├── img ├── cv.png ├── nytimes.jpg ├── dec_bound.png ├── decision_tree_titanic_1.pdf ├── decision_tree_titanic_1.png ├── decision_tree_titanic_2.pdf ├── decision_tree_titanic_2.png └── decision_tree_titanic_3.png ├── data ├── predictions │ └── .gitignore ├── gender_submission.csv ├── test.csv └── train.csv ├── environment.yml ├── LICENSE ├── .gitignore ├── README.md ├── 2-titanic_first_ML-model.ipynb ├── 3-titanic_feature_engineering_ML.ipynb ├── 1-titanic_EDA_first_models.ipynb └── solutions └── 2-titanic_first_ML-model.ipynb /img/cv.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/datacamp/datacamp_facebook_live_titanic/HEAD/img/cv.png -------------------------------------------------------------------------------- /img/nytimes.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/datacamp/datacamp_facebook_live_titanic/HEAD/img/nytimes.jpg -------------------------------------------------------------------------------- /img/dec_bound.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/datacamp/datacamp_facebook_live_titanic/HEAD/img/dec_bound.png -------------------------------------------------------------------------------- /data/predictions/.gitignore: -------------------------------------------------------------------------------- 1 | # Ignore everything in this directory 2 | * 3 | # Except this file 4 | !.gitignore 5 | -------------------------------------------------------------------------------- /img/decision_tree_titanic_1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/datacamp/datacamp_facebook_live_titanic/HEAD/img/decision_tree_titanic_1.pdf -------------------------------------------------------------------------------- /img/decision_tree_titanic_1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/datacamp/datacamp_facebook_live_titanic/HEAD/img/decision_tree_titanic_1.png -------------------------------------------------------------------------------- /img/decision_tree_titanic_2.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/datacamp/datacamp_facebook_live_titanic/HEAD/img/decision_tree_titanic_2.pdf -------------------------------------------------------------------------------- /img/decision_tree_titanic_2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/datacamp/datacamp_facebook_live_titanic/HEAD/img/decision_tree_titanic_2.png -------------------------------------------------------------------------------- /img/decision_tree_titanic_3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/datacamp/datacamp_facebook_live_titanic/HEAD/img/decision_tree_titanic_3.png -------------------------------------------------------------------------------- /environment.yml: -------------------------------------------------------------------------------- 1 | channels: 2 | - conda-forge 3 | - defaults 4 | - anaconda 5 | dependencies: 6 | - jupyter=1.0.0 7 | - matplotlib=3.1.1 8 | - pandas=0.25.1 9 | - scikit-learn=0.21.3 10 | - scipy=1.3.1 11 | - seaborn=0.9.0 12 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2017 DataCamp 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | env/ 12 | build/ 13 | develop-eggs/ 14 | dist/ 15 | downloads/ 16 | eggs/ 17 | .eggs/ 18 | lib/ 19 | lib64/ 20 | parts/ 21 | sdist/ 22 | var/ 23 | wheels/ 24 | *.egg-info/ 25 | .installed.cfg 26 | *.egg 27 | 28 | # PyInstaller 29 | # Usually these files are written by a python script from a template 30 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 31 | *.manifest 32 | *.spec 33 | 34 | # Installer logs 35 | pip-log.txt 36 | pip-delete-this-directory.txt 37 | 38 | # Unit test / coverage reports 39 | htmlcov/ 40 | .tox/ 41 | .coverage 42 | .coverage.* 43 | .cache 44 | nosetests.xml 45 | coverage.xml 46 | *.cover 47 | .hypothesis/ 48 | 49 | # Translations 50 | *.mo 51 | *.pot 52 | 53 | # Django stuff: 54 | *.log 55 | local_settings.py 56 | 57 | # Flask stuff: 58 | instance/ 59 | .webassets-cache 60 | 61 | # Scrapy stuff: 62 | .scrapy 63 | 64 | # Sphinx documentation 65 | docs/_build/ 66 | 67 | # PyBuilder 68 | target/ 69 | 70 | # Jupyter Notebook 71 | .ipynb_checkpoints 72 | 73 | # pyenv 74 | .python-version 75 | 76 | # celery beat schedule file 77 | celerybeat-schedule 78 | 79 | # SageMath parsed files 80 | *.sage.py 81 | 82 | # dotenv 83 | .env 84 | 85 | # virtualenv 86 | .venv 87 | venv/ 88 | ENV/ 89 | 90 | # Spyder project settings 91 | .spyderproject 92 | .spyproject 93 | 94 | # Rope project settings 95 | .ropeproject 96 | 97 | # mkdocs documentation 98 | /site 99 | 100 | # mypy 101 | .mypy_cache/ 102 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/datacamp/datacamp_facebook_live_titanic/master) 2 | 3 | To write code & run the Jupyter notebooks immediately without needing to install anything on your computer, click on the "launch binder" badge above. For more on Binder, go [here](https://mybinder.readthedocs.io/en/latest/index.html). 4 | 5 | 6 | 7 | 8 | # IMPORTANT 9 | 10 | **If you're planning to code along, make sure to clone, download, or re-pull this repository on the morning of Friday 12/01. All edits will be completed by end of day ET Thursday 11/31.** 11 | 12 | 13 | 14 | # How to complete a Kaggle Competition with Machine Learning 15 | 16 | with Hugo Bowne-Anderson. Follow him on twitter [@hugobowne](https://twitter.com/hugobowne) 17 | 18 | After a successful first Facebook Live Coding session, DataCamp's very own Hugo Bowne-Anderson is back in front of the camera! This time, Hugo will take you from zero to one with machine learning to make several submissions to Kaggle's (in)famous [Titanic machine learning competition](https://www.kaggle.com/c/titanic). The goal will be to build an algorithm that predicts whether any given passenger on the Titanic survived or not, given data on them such as the fare they paid, where they embarked and their age. You'll do so using the Python programming language, Jupyter notebooks and state-of-the-art packages such as `pandas`, `scikit-learn` and `seaborn`. Alongside Hugo, you'll dive into this rich dataset and build your chops in exploratory data analysis, data munging and cleaning, and machine learning. No previous experience with machine learning necessary. Join us for this live, interactive code along. 19 | 20 | Join Hugo live on Friday 12/01 at 10:30am ET on Facebook! 21 | 22 |

23 | 24 |

25 | 26 | 27 | ## Prerequisites 28 | 29 | Not a lot. It would help if you knew 30 | 31 | * programming fundamentals and the basics of the Python programming language (e.g., variables, for loops); 32 | * a bit about `pandas` and DataFrames; 33 | * a bit about Jupyter Notebooks; 34 | * your way around the terminal/shell. 35 | 36 | 37 | **However, I have always found that the most important and beneficial prerequisite is a will to learn new things so if you have this quality, you'll definitely get something out of this code-along session.** 38 | 39 | Also, if you'd like to watch and **not** code along, you'll also have a great time and these notebooks will be downloadable afterwards also. 40 | 41 | If you are going to code along and use the [Anaconda distribution](https://www.anaconda.com/download/) of Python 3 (see below), I ask that you install it before the session. 42 | 43 | **Note:** We may be making some live submissions to [Kaggle](https://www.kaggle.com) so, if you want to do that, get yourself an account before the session. 44 | 45 | 46 | ## Getting set up computationally 47 | 48 | ### 1. Clone the repository 49 | 50 | To get set up for this live coding session, clone this repository. You can do so by executing the following in your terminal: 51 | 52 | ``` 53 | git clone https://github.com/datacamp/datacamp_facebook_live_titanic 54 | ``` 55 | 56 | Alternatively, you can download the zip file of the repository at the top of the main page of the repository. If you prefer not to use git or don't have experience with it, this a good option. 57 | 58 | ### 2. Download Anaconda (if you haven't already) 59 | 60 | If you do not already have the [Anaconda distribution](https://www.anaconda.com/download/) of Python 3, go get it (n.b., you can also do this w/out Anaconda using `pip` to install the required packages, however Anaconda is great for Data Science and I encourage you to use it). 61 | 62 | ### 3. Create your conda environment for this session 63 | 64 | Navigate to the relevant directory `datacamp_facebook_live_titanic` and install required packages in a new conda environment: 65 | 66 | ``` 67 | conda env create -f environment.yml 68 | ``` 69 | 70 | This will create a new environment called fb_live_titanic. To activate the environment on OSX/Linux, execute 71 | 72 | ``` 73 | source activate fb_live_titanic 74 | ``` 75 | On Windows, execute 76 | 77 | ``` 78 | activate fb_live_titanic 79 | ``` 80 | 81 | 82 | ### 4. Open your Jupyter notebook 83 | 84 | In the terminal, execute `jupyter notebook`. 85 | 86 | Then open the notebook `1-titanic_EDA_first_models.ipynb` and we're ready to get coding. Enjoy. 87 | 88 | 89 | ### Code 90 | The code in this repository is released under the [MIT license](LICENSE). Read more at the [Open Source Initiative](https://opensource.org/licenses/MIT). All text remains the Intellectual Property of DataCamp. If you wish to reuse, adapt or remix, get in touch with me at hugo at datacamp com to request permission. 91 | -------------------------------------------------------------------------------- /data/gender_submission.csv: -------------------------------------------------------------------------------- 1 | PassengerId,Survived 2 | 892,0 3 | 893,1 4 | 894,0 5 | 895,0 6 | 896,1 7 | 897,0 8 | 898,1 9 | 899,0 10 | 900,1 11 | 901,0 12 | 902,0 13 | 903,0 14 | 904,1 15 | 905,0 16 | 906,1 17 | 907,1 18 | 908,0 19 | 909,0 20 | 910,1 21 | 911,1 22 | 912,0 23 | 913,0 24 | 914,1 25 | 915,0 26 | 916,1 27 | 917,0 28 | 918,1 29 | 919,0 30 | 920,0 31 | 921,0 32 | 922,0 33 | 923,0 34 | 924,1 35 | 925,1 36 | 926,0 37 | 927,0 38 | 928,1 39 | 929,1 40 | 930,0 41 | 931,0 42 | 932,0 43 | 933,0 44 | 934,0 45 | 935,1 46 | 936,1 47 | 937,0 48 | 938,0 49 | 939,0 50 | 940,1 51 | 941,1 52 | 942,0 53 | 943,0 54 | 944,1 55 | 945,1 56 | 946,0 57 | 947,0 58 | 948,0 59 | 949,0 60 | 950,0 61 | 951,1 62 | 952,0 63 | 953,0 64 | 954,0 65 | 955,1 66 | 956,0 67 | 957,1 68 | 958,1 69 | 959,0 70 | 960,0 71 | 961,1 72 | 962,1 73 | 963,0 74 | 964,1 75 | 965,0 76 | 966,1 77 | 967,0 78 | 968,0 79 | 969,1 80 | 970,0 81 | 971,1 82 | 972,0 83 | 973,0 84 | 974,0 85 | 975,0 86 | 976,0 87 | 977,0 88 | 978,1 89 | 979,1 90 | 980,1 91 | 981,0 92 | 982,1 93 | 983,0 94 | 984,1 95 | 985,0 96 | 986,0 97 | 987,0 98 | 988,1 99 | 989,0 100 | 990,1 101 | 991,0 102 | 992,1 103 | 993,0 104 | 994,0 105 | 995,0 106 | 996,1 107 | 997,0 108 | 998,0 109 | 999,0 110 | 1000,0 111 | 1001,0 112 | 1002,0 113 | 1003,1 114 | 1004,1 115 | 1005,1 116 | 1006,1 117 | 1007,0 118 | 1008,0 119 | 1009,1 120 | 1010,0 121 | 1011,1 122 | 1012,1 123 | 1013,0 124 | 1014,1 125 | 1015,0 126 | 1016,0 127 | 1017,1 128 | 1018,0 129 | 1019,1 130 | 1020,0 131 | 1021,0 132 | 1022,0 133 | 1023,0 134 | 1024,1 135 | 1025,0 136 | 1026,0 137 | 1027,0 138 | 1028,0 139 | 1029,0 140 | 1030,1 141 | 1031,0 142 | 1032,1 143 | 1033,1 144 | 1034,0 145 | 1035,0 146 | 1036,0 147 | 1037,0 148 | 1038,0 149 | 1039,0 150 | 1040,0 151 | 1041,0 152 | 1042,1 153 | 1043,0 154 | 1044,0 155 | 1045,1 156 | 1046,0 157 | 1047,0 158 | 1048,1 159 | 1049,1 160 | 1050,0 161 | 1051,1 162 | 1052,1 163 | 1053,0 164 | 1054,1 165 | 1055,0 166 | 1056,0 167 | 1057,1 168 | 1058,0 169 | 1059,0 170 | 1060,1 171 | 1061,1 172 | 1062,0 173 | 1063,0 174 | 1064,0 175 | 1065,0 176 | 1066,0 177 | 1067,1 178 | 1068,1 179 | 1069,0 180 | 1070,1 181 | 1071,1 182 | 1072,0 183 | 1073,0 184 | 1074,1 185 | 1075,0 186 | 1076,1 187 | 1077,0 188 | 1078,1 189 | 1079,0 190 | 1080,1 191 | 1081,0 192 | 1082,0 193 | 1083,0 194 | 1084,0 195 | 1085,0 196 | 1086,0 197 | 1087,0 198 | 1088,0 199 | 1089,1 200 | 1090,0 201 | 1091,1 202 | 1092,1 203 | 1093,0 204 | 1094,0 205 | 1095,1 206 | 1096,0 207 | 1097,0 208 | 1098,1 209 | 1099,0 210 | 1100,1 211 | 1101,0 212 | 1102,0 213 | 1103,0 214 | 1104,0 215 | 1105,1 216 | 1106,1 217 | 1107,0 218 | 1108,1 219 | 1109,0 220 | 1110,1 221 | 1111,0 222 | 1112,1 223 | 1113,0 224 | 1114,1 225 | 1115,0 226 | 1116,1 227 | 1117,1 228 | 1118,0 229 | 1119,1 230 | 1120,0 231 | 1121,0 232 | 1122,0 233 | 1123,1 234 | 1124,0 235 | 1125,0 236 | 1126,0 237 | 1127,0 238 | 1128,0 239 | 1129,0 240 | 1130,1 241 | 1131,1 242 | 1132,1 243 | 1133,1 244 | 1134,0 245 | 1135,0 246 | 1136,0 247 | 1137,0 248 | 1138,1 249 | 1139,0 250 | 1140,1 251 | 1141,1 252 | 1142,1 253 | 1143,0 254 | 1144,0 255 | 1145,0 256 | 1146,0 257 | 1147,0 258 | 1148,0 259 | 1149,0 260 | 1150,1 261 | 1151,0 262 | 1152,0 263 | 1153,0 264 | 1154,1 265 | 1155,1 266 | 1156,0 267 | 1157,0 268 | 1158,0 269 | 1159,0 270 | 1160,1 271 | 1161,0 272 | 1162,0 273 | 1163,0 274 | 1164,1 275 | 1165,1 276 | 1166,0 277 | 1167,1 278 | 1168,0 279 | 1169,0 280 | 1170,0 281 | 1171,0 282 | 1172,1 283 | 1173,0 284 | 1174,1 285 | 1175,1 286 | 1176,1 287 | 1177,0 288 | 1178,0 289 | 1179,0 290 | 1180,0 291 | 1181,0 292 | 1182,0 293 | 1183,1 294 | 1184,0 295 | 1185,0 296 | 1186,0 297 | 1187,0 298 | 1188,1 299 | 1189,0 300 | 1190,0 301 | 1191,0 302 | 1192,0 303 | 1193,0 304 | 1194,0 305 | 1195,0 306 | 1196,1 307 | 1197,1 308 | 1198,0 309 | 1199,0 310 | 1200,0 311 | 1201,1 312 | 1202,0 313 | 1203,0 314 | 1204,0 315 | 1205,1 316 | 1206,1 317 | 1207,1 318 | 1208,0 319 | 1209,0 320 | 1210,0 321 | 1211,0 322 | 1212,0 323 | 1213,0 324 | 1214,0 325 | 1215,0 326 | 1216,1 327 | 1217,0 328 | 1218,1 329 | 1219,0 330 | 1220,0 331 | 1221,0 332 | 1222,1 333 | 1223,0 334 | 1224,0 335 | 1225,1 336 | 1226,0 337 | 1227,0 338 | 1228,0 339 | 1229,0 340 | 1230,0 341 | 1231,0 342 | 1232,0 343 | 1233,0 344 | 1234,0 345 | 1235,1 346 | 1236,0 347 | 1237,1 348 | 1238,0 349 | 1239,1 350 | 1240,0 351 | 1241,1 352 | 1242,1 353 | 1243,0 354 | 1244,0 355 | 1245,0 356 | 1246,1 357 | 1247,0 358 | 1248,1 359 | 1249,0 360 | 1250,0 361 | 1251,1 362 | 1252,0 363 | 1253,1 364 | 1254,1 365 | 1255,0 366 | 1256,1 367 | 1257,1 368 | 1258,0 369 | 1259,1 370 | 1260,1 371 | 1261,0 372 | 1262,0 373 | 1263,1 374 | 1264,0 375 | 1265,0 376 | 1266,1 377 | 1267,1 378 | 1268,1 379 | 1269,0 380 | 1270,0 381 | 1271,0 382 | 1272,0 383 | 1273,0 384 | 1274,1 385 | 1275,1 386 | 1276,0 387 | 1277,1 388 | 1278,0 389 | 1279,0 390 | 1280,0 391 | 1281,0 392 | 1282,0 393 | 1283,1 394 | 1284,0 395 | 1285,0 396 | 1286,0 397 | 1287,1 398 | 1288,0 399 | 1289,1 400 | 1290,0 401 | 1291,0 402 | 1292,1 403 | 1293,0 404 | 1294,1 405 | 1295,0 406 | 1296,0 407 | 1297,0 408 | 1298,0 409 | 1299,0 410 | 1300,1 411 | 1301,1 412 | 1302,1 413 | 1303,1 414 | 1304,1 415 | 1305,0 416 | 1306,1 417 | 1307,0 418 | 1308,0 419 | 1309,0 420 | -------------------------------------------------------------------------------- /2-titanic_first_ML-model.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# Build your first machine learning model" 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": null, 13 | "metadata": {}, 14 | "outputs": [], 15 | "source": [ 16 | "# Import modules\n", 17 | "import pandas as pd\n", 18 | "import matplotlib.pyplot as plt\n", 19 | "import seaborn as sns\n", 20 | "import re\n", 21 | "import numpy as np\n", 22 | "from sklearn import tree\n", 23 | "from sklearn.model_selection import train_test_split\n", 24 | "from sklearn.linear_model import LogisticRegression\n", 25 | "from sklearn.model_selection import GridSearchCV\n", 26 | "\n", 27 | "# Figures inline and set visualization style\n", 28 | "%matplotlib inline\n", 29 | "sns.set()\n", 30 | "\n", 31 | "# Import data\n", 32 | "df_train = pd.read_csv('data/train.csv')\n", 33 | "df_test = pd.read_csv('data/test.csv')" 34 | ] 35 | }, 36 | { 37 | "cell_type": "markdown", 38 | "metadata": {}, 39 | "source": [ 40 | "* Below, you will drop the target 'Survived' from the training dataset and create a new DataFrame `data` that consists of training and test sets combined;\n", 41 | "* But first, you'll store the target variable of the training data for safe keeping." 42 | ] 43 | }, 44 | { 45 | "cell_type": "code", 46 | "execution_count": null, 47 | "metadata": {}, 48 | "outputs": [], 49 | "source": [ 50 | "# Store target variable of training data in a safe place\n", 51 | "survived_train = ____\n", 52 | "\n", 53 | "# Concatenate training and test sets\n", 54 | "data = ____" 55 | ] 56 | }, 57 | { 58 | "cell_type": "markdown", 59 | "metadata": {}, 60 | "source": [ 61 | "* Check out your new DataFrame `data` using the `info()` method." 62 | ] 63 | }, 64 | { 65 | "cell_type": "code", 66 | "execution_count": null, 67 | "metadata": {}, 68 | "outputs": [], 69 | "source": [ 70 | "____" 71 | ] 72 | }, 73 | { 74 | "cell_type": "markdown", 75 | "metadata": {}, 76 | "source": [ 77 | "^ There are 2 numerical variables that have missing values: what are they?\n", 78 | "* Impute these missing values, using the median of the of these variables where we know them:" 79 | ] 80 | }, 81 | { 82 | "cell_type": "code", 83 | "execution_count": null, 84 | "metadata": {}, 85 | "outputs": [], 86 | "source": [ 87 | "# Impute missing numerical variables\n", 88 | "data['Age'] = ____\n", 89 | "data['Fare'] = ____\n", 90 | "\n", 91 | "# Check out info of data\n", 92 | "data.info()" 93 | ] 94 | }, 95 | { 96 | "cell_type": "markdown", 97 | "metadata": {}, 98 | "source": [ 99 | "* As you want to encode your data with numbers, you'll want to change 'male' and 'female' to numbers. Use the `pandas` function `get_dummies` to do so:" 100 | ] 101 | }, 102 | { 103 | "cell_type": "code", 104 | "execution_count": null, 105 | "metadata": {}, 106 | "outputs": [], 107 | "source": [ 108 | "data = ____\n", 109 | "data.head()" 110 | ] 111 | }, 112 | { 113 | "cell_type": "markdown", 114 | "metadata": {}, 115 | "source": [ 116 | "* Select the columns `['Sex_male', 'Fare', 'Age','Pclass', 'SibSp']` from your DataFrame to build your first machine learning model:" 117 | ] 118 | }, 119 | { 120 | "cell_type": "code", 121 | "execution_count": null, 122 | "metadata": {}, 123 | "outputs": [], 124 | "source": [ 125 | "# Select columns and view head\n", 126 | "data = ____\n", 127 | "data.head()" 128 | ] 129 | }, 130 | { 131 | "cell_type": "markdown", 132 | "metadata": {}, 133 | "source": [ 134 | "* Use `.info()` to check out `data`:" 135 | ] 136 | }, 137 | { 138 | "cell_type": "code", 139 | "execution_count": null, 140 | "metadata": {}, 141 | "outputs": [], 142 | "source": [ 143 | "____" 144 | ] 145 | }, 146 | { 147 | "cell_type": "markdown", 148 | "metadata": {}, 149 | "source": [ 150 | "**Recap:**\n", 151 | "* You've got your data in a form to build first machine learning model.\n", 152 | "\n", 153 | "**Up next:** it's time to build your first machine learning model!\n", 154 | "\n", 155 | "For more on `pandas`, check out our [Data Manipulation with Python track](https://www.datacamp.com/tracks/data-manipulation-with-python). \n", 156 | "\n", 157 | "If you're enoying this session, retweet or share on FB now and follow us on Twitter: [@hugobowne](https://twitter.com/hugobowne) & [@DataCamp](https://twitter.com/datacamp)." 158 | ] 159 | }, 160 | { 161 | "cell_type": "markdown", 162 | "metadata": {}, 163 | "source": [ 164 | "## In which you build a decision tree classifier" 165 | ] 166 | }, 167 | { 168 | "cell_type": "markdown", 169 | "metadata": {}, 170 | "source": [ 171 | "What is a Decision tree classsifier? It is a tree that allows you to classify data points (aka predict target variables) based on feature variables. For example," 172 | ] 173 | }, 174 | { 175 | "cell_type": "markdown", 176 | "metadata": {}, 177 | "source": [ 178 | "" 179 | ] 180 | }, 181 | { 182 | "cell_type": "markdown", 183 | "metadata": {}, 184 | "source": [ 185 | "* You first **fit** such a model to your training data, which means deciding (based on the training data) which decisions will split at each branching point in the tree: e.g., that the first branch is on 'Male' or not and that 'Male' results in a prediction of 'Dead'. " 186 | ] 187 | }, 188 | { 189 | "cell_type": "markdown", 190 | "metadata": {}, 191 | "source": [ 192 | "* Before fitting a model to your `data`, split it back into training and test sets:" 193 | ] 194 | }, 195 | { 196 | "cell_type": "code", 197 | "execution_count": null, 198 | "metadata": {}, 199 | "outputs": [], 200 | "source": [ 201 | "data_train = data.iloc[:891]\n", 202 | "data_test = data.iloc[891:]" 203 | ] 204 | }, 205 | { 206 | "cell_type": "markdown", 207 | "metadata": {}, 208 | "source": [ 209 | "* You'll use `scikit-learn`, which requires your data as arrays, not DataFrames so transform them:" 210 | ] 211 | }, 212 | { 213 | "cell_type": "code", 214 | "execution_count": null, 215 | "metadata": {}, 216 | "outputs": [], 217 | "source": [ 218 | "X = ____\n", 219 | "test = ____\n", 220 | "y = ____" 221 | ] 222 | }, 223 | { 224 | "cell_type": "markdown", 225 | "metadata": {}, 226 | "source": [ 227 | "* Now you get to build your decision tree classifier! First create such a model with `max_depth=3` and then fit it your data:" 228 | ] 229 | }, 230 | { 231 | "cell_type": "code", 232 | "execution_count": null, 233 | "metadata": {}, 234 | "outputs": [], 235 | "source": [ 236 | "# Instantiate model and fit to data\n", 237 | "clf = ____\n", 238 | "___" 239 | ] 240 | }, 241 | { 242 | "cell_type": "markdown", 243 | "metadata": {}, 244 | "source": [ 245 | "* Make predictions on your test set, create a new column 'Survived' and store your predictions in it. Save 'PassengerId' and 'Survived' columns of `df_test` to a .csv and submit to Kaggle." 246 | ] 247 | }, 248 | { 249 | "cell_type": "code", 250 | "execution_count": null, 251 | "metadata": {}, 252 | "outputs": [], 253 | "source": [ 254 | "# Make predictions and store in 'Survived' column of df_test\n", 255 | "Y_pred = ____\n", 256 | "df_test['Survived'] = Y_pred" 257 | ] 258 | }, 259 | { 260 | "cell_type": "code", 261 | "execution_count": null, 262 | "metadata": {}, 263 | "outputs": [], 264 | "source": [ 265 | "df_test[['PassengerId', 'Survived']].to_csv('data/predictions/1st_dec_tree.csv', index=False)" 266 | ] 267 | }, 268 | { 269 | "cell_type": "markdown", 270 | "metadata": {}, 271 | "source": [ 272 | "* What is the accuracy of your model, as reported by Kaggle?\n", 273 | "\n", 274 | "Accuracy = ??" 275 | ] 276 | }, 277 | { 278 | "cell_type": "markdown", 279 | "metadata": {}, 280 | "source": [ 281 | "**Recap:**\n", 282 | "* You've got your data in a form to build first machine learning model.\n", 283 | "* You've built your first machine learning model: a decision tree classifier.\n", 284 | "\n", 285 | "**Up next:** figure out what this `max_depth` argument was, why we chose it and explore `train_test_split`.\n", 286 | "\n", 287 | "For more on `scikit-learn`, check out our [Supervised Learning with scikit-learn course](https://www.datacamp.com/courses/supervised-learning-with-scikit-learn). \n", 288 | "\n", 289 | "If you're enoying this session, retweet or share on FB now and follow us on Twitter: [@hugobowne](https://twitter.com/hugobowne) & [@DataCamp](https://twitter.com/datacamp)." 290 | ] 291 | }, 292 | { 293 | "cell_type": "markdown", 294 | "metadata": {}, 295 | "source": [ 296 | "## What was this decision tree classifier?" 297 | ] 298 | }, 299 | { 300 | "cell_type": "markdown", 301 | "metadata": {}, 302 | "source": [ 303 | "" 304 | ] 305 | }, 306 | { 307 | "cell_type": "markdown", 308 | "metadata": {}, 309 | "source": [ 310 | "Note: you can use `graphviz` to generate figures such as this. See the `scikit-learn` documentation [here](http://scikit-learn.org/stable/modules/tree.html) for further details. In building this model, what you're essentially doing is creating a _decision boundary_ in the space of feature variables, for example (image from [here](http://scikit-learn.org/stable/auto_examples/ensemble/plot_voting_decision_regions.html)):" 311 | ] 312 | }, 313 | { 314 | "cell_type": "markdown", 315 | "metadata": {}, 316 | "source": [ 317 | "" 318 | ] 319 | }, 320 | { 321 | "cell_type": "markdown", 322 | "metadata": {}, 323 | "source": [ 324 | "## Why would you choose max_depth=3 ?" 