States
324 |
325 | 301.763.1128
326 | 301.763.4710
327 | geo.geography@census.gov
328 |
329 |
330 | Content Standard for Digital Geospatial Metadata
331 | FGDC-STD-001-1998
332 |
333 |
--------------------------------------------------------------------------------
/data/cb_2015_06_tract_500k/cb_2015_06_tract_500k.shx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dannguyen/gis-geospatial-fun-python3x/a5da0955ff08ee90ea79626b19cb96c843e3df0c/data/cb_2015_06_tract_500k/cb_2015_06_tract_500k.shx
--------------------------------------------------------------------------------
/data/cb_2015_us_county_20m/cb_2015_us_county_20m.cpg:
--------------------------------------------------------------------------------
1 | UTF-8
--------------------------------------------------------------------------------
/data/cb_2015_us_county_20m/cb_2015_us_county_20m.dbf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dannguyen/gis-geospatial-fun-python3x/a5da0955ff08ee90ea79626b19cb96c843e3df0c/data/cb_2015_us_county_20m/cb_2015_us_county_20m.dbf
--------------------------------------------------------------------------------
/data/cb_2015_us_county_20m/cb_2015_us_county_20m.prj:
--------------------------------------------------------------------------------
1 | GEOGCS["GCS_North_American_1983",DATUM["D_North_American_1983",SPHEROID["GRS_1980",6378137,298.257222101]],PRIMEM["Greenwich",0],UNIT["Degree",0.017453292519943295]]
--------------------------------------------------------------------------------
/data/cb_2015_us_county_20m/cb_2015_us_county_20m.shp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dannguyen/gis-geospatial-fun-python3x/a5da0955ff08ee90ea79626b19cb96c843e3df0c/data/cb_2015_us_county_20m/cb_2015_us_county_20m.shp
--------------------------------------------------------------------------------
/data/cb_2015_us_county_20m/cb_2015_us_county_20m.shp.ea.iso.xml:
--------------------------------------------------------------------------------
1 |
2 |
8 |
9 | Feature Catalog for the 2015 State-County 1:20,000,000
10 |
11 |
12 | The State-County at a scale of 1:20,000,000
13 |
14 |
15 | cb_2015_county_20m
16 |
17 |
18 | 2016-03
19 |
20 |
21 | eng
22 |
23 |
24 | utf8
27 |
28 |
29 |
31 |
32 |
33 |
34 | cb_2015_us_county_20m.shp
35 |
36 |
37 | Current County and Equivalent National entities
38 |
39 |
40 | false
41 |
42 |
43 |
44 |
45 |
46 | STATEFP
47 |
48 |
49 | Current state Federal Information Processing Series (FIPS) code
50 |
51 |
52 |
54 |
55 |
56 |
57 | National Standard Codes (ANSI INCITS 38-2009), Federal Information Processing Series (FIPS) - States/State Equivalents
58 |
59 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 | COUNTYFP
69 |
70 |
71 | Current county Federal Information Processing Series (FIPS) code
72 |
73 |
74 |
76 |
77 |
78 |
79 | National Standard Codes (ANSI INCITS 31-2009), Federal Information Processing Series (FIPS) - Counties/County Equivalents
80 |
81 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 | COUNTYNS
91 |
92 |
93 | Current county Geographic Names Information System (GNIS) code
94 |
95 |
96 |
98 |
99 |
100 |
101 | INCITS 446:2008 (Geographic Names Information System (GNIS)), Identifying Attributes for Named Physical and Cultural Geographic Features (Except Roads and Highways) of the United States, Its Territories, Outlying Areas, and Freely Associated Areas, and the Waters of the Same to the Limit of the Twelve-Mile Statutory Zone
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 | U.S. Geological Survey (USGS)
115 |
116 |
117 | resourceProvider
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 | AFFGEOID
138 |
139 |
140 | American FactFinder summary level code + geovariant code + '00US' + GEOID
141 |
142 |
143 |
145 |
146 |
147 |
148 | American FactFinder geographic identifier
149 |
150 |
152 |
153 |
154 |
155 |
156 |
157 |
158 |
159 | GEOID
160 |
161 |
162 | County identifier; a concatenation of current state Federal Information Processing Series (FIPS) code and county FIPS code
163 |
164 |
165 |
167 |
168 |
169 |
170 |
171 | The GEOID attribute is a concatenation of the state FIPS code followed by the county FIPS code. No spaces are allowed between the two codes. The state FIPS code is taken from "National Standard Codes (ANSI INCITS 38-2009), Federal Information Processing Series (FIPS) - States". The county FIPS code is taken from "National Standard Codes (ANSI INCITS 31-2009), Federal Information Processing Series (FIPS) - Counties/County Equivalents".
