├── images
├── dl.jpg
├── dl.png
├── la.png
├── ml.jpg
├── py.png
├── algo.png
├── data.jpg
├── funml.jpg
└── mlcourseai.jpg
├── LICENSE
└── README.md
/images/dl.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/datasciencescoop/Data-Science-Free/HEAD/images/dl.jpg
--------------------------------------------------------------------------------
/images/dl.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/datasciencescoop/Data-Science-Free/HEAD/images/dl.png
--------------------------------------------------------------------------------
/images/la.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/datasciencescoop/Data-Science-Free/HEAD/images/la.png
--------------------------------------------------------------------------------
/images/ml.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/datasciencescoop/Data-Science-Free/HEAD/images/ml.jpg
--------------------------------------------------------------------------------
/images/py.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/datasciencescoop/Data-Science-Free/HEAD/images/py.png
--------------------------------------------------------------------------------
/images/algo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/datasciencescoop/Data-Science-Free/HEAD/images/algo.png
--------------------------------------------------------------------------------
/images/data.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/datasciencescoop/Data-Science-Free/HEAD/images/data.jpg
--------------------------------------------------------------------------------
/images/funml.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/datasciencescoop/Data-Science-Free/HEAD/images/funml.jpg
--------------------------------------------------------------------------------
/images/mlcourseai.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/datasciencescoop/Data-Science-Free/HEAD/images/mlcourseai.jpg
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2019
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 | A collection of awesome manuals, blogs, cheats, resources and more.
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 | Created by Shubham Kumar
29 |
30 |
31 |
32 | # Show your support by giving :octocat: a :star:
33 | **DISCLAIMER:** ***This is for absolute beginners, no experience needed.***
34 |
35 | ## Table of Contents
36 |
37 | * [Python](#python)
38 | * [Pandas](#pandas)
39 | * [Algorithms in Python](#algorithms-in-python)
40 | * [Practice Python](#practice-python)
41 | * [Calculus](#calculus)
42 | * [Linear Algebra](#linear-algebra)
43 | * [Algorithms in Python](#algorithms-in-python)
44 | * [Probability & Stats](#probability-and-statistics)
45 | * [Statistical Learning](#statistical-learning)
46 | * [Machine Learning](#machine-learning)
47 | * [Practice ML](#practice-ml)
48 | * [Deep Learning](#deep-learning)
49 | * [Deep Learning Projects](#deep-learning-projects)
50 | * [Medium Blog Posts](#AWESOME-BLOG-POSTS-ON-MEDIUM)
51 | * [Playgrounds](#playgrounds)
52 | * [Research Papers](#research-papers)
53 | * [Interview Questions](#interview-questions)
54 | * [Top Rated Courses](#top-rated-courses)
55 | * [Blogs to Follow](#blogs-to-follow)
56 |
57 |
58 | ## PYTHON
59 |
60 |
61 |
62 |
63 | * **Introduction to Python 3** [Sentdex](https://www.youtube.com/watch?v=eXBD2bB9-RA&list=PLQVvvaa0QuDeAams7fkdcwOGBpGdHpXln)
64 |
65 | * **Quantative Economics with Python** [Here](https://lectures.quantecon.org/py/)
66 |
67 | * **Python Data science handbook** [Chapter 1-4](https://github.com/jakevdp/PythonDataScienceHandbook/blob/8a34a4f653bdbdc01415a94dc20d4e9b97438965/notebooks/Index.ipynb)
68 |
69 | * **Python for Data Analysis** [2nd Edition](https://github.com/wesm/pydata-book)
70 |
71 | * **Learning Python 5th edition, oreilly publication by** [Mark Lutz](https://drive.google.com/file/d/14ayuNFEo9VZ-xstgXlyMgDFHoAgrGqJU/view?usp=sharing) **(LONG VERSION)**
72 |
73 | * **Python by** [Scipy](https://scipython.com/book/)
74 |
75 | * **Udemy Complete Python Bootcamp by Jose Portilla** [Google Drive](https://drive.google.com/drive/folders/0ByWO0aO1eI_MaExzRWZ2S0dndjQ?usp=sharing)
76 |
77 | * **Udacity - Developing scalable app in Python** [Google Drive](https://drive.google.com/open?id=0ByWO0aO1eI_MT1E1NW91VlJ2TVk)
78 |
79 | * **Python Ebooks on** [Google Drive](https://drive.google.com/open?id=0ByWO0aO1eI_MZ19fbVV3YS1hckk)
80 |
