├── .gitignore ├── README.md ├── apresentacao └── intro-machine-learning_manha.pdf ├── compile.sh ├── data ├── 2015.csv ├── 2016.csv ├── 2017.csv ├── 2018.csv ├── 2019.csv ├── 2020.csv ├── world-happiness.zip └── world_country_clean.csv ├── docs ├── agrupamento.html ├── assets │ ├── 01_introduction │ │ ├── fitting.png │ │ ├── rl.png │ │ ├── trade-off.png │ │ ├── turing_test.png │ │ └── unsupervised-learning.png │ ├── 02_classification │ │ ├── 1_knn │ │ │ ├── knn_01.png │ │ │ ├── knn_02.png │ │ │ ├── knn_03.png │ │ │ ├── knn_04.png │ │ │ ├── knn_05.png │ │ │ ├── knn_06.png │ │ │ └── knn_07.png │ │ ├── 2_decision-tree │ │ │ ├── 01_dt.png │ │ │ ├── 02_dt.png │ │ │ ├── 03_dt.png │ │ │ ├── 04_dt.png │ │ │ ├── 05_dt.png │ │ │ └── 06_dt.png │ │ ├── choose_k.png │ │ ├── decisionoverfitting.png │ │ └── email_classifier.png │ ├── 03_regression │ │ ├── correlations.png │ │ ├── gradient-descendent-large.png │ │ ├── gradient-descendent-small.png │ │ ├── gradient-descendent.png │ │ ├── happiness_world.png │ │ ├── kernels-plot.png │ │ ├── kernels-problem.png │ │ ├── kernels.png │ │ ├── learning-rate-gd.png │ │ ├── linear-svm.png │ │ ├── ols-steps.png │ │ ├── ols.png │ │ └── svr.png │ ├── 04_clustering │ │ ├── centroid_bases.png │ │ ├── clust_1_ex.png │ │ ├── clust_2_ex.png │ │ ├── clustering.png │ │ ├── dataset_hierarquico.png │ │ ├── den_eg_1.png │ │ ├── dendograma_0.png │ │ ├── dendograma_1.png │ │ ├── dendograma_2.png │ │ ├── dendograma_3.png │ │ ├── dendograma_cut.png │ │ ├── indice_silhueta.png │ │ ├── kmeans_algoritmo.png │ │ ├── kmeans_algoritmo_2.png │ │ ├── kmeans_conjunto_de_dados.png │ │ ├── metodo_cotovelo.png │ │ └── metodo_hierarquico.png │ ├── 1_classification │ │ ├── 1_knn │ │ │ ├── knn_01.png │ │ │ ├── knn_02.png │ │ │ ├── knn_03.png │ │ │ ├── knn_04.png │ │ │ ├── knn_05.png │ │ │ ├── knn_06.png │ │ │ └── knn_07.png │ │ ├── 2_decision-tree │ │ │ ├── 01_dt.png │ │ │ ├── 02_dt.png │ │ │ ├── 03_dt.png │ │ │ ├── 04_dt.png │ │ │ ├── 05_dt.png │ │ │ └── 06_dt.png │ │ ├── choose_k.png │ │ ├── decisionoverfitting.png │ │ └── email_classifier.png │ ├── appendix-kaggle │ │ ├── code_number_2.png │ │ ├── criacao_jupyter.png │ │ ├── exemplo_jupyter.png │ │ ├── tela_criacao_2.png │ │ └── tela_inicial.png │ ├── banner_notebook.png │ ├── capa.png │ ├── capa_2.png │ ├── centroid_bases.png │ ├── clust_1_ex.png │ ├── clust_2_ex.png │ ├── clustering.png │ ├── correlations.png │ ├── dataset_hierarquico.png │ ├── den_eg_1.png │ ├── dendograma_0.png │ ├── dendograma_1.png │ ├── dendograma_2.png │ ├── dendograma_3.png │ ├── dendograma_cut.png │ ├── gradient-descendent-large.png │ ├── gradient-descendent-small.png │ ├── gradient-descendent.png │ ├── happiness_world.png │ ├── indice_silhueta.png │ ├── kernels-plot.png │ ├── kernels-problem.png │ ├── kernels.png │ ├── kmeans_algoritmo.png │ ├── kmeans_algoritmo_2.png │ ├── kmeans_conjunto_de_dados.png │ ├── learning-rate-gd.png │ ├── linear-svm.png │ ├── metodo_cotovelo.png │ ├── metodo_hierarquico.png │ ├── ml-diagram.png │ ├── ols-steps.png │ ├── ols.png │ ├── svr.png │ └── turing_test.png ├── classificação.html ├── considerações-finais.html ├── exemplos.html ├── index.html ├── intro-ao-machine-learning_files │ └── figure-html │ │ ├── unnamed-chunk-3-1.png │ │ └── unnamed-chunk-4-1.png ├── introdução.html ├── kaggle.html ├── libs │ ├── gitbook-2.6.7 │ │ ├── css │ │ │ ├── fontawesome │ │ │ │ └── fontawesome-webfont.ttf │ │ │ ├── plugin-bookdown.css │ │ │ ├── plugin-clipboard.css │ │ │ ├── plugin-fontsettings.css │ │ │ ├── plugin-highlight.css │ │ │ ├── plugin-search.css │ │ │ ├── plugin-table.css │ │ │ └── style.css │ │ └── js │ │ │ ├── app.min.js │ │ │ ├── clipboard.min.js │ │ │ ├── jquery.highlight.js │ │ │ ├── lunr.js │ │ │ ├── plugin-bookdown.js │ │ │ ├── plugin-clipboard.js │ │ │ ├── plugin-fontsettings.js │ │ │ ├── plugin-search.js │ │ │ └── plugin-sharing.js │ └── jquery-2.2.3 │ │ └── jquery.min.js ├── referências-bibliográficas.html ├── regressão.html ├── search_index.json ├── sobre-o-kaggle.html └── welcome.html └── src ├── _bookdown.yml ├── _bookdown_files └── intro-ao-machine-learning_files │ └── figure-html │ ├── unnamed-chunk-2-1.png │ ├── unnamed-chunk-3-1.png │ └── unnamed-chunk-4-1.png ├── _output.yml ├── appendix-kaggle.Rmd ├── assets ├── 01_introduction │ ├── fitting.png │ ├── rl.png │ ├── trade-off.png │ ├── turing_test.png │ └── unsupervised-learning.png ├── 02_classification │ ├── 1_knn │ │ ├── 00_dataset.jpg │ │ ├── 01_classify.jpg │ │ ├── 02_distance.jpg │ │ ├── 03_neighbor.jpg │ │ ├── 04_classcount.jpg │ │ ├── 05_classdefinition.jpg │ │ ├── 06_complexity.jpg │ │ ├── classification_examples.drawio │ │ ├── examples │ │ │ ├── examples.drawio │ │ │ ├── pointviz.png │ │ │ ├── pointviz.svg │ │ │ ├── src │ │ │ │ ├── knn_examples.py │ │ │ │ ├── knnpoints.csv │ │ │ │ └── pointer_builder_example.py │ │ │ ├── test_1.png │ │ │ ├── test_1.svg │ │ │ ├── test_2.png │ │ │ ├── test_2.svg │ │ │ ├── test_3.png │ │ │ └── test_3.svg │ │ ├── knn_01.png │ │ ├── knn_02.png │ │ ├── knn_03.png │ │ ├── knn_04.png │ │ ├── knn_05.png │ │ ├── knn_06.png │ │ └── knn_07.png │ ├── 2424491-200.png │ ├── 2_decision-tree │ │ ├── 01_dt.png │ │ ├── 02_dt.png │ │ ├── 03_dt.png │ │ ├── 04_dt.png │ │ ├── 05_dt.png │ │ ├── 06_dt.png │ │ ├── arvore_geral.drawio │ │ ├── arvore_geral.png │ │ ├── arvore_geral.svg │ │ └── decision_tree_charts.drawio │ ├── 843278.png │ ├── TK_email_icon.svg.png │ ├── choose_k.drawio │ ├── choose_k.png │ ├── choose_k.svg │ ├── decisionoverfitting.png │ ├── decisiontree_overfitting.drawio │ ├── decisiontree_overfitting.svg │ ├── delete+remove+trash+trash+bin+trash+can+icon-1320073117929397588.png │ ├── email_classifier.png │ ├── email_ml.drawio │ ├── email_ml.svg │ └── mailbox.png ├── 03_regression │ ├── correlations.png │ ├── gradient-descendent-large.png │ ├── gradient-descendent-small.png │ ├── gradient-descendent.png │ ├── happiness_world.png │ ├── kernels-plot.png │ ├── kernels-problem.png │ ├── kernels.png │ ├── learning-rate-gd.png │ ├── linear-svm.png │ ├── metodo_cotovelo.pdf │ ├── metodo_cotovelo.png │ ├── ols-steps.png │ ├── ols.png │ └── svr.png ├── 04_clustering │ ├── centroid_bases.png │ ├── clust_1_ex.png │ ├── clust_2_ex.png │ ├── clustering.png │ ├── dataset_hierarquico.png │ ├── den_eg_1.png │ ├── dendograma_0.png │ ├── dendograma_1.png │ ├── dendograma_2.png │ ├── dendograma_3.png │ ├── dendograma_cut.png │ ├── diagramas_curso-Page-5.png │ ├── indice_silhueta.png │ ├── kmeans_algoritmo.png │ ├── kmeans_algoritmo_2.png │ ├── kmeans_conjunto_de_dados.png │ ├── kmeans_example.png │ ├── metodo_cotovelo.pdf │ ├── metodo_cotovelo.png │ └── metodo_hierarquico.png ├── appendix-kaggle │ ├── code_number.png │ ├── code_number_2.png │ ├── criacao_jupyter.png │ ├── exemplo_jupyter.png │ ├── tela_criacao_2.png │ └── tela_inicial.png ├── banner_notebook.png ├── boston-reg.png ├── capa.png ├── custom.css ├── dest.jpg ├── happiness-reg.png └── ml-diagram.png ├── bibfile.bib ├── classification.Rmd ├── clustering.Rmd ├── compile.R ├── examples.Rmd ├── index.Rmd ├── introduction.Rmd ├── krantz.cls ├── references.Rmd └── regression.Rmd /.gitignore: -------------------------------------------------------------------------------- 1 | # History files 2 | .Rhistory 3 | .Rapp.history 4 | 5 | # Session Data files 6 | .RData 7 | 8 | # User-specific files 9 | .Ruserdata 10 | 11 | # Example code in package build process 12 | *-Ex.R 13 | 14 | # Output files from R CMD build 15 | /*.tar.gz 16 | 17 | # Output files from R CMD check 18 | /*.Rcheck/ 19 | 20 | # RStudio files 21 | .Rproj.user/ 22 | 23 | # produced vignettes 24 | vignettes/*.html 25 | vignettes/*.pdf 26 | 27 | # OAuth2 token, see https://github.com/hadley/httr/releases/tag/v0.3 28 | .httr-oauth 29 | 30 | # knitr and R markdown default cache directories 31 | *_cache/ 32 | /cache/ 33 | 34 | # Temporary files created by R markdown 35 | *.utf8.md 36 | *.knit.md 37 | 38 | # R Environment Variables 39 | .Renviron 40 | 41 | _index.Rmd 42 | 43 | notebooks/ 44 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Introdução ao Machine Learning 2 | 3 | Bem-vindo ao código fonte do livro-texto de **Introdução Ao Machine Learning**. Neste material, você irá encontrar conteúdos sobre o conceito, técnicas e algumas dicas úteis sobre *Machine Learning*. Procuramos abordar os conceitos de forma didática, porque sabemos o quão difícil é se inteirar de uma nova área, principalmente para as pessoas que não estão familiarizadas com o assunto. Este livro-texto não tem um público-alvo, escrevemos com o objetivo de atingir o máximo de pessoas em quaisquer áreas. O único pré-requisito para ler este livro-texto é ter curiosidade, porque não são as respostas que movem o mundo, e sim, as perguntas! 4 | 5 | O livro compilado está disponível em: https://dataat.github.io/introducao-ao-machine-learning/ 6 | 7 | ### Para colaborar 8 | 9 | Se você deseja adicionar algum conteúdo ao site, você pode seguir os passos abaixo: 10 | 11 | 1. Faça um [fork](https://help.github.com/pt/github/getting-started-with-github/fork-a-repo) deste repositório; 12 | 2. No fork criado, faça as mudanças necessárias; 13 | 3. Inicie um [pull requests](https://help.github.com/pt/github/collaborating-with-issues-and-pull-requests/about-pull-requests) 14 | -------------------------------------------------------------------------------- /apresentacao/intro-machine-learning_manha.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/apresentacao/intro-machine-learning_manha.pdf -------------------------------------------------------------------------------- /compile.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | 3 | # Script para compilar o material do curso 4 | 5 | #production 6 | cd src 7 | Rscript compile.R 8 | cd ../docs 9 | #cp introdução.html index.html 10 | 11 | 12 | # development 13 | #rm -rf docs/* 14 | #cd src 15 | #R -e "bookdown::render_book('index.Rmd', bookdown::gitbook(lib_dir = 'libs'))" 16 | #cd .. 17 | #cp docs/introducao.html docs/index.html 18 | #brave-browser file:///home/adriano/introducao-ao-machine-learning/docs/regress%C3%A3o.html 19 | -------------------------------------------------------------------------------- /data/2018.csv: -------------------------------------------------------------------------------- 1 | Overall rank,Country or region,Score,GDP per capita,Social support,Healthy life expectancy,Freedom to make life choices,Generosity,Perceptions of corruption 2 | 1,Finland,7.632,1.305,1.592,0.874,0.681,0.202,0.393 3 | 2,Norway,7.594,1.456,1.582,0.861,0.686,0.286,0.340 4 | 3,Denmark,7.555,1.351,1.590,0.868,0.683,0.284,0.408 5 | 4,Iceland,7.495,1.343,1.644,0.914,0.677,0.353,0.138 6 | 5,Switzerland,7.487,1.420,1.549,0.927,0.660,0.256,0.357 7 | 6,Netherlands,7.441,1.361,1.488,0.878,0.638,0.333,0.295 8 | 7,Canada,7.328,1.330,1.532,0.896,0.653,0.321,0.291 9 | 8,New Zealand,7.324,1.268,1.601,0.876,0.669,0.365,0.389 10 | 9,Sweden,7.314,1.355,1.501,0.913,0.659,0.285,0.383 11 | 10,Australia,7.272,1.340,1.573,0.910,0.647,0.361,0.302 12 | 11,United Kingdom,7.190,1.244,1.433,0.888,0.464,0.262,0.082 13 | 12,Austria,7.139,1.341,1.504,0.891,0.617,0.242,0.224 14 | 13,Costa Rica,7.072,1.010,1.459,0.817,0.632,0.143,0.101 15 | 14,Ireland,6.977,1.448,1.583,0.876,0.614,0.307,0.306 16 | 15,Germany,6.965,1.340,1.474,0.861,0.586,0.273,0.280 17 | 16,Belgium,6.927,1.324,1.483,0.894,0.583,0.188,0.240 18 | 17,Luxembourg,6.910,1.576,1.520,0.896,0.632,0.196,0.321 19 | 18,United States,6.886,1.398,1.471,0.819,0.547,0.291,0.133 20 | 19,Israel,6.814,1.301,1.559,0.883,0.533,0.354,0.272 21 | 20,United Arab Emirates,6.774,2.096,0.776,0.670,0.284,0.186,N/A 22 | 21,Czech Republic,6.711,1.233,1.489,0.854,0.543,0.064,0.034 23 | 22,Malta,6.627,1.270,1.525,0.884,0.645,0.376,0.142 24 | 23,France,6.489,1.293,1.466,0.908,0.520,0.098,0.176 25 | 24,Mexico,6.488,1.038,1.252,0.761,0.479,0.069,0.095 26 | 25,Chile,6.476,1.131,1.331,0.808,0.431,0.197,0.061 27 | 26,Taiwan,6.441,1.365,1.436,0.857,0.418,0.151,0.078 28 | 27,Panama,6.430,1.112,1.438,0.759,0.597,0.125,0.063 29 | 28,Brazil,6.419,0.986,1.474,0.675,0.493,0.110,0.088 30 | 29,Argentina,6.388,1.073,1.468,0.744,0.570,0.062,0.054 31 | 30,Guatemala,6.382,0.781,1.268,0.608,0.604,0.179,0.071 32 | 31,Uruguay,6.379,1.093,1.459,0.771,0.625,0.130,0.155 33 | 32,Qatar,6.374,1.649,1.303,0.748,0.654,0.256,0.171 34 | 33,Saudi Arabia,6.371,1.379,1.331,0.633,0.509,0.098,0.127 35 | 34,Singapore,6.343,1.529,1.451,1.008,0.631,0.261,0.457 36 | 35,Malaysia,6.322,1.161,1.258,0.669,0.356,0.311,0.059 37 | 36,Spain,6.310,1.251,1.538,0.965,0.449,0.142,0.074 38 | 37,Colombia,6.260,0.960,1.439,0.635,0.531,0.099,0.039 39 | 38,Trinidad & Tobago,6.192,1.223,1.492,0.564,0.575,0.171,0.019 40 | 39,Slovakia,6.173,1.210,1.537,0.776,0.354,0.118,0.014 41 | 40,El Salvador,6.167,0.806,1.231,0.639,0.461,0.065,0.082 42 | 41,Nicaragua,6.141,0.668,1.319,0.700,0.527,0.208,0.128 43 | 42,Poland,6.123,1.176,1.448,0.781,0.546,0.108,0.064 44 | 43,Bahrain,6.105,1.338,1.366,0.698,0.594,0.243,0.123 45 | 44,Uzbekistan,6.096,0.719,1.584,0.605,0.724,0.328,0.259 46 | 45,Kuwait,6.083,1.474,1.301,0.675,0.554,0.167,0.106 47 | 46,Thailand,6.072,1.016,1.417,0.707,0.637,0.364,0.029 48 | 47,Italy,6.000,1.264,1.501,0.946,0.281,0.137,0.028 49 | 48,Ecuador,5.973,0.889,1.330,0.736,0.556,0.114,0.120 50 | 49,Belize,5.956,0.807,1.101,0.474,0.593,0.183,0.089 51 | 50,Lithuania,5.952,1.197,1.527,0.716,0.350,0.026,0.006 52 | 51,Slovenia,5.948,1.219,1.506,0.856,0.633,0.160,0.051 53 | 52,Romania,5.945,1.116,1.219,0.726,0.528,0.088,0.001 54 | 53,Latvia,5.933,1.148,1.454,0.671,0.363,0.092,0.066 55 | 54,Japan,5.915,1.294,1.462,0.988,0.553,0.079,0.150 56 | 55,Mauritius,5.891,1.090,1.387,0.684,0.584,0.245,0.050 57 | 56,Jamaica,5.890,0.819,1.493,0.693,0.575,0.096,0.031 58 | 57,South Korea,5.875,1.266,1.204,0.955,0.244,0.175,0.051 59 | 58,Northern Cyprus,5.835,1.229,1.211,0.909,0.495,0.179,0.154 60 | 59,Russia,5.810,1.151,1.479,0.599,0.399,0.065,0.025 61 | 60,Kazakhstan,5.790,1.143,1.516,0.631,0.454,0.148,0.121 62 | 61,Cyprus,5.762,1.229,1.191,0.909,0.423,0.202,0.035 63 | 62,Bolivia,5.752,0.751,1.223,0.508,0.606,0.141,0.054 64 | 63,Estonia,5.739,1.200,1.532,0.737,0.553,0.086,0.174 65 | 64,Paraguay,5.681,0.835,1.522,0.615,0.541,0.162,0.074 66 | 65,Peru,5.663,0.934,1.249,0.674,0.530,0.092,0.034 67 | 66,Kosovo,5.662,0.855,1.230,0.578,0.448,0.274,0.023 68 | 67,Moldova,5.640,0.657,1.301,0.620,0.232,0.171,0.000 69 | 68,Turkmenistan,5.636,1.016,1.533,0.517,0.417,0.199,0.037 70 | 69,Hungary,5.620,1.171,1.401,0.732,0.259,0.061,0.022 71 | 70,Libya,5.566,0.985,1.350,0.553,0.496,0.116,0.148 72 | 71,Philippines,5.524,0.775,1.312,0.513,0.643,0.120,0.105 73 | 72,Honduras,5.504,0.620,1.205,0.622,0.459,0.197,0.074 74 | 73,Belarus,5.483,1.039,1.498,0.700,0.307,0.101,0.154 75 | 74,Turkey,5.483,1.148,1.380,0.686,0.324,0.106,0.109 76 | 75,Pakistan,5.472,0.652,0.810,0.424,0.334,0.216,0.113 77 | 76,Hong Kong,5.430,1.405,1.290,1.030,0.524,0.246,0.291 78 | 77,Portugal,5.410,1.188,1.429,0.884,0.562,0.055,0.017 79 | 78,Serbia,5.398,0.975,1.369,0.685,0.288,0.134,0.043 80 | 79,Greece,5.358,1.154,1.202,0.879,0.131,0.000,0.044 81 | 80,Lebanon,5.358,0.965,1.179,0.785,0.503,0.214,0.136 82 | 81,Montenegro,5.347,1.017,1.279,0.729,0.259,0.111,0.081 83 | 82,Croatia,5.321,1.115,1.161,0.737,0.380,0.120,0.039 84 | 83,Dominican Republic,5.302,0.982,1.441,0.614,0.578,0.120,0.106 85 | 84,Algeria,5.295,0.979,1.154,0.687,0.077,0.055,0.135 86 | 85,Morocco,5.254,0.779,0.797,0.669,0.460,0.026,0.074 87 | 86,China,5.246,0.989,1.142,0.799,0.597,0.029,0.103 88 | 87,Azerbaijan,5.201,1.024,1.161,0.603,0.430,0.031,0.176 89 | 88,Tajikistan,5.199,0.474,1.166,0.598,0.292,0.187,0.034 90 | 89,Macedonia,5.185,0.959,1.239,0.691,0.394,0.173,0.052 91 | 90,Jordan,5.161,0.822,1.265,0.645,0.468,0.130,0.134 92 | 91,Nigeria,5.155,0.689,1.172,0.048,0.462,0.201,0.032 93 | 92,Kyrgyzstan,5.131,0.530,1.416,0.594,0.540,0.281,0.035 94 | 93,Bosnia and Herzegovina,5.129,0.915,1.078,0.758,0.280,0.216,0.000 95 | 94,Mongolia,5.125,0.914,1.517,0.575,0.395,0.253,0.032 96 | 95,Vietnam,5.103,0.715,1.365,0.702,0.618,0.177,0.079 97 | 96,Indonesia,5.093,0.899,1.215,0.522,0.538,0.484,0.018 98 | 97,Bhutan,5.082,0.796,1.335,0.527,0.541,0.364,0.171 99 | 98,Somalia,4.982,0.000,0.712,0.115,0.674,0.238,0.282 100 | 99,Cameroon,4.975,0.535,0.891,0.182,0.454,0.183,0.043 101 | 100,Bulgaria,4.933,1.054,1.515,0.712,0.359,0.064,0.009 102 | 101,Nepal,4.880,0.425,1.228,0.539,0.526,0.302,0.078 103 | 102,Venezuela,4.806,0.996,1.469,0.657,0.133,0.056,0.052 104 | 103,Gabon,4.758,1.036,1.164,0.404,0.356,0.032,0.052 105 | 104,Palestinian Territories,4.743,0.642,1.217,0.602,0.266,0.086,0.076 106 | 105,South Africa,4.724,0.940,1.410,0.330,0.516,0.103,0.056 107 | 106,Iran,4.707,1.059,0.771,0.691,0.459,0.282,0.129 108 | 107,Ivory Coast,4.671,0.541,0.872,0.080,0.467,0.146,0.103 109 | 108,Ghana,4.657,0.592,0.896,0.337,0.499,0.212,0.029 110 | 109,Senegal,4.631,0.429,1.117,0.433,0.406,0.138,0.082 111 | 110,Laos,4.623,0.720,1.034,0.441,0.626,0.230,0.174 112 | 111,Tunisia,4.592,0.900,0.906,0.690,0.271,0.040,0.063 113 | 112,Albania,4.586,0.916,0.817,0.790,0.419,0.149,0.032 114 | 113,Sierra Leone,4.571,0.256,0.813,0.000,0.355,0.238,0.053 115 | 114,Congo (Brazzaville),4.559,0.682,0.811,0.343,0.514,0.091,0.077 116 | 115,Bangladesh,4.500,0.532,0.850,0.579,0.580,0.153,0.144 117 | 116,Sri Lanka,4.471,0.918,1.314,0.672,0.585,0.307,0.050 118 | 117,Iraq,4.456,1.010,0.971,0.536,0.304,0.148,0.095 119 | 118,Mali,4.447,0.370,1.233,0.152,0.367,0.139,0.056 120 | 119,Namibia,4.441,0.874,1.281,0.365,0.519,0.051,0.064 121 | 120,Cambodia,4.433,0.549,1.088,0.457,0.696,0.256,0.065 122 | 121,Burkina Faso,4.424,0.314,1.097,0.254,0.312,0.175,0.128 123 | 122,Egypt,4.419,0.885,1.025,0.553,0.312,0.092,0.107 124 | 123,Mozambique,4.417,0.198,0.902,0.173,0.531,0.206,0.158 125 | 124,Kenya,4.410,0.493,1.048,0.454,0.504,0.352,0.055 126 | 125,Zambia,4.377,0.562,1.047,0.295,0.503,0.221,0.082 127 | 126,Mauritania,4.356,0.557,1.245,0.292,0.129,0.134,0.093 128 | 127,Ethiopia,4.350,0.308,0.950,0.391,0.452,0.220,0.146 129 | 128,Georgia,4.340,0.853,0.592,0.643,0.375,0.038,0.215 130 | 129,Armenia,4.321,0.816,0.990,0.666,0.260,0.077,0.028 131 | 130,Myanmar,4.308,0.682,1.174,0.429,0.580,0.598,0.178 132 | 131,Chad,4.301,0.358,0.907,0.053,0.189,0.181,0.060 133 | 132,Congo (Kinshasa),4.245,0.069,1.136,0.204,0.312,0.197,0.052 134 | 133,India,4.190,0.721,0.747,0.485,0.539,0.172,0.093 135 | 134,Niger,4.166,0.131,0.867,0.221,0.390,0.175,0.099 136 | 135,Uganda,4.161,0.322,1.090,0.237,0.450,0.259,0.061 137 | 136,Benin,4.141,0.378,0.372,0.240,0.440,0.163,0.067 138 | 137,Sudan,4.139,0.605,1.240,0.312,0.016,0.134,0.082 139 | 138,Ukraine,4.103,0.793,1.413,0.609,0.163,0.187,0.011 140 | 139,Togo,3.999,0.259,0.474,0.253,0.434,0.158,0.101 141 | 140,Guinea,3.964,0.344,0.792,0.211,0.394,0.185,0.094 142 | 141,Lesotho,3.808,0.472,1.215,0.079,0.423,0.116,0.112 143 | 142,Angola,3.795,0.730,1.125,0.269,0.000,0.079,0.061 144 | 143,Madagascar,3.774,0.262,0.908,0.402,0.221,0.155,0.049 145 | 144,Zimbabwe,3.692,0.357,1.094,0.248,0.406,0.132,0.099 146 | 145,Afghanistan,3.632,0.332,0.537,0.255,0.085,0.191,0.036 147 | 146,Botswana,3.590,1.017,1.174,0.417,0.557,0.042,0.092 148 | 147,Malawi,3.587,0.186,0.541,0.306,0.531,0.210,0.080 149 | 148,Haiti,3.582,0.315,0.714,0.289,0.025,0.392,0.104 150 | 149,Liberia,3.495,0.076,0.858,0.267,0.419,0.206,0.030 151 | 150,Syria,3.462,0.689,0.382,0.539,0.088,0.376,0.144 152 | 151,Rwanda,3.408,0.332,0.896,0.400,0.636,0.200,0.444 