├── README.md └── Movie /README.md: -------------------------------------------------------------------------------- 1 | # Movie-Recommendation-System 2 | Develop a site that analyzes user preferences and recommends movies based on their taste 3 | -------------------------------------------------------------------------------- /Movie: -------------------------------------------------------------------------------- 1 | import pandas as pd 2 | from sklearn.feature_extraction.text import CountVectorizer 3 | from sklearn.metrics.pairwise import cosine_similarity 4 | 5 | # Sample dataset 6 | data = {'title': ['Movie1', 'Movie2', 'Movie3'], 7 | 'genre': ['Action Comedy', 'Drama', 'Action Drama']} 8 | df = pd.DataFrame(data) 9 | 10 | def recommend_movies(title): 11 | count = CountVectorizer() 12 | matrix = count.fit_transform(df['genre']) 13 | similarity = cosine_similarity(matrix) 14 | indices = pd.Series(df.index, index=df['title']) 15 | idx = indices[title] 16 | sim_scores = list(enumerate(similarity[idx])) 17 | sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True) 18 | sim_scores = sim_scores[1:] 19 | return [df['title'][i[0]] for i in sim_scores] 20 | 21 | print(recommend_movies('Movie1')) 22 | --------------------------------------------------------------------------------