81 | ## PANDAS
82 |
83 | * **Pandas & Data Analysis by [mlcourse.ai](https://www.youtube.com/watch?v=fwWCw_cE5aI&feature=youtu.be)** (Video)
84 |
85 | * **Pandas by** [Pydata](https://pandas.pydata.org/pandas-docs/stable/getting_started/10min.html)
86 |
87 | * **Effective Pandas** [GitHub](https://github.com/TomAugspurger/effective-pandas)
88 |
89 | * **Pandas** [Cheatsheets](https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf)
90 |
91 | * **Pandas Data School** [Videos](https://www.youtube.com/watch?v=yzIMircGU5I&list=PL5-da3qGB5ICCsgW1MxlZ0Hq8LL5U3u9y)
92 |
93 | ## ALGORITHMS IN PYTHON
94 |
95 | 
96 |
97 | * **Python & Algorithms 2.0 by Marina Wahl** [Pdf](https://drive.google.com/file/d/1rR0GSEAqVtFDWRDdK1NLEJvc8oKC94PT/view?usp=sharing)
98 |
99 | * **Udacity** [Course](https://eu.udacity.com/course/data-structures-and-algorithms-in-python--ud513)
100 |
101 | * **Another good resource** [Here](http://interactivepython.org/runestone/static/pythonds/index.html)
102 |
103 | * **Visualising algorithms through animation** [Visit](https://visualgo.net/en)
104 |
105 | ## PRACTICE PYTHON
106 |
107 | * [Project based](https://github.com/tuvtran/project-based-learning#python)
108 |
109 | * [Project Euler](https://projecteuler.net/)
110 |
111 | ## CALCULUS
112 |
113 | * **Essence of Calculus** [3Blue1Brown PlayList](https://www.youtube.com/watch?v=WUvTyaaNkzM&list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr)
114 |
115 | * **Khan Academy calculus-1** [Here](https://www.khanacademy.org/math/calculus-1)
116 |
117 | * **Khan Academy calculus-2** [Here](https://www.khanacademy.org/math/calculus-2)
118 |
119 | * **Khan Academy multivariable calculus** [Here](https://www.khanacademy.org/math/multivariable-calculus)
120 |
121 | ## LINEAR ALGEBRA
122 |
123 |
124 |
125 |
126 | * **Manga Guide to Linear Algebre** [Google Drive](https://drive.google.com/file/d/1sdnIBqPjSgPzitrInV0roHTEJ856ntYe/view?usp=sharing)
127 |
128 | * **3Blue1Brown** [PlayList](https://www.youtube.com/watch?v=fNk_zzaMoSs&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab)
129 |
130 | * **Khan Academy** [Linear algebra](https://www.khanacademy.org/math/linear-algebra)
131 |
132 | * **UBC Maths by James B. Carrell** [Here](https://www.math.ubc.ca/~carrell/NB.pdf)
133 |
134 | ## PROBABILITY AND STATISTICS
135 |
136 | * **Khan Academy** [Course](https://www.khanacademy.org/math/statistics-probability)
137 |
138 | * **Think Stats** [Pdf](http://greenteapress.com/thinkstats/thinkstats.pdf)
139 |
140 | * **Probability** [Cheat sheet](http://www.wzchen.com/probability-cheatsheet/)
141 |
142 | * **Bayesian-Methods-for-Hackers** [Here](http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/)
143 |
144 | ## STATISTICAL LEARNING
145 |
146 | * **An Introduction to Statistical Learning** [Essential](https://www-bcf.usc.edu/~gareth/ISL/index.html)
147 |
148 | * **Elements of Statistical Learning Stanford** [Extremely useful](https://web.stanford.edu/~hastie/ElemStatLearn/)
149 |
150 | ## MACHINE LEARNING
151 |
152 |
153 |
154 |
155 | * **Hands on Machine Learning with Tensorflow & Scikit-learn** [Google Drive](https://drive.google.com/file/d/1CHv8CTQRRaoSDeBGN0_tkvd0D2E9mYxo/view?usp=sharing)
156 |
157 | * **Practical Machine Learning Tutorial with Python** [Sentdex](https://www.youtube.com/watch?v=OGxgnH8y2NM&list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v)
158 |
159 | * **Stanford - AndrewNg Course** [YouTube](https://www.youtube.com/watch?v=PPLop4L2eGk&list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN)
160 |
161 | * **Udemy - Machine Learning A-Z using Python & R by SuperDataScience Team** [Here](https://drive.google.com/open?id=1mTUyna5oynW4RVItOldP2f2yhe_3xL4s)
162 |
163 | * **Jason Mayes (Google Engineer ML Class 101)** [Slides](https://docs.google.com/presentation/d/1kSuQyW5DTnkVaZEjGYCkfOxvzCqGEFzWBy4e9Uedd9k/mobilepresent?slide=id.g168a3288f7_0_58)
164 |
165 | * **Ebooks for ML on** [Google Drive](https://drive.google.com/drive/folders/0ByWO0aO1eI_Md1JGZW9NSDFpQ1U?usp=sharing)
166 |
167 | * **More Ebooks on** [Google Drive](https://drive.google.com/open?id=1gmW2K_VAQrXPWAfgQcg-3umt5ipV7-G9)
168 |
169 | * **Manning publication books on** [Google Drive](https://drive.google.com/open?id=1yXZ1HgyQ7yPUJI8cC7ZnTWi0BAbxq_Kg)
170 |
171 | * **Cheat Sheets for ML, DeepL, AI** [Google Drive](https://drive.google.com/open?id=1qYgzm4oTVYIR_iEsT4ZW9l9o3GUMSzYG)