153 | 152,Yemen,3.355,0.442,1.073,0.343,0.244,0.083,0.064 154 | 153,Tanzania,3.303,0.455,0.991,0.381,0.481,0.270,0.097 155 | 154,South Sudan,3.254,0.337,0.608,0.177,0.112,0.224,0.106 156 | 155,Central African Republic,3.083,0.024,0.000,0.010,0.305,0.218,0.038 157 | 156,Burundi,2.905,0.091,0.627,0.145,0.065,0.149,0.076 158 | -------------------------------------------------------------------------------- /data/2019.csv: -------------------------------------------------------------------------------- 1 | Overall rank,Country or region,Score,GDP per capita,Social support,Healthy life expectancy,Freedom to make life choices,Generosity,Perceptions of corruption 2 | 1,Finland,7.769,1.340,1.587,0.986,0.596,0.153,0.393 3 | 2,Denmark,7.600,1.383,1.573,0.996,0.592,0.252,0.410 4 | 3,Norway,7.554,1.488,1.582,1.028,0.603,0.271,0.341 5 | 4,Iceland,7.494,1.380,1.624,1.026,0.591,0.354,0.118 6 | 5,Netherlands,7.488,1.396,1.522,0.999,0.557,0.322,0.298 7 | 6,Switzerland,7.480,1.452,1.526,1.052,0.572,0.263,0.343 8 | 7,Sweden,7.343,1.387,1.487,1.009,0.574,0.267,0.373 9 | 8,New Zealand,7.307,1.303,1.557,1.026,0.585,0.330,0.380 10 | 9,Canada,7.278,1.365,1.505,1.039,0.584,0.285,0.308 11 | 10,Austria,7.246,1.376,1.475,1.016,0.532,0.244,0.226 12 | 11,Australia,7.228,1.372,1.548,1.036,0.557,0.332,0.290 13 | 12,Costa Rica,7.167,1.034,1.441,0.963,0.558,0.144,0.093 14 | 13,Israel,7.139,1.276,1.455,1.029,0.371,0.261,0.082 15 | 14,Luxembourg,7.090,1.609,1.479,1.012,0.526,0.194,0.316 16 | 15,United Kingdom,7.054,1.333,1.538,0.996,0.450,0.348,0.278 17 | 16,Ireland,7.021,1.499,1.553,0.999,0.516,0.298,0.310 18 | 17,Germany,6.985,1.373,1.454,0.987,0.495,0.261,0.265 19 | 18,Belgium,6.923,1.356,1.504,0.986,0.473,0.160,0.210 20 | 19,United States,6.892,1.433,1.457,0.874,0.454,0.280,0.128 21 | 20,Czech Republic,6.852,1.269,1.487,0.920,0.457,0.046,0.036 22 | 21,United Arab Emirates,6.825,1.503,1.310,0.825,0.598,0.262,0.182 23 | 22,Malta,6.726,1.300,1.520,0.999,0.564,0.375,0.151 24 | 23,Mexico,6.595,1.070,1.323,0.861,0.433,0.074,0.073 25 | 24,France,6.592,1.324,1.472,1.045,0.436,0.111,0.183 26 | 25,Taiwan,6.446,1.368,1.430,0.914,0.351,0.242,0.097 27 | 26,Chile,6.444,1.159,1.369,0.920,0.357,0.187,0.056 28 | 27,Guatemala,6.436,0.800,1.269,0.746,0.535,0.175,0.078 29 | 28,Saudi Arabia,6.375,1.403,1.357,0.795,0.439,0.080,0.132 30 | 29,Qatar,6.374,1.684,1.313,0.871,0.555,0.220,0.167 31 | 30,Spain,6.354,1.286,1.484,1.062,0.362,0.153,0.079 32 | 31,Panama,6.321,1.149,1.442,0.910,0.516,0.109,0.054 33 | 32,Brazil,6.300,1.004,1.439,0.802,0.390,0.099,0.086 34 | 33,Uruguay,6.293,1.124,1.465,0.891,0.523,0.127,0.150 35 | 34,Singapore,6.262,1.572,1.463,1.141,0.556,0.271,0.453 36 | 35,El Salvador,6.253,0.794,1.242,0.789,0.430,0.093,0.074 37 | 36,Italy,6.223,1.294,1.488,1.039,0.231,0.158,0.030 38 | 37,Bahrain,6.199,1.362,1.368,0.871,0.536,0.255,0.110 39 | 38,Slovakia,6.198,1.246,1.504,0.881,0.334,0.121,0.014 40 | 39,Trinidad & Tobago,6.192,1.231,1.477,0.713,0.489,0.185,0.016 41 | 40,Poland,6.182,1.206,1.438,0.884,0.483,0.117,0.050 42 | 41,Uzbekistan,6.174,0.745,1.529,0.756,0.631,0.322,0.240 43 | 42,Lithuania,6.149,1.238,1.515,0.818,0.291,0.043,0.042 44 | 43,Colombia,6.125,0.985,1.410,0.841,0.470,0.099,0.034 45 | 44,Slovenia,6.118,1.258,1.523,0.953,0.564,0.144,0.057 46 | 45,Nicaragua,6.105,0.694,1.325,0.835,0.435,0.200,0.127 47 | 46,Kosovo,6.100,0.882,1.232,0.758,0.489,0.262,0.006 48 | 47,Argentina,6.086,1.092,1.432,0.881,0.471,0.066,0.050 49 | 48,Romania,6.070,1.162,1.232,0.825,0.462,0.083,0.005 50 | 49,Cyprus,6.046,1.263,1.223,1.042,0.406,0.190,0.041 51 | 50,Ecuador,6.028,0.912,1.312,0.868,0.498,0.126,0.087 52 | 51,Kuwait,6.021,1.500,1.319,0.808,0.493,0.142,0.097 53 | 52,Thailand,6.008,1.050,1.409,0.828,0.557,0.359,0.028 54 | 53,Latvia,5.940,1.187,1.465,0.812,0.264,0.075,0.064 55 | 54,South Korea,5.895,1.301,1.219,1.036,0.159,0.175,0.056 56 | 55,Estonia,5.893,1.237,1.528,0.874,0.495,0.103,0.161 57 | 56,Jamaica,5.890,0.831,1.478,0.831,0.490,0.107,0.028 58 | 57,Mauritius,5.888,1.120,1.402,0.798,0.498,0.215,0.060 59 | 58,Japan,5.886,1.327,1.419,1.088,0.445,0.069,0.140 60 | 59,Honduras,5.860,0.642,1.236,0.828,0.507,0.246,0.078 61 | 60,Kazakhstan,5.809,1.173,1.508,0.729,0.410,0.146,0.096 62 | 61,Bolivia,5.779,0.776,1.209,0.706,0.511,0.137,0.064 63 | 62,Hungary,5.758,1.201,1.410,0.828,0.199,0.081,0.020 64 | 63,Paraguay,5.743,0.855,1.475,0.777,0.514,0.184,0.080 65 | 64,Northern Cyprus,5.718,1.263,1.252,1.042,0.417,0.191,0.162 66 | 65,Peru,5.697,0.960,1.274,0.854,0.455,0.083,0.027 67 | 66,Portugal,5.693,1.221,1.431,0.999,0.508,0.047,0.025 68 | 67,Pakistan,5.653,0.677,0.886,0.535,0.313,0.220,0.098 69 | 68,Russia,5.648,1.183,1.452,0.726,0.334,0.082,0.031 70 | 69,Philippines,5.631,0.807,1.293,0.657,0.558,0.117,0.107 71 | 70,Serbia,5.603,1.004,1.383,0.854,0.282,0.137,0.039 72 | 71,Moldova,5.529,0.685,1.328,0.739,0.245,0.181,0.000 73 | 72,Libya,5.525,1.044,1.303,0.673,0.416,0.133,0.152 74 | 73,Montenegro,5.523,1.051,1.361,0.871,0.197,0.142,0.080 75 | 74,Tajikistan,5.467,0.493,1.098,0.718,0.389,0.230,0.144 76 | 75,Croatia,5.432,1.155,1.266,0.914,0.296,0.119,0.022 77 | 76,Hong Kong,5.430,1.438,1.277,1.122,0.440,0.258,0.287 78 | 77,Dominican Republic,5.425,1.015,1.401,0.779,0.497,0.113,0.101 79 | 78,Bosnia and Herzegovina,5.386,0.945,1.212,0.845,0.212,0.263,0.006 80 | 79,Turkey,5.373,1.183,1.360,0.808,0.195,0.083,0.106 81 | 80,Malaysia,5.339,1.221,1.171,0.828,0.508,0.260,0.024 82 | 81,Belarus,5.323,1.067,1.465,0.789,0.235,0.094,0.142 83 | 82,Greece,5.287,1.181,1.156,0.999,0.067,0.000,0.034 84 | 83,Mongolia,5.285,0.948,1.531,0.667,0.317,0.235,0.038 85 | 84,North Macedonia,5.274,0.983,1.294,0.838,0.345,0.185,0.034 86 | 85,Nigeria,5.265,0.696,1.111,0.245,0.426,0.215,0.041 87 | 86,Kyrgyzstan,5.261,0.551,1.438,0.723,0.508,0.300,0.023 88 | 87,Turkmenistan,5.247,1.052,1.538,0.657,0.394,0.244,0.028 89 | 88,Algeria,5.211,1.002,1.160,0.785,0.086,0.073,0.114 90 | 89,Morocco,5.208,0.801,0.782,0.782,0.418,0.036,0.076 91 | 90,Azerbaijan,5.208,1.043,1.147,0.769,0.351,0.035,0.182 92 | 91,Lebanon,5.197,0.987,1.224,0.815,0.216,0.166,0.027 93 | 92,Indonesia,5.192,0.931,1.203,0.660,0.491,0.498,0.028 94 | 93,China,5.191,1.029,1.125,0.893,0.521,0.058,0.100 95 | 94,Vietnam,5.175,0.741,1.346,0.851,0.543,0.147,0.073 96 | 95,Bhutan,5.082,0.813,1.321,0.604,0.457,0.370,0.167 97 | 96,Cameroon,5.044,0.549,0.910,0.331,0.381,0.187,0.037 98 | 97,Bulgaria,5.011,1.092,1.513,0.815,0.311,0.081,0.004 99 | 98,Ghana,4.996,0.611,0.868,0.486,0.381,0.245,0.040 100 | 99,Ivory Coast,4.944,0.569,0.808,0.232,0.352,0.154,0.090 101 | 100,Nepal,4.913,0.446,1.226,0.677,0.439,0.285,0.089 102 | 101,Jordan,4.906,0.837,1.225,0.815,0.383,0.110,0.130 103 | 102,Benin,4.883,0.393,0.437,0.397,0.349,0.175,0.082 104 | 103,Congo (Brazzaville),4.812,0.673,0.799,0.508,0.372,0.105,0.093 105 | 104,Gabon,4.799,1.057,1.183,0.571,0.295,0.043,0.055 106 | 105,Laos,4.796,0.764,1.030,0.551,0.547,0.266,0.164 107 | 106,South Africa,4.722,0.960,1.351,0.469,0.389,0.130,0.055 108 | 107,Albania,4.719,0.947,0.848,0.874,0.383,0.178,0.027 109 | 108,Venezuela,4.707,0.960,1.427,0.805,0.154,0.064,0.047 110 | 109,Cambodia,4.700,0.574,1.122,0.637,0.609,0.232,0.062 111 | 110,Palestinian Territories,4.696,0.657,1.247,0.672,0.225,0.103,0.066 112 | 111,Senegal,4.681,0.450,1.134,0.571,0.292,0.153,0.072 113 | 112,Somalia,4.668,0.000,0.698,0.268,0.559,0.243,0.270 114 | 113,Namibia,4.639,0.879,1.313,0.477,0.401,0.070,0.056 115 | 114,Niger,4.628,0.138,0.774,0.366,0.318,0.188,0.102 116 | 115,Burkina Faso,4.587,0.331,1.056,0.380,0.255,0.177,0.113 117 | 116,Armenia,4.559,0.850,1.055,0.815,0.283,0.095,0.064 118 | 117,Iran,4.548,1.100,0.842,0.785,0.305,0.270,0.125 119 | 118,Guinea,4.534,0.380,0.829,0.375,0.332,0.207,0.086 120 | 119,Georgia,4.519,0.886,0.666,0.752,0.346,0.043,0.164 121 | 120,Gambia,4.516,0.308,0.939,0.428,0.382,0.269,0.167 122 | 121,Kenya,4.509,0.512,0.983,0.581,0.431,0.372,0.053 123 | 122,Mauritania,4.490,0.570,1.167,0.489,0.066,0.106,0.088 124 | 123,Mozambique,4.466,0.204,0.986,0.390,0.494,0.197,0.138 125 | 124,Tunisia,4.461,0.921,1.000,0.815,0.167,0.059,0.055 126 | 125,Bangladesh,4.456,0.562,0.928,0.723,0.527,0.166,0.143 127 | 126,Iraq,4.437,1.043,0.980,0.574,0.241,0.148,0.089 128 | 127,Congo (Kinshasa),4.418,0.094,1.125,0.357,0.269,0.212,0.053 129 | 128,Mali,4.390,0.385,1.105,0.308,0.327,0.153,0.052 130 | 129,Sierra Leone,4.374,0.268,0.841,0.242,0.309,0.252,0.045 131 | 130,Sri Lanka,4.366,0.949,1.265,0.831,0.470,0.244,0.047 132 | 131,Myanmar,4.360,0.710,1.181,0.555,0.525,0.566,0.172 133 | 132,Chad,4.350,0.350,0.766,0.192,0.174,0.198,0.078 134 | 133,Ukraine,4.332,0.820,1.390,0.739,0.178,0.187,0.010 135 | 134,Ethiopia,4.286,0.336,1.033,0.532,0.344,0.209,0.100 136 | 135,Swaziland,4.212,0.811,1.149,0.000,0.313,0.074,0.135 137 | 136,Uganda,4.189,0.332,1.069,0.443,0.356,0.252,0.060 138 | 137,Egypt,4.166,0.913,1.039,0.644,0.241,0.076,0.067 139 | 138,Zambia,4.107,0.578,1.058,0.426,0.431,0.247,0.087 140 | 139,Togo,4.085,0.275,0.572,0.410,0.293,0.177,0.085 141 | 140,India,4.015,0.755,0.765,0.588,0.498,0.200,0.085 142 | 141,Liberia,3.975,0.073,0.922,0.443,0.370,0.233,0.033 143 | 142,Comoros,3.973,0.274,0.757,0.505,0.142,0.275,0.078 144 | 143,Madagascar,3.933,0.274,0.916,0.555,0.148,0.169,0.041 145 | 144,Lesotho,3.802,0.489,1.169,0.168,0.359,0.107,0.093 146 | 145,Burundi,3.775,0.046,0.447,0.380,0.220,0.176,0.180 147 | 146,Zimbabwe,3.663,0.366,1.114,0.433,0.361,0.151,0.089 148 | 147,Haiti,3.597,0.323,0.688,0.449,0.026,0.419,0.110 149 | 148,Botswana,3.488,1.041,1.145,0.538,0.455,0.025,0.100 150 | 149,Syria,3.462,0.619,0.378,0.440,0.013,0.331,0.141 151 | 150,Malawi,3.410,0.191,0.560,0.495,0.443,0.218,0.089 152 | 151,Yemen,3.380,0.287,1.163,0.463,0.143,0.108,0.077 153 | 152,Rwanda,3.334,0.359,0.711,0.614,0.555,0.217,0.411 154 | 153,Tanzania,3.231,0.476,0.885,0.499,0.417,0.276,0.147 155 | 154,Afghanistan,3.203,0.350,0.517,0.361,0.000,0.158,0.025 156 | 155,Central African Republic,3.083,0.026,0.000,0.105,0.225,0.235,0.035 157 | 156,South Sudan,2.853,0.306,0.575,0.295,0.010,0.202,0.091 158 | -------------------------------------------------------------------------------- /data/world-happiness.zip: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/data/world-happiness.zip -------------------------------------------------------------------------------- /docs/assets/01_introduction/fitting.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/01_introduction/fitting.png -------------------------------------------------------------------------------- /docs/assets/01_introduction/rl.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/01_introduction/rl.png -------------------------------------------------------------------------------- /docs/assets/01_introduction/trade-off.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/01_introduction/trade-off.png -------------------------------------------------------------------------------- /docs/assets/01_introduction/turing_test.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/01_introduction/turing_test.png -------------------------------------------------------------------------------- /docs/assets/01_introduction/unsupervised-learning.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/01_introduction/unsupervised-learning.png -------------------------------------------------------------------------------- /docs/assets/02_classification/1_knn/knn_01.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/02_classification/1_knn/knn_01.png -------------------------------------------------------------------------------- /docs/assets/02_classification/1_knn/knn_02.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/02_classification/1_knn/knn_02.png -------------------------------------------------------------------------------- /docs/assets/02_classification/1_knn/knn_03.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/02_classification/1_knn/knn_03.png -------------------------------------------------------------------------------- /docs/assets/02_classification/1_knn/knn_04.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/02_classification/1_knn/knn_04.png -------------------------------------------------------------------------------- /docs/assets/02_classification/1_knn/knn_05.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/02_classification/1_knn/knn_05.png -------------------------------------------------------------------------------- /docs/assets/02_classification/1_knn/knn_06.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/02_classification/1_knn/knn_06.png -------------------------------------------------------------------------------- /docs/assets/02_classification/1_knn/knn_07.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/02_classification/1_knn/knn_07.png -------------------------------------------------------------------------------- /docs/assets/02_classification/2_decision-tree/01_dt.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/02_classification/2_decision-tree/01_dt.png -------------------------------------------------------------------------------- /docs/assets/02_classification/2_decision-tree/02_dt.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/02_classification/2_decision-tree/02_dt.png -------------------------------------------------------------------------------- /docs/assets/02_classification/2_decision-tree/03_dt.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/02_classification/2_decision-tree/03_dt.png -------------------------------------------------------------------------------- /docs/assets/02_classification/2_decision-tree/04_dt.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/02_classification/2_decision-tree/04_dt.png -------------------------------------------------------------------------------- /docs/assets/02_classification/2_decision-tree/05_dt.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/02_classification/2_decision-tree/05_dt.png -------------------------------------------------------------------------------- /docs/assets/02_classification/2_decision-tree/06_dt.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/02_classification/2_decision-tree/06_dt.png -------------------------------------------------------------------------------- /docs/assets/02_classification/choose_k.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/02_classification/choose_k.png -------------------------------------------------------------------------------- /docs/assets/02_classification/decisionoverfitting.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/02_classification/decisionoverfitting.png -------------------------------------------------------------------------------- /docs/assets/02_classification/email_classifier.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/02_classification/email_classifier.png -------------------------------------------------------------------------------- /docs/assets/03_regression/correlations.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/03_regression/correlations.png -------------------------------------------------------------------------------- /docs/assets/03_regression/gradient-descendent-large.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/03_regression/gradient-descendent-large.png -------------------------------------------------------------------------------- /docs/assets/03_regression/gradient-descendent-small.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/03_regression/gradient-descendent-small.png -------------------------------------------------------------------------------- /docs/assets/03_regression/gradient-descendent.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/03_regression/gradient-descendent.png -------------------------------------------------------------------------------- /docs/assets/03_regression/happiness_world.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/03_regression/happiness_world.png -------------------------------------------------------------------------------- /docs/assets/03_regression/kernels-plot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/03_regression/kernels-plot.png -------------------------------------------------------------------------------- /docs/assets/03_regression/kernels-problem.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/03_regression/kernels-problem.png -------------------------------------------------------------------------------- /docs/assets/03_regression/kernels.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/03_regression/kernels.png -------------------------------------------------------------------------------- /docs/assets/03_regression/learning-rate-gd.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/03_regression/learning-rate-gd.png -------------------------------------------------------------------------------- /docs/assets/03_regression/linear-svm.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/03_regression/linear-svm.png -------------------------------------------------------------------------------- /docs/assets/03_regression/ols-steps.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/03_regression/ols-steps.png -------------------------------------------------------------------------------- /docs/assets/03_regression/ols.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/03_regression/ols.png -------------------------------------------------------------------------------- /docs/assets/03_regression/svr.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/03_regression/svr.png -------------------------------------------------------------------------------- /docs/assets/04_clustering/centroid_bases.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/04_clustering/centroid_bases.png -------------------------------------------------------------------------------- /docs/assets/04_clustering/clust_1_ex.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/04_clustering/clust_1_ex.png -------------------------------------------------------------------------------- /docs/assets/04_clustering/clust_2_ex.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/04_clustering/clust_2_ex.png -------------------------------------------------------------------------------- /docs/assets/04_clustering/clustering.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/04_clustering/clustering.png -------------------------------------------------------------------------------- /docs/assets/04_clustering/dataset_hierarquico.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/04_clustering/dataset_hierarquico.png -------------------------------------------------------------------------------- /docs/assets/04_clustering/den_eg_1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/04_clustering/den_eg_1.png -------------------------------------------------------------------------------- /docs/assets/04_clustering/dendograma_0.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/04_clustering/dendograma_0.png -------------------------------------------------------------------------------- /docs/assets/04_clustering/dendograma_1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/04_clustering/dendograma_1.png -------------------------------------------------------------------------------- /docs/assets/04_clustering/dendograma_2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/04_clustering/dendograma_2.png -------------------------------------------------------------------------------- /docs/assets/04_clustering/dendograma_3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/04_clustering/dendograma_3.png -------------------------------------------------------------------------------- /docs/assets/04_clustering/dendograma_cut.