├── img
├── author_image.png
└── shield_image.png
├── chapter6.md
├── course.yml
├── chapter1.md
├── chapter3.md
├── chapter5.md
├── chapter4.md
├── chapter2.md
└── README.md
/img/author_image.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/datacamp/community-courses-r-for-the-intimidated/master/img/author_image.png
--------------------------------------------------------------------------------
/img/shield_image.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/datacamp/community-courses-r-for-the-intimidated/master/img/shield_image.png
--------------------------------------------------------------------------------
/chapter6.md:
--------------------------------------------------------------------------------
1 | ---
2 | title : Final Project
3 | description : In this last chapter, you will combine everything you've learned in this course to work on a final project using the volcanoes dataset.
4 | attachments :
5 | slides_link : https://s3.amazonaws.com/assets.datacamp.com/course/teach/slides_example.pdf
6 |
7 | --- type:VideoExercise lang:r xp:50 skills:1 key:d461063ad841592b7433e485c182f7440116ed9e
8 | ## Final project
9 |
10 | *** =video_link
11 | //player.vimeo.com/video/160903443
--------------------------------------------------------------------------------
/course.yml:
--------------------------------------------------------------------------------
1 | title : R for the Intimidated
2 | author_field : Annika Salzberg
3 | description : This course will introduce you to the very basics of R from running simple functions to manipulating datasets and creating graphs. This course is designed for people with very little or no programming experience at all.
4 | author_bio : Annika Salzberg is a student at Cornell University majoring in Entomology, with a strong interest in computer science. She taught a class on R in high school, and subsequently created a video course targeted towards students with minimal to no prior programming experience. She strongly believes that anyone can learn programming, and everyone should give it a try!
5 | university : DataCamp
6 | difficulty_level : 1
7 | time_needed : 2 hours
8 |
--------------------------------------------------------------------------------
/chapter1.md:
--------------------------------------------------------------------------------
1 | ---
2 | title : Introduction to Course and RStudio
3 | description : This chapter contains videos that walks you through what a programming language is, and how to install RStudio on your computer.
4 | attachments :
5 | slides_link : https://s3.amazonaws.com/assets.datacamp.com/course/teach/slides_example.pdf
6 |
7 | --- type:VideoExercise lang:r xp:50 skills:1 key:c630831c49054fdc8c800e4d40f7bba83e92de27
8 | ## Introduction to this course
9 |
10 | *** =video_link
11 | //player.vimeo.com/video/160903486
12 |
13 | --- type:VideoExercise lang:r xp:50 skills:1 key:d67531ae21e9395c4f56fc4d4c7d430e4782421a
14 | ## Introduction to programming
15 |
16 | *** =video_link
17 | //player.vimeo.com/video/160903457
18 |
19 | --- type:VideoExercise lang:r xp:50 skills:1 key:4a9c99a2bc5095a2fd61106cbdf6b3a797ff2fcb
20 | ## Installing R and RStudio
21 |
22 | *** =video_link
23 | //player.vimeo.com/video/160903444
24 |
25 | --- type:VideoExercise lang:r xp:50 skills:1 key:2a82f335b729691409857ea04deb731350bcb8af
26 | ## Walkthrough of RStudio
27 |
28 | *** =video_link
29 | //player.vimeo.com/video/160903475
--------------------------------------------------------------------------------
/chapter3.md:
--------------------------------------------------------------------------------
1 | ---
2 | title : Installing Packages, Importing and Cleaning Data
3 | description : In this chapter, you'll be introduced to some of the most popular packages in R, learn how to import your dataset, and some techniques to clean your dataset!
4 | attachments :
5 | slides_link : https://s3.amazonaws.com/assets.datacamp.com/course/teach/slides_example.pdf
6 |
7 | --- type:VideoExercise lang:r xp:50 skills:1 key:e8a7eda1305509de26a004a1f59b6645c2d193af
8 | ## Packages
9 |
10 | *** =video_link
11 | //player.vimeo.com/video/160903466
12 |
13 | --- type:VideoExercise lang:r xp:50 skills:1 key:7d8a4d1c08292dfa5f10902a6b021ad40d1b5d7e
14 | ## Interlude: download!