325 | ] 326 | }, 327 | { 328 | "cell_type": "markdown", 329 | "metadata": {}, 330 | "source": [ 331 | "The depth of the tree is known as a hyperparameter, which means a parameter we need to decide before we fit the model to the data. If we choose a larger `max_depth`, we'll get a more complex decision boundary. \n", 332 | "\n", 333 | "* If our decision boundary is _too complex_ we can overfit to the data, which means that our model will be describing noise as well as signal.\n", 334 | "\n", 335 | "* If our max_depth is too small, we may be underfitting the data, meaning that our model doesn't contain enough of the signal.\n", 336 | "\n", 337 | "**How do we tell whether we're overfitting or underfitting?** Note: this is also referred to as the bias-variance trade-off and we won;t go into details on that here." 338 | ] 339 | }, 340 | { 341 | "cell_type": "markdown", 342 | "metadata": {}, 343 | "source": [ 344 | "One way is to hold out a test set from our training data. We can then fit the model to our training data, make predictions on our test set and see how well our prediction does on the test set. \n", 345 | "\n", 346 | "* You'll now do this: split your original training data into training and test sets:" 347 | ] 348 | }, 349 | { 350 | "cell_type": "code", 351 | "execution_count": null, 352 | "metadata": {}, 353 | "outputs": [], 354 | "source": [ 355 | "X_train, X_test, y_train, y_test = train_test_split(\n", 356 | " ____, ____, test_size=0.33, random_state=42, stratify=y)" 357 | ] 358 | }, 359 | { 360 | "cell_type": "markdown", 361 | "metadata": {}, 362 | "source": [ 363 | "* Iterate over values of `max_depth` ranging from 1 to 9 and plot the accuracy of the models on training and test sets:" 364 | ] 365 | }, 366 | { 367 | "cell_type": "code", 368 | "execution_count": null, 369 | "metadata": {}, 370 | "outputs": [], 371 | "source": [ 372 | "# Setup arrays to store train and test accuracies\n", 373 | "dep = np.arange(1, 9)\n", 374 | "train_accuracy = np.empty(len(dep))\n", 375 | "test_accuracy = np.empty(len(dep))\n", 376 | "\n", 377 | "# Loop over different values of k\n", 378 | "for i, k in enumerate(dep):\n", 379 | " # Setup a k-NN Classifier with k neighbors: knn\n", 380 | " clf = tree.DecisionTreeClassifier(max_depth=k)\n", 381 | "\n", 382 | " # Fit the classifier to the training data\n", 383 | " clf.fit(X_train, y_train)\n", 384 | " \n", 385 | " #Compute accuracy on the training set\n", 386 | " train_accuracy[i] = clf.score(X_train, y_train)\n", 387 | "\n", 388 | " #Compute accuracy on the testing set\n", 389 | " test_accuracy[i] = clf.score(X_test, y_test)\n", 390 | "\n", 391 | "# Generate plot\n", 392 | "plt.title('clf: Varying depth of tree')\n", 393 | "plt.plot(dep, test_accuracy, label = 'Testing Accuracy')\n", 394 | "plt.plot(dep, train_accuracy, label = 'Training Accuracy')\n", 395 | "plt.legend()\n", 396 | "plt.xlabel('Depth of tree')\n", 397 | "plt.ylabel('Accuracy')\n", 398 | "plt.show()" 399 | ] 400 | }, 401 | { 402 | "cell_type": "markdown", 403 | "metadata": {}, 404 | "source": [ 405 | "**Recap:**\n", 406 | "* You've got your data in a form to build first machine learning model.\n", 407 | "* You've built your first machine learning model: a decision tree classifier.\n", 408 | "* You've learnt about `train_test_split` and how it helps us to choose ML model hyperparameters.\n", 409 | "\n", 410 | "**Up next:** Engineer some new features and build some new models! Open the notebook `3-titanic_feature_engineering_ML.ipynb`.\n", 411 | "\n", 412 | "For more on `scikit-learn`, check out our [Supervised Learning with scikit-learn course](https://www.datacamp.com/courses/supervised-learning-with-scikit-learn). \n", 413 | "\n", 414 | "If you're enoying this session, retweet or share on FB now and follow us on Twitter: [@hugobowne](https://twitter.com/hugobowne) & [@DataCamp](https://twitter.com/datacamp)." 415 | ] 416 | } 417 | ], 418 | "metadata": { 419 | "kernelspec": { 420 | "display_name": "Python 3", 421 | "language": "python", 422 | "name": "python3" 423 | }, 424 | "language_info": { 425 | "codemirror_mode": { 426 | "name": "ipython", 427 | "version": 3 428 | }, 429 | "file_extension": ".py", 430 | "mimetype": "text/x-python", 431 | "name": "python", 432 | "nbconvert_exporter": "python", 433 | "pygments_lexer": "ipython3", 434 | "version": "3.6.3" 435 | } 436 | }, 437 | "nbformat": 4, 438 | "nbformat_minor": 2 439 | } 440 | -------------------------------------------------------------------------------- /3-titanic_feature_engineering_ML.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "## Feature Engineering and Machine Learning" 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": null, 13 | "metadata": {}, 14 | "outputs": [], 15 | "source": [ 16 | "# Imports\n", 17 | "import pandas as pd\n", 18 | "import matplotlib.pyplot as plt\n", 19 | "import seaborn as sns\n", 20 | "import re\n", 21 | "import numpy as np\n", 22 | "from sklearn import tree\n", 23 | "from sklearn.model_selection import GridSearchCV\n", 24 | "\n", 25 | "# Figures inline and set visualization style\n", 26 | "%matplotlib inline\n", 27 | "sns.set()\n", 28 | "\n", 29 | "# Import data\n", 30 | "df_train = pd.read_csv('data/train.csv')\n", 31 | "df_test = pd.read_csv('data/test.csv')\n", 32 | "\n", 33 | "# Store target variable of training data in a safe place\n", 34 | "survived_train = df_train.Survived\n", 35 | "\n", 36 | "# Concatenate training and test sets\n", 37 | "data = pd.concat([df_train.drop(['Survived'], axis=1), df_test])\n", 38 | "\n", 39 | "# View head\n", 40 | "data.head()" 41 | ] 42 | }, 43 | { 44 | "cell_type": "markdown", 45 | "metadata": {}, 46 | "source": [ 47 | "## Why feature engineer at all?" 48 | ] 49 | }, 50 | { 51 | "cell_type": "markdown", 52 | "metadata": {}, 53 | "source": [ 54 | "To extract more information from your data. For example, check out the 'Name' column:" 55 | ] 56 | }, 57 | { 58 | "cell_type": "code", 59 | "execution_count": null, 60 | "metadata": {}, 61 | "outputs": [], 62 | "source": [ 63 | "# View head of 'Name' column\n", 64 | "____" 65 | ] 66 | }, 67 | { 68 | "cell_type": "markdown", 69 | "metadata": {}, 70 | "source": [ 71 | "Notive that this columns contains strings (text) that contain 'Title' such as 'Mr', 'Master' and 'Dona'. You can use regular expressions to extract the Title (to learn more about regular expressions, check out my write up of our last [FB Live code along event](https://www.datacamp.com/community/tutorials/web-scraping-python-nlp)):" 72 | ] 73 | }, 74 | { 75 | "cell_type": "code", 76 | "execution_count": null, 77 | "metadata": {}, 78 | "outputs": [], 79 | "source": [ 80 | "# Extract Title from Name, store in column and plot barplot\n", 81 | "data['Title'] = data.Name.apply(lambda x: re.search(' ([A-Z][a-z]+)\\.', x).group(1))\n", 82 | "sns.countplot(x='Title', data=data);\n", 83 | "plt.xticks(rotation=45);" 84 | ] 85 | }, 86 | { 87 | "cell_type": "markdown", 88 | "metadata": {}, 89 | "source": [ 90 | "* There are several titles and it makes sense to put them in fewer buckets:" 91 | ] 92 | }, 93 | { 94 | "cell_type": "code", 95 | "execution_count": null, 96 | "metadata": {}, 97 | "outputs": [], 98 | "source": [ 99 | "data['Title'] = data['Title'].replace({'Mlle':'Miss', 'Mme':'Mrs', 'Ms':'Miss'})\n", 100 | "data['Title'] = data['Title'].replace(['Don', 'Dona', 'Rev', 'Dr',\n", 101 | " 'Major', 'Lady', 'Sir', 'Col', 'Capt', 'Countess', 'Jonkheer'],'Special')\n", 102 | "sns.countplot(x='Title', data=data);\n", 103 | "plt.xticks(rotation=45);" 104 | ] 105 | }, 106 | { 107 | "cell_type": "markdown", 108 | "metadata": {}, 109 | "source": [ 110 | "* Check out your data again and make sure that we have a 'Title' column:" 111 | ] 112 | }, 113 | { 114 | "cell_type": "code", 115 | "execution_count": null, 116 | "metadata": {}, 117 | "outputs": [], 118 | "source": [ 119 | "# View head of data\n", 120 | "____" 121 | ] 122 | }, 123 | { 124 | "cell_type": "markdown", 125 | "metadata": {}, 126 | "source": [ 127 | "### Being cabinless may be important" 128 | ] 129 | }, 130 | { 131 | "cell_type": "markdown", 132 | "metadata": {}, 133 | "source": [ 134 | "* There are several NaNs (missing values) in the 'Cabin' column. It is reasonable to presume that those NaNs didn't have a cabin, which may tell us something about 'Survival' so now create a new column that encodes this information:" 135 | ] 136 | }, 137 | { 138 | "cell_type": "code", 139 | "execution_count": null, 140 | "metadata": {}, 141 | "outputs": [], 142 | "source": [ 143 | "# Did they have a Cabin?\n", 144 | "____\n", 145 | "\n", 146 | "# View head of data\n", 147 | "data.head()" 148 | ] 149 | }, 150 | { 151 | "cell_type": "markdown", 152 | "metadata": {}, 153 | "source": [ 154 | "* Drop columns that contain no more useful information (or that we're not sure what to do with:) `['Cabin', 'Name', 'PassengerId', 'Ticket']`:" 155 | ] 156 | }, 157 | { 158 | "cell_type": "code", 159 | "execution_count": null, 160 | "metadata": {}, 161 | "outputs": [], 162 | "source": [ 163 | "# Drop columns and view head\n", 164 | "____\n", 165 | "data.head()" 166 | ] 167 | }, 168 | { 169 | "cell_type": "markdown", 170 | "metadata": {}, 171 | "source": [ 172 | "**Recap:**\n", 173 | "* You've engineered some new features such as 'Title' and 'Has_Cabin': congrats!\n", 174 | "\n", 175 | "**Up next:** deal with missing values and bin your numerical data, transform all features into numeric variables. Then you'll build your final model for this session.\n", 176 | "\n", 177 | "If you're enoying this session, retweet or share on FB now and follow us on Twitter: [@hugobowne](https://twitter.com/hugobowne) & [@DataCamp](https://twitter.com/datacamp)." 178 | ] 179 | }, 180 | { 181 | "cell_type": "markdown", 182 | "metadata": {}, 183 | "source": [ 184 | "### Dealing with missing values" 185 | ] 186 | }, 187 | { 188 | "cell_type": "markdown", 189 | "metadata": {}, 190 | "source": [ 191 | "* Figure out if there are any missing values left:" 192 | ] 193 | }, 194 | { 195 | "cell_type": "code", 196 | "execution_count": null, 197 | "metadata": {}, 198 | "outputs": [], 199 | "source": [ 200 | "____" 201 | ] 202 | }, 203 | { 204 | "cell_type": "markdown", 205 | "metadata": {}, 206 | "source": [ 207 | "* Impute missing values:" 208 | ] 209 | }, 210 | { 211 | "cell_type": "code", 212 | "execution_count": null, 213 | "metadata": {}, 214 | "outputs": [], 215 | "source": [ 216 | "# Impute missing values for Age, Fare, Embarked\n", 217 | "data.Age = ____\n", 218 | "data.Fare = ____\n", 219 | "data['Embarked'] = data['Embarked'].fillna('S')\n", 220 | "data.info()" 221 | ] 222 | }, 223 | { 224 | "cell_type": "code", 225 | "execution_count": null, 226 | "metadata": {}, 227 | "outputs": [], 228 | "source": [ 229 | "data.head()" 230 | ] 231 | }, 232 | { 233 | "cell_type": "markdown", 234 | "metadata": {}, 235 | "source": [ 236 | "### Bin numerical data" 237 | ] 238 | }, 239 | { 240 | "cell_type": "markdown", 241 | "metadata": {}, 242 | "source": [ 243 | "* Use the `pandas` function `qcut` to bin your numerical data:" 244 | ] 245 | }, 246 | { 247 | "cell_type": "code", 248 | "execution_count": null, 249 | "metadata": {}, 250 | "outputs": [], 251 | "source": [ 252 | "# Binning numerical columns\n", 253 | "data['CatAge'] = ____\n", 254 | "data['CatFare']= ____\n", 255 | "data.head()" 256 | ] 257 | }, 258 | { 259 | "cell_type": "markdown", 260 | "metadata": {}, 261 | "source": [ 262 | "* You can now safely drop 'Age' and 'Fare' columns:" 263 | ] 264 | }, 265 | { 266 | "cell_type": "code", 267 | "execution_count": null, 268 | "metadata": {}, 269 | "outputs": [], 270 | "source": [ 271 | "data = ____\n", 272 | "data.head()" 273 | ] 274 | }, 275 | { 276 | "cell_type": "markdown", 277 | "metadata": {}, 278 | "source": [ 279 | "## Create a new column: number of members in family onboard" 280 | ] 281 | }, 282 | { 283 | "cell_type": "code", 284 | "execution_count": null, 285 | "metadata": {}, 286 | "outputs": [], 287 | "source": [ 288 | "# Create column of number of Family members onboard\n", 289 | "data['Fam_Size'] = ____" 290 | ] 291 | }, 292 | { 293 | "cell_type": "code", 294 | "execution_count": null, 295 | "metadata": {}, 296 | "outputs": [], 297 | "source": [ 298 | "# Drop columns\n", 299 | "data = data.drop(['SibSp','Parch'], axis=1)\n", 300 | "data.head()" 301 | ] 302 | }, 303 | { 304 | "cell_type": "markdown", 305 | "metadata": {}, 306 | "source": [ 307 | "## Transform all variables into numerical variables" 308 | ] 309 | }, 310 | { 311 | "cell_type": "code", 312 | "execution_count": null, 313 | "metadata": {}, 314 | "outputs": [], 315 | "source": [ 316 | "# Transform into binary variables\n", 317 | "data_dum = ____\n", 318 | "data_dum.head()" 319 | ] 320 | }, 321 | { 322 | "cell_type": "markdown", 323 | "metadata": {}, 324 | "source": [ 325 | "**Recap:**\n", 326 | "* You've engineered some new features such as 'Title' and 'Has_Cabin';\n", 327 | "* You've dealt with missing values, binned your numerical data and transformed all features into numeric variables.\n", 328 | "\n", 329 | "**Up next:** It's time ... to build your final model!\n", 330 | "\n", 331 | "If you're enoying this session, retweet or share on FB now and follow us on Twitter: [@hugobowne](https://twitter.com/hugobowne) & [@DataCamp](https://twitter.com/datacamp)." 332 | ] 333 | }, 334 | { 335 | "cell_type": "markdown", 336 | "metadata": {}, 337 | "source": [ 338 | "## Building models with our new dataset!" 339 | ] 340 | }, 341 | { 342 | "cell_type": "markdown", 343 | "metadata": {}, 344 | "source": [ 345 | "* As before, first you'll split your `data` back into training and test sets; then you'll transform them into arrays:" 346 | ] 347 | }, 348 | { 349 | "cell_type": "code", 350 | "execution_count": null, 351 | "metadata": {}, 352 | "outputs": [], 353 | "source": [ 354 | "# Split into test.train\n", 355 | "data_train = data_dum.iloc[:891]\n", 356 | "data_test = data_dum.iloc[891:]\n", 357 | "\n", 358 | "# Transform into arrays for scikit-learn\n", 359 | "X = data_train.values\n", 360 | "test = data_test.values\n", 361 | "y = survived_train.values" 362 | ] 363 | }, 364 | { 365 | "cell_type": "markdown", 366 | "metadata": {}, 367 | "source": [ 368 | "You're now going to build a decision tree on your brand new feature-engineered dataset. To choose your hyperparameter `max_depth`, you'll use a variation on test train split called cross validation.\n", 369 | "\n", 370 | "\n", 371 | "\n", 372 | "We begin by splitting the dataset into 5 groups or *folds*. Then we hold out the first fold as a test set, fit our model on the remaining four folds, predict on the test set and compute the metric of interest. Next we hold out the second fold as our test set, fit on the remaining data, predict on the test set and compute the metric of interest. Then similarly with the third, fourth and fifth. \t\t\n", 373 | " \n", 374 | "As a result we get five values of accuracy, from which we can compute statistics\tof interest, such as the median and/or mean and 95% confidence intervals. \n", 375 | "\n", 376 | "We do this for each value of each hyperparameter that we're tuning and choose the set of hyperparameters that performs the best. This is called _grid search_.\n", 377 | "\n", 378 | "* Let's get it! In the following, you'll use cross validation and grid search to choose the best `max_depth` for your new feature engineered dataset:" 379 | ] 380 | }, 381 | { 382 | "cell_type": "code", 383 | "execution_count": null, 384 | "metadata": {}, 385 | "outputs": [], 386 | "source": [ 387 | "# Setup the hyperparameter grid\n", 388 | "dep = ____\n", 389 | "param_grid = ____\n", 390 | "\n", 391 | "# Instantiate a logistic regression classifier: clf\n", 392 | "clf = ____\n", 393 | "\n", 394 | "# Instantiate the GridSearchCV object: clf_cv\n", 395 | "clf_cv = ____\n", 396 | "\n", 397 | "# Fit it to the data\n", 398 | "____\n", 399 | "\n", 400 | "# Print the tuned parameter and score\n", 401 | "print(\"Tuned Decision Tree Parameters: {}\".format(clf_cv.best_params_))\n", 402 | "print(\"Best score is {}\".format(clf_cv.best_score_))\n" 403 | ] 404 | }, 405 | { 406 | "cell_type": "markdown", 407 | "metadata": {}, 408 | "source": [ 409 | "* Make predictions on your test set, create a new column 'Survived' and store your predictions in it. Save 'PassengerId' and 'Survived' columns of `df_test` to a .csv and submit to Kaggle." 410 | ] 411 | }, 412 | { 413 | "cell_type": "code", 414 | "execution_count": null, 415 | "metadata": {}, 416 | "outputs": [], 417 | "source": [ 418 | "Y_pred = ____\n", 419 | "df_test['Survived'] = Y_pred\n", 420 | "df_test[['PassengerId', 'Survived']].to_csv('data/predictions/dec_tree_feat_eng.csv', index=False)" 421 | ] 422 | }, 423 | { 424 | "cell_type": "markdown", 425 | "metadata": {}, 426 | "source": [ 427 | "* What was the accuracy?\n", 428 | "\n", 429 | "_Accuracy_ = ??" 430 | ] 431 | }, 432 | { 433 | "cell_type": "markdown", 434 | "metadata": {}, 435 | "source": [ 436 | "## Next steps" 437 | ] 438 | }, 439 | { 440 | "cell_type": "markdown", 441 | "metadata": {}, 442 | "source": [ 443 | "See if you can do some more feature engineering and try some new models out to improve on this score. I'll post all of this on github and on the DataCamp community and it would be great to see all of you improve on these models.\n", 444 | "\n", 445 | "There's a lot more pre-processing that you'd like to learn about, such as scaling your data. You'll also find scikit-learn pipelines super useful. Check out our [Supervised Learning with scikit-learn course](https://www.datacamp.com/courses/supervised-learning-with-scikit-learn) and the [scikit-learn docs](http://scikit-learn.org/stable/) for all of this and more." 446 | ] 447 | } 448 | ], 449 | "metadata": { 450 | "kernelspec": { 451 | "display_name": "Python 3", 452 | "language": "python", 453 | "name": "python3" 454 | }, 455 | "language_info": { 456 | "codemirror_mode": { 457 | "name": "ipython", 458 | "version": 3 459 | }, 460 | "file_extension": ".py", 461 | "mimetype": "text/x-python", 462 | "name": "python", 463 | "nbconvert_exporter": "python", 464 | "pygments_lexer": "ipython3", 465 | "version": "3.6.3" 466 | } 467 | }, 468 | "nbformat": 4, 469 | "nbformat_minor": 2 470 | } 471 | -------------------------------------------------------------------------------- /1-titanic_EDA_first_models.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "## How to complete a Kaggle Competition with Machine Learning" 8 | ] 9 | }, 10 | { 11 | "cell_type": "markdown", 12 | "metadata": {}, 13 | "source": [ 14 | "In this code along session, you'll build several algorithms of increasing complexity that predict whether any given passenger on the Titanic survived or not, given data on them such as the fare they paid, where they embarked and their age.\n", 15 | "\n", 16 | "" 17 | ] 18 | }, 19 | { 20 | "cell_type": "markdown", 21 | "metadata": {}, 22 | "source": [ 23 | "In particular, you'll build _supervised learning_ models. _Supervised learning_ is the branch of machine learning (ML) that involves predicting labels, such as 'Survived' or 'Not'. Such models:\n", 24 | "\n", 25 | "* it learns from labelled data, e.g. data that includes whether a passenger survived (called model training).\n", 26 | "* and then predicts on unlabelled data.\n", 27 | "\n", 28 | "On Kaggle, a platform for predictive modelling and analytics competitions, these are called train and test sets because\n", 29 | "\n", 30 | "* You want to build a model that learns patterns in the training set\n", 31 | "* You _then_ use the model to make predictions on the test set!\n", 32 | "\n", 33 | "Kaggle then tells you the **percentage that you got correct**: this is known as the _accuracy_ of your model." 34 | ] 35 | }, 36 | { 37 | "cell_type": "markdown", 38 | "metadata": {}, 39 | "source": [ 40 | "## Approach\n", 41 | "\n", 42 | "A good way to approach supervised learning:\n", 43 | "\n", 44 | "* Exploratory Data Analysis (EDA);\n", 45 | "* Build a quick and dirty model (baseline);\n", 46 | "* Iterate;\n", 47 | "* Engineer features;\n", 48 | "* Get model that performs better.\n", 49 | "\n", 50 | "In this code along session, we'll do all of these! We also have free courses that get you up and running with machine learning for the Titanic dataset in [Python](https://campus.datacamp.com/courses/kaggle-python-tutorial-on-machine-learning) and [R](https://campus.datacamp.com/courses/kaggle-r-tutorial-on-machine-learning)." 51 | ] 52 | }, 53 | { 54 | "cell_type": "markdown", 55 | "metadata": {}, 56 | "source": [ 57 | "**Note:** We may move quickly at some points in order to get a bit further along. I'll answer questions in the live event but also feel free to chime in and help each other in the comments." 58 | ] 59 | }, 60 | { 61 | "cell_type": "markdown", 62 | "metadata": {}, 63 | "source": [ 64 | "## Import you data and check it out" 65 | ] 66 | }, 67 | { 68 | "cell_type": "code", 69 | "execution_count": null, 70 | "metadata": {}, 71 | "outputs": [], 72 | "source": [ 73 | "# Import modules\n", 74 | "import pandas as pd\n", 75 | "import matplotlib.pyplot as plt\n", 76 | "import seaborn as sns\n", 77 | "from sklearn import tree\n", 78 | "from sklearn.metrics import accuracy_score\n", 79 | "\n", 80 | "# Figures inline and set visualization style\n", 81 | "%matplotlib inline\n", 82 | "sns.set()" 83 | ] 84 | }, 85 | { 86 | "cell_type": "code", 87 | "execution_count": null, 88 | "metadata": {}, 89 | "outputs": [], 90 | "source": [ 91 | "# Import test and train datasets\n", 92 | "df_train = ____\n", 93 | "df_test = ____\n", 94 | "\n", 95 | "# View first lines of training data\n", 96 | "____" 97 | ] 98 | }, 99 | { 100 | "cell_type": "markdown", 101 | "metadata": {}, 102 | "source": [ 103 | "* What are all these features? Check out the Kaggle data documentation [here](https://www.kaggle.com/c/titanic/data).\n", 104 | "\n", 105 | "**Important note on terminology:** \n", 106 | "* The _target variable_ is the one you are trying to predict;\n", 107 | "* Other variables are known as _features_ (or _predictor variables_)." 108 | ] 109 | }, 110 | { 111 | "cell_type": "code", 112 | "execution_count": null, 113 | "metadata": {}, 114 | "outputs": [], 115 | "source": [ 116 | "# View first lines of test data\n", 117 | "____" 118 | ] 119 | }, 120 | { 121 | "cell_type": "markdown", 122 | "metadata": {}, 123 | "source": [ 124 | "* Use the DataFrame `.info()` method to check out datatypes, missing values and more (of `df_train`)." 125 | ] 126 | }, 127 | { 128 | "cell_type": "code", 129 | "execution_count": null, 130 | "metadata": {}, 131 | "outputs": [], 132 | "source": [ 133 | "____" 134 | ] 135 | }, 136 | { 137 | "cell_type": "markdown", 138 | "metadata": {}, 139 | "source": [ 140 | "* Use the DataFrame `.describe()` method to check out summary statistics of numeric columns (of `df_train`)." 141 | ] 142 | }, 143 | { 144 | "cell_type": "code", 145 | "execution_count": null, 146 | "metadata": {}, 147 | "outputs": [], 148 | "source": [ 149 | "____" 150 | ] 151 | }, 152 | { 153 | "cell_type": "markdown", 154 | "metadata": {}, 155 | "source": [ 156 | "**Recap:**\n", 157 | "* you've loaded your data and had a look at it.\n", 158 | "\n", 159 | "**Up next:** Explore your data visually and build a first model!\n", 160 | "\n", 161 | "For more on `pandas`, check out our [Data Manipulation with Python track](https://www.datacamp.com/tracks/data-manipulation-with-python). \n", 162 | "\n", 163 | "If you're enoying this session, retweet or share on FB now and follow us on Twitter: [@hugobowne](https://twitter.com/hugobowne) & [@DataCamp](https://twitter.com/datacamp)." 164 | ] 165 | }, 166 | { 167 | "cell_type": "markdown", 168 | "metadata": {}, 169 | "source": [ 170 | "## Visual exploratory data analysis and your first model" 171 | ] 172 | }, 173 | { 174 | "cell_type": "markdown", 175 | "metadata": {}, 176 | "source": [ 177 | "* Use `seaborn` to build a bar plot of Titanic survival (your _target variable_)." 178 | ] 179 | }, 180 | { 181 | "cell_type": "code", 182 | "execution_count": null, 183 | "metadata": {}, 184 | "outputs": [], 185 | "source": [ 186 | "____" 187 | ] 188 | }, 189 | { 190 | "cell_type": "markdown", 191 | "metadata": {}, 192 | "source": [ 193 | "**Take-away:** In the training set, less people survived than didn't. Let's then build a first model that **predict that nobody survived**.