172 |
173 |
174 |
175 |
176 |
177 |
178 |
179 |
180 | NAME
181 |
182 |
183 | Current county name
184 |
185 |
186 |
188 |
189 |
190 |
191 | National Standard Codes (ANSI INCITS 31-2009), Federal Information Processing Series (FIPS) - Counties/County Equivalents
192 |
193 |
195 |
196 |
197 |
198 |
199 |
200 |
201 |
202 | LSAD
203 |
204 |
205 | Current legal/statistical area description code for county
206 |
207 |
208 |
210 |
211 |
212 |
213 | 00
214 |
215 |
216 | Blank
217 |
218 |
220 |
221 |
222 |
223 |
224 |
225 | 03
226 |
227 |
228 | City and Borough (suffix)
229 |
230 |
232 |
233 |
234 |
235 |
236 |
237 | 04
238 |
239 |
240 | Borough (suffix)
241 |
242 |
244 |
245 |
246 |
247 |
248 |
249 | 05
250 |
251 |
252 | Census Area (suffix)
253 |
254 |
256 |
257 |
258 |
259 |
260 |
261 | 06
262 |
263 |
264 | County (suffix)
265 |
266 |
268 |
269 |
270 |
271 |
272 |
273 | 07
274 |
275 |
276 | District (suffix)
277 |
278 |
280 |
281 |
282 |
283 |
284 |
285 | 10
286 |
287 |
288 | Island (suffix)
289 |
290 |
292 |
293 |
294 |
295 |
296 |
297 | 12
298 |
299 |
300 | Municipality (suffix)
301 |
302 |
304 |
305 |
306 |
307 |
308 |
309 | 13
310 |
311 |
312 | Municipio (suffix)
313 |
314 |
316 |
317 |
318 |
319 |
320 |
321 | 15
322 |
323 |
324 | Parish (suffix)
325 |
326 |
328 |
329 |
330 |
331 |
332 |
333 | 25
334 |
335 |
336 | city (suffix)
337 |
338 |
340 |
341 |
342 |
343 |
344 |
345 |
346 |
347 | ALAND
348 |
349 |
350 | Current land area (square meters)
351 |
352 |
353 |
355 |
356 |
357 |
358 |
359 |
360 |
361 |
362 |
363 |
364 |
365 | Range Domain Minimum: 0
366 | Range Domain Maximum: 9,999,999,999,999
367 |
368 |
369 |
370 |
371 |
372 |
373 |
374 |
375 | AWATER
376 |
377 |
378 | Current water area (square meters)
379 |
380 |
381 |
383 |
384 |
385 |
386 |
387 |
388 |
389 |
390 |
391 |
392 |
393 | Range Domain Minimum: 0
394 | Range Domain Maximum: 9,999,999,999,999
395 |
396 |
397 |
398 |
399 |
400 |
401 |
402 |
--------------------------------------------------------------------------------
/data/cb_2015_us_county_20m/cb_2015_us_county_20m.shp.iso.xml:
--------------------------------------------------------------------------------
1 |
2 |
7 |
8 | cb_2015_us_county_20m.shp.iso.xml
9 |
10 |
11 | eng
12 |
13 |
14 | UTF-8
17 |
18 |
19 |
21 | dataset
22 |
23 |
24 |
26 |
27 | 2016-03
28 |
29 |
30 | ISO 19115 Geographic Information - Metadata
31 |
32 |
33 | 2009-02-15
34 |
35 |
36 | http://www2.census.gov/geo/tiger/GENZ2015/shp
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
47 | complex
48 |
49 |
50 | 3220
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 | INCITS (formerly FIPS) codes
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 | 2015 Cartographic Boundary File, State-County for United States, 1:20,000,000
76 |
77 |
78 |
79 |
80 |
81 | 201603
82 |
83 |
84 | publication
87 |
88 |
89 |
90 |
92 |
93 |
94 |
95 | The 2015 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files.
96 |
97 | The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities.
98 |
99 |
100 | These files were specifically created to support small-scale thematic mapping. To improve the appearance of shapes at small scales, areas are represented with fewer vertices than detailed TIGER/Line Shapefiles. Cartographic boundary files take up less disk space than their ungeneralized counterparts. Cartographic boundary files take less time to render on screen than TIGER/Line Shapefiles. You can join this file with table data downloaded from American FactFinder by using the AFFGEOID field in the cartographic boundary file. If detailed boundaries are required, please use the TIGER/Line Shapefiles instead of the generalized cartographic boundary files.
101 |
102 |
103 |
105 | completed
106 |
107 |
108 |
110 |
111 |
112 |
113 |
116 | notPlanned
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 | Boundaries
125 |
126 |
127 | theme
130 |
131 |
132 |
133 |
134 | ISO 19115 Topic Categories
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 | 2015
145 |
146 |
147 | SHP
148 |
149 |
150 | Borough
151 |
152 |
153 | Cartographic Boundary
154 |
155 |
156 | Census Area
157 |
158 |
159 | City
160 |
161 |
162 | City and Borough
163 |
164 |
165 | County
166 |
167 |
168 | County equivalent
169 |
170 |
171 | District
172 |
173 |
174 | Generalized
175 |
176 |
177 | Independent City
178 |
179 |
180 | Island
181 |
182 |
183 | Municipality
184 |
185 |
186 | Municipio
187 |
188 |
189 | Parish
190 |
191 |
192 | State
193 |
194 |
195 | theme
198 |
199 |
200 |
201 |
202 | None
203 |
204 |
205 |
206 |
207 |
208 |
209 |
210 |
211 |
212 | United States
213 |
214 |
215 | US
216 |
217 |
218 | place
221 |
222 |
223 |
224 |
225 | ANSI INCITS 38:2009 (Formerly FIPS 5-2), ANSI INCITS 31:2009 (Formerly FIPS 6-4),ANSI INCITS 454:2009 (Formerly FIPS 8-6), ANSI INCITS 455:2009(Formerly FIPS 9-1), ANSI INCITS 446:2008 (Geographic Names Information System (GNIS))
226 |
227 |
228 |
229 |
230 |
231 |
232 |
233 |
234 |
235 | otherRestrictions
238 |
239 |
240 |
243 |
244 |
245 | Access Constraints: None
246 |
247 |
248 | Use Constraints:The intended display scale for this file is 1:20,000,000. This file should not be displayed at scales larger than 1:20,000,000.