15 |
16 | *** =video_link
17 | //player.vimeo.com/video/160903483
18 |
19 | --- type:VideoExercise lang:r xp:50 skills:1 key:8781857b03ef2e4a13e735902dd1778d71415788
20 | ## Importing data
21 |
22 | *** =video_link
23 | //player.vimeo.com/video/160903440
24 |
25 | --- type:VideoExercise lang:r xp:50 skills:1 key:390088242e09b3b48dd1ec9f4c67fe7005fd5854
26 | ## Missing values - scrub & replace
27 |
28 | *** =video_link
29 | //player.vimeo.com/video/160903447
--------------------------------------------------------------------------------
/chapter5.md:
--------------------------------------------------------------------------------
1 | ---
2 | title : Data Manipulation
3 | description : In this chapter, you'll learn how to manipulate your data in order to not only make better graphs, but also making your data graphable in the first place.
4 | attachments :
5 | slides_link : https://s3.amazonaws.com/assets.datacamp.com/course/teach/slides_example.pdf
6 |
7 | --- type:VideoExercise lang:r xp:50 skills:1 key:70c3e1865b32d1a909070f6e5a6794017b0854cd
8 | ## ddply: Part one
9 |
10 | *** =video_link
11 | //player.vimeo.com/video/160903462
12 |
13 | --- type:VideoExercise lang:r xp:50 skills:1 key:bf5e3b5a9e77cc9178eadc90aaa07148f4384f9c
14 | ## ddply: Part two
15 |
16 | *** =video_link
17 | //player.vimeo.com/video/160903450
18 |
19 | --- type:VideoExercise lang:r xp:50 skills:1 key:f365d065a274004e59ab275d450ed17f03b96397
20 | ## ddplr: Part three
21 |
22 | *** =video_link
23 | //player.vimeo.com/video/160903485
24 |
25 | --- type:VideoExercise lang:r xp:50 skills:1 key:cbfc91186882326518e0ddb1bbd18a98db2bd65b
26 | ## melt: Part one
27 |
28 | *** =video_link
29 | //player.vimeo.com/video/160903448
30 |
31 | --- type:VideoExercise lang:r xp:50 skills:1 key:0e6858f969da969ee6e9f704e9edc15262fa51a4
32 | ## melt: Part two
33 |
34 | *** =video_link
35 | //player.vimeo.com/video/160903461
--------------------------------------------------------------------------------
/chapter4.md:
--------------------------------------------------------------------------------
1 | ---
2 | title : Data Visualization Techniques
3 | description : In this chapter, you'll learn about the syntax to make data visualizations using some of R's most popular graphics packages.
4 | attachments :
5 | slides_link : https://s3.amazonaws.com/assets.datacamp.com/course/teach/slides_example.pdf
6 |
7 | --- type:VideoExercise lang:r xp:50 skills:1 key:169d19f6e769a754bc13398d94dc967f8031aa8c
8 | ## Plotting matrices
9 |
10 | *** =video_link
11 | //player.vimeo.com/video/160903488
12 |
13 | --- type:VideoExercise lang:r xp:50 skills:1 key:836b51c3091735a05140c47d3e4a6bab27f5cbb3
14 | ## Scatterplots: R graphics
15 |
16 | *** =video_link
17 | //player.vimeo.com/video/160903470
18 |
19 | --- type:VideoExercise lang:r xp:50 skills:1 key:5b968bcd163ddf48294329bf02ded8f933149d78
20 | ## ggplot2: Syntax
21 |
22 | *** =video_link
23 | //player.vimeo.com/video/160903471
24 |
25 | --- type:VideoExercise lang:r xp:50 skills:1 key:3408ff96a3765af1c87d4c3b30451df94ea22fb4
26 | ## ggplot2: Scatterplots
27 |
28 | *** =video_link
29 | //player.vimeo.com/video/160903460
30 |
31 | --- type:VideoExercise lang:r xp:50 skills:1 key:d8bd66caf4a76a06979610610b041e8cd7cbd4a8
32 | ## ggplot2: Bar graphs
33 |
34 | *** =video_link
35 | //player.vimeo.com/video/160903484
36 |
37 | --- type:VideoExercise lang:r xp:50 skills:1 key:6937b2fab933b28fe16c3ee46406f4feedc53d5f
38 | ## ggplot2: Histograms
39 |
40 | *** =video_link
41 | //player.vimeo.com/video/160903442
42 |
43 | --- type:VideoExercise lang:r xp:50 skills:1 key:15d1bee2f0d5cdfa70966cb72a70b9b60d2fbb7f
44 | ## ggplot2: Density plots
45 |
46 | *** =video_link
47 | //player.vimeo.com/video/160903451
--------------------------------------------------------------------------------
/chapter2.md:
--------------------------------------------------------------------------------
1 | ---
2 | title : Getting Started With Data Structures in R
3 | description : In this chapter, you'll be introduced to some basic functions and data structures.