\n", 194 | "\n", 195 | "This is a bad model as we know that people survived. But it gives us a _baseline_: any model that we build later needs to do better than this one." 196 | ] 197 | }, 198 | { 199 | "cell_type": "markdown", 200 | "metadata": {}, 201 | "source": [ 202 | "* Create a column 'Survived' for `df_test` that encodes 'did not survive' for all rows;\n", 203 | "* Save 'PassengerId' and 'Survived' columns of `df_test` to a .csv and submit to Kaggle." 204 | ] 205 | }, 206 | { 207 | "cell_type": "code", 208 | "execution_count": null, 209 | "metadata": {}, 210 | "outputs": [], 211 | "source": [ 212 | "df_test['Survived'] = 0\n", 213 | "df_test[['PassengerId', 'Survived']].____" 214 | ] 215 | }, 216 | { 217 | "cell_type": "markdown", 218 | "metadata": {}, 219 | "source": [ 220 | "* What accuracy did this give you?\n", 221 | "\n", 222 | "Accuracy on Kaggle = ??\n", 223 | "\n", 224 | "**Essential note!** There are metrics other than accuracy that you may want to use." 225 | ] 226 | }, 227 | { 228 | "cell_type": "markdown", 229 | "metadata": {}, 230 | "source": [ 231 | "**Recap:**\n", 232 | "* you've loaded your data and had a look at it.\n", 233 | "* you've explored your target variable visually and made your first predictions.\n", 234 | "\n", 235 | "**Up next:** More EDA and you'll build another model." 236 | ] 237 | }, 238 | { 239 | "cell_type": "markdown", 240 | "metadata": {}, 241 | "source": [ 242 | "## EDA on feature variables" 243 | ] 244 | }, 245 | { 246 | "cell_type": "markdown", 247 | "metadata": {}, 248 | "source": [ 249 | "* Use `seaborn` to build a bar plot of the Titanic dataset feature 'Sex' (of `df_train`)." 250 | ] 251 | }, 252 | { 253 | "cell_type": "code", 254 | "execution_count": null, 255 | "metadata": {}, 256 | "outputs": [], 257 | "source": [ 258 | "____" 259 | ] 260 | }, 261 | { 262 | "cell_type": "markdown", 263 | "metadata": {}, 264 | "source": [ 265 | "* Use `seaborn` to build bar plots of the Titanic dataset feature 'Survived' split (faceted) over the feature 'Sex'." 266 | ] 267 | }, 268 | { 269 | "cell_type": "code", 270 | "execution_count": null, 271 | "metadata": {}, 272 | "outputs": [], 273 | "source": [ 274 | "____" 275 | ] 276 | }, 277 | { 278 | "cell_type": "markdown", 279 | "metadata": {}, 280 | "source": [ 281 | "**Take-away:** Women were more likely to survive than men." 282 | ] 283 | }, 284 | { 285 | "cell_type": "markdown", 286 | "metadata": {}, 287 | "source": [ 288 | "* Use `pandas` to figure out how many women and how many men survived." 289 | ] 290 | }, 291 | { 292 | "cell_type": "code", 293 | "execution_count": null, 294 | "metadata": {}, 295 | "outputs": [], 296 | "source": [ 297 | "____" 298 | ] 299 | }, 300 | { 301 | "cell_type": "markdown", 302 | "metadata": {}, 303 | "source": [ 304 | "* Use `pandas` to figure out the proportion of women that survived, along with the proportion of men:" 305 | ] 306 | }, 307 | { 308 | "cell_type": "code", 309 | "execution_count": null, 310 | "metadata": {}, 311 | "outputs": [], 312 | "source": [ 313 | "print(df_train[df_train.Sex == 'female'].Survived.sum()/df_train[df_train.Sex == 'female'].Survived.count())\n", 314 | "print(df_train[df_train.Sex == 'male'].Survived.sum()/df_train[df_train.Sex == 'male'].Survived.count())" 315 | ] 316 | }, 317 | { 318 | "cell_type": "markdown", 319 | "metadata": {}, 320 | "source": [ 321 | "74% of women survived, while 18% of men survived.\n", 322 | "\n", 323 | "Let's now build a second model and predict that all women survived and all men didn't. Once again, this is an unrealistic model, but it will provide a baseline against which to compare future models." 324 | ] 325 | }, 326 | { 327 | "cell_type": "markdown", 328 | "metadata": {}, 329 | "source": [ 330 | "* Create a column 'Survived' for `df_test` that encodes the above prediction.\n", 331 | "* Save 'PassengerId' and 'Survived' columns of `df_test` to a .csv and submit to Kaggle." 332 | ] 333 | }, 334 | { 335 | "cell_type": "code", 336 | "execution_count": null, 337 | "metadata": {}, 338 | "outputs": [], 339 | "source": [ 340 | "df_test['Survived'] = ____" 341 | ] 342 | }, 343 | { 344 | "cell_type": "code", 345 | "execution_count": null, 346 | "metadata": {}, 347 | "outputs": [], 348 | "source": [ 349 | "df_test[['PassengerId', 'Survived']].to_csv('data/predictions/women_survive.csv', index=False)" 350 | ] 351 | }, 352 | { 353 | "cell_type": "markdown", 354 | "metadata": {}, 355 | "source": [ 356 | "* What accuracy did this give you?\n", 357 | "\n", 358 | "Accuracy on Kaggle = ??" 359 | ] 360 | }, 361 | { 362 | "cell_type": "markdown", 363 | "metadata": {}, 364 | "source": [ 365 | "**Recap:**\n", 366 | "* you've loaded your data and had a look at it.\n", 367 | "* you've explored your target variable visually and made your first predictions.\n", 368 | "* you've explored some of your feature variables visually and made more predictions that did better based on your EDA.\n", 369 | "\n", 370 | "**Up next:** EDA of other feature variables, categorical and numeric.\n", 371 | "\n", 372 | "For more on `pandas`, check out our [Data Manipulation with Python track](https://www.datacamp.com/tracks/data-manipulation-with-python). \n", 373 | "\n", 374 | "For more on `seaborn`, check out Chapter 3 of our [Intro. to Datavis with Python course](https://www.datacamp.com/courses/introduction-to-data-visualization-with-python).\n", 375 | "\n", 376 | "If you're enoying this session, retweet or share on FB now and follow us on Twitter: [@hugobowne](https://twitter.com/hugobowne) & [@DataCamp](https://twitter.com/datacamp)." 377 | ] 378 | }, 379 | { 380 | "cell_type": "markdown", 381 | "metadata": {}, 382 | "source": [ 383 | "## Explore your data more!" 384 | ] 385 | }, 386 | { 387 | "cell_type": "markdown", 388 | "metadata": {}, 389 | "source": [ 390 | "* Use `seaborn` to build bar plots of the Titanic dataset feature 'Survived' split (faceted) over the feature 'Pclass'." 391 | ] 392 | }, 393 | { 394 | "cell_type": "code", 395 | "execution_count": null, 396 | "metadata": {}, 397 | "outputs": [], 398 | "source": [ 399 | "____" 400 | ] 401 | }, 402 | { 403 | "cell_type": "markdown", 404 | "metadata": {}, 405 | "source": [ 406 | "**Take-away:** [Include take-away from figure here]" 407 | ] 408 | }, 409 | { 410 | "cell_type": "markdown", 411 | "metadata": {}, 412 | "source": [ 413 | "* Use `seaborn` to build bar plots of the Titanic dataset feature 'Survived' split (faceted) over the feature 'Embarked'." 414 | ] 415 | }, 416 | { 417 | "cell_type": "code", 418 | "execution_count": null, 419 | "metadata": {}, 420 | "outputs": [], 421 | "source": [ 422 | "____" 423 | ] 424 | }, 425 | { 426 | "cell_type": "markdown", 427 | "metadata": {}, 428 | "source": [ 429 | "**Take-away:** [Include take-away from figure here]" 430 | ] 431 | }, 432 | { 433 | "cell_type": "markdown", 434 | "metadata": {}, 435 | "source": [ 436 | "## EDA with numeric variables" 437 | ] 438 | }, 439 | { 440 | "cell_type": "markdown", 441 | "metadata": {}, 442 | "source": [ 443 | "* Use `seaborn` to plot a histogram of the 'Fare' column of `df_train`." 444 | ] 445 | }, 446 | { 447 | "cell_type": "code", 448 | "execution_count": null, 449 | "metadata": {}, 450 | "outputs": [], 451 | "source": [ 452 | "____" 453 | ] 454 | }, 455 | { 456 | "cell_type": "markdown", 457 | "metadata": {}, 458 | "source": [ 459 | "**Take-away:** [Include take-away from figure here]" 460 | ] 461 | }, 462 | { 463 | "cell_type": "markdown", 464 | "metadata": {}, 465 | "source": [ 466 | "* Use a `pandas` plotting method to plot the column 'Fare' for each value of 'Survived' on the same plot." 467 | ] 468 | }, 469 | { 470 | "cell_type": "code", 471 | "execution_count": null, 472 | "metadata": {}, 473 | "outputs": [], 474 | "source": [ 475 | "____" 476 | ] 477 | }, 478 | { 479 | "cell_type": "markdown", 480 | "metadata": {}, 481 | "source": [ 482 | "**Take-away:** [Include take-away from figure here]" 483 | ] 484 | }, 485 | { 486 | "cell_type": "markdown", 487 | "metadata": {}, 488 | "source": [ 489 | "* Use `seaborn` to plot a histogram of the 'Age' column of `df_train`. _Hint_: you may need to drop null values before doing so." 490 | ] 491 | }, 492 | { 493 | "cell_type": "code", 494 | "execution_count": null, 495 | "metadata": {}, 496 | "outputs": [], 497 | "source": [ 498 | "df_train_drop = ____\n", 499 | "____" 500 | ] 501 | }, 502 | { 503 | "cell_type": "markdown", 504 | "metadata": {}, 505 | "source": [ 506 | "**Take-away:** [Include take-away from figure here]" 507 | ] 508 | }, 509 | { 510 | "cell_type": "markdown", 511 | "metadata": {}, 512 | "source": [ 513 | "* Plot a strip plot & a swarm plot of 'Fare' with 'Survived' on the x-axis." 514 | ] 515 | }, 516 | { 517 | "cell_type": "code", 518 | "execution_count": null, 519 | "metadata": {}, 520 | "outputs": [], 521 | "source": [ 522 | "____" 523 | ] 524 | }, 525 | { 526 | "cell_type": "code", 527 | "execution_count": null, 528 | "metadata": {}, 529 | "outputs": [], 530 | "source": [ 531 | "____" 532 | ] 533 | }, 534 | { 535 | "cell_type": "markdown", 536 | "metadata": {}, 537 | "source": [ 538 | "**Take-away:** [Include take-away from figure here]" 539 | ] 540 | }, 541 | { 542 | "cell_type": "markdown", 543 | "metadata": {}, 544 | "source": [ 545 | "* Use the DataFrame method `.describe()` to check out summary statistics of 'Fare' as a function of survival." 546 | ] 547 | }, 548 | { 549 | "cell_type": "code", 550 | "execution_count": null, 551 | "metadata": {}, 552 | "outputs": [], 553 | "source": [ 554 | "____" 555 | ] 556 | }, 557 | { 558 | "cell_type": "markdown", 559 | "metadata": {}, 560 | "source": [ 561 | "* Use `seaborn` to plot a scatter plot of 'Age' against 'Fare', colored by 'Survived'." 562 | ] 563 | }, 564 | { 565 | "cell_type": "code", 566 | "execution_count": null, 567 | "metadata": {}, 568 | "outputs": [], 569 | "source": [ 570 | "____" 571 | ] 572 | }, 573 | { 574 | "cell_type": "markdown", 575 | "metadata": {}, 576 | "source": [ 577 | "**Take-away:** [Include take-away from figure here]" 578 | ] 579 | }, 580 | { 581 | "cell_type": "markdown", 582 | "metadata": {}, 583 | "source": [ 584 | "* Use `seaborn` to create a pairplot of `df_train`, colored by 'Survived'." 585 | ] 586 | }, 587 | { 588 | "cell_type": "code", 589 | "execution_count": null, 590 | "metadata": {}, 591 | "outputs": [], 592 | "source": [ 593 | "____" 594 | ] 595 | }, 596 | { 597 | "cell_type": "markdown", 598 | "metadata": {}, 599 | "source": [ 600 | "**Take-away:** [Include take-away from figure here]" 601 | ] 602 | }, 603 | { 604 | "cell_type": "markdown", 605 | "metadata": {}, 606 | "source": [ 607 | "**Recap:**\n", 608 | "* you've loaded your data and had a look at it.\n", 609 | "* you've explored your target variable visually and made your first predictions.\n", 610 | "* you've explored some of your feature variables visually and made more predictions that did better based on your EDA.\n", 611 | "* you've done some serious EDA of feature variables, categorical and numeric.\n", 612 | "\n", 613 | "**Up next:** Time to build some Machine Learning models, based on what you've learnt from your EDA here. Open the notebook `2-titanic_first_ML-model.ipynb`.\n", 614 | "\n", 615 | "For more on `pandas`, check out our [Data Manipulation with Python track](https://www.datacamp.com/tracks/data-manipulation-with-python). \n", 616 | "\n", 617 | "For more on `seaborn`, check out Chapter 3 of our [Intro. to Datavis with Python course](https://www.datacamp.com/courses/introduction-to-data-visualization-with-python).\n", 618 | "\n", 619 | "If you're enoying this session, retweet or share on FB now and follow us on Twitter: [@hugobowne](https://twitter.com/hugobowne) & [@DataCamp](https://twitter.com/datacamp)." 620 | ] 621 | } 622 | ], 623 | "metadata": { 624 | "kernelspec": { 625 | "display_name": "Python 3", 626 | "language": "python", 627 | "name": "python3" 628 | }, 629 | "language_info": { 630 | "codemirror_mode": { 631 | "name": "ipython", 632 | "version": 3 633 | }, 634 | "file_extension": ".py", 635 | "mimetype": "text/x-python", 636 | "name": "python", 637 | "nbconvert_exporter": "python", 638 | "pygments_lexer": "ipython3", 639 | "version": "3.6.3" 640 | } 641 | }, 642 | "nbformat": 4, 643 | "nbformat_minor": 2 644 | } 645 | -------------------------------------------------------------------------------- /data/test.csv: -------------------------------------------------------------------------------- 1 | PassengerId,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked 2 | 892,3,"Kelly, Mr. James",male,34.5,0,0,330911,7.8292,,Q 3 | 893,3,"Wilkes, Mrs. James (Ellen Needs)",female,47,1,0,363272,7,,S 4 | 894,2,"Myles, Mr. Thomas Francis",male,62,0,0,240276,9.6875,,Q 5 | 895,3,"Wirz, Mr. Albert",male,27,0,0,315154,8.6625,,S 6 | 896,3,"Hirvonen, Mrs. Alexander (Helga E Lindqvist)",female,22,1,1,3101298,12.2875,,S 7 | 897,3,"Svensson, Mr. Johan Cervin",male,14,0,0,7538,9.225,,S 8 | 898,3,"Connolly, Miss. Kate",female,30,0,0,330972,7.6292,,Q 9 | 899,2,"Caldwell, Mr. Albert Francis",male,26,1,1,248738,29,,S 10 | 900,3,"Abrahim, Mrs. Joseph (Sophie Halaut Easu)",female,18,0,0,2657,7.2292,,C 11 | 901,3,"Davies, Mr. John Samuel",male,21,2,0,A/4 48871,24.15,,S 12 | 902,3,"Ilieff, Mr. Ylio",male,,0,0,349220,7.8958,,S 13 | 903,1,"Jones, Mr. Charles Cresson",male,46,0,0,694,26,,S 14 | 904,1,"Snyder, Mrs. John Pillsbury (Nelle Stevenson)",female,23,1,0,21228,82.2667,B45,S 15 | 905,2,"Howard, Mr. Benjamin",male,63,1,0,24065,26,,S 16 | 906,1,"Chaffee, Mrs. Herbert Fuller (Carrie Constance Toogood)",female,47,1,0,W.E.P. 5734,61.175,E31,S 17 | 907,2,"del Carlo, Mrs. Sebastiano (Argenia Genovesi)",female,24,1,0,SC/PARIS 2167,27.7208,,C 18 | 908,2,"Keane, Mr. Daniel",male,35,0,0,233734,12.35,,Q 19 | 909,3,"Assaf, Mr. Gerios",male,21,0,0,2692,7.225,,C 20 | 910,3,"Ilmakangas, Miss. Ida Livija",female,27,1,0,STON/O2. 3101270,7.925,,S 21 | 911,3,"Assaf Khalil, Mrs. Mariana (Miriam"")""",female,45,0,0,2696,7.225,,C 22 | 912,1,"Rothschild, Mr. Martin",male,55,1,0,PC 17603,59.4,,C 23 | 913,3,"Olsen, Master. Artur Karl",male,9,0,1,C 17368,3.1708,,S 24 | 914,1,"Flegenheim, Mrs. Alfred (Antoinette)",female,,0,0,PC 17598,31.6833,,S 25 | 915,1,"Williams, Mr. Richard Norris II",male,21,0,1,PC 17597,61.3792,,C 26 | 916,1,"Ryerson, Mrs. Arthur Larned (Emily Maria Borie)",female,48,1,3,PC 17608,262.375,B57 B59 B63 B66,C 27 | 917,3,"Robins, Mr. Alexander A",male,50,1,0,A/5. 3337,14.5,,S 28 | 918,1,"Ostby, Miss. Helene Ragnhild",female,22,0,1,113509,61.9792,B36,C 29 | 919,3,"Daher, Mr. Shedid",male,22.5,0,0,2698,7.225,,C 30 | 920,1,"Brady, Mr. John Bertram",male,41,0,0,113054,30.5,A21,S 31 | 921,3,"Samaan, Mr. Elias",male,,2,0,2662,21.6792,,C 32 | 922,2,"Louch, Mr. Charles Alexander",male,50,1,0,SC/AH 3085,26,,S 33 | 923,2,"Jefferys, Mr. Clifford Thomas",male,24,2,0,C.A. 31029,31.5,,S 34 | 924,3,"Dean, Mrs. Bertram (Eva Georgetta Light)",female,33,1,2,C.A. 2315,20.575,,S 35 | 925,3,"Johnston, Mrs. Andrew G (Elizabeth Lily"" Watson)""",female,,1,2,W./C. 6607,23.45,,S 36 | 926,1,"Mock, Mr. Philipp Edmund",male,30,1,0,13236,57.75,C78,C 37 | 927,3,"Katavelas, Mr. Vassilios (Catavelas Vassilios"")""",male,18.5,0,0,2682,7.2292,,C 38 | 928,3,"Roth, Miss. Sarah A",female,,0,0,342712,8.05,,S 39 | 929,3,"Cacic, Miss. Manda",female,21,0,0,315087,8.6625,,S 40 | 930,3,"Sap, Mr. Julius",male,25,0,0,345768,9.5,,S 41 | 931,3,"Hee, Mr. Ling",male,,0,0,1601,56.4958,,S 42 | 932,3,"Karun, Mr. Franz",male,39,0,1,349256,13.4167,,C 43 | 933,1,"Franklin, Mr. Thomas Parham",male,,0,0,113778,26.55,D34,S 44 | 934,3,"Goldsmith, Mr. Nathan",male,41,0,0,SOTON/O.Q. 3101263,7.85,,S 45 | 935,2,"Corbett, Mrs. Walter H (Irene Colvin)",female,30,0,0,237249,13,,S 46 | 936,1,"Kimball, Mrs. Edwin Nelson Jr (Gertrude Parsons)",female,45,1,0,11753,52.5542,D19,S 47 | 937,3,"Peltomaki, Mr. Nikolai Johannes",male,25,0,0,STON/O 2. 3101291,7.925,,S 48 | 938,1,"Chevre, Mr. Paul Romaine",male,45,0,0,PC 17594,29.7,A9,C 49 | 939,3,"Shaughnessy, Mr. Patrick",male,,0,0,370374,7.75,,Q 50 | 940,1,"Bucknell, Mrs. William Robert (Emma Eliza Ward)",female,60,0,0,11813,76.2917,D15,C 51 | 941,3,"Coutts, Mrs. William (Winnie Minnie"" Treanor)""",female,36,0,2,C.A. 37671,15.9,,S 52 | 942,1,"Smith, Mr. Lucien Philip",male,24,1,0,13695,60,C31,S 53 | 943,2,"Pulbaum, Mr. Franz",male,27,0,0,SC/PARIS 2168,15.0333,,C 54 | 944,2,"Hocking, Miss. Ellen Nellie""""",female,20,2,1,29105,23,,S 55 | 945,1,"Fortune, Miss. Ethel Flora",female,28,3,2,19950,263,C23 C25 C27,S 56 | 946,2,"Mangiavacchi, Mr. Serafino Emilio",male,,0,0,SC/A.3 2861,15.5792,,C 57 | 947,3,"Rice, Master. Albert",male,10,4,1,382652,29.125,,Q 58 | 948,3,"Cor, Mr. Bartol",male,35,0,0,349230,7.8958,,S 59 | 949,3,"Abelseth, Mr. Olaus Jorgensen",male,25,0,0,348122,7.65,F G63,S 60 | 950,3,"Davison, Mr. Thomas Henry",male,,1,0,386525,16.1,,S 61 | 951,1,"Chaudanson, Miss. Victorine",female,36,0,0,PC 17608,262.375,B61,C 62 | 952,3,"Dika, Mr. Mirko",male,17,0,0,349232,7.8958,,S 63 | 953,2,"McCrae, Mr. Arthur Gordon",male,32,0,0,237216,13.5,,S 64 | 954,3,"Bjorklund, Mr. Ernst Herbert",male,18,0,0,347090,7.75,,S 65 | 955,3,"Bradley, Miss. Bridget Delia",female,22,0,0,334914,7.725,,Q 66 | 956,1,"Ryerson, Master. John Borie",male,13,2,2,PC 17608,262.375,B57 B59 B63 B66,C 67 | 957,2,"Corey, Mrs. Percy C (Mary Phyllis Elizabeth Miller)",female,,0,0,F.C.C. 13534,21,,S 68 | 958,3,"Burns, Miss. Mary Delia",female,18,0,0,330963,7.8792,,Q 69 | 959,1,"Moore, Mr. Clarence Bloomfield",male,47,0,0,113796,42.4,,S 70 | 960,1,"Tucker, Mr. Gilbert Milligan Jr",male,31,0,0,2543,28.5375,C53,C 71 | 961,1,"Fortune, Mrs. Mark (Mary McDougald)",female,60,1,4,19950,263,C23 C25 C27,S 72 | 962,3,"Mulvihill, Miss. Bertha E",female,24,0,0,382653,7.75,,Q 73 | 963,3,"Minkoff, Mr. Lazar",male,21,0,0,349211,7.8958,,S 74 | 964,3,"Nieminen, Miss. Manta Josefina",female,29,0,0,3101297,7.925,,S 75 | 965,1,"Ovies y Rodriguez, Mr. Servando",male,28.5,0,0,PC 17562,27.7208,D43,C 76 | 966,1,"Geiger, Miss. Amalie",female,35,0,0,113503,211.5,C130,C 77 | 967,1,"Keeping, Mr. Edwin",male,32.5,0,0,113503,211.5,C132,C 78 | 968,3,"Miles, Mr. Frank",male,,0,0,359306,8.05,,S 79 | 969,1,"Cornell, Mrs. Robert Clifford (Malvina Helen Lamson)",female,55,2,0,11770,25.7,C101,S 80 | 970,2,"Aldworth, Mr. Charles Augustus",male,30,0,0,248744,13,,S 81 | 971,3,"Doyle, Miss. Elizabeth",female,24,0,0,368702,7.75,,Q 82 | 972,3,"Boulos, Master. Akar",male,6,1,1,2678,15.2458,,C 83 | 973,1,"Straus, Mr. Isidor",male,67,1,0,PC 17483,221.7792,C55 C57,S 84 | 974,1,"Case, Mr. Howard Brown",male,49,0,0,19924,26,,S 85 | 975,3,"Demetri, Mr. Marinko",male,,0,0,349238,7.8958,,S 86 | 976,2,"Lamb, Mr. John Joseph",male,,0,0,240261,10.7083,,Q 87 | 977,3,"Khalil, Mr. Betros",male,,1,0,2660,14.4542,,C 88 | 978,3,"Barry, Miss. Julia",female,27,0,0,330844,7.8792,,Q 89 | 979,3,"Badman, Miss. Emily Louisa",female,18,0,0,A/4 31416,8.05,,S 90 | 980,3,"O'Donoghue, Ms. Bridget",female,,0,0,364856,7.75,,Q 91 | 981,2,"Wells, Master. Ralph Lester",male,2,1,1,29103,23,,S 92 | 982,3,"Dyker, Mrs. Adolf Fredrik (Anna Elisabeth Judith Andersson)",female,22,1,0,347072,13.9,,S 93 | 983,3,"Pedersen, Mr. Olaf",male,,0,0,345498,7.775,,S 94 | 984,1,"Davidson, Mrs. Thornton (Orian Hays)",female,27,1,2,F.C. 12750,52,B71,S 95 | 985,3,"Guest, Mr. Robert",male,,0,0,376563,8.05,,S 96 | 986,1,"Birnbaum, Mr. Jakob",male,25,0,0,13905,26,,C 97 | 987,3,"Tenglin, Mr. Gunnar Isidor",male,25,0,0,350033,7.7958,,S 98 | 988,1,"Cavendish, Mrs. Tyrell William (Julia Florence Siegel)",female,76,1,0,19877,78.85,C46,S 99 | 989,3,"Makinen, Mr. Kalle Edvard",male,29,0,0,STON/O 2. 3101268,7.925,,S 100 | 990,3,"Braf, Miss. Elin Ester Maria",female,20,0,0,347471,7.8542,,S 101 | 991,3,"Nancarrow, Mr. William Henry",male,33,0,0,A./5. 3338,8.05,,S 102 | 992,1,"Stengel, Mrs. Charles Emil Henry (Annie May Morris)",female,43,1,0,11778,55.4417,C116,C 103 | 993,2,"Weisz, Mr. Leopold",male,27,1,0,228414,26,,S 104 | 994,3,"Foley, Mr. William",male,,0,0,365235,7.75,,Q 105 | 995,3,"Johansson Palmquist, Mr. Oskar Leander",male,26,0,0,347070,7.775,,S 106 | 996,3,"Thomas, Mrs. Alexander (Thamine Thelma"")""",female,16,1,1,2625,8.5167,,C 107 | 997,3,"Holthen, Mr. Johan Martin",male,28,0,0,C 4001,22.525,,S 108 | 998,3,"Buckley, Mr. Daniel",male,21,0,0,330920,7.8208,,Q 109 | 999,3,"Ryan, Mr. Edward",male,,0,0,383162,7.75,,Q 110 | 1000,3,"Willer, Mr. Aaron (Abi Weller"")""",male,,0,0,3410,8.7125,,S 111 | 1001,2,"Swane, Mr. George",male,18.5,0,0,248734,13,F,S 112 | 1002,2,"Stanton, Mr. Samuel Ward",male,41,0,0,237734,15.0458,,C 113 | 1003,3,"Shine, Miss. Ellen Natalia",female,,0,0,330968,7.7792,,Q 114 | 1004,1,"Evans, Miss. Edith Corse",female,36,0,0,PC 17531,31.6792,A29,C 115 | 1005,3,"Buckley, Miss. Katherine",female,18.5,0,0,329944,7.2833,,Q 116 | 1006,1,"Straus, Mrs. Isidor (Rosalie Ida Blun)",female,63,1,0,PC 17483,221.7792,C55 C57,S 117 | 1007,3,"Chronopoulos, Mr. Demetrios",male,18,1,0,2680,14.4542,,C 118 | 1008,3,"Thomas, Mr. John",male,,0,0,2681,6.4375,,C 119 | 1009,3,"Sandstrom, Miss. Beatrice Irene",female,1,1,1,PP 9549,16.7,G6,S 120 | 1010,1,"Beattie, Mr. Thomson",male,36,0,0,13050,75.2417,C6,C 121 | 1011,2,"Chapman, Mrs. John Henry (Sara Elizabeth Lawry)",female,29,1,0,SC/AH 29037,26,,S 122 | 1012,2,"Watt, Miss. Bertha J",female,12,0,0,C.A. 33595,15.75,,S 123 | 1013,3,"Kiernan, Mr. John",male,,1,0,367227,7.75,,Q 124 | 1014,1,"Schabert, Mrs. Paul (Emma Mock)",female,35,1,0,13236,57.75,C28,C 125 | 1015,3,"Carver, Mr. Alfred John",male,28,0,0,392095,7.25,,S 126 | 1016,3,"Kennedy, Mr. John",male,,0,0,368783,7.75,,Q 127 | 1017,3,"Cribb, Miss. Laura Alice",female,17,0,1,371362,16.1,,S 128 | 1018,3,"Brobeck, Mr. Karl Rudolf",male,22,0,0,350045,7.7958,,S 129 | 1019,3,"McCoy, Miss. Alicia",female,,2,0,367226,23.25,,Q 130 | 1020,2,"Bowenur, Mr. Solomon",male,42,0,0,211535,13,,S 131 | 1021,3,"Petersen, Mr. Marius",male,24,0,0,342441,8.05,,S 132 | 1022,3,"Spinner, Mr. Henry John",male,32,0,0,STON/OQ. 369943,8.05,,S 133 | 1023,1,"Gracie, Col. Archibald IV",male,53,0,0,113780,28.5,C51,C 134 | 1024,3,"Lefebre, Mrs. Frank (Frances)",female,,0,4,4133,25.4667,,S 135 | 1025,3,"Thomas, Mr. Charles P",male,,1,0,2621,6.4375,,C 136 | 1026,3,"Dintcheff, Mr. Valtcho",male,43,0,0,349226,7.8958,,S 137 | 1027,3,"Carlsson, Mr. Carl Robert",male,24,0,0,350409,7.8542,,S 138 | 1028,3,"Zakarian, Mr. Mapriededer",male,26.5,0,0,2656,7.225,,C 139 | 1029,2,"Schmidt, Mr. August",male,26,0,0,248659,13,,S 140 | 1030,3,"Drapkin, Miss. Jennie",female,23,0,0,SOTON/OQ 392083,8.05,,S 141 | 1031,3,"Goodwin, Mr. Charles Frederick",male,40,1,6,CA 2144,46.9,,S 142 | 1032,3,"Goodwin, Miss. Jessie Allis",female,10,5,2,CA 2144,46.9,,S 143 | 1033,1,"Daniels, Miss. Sarah",female,33,0,0,113781,151.55,,S 144 | 1034,1,"Ryerson, Mr. Arthur Larned",male,61,1,3,PC 17608,262.375,B57 B59 B63 B66,C 145 | 1035,2,"Beauchamp, Mr. Henry James",male,28,0,0,244358,26,,S 146 | 1036,1,"Lindeberg-Lind, Mr. Erik Gustaf (Mr Edward Lingrey"")""",male,42,0,0,17475,26.55,,S 147 | 1037,3,"Vander Planke, Mr. Julius",male,31,3,0,345763,18,,S 148 | 1038,1,"Hilliard, Mr. Herbert Henry",male,,0,0,17463,51.8625,E46,S 149 | 1039,3,"Davies, Mr. Evan",male,22,0,0,SC/A4 23568,8.05,,S 150 | 1040,1,"Crafton, Mr. John Bertram",male,,0,0,113791,26.55,,S 151 | 1041,2,"Lahtinen, Rev. William",male,30,1,1,250651,26,,S 152 | 1042,1,"Earnshaw, Mrs. Boulton (Olive Potter)",female,23,0,1,11767,83.1583,C54,C 153 | 1043,3,"Matinoff, Mr. Nicola",male,,0,0,349255,7.8958,,C 154 | 1044,3,"Storey, Mr. Thomas",male,60.5,0,0,3701,,,S 155 | 1045,3,"Klasen, Mrs. (Hulda Kristina Eugenia Lofqvist)",female,36,0,2,350405,12.1833,,S 156 | 1046,3,"Asplund, Master. Filip Oscar",male,13,4,2,347077,31.3875,,S 157 | 1047,3,"Duquemin, Mr. Joseph",male,24,0,0,S.O./P.P. 752,7.55,,S 158 | 1048,1,"Bird, Miss. Ellen",female,29,0,0,PC 17483,221.7792,C97,S 159 | 1049,3,"Lundin, Miss. Olga Elida",female,23,0,0,347469,7.8542,,S 160 | 1050,1,"Borebank, Mr. John James",male,42,0,0,110489,26.55,D22,S 161 | 1051,3,"Peacock, Mrs. Benjamin (Edith Nile)",female,26,0,2,SOTON/O.Q. 3101315,13.775,,S 162 | 1052,3,"Smyth, Miss. Julia",female,,0,0,335432,7.7333,,Q 163 | 1053,3,"Touma, Master. Georges Youssef",male,7,1,1,2650,15.2458,,C 164 | 1054,2,"Wright, Miss. Marion",female,26,0,0,220844,13.5,,S 165 | 1055,3,"Pearce, Mr. Ernest",male,,0,0,343271,7,,S 166 | 1056,2,"Peruschitz, Rev. Joseph Maria",male,41,0,0,237393,13,,S 167 | 1057,3,"Kink-Heilmann, Mrs. Anton (Luise Heilmann)",female,26,1,1,315153,22.025,,S 168 | 1058,1,"Brandeis, Mr. Emil",male,48,0,0,PC 17591,50.4958,B10,C 169 | 1059,3,"Ford, Mr. Edward Watson",male,18,2,2,W./C. 6608,34.375,,S 170 | 1060,1,"Cassebeer, Mrs. Henry Arthur Jr (Eleanor Genevieve Fosdick)",female,,0,0,17770,27.7208,,C 171 | 1061,3,"Hellstrom, Miss. Hilda Maria",female,22,0,0,7548,8.9625,,S 172 | 1062,3,"Lithman, Mr. Simon",male,,0,0,S.O./P.P. 251,7.55,,S 173 | 1063,3,"Zakarian, Mr. Ortin",male,27,0,0,2670,7.225,,C 174 | 1064,3,"Dyker, Mr. Adolf Fredrik",male,23,1,0,347072,13.9,,S 175 | 1065,3,"Torfa, Mr. Assad",male,,0,0,2673,7.2292,,C 176 | 1066,3,"Asplund, Mr. Carl Oscar Vilhelm Gustafsson",male,40,1,5,347077,31.3875,,S 177 | 1067,2,"Brown, Miss. Edith Eileen",female,15,0,2,29750,39,,S 178 | 1068,2,"Sincock, Miss. Maude",female,20,0,0,C.A. 33112,36.75,,S 179 | 1069,1,"Stengel, Mr. Charles Emil Henry",male,54,1,0,11778,55.4417,C116,C 180 | 1070,2,"Becker, Mrs. Allen Oliver (Nellie E Baumgardner)",female,36,0,3,230136,39,F4,S 181 | 1071,1,"Compton, Mrs. Alexander Taylor (Mary Eliza Ingersoll)",female,64,0,2,PC 17756,83.1583,E45,C 182 | 1072,2,"McCrie, Mr. James Matthew",male,30,0,0,233478,13,,S 183 | 1073,1,"Compton, Mr. Alexander Taylor Jr",male,37,1,1,PC 17756,83.1583,E52,C 184 | 1074,1,"Marvin, Mrs. Daniel Warner (Mary Graham Carmichael Farquarson)",female,18,1,0,113773,53.1,D30,S 185 | 1075,3,"Lane, Mr. Patrick",male,,0,0,7935,7.75,,Q 186 | 1076,1,"Douglas, Mrs. Frederick Charles (Mary Helene Baxter)",female,27,1,1,PC 17558,247.5208,B58 B60,C 187 | 1077,2,"Maybery, Mr. Frank Hubert",male,40,0,0,239059,16,,S 188 | 1078,2,"Phillips, Miss. Alice Frances Louisa",female,21,0,1,S.O./P.P. 2,21,,S 189 | 1079,3,"Davies, Mr. Joseph",male,17,2,0,A/4 48873,8.05,,S 190 | 1080,3,"Sage, Miss. Ada",female,,8,2,CA. 2343,69.55,,S 191 | 1081,2,"Veal, Mr. James",male,40,0,0,28221,13,,S 192 | 1082,2,"Angle, Mr. William A",male,34,1,0,226875,26,,S 193 | 1083,1,"Salomon, Mr. Abraham L",male,,0,0,111163,26,,S 194 | 1084,3,"van Billiard, Master. Walter John",male,11.5,1,1,A/5. 