249 |
250 | These products are free to use in a product or publication, however acknowledgement must be given to the U.S. Census Bureau as the source. The boundary information is for visual display at appropriate small scales only. Cartographic boundary files should not be used for geographic analysis including area or perimeter calculation. Files should not be used for geocoding addresses. Files should not be used for determining precise geographic area relationships.
251 |
252 |
253 |
254 |
255 |
256 |
257 | vector
259 |
260 |
261 | eng
262 |
263 |
264 | UTF-8
267 |
268 |
269 | The cartographic boundary files contain geographic data only and do not include display mapping software or statistical data. For information on how to use cartographic boundary file data with specific software package users shall contact the company that produced the software.
270 |
271 |
272 |
273 |
274 |
275 |
276 | -179.174265
277 |
278 |
279 | 179.773922
280 |
281 |
282 | 17.913769
283 |
284 |
285 | 71.352561
286 |
287 |
288 |
289 |
290 |
291 |
292 |
293 | publication date
294 | 2016-03
295 | 2016-03
296 |
297 |
298 |
299 |
300 |
301 |
302 |
303 |
304 |
305 |
306 |
307 |
308 | true
309 |
310 |
311 |
312 |
313 | Feature Catalog for the 2015 State-County 1:20,000,000 Cartographic Boundary File
314 |
315 |
316 |
317 |
318 |
319 |
322 |
323 |
324 |
325 |
326 | http://meta.geo.census.gov/data/existing/decennial/GEO/CPMB/boundary/2014gz/county_20m/2014_county_20m.ea.iso.xml
327 |
328 |
329 |
330 |
331 |
332 |
333 |
334 |
335 |
336 |
337 | SHP
338 |
339 |
340 |
341 | The cartographic boundary files contain geographic data only and do not include display mapping software or statistical data. For information on how to use cartographic boundary file data with specific software package users shall contact the company that produced the software.
342 |
343 |
344 |
345 |
346 |
347 |
348 | html
349 |
350 |
351 |
352 |
353 |
354 |
355 |
357 |
358 |
359 |
360 | The online cartographic boundary files may be downloaded without charge.
361 |
362 |
363 | To obtain more information about ordering Cartographic Boundary Files visit http://www.census.gov/geo/www/tiger.
364 |
365 |
366 |
367 |
368 |
369 |
370 |
371 |
372 |
373 |
374 | http://www2.census.gov/geo/tiger/GENZ2015/shp/cb_2015_us_county_20m.zip
375 |
376 |
377 | Shapefile Zip File
378 |
379 |
380 |
381 |
382 |
383 |
384 |
385 |
386 |
387 |
388 | http://www.census.gov/geo/maps-data/data/tiger-cart-boundary.html
389 |
390 |
391 | Cartographic Boundary Shapefiles
392 |
393 |
394 | Simplified representations of selected geographic areas from the Census Bureau's MAF/TIGER geographic database
395 |
396 |
397 |
398 |
399 |
400 |
401 |
402 |
403 |
404 |
405 |
406 |
407 | dataset
410 |
411 |
412 |
413 |
414 |
415 |
416 | Horizontal Positional Accuracy
417 |
418 |
419 |
420 |
421 |
422 | Data are not accurate. Data are generalized representations of geographic boundaries at 1:20,000,000.
423 |
424 |
425 |
426 |
427 |
428 | meters
429 |
430 |
431 |
432 |
433 | Missing
434 |
435 |
436 |
437 |
438 |
439 |
440 |
441 |
442 |
443 |
444 |
445 |
446 |
447 | The cartographic boundary files are generalized representations of extracts taken from the MAF/TIGER Database. Generalized boundary files are clipped to a simplified version of the U.S. outline. As a result, some off-shore areas may be excluded from the generalized files. Some small geographic areas, holes, or discontiguous parts of areas may not be included in generalized files if they are not visible at the target scale.
448 |
449 |
450 |
451 |
452 |
453 |
454 |
455 | The Census Bureau performed automated tests to ensure logical consistency of the source database. Segments making up the outer and inner boundaries of a polygon tie end-to-end to completely enclose the area. All polygons were tested for closure. The Census Bureau uses its internally developed geographic update system to enhance and modify spatial and attribute data in the Census MAF/TIGER database. Standard geographic codes, such as INCITS (formerly FIPS) codes for states, counties, municipalities, county subdivisions, places, American Indian/Alaska Native/Native Hawaiian areas, and congressional districts are used when encoding spatial entities. The Census Bureau performed spatial data tests for logical consistency of the codes during the compilation of the original Census MAF/TIGER database files. Feature attribute information has been examined but has not been fully tested for consistency.