4 | attachments :
5 | slides_link : https://s3.amazonaws.com/assets.datacamp.com/course/teach/slides_example.pdf
6 |
7 | --- type:VideoExercise lang:r xp:50 skills:1 key:353320a49417f2fa84e241579d8ac8b893c34ae4
8 | ## Types of data and basic functions
9 |
10 | *** =video_link
11 | //player.vimeo.com/video/160903479
12 |
13 | --- type:VideoExercise lang:r xp:50 skills:1 key:aeefe740dc02426e6071091acb4f0f5fba7b1e58
14 | ## Naming objects
15 |
16 | *** =video_link
17 | //player.vimeo.com/video/160903441
18 |
19 | --- type:VideoExercise lang:r xp:50 skills:1 key:4cf303808936881b320366b88c029b686814aaa4
20 | ## Vectors - part 1
21 |
22 | *** =video_link
23 | //player.vimeo.com/video/160903459
24 |
25 | --- type:VideoExercise lang:r xp:50 skills:1 key:c4cda05af7438313d99f85fbd02331712db15941
26 | ## Vectors - part 2
27 |
28 | *** =video_link
29 | //player.vimeo.com/video/160903480
30 |
31 | --- type:VideoExercise lang:r xp:50 skills:1 key:01ed3fe78cc011fc8702ac96b970f4830d561bf0
32 | ## Matrices - part 1
33 |
34 | *** =video_link
35 | //player.vimeo.com/video/160903482
36 |
37 | --- type:VideoExercise lang:r xp:50 skills:1 key:91e876a88d4c54ce396085b7317cc22b599f05b1
38 | ## Matrices - part 2
39 |
40 | *** =video_link
41 | //player.vimeo.com/video/160903473
42 |
43 | --- type:VideoExercise lang:r xp:50 skills:1 key:e14fa7680b2c319cfb87e9f9703dd740a5736268
44 | ## Lists & combining vectors
45 |
46 | *** =video_link
47 | //player.vimeo.com/video/160903474
48 |
49 | --- type:VideoExercise lang:r xp:50 skills:1 key:160f0a2926631d49d93d1e7e81cf35b931697841
50 | ## Subsetting dataframes
51 |
52 | *** =video_link
53 | //player.vimeo.com/video/160903439
54 |
55 | --- type:VideoExercise lang:r xp:50 skills:1 key:1b7d31447d4dd52a0d14f653364613a38a11e35b
56 | ## More dataframes!
57 |
58 | *** =video_link
59 | //player.vimeo.com/video/160903449
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # DataCamp Template Course
2 |
3 |
4 |
5 | This an automatically generated DataCamp course. Use it as a reference to create your own interactive course.
6 |
7 | Changes you make to this GitHub repository are automatically reflected in the linked DataCamp course. This means that you can enjoy all the advantages of version control, collaboration, issue handling ... of GitHub.
8 |
9 | ## Workflow
10 |
11 | 1. Edit the markdown and yml files in this repository. You can use GitHub's online editor or use git locally and push your changes.
12 | 2. Check out your build attempts on the Teach Dashboard.
13 | 3. Check out your automatically updated course on DataCamp
14 |
15 | ## Getting Started
16 |
17 | A DataCamp course consists of two types of files:
18 |
19 | - `course.yml`, a YAML-formatted file that's prepopulated with some general course information.
20 | - `chapterX.md`, a markdown file with:
21 | - a YAML header containing chapter information.
22 | - markdown chunks representing DataCamp Exercises.
23 |
24 | To learn more about the structure of a DataCamp course, check out the documentation.
25 |
26 | Every DataCamp exercise consists of different parts, read up about them here. A very important part about DataCamp exercises is to provide automated personalized feedback to students. In R, these so-called Submission Correctness Tests (SCTs) are written with the `testwhat` package. SCTs for Python exercises are coded up with `pythonwhat`. Check out the GitHub repositories' wiki pages for more information and examples.
27 |
28 | ## Want to learn more?
29 | - Check out the DataCamp Teach documentation.
30 | - Check out DataCamp's blog posts:
31 | - Create a course with DataCamp Teach
32 | - Interpreting DataCamp Teach's build attempts.
33 |
34 | *Happy teaching!*
--------------------------------------------------------------------------------