851,14.5,,S 195 | 1085,2,"Lingane, Mr. John",male,61,0,0,235509,12.35,,Q 196 | 1086,2,"Drew, Master. Marshall Brines",male,8,0,2,28220,32.5,,S 197 | 1087,3,"Karlsson, Mr. Julius Konrad Eugen",male,33,0,0,347465,7.8542,,S 198 | 1088,1,"Spedden, Master. Robert Douglas",male,6,0,2,16966,134.5,E34,C 199 | 1089,3,"Nilsson, Miss. Berta Olivia",female,18,0,0,347066,7.775,,S 200 | 1090,2,"Baimbrigge, Mr. Charles Robert",male,23,0,0,C.A. 31030,10.5,,S 201 | 1091,3,"Rasmussen, Mrs. (Lena Jacobsen Solvang)",female,,0,0,65305,8.1125,,S 202 | 1092,3,"Murphy, Miss. Nora",female,,0,0,36568,15.5,,Q 203 | 1093,3,"Danbom, Master. Gilbert Sigvard Emanuel",male,0.33,0,2,347080,14.4,,S 204 | 1094,1,"Astor, Col. John Jacob",male,47,1,0,PC 17757,227.525,C62 C64,C 205 | 1095,2,"Quick, Miss. Winifred Vera",female,8,1,1,26360,26,,S 206 | 1096,2,"Andrew, Mr. Frank Thomas",male,25,0,0,C.A. 34050,10.5,,S 207 | 1097,1,"Omont, Mr. Alfred Fernand",male,,0,0,F.C. 12998,25.7417,,C 208 | 1098,3,"McGowan, Miss. Katherine",female,35,0,0,9232,7.75,,Q 209 | 1099,2,"Collett, Mr. Sidney C Stuart",male,24,0,0,28034,10.5,,S 210 | 1100,1,"Rosenbaum, Miss. Edith Louise",female,33,0,0,PC 17613,27.7208,A11,C 211 | 1101,3,"Delalic, Mr. Redjo",male,25,0,0,349250,7.8958,,S 212 | 1102,3,"Andersen, Mr. Albert Karvin",male,32,0,0,C 4001,22.525,,S 213 | 1103,3,"Finoli, Mr. Luigi",male,,0,0,SOTON/O.Q. 3101308,7.05,,S 214 | 1104,2,"Deacon, Mr. Percy William",male,17,0,0,S.O.C. 14879,73.5,,S 215 | 1105,2,"Howard, Mrs. Benjamin (Ellen Truelove Arman)",female,60,1,0,24065,26,,S 216 | 1106,3,"Andersson, Miss. Ida Augusta Margareta",female,38,4,2,347091,7.775,,S 217 | 1107,1,"Head, Mr. Christopher",male,42,0,0,113038,42.5,B11,S 218 | 1108,3,"Mahon, Miss. Bridget Delia",female,,0,0,330924,7.8792,,Q 219 | 1109,1,"Wick, Mr. George Dennick",male,57,1,1,36928,164.8667,,S 220 | 1110,1,"Widener, Mrs. George Dunton (Eleanor Elkins)",female,50,1,1,113503,211.5,C80,C 221 | 1111,3,"Thomson, Mr. Alexander Morrison",male,,0,0,32302,8.05,,S 222 | 1112,2,"Duran y More, Miss. Florentina",female,30,1,0,SC/PARIS 2148,13.8583,,C 223 | 1113,3,"Reynolds, Mr. Harold J",male,21,0,0,342684,8.05,,S 224 | 1114,2,"Cook, Mrs. (Selena Rogers)",female,22,0,0,W./C. 14266,10.5,F33,S 225 | 1115,3,"Karlsson, Mr. Einar Gervasius",male,21,0,0,350053,7.7958,,S 226 | 1116,1,"Candee, Mrs. Edward (Helen Churchill Hungerford)",female,53,0,0,PC 17606,27.4458,,C 227 | 1117,3,"Moubarek, Mrs. George (Omine Amenia"" Alexander)""",female,,0,2,2661,15.2458,,C 228 | 1118,3,"Asplund, Mr. Johan Charles",male,23,0,0,350054,7.7958,,S 229 | 1119,3,"McNeill, Miss. Bridget",female,,0,0,370368,7.75,,Q 230 | 1120,3,"Everett, Mr. Thomas James",male,40.5,0,0,C.A. 6212,15.1,,S 231 | 1121,2,"Hocking, Mr. Samuel James Metcalfe",male,36,0,0,242963,13,,S 232 | 1122,2,"Sweet, Mr. George Frederick",male,14,0,0,220845,65,,S 233 | 1123,1,"Willard, Miss. Constance",female,21,0,0,113795,26.55,,S 234 | 1124,3,"Wiklund, Mr. Karl Johan",male,21,1,0,3101266,6.4958,,S 235 | 1125,3,"Linehan, Mr. Michael",male,,0,0,330971,7.8792,,Q 236 | 1126,1,"Cumings, Mr. John Bradley",male,39,1,0,PC 17599,71.2833,C85,C 237 | 1127,3,"Vendel, Mr. Olof Edvin",male,20,0,0,350416,7.8542,,S 238 | 1128,1,"Warren, Mr. Frank Manley",male,64,1,0,110813,75.25,D37,C 239 | 1129,3,"Baccos, Mr. Raffull",male,20,0,0,2679,7.225,,C 240 | 1130,2,"Hiltunen, Miss. Marta",female,18,1,1,250650,13,,S 241 | 1131,1,"Douglas, Mrs. Walter Donald (Mahala Dutton)",female,48,1,0,PC 17761,106.425,C86,C 242 | 1132,1,"Lindstrom, Mrs. Carl Johan (Sigrid Posse)",female,55,0,0,112377,27.7208,,C 243 | 1133,2,"Christy, Mrs. (Alice Frances)",female,45,0,2,237789,30,,S 244 | 1134,1,"Spedden, Mr. Frederic Oakley",male,45,1,1,16966,134.5,E34,C 245 | 1135,3,"Hyman, Mr. Abraham",male,,0,0,3470,7.8875,,S 246 | 1136,3,"Johnston, Master. William Arthur Willie""""",male,,1,2,W./C. 6607,23.45,,S 247 | 1137,1,"Kenyon, Mr. Frederick R",male,41,1,0,17464,51.8625,D21,S 248 | 1138,2,"Karnes, Mrs. J Frank (Claire Bennett)",female,22,0,0,F.C.C. 13534,21,,S 249 | 1139,2,"Drew, Mr. James Vivian",male,42,1,1,28220,32.5,,S 250 | 1140,2,"Hold, Mrs. Stephen (Annie Margaret Hill)",female,29,1,0,26707,26,,S 251 | 1141,3,"Khalil, Mrs. Betros (Zahie Maria"" Elias)""",female,,1,0,2660,14.4542,,C 252 | 1142,2,"West, Miss. Barbara J",female,0.92,1,2,C.A. 34651,27.75,,S 253 | 1143,3,"Abrahamsson, Mr. Abraham August Johannes",male,20,0,0,SOTON/O2 3101284,7.925,,S 254 | 1144,1,"Clark, Mr. Walter Miller",male,27,1,0,13508,136.7792,C89,C 255 | 1145,3,"Salander, Mr. Karl Johan",male,24,0,0,7266,9.325,,S 256 | 1146,3,"Wenzel, Mr. Linhart",male,32.5,0,0,345775,9.5,,S 257 | 1147,3,"MacKay, Mr. George William",male,,0,0,C.A. 42795,7.55,,S 258 | 1148,3,"Mahon, Mr. John",male,,0,0,AQ/4 3130,7.75,,Q 259 | 1149,3,"Niklasson, Mr. Samuel",male,28,0,0,363611,8.05,,S 260 | 1150,2,"Bentham, Miss. Lilian W",female,19,0,0,28404,13,,S 261 | 1151,3,"Midtsjo, Mr. Karl Albert",male,21,0,0,345501,7.775,,S 262 | 1152,3,"de Messemaeker, Mr. Guillaume Joseph",male,36.5,1,0,345572,17.4,,S 263 | 1153,3,"Nilsson, Mr. August Ferdinand",male,21,0,0,350410,7.8542,,S 264 | 1154,2,"Wells, Mrs. Arthur Henry (Addie"" Dart Trevaskis)""",female,29,0,2,29103,23,,S 265 | 1155,3,"Klasen, Miss. Gertrud Emilia",female,1,1,1,350405,12.1833,,S 266 | 1156,2,"Portaluppi, Mr. Emilio Ilario Giuseppe",male,30,0,0,C.A. 34644,12.7375,,C 267 | 1157,3,"Lyntakoff, Mr. Stanko",male,,0,0,349235,7.8958,,S 268 | 1158,1,"Chisholm, Mr. Roderick Robert Crispin",male,,0,0,112051,0,,S 269 | 1159,3,"Warren, Mr. Charles William",male,,0,0,C.A. 49867,7.55,,S 270 | 1160,3,"Howard, Miss. May Elizabeth",female,,0,0,A. 2. 39186,8.05,,S 271 | 1161,3,"Pokrnic, Mr. Mate",male,17,0,0,315095,8.6625,,S 272 | 1162,1,"McCaffry, Mr. Thomas Francis",male,46,0,0,13050,75.2417,C6,C 273 | 1163,3,"Fox, Mr. Patrick",male,,0,0,368573,7.75,,Q 274 | 1164,1,"Clark, Mrs. Walter Miller (Virginia McDowell)",female,26,1,0,13508,136.7792,C89,C 275 | 1165,3,"Lennon, Miss. Mary",female,,1,0,370371,15.5,,Q 276 | 1166,3,"Saade, Mr. Jean Nassr",male,,0,0,2676,7.225,,C 277 | 1167,2,"Bryhl, Miss. Dagmar Jenny Ingeborg ",female,20,1,0,236853,26,,S 278 | 1168,2,"Parker, Mr. Clifford Richard",male,28,0,0,SC 14888,10.5,,S 279 | 1169,2,"Faunthorpe, Mr. Harry",male,40,1,0,2926,26,,S 280 | 1170,2,"Ware, Mr. John James",male,30,1,0,CA 31352,21,,S 281 | 1171,2,"Oxenham, Mr. Percy Thomas",male,22,0,0,W./C. 14260,10.5,,S 282 | 1172,3,"Oreskovic, Miss. Jelka",female,23,0,0,315085,8.6625,,S 283 | 1173,3,"Peacock, Master. Alfred Edward",male,0.75,1,1,SOTON/O.Q. 3101315,13.775,,S 284 | 1174,3,"Fleming, Miss. Honora",female,,0,0,364859,7.75,,Q 285 | 1175,3,"Touma, Miss. Maria Youssef",female,9,1,1,2650,15.2458,,C 286 | 1176,3,"Rosblom, Miss. Salli Helena",female,2,1,1,370129,20.2125,,S 287 | 1177,3,"Dennis, Mr. William",male,36,0,0,A/5 21175,7.25,,S 288 | 1178,3,"Franklin, Mr. Charles (Charles Fardon)",male,,0,0,SOTON/O.Q. 3101314,7.25,,S 289 | 1179,1,"Snyder, Mr. John Pillsbury",male,24,1,0,21228,82.2667,B45,S 290 | 1180,3,"Mardirosian, Mr. Sarkis",male,,0,0,2655,7.2292,F E46,C 291 | 1181,3,"Ford, Mr. Arthur",male,,0,0,A/5 1478,8.05,,S 292 | 1182,1,"Rheims, Mr. George Alexander Lucien",male,,0,0,PC 17607,39.6,,S 293 | 1183,3,"Daly, Miss. Margaret Marcella Maggie""""",female,30,0,0,382650,6.95,,Q 294 | 1184,3,"Nasr, Mr. Mustafa",male,,0,0,2652,7.2292,,C 295 | 1185,1,"Dodge, Dr. Washington",male,53,1,1,33638,81.8583,A34,S 296 | 1186,3,"Wittevrongel, Mr. Camille",male,36,0,0,345771,9.5,,S 297 | 1187,3,"Angheloff, Mr. Minko",male,26,0,0,349202,7.8958,,S 298 | 1188,2,"Laroche, Miss. Louise",female,1,1,2,SC/Paris 2123,41.5792,,C 299 | 1189,3,"Samaan, Mr. Hanna",male,,2,0,2662,21.6792,,C 300 | 1190,1,"Loring, Mr. Joseph Holland",male,30,0,0,113801,45.5,,S 301 | 1191,3,"Johansson, Mr. Nils",male,29,0,0,347467,7.8542,,S 302 | 1192,3,"Olsson, Mr. Oscar Wilhelm",male,32,0,0,347079,7.775,,S 303 | 1193,2,"Malachard, Mr. Noel",male,,0,0,237735,15.0458,D,C 304 | 1194,2,"Phillips, Mr. Escott Robert",male,43,0,1,S.O./P.P. 2,21,,S 305 | 1195,3,"Pokrnic, Mr. Tome",male,24,0,0,315092,8.6625,,S 306 | 1196,3,"McCarthy, Miss. Catherine Katie""""",female,,0,0,383123,7.75,,Q 307 | 1197,1,"Crosby, Mrs. Edward Gifford (Catherine Elizabeth Halstead)",female,64,1,1,112901,26.55,B26,S 308 | 1198,1,"Allison, Mr. Hudson Joshua Creighton",male,30,1,2,113781,151.55,C22 C26,S 309 | 1199,3,"Aks, Master. Philip Frank",male,0.83,0,1,392091,9.35,,S 310 | 1200,1,"Hays, Mr. Charles Melville",male,55,1,1,12749,93.5,B69,S 311 | 1201,3,"Hansen, Mrs. Claus Peter (Jennie L Howard)",female,45,1,0,350026,14.1083,,S 312 | 1202,3,"Cacic, Mr. Jego Grga",male,18,0,0,315091,8.6625,,S 313 | 1203,3,"Vartanian, Mr. David",male,22,0,0,2658,7.225,,C 314 | 1204,3,"Sadowitz, Mr. Harry",male,,0,0,LP 1588,7.575,,S 315 | 1205,3,"Carr, Miss. Jeannie",female,37,0,0,368364,7.75,,Q 316 | 1206,1,"White, Mrs. John Stuart (Ella Holmes)",female,55,0,0,PC 17760,135.6333,C32,C 317 | 1207,3,"Hagardon, Miss. Kate",female,17,0,0,AQ/3. 30631,7.7333,,Q 318 | 1208,1,"Spencer, Mr. William Augustus",male,57,1,0,PC 17569,146.5208,B78,C 319 | 1209,2,"Rogers, Mr. Reginald Harry",male,19,0,0,28004,10.5,,S 320 | 1210,3,"Jonsson, Mr. Nils Hilding",male,27,0,0,350408,7.8542,,S 321 | 1211,2,"Jefferys, Mr. Ernest Wilfred",male,22,2,0,C.A. 31029,31.5,,S 322 | 1212,3,"Andersson, Mr. Johan Samuel",male,26,0,0,347075,7.775,,S 323 | 1213,3,"Krekorian, Mr. Neshan",male,25,0,0,2654,7.2292,F E57,C 324 | 1214,2,"Nesson, Mr. Israel",male,26,0,0,244368,13,F2,S 325 | 1215,1,"Rowe, Mr. Alfred G",male,33,0,0,113790,26.55,,S 326 | 1216,1,"Kreuchen, Miss. Emilie",female,39,0,0,24160,211.3375,,S 327 | 1217,3,"Assam, Mr. Ali",male,23,0,0,SOTON/O.Q. 3101309,7.05,,S 328 | 1218,2,"Becker, Miss. Ruth Elizabeth",female,12,2,1,230136,39,F4,S 329 | 1219,1,"Rosenshine, Mr. George (Mr George Thorne"")""",male,46,0,0,PC 17585,79.2,,C 330 | 1220,2,"Clarke, Mr. Charles Valentine",male,29,1,0,2003,26,,S 331 | 1221,2,"Enander, Mr. Ingvar",male,21,0,0,236854,13,,S 332 | 1222,2,"Davies, Mrs. John Morgan (Elizabeth Agnes Mary White) ",female,48,0,2,C.A. 33112,36.75,,S 333 | 1223,1,"Dulles, Mr. William Crothers",male,39,0,0,PC 17580,29.7,A18,C 334 | 1224,3,"Thomas, Mr. Tannous",male,,0,0,2684,7.225,,C 335 | 1225,3,"Nakid, Mrs. Said (Waika Mary"" Mowad)""",female,19,1,1,2653,15.7417,,C 336 | 1226,3,"Cor, Mr. Ivan",male,27,0,0,349229,7.8958,,S 337 | 1227,1,"Maguire, Mr. John Edward",male,30,0,0,110469,26,C106,S 338 | 1228,2,"de Brito, Mr. Jose Joaquim",male,32,0,0,244360,13,,S 339 | 1229,3,"Elias, Mr. Joseph",male,39,0,2,2675,7.2292,,C 340 | 1230,2,"Denbury, Mr. Herbert",male,25,0,0,C.A. 31029,31.5,,S 341 | 1231,3,"Betros, Master. Seman",male,,0,0,2622,7.2292,,C 342 | 1232,2,"Fillbrook, Mr. Joseph Charles",male,18,0,0,C.A. 15185,10.5,,S 343 | 1233,3,"Lundstrom, Mr. Thure Edvin",male,32,0,0,350403,7.5792,,S 344 | 1234,3,"Sage, Mr. John George",male,,1,9,CA. 2343,69.55,,S 345 | 1235,1,"Cardeza, Mrs. James Warburton Martinez (Charlotte Wardle Drake)",female,58,0,1,PC 17755,512.3292,B51 B53 B55,C 346 | 1236,3,"van Billiard, Master. James William",male,,1,1,A/5. 851,14.5,,S 347 | 1237,3,"Abelseth, Miss. Karen Marie",female,16,0,0,348125,7.65,,S 348 | 1238,2,"Botsford, Mr. William Hull",male,26,0,0,237670,13,,S 349 | 1239,3,"Whabee, Mrs. George Joseph (Shawneene Abi-Saab)",female,38,0,0,2688,7.2292,,C 350 | 1240,2,"Giles, Mr. Ralph",male,24,0,0,248726,13.5,,S 351 | 1241,2,"Walcroft, Miss. Nellie",female,31,0,0,F.C.C. 13528,21,,S 352 | 1242,1,"Greenfield, Mrs. Leo David (Blanche Strouse)",female,45,0,1,PC 17759,63.3583,D10 D12,C 353 | 1243,2,"Stokes, Mr. Philip Joseph",male,25,0,0,F.C.C. 13540,10.5,,S 354 | 1244,2,"Dibden, Mr. William",male,18,0,0,S.O.C. 14879,73.5,,S 355 | 1245,2,"Herman, Mr. Samuel",male,49,1,2,220845,65,,S 356 | 1246,3,"Dean, Miss. Elizabeth Gladys Millvina""""",female,0.17,1,2,C.A. 2315,20.575,,S 357 | 1247,1,"Julian, Mr. Henry Forbes",male,50,0,0,113044,26,E60,S 358 | 1248,1,"Brown, Mrs. John Murray (Caroline Lane Lamson)",female,59,2,0,11769,51.4792,C101,S 359 | 1249,3,"Lockyer, Mr. Edward",male,,0,0,1222,7.8792,,S 360 | 1250,3,"O'Keefe, Mr. Patrick",male,,0,0,368402,7.75,,Q 361 | 1251,3,"Lindell, Mrs. Edvard Bengtsson (Elin Gerda Persson)",female,30,1,0,349910,15.55,,S 362 | 1252,3,"Sage, Master. William Henry",male,14.5,8,2,CA. 2343,69.55,,S 363 | 1253,2,"Mallet, Mrs. Albert (Antoinette Magnin)",female,24,1,1,S.C./PARIS 2079,37.0042,,C 364 | 1254,2,"Ware, Mrs. John James (Florence Louise Long)",female,31,0,0,CA 31352,21,,S 365 | 1255,3,"Strilic, Mr. Ivan",male,27,0,0,315083,8.6625,,S 366 | 1256,1,"Harder, Mrs. George Achilles (Dorothy Annan)",female,25,1,0,11765,55.4417,E50,C 367 | 1257,3,"Sage, Mrs. John (Annie Bullen)",female,,1,9,CA. 2343,69.55,,S 368 | 1258,3,"Caram, Mr. Joseph",male,,1,0,2689,14.4583,,C 369 | 1259,3,"Riihivouri, Miss. Susanna Juhantytar Sanni""""",female,22,0,0,3101295,39.6875,,S 370 | 1260,1,"Gibson, Mrs. Leonard (Pauline C Boeson)",female,45,0,1,112378,59.4,,C 371 | 1261,2,"Pallas y Castello, Mr. Emilio",male,29,0,0,SC/PARIS 2147,13.8583,,C 372 | 1262,2,"Giles, Mr. Edgar",male,21,1,0,28133,11.5,,S 373 | 1263,1,"Wilson, Miss. Helen Alice",female,31,0,0,16966,134.5,E39 E41,C 374 | 1264,1,"Ismay, Mr. Joseph Bruce",male,49,0,0,112058,0,B52 B54 B56,S 375 | 1265,2,"Harbeck, Mr. William H",male,44,0,0,248746,13,,S 376 | 1266,1,"Dodge, Mrs. Washington (Ruth Vidaver)",female,54,1,1,33638,81.8583,A34,S 377 | 1267,1,"Bowen, Miss. Grace Scott",female,45,0,0,PC 17608,262.375,,C 378 | 1268,3,"Kink, Miss. Maria",female,22,2,0,315152,8.6625,,S 379 | 1269,2,"Cotterill, Mr. Henry Harry""""",male,21,0,0,29107,11.5,,S 380 | 1270,1,"Hipkins, Mr. William Edward",male,55,0,0,680,50,C39,S 381 | 1271,3,"Asplund, Master. Carl Edgar",male,5,4,2,347077,31.3875,,S 382 | 1272,3,"O'Connor, Mr. Patrick",male,,0,0,366713,7.75,,Q 383 | 1273,3,"Foley, Mr. Joseph",male,26,0,0,330910,7.8792,,Q 384 | 1274,3,"Risien, Mrs. Samuel (Emma)",female,,0,0,364498,14.5,,S 385 | 1275,3,"McNamee, Mrs. Neal (Eileen O'Leary)",female,19,1,0,376566,16.1,,S 386 | 1276,2,"Wheeler, Mr. Edwin Frederick""""",male,,0,0,SC/PARIS 2159,12.875,,S 387 | 1277,2,"Herman, Miss. Kate",female,24,1,2,220845,65,,S 388 | 1278,3,"Aronsson, Mr. Ernst Axel Algot",male,24,0,0,349911,7.775,,S 389 | 1279,2,"Ashby, Mr. John",male,57,0,0,244346,13,,S 390 | 1280,3,"Canavan, Mr. Patrick",male,21,0,0,364858,7.75,,Q 391 | 1281,3,"Palsson, Master. Paul Folke",male,6,3,1,349909,21.075,,S 392 | 1282,1,"Payne, Mr. Vivian Ponsonby",male,23,0,0,12749,93.5,B24,S 393 | 1283,1,"Lines, Mrs. Ernest H (Elizabeth Lindsey James)",female,51,0,1,PC 17592,39.4,D28,S 394 | 1284,3,"Abbott, Master. Eugene Joseph",male,13,0,2,C.A. 2673,20.25,,S 395 | 1285,2,"Gilbert, Mr. William",male,47,0,0,C.A. 30769,10.5,,S 396 | 1286,3,"Kink-Heilmann, Mr. Anton",male,29,3,1,315153,22.025,,S 397 | 1287,1,"Smith, Mrs. Lucien Philip (Mary Eloise Hughes)",female,18,1,0,13695,60,C31,S 398 | 1288,3,"Colbert, Mr. Patrick",male,24,0,0,371109,7.25,,Q 399 | 1289,1,"Frolicher-Stehli, Mrs. Maxmillian (Margaretha Emerentia Stehli)",female,48,1,1,13567,79.2,B41,C 400 | 1290,3,"Larsson-Rondberg, Mr. Edvard A",male,22,0,0,347065,7.775,,S 401 | 1291,3,"Conlon, Mr. Thomas Henry",male,31,0,0,21332,7.7333,,Q 402 | 1292,1,"Bonnell, Miss. Caroline",female,30,0,0,36928,164.8667,C7,S 403 | 1293,2,"Gale, Mr. Harry",male,38,1,0,28664,21,,S 404 | 1294,1,"Gibson, Miss. Dorothy Winifred",female,22,0,1,112378,59.4,,C 405 | 1295,1,"Carrau, Mr. Jose Pedro",male,17,0,0,113059,47.1,,S 406 | 1296,1,"Frauenthal, Mr. Isaac Gerald",male,43,1,0,17765,27.7208,D40,C 407 | 1297,2,"Nourney, Mr. Alfred (Baron von Drachstedt"")""",male,20,0,0,SC/PARIS 2166,13.8625,D38,C 408 | 1298,2,"Ware, Mr. William Jeffery",male,23,1,0,28666,10.5,,S 409 | 1299,1,"Widener, Mr. George Dunton",male,50,1,1,113503,211.5,C80,C 410 | 1300,3,"Riordan, Miss. Johanna Hannah""""",female,,0,0,334915,7.7208,,Q 411 | 1301,3,"Peacock, Miss. Treasteall",female,3,1,1,SOTON/O.Q. 3101315,13.775,,S 412 | 1302,3,"Naughton, Miss. Hannah",female,,0,0,365237,7.75,,Q 413 | 1303,1,"Minahan, Mrs. William Edward (Lillian E Thorpe)",female,37,1,0,19928,90,C78,Q 414 | 1304,3,"Henriksson, Miss. Jenny Lovisa",female,28,0,0,347086,7.775,,S 415 | 1305,3,"Spector, Mr. Woolf",male,,0,0,A.5. 3236,8.05,,S 416 | 1306,1,"Oliva y Ocana, Dona. Fermina",female,39,0,0,PC 17758,108.9,C105,C 417 | 1307,3,"Saether, Mr. Simon Sivertsen",male,38.5,0,0,SOTON/O.Q. 3101262,7.25,,S 418 | 1308,3,"Ware, Mr. Frederick",male,,0,0,359309,8.05,,S 419 | 1309,3,"Peter, Master. Michael J",male,,1,1,2668,22.3583,,C 420 | -------------------------------------------------------------------------------- /solutions/2-titanic_first_ML-model.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# Build your first machine learning model" 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": 1, 13 | "metadata": {}, 14 | "outputs": [], 15 | "source": [ 16 | "# Import modules\n", 17 | "import pandas as pd\n", 18 | "import matplotlib.pyplot as plt\n", 19 | "import seaborn as sns\n", 20 | "import re\n", 21 | "import numpy as np\n", 22 | "from sklearn import tree\n", 23 | "from sklearn.model_selection import train_test_split\n", 24 | "from sklearn.linear_model import LogisticRegression\n", 25 | "from sklearn.model_selection import GridSearchCV\n", 26 | "\n", 27 | "# Figures inline and set visualization style\n", 28 | "%matplotlib inline\n", 29 | "sns.set()\n", 30 | "\n", 31 | "# Import data\n", 32 | "df_train = pd.read_csv('data/train.csv')\n", 33 | "df_test = pd.read_csv('data/test.csv')" 34 | ] 35 | }, 36 | { 37 | "cell_type": "markdown", 38 | "metadata": {}, 39 | "source": [ 40 | "* Below, you will drop the target 'Survived' from the training dataset and create a new DataFrame `data` that consists of training and test sets combined;\n", 41 | "* But first, you'll store the target variable of the training data for safe keeping." 42 | ] 43 | }, 44 | { 45 | "cell_type": "code", 46 | "execution_count": 2, 47 | "metadata": {}, 48 | "outputs": [], 49 | "source": [ 50 | "# Store target variable of training data in a safe place\n", 51 | "survived_train = df_train.Survived\n", 52 | "\n", 53 | "# Concatenate training and test sets\n", 54 | "data = pd.concat([df_train.drop(['Survived'], axis=1), df_test])" 55 | ] 56 | }, 57 | { 58 | "cell_type": "markdown", 59 | "metadata": {}, 60 | "source": [ 61 | "* Check out your new DataFrame `data` using the `info()` method." 62 | ] 63 | }, 64 | { 65 | "cell_type": "code", 66 | "execution_count": 3, 67 | "metadata": {}, 68 | "outputs": [ 69 | { 70 | "name": "stdout", 71 | "output_type": "stream", 72 | "text": [ 73 | "\n", 74 | "Int64Index: 1309 entries, 0 to 417\n", 75 | "Data columns (total 11 columns):\n", 76 | "PassengerId 1309 non-null int64\n", 77 | "Pclass 1309 non-null int64\n", 78 | "Name 1309 non-null object\n", 79 | "Sex 1309 non-null object\n", 80 | "Age 1046 non-null float64\n", 81 | "SibSp 1309 non-null int64\n", 82 | "Parch 1309 non-null int64\n", 83 | "Ticket 1309 non-null object\n", 84 | "Fare 1308 non-null float64\n", 85 | "Cabin 295 non-null object\n", 86 | "Embarked 1307 non-null object\n", 87 | "dtypes: float64(2), int64(4), object(5)\n", 88 | "memory usage: 122.7+ KB\n" 89 | ] 90 | } 91 | ], 92 | "source": [ 93 | "data.info()" 94 | ] 95 | }, 96 | { 97 | "cell_type": "markdown", 98 | "metadata": {}, 99 | "source": [ 100 | "^ There are 2 numerical variables that have missing values: what are they?\n", 101 | "* Impute these missing values, using the median of the of these variables where we know them:" 102 | ] 103 | }, 104 | { 105 | "cell_type": "code", 106 | "execution_count": 4, 107 | "metadata": {}, 108 | "outputs": [ 109 | { 110 | "name": "stdout", 111 | "output_type": "stream", 112 | "text": [ 113 | "\n", 114 | "Int64Index: 1309 entries, 0 to 417\n", 115 | "Data columns (total 11 columns):\n", 116 | "PassengerId 1309 non-null int64\n", 117 | "Pclass 1309 non-null int64\n", 118 | "Name 1309 non-null object\n", 119 | "Sex 1309 non-null object\n", 120 | "Age 1309 non-null float64\n", 121 | "SibSp 1309 non-null int64\n", 122 | "Parch 1309 non-null int64\n", 123 | "Ticket 1309 non-null object\n", 124 | "Fare 1309 non-null float64\n", 125 | "Cabin 295 non-null object\n", 126 | "Embarked 1307 non-null object\n", 127 | "dtypes: float64(2), int64(4), object(5)\n", 128 | "memory usage: 122.7+ KB\n" 129 | ] 130 | } 131 | ], 132 | "source": [ 133 | "# Impute missing numerical variables\n", 134 | "data['Age'] = data.Age.fillna(data.Age.median())\n", 135 | "data['Fare'] = data.Fare.fillna(data.Fare.median())\n", 136 | "\n", 137 | "# Check out info of data\n", 138 | "data.info()" 139 | ] 140 | }, 141 | { 142 | "cell_type": "markdown", 143 | "metadata": {}, 144 | "source": [ 145 | "* As you want to encode your data with numbers, you'll want to change 'male' and 'female' to numbers. Use the `pandas` function `get_dummies` to do so:" 146 | ] 147 | }, 148 | { 149 | "cell_type": "code", 150 | "execution_count": 5, 151 | "metadata": { 152 | "collapsed": true 153 | }, 154 | "outputs": [ 155 | { 156 | "data": { 157 | "text/html": [ 158 | "
\n", 159 | "\n", 172 | "\n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | "
PassengerIdPclassNameAgeSibSpParchTicketFareCabinEmbarkedSex_male
013Braund, Mr. Owen Harris22.010A/5 211717.2500NaNS1
121Cumings, Mrs. John Bradley (Florence Briggs Th...38.010PC 1759971.2833C85C0
233Heikkinen, Miss. Laina26.000STON/O2. 31012827.9250NaNS0
341Futrelle, Mrs. Jacques Heath (Lily May Peel)35.01011380353.1000C123S0
453Allen, Mr. William Henry35.0003734508.0500NaNS1
\n", 262 | "
" 263 | ], 264 | "text/plain": [ 265 | " PassengerId Pclass Name \\\n", 266 | "0 1 3 Braund, Mr. Owen Harris \n", 267 | "1 2 1 Cumings, Mrs. John Bradley (Florence Briggs Th... \n", 268 | "2 3 3 Heikkinen, Miss. Laina \n", 269 | "3 4 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) \n", 270 | "4 5 3 Allen, Mr. William Henry \n", 271 | "\n", 272 | " Age SibSp Parch Ticket Fare Cabin Embarked Sex_male \n", 273 | "0 22.0 1 0 A/5 21171 7.2500 NaN S 1 \n", 274 | "1 38.0 1 0 PC 17599 71.2833 C85 C 0 \n", 275 | "2 26.0 0 0 STON/O2. 3101282 7.9250 NaN S 0 \n", 276 | "3 35.0 1 0 113803 53.1000 C123 S 0 \n", 277 | "4 35.0 0 0 373450 8.0500 NaN S 1 " 278 | ] 279 | }, 280 | "execution_count": 5, 281 | "metadata": {}, 282 | "output_type": "execute_result" 283 | } 284 | ], 285 | "source": [ 286 | "data = pd.get_dummies(data, columns=['Sex'], drop_first=True)\n", 287 | "data.head()" 288 | ] 289 | }, 290 | { 291 | "cell_type": "markdown", 292 | "metadata": {}, 293 | "source": [ 294 | "* Select the columns `['Sex_male', 'Fare', 'Age','Pclass', 'SibSp']` from your DataFrame to build your first machine learning model:" 295 | ] 296 | }, 297 | { 298 | "cell_type": "code", 299 | "execution_count": 6, 300 | "metadata": {}, 301 | "outputs": [ 302 | { 303 | "data": { 304 | "text/html": [ 305 | "