456 |
457 | For the cartographic boundary files, the Point and Vector Object Count for the G-polygon SDTS Point and Vector Object Type reflects the number of records in the file's data table. For multi-polygon features, only one attribute record exists for each multi-polygon rather than one attribute record per individual G-polygon component of the multi-polygon feature. Cartographic Boundary File multi-polygons are an exception to the G-polygon object type classification. Therefore, when multi-polygons exist in a file, the object count will be less than the actual number of G-polygons.
458 |
459 |
460 |
461 |
462 |
463 |
464 |
465 |
466 |
467 | Spatial data were extracted from the MAF/TIGER database and processed through a U.S. Census Bureau batch generalization system.
468 |
469 |
470 | 2016-03-01T00:00:00
471 |
472 |
473 |
474 |
475 | Geo-spatial Relational Database
476 |
477 |
478 |
479 |
480 | Census MAF/TIGER database
481 |
482 |
483 | MAF/TIGER
484 |
485 |
486 |
487 |
488 | 20150101
489 |
490 |
491 | The dates describe the effective date of 2015 cartographic boundaries.
494 |
495 |
496 |
497 |
498 |
499 |
500 | U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Geographic Customer Services Branch
501 |
502 |
503 | originator
505 |
506 |
507 |
508 |
509 |
510 | Source Contribution: All spatial and feature data
511 |
512 |
513 |
514 |
515 |
516 |
517 |
518 |
519 |
520 |
521 |
522 |
523 |
524 |
525 |
528 | notPlanned
529 |
530 |
531 |
532 | This was transformed from the Census Metadata Import Format
533 |
534 |
536 |
537 |
538 |
--------------------------------------------------------------------------------
/data/cb_2015_us_county_20m/cb_2015_us_county_20m.shp.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 | U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Cartographic Products and Services Branch
7 | 201603
8 | 2015 Cartographic Boundary File, State-County for United States, 1:20,000,000
9 | vector digital data
10 |
11 | Cartographic Boundary Files
12 | 2015
13 |
14 | http://www2.census.gov/geo/tiger/GENZ2015/shp/cb_2015_us_county_20m.zip
15 |
16 |
17 |
18 | The 2015 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files.
19 |
20 | The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities.
21 | These files were specifically created to support small-scale thematic mapping. To improve the appearance of shapes at small scales, areas are represented with fewer vertices than detailed TIGER/Line Shapefiles. Cartographic boundary files take up less disk space than their ungeneralized counterparts. Cartographic boundary files take less time to render on screen than TIGER/Line Shapefiles. You can join this file with table data downloaded from American FactFinder by using the AFFGEOID field in the cartographic boundary file. If detailed boundaries are required, please use the TIGER/Line Shapefiles instead of the generalized cartographic boundary files.
22 |
23 |
24 |
25 |
26 | 201603
27 | 201603
28 |
29 |
30 | publication date
31 |
32 |
33 |
34 | None planned. No changes or updates will be made to this version of the cartographic boundary files. New versions of the cartographic boundary files will be produced on an annual release schedule. Types of geography released may vary from year to year.
35 |
36 |
37 |
38 | -179.174265
39 | 179.773922
40 | 71.352561
41 | 17.913769
42 |
43 |
44 |
45 |
46 | ISO 19115 Topic Categories
47 | Boundaries
48 |
49 |
50 | None
51 | 2015
52 | SHP
53 | Borough
54 | Cartographic Boundary
55 | Census Area
56 | City
57 | City and Borough
58 | County
59 | County equivalent
60 | District
61 | Generalized
62 | Independent City
63 | Island
64 | Municipality
65 | Municipio
66 | Parish
67 | State
68 |
69 |
70 | ANSI INCITS 38:2009 (Formerly FIPS 5-2), ANSI INCITS 31:2009 (Formerly FIPS 6-4),ANSI INCITS 454:2009 (Formerly FIPS 8-6), ANSI INCITS 455:2009(Formerly FIPS 9-1), ANSI INCITS 446:2008 (Geographic Names Information System (GNIS))
71 | United States
72 | US
73 |
74 |
75 | None
76 | The intended display scale for this file is 1:20,000,000. This file should not be displayed at scales larger than 1:20,000,000.
77 |
78 | These products are free to use in a product or publication, however acknowledgement must be given to the U.S. Census Bureau as the source. The boundary information is for visual display at appropriate small scales only. Cartographic boundary files should not be used for geographic analysis including area or perimeter calculation. Files should not be used for geocoding addresses. Files should not be used for determining precise geographic area relationships.
79 |
80 |
81 |
82 |
83 | U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Geographic Customer Services Branch
84 |
85 |
86 | mailing
87 | 4600 Silver Hill Road
88 | Washington
89 | DC
90 | 20233-7400
91 | United States
92 |
93 | 301.763.1128
94 | 301.763.4710
95 | geo.geography@census.gov
96 |
97 |
98 |
99 |
100 |
101 | Accurate against American National Standards Institute (ANSI) Publication INCITS 446-2008 (Geographic Names Information System (GNIS)) at the 100% level for the codes and base names present in the file. The remaining attribute information has been examined but has not been fully tested for accuracy.