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/04_clustering/dendograma_cut.png -------------------------------------------------------------------------------- /docs/assets/04_clustering/indice_silhueta.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/04_clustering/indice_silhueta.png -------------------------------------------------------------------------------- /docs/assets/04_clustering/kmeans_algoritmo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/04_clustering/kmeans_algoritmo.png -------------------------------------------------------------------------------- /docs/assets/04_clustering/kmeans_algoritmo_2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/04_clustering/kmeans_algoritmo_2.png -------------------------------------------------------------------------------- /docs/assets/04_clustering/kmeans_conjunto_de_dados.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/04_clustering/kmeans_conjunto_de_dados.png -------------------------------------------------------------------------------- /docs/assets/04_clustering/metodo_cotovelo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/04_clustering/metodo_cotovelo.png -------------------------------------------------------------------------------- /docs/assets/04_clustering/metodo_hierarquico.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/04_clustering/metodo_hierarquico.png -------------------------------------------------------------------------------- /docs/assets/1_classification/1_knn/knn_01.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/1_classification/1_knn/knn_01.png -------------------------------------------------------------------------------- /docs/assets/1_classification/1_knn/knn_02.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/1_classification/1_knn/knn_02.png -------------------------------------------------------------------------------- /docs/assets/1_classification/1_knn/knn_03.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/1_classification/1_knn/knn_03.png -------------------------------------------------------------------------------- /docs/assets/1_classification/1_knn/knn_04.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/1_classification/1_knn/knn_04.png -------------------------------------------------------------------------------- /docs/assets/1_classification/1_knn/knn_05.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/1_classification/1_knn/knn_05.png -------------------------------------------------------------------------------- /docs/assets/1_classification/1_knn/knn_06.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/1_classification/1_knn/knn_06.png -------------------------------------------------------------------------------- /docs/assets/1_classification/1_knn/knn_07.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/1_classification/1_knn/knn_07.png -------------------------------------------------------------------------------- /docs/assets/1_classification/2_decision-tree/01_dt.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/1_classification/2_decision-tree/01_dt.png -------------------------------------------------------------------------------- /docs/assets/1_classification/2_decision-tree/02_dt.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/1_classification/2_decision-tree/02_dt.png -------------------------------------------------------------------------------- /docs/assets/1_classification/2_decision-tree/03_dt.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/1_classification/2_decision-tree/03_dt.png -------------------------------------------------------------------------------- /docs/assets/1_classification/2_decision-tree/04_dt.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/1_classification/2_decision-tree/04_dt.png -------------------------------------------------------------------------------- /docs/assets/1_classification/2_decision-tree/05_dt.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/1_classification/2_decision-tree/05_dt.png -------------------------------------------------------------------------------- /docs/assets/1_classification/2_decision-tree/06_dt.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/1_classification/2_decision-tree/06_dt.png -------------------------------------------------------------------------------- /docs/assets/1_classification/choose_k.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/1_classification/choose_k.png -------------------------------------------------------------------------------- /docs/assets/1_classification/decisionoverfitting.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/1_classification/decisionoverfitting.png -------------------------------------------------------------------------------- /docs/assets/1_classification/email_classifier.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/1_classification/email_classifier.png -------------------------------------------------------------------------------- /docs/assets/appendix-kaggle/code_number_2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/appendix-kaggle/code_number_2.png -------------------------------------------------------------------------------- /docs/assets/appendix-kaggle/criacao_jupyter.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/appendix-kaggle/criacao_jupyter.png -------------------------------------------------------------------------------- /docs/assets/appendix-kaggle/exemplo_jupyter.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/appendix-kaggle/exemplo_jupyter.png -------------------------------------------------------------------------------- /docs/assets/appendix-kaggle/tela_criacao_2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/appendix-kaggle/tela_criacao_2.png -------------------------------------------------------------------------------- /docs/assets/appendix-kaggle/tela_inicial.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/appendix-kaggle/tela_inicial.png -------------------------------------------------------------------------------- /docs/assets/banner_notebook.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/banner_notebook.png -------------------------------------------------------------------------------- /docs/assets/capa.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/capa.png -------------------------------------------------------------------------------- /docs/assets/capa_2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/capa_2.png -------------------------------------------------------------------------------- /docs/assets/centroid_bases.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/centroid_bases.png -------------------------------------------------------------------------------- /docs/assets/clust_1_ex.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/clust_1_ex.png -------------------------------------------------------------------------------- /docs/assets/clust_2_ex.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/clust_2_ex.png -------------------------------------------------------------------------------- /docs/assets/clustering.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/clustering.png -------------------------------------------------------------------------------- /docs/assets/correlations.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/correlations.png -------------------------------------------------------------------------------- /docs/assets/dataset_hierarquico.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/dataset_hierarquico.png -------------------------------------------------------------------------------- /docs/assets/den_eg_1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/den_eg_1.png -------------------------------------------------------------------------------- /docs/assets/dendograma_0.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/dendograma_0.png -------------------------------------------------------------------------------- /docs/assets/dendograma_1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/dendograma_1.png -------------------------------------------------------------------------------- /docs/assets/dendograma_2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/dendograma_2.png -------------------------------------------------------------------------------- /docs/assets/dendograma_3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/dendograma_3.png -------------------------------------------------------------------------------- /docs/assets/dendograma_cut.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/dendograma_cut.png -------------------------------------------------------------------------------- /docs/assets/gradient-descendent-large.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/gradient-descendent-large.png -------------------------------------------------------------------------------- /docs/assets/gradient-descendent-small.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/gradient-descendent-small.png -------------------------------------------------------------------------------- /docs/assets/gradient-descendent.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/gradient-descendent.png -------------------------------------------------------------------------------- /docs/assets/happiness_world.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/happiness_world.png -------------------------------------------------------------------------------- /docs/assets/indice_silhueta.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/indice_silhueta.png -------------------------------------------------------------------------------- /docs/assets/kernels-plot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/kernels-plot.png -------------------------------------------------------------------------------- /docs/assets/kernels-problem.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/kernels-problem.png -------------------------------------------------------------------------------- /docs/assets/kernels.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/kernels.png -------------------------------------------------------------------------------- /docs/assets/kmeans_algoritmo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/kmeans_algoritmo.png -------------------------------------------------------------------------------- /docs/assets/kmeans_algoritmo_2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/kmeans_algoritmo_2.png -------------------------------------------------------------------------------- /docs/assets/kmeans_conjunto_de_dados.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/kmeans_conjunto_de_dados.png -------------------------------------------------------------------------------- /docs/assets/learning-rate-gd.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/learning-rate-gd.png -------------------------------------------------------------------------------- /docs/assets/linear-svm.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/linear-svm.png -------------------------------------------------------------------------------- /docs/assets/metodo_cotovelo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/metodo_cotovelo.png -------------------------------------------------------------------------------- /docs/assets/metodo_hierarquico.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/metodo_hierarquico.png -------------------------------------------------------------------------------- /docs/assets/ml-diagram.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/ml-diagram.png -------------------------------------------------------------------------------- /docs/assets/ols-steps.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/ols-steps.png -------------------------------------------------------------------------------- /docs/assets/ols.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/ols.png -------------------------------------------------------------------------------- /docs/assets/svr.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/svr.png -------------------------------------------------------------------------------- /docs/assets/turing_test.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/assets/turing_test.png -------------------------------------------------------------------------------- /docs/considerações-finais.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | 6 Considerações finais | Introdução ao Machine Learning 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |
64 | 65 |
66 | 130 |
131 | 132 |
133 |
134 | 139 | 140 |
141 |
142 | 143 |
144 |
145 |

6 Considerações finais

146 |

Lorem ipsum dolor sit amet

147 | 148 | 149 |
150 | 151 | 152 | 153 |
154 | 155 |
156 |
157 |
158 | 159 | 160 |
161 |
162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 208 | 209 | 210 | 223 | 224 | 225 | 226 | -------------------------------------------------------------------------------- /docs/intro-ao-machine-learning_files/figure-html/unnamed-chunk-3-1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/intro-ao-machine-learning_files/figure-html/unnamed-chunk-3-1.png -------------------------------------------------------------------------------- /docs/intro-ao-machine-learning_files/figure-html/unnamed-chunk-4-1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/intro-ao-machine-learning_files/figure-html/unnamed-chunk-4-1.png -------------------------------------------------------------------------------- /docs/kaggle.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | 7 Kaggle | Introdução ao Machine Learning 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |
64 | 65 |
66 | 124 |
125 | 126 |
127 |
128 | 133 | 134 |
135 |
136 | 137 |
138 |
139 |

7 Kaggle

140 |

Kaggle é uma plataforma…

141 | 142 |
143 |
144 | 145 |
146 |
147 |
148 | 149 | 150 |
151 |
152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 198 | 199 | 200 | 213 | 214 | 215 | 216 | -------------------------------------------------------------------------------- /docs/libs/gitbook-2.6.7/css/fontawesome/fontawesome-webfont.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/docs/libs/gitbook-2.6.7/css/fontawesome/fontawesome-webfont.ttf -------------------------------------------------------------------------------- /docs/libs/gitbook-2.6.7/css/plugin-bookdown.css: -------------------------------------------------------------------------------- 1 | .book .book-header h1 { 2 | padding-left: 20px; 3 | padding-right: 20px; 4 | } 5 | .book .book-header.fixed { 6 | position: fixed; 7 | right: 0; 8 | top: 0; 9 | left: 0; 10 | border-bottom: 1px solid rgba(0,0,0,.07); 11 | } 12 | span.search-highlight { 13 | background-color: #ffff88; 14 | } 15 | @media (min-width: 600px) { 16 | .book.with-summary .book-header.fixed { 17 | left: 300px; 18 | } 19 | } 20 | @media (max-width: 1240px) { 21 | .book .book-body.fixed { 22 | top: 50px; 23 | } 24 | .book .book-body.fixed .body-inner { 25 | top: auto; 26 | } 27 | } 28 | @media (max-width: 600px) { 29 | .book.with-summary .book-header.fixed { 30 | left: calc(100% - 60px); 31 | min-width: 300px; 32 | } 33 | .book.with-summary .book-body { 34 | transform: none; 35 | left: calc(100% - 60px); 36 | min-width: 300px; 37 | } 38 | .book .book-body.fixed { 39 | top: 0; 40 | } 41 | } 42 | 43 | .book .book-body.fixed .body-inner { 44 | top: 50px; 45 | } 46 | .book .book-body .page-wrapper .page-inner section.normal sub, .book .book-body .page-wrapper .page-inner section.normal sup { 47 | font-size: 85%; 48 | } 49 | 50 | @media print { 51 | .book .book-summary, .book .book-body .book-header, .fa { 52 | display: none !important; 53 | } 54 | .book .book-body.fixed { 55 | left: 0px; 56 | } 57 | .book .book-body,.book .book-body .body-inner, .book.with-summary { 58 | overflow: visible !important; 59 | } 60 | } 61 | .kable_wrapper { 62 | border-spacing: 20px 0; 63 | border-collapse: separate; 64 | border: none; 65 | margin: auto; 66 | } 67 | .kable_wrapper > tbody > tr > td { 68 | vertical-align: top; 69 | } 70 | .book .book-body .page-wrapper .page-inner section.normal table tr.header { 71 | border-top-width: 2px; 72 | } 73 | .book .book-body .page-wrapper .page-inner section.normal table tr:last-child td { 74 | border-bottom-width: 2px; 75 | } 76 | .book .book-body .page-wrapper .page-inner section.normal table td, .book .book-body .page-wrapper .page-inner section.normal table th { 77 | border-left: none; 78 | border-right: none; 79 | } 80 | .book .book-body .page-wrapper .page-inner section.normal table.kable_wrapper > tbody > tr, .book .book-body .page-wrapper .page-inner section.normal table.kable_wrapper > tbody > tr > td { 81 | border-top: none; 82 | } 83 | .book .book-body .page-wrapper .page-inner section.normal table.kable_wrapper > tbody > tr:last-child > td { 84 | border-bottom: none; 85 | } 86 | 87 | div.theorem, div.lemma, div.corollary, div.proposition, div.conjecture { 88 | font-style: italic; 89 | } 90 | span.theorem, span.lemma, span.corollary, span.proposition, span.conjecture { 91 | font-style: normal; 92 | } 93 | div.proof:after { 94 | content: "\25a2"; 95 | float: right; 96 | } 97 | .header-section-number { 98 | padding-right: .5em; 99 | } 100 | -------------------------------------------------------------------------------- /docs/libs/gitbook-2.6.7/css/plugin-clipboard.css: -------------------------------------------------------------------------------- 1 | div.sourceCode { 2 | position: relative; 3 | } 4 | 5 | .copy-to-clipboard-button { 6 | position: absolute; 7 | right: 0; 8 | top: 0; 9 | visibility: hidden; 10 | } 11 | 12 | .copy-to-clipboard-button:focus { 13 | outline: 0; 14 | } 15 | 16 | div.sourceCode:hover > .copy-to-clipboard-button { 17 | visibility: visible; 18 | } 19 | -------------------------------------------------------------------------------- /docs/libs/gitbook-2.6.7/css/plugin-fontsettings.css: -------------------------------------------------------------------------------- 1 | /* 2 | * Theme 1 3 | */ 4 | .color-theme-1 .dropdown-menu { 5 | background-color: #111111; 6 | border-color: #7e888b; 7 | } 8 | .color-theme-1 .dropdown-menu .dropdown-caret .caret-inner { 9 | border-bottom: 9px solid #111111; 10 | } 11 | .color-theme-1 .dropdown-menu .buttons { 12 | border-color: #7e888b; 13 | } 14 | .color-theme-1 .dropdown-menu .button { 15 | color: #afa790; 16 | } 17 | .color-theme-1 .dropdown-menu .button:hover { 18 | color: #73553c; 19 | } 20 | /* 21 | * Theme 2 22 | */ 23 | .color-theme-2 .dropdown-menu { 24 | background-color: #2d3143; 25 | border-color: #272a3a; 26 | } 27 | .color-theme-2 .dropdown-menu .dropdown-caret .caret-inner { 28 | border-bottom: 9px solid #2d3143; 29 | } 30 | .color-theme-2 .dropdown-menu .buttons { 31 | border-color: #272a3a; 32 | } 33 | .color-theme-2 .dropdown-menu .button { 34 | color: #62677f; 35 | } 36 | .color-theme-2 .dropdown-menu .button:hover { 37 | color: #f4f4f5; 38 | } 39 | .book .book-header .font-settings .font-enlarge { 40 | line-height: 30px; 41 | font-size: 1.4em; 42 | } 43 | .book .book-header .font-settings .font-reduce { 44 | line-height: 30px; 45 | font-size: 1em; 46 | } 47 | .book.color-theme-1 .book-body { 48 | color: #704214; 49 | background: #f3eacb; 50 | } 51 | .book.color-theme-1 .book-body .page-wrapper .page-inner section { 52 | background: #f3eacb; 53 | } 54 | .book.color-theme-2 .book-body { 55 | color: #bdcadb; 56 | background: #1c1f2b; 57 | } 58 | .book.color-theme-2 .book-body .page-wrapper .page-inner section { 59 | background: #1c1f2b; 60 | } 61 | .book.font-size-0 .book-body .page-inner section { 62 | font-size: 1.2rem; 63 | } 64 | .book.font-size-1 .book-body .page-inner section { 65 | font-size: 1.4rem; 66 | } 67 | .book.font-size-2 .book-body .page-inner section { 68 | font-size: 1.6rem; 69 | } 70 | .book.font-size-3 .book-body .page-inner section { 71 | font-size: 2.2rem; 72 | } 73 | .book.font-size-4 .book-body .page-inner section { 74 | font-size: 4rem; 75 | } 76 | .book.font-family-0 { 77 | font-family: Georgia, serif; 78 | } 79 | .book.font-family-1 { 80 | font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; 81 | } 82 | .book.color-theme-1 .book-body .page-wrapper .page-inner section.normal { 83 | color: #704214; 84 | } 85 | .book.color-theme-1 .book-body .page-wrapper .page-inner section.normal a { 86 | color: inherit; 87 | } 88 | .book.color-theme-1 .book-body .page-wrapper .page-inner section.normal h1, 89 | .book.color-theme-1 .book-body .page-wrapper .page-inner section.normal h2, 90 | .book.color-theme-1 .book-body .page-wrapper .page-inner section.normal h3, 91 | .book.color-theme-1 .book-body .page-wrapper .page-inner section.normal h4, 92 | .book.color-theme-1 .book-body .page-wrapper .page-inner section.normal h5, 93 | .book.color-theme-1 .book-body .page-wrapper .page-inner section.normal h6 { 94 | color: inherit; 95 | } 96 | .book.color-theme-1 .book-body .page-wrapper .page-inner section.normal h1, 97 | .book.color-theme-1 .book-body .page-wrapper .page-inner section.normal h2 { 98 | border-color: inherit; 99 | } 100 | .book.color-theme-1 .book-body .page-wrapper .page-inner section.normal h6 { 101 | color: inherit; 102 | } 103 | .book.color-theme-1 .book-body .page-wrapper .page-inner section.normal hr { 104 | background-color: inherit; 105 | } 106 | .book.color-theme-1 .book-body .page-wrapper .page-inner section.normal blockquote { 107 | border-color: #c4b29f; 108 | opacity: 0.9; 109 | } 110 | .book.color-theme-1 .book-body .page-wrapper .page-inner section.normal pre, 111 | .book.color-theme-1 .book-body .page-wrapper .page-inner section.normal code { 112 | background: #fdf6e3; 113 | color: #657b83; 114 | border-color: #f8df9c; 115 | } 116 | .book.color-theme-1 .book-body .page-wrapper .page-inner section.normal .highlight { 117 | background-color: inherit; 118 | } 119 | .book.color-theme-1 .book-body .page-wrapper .page-inner section.normal table th, 120 | .book.color-theme-1 .book-body .page-wrapper .page-inner section.normal table td { 121 | border-color: #f5d06c; 122 | } 123 | .book.color-theme-1 .book-body .page-wrapper .page-inner section.normal table tr { 124 | color: inherit; 125 | background-color: #fdf6e3; 126 | border-color: #444444; 127 | } 128 | .book.color-theme-1 .book-body .page-wrapper .page-inner section.normal table tr:nth-child(2n) { 129 | background-color: #fbeecb; 130 | } 131 | .book.color-theme-2 .book-body .page-wrapper .page-inner section.normal { 132 | color: #bdcadb; 133 | } 134 | .book.color-theme-2 .book-body .page-wrapper .page-inner section.normal a { 135 | color: #3eb1d0; 136 | } 137 | .book.color-theme-2 .book-body .page-wrapper .page-inner section.normal h1, 138 | .book.color-theme-2 .book-body .page-wrapper .page-inner section.normal h2, 139 | .book.color-theme-2 .book-body .page-wrapper .page-inner section.normal h3, 140 | .book.color-theme-2 .book-body .page-wrapper .page-inner section.normal h4, 141 | .book.color-theme-2 .book-body .page-wrapper .page-inner section.normal h5, 142 | .book.color-theme-2 .book-body .page-wrapper .page-inner section.normal h6 { 143 | color: #fffffa; 144 | } 145 | .book.color-theme-2 .book-body .page-wrapper .page-inner section.normal h1, 146 | .book.color-theme-2 .book-body .page-wrapper .page-inner section.normal h2 { 147 | border-color: #373b4e; 148 | } 149 | .book.color-theme-2 .book-body .page-wrapper .page-inner section.normal h6 { 150 | color: #373b4e; 151 | } 152 | .book.color-theme-2 .book-body .page-wrapper .page-inner section.normal hr { 153 | background-color: #373b4e; 154 | } 155 | .book.color-theme-2 .book-body .page-wrapper .page-inner section.normal blockquote { 156 | border-color: #373b4e; 157 | } 158 | .book.color-theme-2 .book-body .page-wrapper .page-inner section.normal pre, 159 | .book.color-theme-2 .book-body .page-wrapper .page-inner section.normal code { 160 | color: #9dbed8; 161 | background: #2d3143; 162 | border-color: #2d3143; 163 | } 164 | .book.color-theme-2 .book-body .page-wrapper .page-inner section.normal .highlight { 165 | background-color: #282a39; 166 | } 167 | .book.color-theme-2 .book-body .page-wrapper .page-inner section.normal table th, 168 | .book.color-theme-2 .book-body .page-wrapper .page-inner section.normal table td { 169 | border-color: #3b3f54; 170 | } 171 | .book.color-theme-2 .book-body .page-wrapper .page-inner section.normal table tr { 172 | color: #b6c2d2; 173 | background-color: #2d3143; 174 | border-color: #3b3f54; 175 | } 176 | .book.color-theme-2 .book-body .page-wrapper .page-inner section.normal table tr:nth-child(2n) { 177 | background-color: #35394b; 178 | } 179 | .book.color-theme-1 .book-header { 180 | color: #afa790; 181 | background: transparent; 182 | } 183 | .book.color-theme-1 .book-header .btn { 184 | color: #afa790; 185 | } 186 | .book.color-theme-1 .book-header .btn:hover { 187 | color: #73553c; 188 | background: none; 189 | } 190 | .book.color-theme-1 .book-header h1 { 191 | color: #704214; 192 | } 193 | .book.color-theme-2 .book-header { 194 | color: #7e888b; 195 | background: transparent; 196 | } 197 | .book.color-theme-2 .book-header .btn { 198 | color: #3b3f54; 199 | } 200 | .book.color-theme-2 .book-header .btn:hover { 201 | color: #fffff5; 202 | background: none; 203 | } 204 | .book.color-theme-2 .book-header h1 { 205 | color: #bdcadb; 206 | } 207 | .book.color-theme-1 .book-body .navigation { 208 | color: #afa790; 209 | } 210 | .book.color-theme-1 .book-body .navigation:hover { 211 | color: #73553c; 212 | } 213 | .book.color-theme-2 .book-body .navigation { 214 | color: #383f52; 215 | } 216 | .book.color-theme-2 .book-body .navigation:hover { 217 | color: #fffff5; 218 | } 219 | /* 220 | * Theme 1 221 | */ 222 | .book.color-theme-1 .book-summary { 223 | color: #afa790; 224 | background: #111111; 225 | border-right: 1px solid rgba(0, 0, 0, 0.07); 226 | } 227 | .book.color-theme-1 .book-summary .book-search { 228 | background: transparent; 229 | } 230 | .book.color-theme-1 .book-summary .book-search input, 231 | .book.color-theme-1 .book-summary .book-search input:focus { 232 | border: 1px solid transparent; 233 | } 234 | .book.color-theme-1 .book-summary ul.summary li.divider { 235 | background: #7e888b; 236 | box-shadow: none; 237 | } 238 | .book.color-theme-1 .book-summary ul.summary li i.fa-check { 239 | color: #33cc33; 240 | } 241 | .book.color-theme-1 .book-summary ul.summary li.done > a { 242 | color: #877f6a; 243 | } 244 | .book.color-theme-1 .book-summary ul.summary li a, 245 | .book.color-theme-1 .book-summary ul.summary li span { 246 | color: #877f6a; 247 | background: transparent; 248 | font-weight: normal; 249 | } 250 | .book.color-theme-1 .book-summary ul.summary li.active > a, 251 | .book.color-theme-1 .book-summary ul.summary li a:hover { 252 | color: #704214; 253 | background: transparent; 254 | font-weight: normal; 255 | } 256 | /* 257 | * Theme 2 258 | */ 259 | .book.color-theme-2 .book-summary { 260 | color: #bcc1d2; 261 | background: #2d3143; 262 | border-right: none; 263 | } 264 | .book.color-theme-2 .book-summary .book-search { 265 | background: transparent; 266 | } 267 | .book.color-theme-2 .book-summary .book-search input, 268 | .book.color-theme-2 .book-summary .book-search input:focus { 269 | border: 1px solid transparent; 270 | } 271 | .book.color-theme-2 .book-summary ul.summary li.divider { 272 | background: #272a3a; 273 | box-shadow: none; 274 | } 275 | .book.color-theme-2 .book-summary ul.summary li i.fa-check { 276 | color: #33cc33; 277 | } 278 | .book.color-theme-2 .book-summary ul.summary li.done > a { 279 | color: #62687f; 280 | } 281 | .book.color-theme-2 .book-summary ul.summary li a, 282 | .book.color-theme-2 .book-summary ul.summary li span { 283 | color: #c1c6d7; 284 | background: transparent; 285 | font-weight: 600; 286 | } 287 | .book.color-theme-2 .book-summary ul.summary li.active > a, 288 | .book.color-theme-2 .book-summary ul.summary li a:hover { 289 | color: #f4f4f5; 290 | background: #252737; 291 | font-weight: 600; 292 | } 293 | -------------------------------------------------------------------------------- /docs/libs/gitbook-2.6.7/css/plugin-search.css: -------------------------------------------------------------------------------- 1 | .book .book-summary .book-search { 2 | padding: 6px; 3 | background: transparent; 4 | position: absolute; 5 | top: -50px; 6 | left: 0px; 7 | right: 0px; 8 | transition: top 0.5s ease; 9 | } 10 | .book .book-summary .book-search input, 11 | .book .book-summary .book-search input:focus, 12 | .book .book-summary .book-search input:hover { 13 | width: 100%; 14 | background: transparent; 15 | border: 1px solid #ccc; 16 | box-shadow: none; 17 | outline: none; 18 | line-height: 22px; 19 | padding: 7px 4px; 20 | color: inherit; 21 | box-sizing: border-box; 22 | } 23 | .book.with-search .book-summary .book-search { 24 | top: 0px; 25 | } 26 | .book.with-search .book-summary ul.summary { 27 | top: 50px; 28 | } 29 | .with-search .summary li[data-level] a[href*=".html#"] { 30 | display: none; 31 | } 32 | -------------------------------------------------------------------------------- /docs/libs/gitbook-2.6.7/css/plugin-table.css: -------------------------------------------------------------------------------- 1 | .book .book-body .page-wrapper .page-inner section.normal table{display:table;width:100%;border-collapse:collapse;border-spacing:0;overflow:auto}.book .book-body .page-wrapper .page-inner section.normal table td,.book .book-body .page-wrapper .page-inner section.normal table th{padding:6px 13px;border:1px solid #ddd}.book .book-body .page-wrapper .page-inner section.normal table tr{background-color:#fff;border-top:1px solid #ccc}.book .book-body .page-wrapper .page-inner section.normal table tr:nth-child(2n){background-color:#f8f8f8}.book .book-body .page-wrapper .page-inner section.normal table th{font-weight:700} 2 | -------------------------------------------------------------------------------- /docs/libs/gitbook-2.6.7/js/clipboard.min.js: -------------------------------------------------------------------------------- 1 | /*! 2 | * clipboard.js v2.0.4 3 | * https://zenorocha.github.io/clipboard.js 4 | * 5 | * Licensed MIT © Zeno Rocha 6 | */ 7 | !function(t,e){"object"==typeof exports&&"object"==typeof module?module.exports=e():"function"==typeof define&&define.amd?define([],e):"object"==typeof exports?exports.ClipboardJS=e():t.ClipboardJS=e()}(this,function(){return function(n){var o={};function r(t){if(o[t])return o[t].exports;var e=o[t]={i:t,l:!1,exports:{}};return n[t].call(e.exports,e,e.exports,r),e.l=!0,e.exports}return r.m=n,r.c=o,r.d=function(t,e,n){r.o(t,e)||Object.defineProperty(t,e,{enumerable:!0,get:n})},r.r=function(t){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(t,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(t,"__esModule",{value:!0})},r.t=function(e,t){if(1&t&&(e=r(e)),8&t)return e;if(4&t&&"object"==typeof e&&e&&e.__esModule)return e;var n=Object.create(null);if(r.r(n),Object.defineProperty(n,"default",{enumerable:!0,value:e}),2&t&&"string"!=typeof e)for(var o in e)r.d(n,o,function(t){return e[t]}.bind(null,o));return n},r.n=function(t){var e=t&&t.__esModule?function(){return t.default}:function(){return t};return r.d(e,"a",e),e},r.o=function(t,e){return Object.prototype.hasOwnProperty.call(t,e)},r.p="",r(r.s=0)}([function(t,e,n){"use strict";var r="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(t){return typeof t}:function(t){return t&&"function"==typeof Symbol&&t.constructor===Symbol&&t!==Symbol.prototype?"symbol":typeof t},i=function(){function o(t,e){for(var n=0;n indicates arrow keys):', 82 | '/: navigate to previous/next page', 83 | 's: Toggle sidebar']; 84 | if (config.search !== false) info.push('f: Toggle search input ' + 85 | '(use //Enter in the search input to navigate through search matches; ' + 86 | 'press Esc to cancel search)'); 87 | if (config.info !== false) gitbook.toolbar.createButton({ 88 | icon: 'fa fa-info', 89 | label: 'Information about the toolbar', 90 | position: 'left', 91 | onClick: function(e) { 92 | e.preventDefault(); 93 | window.alert(info.join('\n\n')); 94 | } 95 | }); 96 | 97 | // highlight the current section in TOC 98 | var href = window.location.pathname; 99 | href = href.substr(href.lastIndexOf('/') + 1); 100 | // accentuated characters need to be decoded (#819) 101 | href = decodeURIComponent(href); 102 | if (href === '') href = 'index.html'; 103 | var li = $('a[href^="' + href + location.hash + '"]').parent('li.chapter').first(); 104 | var summary = $('ul.summary'), chaps = summary.find('li.chapter'); 105 | if (li.length === 0) li = chaps.first(); 106 | li.addClass('active'); 107 | chaps.on('click', function(e) { 108 | chaps.removeClass('active'); 109 | $(this).addClass('active'); 110 | gs.set('tocScrollTop', summary.scrollTop()); 111 | }); 112 | 113 | var toc = config.toc; 114 | // collapse TOC items that are not for the current chapter 115 | if (toc && toc.collapse) (function() { 116 | var type = toc.collapse; 117 | if (type === 'none') return; 118 | if (type !== 'section' && type !== 'subsection') return; 119 | // sections under chapters 120 | var toc_sub = summary.children('li[data-level]').children('ul'); 121 | if (type === 'section') { 122 | toc_sub.hide() 123 | .parent().has(li).children('ul').show(); 124 | } else { 125 | toc_sub.children('li').children('ul').hide() 126 | .parent().has(li).children('ul').show(); 127 | } 128 | li.children('ul').show(); 129 | var toc_sub2 = toc_sub.children('li'); 130 | if (type === 'section') toc_sub2.children('ul').hide(); 131 | summary.children('li[data-level]').find('a') 132 | .on('click.bookdown', function(e) { 133 | if (href === $(this).attr('href').replace(/#.*/, '')) 134 | $(this).parent('li').children('ul').toggle(); 135 | }); 136 | })(); 137 | 138 | // add tooltips to the 's that are truncated 139 | $('a').each(function(i, el) { 140 | if (el.offsetWidth >= el.scrollWidth) return; 141 | if (typeof el.title === 'undefined') return; 142 | el.title = el.text; 143 | }); 144 | 145 | // restore TOC scroll position 146 | var pos = gs.get('tocScrollTop'); 147 | if (typeof pos !== 'undefined') summary.scrollTop(pos); 148 | 149 | // highlight the TOC item that has same text as the heading in view as scrolling 150 | if (toc && toc.scroll_highlight !== false && li.length > 0) (function() { 151 | // scroll the current TOC item into viewport 152 | var ht = $(window).height(), rect = li[0].getBoundingClientRect(); 153 | if (rect.top >= ht || rect.top <= 0 || rect.bottom <= 0) { 154 | summary.scrollTop(li[0].offsetTop); 155 | } 156 | // current chapter TOC items 157 | var items = $('a[href^="' + href + '"]').parent('li.chapter'), 158 | m = items.length; 159 | if (m === 0) { 160 | items = summary.find('li.chapter'); 161 | m = items.length; 162 | } 163 | if (m === 0) return; 164 | // all section titles on current page 165 | var hs = bookInner.find('.page-inner').find('h1,h2,h3'), n = hs.length, 166 | ts = hs.map(function(i, el) { return $(el).text(); }); 167 | if (n === 0) return; 168 | var scrollHandler = function(e) { 169 | var ht = $(window).height(); 170 | clearTimeout($.data(this, 'scrollTimer')); 171 | $.data(this, 'scrollTimer', setTimeout(function() { 172 | // find the first visible title in the viewport 173 | for (var i = 0; i < n; i++) { 174 | var rect = hs[i].getBoundingClientRect(); 175 | if (rect.top >= 0 && rect.bottom <= ht) break; 176 | } 177 | if (i === n) return; 178 | items.removeClass('active'); 179 | for (var j = 0; j < m; j++) { 180 | if (items.eq(j).children('a').first().text() === ts[i]) break; 181 | } 182 | if (j === m) j = 0; // highlight the chapter title 183 | // search bottom-up for a visible TOC item to highlight; if an item is 184 | // hidden, we check if its parent is visible, and so on 185 | while (j > 0 && items.eq(j).is(':hidden')) j--; 186 | items.eq(j).addClass('active'); 187 | }, 250)); 188 | }; 189 | bookInner.on('scroll.bookdown', scrollHandler); 190 | bookBody.on('scroll.bookdown', scrollHandler); 191 | })(); 192 | 193 | // do not refresh the page if the TOC item points to the current page 194 | $('a[href="' + href + '"]').parent('li.chapter').children('a') 195 | .on('click', function(e) { 196 | bookInner.scrollTop(0); 197 | bookBody.scrollTop(0); 198 | return false; 199 | }); 200 | 201 | var toolbar = config.toolbar; 202 | if (!toolbar || toolbar.position !== 'static') { 203 | var bookHeader = $('.book-header'); 204 | bookBody.addClass('fixed'); 205 | bookHeader.addClass('fixed') 206 | .css('background-color', bookBody.css('background-color')) 207 | .on('click.bookdown', function(e) { 208 | // the theme may have changed after user clicks the theme button 209 | bookHeader.css('background-color', bookBody.css('background-color')); 210 | }); 211 | } 212 | 213 | }); 214 | 215 | gitbook.events.bind("page.change", function(e) { 216 | // store TOC scroll position 217 | var summary = $('ul.summary'); 218 | gs.set('tocScrollTop', summary.scrollTop()); 219 | }); 220 | 221 | var bookBody = $('.book-body'), bookInner = bookBody.find('.body-inner'); 222 | var chapterTitle = function() { 223 | return bookInner.find('.page-inner').find('h1,h2').first().text(); 224 | }; 225 | var saveScrollPos = function(e) { 226 | // save scroll position before page is reloaded 227 | gs.set('bodyScrollTop', { 228 | body: bookBody.scrollTop(), 229 | inner: bookInner.scrollTop(), 230 | focused: document.hasFocus(), 231 | title: chapterTitle() 232 | }); 233 | }; 234 | $(document).on('servr:reload', saveScrollPos); 235 | 236 | // check if the page is loaded in an iframe (e.g. the RStudio preview window) 237 | var inIFrame = function() { 238 | var inIframe = true; 239 | try { inIframe = window.self !== window.top; } catch (e) {} 240 | return inIframe; 241 | }; 242 | if (inIFrame()) { 243 | $(window).on('blur unload', saveScrollPos); 244 | } 245 | 246 | $(function(e) { 247 | var pos = gs.get('bodyScrollTop'); 248 | if (pos) { 249 | if (pos.title === chapterTitle()) { 250 | if (pos.body !== 0) bookBody.scrollTop(pos.body); 251 | if (pos.inner !