\n", 306 | "\n", 319 | "\n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | "
Sex_maleFareAgePclassSibSp
017.250022.031
1071.283338.011
207.925026.030
3053.100035.011
418.050035.030
\n", 373 | "
" 374 | ], 375 | "text/plain": [ 376 | " Sex_male Fare Age Pclass SibSp\n", 377 | "0 1 7.2500 22.0 3 1\n", 378 | "1 0 71.2833 38.0 1 1\n", 379 | "2 0 7.9250 26.0 3 0\n", 380 | "3 0 53.1000 35.0 1 1\n", 381 | "4 1 8.0500 35.0 3 0" 382 | ] 383 | }, 384 | "execution_count": 6, 385 | "metadata": {}, 386 | "output_type": "execute_result" 387 | } 388 | ], 389 | "source": [ 390 | "# Select columns and view head\n", 391 | "data = data[['Sex_male', 'Fare', 'Age','Pclass', 'SibSp']]\n", 392 | "data.head()" 393 | ] 394 | }, 395 | { 396 | "cell_type": "markdown", 397 | "metadata": {}, 398 | "source": [ 399 | "* Use `.info()` to check out `data`:" 400 | ] 401 | }, 402 | { 403 | "cell_type": "code", 404 | "execution_count": 7, 405 | "metadata": {}, 406 | "outputs": [ 407 | { 408 | "name": "stdout", 409 | "output_type": "stream", 410 | "text": [ 411 | "\n", 412 | "Int64Index: 1309 entries, 0 to 417\n", 413 | "Data columns (total 5 columns):\n", 414 | "Sex_male 1309 non-null uint8\n", 415 | "Fare 1309 non-null float64\n", 416 | "Age 1309 non-null float64\n", 417 | "Pclass 1309 non-null int64\n", 418 | "SibSp 1309 non-null int64\n", 419 | "dtypes: float64(2), int64(2), uint8(1)\n", 420 | "memory usage: 52.4 KB\n" 421 | ] 422 | } 423 | ], 424 | "source": [ 425 | "data.info()" 426 | ] 427 | }, 428 | { 429 | "cell_type": "markdown", 430 | "metadata": {}, 431 | "source": [ 432 | "**Recap:**\n", 433 | "* You've got your data in a form to build first machine learning model.\n", 434 | "\n", 435 | "**Up next:** it's time to build your first machine learning model!\n", 436 | "\n", 437 | "For more on `pandas`, check out our [Data Manipulation with Python track](https://www.datacamp.com/tracks/data-manipulation-with-python). \n", 438 | "\n", 439 | "If you're enoying this session, retweet or share on FB now and follow us on Twitter: [@hugobowne](https://twitter.com/hugobowne) & [@DataCamp](https://twitter.com/datacamp)." 440 | ] 441 | }, 442 | { 443 | "cell_type": "markdown", 444 | "metadata": {}, 445 | "source": [ 446 | "## In which you build a decision tree classifier" 447 | ] 448 | }, 449 | { 450 | "cell_type": "markdown", 451 | "metadata": {}, 452 | "source": [ 453 | "What is a Decision tree classsifier? It is a tree that allows you to classify data points (aka predict target variables) based on feature variables. For example," 454 | ] 455 | }, 456 | { 457 | "cell_type": "markdown", 458 | "metadata": {}, 459 | "source": [ 460 | "" 461 | ] 462 | }, 463 | { 464 | "cell_type": "markdown", 465 | "metadata": {}, 466 | "source": [ 467 | "* You first **fit** such a model to your training data, which means deciding (based on the training data) which decisions will split at each branching point in the tree: e.g., that the first branch is on 'Male' or not and that 'Male' results in a prediction of 'Dead'. " 468 | ] 469 | }, 470 | { 471 | "cell_type": "markdown", 472 | "metadata": {}, 473 | "source": [ 474 | "* Before fitting a model to your `data`, split it back into training and test sets:" 475 | ] 476 | }, 477 | { 478 | "cell_type": "code", 479 | "execution_count": 8, 480 | "metadata": {}, 481 | "outputs": [], 482 | "source": [ 483 | "data_train = data.iloc[:891]\n", 484 | "data_test = data.iloc[891:]" 485 | ] 486 | }, 487 | { 488 | "cell_type": "markdown", 489 | "metadata": {}, 490 | "source": [ 491 | "* You'll use `scikit-learn`, which requires your data as arrays, not DataFrames so transform them:" 492 | ] 493 | }, 494 | { 495 | "cell_type": "code", 496 | "execution_count": 9, 497 | "metadata": {}, 498 | "outputs": [], 499 | "source": [ 500 | "X = data_train.values\n", 501 | "test = data_test.values\n", 502 | "y = survived_train.values" 503 | ] 504 | }, 505 | { 506 | "cell_type": "markdown", 507 | "metadata": {}, 508 | "source": [ 509 | "* Now you get to build your decision tree classifier! First create such a model with `max_depth=3` and then fit it your data:" 510 | ] 511 | }, 512 | { 513 | "cell_type": "code", 514 | "execution_count": 10, 515 | "metadata": {}, 516 | "outputs": [ 517 | { 518 | "data": { 519 | "text/plain": [ 520 | "DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=3,\n", 521 | " max_features=None, max_leaf_nodes=None,\n", 522 | " min_impurity_decrease=0.0, min_impurity_split=None,\n", 523 | " min_samples_leaf=1, min_samples_split=2,\n", 524 | " min_weight_fraction_leaf=0.0, presort=False, random_state=None,\n", 525 | " splitter='best')" 526 | ] 527 | }, 528 | "execution_count": 10, 529 | "metadata": {}, 530 | "output_type": "execute_result" 531 | } 532 | ], 533 | "source": [ 534 | "# Instantiate model and fit to data\n", 535 | "clf = tree.DecisionTreeClassifier(max_depth=3)\n", 536 | "clf.fit(X, y)" 537 | ] 538 | }, 539 | { 540 | "cell_type": "markdown", 541 | "metadata": {}, 542 | "source": [ 543 | "* Make predictions on your test set, create a new column 'Survived' and store your predictions in it. Save 'PassengerId' and 'Survived' columns of `df_test` to a .csv and submit to Kaggle." 544 | ] 545 | }, 546 | { 547 | "cell_type": "code", 548 | "execution_count": 11, 549 | "metadata": {}, 550 | "outputs": [], 551 | "source": [ 552 | "# Make predictions and store in 'Survived' column of df_test\n", 553 | "Y_pred = clf.predict(test)\n", 554 | "df_test['Survived'] = Y_pred" 555 | ] 556 | }, 557 | { 558 | "cell_type": "code", 559 | "execution_count": 12, 560 | "metadata": {}, 561 | "outputs": [], 562 | "source": [ 563 | "df_test[['PassengerId', 'Survived']].to_csv('data/predictions/1st_dec_tree.csv', index=False)" 564 | ] 565 | }, 566 | { 567 | "cell_type": "markdown", 568 | "metadata": {}, 569 | "source": [ 570 | "* What is the accuracy of your model, as reported by Kaggle?\n", 571 | "\n", 572 | "Accuracy = 78%." 573 | ] 574 | }, 575 | { 576 | "cell_type": "markdown", 577 | "metadata": {}, 578 | "source": [ 579 | "**Recap:**\n", 580 | "* You've got your data in a form to build first machine learning model.\n", 581 | "* You've built your first machine learning model: a decision tree classifier.\n", 582 | "\n", 583 | "**Up next:** figure out what this `max_depth` argument was, why we chose it and explore `train_test_split`.\n", 584 | "\n", 585 | "For more on `scikit-learn`, check out our [Supervised Learning with scikit-learn course](https://www.datacamp.com/courses/supervised-learning-with-scikit-learn). \n", 586 | "\n", 587 | "If you're enoying this session, retweet or share on FB now and follow us on Twitter: [@hugobowne](https://twitter.com/hugobowne) & [@DataCamp](https://twitter.com/datacamp)." 588 | ] 589 | }, 590 | { 591 | "cell_type": "markdown", 592 | "metadata": {}, 593 | "source": [ 594 | "## What was this decision tree classifier?" 595 | ] 596 | }, 597 | { 598 | "cell_type": "markdown", 599 | "metadata": {}, 600 | "source": [ 601 | "" 602 | ] 603 | }, 604 | { 605 | "cell_type": "markdown", 606 | "metadata": {}, 607 | "source": [ 608 | "Note: you can use `graphviz` to generate figures such as this. See the `scikit-learn` documentation [here](http://scikit-learn.org/stable/modules/tree.html) for further details. In building this model, what you're essentially doing is creating a _decision boundary_ in the space of feature variables, for example (image from [here](http://scikit-learn.org/stable/auto_examples/ensemble/plot_voting_decision_regions.html)):" 609 | ] 610 | }, 611 | { 612 | "cell_type": "markdown", 613 | "metadata": {}, 614 | "source": [ 615 | "" 616 | ] 617 | }, 618 | { 619 | "cell_type": "markdown", 620 | "metadata": {}, 621 | "source": [ 622 | "## Why would you choose max_depth=3 ?" 623 | ] 624 | }, 625 | { 626 | "cell_type": "markdown", 627 | "metadata": {}, 628 | "source": [ 629 | "The depth of the tree is known as a hyperparameter, which means a parameter we need to decide before we fit the model to the data. If we choose a larger `max_depth`, we'll get a more complex decision boundary. \n", 630 | "\n", 631 | "* If our decision boundary is _too complex_ we can overfit to the data, which means that our model will be describing noise as well as signal.\n", 632 | "\n", 633 | "* If our max_depth is too small, we may be underfitting the data, meaning that our model doesn't contain enough of the signal.\n", 634 | "\n", 635 | "**How do we tell whether we're overfitting or underfitting?** Note: this is also referred to as the bias-variance trade-off and we won't go into details on that here." 636 | ] 637 | }, 638 | { 639 | "cell_type": "markdown", 640 | "metadata": {}, 641 | "source": [ 642 | "One way is to hold out a test set from our training data. We can then fit the model to our training data, make predictions on our test set and see how well our prediction does on the test set. \n", 643 | "\n", 644 | "* You'll now do this: split your original training data into training and test sets:" 645 | ] 646 | }, 647 | { 648 | "cell_type": "code", 649 | "execution_count": 13, 650 | "metadata": {}, 651 | "outputs": [], 652 | "source": [ 653 | "X_train, X_test, y_train, y_test = train_test_split(\n", 654 | " X, y, test_size=0.33, random_state=42, stratify=y)" 655 | ] 656 | }, 657 | { 658 | "cell_type": "markdown", 659 | "metadata": {}, 660 | "source": [ 661 | "* Iterate over values of `max_depth` ranging from 1 to 9 and plot the accuracy of the models on training and test sets:" 662 | ] 663 | }, 664 | { 665 | "cell_type": "code", 666 | "execution_count": 14, 667 | "metadata": {}, 668 | "outputs": [ 669 | { 670 | "data": { 671 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAETCAYAAADZHBoWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3WdgVGXah/FrSnpvhBAgtBQCSGiCFFEBBQIIhBIjCGJZ\n667o2l1kV2QRC6C+oCKiYCEIKATBQpOOgAQIKSShJyGk92TaeT9ER1kIEZLJZJL79wVmzpwz/xzC\n3POc8xSVoigKQgghBKC2dgAhhBCNhxQFIYQQZlIUhBBCmElREEIIYSZFQQghhJkUBSGEEGZSFESD\nOnDgAKNGjQIgKyuLUaNGMWbMGI4cOXLV15eVldGzZ8+rbn/kkUdYvnx5veR66KGHSEtLq5dj/a+/\n/e1vrFu37ob3P3bsGLNmzQIuP3836lrn/euvv+aLL76o0/GFbZOiIKzmwIED+Pr6smHDBnr06HHV\n17i4uDB27FjWrl172fMXL17kl19+ISoqql6yLF26lE6dOtXLsepbWloa2dnZ9Xa8a533w4cPU1lZ\nWW/vJWyP1toBRNO1Zs0ali9fjlqtxsvLizfeeMO8bf/+/SxcuJCSkhKmTp3KypUreeihh4iOjmbI\nkCGXHScmJobJkyfz0ksv4ezsbD72yJEjcXd3Jzc3l1mzZpGXl0dOTg6BgYEsXLgQHx8f7rjjDm66\n6SZSUlIYM2YMq1atYvv27ajVaioqKrjjjjvYuHEjEydOZNGiRZSXl7NgwQLatGlDamoqOp2OWbNm\n0a9fP/Lz83nxxRc5d+4cnp6e+Pn5ERwczJNPPnlZ3uzsbF544QUuXbpEq1atyMvLM29LT0/n9ddf\np7CwEKPRyNSpU5kwYQIHDhxg/vz5+Pv7c/78eRwdHZk3bx7Ozs68++67lJSU8OKLLzJ27FjKy8uZ\nOXMmp06doqqqijlz5tC7d+8rzn9sbCwrV65ErVbj6+vLv/71L7Kzs68477/76aef2LZtG3v27MHR\n0ZH8/Hzi4+O5dOkSoaGhvPXWWyxZsoQff/wRk8lEYGAgr776Kv7+/pSUlPD6669z8uRJ9Ho9t9xy\nC8899xxarXzE2BxFCAtISkpS+vbtq2RmZiqKoijLly9X/vWvfyn79+9XIiMjFUVRlLVr1yoPP/zw\nXzrelClTlLVr1yqKoihGo1G57bbblKSkJEVRFOXTTz9VPvzwQ0VRFMVkMikPPvigsmzZMkVRFOX2\n229X3n//ffNxxowZo+zYsUNRFEX5+uuvlZkzZ5pfd+zYMWX//v1K586dlcTEREVRFGXZsmXKvffe\nqyiKosycOVOZP3++oiiKkp2drQwYMEB59913r8j62GOPKQsWLFAURVHOnDmjREREKGvXrlX0er0y\ncuRIJSEhQVEURSkuLlZGjBihHDlyRNm/f78SFhamHDx4UFEURfnyyy+VcePGXXGefs8XHx9vPq/3\n3XffFRn27t2rDB06VMnLyzMfY8SIEYrJZLrmeX/++eeVjz/+WFEURXn33XeVu+66S9Hr9YqiKMo3\n33yjPPXUU+bHq1atUh588EFFURTlhRdeUFasWKEoiqIYDAbln//8p/LRRx9d9T1E4yZlXFjEvn37\nGDhwIAEBAQBMnz4dqL50cSNiYmL4/PPPGT9+PDt37qRly5aEhYUBMG3aNA4dOsTy5cs5c+YMqamp\ndO/e3bzvn79F33vvvaxevZrBgwcTGxvLc889d8V7tWrVis6dOwMQHh7ON998A8DPP/9s/nuLFi0Y\nPnz4VbPu3buX559/HoCgoCD69u0LwJkzZzh37hwvvfSS+bWVlZUkJibSsWNHwsLCzFmjoqL4z3/+\nQ0FBwRXHb9OmjfnnCwsLu+LSGsCuXbsYOXIk3t7eAIwfP57XX3+dCxcuXDVzTSIiIszf9rdv387x\n48fNl+xMJhMVFRUA7Nixg+PHj7NmzRrzzyVskxQFYREajQaVSmV+XFlZSUZGxg0fb9iwYcydO5cz\nZ86wevVqpkyZYt725ptvcuzYMaKioujbty8GgwHlT1N6/X7JCWD06NG888477N+/n/Lycvr06XPF\nezk6Opr/rlKpzMfSarWXHVetvvotuT/v8/t+AEajEXd3d9avX2/elpubi5ubG/Hx8Wg0msuOoyjK\nFc8B2NnZ1fhef973as8ZDIarZq7Jn8+dyWTiwQcfJCYmBgCdTkdRUZF526JFi+jYsSMAxcXFl/37\nC9shN5qFRfTt25d9+/Zx6dIlAFatWsWbb755w8fTarVMmjSJFStWkJiYyJ133mnetnv3bqZNm8bY\nsWPx8fFh7969GI3Gqx7HycmJMWPG8NJLLxEdHX1dGQYPHmz+JlxQUMCWLVuu+sE3aNAgYmNjAcjM\nzDS3jtq3b4+Dg4O5KPzeCyghIQGA5ORkkpOTger7AT179sTd3R2NRnPdH+YDBw5k06ZN5OfnA7B2\n7Vo8PT0JCgq65n7Xeq+BAweyZs0aSktLAVi0aJG5pTVw4EA+/fRTFEVBp9Px6KOP8vnnn19XZtE4\nSEtBWERoaCjPPvssDz74IAB+fn7mb/o1qelG8+8mTZrEkCFDePjhhy/7tvz4448zf/58Fi9ejEaj\noWfPnpw7d67G9xk/fjyrV69m7Nix1/Uzvfjii7zyyiuMHj0aT09PWrVqdVmr4nevvvoqL774IiNG\njLjsMpe9vT2LFy/m9ddf5+OPP8ZgMPCPf/yDXr16mXsELVy4kIyMDLy9vZk/fz4APXr0YOHChTz+\n+OPcd999fynrgAEDmD59OtOmTcNkMuHt7c2HH35YY+vmd7feeiuvvfbaVbdNnDiR7OxsJk2ahEql\nIiAggHnz5gHw8ssv8/rrrzN69Gj0ej39+/c3/9sL26JSrtbOFKKJUhSFpUuXkpGRwb///e/r2veL\nL74gPDycHj16oNPpiImJ4cknn2Tw4MF1znXgwAFee+01Nm7cWOdjCVEX0lIQzcqQIUPw9vZmyZIl\n171vp06deO211zCZTOj1eoYPH14vBUGIxkRaCkIIIczkRrMQQggzKQpCCCHMbP6eQk5OyQ3v6+Xl\nTEFBeT2msSxbyitZLceW8tpSVrCtvHXN6ufndtXnm3VLQau9cmBQY2ZLeSWr5dhSXlvKCraV11JZ\nm3VREEIIcTkpCkIIIcykKAghhDCToiCEEMJMioIQQggzKQpCCCHMpCgIIYQwk6IghBA2JrUgnU9+\njaXCUP8r3Nn8iObG6L33FpCSkkR+fh6VlZW0ahWIp6cXc+a8UfvOv8nKyuTUqXQGDBjEggXzmTJl\neo0jEP+qN954ndTUFD7+eEWdjiOEsA69yUBc+vdsO78LtUpFX5+bcdJeuaZHXUhRsIAnn5wJwKZN\ncZw9e4ZHH33yuo9x6NAvZGVlMmDAIGbOvHId4etVXl5OUtIJ2rRpy9Gj8XTvHlHnYwohGk5GaRaf\nnviKzLKLtHDy5R8DZuBp8q3392nyRWH1tjQOJl+66jaNRoXReP0zh/cJa8GkOzrdUJ7Fixdx/Pgx\nTCYTMTFTGTz4Dr7+ehU//rgZtVpN167deOSRJ/nyyxXodDq6dr2JlSuX8/LLs/n88x84e/YC+fn5\nZGdf5B//eJo+ffqxa9cOli9fiouLK66uboSGhjF9+uWrXm3d+iN9+vSlZ89erFsXay4Ku3bt4LPP\nPkFRFDp3DueZZ15g9+6fr3hu/PhIvv56A1qtlvffX0hwcAje3j4sXboErVbL2LET0GjUfPvtWgwG\nPY6ODvz73/NwdXXjnXfeICUlCYPBwIMPPsrRo7/SqlVrxo6NoqiokGee+bu0XoSogUkxsfXcTjae\n+gGDYmRQ4C2M6xRJax+fOs39VpMmXxQak927d5KTk8OSJcuoqqrk4Yen07v3zWzatIEXX5xFcHAo\n33yzBrVaTUzMfWRlZdK//0BWrlxuPoaDgyNvv/0u+/bt4euvV9GjR2/effcdPvroM7y8vJg168Wr\nvndc3Le8/PJsWrduwzvvzCcvLxd3dw8WLXqbjz9eiaenJytXfkp2dvYVz+XkXL2oAhgMBj766FMA\nPvtsGW+99S4ODg4sWPBfDh48gEqlpry8nKVLV1BUVMiaNbGMGjWW//7334wdG8UPP2zmrrtG1ut5\nFqKpyKsoYGVSLKmFp3Czd2VK2ES6+na26Hs2+aIw6Y5ONX6r9/Nzs0ilrcmpU2kkJSXyxBMPA2A0\nGsnOvsgrr/yHr75aycWLWXTr1p1rrXsUEhIKgL+/P1VVOvLz83B398DLywuA7t0jKCm5/GdKT0/j\n3LmzLFr0NgAqlYr169cxatTdeHp64enpCcDUqdO5dCn7iuf+15/ztW37x0Lwnp5evPbaLJydnblw\n4Szh4d3JysqkS5duAHh4ePLAA38DQKu149y5s2zZ8gNvvbXor59EIZoBRVH45eKvrD65nkpjJd39\nuhITGoWrvYvF31t6HzWgoKB29O59M++//xGLFi3h9tuHEhAQSFzcNzz33Mu8//5HJCYmkJiYgEql\numpxUKlUlz329vahuLiYoqJCAE6cSLhin7i4b3nkkSd45533eOed91i4cDEbN67H29uHoqJCcxF5\n++03yMnJueK55OQk7O3tycvLRVEU0tJOmo/9+0LwxcVFfPbZMv7zn//y3HMv4+DggKIotGvXnuTk\nxN9eU8zTT1ffXxk9eizLln1IQEAr3N096npqhWgySvVlfJzwOSuSYgGFqZ0n8VDXqQ1SEKAZtBQa\nk1tvvZ0jR37lsccepKKinNtuG4KTkxPt2rXn8ccfxMnJmRYt/AkLC8fe3p4vvviM4ODQax5Tq9Xy\n1FP/5Omnn8TV1Q2TyUiHDh3N23U6Hdu3b2HlytXm51q1CiQoqB0//7ydp556ln/+8++o1WpCQzsT\nHt7liudCQ8O4995pPP30EzV+iLu6utG5czh/+9v9aDQavL09yc3NISbmPg4dOshjjz2I0Whkxozq\nVtLgwXewYMGbvPbavHo6u0LYvhN5KXyRtJoiXQkdPdpzX/hkfJ28GzSDza/RXJfLPw19+aiuasq7\nYsUn3HPPVOzs7Hj11RcZMGAwd9453AoJ/1DbuS0vL+fvf3+EpUs/u6L109Cayu9BY2RLWcF6eXVG\nHd+kfcfOjH1oVBpGd7iLIW1vRa2q+WJOXbPW1MVdWgpNgKOjIw8/PA0HB0cCAwO5/fYh1o50TUeP\nHuHtt+fxwAOPWL0gCGFtZ4vP82niV1wqzyXAxZ/p4ffQ2q2V1fJYrCiYTCZmz55NSkoK9vb2zJkz\nh6CgP25Kfvvttyxbtgw3NzfGjRvHxIkTa91HXN2kSTFMmhRj7Rh/WffuPVixItbaMYSwKqPJyA9n\nt7H5zFZMiok72gxiTIfh2GnsrJrLYkVhy5Yt6HQ6YmNjiY+PZ968eSxZsgSA/Px83n33XdatW4e7\nuzvTp0/nlltuITExscZ9hBCiqbhUnsNnibGcKT6Hl4MnUztPItT7xsY+1TeLFYXDhw8zaNAgACIi\nIkhI+KNXzIULFwgNDTV3e+zWrRtHjx7l2LFjNe4jhBC2TlEUdmceYF1qHDqTnj7+PZgUMhZnOydr\nRzOzWFEoLS3F1dXV/Fij0WAwGNBqtQQFBZGWlkZubi4uLi7s27ePdu3aXXOfmnh5OddpAeu6zifU\n0Gwpr2S1HFvKa0tZwXJ5CyuKWHLwc45kJeBi78xjve6jf9vedTqmJbJarCi4urpSVlZmfmwymcwf\n7h4eHrz44os8+eSTeHp60qVLF7y8vK65T00KCspvOKP0jLAcyWo5tpTXlrKC5fIezUngy+S1lOrL\nCPMKZmr4JDwdPKzae7LBex/17NmT7du3M3LkSOLj4wkJCTFvMxgMJCYm8uWXX6LX67n//vuZOXMm\nRqOxxn1sSV1mSU1NTWH37p3cf/9DV92+f/9esrMvcvfd4+uUMTExgccee5AlS5bRuXOXOh1LCHF1\nFYZK1qRuYH/WIezUWiYG382trW+5ZldTa7NYURg2bBh79uwhOjoaRVGYO3cucXFxlJeXM3nyZADG\njRuHg4MD999/P97e3lfdxxbVZZbU4ODQaw5Y69evf53zQfUo5+joKaxb9zUvvyxFQYj6llZ4mhWJ\nq8irLKCNWyDTw6Np6eJv7Vi1slhRUKvV/Oc//7nsuY4d/xhp+8QTT/DEE0/Uuk9drUvbyJFLx6+6\nTaNWYTRd/9i9Hi26Mb7TqOve79dfD7FkyXvY2dkxZkx1QVy37msMBgMqlYq5c9/i1Kk01q9fy7//\n/V+io8fRrVt3zp07i7e3Nx9+uMRcaMaOjWL27Jdp0cKfjIwLhId34Z//fJHCwkL+/e+X0ev1tGkT\nxK+/HiQ29tvLcpSXl3P48EFWrlzNtGnRFBYW4unpSUFBAa+//iqlpaUoisIrr/wbV1e3K5778cfN\n+Pj4MHbsBM6ePcObb87l/fc/YurUSbRpE4SdnZZZs17hxRdfQaerIi8vl4ceeoxbb72NPXt2sXz5\nUhRFISQkjHvumcJrr/2LpUurZ0mdNetFoqPvJTy863WfXyEaA4PJwHenf+KnszsAGB50ByPaD0Wr\nto1hYbaRsgnR6XQsXfoZUD0S+c03F+Ho6Mj8+a/zyy/78PX1M782MzODRYuW4O/fkkcfncHx45cX\nt/Pnz7Fgwfs4ODgyadLd5OXl8sUXnzFo0G2MHz+Rgwf3c/Dg/isybN36I4MH34GDgwN33DGMjRu/\nZcqU6Xz22TIGDryVsWMncPz4UZKSTpCYeOKK52pSUVHB9OkPEBISRmrqcaKj76Vnz94cP36UZcs+\npH//gSxYMJ+lSz/Dy8ubL774DHt7BxwcHDl9+hQ+Pj5kZWVIQRA2K7P0Ip8lruJCaSa+jt5M6xJN\nB4921o51XZp8URjfaVSN3+qtcRPsz7OKenl5M2fOqzg7O3P27Bm6dr3pstd6eHji798SgBYt/Kmq\nqrpse2Bga5ydqyfJ8vHxRafTcebMGUaMqP55b7qpx1UzxMV9i0aj4emnn6SqqpJLly4RE3Mf586d\nJTJyDADdunWnW7fufP/9piueW7bsQ/Ox/neWlLZt2wHg5+fH55+/y3ffrQdUGAwGiooKcXNzw8ur\nei6Xe++dBlRPjrd5cxz+/i25806ZRlvYHpNiYsf53aw/9T0Gk4EBrW5mfKfROGodrB3tujX5otDY\nqNXV0zqUlpaybNmHrF27EYCZMx+/4gO2tikgrra9Q4eOJCQcJzg4lBMnrrxslp6ehslkMq+BAPDU\nU4+xd+8u2rVrR3JyIsHBIcTH/8revbuv+pybmzt5eXkAnDyZfNVMixYtYvjwUdxyywC++24Dmzdv\nxMvLm9LSUoqLi3B392Dhwje5884R3HbbEL766nM8PDxkgjxhcwoqC1mRtJqTBWm42rlwb5d7ucnP\ndu/TSVGwEhcXF7p1684jj9yPRqPFzc2N3NwcAgLqNufJlCnTee21WWzb9hO+vn5XdOmNi/vmikVt\nRo8ex9q1q5k1aw7//e9/+OGHTahUKl544V84O7tc8ZxKpWLWrBc5cuQwoaFXX/Bj+PDhvPfeIj7/\n/FP8/FpQWFiIWq3m6aef59lnn0KtVhMSEkrnzl1QqVRERPSgoKBAptEWNuXgxSPEnvyGCkMl3XzD\nuTdsAm72rrXv2IjJLKlNrA/1vn278fT0onPnLhw8eICVK5fz7rsfNFDCP1zvuX377Te47bY76NWr\njwVTXV1T/D1oLGwpK/z1vGX6cmJTvuHwpaPYa+yZEDya/gE3N+gEjzY3TkFYR0BAIP/973/QaDSY\nTCaeeuqf1o5Uq5kzH8fDw9MqBUGI65Wcn8rKpNUUVhXR3j2IaeHR+Dn7WDtWvZGi0MS0a9eeDz9c\nXvsLG5EFC/7P2hGEqJXOqGd9+iZ2XNiDWqVmdIfhDGs7GI36xqfZaYykKAghRC3OlVzgsxOruFh+\niZbOLZjWJZq2bq2tHcsipCgIIUQNTIqJH8/u4LvTP2JSTNzWegB3dxyJvZXXPLAkKQpCCHEVuRV5\nfJa4ilNFZ/Gwd2dq+CQ6e9vmfGzXQ4qCEEL8iaIo7Ms6yJrUDVQZdfRq0Z3JoeNwsXO2drQGIUVB\nCCF+U1RZzEfHV3As9wROWkemh99Db/+IZrWWuBQFIUSzV2mo5FhuIt/u+Y6iqhJCPDtyX/hkvBw9\nrR2twUlREEI0O4qikF2ew4m8ZE7kJZNWeBqjYsROrSWq0yhuazOwUa95YElSFIQQzYLOqCe1ML26\nEOQmk1uZb97Wxi2Qrj5h3NV5IHZVLlZMaX1SFIQQTVZeRb65NZBSkI7epAfAUeNID79udPEJI9wn\nFA8HdwD83G1rWg5LkKIghGgyjCYj6UWnSchL5kReChfLss3bAlz86eITRhefMDp6tGtyI5HrixQF\nIYRNK6oq5kReCifykknOP0mlsXrdETu1HV19Ov9WCELxcfK2clLbIEVBCGFTTIqJM8XnzZeFzpdk\nmLf5OnrTN6A3XXzCCPbs0KRHHluKFAUhRKNXqi8jKe8kJ/KSScxPoUxfDoBGpSHMK5guPqF08Qmj\nhbNfsxpTYAlSFIQQjY6iKFwozTS3Bk4XnUOheukXTwcPBrS6mS4+YYR6dcJR62jltE2LFAUhRKNQ\nYagkJT/VXAiKdNW9gFSo6OARZL5JHOgaIK0BC7JYUTCZTMyePZuUlBTs7e2ZM2cOQUF/LFq/YcMG\nli9fjlqtJioqipiYGPR6PS+88AIZGRmo1Wpee+01OnbsaKmIQggrqh5Adqm6p1BuMmlFpzEpJgBc\n7Vy4uWVPuviE0dk7pNnMO9QYWKwobNmyBZ1OR2xsLPHx8cybN48lS5aYt8+fP5+NGzfi7OxMZGQk\nkZGRHDx4EIPBwKpVq9izZw8LFy7kvffes1REIUQD0xl1nCxI/623UBJ5lQXmbW3dWtPFJ4yuvmG0\ndWvdbEcUW5vFisLhw4cZNGgQABERESQkJFy2PTQ0lJKSErRaLYqioFKpaN++PUajEZPJRGlp6RWL\nzgshbE/ubwPIEvKSSC1IR28yAOCkdaRHi5vo+tsAMnf7q68ZLBqWxT51S0tLcXV1NT/WaDQYDAbz\nB31wcDBRUVE4OTkxbNgw3N3dKSsrIyMjgxEjRlBQUMAHH9S+4LyXlzNa7Y0PQqlp8erGypbySlbL\naex5CyuL2X5qLzsPHSCj+KL5+TYeregR0JWeAV0J8e2AthEOIGvs5/bPLJHVYkXB1dWVsrIy82OT\nyWQuCMnJyezYsYOtW7fi7OzMs88+y+bNm4mPj2fgwIE888wzZGVlMW3aNOLi4nBwcKjxfQoKym84\no5+fbQ1pt6W8ktVyGmteRVFILUxnV8Z+juacwKgYsdfY0c23s/kmsbejl/n1BXk3/n/XUhrrub2a\numatqaBYrCj07NmT7du3M3LkSOLj4wkJ+WPFIjc3NxwdHXFwcECj0eDt7U1xcTHu7u7Y2VUPNvHw\n8MBgMGA0Gi0VUQhRD8r05RzIOsTuzANkl+cA0MqlJQMD+zGyy62UFRmsnFBcD4sVhWHDhrFnzx6i\no6NRFIW5c+cSFxdHeXk5kydPZvLkycTExGBnZ0fbtm0ZN24cer2el156ydwTaebMmTg7S68DIRob\nRVE4XXyO3Rn7+fXSUfQmA1q1lj7+PRkU2I8OHkGoVCqc7Z0owza+eYtqKkVRFGuHqIu6Np9spakI\ntpVXslqONfNWGCo5ePEIuzP3k1GaBUALJ18GBPalX0BvXO0un3Zazq3l2NzlIyFE03G+JINdGfs5\nmH0EnVGHWqWmh183Bgb2I8Sro3QfbUKkKAghrkpn1HE4+yi7Mvdztvg8AF4OntwVdDu3BPQxr0Eg\nmhYpCkKIy2SVZbM7Yz8HLh6mwlCJChVdfTozKLAf4T6h0ipo4qQoCCHQmwwcvXScXZn7SSs8DYC7\nvRuD2w2gf8DN+Dh51XIE0VRIURCiGcspz2NP5gH2ZR2kVF89rijMK5iBgf24yTdcVidrhqQoCNHM\nGE1GjuclsTtjP0n5JwFwsXNmaNvBDGjVlxbOvlZOKKxJioIQzURBZSF7Mn9hb+YvFOmKAejo0Y6B\ngf3o4dcNO1mlTCBFQYgmzaSYSMo/ya6M/STkJqGg4KhxZHDr/gxs1Y9Wri2tHVE0MlIUhGiCinUl\n7Ms8yJ7MA+bpqdu6tWZQYD96+UfgoLG3ckLRWElREKKJ+POEdPE5CZgUE/ZqO/oH3MzAwL4Eubex\ndkRhA6QoCGHjfp+Qblfmfi6V5wJ/TEh3c8seOGmdrJxQ2BIpCkLYoD9PSHf40lEMv01Id3PL6gnp\n2rsHyTrG4oZIURDChlQYKvkx7Vc2p/z8lyakE+J6SVEQwkYcz03ki6Q1lOhLZUI6YTFSFIRo5CoN\nVaxLi2NP5i9oVRomdBlJT8+eMiGdsAgpCkI0YqeKzvJZ4ipyK/IIdA1gWng0Ee1DbGbOf2F7pCgI\n0QgZTUY2ndnCD2e2ATCs7W1EdrgTO7X8lxWWJb9hQjQyF8su8VniV5wrycDb0Yv7Ok8m2KuDtWOJ\nZkKKghCNhKIo/Jyxl2/TvkNvMtC3ZS8mhtyNk9bR2tFEMyJFQYhGoLCqiM+TviYp/yQuds5MC7+H\nHi26WTuWaIakKAhhZb9eOsZXyWspN1QQ7hPKlLCJ0rNIWI0UBSGspFxfweqT6zmY/St2ajsmh4xj\nUGA/GYksrMpiRcFkMjF79mxSUlKwt7dnzpw5BAUFmbdv2LCB5cuXo1ariYqKIiYmBoAPP/yQbdu2\nodfrueeee5g4caKlIgphNScL0lmRGEtBVSFBbm2Y1iUaf2c/a8cSwnJFYcuWLeh0OmJjY4mPj2fe\nvHksWbLEvH3+/Pls3LgRZ2dnIiMjiYyMJDk5mSNHjvDVV19RUVHBJ598Yql4QliF3qgn7tQPbDu/\nC5VKxch2QxnebogseykaDYsVhcOHDzNo0CAAIiIiSEhIuGx7aGgoJSUlaLVaFEVBpVKxe/duQkJC\nePzxxyktLeW5556zVDwhGlxGaRafnviKzLKLtHDy5b7waNp7tLV2LCEuY7GiUFpaiqurq/mxRqPB\nYDCg1VZksgSuAAAgAElEQVS/ZXBwMFFRUTg5OTFs2DDc3d0pKCggMzOTDz74gAsXLvDoo4/y/fff\nX/Maq5eXM1rtjX/L8vNzu+F9rcGW8krWaiaTiY0nt7DqeBwGk4E7O97KlIjxOGodbviYcm4tx5by\nWiKrxYqCq6srZWVl5scmk8lcEJKTk9mxYwdbt27F2dmZZ599ls2bN+Pp6UmHDh2wt7enQ4cOODg4\nkJ+fj4+PT43vU1BQfsMZ/fzcbGq6AFvKK1mr5VXksyIplrTC07jZuzIlbCJdfTtTUqCjBN0NHVPO\nreXYUt66Zq2poFhsasWePXuyc+dOAOLj4wkJCTFvc3Nzw9HREQcHBzQaDd7e3hQXF9OrVy927dqF\noihkZ2dTUVGBp6enpSIKYTGKonAg6zBzf1lAWuFpuvt15ZWbn6Grb2drRxPimizWUhg2bBh79uwh\nOjoaRVGYO3cucXFxlJeXM3nyZCZPnkxMTAx2dna0bduWcePGYW9vz8GDB5kwYQKKojBr1iw0GrkB\nJ2xLqa6Mr1LWEZ9zHEeNA1M6T6Jfy17S1VTYBJWiKIq1Q9RFXZtPttJUBNvK21yznshL4fOk1RTr\nSujo0Z77wifj6+RdL8f+XXM9tw3BlvJa6vKRDF4Toh5UGXV8m/YdOzP2oVFpGNtxJEPa3iqL3wib\nU2tRyMnJwc9PBtUIUZMzxef4LHEVl8pzCXDxZ1r4PbRxa2XtWELckFqLwpQpUwgKCmLcuHEMHToU\nOzu7hsglRKNnNBn54ew2Np/ZikkxcUebQYzpMBw7jfwfEbar1qLwww8/cOjQIb755hveeustBg8e\nzLhx4+jWTWZwFM3XpfIcPk1cxdni83g5eDK18yRCvTtZO5YQdfaX7in07t2bbt26sXnzZhYsWMC2\nbdvw9vZm1qxZREREWDqjEI2GoijszjzAutQ4dCY9ffx7MClkLM52TtaOJkS9qLUo7N27l/Xr17N3\n714GDx7MggUL6NmzJykpKTz00EPmsQhCNHVFVSV8kfw1J/KScdY6MaXzRHr5y5ci0bTUWhT+7//+\njwkTJjB79mycnP74NhQaGsqMGTMsGk6IxiI+J4Evk9dQpi8nzCuYqeGT8HTwsHYsIepdrf3lPvzw\nQ8rLy3FyciI7O5tFixZRUVEBwPTp0y2dTwirqjBUsjJpNUuPr0Bn1DEx+G4ej3hACoJosmotCv/8\n5z+5dOkSAC4uLphMJpm9VDQLaYWn+e8vC9ifdYg2boG80Ocf3NZmgIw9EE1arZePfp+1FKonuZs5\ncyZ33323xYMJYS0Gk4HvTv/ET2d3ADA86A5GtB+KVi1jPUXTV+tvuUqlIiUlhdDQUADS09PNs50K\n0dRkll7k08SvyCjNwtfRm2ldoung0c7asYRoMLV+uj///PPMmDEDf39/AAoKCpg/f77FgwnRkEyK\niR3nd7P+1PcYTAb6B9xMVPDoOq15IIQtqrUo9O/fn+3bt3Py5Em0Wq15vQMhmorc8nzei1/OyYI0\nXO1cuLfLvdzk18XasYSwilqLwqlTp/jyyy8pLy9HURRMJhMXLlzgiy++aIh8QliM0WRkT+YvxJ3+\nnnJ9Bd18w7k3bAJu9q617yxEE1VrN4qZM2fi7u5OUlISnTt3Ji8vj+Dg4IbIJoTFnCxI441D7xJ7\n8hsURSEmLIq/dZsmBUE0e7W2FEwmE3//+98xGAyEh4cTHR1NdHR0Q2QTot7lVeSzLu074nOOo0LF\nLQF9uL9PFPpS6WYqBPyFouDk5IROp6Ndu3acOHGC3r17U1VV1RDZhKg3VUYdP57dzpZzP2MwGejg\nEcSE4DEEubfB08mNnFLbWFhFCEurtSiMGTOGRx55hLfeeovJkyeza9cuc08kIRo7RVE4lB3Pt+mb\nKKwqwtPBg7EdR9LbP0KWxxTiKmotCr1792bs2LG4urqycuVKjh8/zoABAxoimxB1cq74Al+nbuBU\n0Rm0ai3Dg+5gWNDt0s1UiGuotSjMnDmTzZs3A9CyZUtatmxp8VBC1EWJrpQN6ZvZl3UIBYUIv66M\n6zSq3tdKFqIpqrUodOrUiffff5/u3bvj6Ohofr5Pnz4WDSbE9TKYDOy4sIfNp7dSaayklUtLJgSP\nkcVvhLgOtRaFwsJCDhw4wIEDB8zPqVQqVqxYYdFgQlyPE3nJrE2NI7s8B2etE5NCxjKwVV80ao21\nowlhU2otCitXrryhA5tMJmbPnk1KSgr29vbMmTOHoKAg8/YNGzawfPly1Go1UVFRxMTEmLfl5eUx\nfvx4PvnkEzp27HhD7y+ah+zyHNamxnEiLxm1Ss3g1v0Z2X4YrnYu1o4mhE2qtShMnTr1qr00amsp\nbNmyBZ1OR2xsLPHx8cybN48lS5aYt8+fP5+NGzfi7OxMZGQkkZGReHh4oNfrmTVr1mWXqoT4XxWG\nCjaf3sr2C7sxKSZCvDoxMXgMrVzlnpcQdVFrUXjyySfNfzcYDGzduhV3d/daD3z48GEGDRoEQERE\nBAkJCZdtDw0NpaSkBK1Wi6Io5sLzxhtvEB0dzUcffXRdP4hoHkyKif1Zh9iQ/j0l+lJ8HL0ZHzyK\n7r5dpIupEPWg1qJw8803X/a4f//+TJw4kX/84x/X3K+0tBRX1z+mDNBoNBgMBvO028HBwURFReHk\n5MSwYcNwd3dn3bp1eHt7M2jQoL9cFLy8nNFqb/y6sZ+f2w3vaw22lLe+sybnpPNp/GpOFZzDQWNP\ndLcxjAodir3Grs7HtqXzCraV15aygm3ltUTWv7TIzu8URSEtLY3CwsJaD+zq6kpZWZn5sclkMheE\n5ORkduzYwdatW3F2dubZZ59l8+bNrF27FpVKxb59+0hKSuL5559nyZIl+Pn51fg+BQXltWapiZ+f\nGzk5tjOS1Zby1mfWgspCvk3fxKHseAD6+PdgbKeReDp4UJRfCVTW6fi2dF7BtvLaUlawrbx1zVpT\nQam1KEyZMsX8d5VKhbe3N6+88kqtb9izZ0+2b9/OyJEjiY+PJyQkxLzNzc0NR0dHHBwc0Gg0eHt7\nU1xcfNnMq1OnTmX27NnXLAiiadMZ9Ww9t5Mfz25DZ9LT1q01E0PGyKI3QlhQrUVh27Zt6PV67Ozs\n0Ov16PV6nJ2daz3wsGHD2LNnD9HR0SiKwty5c4mLi6O8vJzJkyczefJkYmJisLOzo23btowbN65e\nfiBh+xRFIT4ngW/SNpJXWYCbvSuTOoylb0AvWR9ZCAtTKYqiXOsFmzdvZvHixcTFxXHu3DmmTp3K\nv/71L4YOHdpQGa+prs0nW2kqgm3lvdGsGaVZrDm5gZOF6WhUGm5vM5Dh7YbgpLVcbzRbOq9gW3lt\nKSvYVl6rXT5avHgxy5cvB6Bt27asW7eOGTNmNJqiIJqGUn0Z3536kV0Z+1FQ6OrTmfHBo/B3lsuH\nQjSkWouCXq/H19fX/NjHx4daGhdC/GVGk5Fdmfv57tSPlBsq8Hf2Iyp4DF18Qq0dTYhmqdai0KtX\nL55++mlGjx4NwKZNm4iIiLB4MNH0JeensiZ1A1ll2ThpHYnqNIrBrQfI1BRCWFGtReHVV19l5cqV\nxMbGotVq6dOnD/fcc09DZBNNVG5FHuvSvuNoTgIqVAxodTOjOwyXpTCFaAT+0uUjR0dHPvjgA7Kz\ns1m1ahVGo7EhsokmptJQxY9nt7P1/E4MJgMdPdoxMeRu2rgFWjuaEOI3tRaFZ555htDQ6uu7Li4u\nmEwmnnvuOd577z2LhxNNg6IoHMw+wrdpmyjSFePl4Mm4TiPp2aK7TE0hRCPzl0Y0f/DBB0D1KOWZ\nM2dy9913WzyYaBrOFp/n65MbOF18Fju1lhHthnJn0G3Ya+ytHU0IcRW1FgWVSkVKSoq5tZCenm6e\nrkKImhRWFLEyaQ37sw4B0KPFTYzrGImPk5eVkwkhrqXWT/fnn3+eGTNm4O/vD0BBQQFvvvmmxYMJ\n26QoCj9n7GXjqR+oMFQS6BrAxOAxBHvJuhhC2IJai0L//v3Zvn07ycnJ7Ny5k127dvHQQw9x5MiR\nhsgnbIjRZGR16np2Z+zHzd6F6NDxDGh1s0xNIYQNqbUonD9/ntjYWNatW0dxcTGPPPLIZYvlCAHV\nPYs+OfEFJ/KSCXQN4F+3/x1jmYw3EMLW1PgV7qeffuKBBx5g4sSJFBUV8eabb9KiRQueeOIJvL29\nGzKjaOQKq4pY+OsSTuQlE+4dytM9H8Xb2dPasYQQN6DGlsKTTz7J8OHDiY2NNa+tLN0Hxf/KLL3I\n4qOfUFBVyIBWfZkcMlZGJAthw2osChs2bOCbb74hJiaGwMBAIiMjZdCauExyfipLj6+k0ljJ3R1G\nMCzoNvniIISNq/HyUUhICM8//zw7d+7k4Ycf5pdffiE3N5eHH36Yn3/+uSEzikZof9Yh/u/oMgwm\nPfeH38Od7W6XgiBEE1DrjWaNRsPQoUMZOnQo+fn5rF+/nrfffpvBgwc3RD7RyCiKwqYzW9h0+iec\ntU483G0awV4drB1LCFFPrmsUmre3N/fffz/333+/pfKIRsxgMvBV8jr2XzyEj6M3j3WfQUuXFtaO\nJYSoRzI0WfwlFYYKlh5fSUpBGkHubXjkpum421995SYhhO2SoiBqlV9ZwOKjn5BVls1Nvl24v8s9\nMneREE2UFAVxTedKLrDk6HKKdSXc1noAUcGjZYSyEE2YFAVRo4TcJJad+AK9Uc+E4DHc3magtSMJ\nISxMioK4ql0Z+4hN+RatWstD3abS3a+rtSMJIRqAFAVxGZNiYkP69/x0bgeudi48ctP9tPdoa+1Y\nQogGYrGiYDKZmD17NikpKdjb2zNnzhzzdBlQPWJ6+fLlqNVqoqKiiImJQa/X89JLL5GRkYFOp+PR\nRx9lyJAhlooo/ofeqGdl0moOXzqKv7Mfj3Wfga+Tj7VjCSEakMWKwpYtW9DpdMTGxhIfH8+8efMu\nm111/vz5bNy4EWdnZyIjI4mMjGTLli14enry5ptvUlhYyNixY6UoNJBSfRkfHfuM9KIzdPRoz99u\nmoaLnbO1YwkhGpjFisLhw4cZNGgQABERESQkJFy2PTQ0lJKSErRaLYqioFKpGD58OHfddRdQPXJW\no6l9YjUvL2e02hufgM3Pz7b62lsi78XSHBYeXEJWySX6t+3NYzffh73Grs7HtaVza0tZwbby2lJW\nsK28lshqsaJQWlqKq6ur+bFGo8FgMJiX8gwODiYqKgonJyeGDRuGu7v7Zfv+/e9/56mnnqr1fQoK\nym84o5+fGzk5JTe8f0OzRN7TRWf54NinlOrLuDPodkZ3uIui/Eqgsk7HtaVza0tZwbby2lJWsK28\ndc1aU0GxWIdzV1dXysrKzI9NJpO5ICQnJ7Njxw62bt3Ktm3byM/PZ/PmzQBkZWVx3333cffddzN6\n9GhLxRNAfE4Ci458SLmhgntCx3N3xxEyBkGIZs5inwA9e/Zk586dAMTHxxMSEmLe5ubmhqOjIw4O\nDmg0Gry9vSkuLiY3N5cZM2bw7LPPMmHCBEtFa/YURWHbuZ18fHwlKpWaR26azsDAftaOJYRoBCx2\n+WjYsGHs2bOH6OhoFEVh7ty5xMXFUV5ezuTJk5k8eTIxMTHY2dnRtm1bxo0bx/z58ykuLmbx4sUs\nXrwYgKVLl+Lo6GipmM2OSTGxJjWOny/swcPejUe7z6CNW6C1YwkhGgmVoiiKtUPURV2vqdnK9UOo\ne94qo47lJ77keG4irVxa8lj3GXg5WmbZTFs6t7aUFWwrry1lBdvKa6l7CjJ4rZko1pXwwdFPOVty\nnjCvYB7sNgUnrZO1YwkhGhkpCs3AxbJsFh/9hLzKAvq17E1MWJSsoyyEuCopCk1cakE6Hx5fQYWh\nglHt72R4uyGybKYQokZSFJqwgxeP8HnSahTgvs6T6RvQy9qRhBCNnBSFJkhRFH44u524U9/jpHXk\noa73EerdydqxhBA2QIpCE2M0GVmV8g17s37By8GTx7rPoJVrS2vHEkLYCCkKTUiloZKPEz4nKf8k\nbdwCefSm+/FwcK99RyGE+I0UhSaioLKQJceWk1GaRVefMO7vci+OWgdrxxJC2BgpCk1ARmkWi49+\nQmFVEYMCb2Fi8BjpciqEuCFSFGxcUt5JPk5YSaWxinGdIhnS5lbpciqEuGFSFGzY3syDfJWyFrVK\nzQNdp9CzxU3WjiSEsHFSFGyQoihsPPUD35/dhoudM3/rNp2Onu2sHUsI0QRIUbAxepOBL5K+5mD2\nEXydfHi8+wxaOPtZO5YQoomQomBDSnVl/F/8x6QWnqK9exB/u2kabvaute8ohBB/kRQFG5FXkc+H\nhz4lo/giEX7dmBYeXS/rKAshxJ9JUWjkFEXhWG4iX6WspURXypA2tzK200hZNlMIYRFSFBqxrLJs\n1pzcQHJBKmqVmhk9J9PLUya1E0JYjhSFRqhcX853p39iZ8Y+TIqJcO9QooJH061dR5tZFUoIYZuk\nKDQiJsXEnswDxJ36gTJ9OS2cfIkKHk0XnzAZkCZsSqXOwM6jWRxNz6OySm/tOH+Zh5sjbo5afNwd\n8XZ3xMfdAW8PR7zdHLDTNo9ZAqQoNBInC9JZk7qBjNIsHDUOjOsUyW2tB6BVyz+RsB2lFXq2HDrP\n1sMXKKs0oFar0Kpt4wuNApzOqrkl7u5iX10k3B0vLxq/PXZztmsSX97kE8fK8ioK+CZtI0dyjqNC\nxS0BfRjdYTgeDldfVFuIxii/uJLvfznHzqOZ6PQmXJ3sGDuwPRPvDKOqvMra8f4yNw8nUk/nkVdc\nSX5RZfWfxVXkFVf//fylshoLh1aj/p+i4VD9p8dvj90csLdr/K0NKQpWUmXU8dPZ7Ww59zN6k4H2\n7kFMDBlDkHsba0cT4i/LzC1j84Gz7D+RjdGk4O3uwF2D23LrTa1wsNfg7mJPjg0VBUd7LS29nWnp\n7XzV7SZFoaRcT35xJXlFldV/Flf99mf146SzBTUe383Z7oqi8edWh5uLPWortzYsVhRMJhOzZ88m\nJSUFe3t75syZQ1BQkHn7hg0bWL58OWq1mqioKGJiYmrdpylQFIXDl47yTdp3FFYV4WHvzthOI+nj\n36NJND1F85CeUcSm/Wc5kpoLQICPMyP7BdE33B+tpul2l1arVHi42OPhYk/7gKuvVaLTGyko+aN1\n8XtL4/cCkplbxtmLNbU2VHi7/amV4e6Ij8efHrs54mBv2daGxYrCli1b0Ol0xMbGEh8fz7x581iy\nZIl5+/z589m4cSPOzs5ERkYSGRnJgQMHrrmPrTtXcoE1JzeQXnQGrVrL8KA7GBZ0u6x7IGyCoiic\nOJ3Ppv1nST5XCECHVu5E9guie7Cv1b/hNhb2dhr8vZ3xr6G1oSgKJRW/tzYub2X83ur4/fxejauT\nHd7uDnRs7cmEWzvg5FC/H+MWKwqHDx9m0KBBAERERJCQkHDZ9tDQUEpKStBqtSiKgkqlqnWfq/Hy\nckZbh14Bfn6Wv3ZfVFnMV8c3sP3UXhQUbm4dwdTu4/F3vf45ixoib32RrJbTkHmNRhN7j2WxZlsq\npzKLAOgZ1oIJdwTTtYNPrS1cObdXagF0vMZ2vcFIbmElOYXl5BRUkFNYUf1nQTk5hRVczK/gYl45\n99wZhp+vS71ms1hRKC0txdX1j3l5NBoNBoMBrbb6LYODg4mKisLJyYlhw4bh7u5e6z5XU1BQfsMZ\n/fzcLNrv32Ay8POFvWw6vYVKYyWtXFoSFTyaMO9gqICciut7b0vnrU+S1XIaKq/eYGTP8Yt8f+Ac\nlworUKng5s4tGNkviLb+1R+cubmljSJrfWlMebVAgIcjAR6OgNdl2xRFwdvHlYL8shvOW1Pxs1hR\ncHV1payszPzYZDKZP9yTk5PZsWMHW7duxdnZmWeffZbNmzdfcx9bcyIvmbWpcWSX5+CsdWJSyFgG\ntuorK6KJRq+80sCO+Ax+PHie4jIdWo2a23oEMvzmNrTwuvolEdGwVCqVxe7dWOwTt2fPnmzfvp2R\nI0cSHx9PSEiIeZubmxuOjo44ODig0Wjw9vamuLj4mvvYiuzyHNalxpGQl4wKFbcG9ieywzBc7eq3\niSdEfSsqreKnQxfYfuQCFVVGnBw0jOwXxLDerfFwlftezYXFisKwYcPYs2cP0dHRKIrC3LlziYuL\no7y8nMmTJzN58mRiYmKws7Ojbdu2jBs3Dq1We8U+tqLCUMnmM1vYcX4PRsVIiGdHJoSMIdA1wNrR\nGpRJUdh9LIvswkoqKm1jJKuriz1+7g6EtPakhZdTs+sFdqmgnO9/Oc/uY1kYjCbcXeyJvKUdt0UE\n4uxomy11ceNUiqIo1g5RF3W5/lcf1w9Nion9WYfZkL6ZEn0pPo5ejO80iu5+Xev9w6UxXe+8moKS\nKpZ9l0jimZr7aTd27s52BLf2JLi1B8FtPGnTwrXRdbGsr9+Dc9klbD5wjl+SslEU8PN0ZETfIAZ0\na1lvUzo09t/Z/2VLeeuatcHvKTQHp4rO8PXJ9ZwrycBebcfoDndxR5tbm+U6B4eSL/HZ98mUVRq4\nqaMPM8Z0pbSk0tqx/hInFwd+TbxI6oVCTp4v5PDJHA6fzAHA3k5Nx1Ye1UWitScdWrnXexfAhqQo\nCifPF7Jp/zmOn8oDoE0LVyJvCaJXqB8adeMqgKLh2e5vtxUVVBayPn0zB7OPANDHvwdjO43E08HD\nyskaXkWVgS+3nGTP8YvYa9VMvTOE23oE0qKFu0194/Jy0jKkV2sURSGvqJLUC0WkXigk9UIRSWcL\nzKNUVSpo28LN3JIIbu2Bpw1cbzcpCkfTctm0/yzpGcUAhLbxZOQtQXRt793sLpmJmklRuA56o56t\n53fyw5lt6Ex62roFMjHkbjp4tLN2NKtIvVDI0rhEcosqCfJ34+Ex4QT42PYNdZVKha+nE76eTtzS\ntSVQPclbWsYfReJMVjFns0vYcvgCUH3ZxXzJqbUnAT7OjeZD1mA0cSAxm80HzpGZW92zr0ewLyP6\nBdEpsPl9iRG1k6LwFyiKwtGcBNalbSSvsgA3O1cmhoylX0CvZrkCmsFoYsOeM3y37wwoEHlLEHcP\nbN/orr3XF1cnOyI6+RLRyReo7r9/OqvEXCTSLhSxN+EiexMuml/fKdCDkN9aEkEt3Rr83FTpjOw8\nlskPv5wjv7gKjVrFgK4tGd4viMB6HuwkmhYpCrXIKM1iTWocJwvS0Kg0DGl7KyPaDcFJ62TtaFZx\nMb+cjzac4MzFEnzcHXlodDghbTytHatB2Wk1hLTxNP/cJkUhM7fsj0tO54uIT8slPi33t9er6RDg\nTnCb6pZEx1YeFuvVU1qhZ9vhC2w5fIHSCj32dmqG9m7NXX3a4uPhaJH3FE2LFIUalOrL+O7UT+zK\n2IeCQlefMMYHj8bf+fqnpmgKFEXh5/hMVm1LRac30b9rS2KGhkiXRaonSWvt50prP1du7xEIVE8l\n/ef7EifPF5JyvhA4iwpo3cLVfLkpuLUH3u51+8DOL67kx4Pn+Tk+kyq9ERdHLWMGtGNIr9a4OdvX\n/YcUzYb8j/4fRpOR3ZkH+O7Uj5QZymnh7MuE4DF08QmzdjSrKS7TsXxTEkfT83Bx1DJjZGdu7uxv\n7ViNmre7I33DHekbXn2eyisNpGf+0ZI4lVXM+UulbPs1AwAfd0dzSyK4tQetfF3+0gRzWXllbN5/\njn0nLmI0KXi5OTDu1g7c2j0AR3v57y2un/zW/ElKfhprUjeQWXYRR40j4zuNYnDr/s169bOjabks\n35REcbmezkFePBDZuc7fapsjZ0ct3Tr40K2DD1B9X+bsxRJzKyIto4j9J7LZfyK7+vUOWjq1/qMr\nbPsAt8vGDpzKLK6euvpkDgrVU1eP6BtEvy5Ne+pqYXnN99PuT3Ir8lmXtpGjOQmoUNE/4GZGd7wL\nd3vbmt2xPlXpjazelsb2IxloNSqi7+jE0D5tZHrkeqLVqOkY6EHHQA+G922LSVG4mFduvtyUeqGQ\nY+l5HEvP++31KtoFuNMp0IPMvHKO/Xa/on2AO5G3BBEhU1eLetKsi0KlvpIN6d+z9fxODCYDHTza\nMTF4DG3dW1s7mlWdzipmaVwiF/PLCfRz4eHRXWjTwrX2HcUNU6tUtPJ1oZWvC4Mjqu9LFJRUVXeF\nPV9dKNIzqns6AXRp783IfkGEtfVsNN1fRdPQbItCYl4KX+5bQ0FFEZ4OHozrOJJe/hHN+j+YyaSw\naf9Z1u8+jdGkcGefNkQN7lBvUx6I6+Pl5kCfsBb0CWsBVA8UPJ1VTFBrL1y0zff3VFhWsy0K287v\nolRXzoh2QxgWdDsOmubdQyOnsIKlGxNJu1CEp6s9D4wKp0s7b2vHEn/i5KAlvJ23Tc3PI2xPsy0K\nD3S9Fy9vZyqLbXo+wDpTFIW9CRf54qeTVOqM9A71477hYbg6Nb/5m4QQzbgoOGmdcHNwpZLm+42r\ntELPih9SOJR8CUd7DQ9EdqZ/15bN+hKaEM1dsy0Kzd2JM/ks25hIYamOTq09eGhUOH6ezXOUthDi\nD1IUmhm9wcjan0/x48HzaNQqxt3agZH92sqUyUIIQIpCs3LhUikfxZ3gQk4Z/t7OPDw6nPYB7taO\nJYRoRKQoNAMmRWHLwfOs+Tkdg1Hhth6BTL69Ew720tVUCHG5ZlsUKnUGcgsrUBSlSd9YzS+uZNl3\nSSSdLcDN2Y77R3Y2TwEthBD/q9kWhQ/Wn+BYeh5ebg6XzVbZ2s8VtbppFImDyZdY8dsSmd07+jB9\nZGc8XJr3eAwhxLU126IwrHcbXJztSUjP5ZekS/ySdAkAJwcNHQOri0RIaw/aB7hjb2dbl1kqqgx8\n8dNJ9iZUL5F5312hDI5o1aRbREKI+tFsi0KX9t7cdnMQly4Vk11QYZ5fJvVCIQmn8kk4lQ+ARq2i\nXYCbuSXRKdCjUc9Pf/J8IR9vrF4is11LNx4abftLZAohGo7FioLJZGL27NmkpKRgb2/PnDlzCAoK\nAtydj28AAA2BSURBVCAnJ4enn37a/NqkpCSeeeYZJkyYwAsvvEBGRgZqtZrXXnuNjh07WioiUL0m\nb0tvZ1p6OzOoeysAisp0pP1ptsrTmSWkZxTz/YHqfQJ8nP9Yk7eNJ34ejlb/Fm4wmli/+zSb9p8F\nYFT/dowZ0E6mURZCXBeLFYUtW7ag0+mIjY0lPj6eefPmsWTJEgD8/PxYuXIlAEeOHGHBggVMmjSJ\n7du3YzAYWLVqFXv27GHhwoW89957lopYIw8Xe3qFtqBXaPVEZJU6A6czi81FIi2zmJ1HM9l5NLP6\n9a725iIR0tqT1i1cGrTff1ZeGR/FJXL2Ygm+HtVLZAa3bl5LZAoh6ofFisLhw4cZNGgQ/H979x8U\ndb3vcfy5AgLbxg+v0rlewSDFX5306Dk3LHQgf6eJouaPJjS7OjmmaeYoZIxKoyk2OVKK5vXqJdNp\nQgWnEazR46Qmec5I5gkmzTVhIX4oCssC7o/P/WPpm17kRwrtrr4ff7G7X7/fF9/BfX8/38/u+wMM\nGjSICxcuNNlGKUVKSgqbNm3Cy8uL8PBw7HY7DocDs9mMt3fr8YKD9XjfRxfPbt3atmZC6H8EM/xv\nzp/tdgfG0mp+MF7jB+N1frh8jX8UlvOPwt/mJfr07EL/8H+jf3gX+oQF4+fbPqf69rxKKY58c4X/\nzv4Xt6x2RvwtlPmT/ozezz36FrX13LoDT8oKnpXXk7KCZ+XtiKwdVhTMZjMGw289+L28vLDZbHe8\n0R87dozevXsTEREBgF6vx2QyMW7cOKqqqkhPT2/1OFVVlnvOeD/dJgN9vRjaN4ShfUNQSlFxs75x\nXsJ52yn/xwryf6wAnL3ye/7J0DiacI4oAu7hU0C3573ZuETm+cYlMv9r/JP8tW8ItTX11NbU39Pv\n1J48qZOnJ2UFz8rrSVnBs/Leb9bmCkqHFQWDwUBtba322OFwNLnyz87OJiEhQXu8e/duoqOjWbZs\nGaWlpcyePZvDhw/j6+vbUTHbhU6nIyTIn5Agf579878DUG25xU/FN7VbTld+qcFYWsPRs0UAPNZF\n3/hRWOctp5Bg/zbPS+RfrOR/jhRQY7HS//FgXh3fn+BH3fscCSE8Q4cVhcGDB3P8+HGef/558vPz\niYyMbLLNhQsXGDx4sPY4ICAAHx/nrY/AwEBsNht2u72jInaoAH1n/hLZjb9EdgOcy1teKa3mx8Yi\n8ZPpJifPl3LyfGnj9j53TF6HhhiaTBLXN9j435xC/p5fgrdXJ2aM6M3Iv/aQZRiFEO2mw4rCqFGj\nOHXqFDNmzEApxbp16zh8+DAWi4Xp06dz/fp1DAbDHVfHc+bMISkpiVmzZmG1Wlm6dCl6vb6jIv6h\nfH286BMWTJ+wYMC5yllxhVkbSVwsvsk/f6zgn423nDr7dOKJ7r8t3O7j3YmMo3mYKmrp0bhEZg9Z\nIlMI0c50SimPXmXmfu+pucv9Q6UU16rrG4uEs1CYKmqbbDfmP0OJH+7+S2S607ltjSdlBc/K60lZ\nwbPyetycgvh9dDodXQP96Rroz9ABfwKci+D8ZHIWifIqC5NietM92M/FSYUQDzIpCm7M4O/DwF5d\nGdjYwM6TrmKEEJ5Jvu4qhBBCI0VBCCGERoqCEEIIjRQFIYQQGikKQgghNFIUhBBCaKQoCCGE0EhR\nEEIIofH4NhdCCCHaj4wUhBBCaKQoCCGE0EhREEIIoZGiIIQQQiNFQQghhEaKghBCCI0UBSGEEJqH\ndpGd7777jk2bNpGRkeHqKC2yWq0kJSVhMpm4desWCxYsYMSIEa6O1Sy73c6qVaswGo3odDrWrFlD\nZGSkq2O16Nq1a8THx7Nr1y6eeOIJV8dp0eTJkzEYnGtz9+jRg/Xr17s4UfO2b9/OsWPHsFqtzJw5\nk2nTprk6UrMOHDjAwYMHAWhoaKCgoIBTp04REBDg4mRNWa1WVq5ciclkolOnTqSkpLTr3+1DWRQ+\n/vhjsrOz8ff3d3WUVmVnZxMUFERqaio3btxg0qRJbl0Ujh8/DsD+/fvJy8vjgw8+YNu2bS5O1Tyr\n1UpycjJ+fu6/zGlDQwNKKbe/kAHIy8vj3Llz7Nu3j7q6Onbt2uXqSC2Kj48nPj4egDVr1jBlyhS3\nLAgAJ06cwGazsX//fk6dOsXmzZtJS0trt/0/lLePwsLC2vUkdqSxY8fyxhtvAKCUwsvLy8WJWjZy\n5EhSUlIAKCkpcdv/WL/asGEDM2bMICQkxNVRWlVYWEhdXR1z584lISGB/Px8V0dq1smTJ4mMjGTh\nwoW89tprxMTEuDpSm3z//fdcunSJ6dOnuzpKs8LDw7Hb7TgcDsxmM97e7Xtt/1COFMaMGUNxcbGr\nY7TJI488AoDZbGbx4sUsWbLExYla5+3tzYoVK/jyyy/ZsmWLq+M068CBA3Tp0oVhw4axY8cOV8dp\nlZ+fH6+++irTpk3jypUrzJs3j5ycnHZ/U2gPVVVVlJSUkJ6eTnFxMQsWLCAnJwedTufqaC3avn07\nCxcudHWMFun1ekwmE+PGjaOqqor09PR23f9DOVLwNKWlpSQkJBAXF8cLL7zg6jhtsmHDBnJzc3nn\nnXewWCyujnNXmZmZnD59mpdffpmCggJWrFhBRUWFq2M1Kzw8nIkTJ6LT6QgPDycoKMht8wYFBREd\nHU3nzp2JiIjA19eX69evuzpWi6qrqzEajURFRbk6Sot2795NdHQ0ubm5ZGVlsXLlShoaGtpt/1IU\n3FxlZSVz585l+fLlTJ061dVxWnXo0CG2b98OgL+/Pzqdjk6d3PPPbO/evXzyySdkZGTQr18/NmzY\nQLdu3Vwdq1mff/457733HgBlZWWYzWa3zTtkyBC+/vprlFKUlZVRV1dHUFCQq2O16OzZswwdOtTV\nMVoVEBDAo48+CkBgYCA2mw273d5u+3e/cae4Q3p6OtXV1WzdupWtW7cCzolyd50YHT16NImJibz0\n0kvYbDaSkpLcNqunmTp1KomJicycOROdTse6devc8tYRQGxsLGfPnmXq1KkopUhOTnb7+TCj0UiP\nHj1cHaNVc+bMISkpiVmzZmG1Wlm6dCl6vb7d9i+ts4UQQmjcc1wvhBDCJaQoCCGE0EhREEIIoZGi\nIIQQQiNFQQghhEaKgnhgFRcX8+STTxIXF0dcXBxjxoxh8eLFVFZW3vM+ExMTMZlMADz33HP3/M34\nkpISxo4dS3x8PGazWXv+/PnzpKam3nM+Ie6XFAXxQAsJCSErK4usrCxycnLo2bMnixcvvuf95eXl\n0R6f4v72228ZMGAABw4c0LqeAly6dIlr167d9/6FuFfu+c0XITqATqdj0aJFPPvssxQWFtK3b192\n7NjBkSNHsNvtREdHs3z5ckwmEwsWLCA0NJSff/6Z7t27k5qaymeffUZ5eTnz589n7969AHz00UcU\nFBRQV1fHxo0bGThw4B3HNBqNJCcnc+PGDfR6PW+//TY+Pj5s3rwZi8VCcnIya9euBZxtFrZs2YLF\nYmHbtm089thjHDx4kBs3bhAbG0tCQgLJycn88ssv6HQ6li1bxjPPPENtbS1r167l4sWL2O125s2b\nx4QJE/7w8yseEEqIB1RRUZGKjY1t8vyUKVPUF198oU6cOKEWLVqkbDabstvt6s0331SHDh1SRUVF\nKjIyUp05c0YppdT69etVSkqKUkqp2NhYVVRUpP28c+dOpZRSGRkZatGiRXc9Vm5urlJKqXPnzqmY\nmBjV0NCgMjMz1YoVK5psf/vzmZmZatSoUcpqtSqllFqyZIn66quvlFJKlZWVqREjRqiamhqVmpqq\n9uzZo5RSqqamRo0fP15dvXr13k+ceKjJSEE8dHQ6HX5+fnzzzTecP39e66NfX19P9+7dGTJkCI8/\n/jhPP/00AJMmTeKtt966675GjhwJQK9evcjNzb3jtdraWq5evcro0aMBGDRoEIGBgVy+fLnNWfv3\n76+1sjh9+jSXL1/WOs/abDaKioo4ffo09fX1ZGZmAmCxWLh48SKhoaFtPo4Qv5KiIB4qt27dwmg0\n0qtXL86cOcPs2bN55ZVXAOftGy8vL6qqqu7oKaRaWMfi1+fv1hJaKdVk/kEp9bual93eN8rhcLBn\nzx6tsVxZWRldu3bF4XCQmprKgAEDAGcTxcDAwDYfQ4jbyUSzeGg4HA7S0tIYOHAgYWFhREVFkZWV\nRW1tLTabjYULF2pX+0ajkYKCAsDZYnv48OGAswi09U3dYDAQGhrK0aNHAcjPz6eyspLevXs3+2+8\nvLyw2Wx3fS0qKopPP/0UcE5IT5w4kbq6OqKioti3bx8A5eXlTJw4kdLS0jZlFOL/k5GCeKCVl5cT\nFxcHOItCv379eP/99wHnR0oLCwt58cUXsdvtDBs2jMmTJ2MymQgMDGTLli1cvXqVPn368O677wIQ\nExPD/Pnz2blzZ5uOn5qayurVq0lLS8PHx4e0tDQ6d+7c7PZPPfUUH374IZs2bSIiIuKO11atWkVy\ncrK2psbGjRsxGAy8/vrrrF69mgkTJmC321m+fDlhYWG/+1wJAdIlVYgmiouLSUhI4NixY66OIsQf\nTm4fCSGE0MhIQQghhEZGCkIIITRSFIQQQmikKAghhNBIURBCCKGRoiCEEELzfyaVd3zAQhgZAAAA\nAElFTkSuQmCC\n", 672 | "text/plain": [ 673 | "" 674 | ] 675 | }, 676 | "metadata": {}, 677 | "output_type": "display_data" 678 | } 679 | ], 680 | "source": [ 681 | "# Setup arrays to store train and test accuracies\n", 682 | "dep = np.arange(1, 9)\n", 683 | "train_accuracy = np.empty(len(dep))\n", 684 | "test_accuracy = np.empty(len(dep))\n", 685 | "\n", 686 | "# Loop over different values of k\n", 687 | "for i, k in enumerate(dep):\n", 688 | " # Setup a k-NN Classifier with k neighbors: knn\n", 689 | " clf = tree.DecisionTreeClassifier(max_depth=k)\n", 690 | "\n", 691 | " # Fit the classifier to the training data\n", 692 | " clf.fit(X_train, y_train)\n", 693 | " \n", 694 | " #Compute accuracy on the training set\n", 695 | " train_accuracy[i] = clf.score(X_train, y_train)\n", 696 | "\n", 697 | " #Compute accuracy on the testing set\n", 698 | " test_accuracy[i] = clf.score(X_test, y_test)\n", 699 | "\n", 700 | "# Generate plot\n", 701 | "plt.title('clf: Varying depth of tree')\n", 702 | "plt.plot(dep, test_accuracy, label = 'Testing Accuracy')\n", 703 | "plt.plot(dep, train_accuracy, label = 'Training Accuracy')\n", 704 | "plt.legend()\n", 705 | "plt.xlabel('Depth of tree')\n", 706 | "plt.ylabel('Accuracy')\n", 707 | "plt.show()" 708 | ] 709 | }, 710 | { 711 | "cell_type": "markdown", 712 | "metadata": {}, 713 | "source": [ 714 | "**Recap:**\n", 715 | "* You've got your data in a form to build first machine learning model.\n", 716 | "* You've built your first machine learning model: a decision tree classifier.\n", 717 | "* You've learnt about `train_test_split` and how it helps us to choose ML model hyperparameters.\n", 718 | "\n", 719 | "**Up next:** Engineer some new features and build some new models! Open the notebook `3-titanic_feature_engineering_ML.ipynb`.\n", 720 | "\n", 721 | "For more on `scikit-learn`, check out our [Supervised Learning with scikit-learn course](https://www.datacamp.com/courses/supervised-learning-with-scikit-learn). \n", 722 | "\n", 723 | "If you're enoying this session, retweet or share on FB now and follow us on Twitter: [@hugobowne](https://twitter.com/hugobowne) & [@DataCamp](https://twitter.com/datacamp)." 724 | ] 725 | } 726 | ], 727 | "metadata": { 728 | "kernelspec": { 729 | "display_name": "Python 3", 730 | "language": "python", 731 | "name": "python3" 732 | }, 733 | "language_info": { 734 | "codemirror_mode": { 735 | "name": "ipython", 736 | "version": 3 737 | }, 738 | "file_extension": ".py", 739 | "mimetype": "text/x-python", 740 | "name": "python", 741 | "nbconvert_exporter": "python", 742 | "pygments_lexer": "ipython3", 743 | "version": "3.6.3" 744 | } 745 | }, 746 | "nbformat": 4, 747 | "nbformat_minor": 2 748 | } 749 | -------------------------------------------------------------------------------- /data/train.csv: -------------------------------------------------------------------------------- 1 | PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked 2 | 1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S 3 | 2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C 4 | 3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S 5 | 4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S 6 | 5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S 7 | 6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q 8 | 7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S 9 | 8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S 10 | 9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S 11 | 10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C 12 | 11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S 13 | 12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S 14 | 13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S 15 | 14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S 16 | 15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S 17 | 16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S 18 | 17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q 19 | 18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S 20 | 19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S 21 | 20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C 22 | 21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S 23 | 22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S 24 | 23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q 25 | 24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S 26 | 25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S 27 | 26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S 28 | 27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C 29 | 28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S 30 | 29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q 31 | 30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S 32 | 31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C 33 | 32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C 34 | 33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q 35 | 34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S 36 | 35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C 37 | 36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S 38 | 37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C 39 | 38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S 40 | 39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S 41 | 40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C 42 | 41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S 43 | 42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S 44 | 43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C 45 | 44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C 46 | 45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q 47 | 46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S 48 | 47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q 49 | 48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q 50 | 49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C 51 | 50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S 52 | 51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S 53 | 52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S 54 | 53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C 55 | 54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S 56 | 55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C 57 | 56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S 58 | 57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S 59 | 58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C 60 | 59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S 61 | 60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S 62 | 61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C 63 | 62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28, 64 | 63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S 65 | 64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S 66 | 65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C 67 | 66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C 68 | 67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S 69 | 68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S 70 | 69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S 71 | 70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S 72 | 71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S 73 | 72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S 74 | 73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S 75 | 74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C 76 | 75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S 77 | 76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S 78 | 77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S 79 | 78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S 80 | 79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S 81 | 80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S 82 | 81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S 83 | 82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S 84 | 83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q 85 | 84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S 86 | 85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S 87 | 86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S 88 | 87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S 89 | 88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S 90 | 89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S 91 | 90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S 92 | 91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S 93 | 92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S 94 | 93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S 95 | 94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S 96 | 95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S 97 | 96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S 98 | 97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C 99 | 98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C 100 | 99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S 101 | 100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S 102 | 101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S 103 | 102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S 104 | 103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S 105 | 104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S 106 | 105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S 107 | 106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S 108 | 107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S 109 | 108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S 110 | 109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S 111 | 110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q 112 | 111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S 113 | 112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C 114 | 113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S 115 | 114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S 116 | 115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C 117 | 116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S 118 | 117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q 119 | 118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S 120 | 119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C 121 | 120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S 122 | 121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S 123 | 122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S 124 | 123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C 125 | 124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S 126 | 125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S 127 | 126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C 128 | 127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q 129 | 128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S 130 | 129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C 131 | 130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S 132 | 131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C 133 | 132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S 