102 |
103 | The Census Bureau performed automated tests to ensure logical consistency of the source database. Segments making up the outer and inner boundaries of a polygon tie end-to-end to completely enclose the area. All polygons were tested for closure. The Census Bureau uses its internally developed geographic update system to enhance and modify spatial and attribute data in the Census MAF/TIGER database. Standard geographic codes, such as INCITS (formerly FIPS) codes for states, counties, municipalities, county subdivisions, places, American Indian/Alaska Native/Native Hawaiian areas, and congressional districts are used when encoding spatial entities. The Census Bureau performed spatial data tests for logical consistency of the codes during the compilation of the original Census MAF/TIGER database files. Feature attribute information has been examined but has not been fully tested for consistency.
104 |
105 | For the cartographic boundary files, the Point and Vector Object Count for the G-polygon SDTS Point and Vector Object Type reflects the number of records in the file's data table. For multi-polygon features, only one attribute record exists for each multi-polygon rather than one attribute record per individual G-polygon component of the multi-polygon feature. Cartographic Boundary File multi-polygons are an exception to the G-polygon object type classification. Therefore, when multi-polygons exist in a file, the object count will be less than the actual number of G-polygons.
106 | The cartographic boundary files are generalized representations of extracts taken from the MAF/TIGER Database. Generalized boundary files are clipped to a simplified version of the U.S. outline. As a result, some off-shore areas may be excluded from the generalized files. Some small geographic areas, holes, or discontiguous parts of areas may not be included in generalized files if they are not visible at the target scale.
107 |
108 |
109 | Data are not accurate. Data are generalized representations of geographic boundaries at 1:20,000,000.
110 |
111 |
112 |
113 |
114 |
115 |
116 | U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Geographic Customer Services Branch
117 | unpublished material
118 | Census MAF/TIGER database
119 |
120 |
121 | Geo-spatial Relational Database
122 |
123 |
124 |
125 | 20150101
126 | 20150101
127 |
128 |
129 | The dates describe the effective date of 2015 cartographic boundaries.
130 |
131 | MAF/TIGER
132 | All spatial and feature data
133 |
134 |
135 | Spatial data were extracted from the MAF/TIGER database and processed through a U.S. Census Bureau batch generalization system.
136 | MAF/TIGER
137 | 201603
138 |
139 |
140 |
141 |
142 | INCITS (formerly FIPS) codes
143 | Vector
144 |
145 |
146 | G-polygon
147 | 3220
148 |
149 |
150 |
151 |
152 |
153 |
154 | 0.000458
155 | 0.000458
156 | Decimal degrees
157 |
158 |
159 | North American Datum of 1983
160 | Geodetic Reference System 80
161 | 6378137.000000
162 | 298.257222
163 |
164 |
165 |
166 |
167 |
168 |
169 | cb_2015_us_county_20m.shp
170 | Current County and Equivalent National entities
171 | U.S. Census Bureau
172 |
173 |
174 | STATEFP
175 | Current state Federal Information Processing Series (FIPS) code
176 | U.S. Census Bureau
177 |
178 |
179 | National Standard Codes (ANSI INCITS 38-2009), Federal Information Processing Series (FIPS) - States/State Equivalents
180 | U.S. Census Bureau
181 |
182 |
183 |
184 |
185 | COUNTYFP
186 | Current county Federal Information Processing Series (FIPS) code
187 | U.S. Census Bureau
188 |
189 |
190 | National Standard Codes (ANSI INCITS 31-2009), Federal Information Processing Series (FIPS) - Counties/County Equivalents
191 | U.S. Census Bureau
192 |
193 |
194 |
195 |
196 | COUNTYNS
197 | Current county Geographic Names Information System (GNIS) code
198 | U.S. Census Bureau
199 |
200 |
201 | INCITS 446:2008 (Geographic Names Information System (GNIS)), Identifying Attributes for Named Physical and Cultural Geographic Features (Except Roads and Highways) of the United States, Its Territories, Outlying Areas, and Freely Associated Areas, and the Waters of the Same to the Limit of the Twelve-Mile Statutory Zone
202 | U.S. Geological Survey (USGS)
203 |
204 |
205 |
206 |
207 | AFFGEOID
208 | American FactFinder summary level code + geovariant code + '00US' + GEOID
209 | U.S. Census Bureau
210 |
211 |
212 | American FactFinder geographic identifier
213 | U.S. Census Bureau
214 |
215 |
216 |
217 |
218 | GEOID
219 | County identifier; a concatenation of current state Federal Information Processing Series (FIPS) code and county FIPS code
220 | U.S. Census Bureau
221 |
222 | The GEOID attribute is a concatenation of the state FIPS code followed by the county FIPS code. No spaces are allowed between the two codes. The state FIPS code is taken from "National Standard Codes (ANSI INCITS 38-2009), Federal Information Processing Series (FIPS) - States". The county FIPS code is taken from "National Standard Codes (ANSI INCITS 31-2009), Federal Information Processing Series (FIPS) - Counties/County Equivalents".