== 0) bookInner.scrollTop(pos.inner); 252 | } 253 | } 254 | if ((pos && pos.focused) || !inIFrame()) bookInner.find('.page-wrapper').focus(); 255 | // clear book body scroll position 256 | gs.remove('bodyScrollTop'); 257 | }); 258 | 259 | }); 260 | -------------------------------------------------------------------------------- /docs/libs/gitbook-2.6.7/js/plugin-clipboard.js: -------------------------------------------------------------------------------- 1 | gitbook.require(["gitbook", "jQuery"], function(gitbook, $) { 2 | 3 | var copyButton = ''; 4 | var clipboard; 5 | 6 | gitbook.events.bind("page.change", function() { 7 | 8 | if (!ClipboardJS.isSupported()) return; 9 | 10 | // the page.change event is thrown twice: before and after the page changes 11 | if (clipboard) { 12 | // clipboard is already defined 13 | // we can deduct that we are before page changes 14 | clipboard.destroy(); // destroy the previous events listeners 15 | clipboard = undefined; // reset the clipboard object 16 | return; 17 | } 18 | 19 | $(copyButton).prependTo("div.sourceCode"); 20 | 21 | clipboard = new ClipboardJS(".copy-to-clipboard-button", { 22 | text: function(trigger) { 23 | return trigger.parentNode.textContent; 24 | } 25 | }); 26 | 27 | }); 28 | 29 | }); 30 | -------------------------------------------------------------------------------- /docs/libs/gitbook-2.6.7/js/plugin-fontsettings.js: -------------------------------------------------------------------------------- 1 | gitbook.require(["gitbook", "lodash", "jQuery"], function(gitbook, _, $) { 2 | var fontState; 3 | 4 | var THEMES = { 5 | "white": 0, 6 | "sepia": 1, 7 | "night": 2 8 | }; 9 | 10 | var FAMILY = { 11 | "serif": 0, 12 | "sans": 1 13 | }; 14 | 15 | // Save current font settings 16 | function saveFontSettings() { 17 | gitbook.storage.set("fontState", fontState); 18 | update(); 19 | } 20 | 21 | // Increase font size 22 | function enlargeFontSize(e) { 23 | e.preventDefault(); 24 | if (fontState.size >= 4) return; 25 | 26 | fontState.size++; 27 | saveFontSettings(); 28 | }; 29 | 30 | // Decrease font size 31 | function reduceFontSize(e) { 32 | e.preventDefault(); 33 | if (fontState.size <= 0) return; 34 | 35 | fontState.size--; 36 | saveFontSettings(); 37 | }; 38 | 39 | // Change font family 40 | function changeFontFamily(index, e) { 41 | e.preventDefault(); 42 | 43 | fontState.family = index; 44 | saveFontSettings(); 45 | }; 46 | 47 | // Change type of color 48 | function changeColorTheme(index, e) { 49 | e.preventDefault(); 50 | 51 | var $book = $(".book"); 52 | 53 | if (fontState.theme !== 0) 54 | $book.removeClass("color-theme-"+fontState.theme); 55 | 56 | fontState.theme = index; 57 | if (fontState.theme !== 0) 58 | $book.addClass("color-theme-"+fontState.theme); 59 | 60 | saveFontSettings(); 61 | }; 62 | 63 | function update() { 64 | var $book = gitbook.state.$book; 65 | 66 | $(".font-settings .font-family-list li").removeClass("active"); 67 | $(".font-settings .font-family-list li:nth-child("+(fontState.family+1)+")").addClass("active"); 68 | 69 | $book[0].className = $book[0].className.replace(/\bfont-\S+/g, ''); 70 | $book.addClass("font-size-"+fontState.size); 71 | $book.addClass("font-family-"+fontState.family); 72 | 73 | if(fontState.theme !== 0) { 74 | $book[0].className = $book[0].className.replace(/\bcolor-theme-\S+/g, ''); 75 | $book.addClass("color-theme-"+fontState.theme); 76 | } 77 | }; 78 | 79 | function init(config) { 80 | var $bookBody, $book; 81 | 82 | //Find DOM elements. 83 | $book = gitbook.state.$book; 84 | $bookBody = $book.find(".book-body"); 85 | 86 | // Instantiate font state object 87 | fontState = gitbook.storage.get("fontState", { 88 | size: config.size || 2, 89 | family: FAMILY[config.family || "sans"], 90 | theme: THEMES[config.theme || "white"] 91 | }); 92 | 93 | update(); 94 | }; 95 | 96 | 97 | gitbook.events.bind("start", function(e, config) { 98 | var opts = config.fontsettings; 99 | if (!opts) return; 100 | 101 | // Create buttons in toolbar 102 | gitbook.toolbar.createButton({ 103 | icon: 'fa fa-font', 104 | label: 'Font Settings', 105 | className: 'font-settings', 106 | dropdown: [ 107 | [ 108 | { 109 | text: 'A', 110 | className: 'font-reduce', 111 | onClick: reduceFontSize 112 | }, 113 | { 114 | text: 'A', 115 | className: 'font-enlarge', 116 | onClick: enlargeFontSize 117 | } 118 | ], 119 | [ 120 | { 121 | text: 'Serif', 122 | onClick: _.partial(changeFontFamily, 0) 123 | }, 124 | { 125 | text: 'Sans', 126 | onClick: _.partial(changeFontFamily, 1) 127 | } 128 | ], 129 | [ 130 | { 131 | text: 'White', 132 | onClick: _.partial(changeColorTheme, 0) 133 | }, 134 | { 135 | text: 'Sepia', 136 | onClick: _.partial(changeColorTheme, 1) 137 | }, 138 | { 139 | text: 'Night', 140 | onClick: _.partial(changeColorTheme, 2) 141 | } 142 | ] 143 | ] 144 | }); 145 | 146 | 147 | // Init current settings 148 | init(opts); 149 | }); 150 | }); 151 | 152 | 153 | -------------------------------------------------------------------------------- /docs/libs/gitbook-2.6.7/js/plugin-search.js: -------------------------------------------------------------------------------- 1 | gitbook.require(["gitbook", "lodash", "jQuery"], function(gitbook, _, $) { 2 | var index = null; 3 | var $searchInput, $searchLabel, $searchForm; 4 | var $highlighted = [], hi, hiOpts = { className: 'search-highlight' }; 5 | var collapse = false, toc_visible = []; 6 | 7 | // Use a specific index 8 | function loadIndex(data) { 9 | // [Yihui] In bookdown, I use a character matrix to store the chapter 10 | // content, and the index is dynamically built on the client side. 11 | // Gitbook prebuilds the index data instead: https://github.com/GitbookIO/plugin-search 12 | // We can certainly do that via R packages V8 and jsonlite, but let's 13 | // see how slow it really is before improving it. On the other hand, 14 | // lunr cannot handle non-English text very well, e.g. the default 15 | // tokenizer cannot deal with Chinese text, so we may want to replace 16 | // lunr with a dumb simple text matching approach. 17 | index = lunr(function () { 18 | this.ref('url'); 19 | this.field('title', { boost: 10 }); 20 | this.field('body'); 21 | }); 22 | data.map(function(item) { 23 | index.add({ 24 | url: item[0], 25 | title: item[1], 26 | body: item[2] 27 | }); 28 | }); 29 | } 30 | 31 | // Fetch the search index 32 | function fetchIndex() { 33 | return $.getJSON(gitbook.state.basePath+"/search_index.json") 34 | .then(loadIndex); // [Yihui] we need to use this object later 35 | } 36 | 37 | // Search for a term and return results 38 | function search(q) { 39 | if (!index) return; 40 | 41 | var results = _.chain(index.search(q)) 42 | .map(function(result) { 43 | var parts = result.ref.split("#"); 44 | return { 45 | path: parts[0], 46 | hash: parts[1] 47 | }; 48 | }) 49 | .value(); 50 | 51 | // [Yihui] Highlight the search keyword on current page 52 | $highlighted = results.length === 0 ? [] : $('.page-inner') 53 | .unhighlight(hiOpts).highlight(q, hiOpts).find('span.search-highlight'); 54 | scrollToHighlighted(0); 55 | 56 | return results; 57 | } 58 | 59 | // [Yihui] Scroll the chapter body to the i-th highlighted string 60 | function scrollToHighlighted(d) { 61 | var n = $highlighted.length; 62 | hi = hi === undefined ? 0 : hi + d; 63 | // navignate to the previous/next page in the search results if reached the top/bottom 64 | var b = hi < 0; 65 | if (d !== 0 && (b || hi >= n)) { 66 | var path = currentPath(), n2 = toc_visible.length; 67 | if (n2 === 0) return; 68 | for (var i = b ? 0 : n2; (b && i < n2) || (!b && i >= 0); i += b ? 1 : -1) { 69 | if (toc_visible.eq(i).data('path') === path) break; 70 | } 71 | i += b ? -1 : 1; 72 | if (i < 0) i = n2 - 1; 73 | if (i >= n2) i = 0; 74 | var lnk = toc_visible.eq(i).find('a[href$=".html"]'); 75 | if (lnk.length) lnk[0].click(); 76 | return; 77 | } 78 | if (n === 0) return; 79 | var $p = $highlighted.eq(hi); 80 | $p[0].scrollIntoView(); 81 | $highlighted.css('background-color', ''); 82 | // an orange background color on the current item and removed later 83 | $p.css('background-color', 'orange'); 84 | setTimeout(function() { 85 | $p.css('background-color', ''); 86 | }, 2000); 87 | } 88 | 89 | function currentPath() { 90 | var href = window.location.pathname; 91 | href = href.substr(href.lastIndexOf('/') + 1); 92 | return href === '' ? 'index.html' : href; 93 | } 94 | 95 | // Create search form 96 | function createForm(value) { 97 | if ($searchForm) $searchForm.remove(); 98 | if ($searchLabel) $searchLabel.remove(); 99 | if ($searchInput) $searchInput.remove(); 100 | 101 | $searchForm = $('
', { 102 | 'class': 'book-search', 103 | 'role': 'search' 104 | }); 105 | 106 | $searchLabel = $('
  • Introdução ao Machine Learning
  • 10 | after: | 11 |
  • Contribua com este material
  • 12 | bookdown::pdf_book: 13 | keep_tex: yes 14 | dev: "cairo_pdf" 15 | latex_engine: xelatex 16 | citation_package: natbib 17 | pandoc_args: ["--top-level-division=chapter", "--lua-filter=latex/sidebar.lua"] 18 | template: null 19 | quote_footer: ["\\hspace*{\\fill} ", ""] 20 | toc_unnumbered: false 21 | number_sections: true 22 | bookdown::html_book: 23 | css: custom.css 24 | -------------------------------------------------------------------------------- /src/appendix-kaggle.Rmd: -------------------------------------------------------------------------------- 1 | \cleardoublepage 2 | 3 | # (PART) Apendice {-} 4 | 5 | # Sobre o Kaggle 6 | 7 | Criada em 2010, Kaggle é uma plataforma que possibilita a realização de uma ampla quantidade de atividades que envolvem as áreas de Data Science e Machine Learning. Com o uso da plataforma, o usuário tem acesso a um ambiente *web* gratuito para a execução de código nas linguagens [Python](https://www.python.org/) e [R](https://www.r-project.org/). Neste ambiente são disponibilizados diversos conjuntos de dados que podem ser fácilmente importados para os ambientes de análise. Além disso, o Kaggle é muito conhecido por ter uma grande comunidade de usuários ativos. 8 | 9 | Outra característica que torna o Kaggle muito famoso são as competições, nessas, os usuários são desafiados a resolver problemas do mundo real. Normalmente empresas e instituições de ensino utilizam o Kaggle para criar tais competições e utilizar essas como um catalizador para a identificação de bons profissionais. 10 | 11 | Dado este contexto inicial, neste documento, serão abordados os primeiros passos de uso da plataforma e os principais conceitos envolvidos em seu uso. 12 | 13 | ## Cadastro 14 | 15 | Para iniciar o processo de cadastro, acesse o [Kaggle](https://www.kaggle.com/). Na página principal da plataforma, apresentada na Figura \@ref(fig:telacadastro), clique no ícone ${\textbf{Register}}^{\color{red}1 \ ou \ \color{red}3}$. Caso já tenha uma conta registrada, utilize a opção ${\textbf{Sign In}}^{\color{red}{2}}$. 16 | 17 | 18 | ```{r telacadastro, echo=FALSE, fig.align='center', fig.cap='Tela inicial'} 19 | knitr::include_graphics("assets/appendix-kaggle/tela_inicial.png") 20 | ``` 21 | 22 | 23 | Após aceitar os termos de uso, é necessário inserir o código de segurança (Figura \@ref(fig:codigo)), o qual foi enviado no email cadastrado. Caso não tenha recebido, verifique a caixa de *Spam*. 24 | 25 | 26 | ```{r codigo, echo=FALSE, fig.align='center', out.width="35%", fig.cap='Tela de segurança'} 27 | knitr::include_graphics("assets/appendix-kaggle/code_number_2.png") 28 | ``` 29 | 30 | 31 | ## Criação de um notebook 32 | 33 | Dentro da plataforma Kaggle, os ambientes para a execução dos códigos, chamados de `Notebooks`, são criados com o [Jupyter Notebook](https://jupyter.org/), uma ferramenta que possibilita a criação de documentos interativos, com códigos que podem ser executados e misturados com equações, visualização de dados e textos descritivos. 34 | 35 | Para criar um novo notebook, após o ingresso na plataforma, clique em ${\textbf{Notebooks}}^{\color{red}1}$, como apresentado na Figura \@ref(fig:telacriacao), em seguida clique em ${\textbf{New Notebook}}^{\color{red}2}$. Caso tenha dúvidas sobre a plataforma e queira saber mais detalhes, recomendamos a leitura da [documentação](https://www.kaggle.com/docs) 36 | 37 | ```{r telacriacao, echo=FALSE, fig.align='center', fig.cap='Criação de um novo notebook'} 38 | knitr::include_graphics("assets/appendix-kaggle/criacao_jupyter.png") 39 | ``` 40 | 41 | 42 | Na tela de configurações de um novo notebook, presente na Figura \@ref(fig:telaconfig), é possível selecionar entre duas linguagens de programação${\textbf{}}^{\color{red}1}$, R e Python, assim como, o tipo de ambiente que deseja criar${\textbf{}}^{\color{red}2}$, neste curso o *Notebook*. O ambiente disponibiliza acesso a GPUs${\textbf{}}^{\color{red}3}$ e sincronização com os serviços Google Cloud, tais configurações não serão utilizadas neste curso. 43 | 44 | ```{r telaconfig, echo=FALSE, fig.align='center', fig.cap='Criação de um novo notebook'} 45 | knitr::include_graphics("assets/appendix-kaggle/tela_criacao_2.png") 46 | ``` 47 | 48 | Após selecionada as configurações do Notebook (Figura \@ref(fig:telaconfig)), o ambiente levará alguns segundos para iniciar, a Figura apresenta \@ref(fig:telaambiente) o ambiente em questão. O Notebook criado é composto por células, as quais são destinadas para escrever códigos e executá-los de modo interativo. É possível criar uma nova célula, assim como executá-la nos botões apresentados no canto superior direito${\textbf{}}^{\color{red}1}$, para apagar ou mover${\textbf{}}^{\color{red}5}$ a célula criada basta acessar os ícones que aparecem no canto direito ao clicar na célula. A plataforma oferece 4.9GB de espaço para armazenamento de dados${\textbf{}}^{\color{red}3}$, 16GB de mémoria e uso de CPU por até 9 horas. Outro recurso interessante disponibilizado pela plataforma, é a possibilidade de versionar${\textbf{}}^{\color{red}3}$ o notebook, de forma a garantir diferentes versões do notebook no mesmo ambiente. 49 | 50 | 51 | ```{r telaambiente, echo=FALSE, fig.align='center', fig.cap='Detalhes do ambiente'} 52 | knitr::include_graphics("assets/appendix-kaggle/exemplo_jupyter.png") 53 | ``` 54 | 55 | 56 | Isso é só o começo, existem diversas outras informações e possibilidades na plataforma, como por exemplo a disponibilização de cursos online e gratuito para o aprendizado de Data Science. Para se aprofundar, acesse a [Documentação do Kaggle](https://www.kaggle.com/docs) 57 | -------------------------------------------------------------------------------- /src/assets/01_introduction/fitting.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/01_introduction/fitting.png -------------------------------------------------------------------------------- /src/assets/01_introduction/rl.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/01_introduction/rl.png -------------------------------------------------------------------------------- /src/assets/01_introduction/trade-off.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/01_introduction/trade-off.png -------------------------------------------------------------------------------- /src/assets/01_introduction/turing_test.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/01_introduction/turing_test.png -------------------------------------------------------------------------------- /src/assets/01_introduction/unsupervised-learning.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/01_introduction/unsupervised-learning.png -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/00_dataset.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/1_knn/00_dataset.jpg -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/01_classify.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/1_knn/01_classify.jpg -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/02_distance.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/1_knn/02_distance.jpg -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/03_neighbor.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/1_knn/03_neighbor.jpg -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/04_classcount.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/1_knn/04_classcount.jpg -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/05_classdefinition.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/1_knn/05_classdefinition.jpg -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/06_complexity.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/1_knn/06_complexity.jpg -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/classification_examples.drawio: -------------------------------------------------------------------------------- 1 | 7V1bc5w6Ev41rtp9cAohxOXRdi7nYU/t1qbOnuRpi3jwmLPjwZnBiZ1fv8IgPAhhGHvU3cjjVMVGzAW+T2pJ3V83J/zi5v7TJr29/r1YZKsT31vcn/D3J77PRBzJX1XLQ90ShLxuWG7yRfOip4bP+a+safSa1rt8kW07LyyLYlXmt93Gy2K9zi7LTlu62RQ/uy+7Klbdb71Nl1mv4fNluuq3/pkvyuu6Nfajp/bfsnx5rb6ZhUl95iZVL27uZHudLoqfO038wwm/2BRFWf91c3+RrSrwFC71+z4OnG0vbJOtyylv+GeR/Dv67+aP858P+frDb5/+Ov/y4ZQpfrblg7rlbCERaA7XxVr+Ot8Ud+tFVn2QJ4+KTXldLIt1uvpHUdzKRiYb/8rK8qHhL70rC9l0Xd6smrPyGjcPX5r3Px58rQ7eCXX4/n735PuH5qgFrf4Q1UGC6lS5Kf6XXRSrYvN43dx7/GnPKLok0Of1PVY3Nghe07Qt7jaX2XOIRQ3BZbpZZuWzrwxbmuX4yIqbTN6afOcmW6Vl/qN7LWnTUZft6564lH80dO5DrbrQH+nqrvmuHtddYn9e52X2+TZ9BOCnHNBdElsyvD3gr954la9WO6+8evyR7ctNusglA+pc09uay842ZXb/PF99bJs3+M29N1ZHeKI+/vk0hhlvBuZ1Z/x6tuhgBjbCVVnBU8ib2qUl/H5XqBOn28cufyZfwMTt/dNJ+dey+v1FfYy8rPqT6vYe1xLNUiO0w2GD/i5ZTVO6ypdreXgp0c9k+3nFTS6N5Flz4iZfLKqvMfagbh87ALmnXHTY9UXQYzcwkOtb49a3xO3XeXG7KUpp2IrqXafJochux+mDWlNgs83H7epSAnM7ePfNYiX9pl7u7Y+K10Ul7oPCIpOBi6zBMo7KyPySbm/rJdxVfl/1qWnd5xmO+vDhwWMyEfrCa7WSy9qhofYcUNoEu0iz+Ory2Un68NCqmbfbL9XhDvA+5GCdMFadgJ1puDNk3IO3gnvQxV0g4y4Acb+6ysJLJNwDvbsj4x6+EdxjYrhHbwT3qIt7gAx7DAh7xhYii5DMu7754MjAT/DpuAE86wIf9R04oLiry3EeeH1ixbY0PuTMirqS1Do8Nu4TZlbbXg7Gum5cfCeHP2Hig/Ny1ByR8nJAzk9WR+sQtkTdHJDTEybu1PwcfILb0w3giTk6uA8IvNWd3wjw1DwdHNKligk8NVcHh/SpYgJPzNfBIX2qVrd+YyaemrODQ+79UJEn5u3gkG5VTOCpeTs4pGMVdTlJy9uheLeDe0c4NyB664sWe6x8/GiblZAYKxM2V7Z9UFwzEfg+qGDCzgfOBxUMwIeIjzOajyFsafqgAmc0HyO4U/NBBZAbFFTgifmgAmdUHyPAU/NBBc7IPkaAp+aDCiD3J5jAE/NBBc7oPsZMPDUflJpj3EeemA9KQEbWMIGn5oMSE/aXbiwnaXk7VF7TYHrma/Ju24OvuwcDWbfdRNv6qp5Nnn3WezOaUiuaDftoRm0woKCCSagVoj8MbKZKdygbT5WmSlptTtBICzFJmyllAWriugAuSeAEZWJgqgOiLIalzHOBsmAgFgNEWXKkbP9R5mFSpqJzYJQ9rTnmTFrtO0EjjaGSNtulfoxKmmHHC2YcZ0tZgEoZx5zPZrs7q2OHaIsQq6F6OrKbEUcUMdlNOCGQb1t2I9T6lIzsJpwQZYeT3YQDxhYRH2cSNYewpSm7CSFj4Zi4U5PdhM5odceAJya7USVW5y9CGAGemuxGzR3OA09NdhNBxsIxgScmu4l8QNytahDGTDw12U0EKeJGRZ6Y7CaCVHFjAk9NdhM5o+Ie6/G0vB1RXyFAQnbTY+ZDWP17hfdQ+XVGvYdxA8mo9zBEFQpEqEIBIJfv4UmLUF2+EbBUAEHdYWGcoYYw1YMkZkDZHIxmhBonU1tbh3UfFihD1X3E0BICJyhD1QrHhrU7WanOLIymj0ontLgAQ8RjgTRUUWrcz6egKuKZwwgMUeWqMXDyxavkPbOgE1VgF1sVC9AR/oy4wogJf2ICNZ8jLQSEL/yJSdV8jsnVfI6dqfk8hC1N4U8CGY3HxJ2a8CdxpubzGPDEhD+JDwi8VRnECPDUhD+JMzWfR4CnJvxJnKn5PAI8MeFP4kzN5zETT034kzhT83kMeWLCn8SZms97Tq7otsYZHflYj6fl7Uj6YW1HhT/KrzPqPWReg8mo+zBGVSS06zKnpT8WaEtQvb7MA45kI4h/bJDm45JmmI6IkjYL05mgBtKYh5ooP9sxiConYR5mLHu+pKHKk5kHHbOmJQKyQSiqdJl5wMUEUWRANmhDVbwyDzhPgJQQyAadqGpY5qEWG0SXAtkgFFWn116n62KgEfcYMTEQYxPC3N1RNkJNy0R1sEi3149vZM86I7vMsGEKJ9HyvPQo0RgwSY9MFDCLHPg2h4al+N8IypEeY+3DDNzR+9FtXpnmVXYj76nY9hCXN19qXbuDWNMld+FtmtJVvlzLw0v5wZlsP6+gzC/T1Vlz4iZfLFZDXHZH2/BwOgBLzPPGaTLpzCzSNMeY7J5jgaOPhX74le2MheNQGGAJeCjMMWS451AI0YdCf1l6HAr6UDCwBDsU1CfvsPSf/Fe+vk7XJxf85CxKD0HU7sbNClueBbaSZHRHEcJyZdpRhKuKjKtC3tMuS+H3u0KdON0+bqjP5AuYuL1/Oin/Wla/v6qPkddVf1LdTnSMbopS7quL6l2VM+UwZGsDU/QHZgBLtmnrcgiyv8yL7EOYXbUTVZkH+OSaBMFHcl9CbuiTI9ckOj6S+xJyAxUDpEOuaRd9JPcl5MacHLkm8fRxgXUQtjnTV1gJNtsmxfaR7YOwLfS8CHy2TT6fI9sHYTvScwLw2Z4QE7Wdis/05CD8XPz2imgk4zc09RHERMiZ7ORBdGnm4zNu8ng4iTy1jHzGIROUcaEnlpPfBsNmJVF4EfTUsvIZh4yIo0JPLS+fccg0ZVToiWXmM+5MnvKoqaeWm884pO4AF3ti2fmMQ1bZQoWeWn5+ewFvYHFJTIIsrO5lO+KLvtB4mICh6dkeMdS04SHcg3tfLBQ3+CFfox1/EW+iGyEK+7MIN/DG7Q2oCS4KpzT9cqFOTtRv96nXKKJ+uSqnpuoXfb/EUdUfkFP1C/dU/f3BgC7rF0dZ//hYQJf1izk+ynvfsYCu6xd9J8ZxLJDT9Yu+v+Oo61djipqwX33bUVT4enJZQk1VGB7TNqwpjxjTLS+69CgEKlt0n5d1kZtINIdfd049VdeoDiYW1/j4kfMkaZl5trjGa2teNG/9V5E/DgHFZxiyd3HUHcJMlRpVn1PX7mje+sTXCz+tru/R+7RH9ts7e02HwKyf8+qCKwNuJ19fU03tMlMqryj36GjllcYX9Ipu+LqxHo1O3Jctkk/WW2HaM+h/bNPqMqu3rdKt3KVI/DbZorjJ16m0v/JwXZ38oS/krM0ClQNMVP/AVuPVHex8e/1zqHWf0C1Bf+HHTA5lYW2yiPoO5fcSmq1sWlR8l5tMcm/eWL3M0eztMcj1MMCjP7T6ORn0OR96se4HSYezwBDEN3IW2uMM2p7vV8auM7ZebtwPac+jqU/VY7jPKW0vdGc4XlSWOL+Shq42t4//85mMRgsDUBAYgFZlNM9zE17G2berKdy0DsIDkCDGOYB1AsamhQ8QBbH/jYfhJApEFi+Cw1DANQpidAqgxR27wIbfQjGJAmme/OnijlHfTpcD9JQF9Zzyt2OJ2mqTdMZBXw5wdlNIUNKDxKhBXNwHICZk77q7m8Cwu1G+KSBmrKY2UJwkIm1whOiDw6o8gKSB8kNtIAj0HB/Ax3UTmapjcgvWCfpvK4mvIzhpau3AoNaGzoCd5YORR2AOtbnRYJiZCWV7IM8xzXi/EpQEQLa6PMcBWdMuCEMqHzDI7slxYx1kwwoCGOQ5ZgmP9GRODuQ55gOPgKxVGghEP4UCGOQ5PqB4BGQtvdrkEwEGeY5Jvvs9XUL46D15jtm8e058pgg5LMiQebtQmxG9JyODLFfqgCC33tThZwQNRaMP2reDBNmA+MEEK43gk2CeqhFBxynhB+49soF5od/FGXvD3Mb6XUK51V+SQVltdJxCOe6ijO6X8O0WP8BJE/Z0lLH3zP6UjPi5odxWBqaDsns+NsaYZpexXRO+IeXdHspAudStWpWKb8J3MWO9TT2m4pzwDRnrs0e5N/theyd8FzPOvV5fRkcZcu+H5Z7o9W58/4Qhh9y5VQe+pTYmf8/cUjPNgyQM9R+BUYbcp0ChrOTHCmWTnw4WZRdX0IFul9FRdnEFrVsMD91iQK6gobx0ntaX0XeDoYt+feUUI2MxIhd9oRrKwlAdFBhlyDUGFMpajErE6ChP8IViRE19Tc9GIWoaQa7HgKyrXhQYP54XQa7HoOoOaiIVAig7uB7junIQPWoaQXo0geYw/fE3+PE8uxUMkEpY++RQdtB/qT9GFz9qarcUBI0K1PhRU7vVHpBQFhrK6L54u/UccFDuzX7o3ghDxQZ7KIPtSqiJuu1WX6ASNdV7N37U1G7JBRqrDgKW2kF9C9czItGjprF7eWQ9z4apSAswyu4lkskVtFaEBT02PaUCyOxQ1vsyuv8ItHgIFMp6kRb0FTRo9RCs2Q9dAeBg+RDGtecl4CsAQOuHQO0G9VI4hkfMAKPsYiQwGK94CIyyg5FAvS8Lhm6XHYwE6lFt/PUyaA0RqEigZjHwNUOgRUSgUNb7MrpmCLSKCNR6WVvJoXuL2gtyCmU9qo29xuCeg1rOXiQQe1fCPci9HxTKurcIvy87mNeue4sEdkSKew5m5fRQxlYbcc/BrBz9iWnouxLuObj347GGMrZ2gHsO5rXrmi50nxz3HMx90hXN6PpE7jlY00y3GOhe/FYg4hTKXM80we7LzMW4n16iGttbxBnk3g+qL+sKLmylAGcO7v18vcZsgN6X3XtwQE8pQABlBzWfvRg2PsoO7v383gOg0FF2cO/XQxl978cc3Pv53O+uMRg6yg7u/XxtVyI4tsXwIfd+WNFVdC++D7n3g1rJ6Shja/G5AtUllPVdCQGL4aLmU0cZWyfHfdPeL1yVFUSFvKtduMPvd4U6cbrNf8nWM/kCFtzeP52Ufy2r3387+7v6IHll9WfVZ3osvuCJ200T5YdtJ153Dg4NK53AwLW159ty37QDPQjX52+ca8aUFoQO2aaN8EHIvnjrZLcSbvtky8NNUcHfnvskb/H692KRVa/4Pw== -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/examples/examples.drawio: -------------------------------------------------------------------------------- 1 | 7V1be+M2Dv0185h+Iinq8tiZznQe2r31obv75saaxF1PnM/xXNJfv3YiyhYhy5QtAhDp9qG1kjgODkECh8DBG/Xu8/ef17PH+19X82r5Ribz72/UT2+kFErL7X92T57rJ6nOXp/crRfz+tn+wW+Lv6r6YVI//bKYV0+tb9ysVsvN4rH98Hb18FDdblrPZuv16lv72z6tlu3f+ji7q8CD325nS/j098V8c//6tJD5/vnHanF3b36zyMrXr3yemW+u/5Kn+9l89e3gkXr/Rr1br1ab1//7/P1dtdxZz9jl9ec+HPlq88HW1cPG5Qf+9vbP9Jeb5bL45e/v3t88P+ff/3V7k6f1h9s8m7+4mm8NUL9crTf3q7vVw2z5fv/07Xr15WFe7d422b7af88vq9Xj9qHYPvyz2myeazRnXzar7aP7zedl/dX57On+5ed3L6qH+Y87oLYvH1YP1euTD4vlsn7/p8169b/q3Wq5Wr98QPX2p92/zVcMLLv3gjapzfS0+rK+rfoMUS/U3V9/8JO1KX+uVp+rzfp5+w3rajnbLL62l8esXmV3zfc1P/qP1WL7WWRSu0Sa1cvBOIR5bd5iM1vfVZv6p/Zwbv/n4GPsH72APADwTF4BfzGEznEAV4kFuMYFXNW/7uts+aX+G8AKuNsC/HjUlF+r9ab63npU77azP8w7JN22q39K5m0b3Jjd/dt+S22+5/5gO5W2dxzau2WpoWbRp61ysE5vl7Onp8Vte1FDg/UCcHKhHRhDd9jCPLt4PbagkKll4VfHAcvx6Ptg7VtXvC7Dy/ZB8EaeASwAgAIguN1mNm3M2mdBfVx82p4V1qPZcnH3sAN+i221ff52t2kttmHcj/UXPi/m85ez7Nv9YlP99jh7ORy+baNWcL4NXCdgezy6DeojCBwspLRrE/S1B5YAEuhUgUNSMoNEwNNaxYaJOLblkYEiACgwbQodlGPHBxkoEoCiYwOlYUnYgJJejxShW5g0+d4BJgITkxS6BULGv7Xq+vnfu5//QZuX/6nf7uXFT99br56bV/3kQItJOM4UDET3JFuQ1gv7NUg+HeaOxypchj30R7gYlsvF49MxpzmAdPb0+Mqwflp830HQ8tCt8eezqvh02wVL8vKPT6fLUsvpUuh0EjqdeTa+4WFsHabhRWJZXhBbXsNgLbpE0z6CSuIjyNwCRZ3VWJh0UKC4mCiASXxJTRuTnBoSeFpHl9JYkChiSAq4Tx0Gz7VlvUXLzdeORMuI92qXxc/mtu1k/JzXhzWTANp8bpQ47tOnKruliuNSZhG0Lns9j1naOh1HLBwdUTBzRHh/FKgjFpYjlsSOmGVXR/TgiJl2dETNi1LKctLlIFqLYb824lkOo9ctXbYcXAppgtyXqQOkDPNEJKUYRda2vDmRyCwfC7lrFayIQtIa3hA00Rm+iwZBNTwk1T0aXlfFPOWRBufEm7wpSw/f8PbxSn2PVCIzf6EGtvlEmb8ck/nj5HnkWx5qXEtpeKukriyIdzzMVI7S8GaF1XYviNOJ0qW3IYgUWrcTOdl1B45qecw9vhLbNZ/zSKE18VajHPIJ301pNyqDyw+5C025hPcjtTW5hlfTamtCbkNTsGrmCtggwKj70BQsspl6feCxLdGVXiJvG1Aw8oRuFTgm3DrRFIxKp16zORgTdp1oCgasUy/aHA4Kt040BQmLqZdtDgaFXSeagnd00R3z3NoARNJfO+K7mpZ97ZCrdk3pWsRngl0mnHo5UWp3sOfZ7WjUNXwi6a+mvXqeq+eVrp6neXneREtWhp95dj8iuesJ7BaSIB1PGBm1qXle88GDdz1uFRxCwIj/euid5XvS0ffMMcPG92QkvgeOPerqZJHAm5LoOF1uUjDNKoma1GXWiC8SePsRH6nLqxNfJPD2IzpOl1krflr0RnO8lashSK7BVzo6hXfsft/qOUDWqTa/LjZ4R4+Yj8BbWBc0yIUzmkSFLh54be8VuPBmU/beMccKZIoI8BIZ8H5uJR7AseZIpJJ2A89cKh9Jq9QHB7gqt0iTgpg0yWDeF6lTuV5wc99uoRtr+37KrY52LDfO+9VcxuLEGa4prAlPqqQNxXKcq36GCAskhLW1GdwgI1z0B9sBI0w1pa1ABhjn4pIjwFjRdEbswv2RXsgIj97m75YvoSPcT3gFjDAVpYmOcLShNNqdREqMME69OkOExxeddAulsWnMov9SMWCEs9HLJB0RRr5XLKJNh7GSJYAw8i5dxpsOI2VLNsI5MsAdNw1BAIyNm+OV0Un2234fz5x1eU2Wka83kB1cJNGGYSVSoH2jbC2DBBljEe0xPX5XxBGMpV3khY5xqCe1e48MuiMLW53MO8jRHsdNLx8+yHZZtW+QUxYKfRb/pzp6NZAV+0QqTxtmJAW4BoTAJOCQK9dEiifaFypk1Kp9omOS9cT1fPZb7GR1+0QanHDfGahwU+4TaXDSfWegwk67T6TBifedAws39T6RBiffdwYs7PT7hKkiifrAZ6fgd6JLM3ZJlQbi01SCrr/z9CDe8attLlwDDtQAQxW/M9yPnYyf7rD01f3Ocj/l7H7M9MQ0ZiPeeJpG55x+7LT8NA71PU0tvyHe5zrtmJ/3TXNI1hnex07OT+PUW8dw+LnOZGwOGzbuhzqVkdXhR67opyFREh/Zy07ST0OeJEKyl5umn7l/jpvrZSbql0HiIj6ml5mqn8hwKA2O1USGSPNfTWSx+xq5Q0NkOBr4LEFGUqi5kRk1yPHWBWKJgAFPTrEr9bNo29ob6gcfZOyCuayfaYlHh0yUSJjbeiQpcpesyPpb3SOCvECC3O65SrFLKjOHaWy+S7xBXWkB8xHsCu8MMirQN0YqF85c27+mVS6MfWDlkG65QjYMMvIK7xyyM1Mv+Gp22OlWeBsRiYBI/+GosKvwzmENyNRJ/+Go8KvwNnrSAbH+Z8DCrsI7hzUbU+f9h8PCr8I7h20q8R0t7O6TcxIi4Nyim1OcQYtgGDLgpR/f0yxC7qpgL8bXeLlwAaAOaR+vxGa479nl3eQVNrkL8xCE6UF1E3l1YQEphPjST3b9RgUkBSJMdLhVNxWQFIgwz2FW3VRATiC+LIdbdROSzv+x8Ln5GteadfeAunBuGTFdQlwC6gKzZeSsyWmjeV/KLaI+odHPLJudkjs6t5Dk3NwRs4WE1h3tFi7y/skTcvtXdzzXHU2idtodi9FLFS9cEv36/L6XhGgtiP36iGpJMOuxLSEVE8sOTR4wlajiHqQUpMjatjdVr3S2h7RKoLa3ylwaQonO9BMV1bjc9F0UCa7pYdGER9OPp6hweXqck2/2ExWzGOGgJb9vKpHVLAIOdJ2pCG7MYImqZsHJ/+i3PtQqB1LTW/V45i+nMz1qlQOl6U0pjZkiTpxgNONgIkisdTu5k1135ri2x0ysK7Fd9zmTxFoTbzhNWakf0wMTf/hQm9gC5X22+9er6a35T00tH92q77D0ZNpKIU7OTaTG8KE3kcqkX9kjXIBLJIAtl9bIg6Bk0l/BcgV4bA9Gntknk35FD94Aj9n5LxMkFRcAeYEN+VXfA1nsIZXU2zj7qpfBSnYqb3NKKTWpJE+MMY7Jr1w5WfabLnRlnfa/kedp6DLpr5gJWYILS45JlcRBWbzDsptubd8Ya2tDkNhRmID9ZbFgTCWrppDlEptYI0aMkQ52G2N8P45X3Hb8C3W39Akf43i1bamYTnyM45W2RbuuSKkxxqm64ojx+I0fbnE1Orsp+hVsQsbYpK3oGGNfO4p+pi1ojInyY3wOJGKei2ivVraqsm+MZag8FzpyjhdKJ3lx8Ea+6ewOmaUwlgCf9BlgjO7mU64SGrXGwEzw9g15nubt0xt5oESXIlSkkKdIkOvCghw7KJcO7WS+B0po3TYCg4ES27c+bZeRphM0GAQ2nQB5oMR2iVwhuxAy6oESW9cHGE5c0XO/w052oISUsPsLulboqHAbKNE4fTg6q2egwm6ghFSwaWziQqvnwMJtoIRUEsAycanVM2BhN1BCKijiEt/Rwm2ghFQkRMA0Bkrs942TLIJy1b9t4l4mKhfNJ5+YttIZvsdtoIRULsxDEKZnN1BCKkghxJd+chsoIRUkBSJMdJgNlJAKkgIR5jm8Bko0wXvUWQ6zgRIyxbktn+pAiQEBta73nNMBteY1oa25UOTbyzua93EbKCFTkkqGqSrYD3BHg/Rpd1Tc3BFTwJbWHbkNlJApiXhJDO7o3MCfjl7EduGSoB35MzGdXT9LQjJbEuzFT7zt0PQB0zTHCZ9je24DJWSKqrRLaXtuAyWaDxSf6akHSjTp+sT0pUdIj8kFsEx1ewSm5zZQQmocGYoIAl3tTEVwYwY1JhXByv/ot75pztIZoR6PeqCE1KhVDpSm5zZQQseTWLMbKKExE+vxBkqMkFiTD5TQXvNqbwMlxriAIw9zTT/f9QL8Yj63xsghzEWSAMsTq4PV1A4P7T2z30gZKg6r9yzrX6W8u5/hUnPudTa1vsH3Omf9dTjhApzhAJxlbYDRBfOzjiP9CrBHD8aWl8qumiTGElSbNrYyoOnPuEKOpUliB2L42zgmLYcz9yQzsQebuSfZdZ7Q4CpG7ptuh6KU6H8j30JxWbS6rmiqYVlOHZRFq+vaiAp4P5KtDUHm5Q/lwT8FMuLRqrySaQGiT0HJcThblhgjSXzaGBN7dR6tqKuHmhC31Ioa8X6+LGTEqThRasSjnXuEds2RSV6IRzsFyUOXk1t0js6R5v0ddUFjjDR1AWCMfXmZRzsFCS/nor7eyiNmy4j2avSxCnmobBk6cudOT7HZdfTpKXnE9BnSYgEYY7t5MeVaozEhVwlSIaJIZFv3CX18imlgjR5zWSJhXmQW5NhReQHli+EaGDxzwnWTxBkuYRsZ1IO4Vvjab4Q+Sdb0n13RckBLiOTEO3mHC9YBTUeNdXCJUFEcMTeZNnsBe/SgvwRj/1Kysz/s1JuO7u1w+x/buOjsD7v1pqNwO9j+Ijm239MBAHv2pqNmewYAKTcAjPR3HCdAYcnipOTKwSUJi8BuDod73lmvztOlvMXot8EXIi2Bp0HoSbWnhruTYQHszlCymvfSJVuflpFL1TayIpd3LWGSHXLWZp8Z5CMASpg1B5w12PZX5NNKSpg1B5w1APuTzy4rYdYccNIA7E89F0YpnAvuCYh9DL4uORm2qoTZnLgSZuj+IiqcVs0yZxa2KlOGNI0skKGDqUQ4OljD+TFxsOaTB+RgIhGWh1E3Q6ukw6hXDxvkYa5N1M2KZuNhtNOBRAt5TpK842PvoS7kQuzZjwEaYXelj1/YDxMeHiSaQsam8IhY1lUl7McGX1wRkRp9LzojY2rnEhmZWiS3yXH5SkNfnFMq6hE/TVVuQEYGJx/5XUhDxl3nOzgHk8I1VefGhTWfPGiXIt+4zDsHZWWr8krlxGrpSqDelOOcweZvsvWl6YwcXvZZllZe1HUdi2tkzOTzrJELFyefzZUbnZG9Jp9jDFc4Z1Nu7xcp9QgLJfpvVnn3lx2FxL2qL/RuMmWCregAVjgAl8cKrLEAliQ3ufEADDwYWcFDdZQ6TgfgUfN4SQU5clOp6gp1ooQcreu7PNYpiQY5ZnaMlLhZdeT0NRkdVbNx+pV79RL7TbdDtMO+rUZWqFcdxcGRiPGgKbOUmjoqi1c7r0DCWCTE4h5KRiueRyexhK1Kr2So6nnuF6PoION7crT6eB7utN1SKHSMFU5lBEOMydhOfIz7ybCgMUa6sigTaoz72a+AMfbQyOAYWqNTnCraqRFNhwA+yNiXj6qfbwsaZKokGZ0JUfGyXXj5kwUytva0UqHSXfjQnasxbxPk2BrzSkXMhiHl0ABjf37+VYu3//zvz7fJ7x+fnv9afiyTj3/chFhqYGF2cgV0GuaVWxgd79SSWrnxmGx1/l39qVbEgEs/gDfylw3gJS7gJzZx3oiPiO9r5X6A+E6/oHccfFMv+Da3Uw2+Ahnf6dfzcsYX+G9zq4CEb9p/icEbX68nciqRdmx/M366/65r0I0bgzVyBFR7eFpH3bxqPUFhZwdoEAtzLmap7UV4rZDdRibRYJqEW9UmP6z9nMSOCz05BavOGyfWbaEgLjg4MySqoA7IgrjeGCfm9nQe2/uBxymL3RAHcbnB2YsBz4lNbKdB3F2MA7GfUx1AjO7FQdTxjhPhlX4gthMndIiDqOLlzH8BfhMbYt3Pf0UFsZ8riiaAJoM4iBreEVNx/xE1NqepOwitWCHWSBAjXzTqIAp4WSdN1HdR+spu+U6aAMT+uh+7IY6E3UIgrRwvkU7T4eCdPJPY+kp/eU6cYVUBspu7qILuEbldzp6eFrdt+M73tIMbQBOGHt4Ammej3yo5upGDQ2JHz1e03NHSdjqLfZsPdUphfstpNuRl9/xHaycQBsp3mh+Oz4DeEo75Qb04tfnhYA3ek4EvM//RXYvK/HDkBu/BwBeZPz261VOZ3/z+yQwGvsz+R4ufyewvYtr9Zd7uDtuPcUWYzNxt/36el9mQy1NJZytDRexCcSjFy7oXxuhjaHo/Ja8RZZed5Oac3NPnxPWqqJM7kIxsFwU3beRkRoapdcDJGjgvZEZ9XsBkOeB0AZ7XKbX9YbYccL4A7V9Q2x+mywHnC8D+qaS2P04B2bEAtfkazfDEEZuyHELWi+9SLkJawszcXziF02OVJtxi1o7giXH6Nwnvko7eRetcMjzngq1k1M5F0sAYtHNp16NLknoXyZQSpgOfkYG/tJLvMuAx54pSbavkMYvXuaI0PFueWUYu8CYtdRsZ8gyTNzKofMjwhrd2GxmSCcEZWXUxBqhGhjfsHo3sOrV83Dyy2T+ojKwwk3UkI9sHH/ndB9LohJDjSDOZgDn3ZT5m0O5EvmehXorjGNmur1Kmj4/MyKiX4ihGVkahcy+FQRysqwDTTmFnRF03r6hGxkw7K7Fdyzl62qnMiKLxjbx9uV6tNoeV+1ur3P+6mle77/g/ -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/examples/pointviz.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/1_knn/examples/pointviz.png -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/examples/src/knn_examples.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python3 2 | # -*- coding: utf-8 -*- 3 | 4 | import pandas as pd 5 | from sklearn.neighbors import KNeighborsClassifier 6 | 7 | df = pd.DataFrame({ 8 | 'pointx': [ 9 | 1, 1, 2, 2.5, 3 10 | ], 11 | 'pointy': [ 12 | 2, 3, 1, 2.5, 2 13 | ], 14 | 'class': [ 15 | 'Blue', 'Blue', 'Orange', 'Purple', 'Orange' 16 | ] 17 | }) 18 | 19 | neigh = KNeighborsClassifier(n_neighbors = 3) 20 | neigh.fit(df[['pointx', 'pointy']], df['class']) 21 | 22 | neigh.predict(df[['pointx', 'pointy']]) 23 | neigh.predict([[2., 2.]]) 24 | 25 | neigh.predict([[1.5, 2.5]]) 26 | -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/examples/src/knnpoints.csv: -------------------------------------------------------------------------------- 1 | ,pointx,pointy,classes 2 | 0,0.8,1.1,Blue 3 | 1,1.0,2.0,Blue 4 | 2,0.8,2.6,Blue 5 | 3,2.0,1.0,Orange 6 | 4,2.2,1.6,Blue 7 | 5,2.0,3.0,Blue 8 | 6,1.3,3.6,Green 9 | 7,2.2,4.3,Purple 10 | 8,3.0,4.0,Green 11 | 9,3.8,3.3,Green 12 | 10,4.0,4.0,Green 13 | 11,4.0,3.0,Green 14 | 12,3.0,2.0,Orange 15 | 13,3.2,0.6,Orange 16 | 14,4.0,2.0,Orange 17 | 15,4.0,1.0,Orange 18 | -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/examples/src/pointer_builder_example.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python3 2 | # -*- coding: utf-8 -*- 3 | import pandas as pd 4 | import sklearn.neighbors 5 | 6 | pointx = [ 7 | 0.8, 1., 0.8, 2., 2.2, 2., 1.3, 2.2, 3., 3.8, 4., 4., 3., 3.2, 4., 4. 8 | ] 9 | 10 | pointy = [ 11 | 1.1, 2., 2.6, 1., 1.6, 3, 3.6, 4.3, 4., 3.3, 4., 3., 2., 0.6, 2., 1. 12 | ] 13 | 14 | classes = [ 15 | 'Orange', 'Orange', 'Orange', 'Orange', 'Green', 'Green', 'Green', 16 | 'Green', 'Purple', 'Green', 'Blue', 'Blue', 'Orange', 'Blue', 'Blue', 'Blue' 17 | ][::-1] 18 | 19 | df = pd.DataFrame({ 20 | 'pointx': pointx, 21 | 'pointy': pointy, 22 | 'classes': classes 23 | }) 24 | 25 | df.to_csv('knnpoints.csv') 26 | 27 | # sklearn.neighbors.KNeighborsClassifier 28 | -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/examples/test_1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/1_knn/examples/test_1.png -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/examples/test_2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/1_knn/examples/test_2.png -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/examples/test_3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/1_knn/examples/test_3.png -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/knn_01.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/1_knn/knn_01.png -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/knn_02.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/1_knn/knn_02.png -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/knn_03.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/1_knn/knn_03.png -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/knn_04.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/1_knn/knn_04.png -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/knn_05.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/1_knn/knn_05.png -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/knn_06.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/1_knn/knn_06.png -------------------------------------------------------------------------------- /src/assets/02_classification/1_knn/knn_07.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/1_knn/knn_07.png -------------------------------------------------------------------------------- /src/assets/02_classification/2424491-200.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/2424491-200.png -------------------------------------------------------------------------------- /src/assets/02_classification/2_decision-tree/01_dt.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/2_decision-tree/01_dt.png -------------------------------------------------------------------------------- /src/assets/02_classification/2_decision-tree/02_dt.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/2_decision-tree/02_dt.png -------------------------------------------------------------------------------- /src/assets/02_classification/2_decision-tree/03_dt.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/2_decision-tree/03_dt.png -------------------------------------------------------------------------------- /src/assets/02_classification/2_decision-tree/04_dt.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/2_decision-tree/04_dt.png -------------------------------------------------------------------------------- /src/assets/02_classification/2_decision-tree/05_dt.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/2_decision-tree/05_dt.png -------------------------------------------------------------------------------- /src/assets/02_classification/2_decision-tree/06_dt.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/2_decision-tree/06_dt.png -------------------------------------------------------------------------------- /src/assets/02_classification/2_decision-tree/arvore_geral.drawio: -------------------------------------------------------------------------------- 1 | 7VnbcpswEP0aHuNBCDA8Oo7dpk067bjTy6NiZFArEBXyrV9fAQKsYBI3iWOP4yfQSlqkc/asFjDgMF694yiNblmAqWGZwcqAV4ZlAeA58pJb1qXFdb3SEHISqEGNYUL+YmU0lXVOApxpAwVjVJBUN05ZkuCp0GyIc7bUh80Y1Z+aohC3DJMpom3rdxKIqLR6Vr+xv8ckjKonA9cve2JUDVY7ySIUsOWGCY4MOOSMifIuXg0xzcGrcCnnjTt664VxnIhdJnwcTujA+Wx+ufWvZ+Qy/bCY9C8UGZlYVxvGgdy/aiYskZdLzuZJgHM3pmwxLiIWsgTRG8ZSaQTS+AsLsVbsoblg0hSJmKpeuUK+/pHP7zlV86dyVzSuVlprrVqZ4Ox3jXvuqVxuvsZOFJQpY3M+xQ9sHapoQjzE4oFxds2VDHLMYixXKOdxTJEgC30dSEVbWI9rCJE3ipP/4KeSwQLRuXqUYblUrvdyxuSON6lz/8xZ1XGRFVwM5ABgp6umU96F+XVyfVs5kgsrfZU9WyPiBt1JYWukIkrCRN5PJfKYS8MCc0GkcgaqIyZBQIv4wXI16K7wl9OaMpKIAinn0nCu6mfmDvDK2CJrNbkR0ybh3YHdZk15vzB7FvRValKZSbV25lU5/5xvZmMIm80yGU/3ia/X8PRY8M9afUyrzkG1Cp6vVbhNq5+MITQGkJ20YP3HBGs7NnieRJUvv+e5mvL9nunpTvYnYtiKkVEmCn5Bjl7EFjgJJNMS9nGLWF3cy4gIPElRoZylLL90ujspagmwE3XYNzWgQNVeNqUQqBiONsog19yTxuwWfGMZwXmaiXP4UIaeB9qMUDpklPFiLgwQ9mbTOrtt9PTHg/7IfBmYLUeH2To4zMB+u2eNs+NZA+BBD5v++bB5+mEDOor65rSBnm3rojz28hA4Z80+qlnroJp196TZCYlPW64ddf3G25xbCVTJFR67XJ1WLHwtahhZ/wlWfKmS+B1JHWj7R1egWKdYCN6vt6F7cJzf8EcHsOtXB9Dxsel1TpV6P2eKHgDJPCRFoP3WXyb7jNEjSfEuOLrU47VA+4ZIuak80acckRdO8g72AntbkvesO+i6+zlM7YMjbbV/MpzAYdqHr4ezbDY/8soKsfkdCkf/AA== -------------------------------------------------------------------------------- /src/assets/02_classification/2_decision-tree/arvore_geral.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/2_decision-tree/arvore_geral.png -------------------------------------------------------------------------------- /src/assets/02_classification/843278.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/843278.png -------------------------------------------------------------------------------- /src/assets/02_classification/TK_email_icon.svg.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/TK_email_icon.svg.png -------------------------------------------------------------------------------- /src/assets/02_classification/choose_k.drawio: -------------------------------------------------------------------------------- 1 | 7Zv/b5s6EMD/mkh7P6zCmK8/Nl3zJj096Umd9ParBw5Yc3BmnCbdXz872BBM0pCuXcy0qVrhMIf53HG+O+gM3q12f3O0Lv9lOaYz38t3M/hh5vuRD+T/SvDUCGAEG0HBSd6IQCd4IN+xFnpauiE5rnsDBWNUkHVfmLGqwpnoyRDnbNsftmS0f9U1KvBA8JAhOpT+T3JRNtLEjzv5R0yK0lwZRGlzZIXMYH0ndYlytu2J8E4sWCX0FD+hr5jNwvtSCHVztzN/IX+WasBNwVhBMVqT+iZjKynOajlksUQrQhXZ5lypFN7P4B1nTDRbq90dpsogBnZz5cWJo+3dclyJMSdssySrvn+cJ+m6DMjmcxF+Tt9rLY+IbjRFTUA8Gay4ym+VdeReRlFdk2wG56VYUSkAcrMWnH1tiSuJJpYPzNVNFbQApDditsKCP8kh285uoQZfHpjMyDimSJDHvnqkbVO06tor/MeIvLDvaU+HnnZs7eh+nN4Efl9LzTY8w/rEQ6pndAE41CUQL7AY6JIbBzffifZ2u8CG/h8b/pwNg+S8rje2IRxhQ0plJJU7821JBH5Yo0wd2cpY3jcmqtdNeF2SHZYXnS8JpXeMMr5XBHOEk2XW2vgRc4F3l1rZmCGw3D/s0B04AjjiCEZ2zOY9vJeyDKbKMrZYBtdnGU6VpfVIg/j6LKOJsgyg7xzLeKosg7i/1IDrs0wnyhL61rLtXZ+lUfwcTMEJqgo6giZnQuZIrJK771NvSHOZZDh7LZrAipiJAzRHpLaO0rTzotQBmiOSTEdp2gk6dIDmiDTTUZqhRdOBPBOMSDTdpBmYmRqaqgKSj3v7L7oy2RFpp6NkgUXWhfV9TOLZNVsqVuFznZYc1aVKlSbRdgkiK3ZEP9E6szOO8Je3XUBykTl/k95Z7PVtKOu5GLzMhpYq1f20Vb21CceUL39MeNqE7ZSe0fXWHewRVZOTJSgAlv+HHbtrLVHmLqYHM7BgBg7AHFGBugnTeqpB7ADMqb7lkOm8ezCn+prDN5XzQQv06jCn+p4jtdZuzwGWky04EytkJg7AHFFvuglzkBqlDtAcUe45StNO0qEDNEdUXo7S9C2aDmSacLJvjmSc7NN0oAiCI4ogR2nGFk0HlnQ4InHPNvyxbWM+2wLtNTyHrRd57oKo+X3wJtCIsRIwEFk2eHEXBlqKTrRgJGb0dDBsrQbUp+cLPDvJ8Z6dV3J8WqeG2+rPjgd2AntmvH/Z9AfrJjgz3rZn2hsvNxrgr9r+gsdKuYgKFWjYfnbLJjJJ6beN+l54rj8iNrtyq9C/96d9MYJ3t3/J0/9RTwz+tsEVMyPkRL/YZ+lPmDuxHTDxThxrnJpIqB/1w+CoRYiSQkXPTD60WMrnKkSSDNFbfWBF8vxkJOZsU+X7iOG9Uoz14puw7xfG7gdRIw2HUcN/sxB7rAK1jPlCp3g3Nz5QcCRBnjT3Mc/4XV0AwvhXOYDc7b7yb2JG9/cX8P4H -------------------------------------------------------------------------------- /src/assets/02_classification/choose_k.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/choose_k.png -------------------------------------------------------------------------------- /src/assets/02_classification/decisionoverfitting.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/decisionoverfitting.png -------------------------------------------------------------------------------- /src/assets/02_classification/delete+remove+trash+trash+bin+trash+can+icon-1320073117929397588.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/delete+remove+trash+trash+bin+trash+can+icon-1320073117929397588.png -------------------------------------------------------------------------------- /src/assets/02_classification/email_classifier.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/email_classifier.png -------------------------------------------------------------------------------- /src/assets/02_classification/mailbox.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/02_classification/mailbox.png -------------------------------------------------------------------------------- /src/assets/03_regression/correlations.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/03_regression/correlations.png -------------------------------------------------------------------------------- /src/assets/03_regression/gradient-descendent-large.