134 | 133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S 135 | 134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S 136 | 135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S 137 | 136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C 138 | 137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S 139 | 138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S 140 | 139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S 141 | 140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C 142 | 141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C 143 | 142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S 144 | 143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S 145 | 144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q 146 | 145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S 147 | 146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S 148 | 147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S 149 | 148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S 150 | 149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S 151 | 150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S 152 | 151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S 153 | 152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S 154 | 153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S 155 | 154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S 156 | 155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S 157 | 156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C 158 | 157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q 159 | 158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S 160 | 159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S 161 | 160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S 162 | 161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S 163 | 162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S 164 | 163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S 165 | 164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S 166 | 165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S 167 | 166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S 168 | 167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S 169 | 168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S 170 | 169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S 171 | 170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S 172 | 171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S 173 | 172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q 174 | 173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S 175 | 174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S 176 | 175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C 177 | 176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S 178 | 177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S 179 | 178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C 180 | 179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S 181 | 180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S 182 | 181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S 183 | 182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C 184 | 183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S 185 | 184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S 186 | 185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S 187 | 186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S 188 | 187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q 189 | 188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S 190 | 189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q 191 | 190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S 192 | 191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S 193 | 192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S 194 | 193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S 195 | 194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S 196 | 195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C 197 | 196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C 198 | 197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q 199 | 198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S 200 | 199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q 201 | 200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S 202 | 201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S 203 | 202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S 204 | 203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S 205 | 204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C 206 | 205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S 207 | 206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S 208 | 207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S 209 | 208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C 210 | 209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q 211 | 210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C 212 | 211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S 213 | 212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S 214 | 213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S 215 | 214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S 216 | 215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q 217 | 216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C 218 | 217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S 219 | 218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S 220 | 219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C 221 | 220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S 222 | 221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S 223 | 222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S 224 | 223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S 225 | 224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S 226 | 225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S 227 | 226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S 228 | 227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S 229 | 228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S 230 | 229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S 231 | 230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S 232 | 231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S 233 | 232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S 234 | 233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S 235 | 234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S 236 | 235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S 237 | 236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S 238 | 237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S 239 | 238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S 240 | 239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S 241 | 240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S 242 | 241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C 243 | 242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q 244 | 243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S 245 | 244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S 246 | 245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C 247 | 246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q 248 | 247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S 249 | 248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S 250 | 249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S 251 | 250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S 252 | 251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S 253 | 252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S 254 | 253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S 255 | 254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S 256 | 255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S 257 | 256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C 258 | 257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C 259 | 258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S 260 | 259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C 261 | 260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S 262 | 261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q 263 | 262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S 264 | 263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S 265 | 264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S 266 | 265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q 267 | 266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S 268 | 267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S 269 | 268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S 270 | 269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S 271 | 270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S 272 | 271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S 273 | 272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S 274 | 273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S 275 | 274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C 276 | 275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q 277 | 276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S 278 | 277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S 279 | 278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S 280 | 279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q 281 | 280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S 282 | 281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q 283 | 282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S 284 | 283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S 285 | 284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S 286 | 285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S 287 | 286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C 288 | 287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S 289 | 288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S 290 | 289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S 291 | 290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q 292 | 291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S 293 | 292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C 294 | 293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C 295 | 294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S 296 | 295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S 297 | 296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C 298 | 297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C 299 | 298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S 300 | 299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S 301 | 300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C 302 | 301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q 303 | 302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q 304 | 303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S 305 | 304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q 306 | 305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S 307 | 306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S 308 | 307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C 309 | 308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C 310 | 309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C 311 | 310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C 312 | 311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C 313 | 312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C 314 | 313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S 315 | 314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S 316 | 315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S 317 | 316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S 318 | 317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S 319 | 318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S 320 | 319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S 321 | 320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C 322 | 321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S 323 | 322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S 324 | 323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q 325 | 324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S 326 | 325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S 327 | 326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C 328 | 327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S 329 | 328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S 330 | 329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S 331 | 330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C 332 | 331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q 333 | 332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S 334 | 333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S 335 | 334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S 336 | 335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S 337 | 336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S 338 | 337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S 339 | 338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C 340 | 339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S 341 | 340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S 342 | 341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S 343 | 342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S 344 | 343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S 345 | 344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S 346 | 345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S 347 | 346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S 348 | 347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S 349 | 348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S 350 | 349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S 351 | 350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S 352 | 351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S 353 | 352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S 354 | 353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C 355 | 354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S 356 | 355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C 357 | 356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S 358 | 357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S 359 | 358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S 360 | 359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q 361 | 360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q 362 | 361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S 363 | 362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C 364 | 363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C 365 | 364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S 366 | 365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q 367 | 366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S 368 | 367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C 369 | 368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C 370 | 369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q 371 | 370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C 372 | 371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C 373 | 372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S 374 | 373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S 375 | 374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C 376 | 375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S 377 | 376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C 378 | 377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S 379 | 378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C 380 | 379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C 381 | 380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S 382 | 381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C 383 | 382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C 384 | 383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S 385 | 384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S 386 | 385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S 387 | 386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S 388 | 387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S 389 | 388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S 390 | 389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q 391 | 390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C 392 | 391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S 393 | 392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S 394 | 393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S 395 | 394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C 396 | 395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S 397 | 396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S 398 | 397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S 399 | 398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S 400 | 399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S 401 | 400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S 402 | 401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S 403 | 402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S 404 | 403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S 405 | 404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S 406 | 405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S 407 | 406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S 408 | 407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S 409 | 408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S 410 | 409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S 411 | 410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S 412 | 411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S 413 | 412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q 414 | 413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q 415 | 414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S 416 | 415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S 417 | 416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S 418 | 417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S 419 | 418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S 420 | 419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S 421 | 420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S 422 | 421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C 423 | 422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q 424 | 423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S 425 | 424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S 426 | 425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S 427 | 426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S 428 | 427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S 429 | 428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S 430 | 429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q 431 | 430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S 432 | 431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S 433 | 432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S 434 | 433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S 435 | 434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S 436 | 435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S 437 | 436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S 438 | 437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S 439 | 438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S 440 | 439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S 441 | 440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S 442 | 441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S 443 | 442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S 444 | 443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S 445 | 444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S 446 | 445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S 447 | 446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S 448 | 447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S 449 | 448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S 450 | 449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C 451 | 450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S 452 | 451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S 453 | 452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S 454 | 453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C 455 | 454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C 456 | 455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S 457 | 456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C 458 | 457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S 459 | 458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S 460 | 459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S 461 | 460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q 462 | 461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S 463 | 462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S 464 | 463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S 465 | 464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S 466 | 465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S 467 | 466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S 468 | 467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S 469 | 468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S 470 | 469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q 471 | 470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C 472 | 471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S 473 | 472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S 474 | 473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S 475 | 474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C 476 | 475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S 477 | 476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S 478 | 477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S 479 | 478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S 480 | 479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S 481 | 480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S 482 | 481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S 483 | 482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S 484 | 483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S 485 | 484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S 486 | 485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C 487 | 486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S 488 | 487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S 489 | 488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C 490 | 489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S 491 | 490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S 492 | 491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S 493 | 492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S 494 | 493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S 495 | 494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C 496 | 495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S 497 | 496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C 498 | 497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C 499 | 498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S 500 | 499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S 501 | 500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S 502 | 501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S 503 | 502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q 504 | 503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q 505 | 504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S 506 | 505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S 507 | 506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C 508 | 507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S 509 | 508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S 510 | 509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S 511 | 510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S 512 | 511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q 513 | 512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S 514 | 