223 |
224 |
225 |
226 | NAME
227 | Current county name
228 | U.S. Census Bureau
229 |
230 |
231 | National Standard Codes (ANSI INCITS 31-2009), Federal Information Processing Series (FIPS) - Counties/County Equivalents
232 | U.S. Census Bureau
233 |
234 |
235 |
236 |
237 | LSAD
238 | Current legal/statistical area description code for county
239 | U.S. Census Bureau
240 |
241 |
242 | 00
243 | Blank
244 | U.S. Census Bureau
245 |
246 |
247 |
248 |
249 | 03
250 | City and Borough (suffix)
251 | U.S. Census Bureau
252 |
253 |
254 |
255 |
256 | 04
257 | Borough (suffix)
258 | U.S. Census Bureau
259 |
260 |
261 |
262 |
263 | 05
264 | Census Area (suffix)
265 | U.S. Census Bureau
266 |
267 |
268 |
269 |
270 | 06
271 | County (suffix)
272 | U.S. Census Bureau
273 |
274 |
275 |
276 |
277 | 07
278 | District (suffix)
279 | U.S. Census Bureau
280 |
281 |
282 |
283 |
284 | 10
285 | Island (suffix)
286 | U.S. Census Bureau
287 |
288 |
289 |
290 |
291 | 12
292 | Municipality (suffix)
293 | U.S. Census Bureau
294 |
295 |
296 |
297 |
298 | 13
299 | Municipio (suffix)
300 | U.S. Census Bureau
301 |
302 |
303 |
304 |
305 | 15
306 | Parish (suffix)
307 | U.S. Census Bureau
308 |
309 |
310 |
311 |
312 | 25
313 | city (suffix)
314 | U.S. Census Bureau
315 |
316 |
317 |
318 |
319 | ALAND
320 | Current land area (square meters)
321 | U.S. Census Bureau
322 |
323 |
324 | 0
325 | 9,999,999,999,999
326 | square meters
327 |
328 |
329 |
330 |
331 | AWATER
332 | Current water area (square meters)
333 | U.S. Census Bureau
334 |
335 |
336 | 0
337 | 9,999,999,999,999
338 | square meters
339 |
340 |
341 |
342 |
343 |
344 |
345 |
346 |
347 |
348 | U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Geographic Customer Services Branch
349 |
350 |
351 | mailing
352 | 4600 Silver Hill Road
353 | Washington
354 | DC
355 | 20233-7400
356 | United States
357 |
358 | 301.763.1128
359 | 301.763.4710
360 | geo.geography@census.gov
361 |
362 |
363 | No warranty, expressed or implied is made with regard to the accuracy of these data, and no liability is assumed by the U.S. Government in general or the U.S. Census Bureau in specific as to the spatial or attribute accuracy of the data. The act of distribution shall not constitute any such warranty and no responsibility is assumed by the U.S. government in the use of these files. The boundary information is for small-scale mapping purposes only; boundary depiction and designation for small-scale mapping purposes do not constitute a determination of jurisdictional authority or rights of ownership or entitlement and they are not legal land descriptions.
364 |
365 |
366 |
367 | SHP
368 | PK-ZIP, version 1.93A or higher
369 |
370 |
371 |
372 |
373 |
374 | http://www2.census.gov/geo/tiger/GENZ2015/shp/cb_2015_us_county_20m.zip
375 |
376 |
377 |
378 |
379 |
380 | The online cartographic boundary files may be downloaded without charge.
381 | To obtain more information about ordering Cartographic Boundary Files visit http://www.census.gov/geo/www/tiger.
382 |
383 | The cartographic boundary files contain geographic data only and do not include display mapping software or statistical data. For information on how to use cartographic boundary file data with specific software package users shall contact the company that produced the software.
384 |
385 |
386 | 201603
387 |
388 |
389 |
390 | U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Geographic Customer Services Branch
391 |
392 |
393 | mailing
394 | 4600 Silver Hill Road
395 | Washington
396 | DC
397 | 20233-7400
398 | United States
399 |
400 | 301.763.1128
401 | 301.763.4710
402 | geo.geography@census.gov
403 |
404 |
405 | Content Standard for Digital Geospatial Metadata
406 | FGDC-STD-001-1998
407 |
408 |
--------------------------------------------------------------------------------
/data/cb_2015_us_county_20m/cb_2015_us_county_20m.shx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dannguyen/gis-geospatial-fun-python3x/a5da0955ff08ee90ea79626b19cb96c843e3df0c/data/cb_2015_us_county_20m/cb_2015_us_county_20m.shx
--------------------------------------------------------------------------------
/data/projections/epsg_4326.txt:
--------------------------------------------------------------------------------
1 | GEOGCS["WGS84",DATUM["WGS_1984",SPHEROID["WGS84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]
2 |
--------------------------------------------------------------------------------
/fetchdata.py:
--------------------------------------------------------------------------------
1 | import requests
2 | from shutil import unpack_archive
3 | from pathlib import Path
4 | URL = 'http://apps.sfgov.org/datafiles/view.php?file=sfgis/bayarea_zipcodes.zip'
5 | DDIR = Path('data', Path(URL).stem)