172 |
173 | * **Google Machine Learning crash course using Tensorflow (Not for Beginners)** [Here](https://developers.google.com/machine-learning/crash-course/)
174 |
175 | * **Reinforcement Learning Book by Andrew Barto and Richard S. Sutton** [Google Drive](https://drive.google.com/file/d/1OFquNBwdPxFFFbxCixBDHYUEmnbimegH/view?usp=sharing)
176 |
177 | * **Stanford's CS 229 Machine Learning** [VIP Cheatsheet](https://github.com/afshinea/stanford-cs-229-machine-learning)
178 |
179 | ## PRACTICE ML
180 |
181 | * **Home for Data Science -** [Kaggle](https://www.kaggle.com/)
182 |
183 | ## DEEP LEARNING
184 |
185 |
186 |
187 |
188 | * **Grokking Deep Learning by Andrew Trask** [Pdf](https://drive.google.com/file/d/1gLbOH2AbiaStYGmLV6oivTgU6eraqlW2/view?usp=sharing)
189 |
190 | * **Practical Deep Learning for Coders** [Fast-ai](https://course.fast.ai/)
191 |
192 | * **MIT Deep Learning** [Lex-Fridman](https://www.youtube.com/watch?v=O5xeyoRL95U&list=PLrAXtmErZgOeiKm4sgNOknGvNjby9efdf)
193 |
194 | * **MIT 6.S191: Introduction to Deep Learning** [Alexander-Amini](https://www.youtube.com/playlist?list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI)
195 |
196 | * **Demystifying RL** [Intel AI](https://www.intel.ai/demystifying-deep-reinforcement-learning/#gs.0tu98m)
197 |
198 | * **Deep RL Bootcamp** [Berkeley CA](https://sites.google.com/view/deep-rl-bootcamp/lectures)
199 |
200 | ## DEEP LEARNING PROJECTS
201 |
202 | * **Python Deep Learning Projects Packt** [Packt Pdf](https://drive.google.com/file/d/1f7wsE-Aui2nYhG12Ti6-L8UMtSUsNvFu/view?usp=sharing)
203 |
204 | * **Implement a Pong-playing agent** [Pong from Pixels](http://karpathy.github.io/2016/05/31/rl/)
205 |
206 | ## AWESOME BLOG POSTS ON MEDIUM
207 |
208 | * **Simple Reinforcement Learning with Tensorflow series by** [Arthur Juliani](https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0)
209 |
210 | * **Machine Learning for Humans by** [Vishal Maini](https://medium.com/machine-learning-for-humans/why-machine-learning-matters-6164faf1df12)
211 |
212 | ## PLAYGROUNDS
213 |
214 | * **Tensorflow [Playground](https://playground.tensorflow.org/)**
215 |
216 | * **Machine Learning [Playground](http://ml-playground.com/)**
217 |
218 |
219 |
220 | ## RESEARCH PAPERS
221 |
222 | * **[PAPERS WITH CODE](https://paperswithcode.com/)**
223 |
224 | ## INTERVIEW QUESTIONS
225 |
226 | * **100 Data Science Interview Questions and** [Answers](https://www.dezyre.com/article/100-data-science-interview-questions-and-answers-general-for-2018/184)
227 |
228 | * **40 Interview Questions asked at startups in Machine Learning** [Here](https://www.analyticsvidhya.com/blog/2016/09/40-interview-questions-asked-at-startups-in-machine-learning-data-science/)
229 |
230 | * **Top 100 Data science interview** [Questions](http://nitin-panwar.github.io/Top-100-Data-science-interview-questions/?utm_campaign=News&utm_medium=Community&utm_source=DataCamp.com)
231 |
232 | * **109 Data Science Interview Questions and Answers for 2019 on** [Springboard](https://www.springboard.com/blog/data-science-interview-questions/)
233 |
234 | * **111 Data Science Interview Questions with Detailed Answers** [Here](https://rpubs.com/JDAHAN/172473)
235 |
236 | ## TOP RATED COURSES
237 |
238 | 
239 |
240 | * **Open Machine Learning Course [mlcourse.ai](https://mlcourse.ai/)**
241 |
242 | * **UC Berkeley CS294-112 [Deep Reinforcement Learning](http://rail.eecs.berkeley.edu/deeprlcourse/)**
243 |
244 | * **UCL Course on [RL](http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html)**
245 |
246 | ## Blogs to Follow
247 |
248 | 
249 |
250 | * **Machine Learning for Everyone** [Blog](https://vas3k.com/blog/machine_learning/)
251 |
252 | * **[KDNuggets](https://www.kdnuggets.com/)**
253 |
254 | * **[Data Science Plus](https://datascienceplus.com/)**
255 |
256 | * **[Analytics Vidhya](https://www.analyticsvidhya.com/)**
257 |
258 | * **[Towards Data Science](https://towardsdatascience.com/)**
259 |
260 |
261 |
262 |
263 | >You take the blue pill, the story ends. You wake up in your
264 | >bed and believe whatever you want to believe. You take the
265 | >red pill, you stay in Wonderland, and I show you how deep
266 | >the rabbit hole goes.” — Morpheus
267 |
268 |
269 |
270 |
271 |
272 |
--------------------------------------------------------------------------------