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/03_regression/gradient-descendent-large.png -------------------------------------------------------------------------------- /src/assets/03_regression/gradient-descendent-small.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/03_regression/gradient-descendent-small.png -------------------------------------------------------------------------------- /src/assets/03_regression/gradient-descendent.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/03_regression/gradient-descendent.png -------------------------------------------------------------------------------- /src/assets/03_regression/happiness_world.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/03_regression/happiness_world.png -------------------------------------------------------------------------------- /src/assets/03_regression/kernels-plot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/03_regression/kernels-plot.png -------------------------------------------------------------------------------- /src/assets/03_regression/kernels-problem.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/03_regression/kernels-problem.png -------------------------------------------------------------------------------- /src/assets/03_regression/kernels.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/03_regression/kernels.png -------------------------------------------------------------------------------- /src/assets/03_regression/learning-rate-gd.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/03_regression/learning-rate-gd.png -------------------------------------------------------------------------------- /src/assets/03_regression/linear-svm.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/03_regression/linear-svm.png -------------------------------------------------------------------------------- /src/assets/03_regression/metodo_cotovelo.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/03_regression/metodo_cotovelo.pdf -------------------------------------------------------------------------------- /src/assets/03_regression/metodo_cotovelo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/03_regression/metodo_cotovelo.png -------------------------------------------------------------------------------- /src/assets/03_regression/ols-steps.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/03_regression/ols-steps.png -------------------------------------------------------------------------------- /src/assets/03_regression/ols.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/03_regression/ols.png -------------------------------------------------------------------------------- /src/assets/03_regression/svr.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/03_regression/svr.png -------------------------------------------------------------------------------- /src/assets/04_clustering/centroid_bases.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/04_clustering/centroid_bases.png -------------------------------------------------------------------------------- /src/assets/04_clustering/clust_1_ex.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/04_clustering/clust_1_ex.png -------------------------------------------------------------------------------- /src/assets/04_clustering/clust_2_ex.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/04_clustering/clust_2_ex.png -------------------------------------------------------------------------------- /src/assets/04_clustering/clustering.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/04_clustering/clustering.png -------------------------------------------------------------------------------- /src/assets/04_clustering/dataset_hierarquico.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/04_clustering/dataset_hierarquico.png -------------------------------------------------------------------------------- /src/assets/04_clustering/den_eg_1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/04_clustering/den_eg_1.png -------------------------------------------------------------------------------- /src/assets/04_clustering/dendograma_0.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/04_clustering/dendograma_0.png -------------------------------------------------------------------------------- /src/assets/04_clustering/dendograma_1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/04_clustering/dendograma_1.png -------------------------------------------------------------------------------- /src/assets/04_clustering/dendograma_2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/04_clustering/dendograma_2.png -------------------------------------------------------------------------------- /src/assets/04_clustering/dendograma_3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/04_clustering/dendograma_3.png -------------------------------------------------------------------------------- /src/assets/04_clustering/dendograma_cut.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/04_clustering/dendograma_cut.png -------------------------------------------------------------------------------- /src/assets/04_clustering/diagramas_curso-Page-5.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/04_clustering/diagramas_curso-Page-5.png -------------------------------------------------------------------------------- /src/assets/04_clustering/indice_silhueta.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/04_clustering/indice_silhueta.png -------------------------------------------------------------------------------- /src/assets/04_clustering/kmeans_algoritmo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/04_clustering/kmeans_algoritmo.png -------------------------------------------------------------------------------- /src/assets/04_clustering/kmeans_algoritmo_2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/04_clustering/kmeans_algoritmo_2.png -------------------------------------------------------------------------------- /src/assets/04_clustering/kmeans_conjunto_de_dados.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/04_clustering/kmeans_conjunto_de_dados.png -------------------------------------------------------------------------------- /src/assets/04_clustering/kmeans_example.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/04_clustering/kmeans_example.png -------------------------------------------------------------------------------- /src/assets/04_clustering/metodo_cotovelo.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/04_clustering/metodo_cotovelo.pdf -------------------------------------------------------------------------------- /src/assets/04_clustering/metodo_cotovelo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/04_clustering/metodo_cotovelo.png -------------------------------------------------------------------------------- /src/assets/04_clustering/metodo_hierarquico.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/04_clustering/metodo_hierarquico.png -------------------------------------------------------------------------------- /src/assets/appendix-kaggle/code_number.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/appendix-kaggle/code_number.png -------------------------------------------------------------------------------- /src/assets/appendix-kaggle/code_number_2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/appendix-kaggle/code_number_2.png -------------------------------------------------------------------------------- /src/assets/appendix-kaggle/criacao_jupyter.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/appendix-kaggle/criacao_jupyter.png -------------------------------------------------------------------------------- /src/assets/appendix-kaggle/exemplo_jupyter.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/appendix-kaggle/exemplo_jupyter.png -------------------------------------------------------------------------------- /src/assets/appendix-kaggle/tela_criacao_2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/appendix-kaggle/tela_criacao_2.png -------------------------------------------------------------------------------- /src/assets/appendix-kaggle/tela_inicial.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/appendix-kaggle/tela_inicial.png -------------------------------------------------------------------------------- /src/assets/banner_notebook.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/banner_notebook.png -------------------------------------------------------------------------------- /src/assets/boston-reg.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/boston-reg.png -------------------------------------------------------------------------------- /src/assets/capa.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/capa.png -------------------------------------------------------------------------------- /src/assets/custom.css: -------------------------------------------------------------------------------- 1 | body { 2 | text-align: justify; 3 | } 4 | p { 5 | text-align: justify; 6 | } 7 | -------------------------------------------------------------------------------- /src/assets/dest.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/dest.jpg -------------------------------------------------------------------------------- /src/assets/happiness-reg.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/happiness-reg.png -------------------------------------------------------------------------------- /src/assets/ml-diagram.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dataAt/introducao-ao-machine-learning/0870c9e670103218f494c0147eba2cc7bfb3ba89/src/assets/ml-diagram.png -------------------------------------------------------------------------------- /src/bibfile.bib: -------------------------------------------------------------------------------- 1 | @Book{lantz2013machine, 2 | author = {Lantz, Brett}, 3 | title = {Machine learning with R : learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications}, 4 | publisher = {Packt Publishing}, 5 | year = {2013}, 6 | address = {Birmingham, UK}, 7 | isbn = {978-1-78216-214-8} 8 | } 9 | 10 | @article{Blanzieri2008, 11 | abstract = {Email spam is one of the major problems of the today's Internet, bringing financial damage to companies and annoying individual users. Among the approaches developed to stop spam, filtering is an important and popular one. In this paper we give an overview of the state of the art of machine learning applications for spam filtering, and of the ways of evaluation and comparison of different filtering methods. We also provide a brief description of other branches of anti-spam protection and discuss the use of various approaches in commercial and non-commercial anti-spam software solutions. {\textcopyright} 2009 Springer Science+Business Media B.V.}, 12 | author = {Blanzieri, Enrico and Bryl, Anton}, 13 | doi = {10.1007/s10462-009-9109-6}, 14 | issn = {02692821}, 15 | journal = {Artificial Intelligence Review}, 16 | keywords = {Machine learning,Spam filtering}, 17 | mendeley-groups = {Curso Machine Learning/Classifica{\c{c}}{\~{a}}o de email}, 18 | number = {1}, 19 | pages = {63--92}, 20 | title = {{A survey of learning-based techniques of email spam filtering}}, 21 | volume = {29}, 22 | year = {2008} 23 | } 24 | 25 | 26 | @article{turing1950computing, 27 | author = {TURING, A. M.}, 28 | title = "{COMPUTING MACHINERY AND INTELLIGENCE}", 29 | journal = {Mind}, 30 | volume = {LIX}, 31 | number = {236}, 32 | pages = {433-460}, 33 | year = {1950}, 34 | month = {10}, 35 | issn = {0026-4423}, 36 | doi = {10.1093/mind/LIX.236.433}, 37 | url = {https://doi.org/10.1093/mind/LIX.236.433}, 38 | eprint = {https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf}, 39 | } 40 | 41 | @article{xu2015comprehensive, 42 | title={A comprehensive survey of clustering algorithms}, 43 | author={Xu, Dongkuan and Tian, Yingjie}, 44 | journal={Annals of Data Science}, 45 | volume={2}, 46 | number={2}, 47 | pages={165--193}, 48 | year={2015}, 49 | publisher={Springer} 50 | } 51 | 52 | @article{wang2005support, 53 | title={Support vector machines based on K-means clustering for real-time business intelligence systems}, 54 | author={Wang, Jiaqi and Wu, Xindong and Zhang, Chengqi}, 55 | journal={International Journal of Business Intelligence and Data Mining}, 56 | volume={1}, 57 | number={1}, 58 | pages={54--64}, 59 | year={2005}, 60 | publisher={Inderscience Publishers} 61 | } 62 | 63 | 64 | @article{he2014enhanced, 65 | title={Enhanced land use/cover classification using support vector machines and fuzzy k-means clustering algorithms}, 66 | author={He, Tao and Sun, Yu-Jun and Xu, Ji-De and Wang, Xue-Jun and Hu, Chang-Ru}, 67 | journal={Journal of Applied Remote Sensing}, 68 | volume={8}, 69 | number={1}, 70 | pages={083636}, 71 | year={2014}, 72 | publisher={International Society for Optics and Photonics} 73 | } 74 | 75 | 76 | @article{gasch2002exploring, 77 | title={Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering}, 78 | author={Gasch, Audrey P and Eisen, Michael B}, 79 | journal={Genome biology}, 80 | volume={3}, 81 | number={11}, 82 | pages={research0059--1}, 83 | year={2002}, 84 | publisher={Springer} 85 | } 86 | 87 | 88 | @article{esling2012time, 89 | title={Time-series data mining}, 90 | author={Esling, Philippe and Agon, Carlos}, 91 | journal={ACM Computing Surveys (CSUR)}, 92 | volume={45}, 93 | number={1}, 94 | pages={1--34}, 95 | year={2012}, 96 | publisher={ACM New York, NY, USA} 97 | } 98 | 99 | 100 | @techreport{jin2012, 101 | author = "Jing Gao and Aidong Zhang", 102 | title = "CSE 601: Data Mining and Bioinformatics", 103 | institution = "University at Buffalo", 104 | year = "2012" 105 | } 106 | 107 | @techreport{google2020, 108 | author = "Google Developers", 109 | title = "Clustering Algorithms", 110 | institution = "Google inc", 111 | year = "2020" 112 | } 113 | 114 | 115 | https://developers.google.com/machine-learning/clustering/clustering-algorithms 116 | @book{han2011data, 117 | title={Data mining: concepts and techniques}, 118 | author={Han, Jiawei and Pei, Jian and Kamber, Micheline}, 119 | year={2011}, 120 | publisher={Elsevier} 121 | } 122 | 123 | 124 | 125 | @article{aghabozorgi2015time, 126 | title={Time-series clustering--a decade review}, 127 | author={Aghabozorgi, Saeed and Shirkhorshidi, Ali Seyed and Wah, Teh Ying}, 128 | journal={Information Systems}, 129 | volume={53}, 130 | pages={16--38}, 131 | year={2015}, 132 | publisher={Elsevier} 133 | } 134 | 135 | 136 | @article{jain2010data, 137 | title={Data clustering: 50 years beyond K-means}, 138 | author={Jain, Anil K}, 139 | journal={Pattern recognition letters}, 140 | volume={31}, 141 | number={8}, 142 | pages={651--666}, 143 | year={2010}, 144 | publisher={Elsevier} 145 | } 146 | 147 | 148 | @inproceedings{von2003captcha, 149 | title={CAPTCHA: Using hard AI problems for security}, 150 | author={Von Ahn, Luis and Blum, Manuel and Hopper, Nicholas J and Langford, John}, 151 | booktitle={International conference on the theory and applications of cryptographic techniques}, 152 | pages={294--311}, 153 | year={2003}, 154 | organization={Springer} 155 | } 156 | 157 | @incollection{bhavsar2017machine, 158 | title={Machine learning in transportation data analytics}, 159 | author={Bhavsar, Parth and Safro, Ilya and Bouaynaya, Nidhal and Polikar, Robi and Dera, Dimah}, 160 | booktitle={Data analytics for intelligent transportation systems}, 161 | pages={283--307}, 162 | year={2017}, 163 | publisher={Elsevier} 164 | } 165 | 166 | @book{alpaydin2020introduction, 167 | title={Introduction to machine learning}, 168 | author={Alpaydin, Ethem}, 169 | year={2020}, 170 | publisher={MIT press} 171 | } 172 | 173 | @article{samuel1959some, 174 | title={Some studies in machine learning using the game of checkers}, 175 | author={Samuel, Arthur L}, 176 | journal={IBM Journal of research and development}, 177 | volume={3}, 178 | number={3}, 179 | pages={210--229}, 180 | year={1959}, 181 | publisher={IBM} 182 | } 183 | 184 | @book{Aggarwal2015, 185 | author = {Aggarwal, Charu C.}, 186 | isbn = {9781466586758}, 187 | mendeley-groups = {Curso Machine Learning,Curso Machine Learning/Classifica{\c{c}}{\~{a}}o}, 188 | pages = {2015}, 189 | publisher = {CRC Press}, 190 | title = {{Data Classification: Algorithms and Applications}} 191 | } 192 | 193 | @Inbook{soto2013regression, 194 | author="Soto, Timothy", 195 | editor="Volkmar, Fred R.", 196 | title="Regression Analysis", 197 | bookTitle="Encyclopedia of Autism Spectrum Disorders", 198 | year="2013", 199 | publisher="Springer New York", 200 | address="New York, NY", 201 | pages="2538--2538", 202 | } 203 | 204 | @article{helliwell2020social, 205 | title={Social environments for world happiness}, 206 | author={Helliwell, John F and Huang, Haifang and Wang, Shun and Norton, Max}, 207 | journal={World Happiness Report 2020}, 208 | year={2020} 209 | } 210 | 211 | @inbook{kirck2008pearson, 212 | editor="Kirch, Wilhelm", 213 | title="Pearson's Correlation Coefficient", 214 | bookTitle="Encyclopedia of Public Health", 215 | year="2008", 216 | publisher="Springer Netherlands", 217 | address="Dordrecht", 218 | pages="1090--1091", 219 | isbn="978-1-4020-5614-7", 220 | doi="10.1007/978-1-4020-5614-7_2569", 221 | url="https://doi.org/10.1007/978-1-4020-5614-7_2569" 222 | } 223 | 224 | @article{vapnik1965class, 225 | title={On a class of pattern-recognition learning algorithms}, 226 | author={Vapnik, Vladimir N and Chervonenkis, Alexey Y}, 227 | journal={Automation and Remote Control}, 228 | volume={25}, 229 | number={6}, 230 | pages={838}, 231 | year={1963}, 232 | publisher={PLENUM PUBL CORP CONSULTANTS BUREAU, 233 SPRING ST, NEW YORK, NY 10013} 233 | } 234 | 235 | @inproceedings{boser1992training, 236 | title={A training algorithm for optimal margin classifiers}, 237 | author={Boser, Bernhard E and Guyon, Isabelle M and Vapnik, Vladimir N}, 238 | booktitle={Proceedings of the fifth annual workshop on Computational learning theory}, 239 | pages={144--152}, 240 | year={1992} 241 | } 242 | 243 | @inproceedings{drucker1997support, 244 | title={Support vector regression machines}, 245 | author={Drucker, Harris and Burges, Christopher JC and Kaufman, Linda and Smola, Alex J and Vapnik, Vladimir}, 246 | booktitle={Advances in neural information processing systems}, 247 | pages={155--161}, 248 | year={1997} 249 | } 250 | 251 | @book{mitchell1997machine, 252 | author={Tom M. Mitchell}, 253 | title={Machine Learning}, 254 | publisher={McGraw-Hill Science/Engineering/Math}, 255 | year={1997}, 256 | edition={First} 257 | } 258 | 259 | @book{norvig2002modern, 260 | title={Artificial intelligence: a modern approach}, 261 | author={Russell, Stuart and Norvig, Peter}, 262 | year={2002}, 263 | publisher={Prentice Hall}, 264 | edition={Second} 265 | } 266 | 267 | @book{goodfellow2016deep, 268 | title={Deep learning}, 269 | author={Goodfellow, Ian and Bengio, Yoshua and Courville, Aaron and Bengio, Yoshua}, 270 | volume={1}, 271 | year={2016}, 272 | publisher={MIT press Cambridge} 273 | } -------------------------------------------------------------------------------- /src/compile.R: -------------------------------------------------------------------------------- 1 | # Ver se vamos tirar o renv 2 | #Instalação do pacote renv 3 | # if (!require("renv")) { 4 | # if (!require("remotes")) 5 | # install.packages("remotes") 6 | # remotes::install_github("rstudio/renv") 7 | # } 8 | 9 | # Restaura o ambiente criado 10 | #renv::restore(lockfile = "./renv.lock") 11 | 12 | library(reticulate) 13 | reticulate::use_python(Sys.which("python")[[1]]) 14 | 15 | # Compila o material 16 | bookdown::render_book("index.Rmd", bookdown::gitbook(lib_dir = "libs")) 17 | -------------------------------------------------------------------------------- /src/examples.Rmd: -------------------------------------------------------------------------------- 1 | # Exemplos 2 | 3 | Esta seção mostra exemplos de aplicação de cada um dos algoritmos apresentados neste livro-texto. Todos os exemplos foram feitos utilizando a linguagem de programação Python com o auxílio da plataforma [Kaggle](https://www.kaggle.com/). Os links para cada um dos exemplos são listados abaixo. 