├── .gitignore
├── LICENSE
├── README.md
├── archive
├── znz-classify-buildings-20181119.ipynb
├── znz-classify-buildings-20181206.ipynb
├── znz-classify-buildings-20190118.ipynb
├── znz-eval-20190118.ipynb
├── znz-inference-20190118.ipynb
├── znz-postprocess-20190118.ipynb
├── znz-segment-buildingfootprint-20181119.ipynb
├── znz-segment-buildingfootprint-20181129-comboloss-rn34.ipynb
├── znz-segment-buildingfootprint-20181205-comboloss-rn34.ipynb
└── znz-segment-buildingfootprint-20190108-alldata.ipynb
├── geo_fastai_tutorial01_public_v1.ipynb
└── static
├── grid119_preview.png
├── overview_predict.png
├── overview_train.png
└── znz-demo.gif
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | *.egg-info/
24 | .installed.cfg
25 | *.egg
26 | MANIFEST
27 |
28 | # PyInstaller
29 | # Usually these files are written by a python script from a template
30 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
31 | *.manifest
32 | *.spec
33 |
34 | # Installer logs
35 | pip-log.txt
36 | pip-delete-this-directory.txt
37 |
38 | # Unit test / coverage reports
39 | htmlcov/
40 | .tox/
41 | .coverage
42 | .coverage.*
43 | .cache
44 | nosetests.xml
45 | coverage.xml
46 | *.cover
47 | .hypothesis/
48 | .pytest_cache/
49 |
50 | # Translations
51 | *.mo
52 | *.pot
53 |
54 | # Django stuff:
55 | *.log
56 | local_settings.py
57 | db.sqlite3
58 |
59 | # Flask stuff:
60 | instance/
61 | .webassets-cache
62 |
63 | # Scrapy stuff:
64 | .scrapy
65 |
66 | # Sphinx documentation
67 | docs/_build/
68 |
69 | # PyBuilder
70 | target/
71 |
72 | # Jupyter Notebook
73 | .ipynb_checkpoints
74 |
75 | # pyenv
76 | .python-version
77 |
78 | # celery beat schedule file
79 | celerybeat-schedule
80 |
81 | # SageMath parsed files
82 | *.sage.py
83 |
84 | # Environments
85 | .env
86 | .venv
87 | env/
88 | venv/
89 | ENV/
90 | env.bak/
91 | venv.bak/
92 |
93 | # Spyder project settings
94 | .spyderproject
95 | .spyproject
96 |
97 | # Rope project settings
98 | .ropeproject
99 |
100 | # mkdocs documentation
101 | /site
102 |
103 | # mypy
104 | .mypy_cache/
105 |
106 | .ipynb_checkpoints/
107 |
108 | *.zip
109 | *.DS_Store
110 | readme_draft.ipynb
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Aerial Mapping with Drones & Deep Learning in Zanzibar, Tanzania
2 |
3 | ## Motivation:
4 |
5 | Open source R&D notebooks of all the steps (deep learning and otherwise) to create a state of the art deep learning building detector & classifier from high-resolution aerial/drone imagery. Something like this:
6 |
7 | ### Interactive version: [https://alpha.anthropo.co/znz-demo](https://alpha.anthropo.co/znz-demo)
8 | 
9 |
10 |
11 | ## 7/25/2019 Update:
12 |
13 | In process of rewriting everything as a series of interactive geospatial deep learning tutorials on [Google Colab](https://colab.research.google.com/).
14 |
15 | **See 1st tutorial published 7/25/2019** for a complete data creation, model creation, inference, and evaluation workflow for building segmentation:
16 |
17 | - [Medium post](https://medium.com/@anthropoco/how-to-segment-buildings-on-drone-imagery-with-fast-ai-cloud-native-geodata-tools-ae249612c321?source=friends_link&sk=57b82002ac47724ecf9a2aaa98de994b)
18 |
19 | - [Previewable notebook](https://nbviewer.jupyter.org/github/daveluo/zanzibar-aerial-mapping/blob/master/geo_fastai_tutorial01_public_v1.ipynb)
20 |
21 | - [Open in Colab](https://colab.research.google.com/github/daveluo/zanzibar-aerial-mapping/blob/master/geo_fastai_tutorial01_public_v1.ipynb)
22 |
23 | Prior dev notebooks can be found in /archive with details preserved below the line:
24 |
25 |
26 | ------------------------
27 |
28 |
29 | ## Results:
30 |
31 | As of 1/18/2019 (internal val only):
32 |
33 | | | Mean F1 score | Foundation F1 | Unfinished F1 | Completed F1 | All Buildings F1 |
34 | |-----------------------------|---------------|---------------|---------------|--------------|------------------|
35 | | Internal Val (grid 042) | 0.728 | 0.718 | 0.755 | 0.710 | 0.796 |
36 |
37 |
38 | [Top 2 in WeRobotics' Open AI Tanzania Challenge](https://blog.werobotics.org/2018/12/06/announcing-the-winners-of-the-open-ai-tanzania-challenge/)
39 |
40 |
41 | | | Mean F1 score | Foundation F1 | Unfinished F1 | Completed F1 | All Buildings F1 |
42 | |-----------------------------|---------------|---------------|---------------|--------------|------------------|
43 | | Final Test (grids 059, 066) | 0.697 | 0.744 | 0.692 | 0.655 | 0.723 |
44 | | Internal Val (grid 042) | 0.696 | 0.683 | 0.749 | 0.656 | 0.757 |
45 |
46 |
47 |
48 | ## Background:
49 |
50 | https://blog.werobotics.org/2018/08/06/welcome-to-the-open-ai-tanzania-challenge/
51 |
52 | > Maps are absolutely essential for decision support. Knowing where buildings are located is a fundamental input for urban planning, public safety, public health, disaster response, environmental protection, sustainable development and census data, for example. Some of these applications typically require timely and high-resolution maps.