513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S 515 | 514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C 516 | 515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S 517 | 516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S 518 | 517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S 519 | 518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q 520 | 519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S 521 | 520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S 522 | 521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S 523 | 522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S 524 | 523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C 525 | 524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C 526 | 525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C 527 | 526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q 528 | 527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S 529 | 528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S 530 | 529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S 531 | 530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S 532 | 531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S 533 | 532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C 534 | 533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C 535 | 534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C 536 | 535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S 537 | 536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S 538 | 537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S 539 | 538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C 540 | 539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S 541 | 540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C 542 | 541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S 543 | 542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S 544 | 543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S 545 | 544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S 546 | 545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C 547 | 546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S 548 | 547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S 549 | 548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C 550 | 549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S 551 | 550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S 552 | 551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C 553 | 552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S 554 | 553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q 555 | 554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C 556 | 555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S 557 | 556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S 558 | 557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C 559 | 558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C 560 | 559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S 561 | 560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S 562 | 561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q 563 | 562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S 564 | 563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S 565 | 564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S 566 | 565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S 567 | 566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S 568 | 567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S 569 | 568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S 570 | 569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C 571 | 570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S 572 | 571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S 573 | 572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S 574 | 573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S 575 | 574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q 576 | 575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S 577 | 576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S 578 | 577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S 579 | 578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S 580 | 579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C 581 | 580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S 582 | 581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S 583 | 582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C 584 | 583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S 585 | 584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C 586 | 585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C 587 | 586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S 588 | 587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S 589 | 588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C 590 | 589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S 591 | 590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S 592 | 591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S 593 | 592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C 594 | 593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S 595 | 594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q 596 | 595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S 597 | 596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S 598 | 597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S 599 | 598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S 600 | 599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C 601 | 600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C 602 | 601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S 603 | 602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S 604 | 603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S 605 | 604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S 606 | 605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C 607 | 606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S 608 | 607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S 609 | 608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S 610 | 609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C 611 | 610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S 612 | 611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S 613 | 612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S 614 | 613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q 615 | 614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q 616 | 615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S 617 | 616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S 618 | 617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S 619 | 618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S 620 | 619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S 621 | 620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S 622 | 621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C 623 | 622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S 624 | 623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C 625 | 624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S 626 | 625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S 627 | 626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S 628 | 627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q 629 | 628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S 630 | 629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S 631 | 630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q 632 | 631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S 633 | 632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S 634 | 633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C 635 | 634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S 636 | 635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S 637 | 636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S 638 | 637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S 639 | 638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S 640 | 639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S 641 | 640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S 642 | 641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S 643 | 642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C 644 | 643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S 645 | 644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S 646 | 645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C 647 | 646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C 648 | 647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S 649 | 648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C 650 | 649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S 651 | 650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S 652 | 651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S 653 | 652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S 654 | 653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S 655 | 654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q 656 | 655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q 657 | 656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S 658 | 657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S 659 | 658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q 660 | 659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S 661 | 660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C 662 | 661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S 663 | 662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C 664 | 663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S 665 | 664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S 666 | 665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S 667 | 666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S 668 | 667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S 669 | 668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S 670 | 669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S 671 | 670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S 672 | 671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S 673 | 672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S 674 | 673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S 675 | 674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S 676 | 675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S 677 | 676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S 678 | 677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S 679 | 678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S 680 | 679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S 681 | 680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C 682 | 681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q 683 | 682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C 684 | 683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S 685 | 684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S 686 | 685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S 687 | 686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C 688 | 687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S 689 | 688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S 690 | 689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S 691 | 690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S 692 | 691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S 693 | 692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C 694 | 693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S 695 | 694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C 696 | 695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S 697 | 696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S 698 | 697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S 699 | 698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q 700 | 699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C 701 | 700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S 702 | 701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C 703 | 702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S 704 | 703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C 705 | 704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q 706 | 705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S 707 | 706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S 708 | 707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S 709 | 708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S 710 | 709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S 711 | 710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C 712 | 711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C 713 | 712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S 714 | 713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S 715 | 714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S 716 | 715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S 717 | 716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S 718 | 717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C 719 | 718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S 720 | 719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q 721 | 720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S 722 | 721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S 723 | 722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S 724 | 723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S 725 | 724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S 726 | 725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S 727 | 726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S 728 | 727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S 729 | 728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q 730 | 729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S 731 | 730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S 732 | 731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S 733 | 732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C 734 | 733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S 735 | 734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S 736 | 735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S 737 | 736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S 738 | 737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S 739 | 738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C 740 | 739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S 741 | 740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S 742 | 741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S 743 | 742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S 744 | 743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C 745 | 744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S 746 | 745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S 747 | 746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S 748 | 747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S 749 | 748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S 750 | 749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S 751 | 750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q 752 | 751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S 753 | 752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S 754 | 753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S 755 | 754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S 756 | 755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S 757 | 756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S 758 | 757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S 759 | 758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S 760 | 759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S 761 | 760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S 762 | 761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S 763 | 762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S 764 | 763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C 765 | 764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S 766 | 765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S 767 | 766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S 768 | 767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C 769 | 768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q 770 | 769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q 771 | 770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S 772 | 771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S 773 | 772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S 774 | 773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S 775 | 774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C 776 | 775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S 777 | 776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S 778 | 777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q 779 | 778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S 780 | 779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q 781 | 780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S 782 | 781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C 783 | 782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S 784 | 783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S 785 | 784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S 786 | 785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S 787 | 786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S 788 | 787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S 789 | 788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q 790 | 789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S 791 | 790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C 792 | 791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q 793 | 792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S 794 | 793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S 795 | 794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C 796 | 795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S 797 | 796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S 798 | 797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S 799 | 798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S 800 | 799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C 801 | 800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S 802 | 801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S 803 | 802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S 804 | 803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S 805 | 804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C 806 | 805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S 807 | 806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S 808 | 807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S 809 | 808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S 810 | 809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S 811 | 810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S 812 | 811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S 813 | 812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S 814 | 813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S 815 | 814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S 816 | 815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S 817 | 816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S 818 | 817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S 819 | 818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C 820 | 819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S 821 | 820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S 822 | 821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S 823 | 822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S 824 | 823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S 825 | 824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S 826 | 825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S 827 | 826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q 828 | 827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S 829 | 828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C 830 | 829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q 831 | 830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28, 832 | 831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C 833 | 832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S 834 | 833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C 835 | 834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S 836 | 835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S 837 | 836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C 838 | 837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S 839 | 838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S 840 | 839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S 841 | 840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C 842 | 841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S 843 | 842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S 844 | 843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C 845 | 844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C 846 | 845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S 847 | 846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S 848 | 847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S 849 | 848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C 850 | 849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S 851 | 850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C 852 | 851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S 853 | 852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S 854 | 853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C 855 | 854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S 856 | 855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S 857 | 856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S 858 | 857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S 859 | 858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S 860 | 859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C 861 | 860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C 862 | 861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S 863 | 862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S 864 | 863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S 865 | 864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S 866 | 865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S 867 | 866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S 868 | 867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C 869 | 868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S 870 | 869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S 871 | 870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S 872 | 871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S 873 | 872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S 874 | 873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S 875 | 874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S 876 | 875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C 877 | 876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C 878 | 877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S 879 | 878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S 880 | 879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S 881 | 880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C 882 | 881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S 883 | 882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S 884 | 883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S 885 | 884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S 886 | 885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S 887 | 886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q 888 | 887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S 889 | 888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S 890 | 889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S 891 | 890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C 892 | 891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q 893 | --------------------------------------------------------------------------------