6 | DDIR.mkdir(parents=True, exist_ok=True)
7 | ZIP_PATH = DDIR.joinpath(Path(URL).name)
8 |
9 | resp = requests.get(URL)
10 | with ZIP_PATH.open('wb') as zf:
11 | zf.write(resp.content)
12 | # unpack it
13 | unpack_archive(str(ZIP_PATH), extract_dir=str(DDIR))
14 |
--------------------------------------------------------------------------------
/notebooks/assets/simple-quakes-bay-counties-zips.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dannguyen/gis-geospatial-fun-python3x/a5da0955ff08ee90ea79626b19cb96c843e3df0c/notebooks/assets/simple-quakes-bay-counties-zips.png
--------------------------------------------------------------------------------
/notebooks/notebookdata/bayarea_zipcodes.zip:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dannguyen/gis-geospatial-fun-python3x/a5da0955ff08ee90ea79626b19cb96c843e3df0c/notebooks/notebookdata/bayarea_zipcodes.zip
--------------------------------------------------------------------------------
/notebooks/notebookdata/cb_2015_us_county_5m.zip:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dannguyen/gis-geospatial-fun-python3x/a5da0955ff08ee90ea79626b19cb96c843e3df0c/notebooks/notebookdata/cb_2015_us_county_5m.zip
--------------------------------------------------------------------------------
/plot_ca_census.py:
--------------------------------------------------------------------------------
1 | # http://basemaptutorial.readthedocs.io/en/latest/shapefile.html
2 |
3 | from mpl_toolkits.basemap import Basemap
4 | from pathlib import Path
5 | import matplotlib.pyplot as plt
6 | SHPFILE_PATH = Path('data', 'cb_2015_06_tract_500k', 'cb_2015_06_tract_500k' )
7 |
8 | map = Basemap(llcrnrlon=-124.48, urcrnrlon=-114.13,
9 | llcrnrlat=32.53, urcrnrlat=42.01,
10 | resolution='i', projection='tmerc',
11 | lat_0 = 32, lon_0 = -120)
12 | map.drawmapboundary(color='#333333', fill_color='aqua')
13 | map.fillcontinents(color='#ddaa66',lake_color='aqua')
14 | map.readshapefile(str(SHPFILE_PATH), 'stuff')
15 | plt.show()
16 |
--------------------------------------------------------------------------------
/plot_census_counties.py:
--------------------------------------------------------------------------------
1 | """
2 | Plot U.S. Census Shapefiles using Albers Equal Area
3 |
4 | https://www.census.gov/geo/maps-data/data/cbf/cbf_counties.html
5 | http://matplotlib.org/basemap/users/aea.html
6 | http://gis.stackexchange.com/questions/141580/which-projection-is-best-for-mapping-the-contiguous-united-states/142093
7 | """
8 |
9 |
10 | from pathlib import Path
11 | from shutil import unpack_archive
12 | import requests
13 | from mpl_toolkits.basemap import Basemap
14 | import matplotlib.pyplot as plt
15 | IMG_PATH = Path('assets', 'images', 'census-counties-20m.png')
16 |
17 | SHPFILE_URL = 'http://www2.census.gov/geo/tiger/GENZ2015/shp/cb_2015_us_county_20m.zip'
18 | SHPFILE_ZIPPATH = Path('data', Path(SHPFILE_URL).name)
19 | SHPFILE_NAME = Path('data', SHPFILE_ZIPPATH.stem, SHPFILE_ZIPPATH.stem)
20 | SHPFILE_PATH = Path('data', SHPFILE_ZIPPATH.stem, SHPFILE_ZIPPATH.stem + '.shp')
21 |
22 | SHPFILE_DIR = SHPFILE_PATH.parent
23 | if not SHPFILE_PATH.exists():
24 | print("Can't find", SHPFILE_PATH)
25 | print("Downloading", SHPFILE_URL)
26 | SHPFILE_DIR.mkdir(parents=True, exist_ok=True)
27 | resp = requests.get(SHPFILE_URL)
28 | with SHPFILE_ZIPPATH.open('wb') as w:
29 | w.write(resp.content)
30 |
31 | unpack_archive(str(SHPFILE_ZIPPATH), extract_dir=str(SHPFILE_DIR))
32 |
33 |
34 | fig, ax = plt.subplots()
35 | map = Basemap(ax=ax, projection='aea',
36 | llcrnrlon=-120, urcrnrlon=-62,
37 | llcrnrlat=21.5, urcrnrlat=50,
38 | lat_1=29.5, lat_2=45.5, lon_0=-96, lat_0=37.5)
39 | map.drawmapboundary(fill_color='#34ACAF')
40 | map.fillcontinents(color='#AA0078',lake_color='#34ACAF')
41 | map.readshapefile(str(SHPFILE_NAME), 'stuff', linewidth=0.4, color="magenta")
42 | ax.set_title("U.S. Census County Shapefile w/ Albers Equal Area Projection")
43 | fig.savefig(str(IMG_PATH))
44 |
--------------------------------------------------------------------------------
/samples/pyproj_blog_itm_wgs-example.py:
--------------------------------------------------------------------------------
1 | # Code comes from:
2 | # https://glenbambrick.com/2016/01/24/reproject-shapefile/
3 | import shapefile
4 | from pyproj import Proj, transform
5 |
6 | # function to create .prj file
7 | def getWKT_PRJ (epsg_code):
8 | import urllib
9 | wkt = urllib.urlopen("http://spatialreference.org/ref/epsg/{0}/prettywkt/".format(epsg_code))
10 | remove_spaces = wkt.read().replace(" ","")
11 | output = remove_spaces.replace("\n", "")
12 | return output
13 |
14 | # working folder
15 | shp_folder = "C:/blog/pyproj/shp/"
16 |
17 | # Shapefile Reader to access data from original file.