4 | 5 | > Caso tenha interesse em conhecer um pouco melhor a plataforma Kaggle, consulte os apêncides desse material, lá criamos um passo a passo sobre o uso do Kaggle. 6 | 7 | **Links dos exemplos de Regressão** 8 | 9 | - [Exemplo de uso de Regressão Linear](https://www.kaggle.com/lordadriano/mc2-worcap-2020-linear-regression) 10 | - [Exemplo de uso da SVR ](https://www.kaggle.com/lordadriano/mc2-worcap-2020-svr) 11 | 12 | **Links dos exemplos de Classificação** 13 | 14 | - [Exemplo de uso do kNN](https://www.kaggle.com/phelpsmemo/intro-ml-python-knn-worcap2020) 15 | - [Exemplo de uso da Árvore de Decisão](https://www.kaggle.com/phelpsmemo/intro-ml-python-decisiontree-worcap2020) 16 | 17 | **Links dos exemplos de Agrupamento** 18 | 19 | - [Exemplo de uso do K-Means](https://www.kaggle.com/oldlipe/intro-ml-r-kmeans-worcap2020) 20 | - [Exemplo de uso do método hierarquico](https://www.kaggle.com/oldlipe/intro-ml-r-hiererquico-worcap2020) 21 | 22 | -------------------------------------------------------------------------------- /src/index.Rmd: -------------------------------------------------------------------------------- 1 | --- 2 | knit: "bookdown::render_book" 3 | title: "Introdução ao Machine Learning" 4 | author: ["Adriano Almeida", "Felipe Carvalho", "Felipe Menino"] 5 | description: "Livro para alunos e alunas que querem iniciar em Machine Learning." 6 | url: 'https://dataat.github.io/introducao-ao-machine-learning/' 7 | github-repo: dataat/introducao-ao-machine-learning 8 | site: bookdown::bookdown_site 9 | bibliography: bibfile.bib 10 | fig_caption: yes 11 | cover-image: assets/capa.png 12 | header-includes: 13 | - \usepackage{float} 14 | - \usepackage{xcolor} 15 | - \floatsetup[table]{capposition=bot} 16 | link-citations: yes 17 | --- 18 | 19 | 20 | # Prefácio {-} 21 | 22 | Cover image 23 | 24 | 25 | Seja bem vinda(o) ao livro-texto do minicurso de **Introdução ao Machine Learning**. Criamos este material para compartilhar o pouco que sabemos e dividir nossas experiências. Neste material, você irá encontrar conteúdos sobre o conceito, técnicas e algumas dicas úteis sobre Machine Learning. Procuramos abordar os conceitos de forma didática, porque sabemos o quão difícil é se inteirar de uma nova área, principalmente para as pessoas que não estão familiarizadas com o assunto. Este livro-texto não tem um público-alvo, escrevemos com o objetivo de atingir o máximo de pessoas em quaisquer áreas. O único pré-requisito para ler este livro-texto é ter curiosidade, porque não são as respostas que movem o mundo, e sim, as perguntas! 26 | 27 | ## Grupo DataAt {-} 28 | 29 |

    30 | O [**Dataat**](https://github.com/dataAt/) é um grupo de estudos composto por quatro integrantes: [Adriano Almeida](https://github.com/AdrianoPereira), [Felipe Carvalho](https://github.com/oldlipe), [Felipe Menino](https://github.com/M3nin0) e [Helvécio Neto](https://github.com/helvecioneto), buscamos sempre aprimorar nosso conhecimento e compartilhá-lo. A ideia do grupo de estudo começou pelos Felipe’s, em 2017, quando estávamos na iniciação científica no Instituto Nacional de Pesquisas Espaciais (INPE). Até hoje não sabemos o porquê do nome **Dataat**, um dia, quando estivermos no auge do nosso conhecimento, talvez, saberemos explicar o que se passava na nossa cabeça. 31 |

    32 | 33 | 34 | ## Nossos livros-textos {-} 35 | 36 | No decorrer desses anos ministramos diversos mini-cursos, dentre eles: 37 | 38 | * __"[Introdução à Análise de Dados](https://dataat.github.io/introducao-analise-de-dados/)"__ Livro-texto criado com o objetivo de mostrar os conceitos básicos de análise de dados com exemplos práticos com **R** e **Python**. 39 | 40 | * __"[Introdução à Análise de Dados Espaciais](https://dataat.github.io/introducao-analise-de-dados-espaciais/)"__ Livro-texto criado com objetivo de mostrar o uso de linguagens de programação na manipulação de dados espaciais. 41 | 42 | * __"[Introdução ao Docker](https://dataat.github.io/introducao-docker/)"__ feito pelo Felipe Menino, este livro almeja te ensinar os conceitos básicos do Docker. 43 | 44 | 45 | ## Licença {-} 46 | 47 | Creative Commons Licence 48 | 49 | Esta obra, como um todo, está licenciada sob uma Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 50 | -------------------------------------------------------------------------------- /src/introduction.Rmd: -------------------------------------------------------------------------------- 1 | 2 | # (PART) Introdução {-} 3 | 4 | # Introdução 5 | > ***"As máquinas podem pensar?"*** 6 | 7 | A pergunta acima faz parte de um exercício teórico proposto pelo cientista da 8 | computação Alan Turing em seu artigo publicado em 1950 9 | [@turing1950computing]. Conhecido também como jogo da imitação, o teste de 10 | Turing constitui, em sua concepção inicial, na interação entre três agentes: um 11 | agente interrogador e dois agentes respondentes, onde um dos agentes respondentes 12 | é um ser humano e outro uma máquina (computador). A pergunta enviada pelo agente 13 | interrogador é recebida por ambos os agentes respondentes, onde cada um deles 14 | devem enviar de volta a resposta. Com base nas respostas, o agente interrogador 15 | deve determinar quem é o humano é que é a máquina, a partir do momento em que 16 | esse agente não consegue mais fazer essa diferenciação, é dito que a máquina 17 | passou no teste. A Figura \@ref(fig:turing-test-schema) mostra o esquema básico 18 | desse teste. 19 | 20 | ```{r turing-test-schema, echo=FALSE ,fig.align="center", fig.cap='Esquema do teste de Turing clássico.'} 21 | knitr::include_graphics("assets/01_introduction/turing_test.png") 22 | ``` 23 | 24 | Diversas derivações deste teste surgiram posteriormente, o mais 25 | famoso deles e familiar entre a maioria dos internautas é o CAPTCHA 26 | (*Completely Automated Public Turing test to tell Computers and Humans Apart*), 27 | mecanismo de segurança proposto por @von2003captcha para validar requisições 28 | através da resolução de pequenos desafios, que podem ser identificação de 29 | imagens ou textos distorcidos e com ruídos, e que tem como propósito dificultar 30 | o acesso não convencional a formulários, por exemplo, tentar impedir o uso 31 | *bots*. 32 | 33 | O teste de Turing talvez tenha sido um ponto de partida para o que hoje 34 | conhecemos por aprendizado de máquina (ML - sigla do inglês, *Machine Learning*) 35 | . A possibilidade de representar pensamentos em computadores, similares aos dos 36 | seres vivos foi um grande marco na humanidade. Atualmente esse conceito está 37 | sendo aplicado nas mais diversas áreas, tendo em algumas tarefas, o desempenho 38 | superior ao dos seres humanos. O próprio CAPTCHA é um exemplo disso, em algumas 39 | de suas versões iniciais o conteúdo ficava tão distorcido, que acabava 40 | dificultando a sua identificação pelos humanos, em contrapartida, os algoritmos 41 | conseguiam resolver o desafio com certa facilidade. 42 | 43 | Neste capítulo, será apresentada uma visão geral sobre o *Machine Learning*, 44 | discorrendo sobre as principais classes de algoritmos e aplicações com ênfase na 45 | área espacial. Ao final deste capítulo o leitor deverá ser capaz de: 46 | 47 | - Compreender o contexto histórico e a definição do ML; 48 | - Diferenciar as principais abordagens de treinamento dos modelos de ML; 49 | - Diferenciar as principais classes de algoritmos de ML; 50 | - Compreender as etapas mínimas necessárias para a produção de um modelo de ML; 51 | 52 | ## Machine learning 53 | O aprendizado de máquina é uma das principais subáreas da inteligência artificial, e é composto por 54 | uma coleção de métodos criados a partir de modelos matemáticos baseados na 55 | teoria estatística que permitem aos computadores automatizar tarefas com base na 56 | descoberta sistemática de padrões nos conjuntos de dados disponíveis ou em 57 | experiências passadas [@bhavsar2017machine; @alpaydin2020introduction]. Segundo 58 | a definição de @samuel1959some, um dos pioneiros do assunto, o aprendizado de 59 | máquina é “*um campo de estudo que oferece aos computadores a capacidade de* 60 | *aprender sem serem explicitamente programados*”. Segundo a definição de 61 | @mitchell1997machine, é dito que *um computador aprende com a experiência $E$ a* 62 | *respeito de alguma classe de tarefas $T$ e desempenho medido por $P$, se seu 63 | desempenho nas tarefas em $T$, conforme medido por $P$, melhora com a 64 | experiência $E$*, confuso? Então vamos a um exemplo: 65 | 66 | Imagine que você está desenvolvendo um programa para prever o acumulado de 67 | precipitação na próxima hora a partir de dados anteriores. A tarefa $T$ seria 68 | estimar o acumulado de precipitação na próxima hora, a medida de desempenho $P$ 69 | poderia ser alguma métrica de erro, como a diferença entre o valor previsto e o 70 | observado, já a experiência $E$ seria as várias tentativas de realizar a 71 | previsão. O programa aprende à medida que sua previsão se aproxima do valor 72 | observado durante suas experiências. A forma com que o programa aprende, está 73 | associada a um conjunto de configurações previamente definidas, denominadas de 74 | hiperparâmetros. 75 | 76 | Inicialmente, há uma certa subjetividade envolvida na definição inicial dos 77 | hiperparâmetros dos modelos, que ao longo do seu desenvolvimento vão sendo 78 | ajustados em conformidade com os dados. O processo de ajuste dos hiperparâmetros 79 | com o intuito de melhorar o desempenho do modelo é conhecido como *fine-tuning*. 80 | O conjunto de hiperparâmetros está associado ao tipo de modelo que está sendo 81 | desenvolvido, que por sua vez possuem características de aprendizado diferentes, 82 | conforme mostrado na Figura \@ref(fig:ml-diagram). 83 | 84 | ```{r ml-diagram, out.width="90%", echo=FALSE ,fig.align="center", fig.cap='Diagrama dos tipos de aprendizado em machine learning.'} 85 | knitr::include_graphics("assets/ml-diagram.png") 86 | ``` 87 | 88 | ### Aprendizado supervisionado 89 | No aprendizado supervisionado, o modelo recebe um conjunto de entradas com suas 90 | respectivas saídas e busca encontrar uma função que estabeleça uma relação 91 | aproximada entre elas. Mais formalmente, o modelo baseado no 92 | aprendizado supervisionado busca encontrar uma função $h(x_{i})$, denominada 93 | hipótese, que se aproxime da função $f(x_{i})$, onde $f(x_{i})$ é a saída da 94 | $i$-ésima entrada de $x$ [@norvig2002modern]. 95 | 96 | Os hiperparâmetros dos modelos baseados em aprendizado supervisionado são 97 | configurados com intuito de calibrar seu nível de assertividade e precisão. 98 | Essas características estão associadas ao *bias* e variância do modelo. O *bias* 99 | está relacionado à capacidade do modelo se ajustar aos dados aos quais lhes 100 | foram apresentados durante o treinamento. Já a variância é a variabilidade das 101 | previsões do modelo. A complexidade do modelo aumenta a medida que ele vai 102 | se ajustando aos dados, em contrapartida vai perdendo também a sua capacidade 103 | de generalização, que faz com que variância seja aumentada. Os hiperparâmetros 104 | devem ser configurados de tal forma equilibrar o *bias* e a variância, este 105 | equilíbrio é denominado *trade-off*. Para modelos lineares, a complexidade do 106 | modelo deve ser ajustada de tal forma que o *bias* e a variância tenham o menor 107 | valor possível. Já para modelos não lineares, o ponto de equilíbrio deve ser 108 | onde a complexidade do modelo possui o menor *bias* e maior variância. A Figura 109 | \@ref(fig:trade-off) mostra um esquema para a complexidade ideal em modelos 110 | lineares e não lineares. 111 | 112 | ```{r trade-off, out.width="90%", echo=FALSE ,fig.align="center", fig.cap='Esquema do *trade-off* no aprendizado supervisionado.'} 113 | knitr::include_graphics("assets/01_introduction/trade-off.png") 114 | ``` 115 | 116 | O ajuste desbalanceado da complexidade do modelo pode acarretar nos problemas de 117 | *underfitting* (sub-ajuste) e o *overfitting* (superajuste). O problema de 118 | *underfitting* está associado a falta de capacidade do modelo na representação 119 | dos dados. Já no *overfitting* o modelo se ajusta muito aos dados e perde a 120 | sua capacidade de generalização, que faz com que o erro seja muito alto ao ser 121 | apresentado novas amostras. A Figura \@ref(fig:fitting) mostra um exemplo com 122 | diferentes ajustes do modelo aos dados. 123 | 124 | ```{r fitting, out.width="90%", echo=FALSE ,fig.align="center", fig.cap='Diferentes ajustes do modelo aos dados.'} 125 | knitr::include_graphics("assets/01_introduction/fitting.png") 126 | ``` 127 | 128 | Os modelos de aprendizado supervisionado estão associados às tarefas de 129 | regressão e classificação. Nas tarefas de regressão, o modelo deve buscar o 130 | ajuste de uma função que melhor se aproxima os dados de entrada com os dados de 131 | saída. Já os modelos de classificação buscam o ajuste em uma função que melhor 132 | separe um conjunto de variáveis categóricas. Os modelos de regressão e 133 | classificação são melhor apresentados neste livro nos capítulos 134 | [2](https://dataat.github.io/introducao-ao-machine-learning/regress%C3%A3o.html) 135 | e [3](https://dataat.github.io/introducao-ao-machine-learning/classifica%C3%A7%C3%A3o.html) 136 | , respectivamente. 137 | 138 | ### Aprendizado Não supervisionado 139 | O aprendizado não supervisionado, diferente do aprendizado supervisionado, 140 | deve fazer inferências a partir de um conjunto de dados que não foi rotulado, 141 | classificado ou categorizado previamente. Este tipo de aprendizado é amplamente 142 | utilizado para a descoberta de padrões ocultos nos dados. Este tipo de abordagem 143 | segue o fluxo apresentado na Figura \@ref(fig:ul). 144 | 145 | ```{r ul, echo=FALSE ,fig.align="center", fig.cap='Fluxo de execução do aprendizado não supervisionado.'} 146 | knitr::include_graphics("assets/01_introduction/unsupervised-learning.png") 147 | ``` 148 | As tarefas de agrupamento e redução de dimensionalidade estão entre as 149 | principais tarefas executadas pelos algoritmos de aprendizado não 150 | supervisionado. Essa abordagem também é amplamente utilizada para identificação 151 | de anomalias nos dados. 152 | 153 | Para as tarefas de agrupamento, o modelo recebe um conjunto de dados não 154 | rotulado, e partir disso busca agrupá-lo com base em alguma característica de 155 | similaridade, por exemplo, a distância entre os pontos. A quantidade de grupos 156 | pode ser definida previamente, ou pode ficar a cargo do próprio modelo. Os 157 | sistemas de recomendações, geralmente presentes na plataformas de 158 | entretenimento, é uma das principais aplicações que utilizam essa abordagem. No 159 | capítulo [4](https://dataat.github.io/introducao-ao-machine-learning/agrupamento.html) 160 | deste livro as técnicas de agrupamento são apresentadas com mais detalhes. 161 | 162 | A redução de dimensionalidade é uma técnica que utiliza o aprendizado não 163 | supervisionado para a redução do número de variáveis. Essa técnica é utilizada 164 | para encontrar um número inferior de variáveis que melhor representam as 165 | características dos conjuntos de dados. Essa técnica é amplamente utilizada na 166 | detecção de bordas, no contexto de processamento digital de imagens. 167 | 168 | Por serem eventos raros, as anomalias podem ser difíceis de identificar, 169 | principalmente em uma grande quantidade de dados. O aprendizado não 170 | supervisionado pode ser utilizado na detecção dessas características. Uma das 171 | tarefas em que pode ser aplicado esse recurso é na detecção de transações 172 | fraudulentas. Além disso, a identificação de anomalias em um conjunto de dados, 173 | pode afetar no treinamento de um modelo utilizando o aprendizado supervisionado, 174 | agindo como ruído nos dados. 175 | 176 | ### Aprendizado por reforço 177 | No aprendizado por reforço os modelos são treinados para tomarem uma sequência 178 | de decisões e um ambiente incerto e complexo. Nessa abordagem, os agentes possuem 179 | um estado que é alterado após realizar uma ação que é executada de forma 180 | aleatória, com base nessa ação, os agentes podem ser penalizados ou 181 | recompensados. Caso a ação do agente gere recompensas, então ela será 182 | reforçada para o seu próximo estado [@goodfellow2016deep]. Nessa abordagem o 183 | modelo pode utilizar a tentativa e erro de forma a maximizar suas recompensas. A 184 | Figura \@ref(fig:rl) mostra o fluxo clássico da abordagem baseada no 185 | aprendizado por reforço. 186 | 187 | ```{r rl, out.width="70%", echo=FALSE ,fig.align="center", fig.cap='Fluxo clássico do aprendizado por reforço.'} 188 | knitr::include_graphics("assets/01_introduction/rl.png") 189 | ``` 190 | 191 | O ambiente é o local em que o agente pode interagir tomando suas decisões. A 192 | *priori* o agente não possui nenhuma informação a respeito do ambiente, mas ele 193 | vai o conhecendo no decorrer de suas experiências para evoluir seus estados. O 194 | estado diz respeito às condições atuais do agente e do ambiente. O estado do 195 | agente é atualizado com base em suas recompensas ou penalidades que são 196 | adquiridas após suas ações. As ações são as interações do agente com o 197 | ambiente. A recompensa é um sinal positivo que é ativado reforçando uma ação do 198 | agente, já penalidade, é um sinal negativo que faz com que a ação do agente seja 199 | esquecida. 200 | 201 | Esse tipo de abordagem é amplamente utilizada em jogos. Com base em suas 202 | experiências, um agente agente pode aprender jogos com regras complexas como o 203 | xadrez. Nesse caso, o ambiente é o tabuleiro de xadrez, o estado é o 204 | posicionamento das peças, a ação é o movimento da peça, a recompensa é eliminar 205 | uma peça adversária e a penalidade é a perda de uma peça após o movimento. 206 | 207 | A aprendizado por reforço também está presente nos algoritmos dos veículos 208 | autônomos. Onde, o ambiente é o próprio local onde o veículo está presente, o 209 | estado é localização e percepção dos obstáculos capturadas pelos sensores, a 210 | ação são os comandos de direção, aceleração e freio, a recompensa é a 211 | a aproximação do destino e a penalidade pode ser a colisão com algum obstáculo. -------------------------------------------------------------------------------- /src/references.Rmd: -------------------------------------------------------------------------------- 1 | # Referências Bibliográficas 2 | --------------------------------------------------------------------------------