18 | shpf = shapefile.Reader(shp_folder + "Ireland_LA.shp")
19 |
20 | # Shapefile Writer to add data to new file
21 | wgs_shp = shapefile.Writer(shapefile.POLYGON)
22 |
23 | # access the fields information of the original file.
24 | fields = shpf.fields
25 |
26 | # access to the fields to create in new file
27 | wgs_fields = wgs_shp.fields
28 |
29 | # grab the name of fields and data types
30 | for name in fields:
31 | if type(name) == "tuple":
32 | continue
33 | else:
34 | args = name
35 | wgs_shp.field(*args)
36 |
37 | # access the records of the original file.
38 | records = shpf.records()
39 |
40 | for row in records:
41 | args = row
42 | wgs_shp.record(*args)
43 |
44 | # set the input projection of the original file.
45 | input_projection = Proj(init="epsg:29902")
46 | # set the projection for the output file.
47 | output_projection = Proj(init="epsg:4326")
48 |
49 | # a refernce to access the geometry of the counties in the original file.
50 | geom = shpf.shapes()
51 |
52 | # for each polygon in the dataset
53 | for feature in geom:
54 | # if there is only one part
55 | if len(feature.parts) == 1:
56 | # create empty list to store all the coordinates
57 | poly_list = []
58 | # get each coord that makes up the polygon
59 | for coords in feature.points:
60 | x, y = coords[0], coords[1]
61 | # tranform the coord
62 | new_x, new_y = transform(input_projection, output_projection, x, y)
63 | # put the coord into a list structure
64 | poly_coord = [float(new_x), float(new_y)]
65 | # append the coords to the polygon list
66 | poly_list.append(poly_coord)
67 | # add the geometry to the shapefile.
68 | wgs_shp.poly(parts=[poly_list])
69 | # if there is more than one part to the geometry
70 | else:
71 | # append the total amount of points to the end of the parts list
72 | feature.parts.append(len(feature.points))
73 |
74 | # enpty list to store all the parts that make up the complete feature
75 | poly_list = []
76 |
77 | # keep track of the part being added
78 | parts_counter = 0
79 |
80 | # while the parts_counter is less than the amount of parts
81 | while parts_counter < len(feature.parts) - 1:
82 | # keep track of the amount of points added to the feature
83 | coord_count = feature.parts[parts_counter]
84 | # number of points in each part
85 | no_of_points = abs(feature.parts[parts_counter] - feature.parts[parts_counter + 1])
86 | # create list to hold individual parts - these get added to poly_list[]
87 | part_list = []
88 | # cut off point for each part
89 | end_point = coord_count + no_of_points
90 |
91 | # loop through each part
92 | while coord_count < end_point:
93 | for coords in feature.points[coord_count:end_point]:
94 | x, y = coords[0], coords[1]
95 | # tranform the coord
96 | new_x, new_y = transform(input_projection, output_projection, x, y)
97 | # put the coord into a list structure
98 | poly_coord = [float(new_x), float(new_y)]
99 | # append the coords to the part list
100 | part_list.append(poly_coord)
101 | coord_count = coord_count + 1
102 | # append the part to the poly_list
103 | poly_list.append(part_list)
104 | parts_counter = parts_counter + 1
105 | # add the geometry to to new file
106 | wgs_shp.poly(parts=poly_list)
107 |
108 | # save the new Shapefile
109 | wgs_shp.save(shp_folder + "Ireland_LA_wgs.shp")
110 |
111 | # generate a prj file.
112 | prj = open(shp_folder + "Ireland_LA_wgs.prj", "w")
113 | epsg = getWKT_PRJ("4326")
114 | prj.write(epsg)
115 | prj.close()
116 |
--------------------------------------------------------------------------------
/viz_subplotmaps.py:
--------------------------------------------------------------------------------
1 | from pathlib import Path
2 | from mpl_toolkits.basemap import Basemap
3 | import pandas as pd
4 | import matplotlib.pyplot as plt
5 |
6 | DATA_FILENAME = Path('data', 'usgs', 'worldwide-m6-quakes.csv')
7 | OUTPUT_IMGNAME = Path('assets', 'images', 'worldwide-m6-quakes-2000-2015-subplots.png')
8 | quakes = pd.read_csv(str(DATA_FILENAME), parse_dates=['time'])
9 | # probably a better way to get year values
10 | years = quakes['time'].dt.year.sort_values().unique()
11 |
12 | ncol = 3 # hardcoded
13 | nrow = int(len(years) / ncol)
14 |
15 | fig, axlist = plt.subplots(ncol, nrow, figsize=(20, 10),
16 | sharex=True, sharey=True)
17 |
18 | for i in range(ncol):
19 | for j in range(nrow):
20 | n = (i * ncol) + j
21 | yr = years[n]
22 | qdf = quakes[quakes['time'].dt.year == yr]
23 | ax = axlist[i][j]
24 | earthmap = Basemap(ax=ax)
25 | earthmap.drawcoastlines(color='#555566', linewidth=1)
26 | # plot it
27 | ax.scatter(qdf['longitude'], qdf['latitude'])
28 | ax.set_title(str(yr))
29 |
30 |
31 | fig.savefig(str(OUTPUT_IMGNAME))
32 |
--------------------------------------------------------------------------------