53 |
54 | 
55 |
56 | > Take the following scenario: a local organization that provides low-cost solar panels to low-income households in rural Tanzania is evaluating a large neighborhood with many small houses. They have to determine how to best optimize the installation and distribution of their panels. So they need to know which of the residential structures are oriented in a way that makes them more suitable for solar panels. Knowing where these small houses are and what their orientation is vis-a-vis the sun and surrounding trees, what their roofs look like to determine where to place the panels, and what materials the roofs are made of are all key inputs for their planning. This is just one of many applications for high-resolution maps.
57 |
58 |
59 |
60 | https://competitions.codalab.org/competitions/20100#learn_the_details
61 | > Open AI Tanzania — is a partnership with our friends at the State University of Zanzibar (SUZA), WeRobotics, World Bank, OpenAerialMap and Tanzania Flying Labs. Open AI Tanzania invites data scientists to develop feature detection algorithms that can automatically identify buildings and building types using high-resolution aerial imagery collected by Tanzanian drone pilots through the Zanzibar Mapping Initiative (ZMI). The goal of this challenge is to correctly segment and classify building footprints under various stages of construction.
62 |
63 |
64 | ## Source imagery & training data license
65 |
66 | > We request that all participants fill out a [Google Form](https://docs.google.com/forms/d/e/1FAIpQLSewpoY650nUHyl5kobIWl68Msk2QFBEC8XFCAV6lZSwbVdqUw/viewform).
67 |
68 | > The imagery data is released as OpenData using the Creative Commons Attribution 4.0 International license, attribution must be given to: Commission for Lands (COLA), Revolutionary Government of Zanzibar (RGoZ)
69 |
70 | ## Overview:
71 |
72 | ### Training workflow:
73 |
74 | 
75 |
76 | ### Prediction workflow:
77 |
78 | 
79 |
80 | ## Notebooks (7/25/19 moved to archive):
81 |
82 | ### [archive/znz-segment-buildingfootprint-20190108-alldata.ipynb](archive/znz-segment-buildingfootprint-20190108-alldata.ipynb)
83 |
84 | - segmentation model for pixel-level mapping of every building structure, regardless of condition
85 | - trained on image chips at three zooms: z20, z19, z18
86 | - combined BCE/dice loss function, pretrained resnet34 encoder
87 | - dice: 0.863, accuracy: 98.1%
88 |
89 | ### [archive/znz-classify-buildings-20190118.ipynb](archive/znz-classify-buildings-20190118.ipynb)
90 |
91 | - building classification by condition (Complete, Incomplete, Foundation, Empty) after detection/segmentation
92 | - BCE loss, pretrained resnet50
93 | - accuracy: 94%
94 |
95 | ### [archive/znz-inference-20190118.ipynb](archive/znz-inference-20190118.ipynb)
96 |
97 | - windowed reads and sub-windowed reads with rasterio to run inference on cloud-optimized geotiffs (COG) of arbitirary sizes
98 | - merge back to full cog extent
99 |
100 | ### [archive/znz-postprocess-20190118.ipynb](archive/znz-postprocess-20190118.ipynb)
101 |
102 | - thresholding, polygonization of windowed reads, deduping, save as geojson
103 | - creating detected building crops for classifier
104 | - updating geojson with class predictions
105 |
106 | ### [archive/znz-eval-20190118.ipynb](archive/znz-eval-20190118.ipynb)
107 |
108 | - evaluation scripts for precision, recall, F1 score
109 | - adapted from spacenet utilities: https://github.com/SpaceNetChallenge/utilities/tree/master/python
110 |
111 | ## Ready-to-train preprocessed datasets
112 |
113 | ### [znz-segment-z19.zip](https://www.dropbox.com/s/v1zvgrv06alogkk/znz-segment-z19.zip?dl=0) (212 MB):
114 |
115 | - 2,691 512x512 square image chips at zoom level 19 (~0.3m/pixel) as .jpg files with corresponding binary masks as .png files
116 | - Unzips as znz-train-z19-all-buffered/images-512 and znz-train-z19-all-buffered/masks-512
117 |
118 | ### [znz-classify.zip](https://www.dropbox.com/s/9ge0a2kpuv0a0lk/znz-classify.zip?dl=0) (259 MB):
119 |
120 | - 20,176 images of various sizes & shapes labeled as 4 classes: Complete, Incomplete, Foundation, Empty
121 | - Unzips as /images
122 |
123 |
124 | ## Thanks
125 |
126 | - Commission for Lands (COLA), Revolutionary Government of Zanzibar (RGoZ)
127 | - Zanzibar Mapping Initiative
128 | - WeRobotics
129 | - OpenAerialMap
130 | - Fast.ai team and library v1
131 | - Fast.ai forum participants and fellow students (particularly @KarlH, @henripal for code/nbs)
132 |
133 | ## TO DO
134 |
135 | - [x] train segmentation model in fastai v1 up to or exceeding prior performance level of dice = 0.847, accuracy = 0.977 from fastai v0.7
136 | - [x] polygonization nb
137 | - [x] prediction thresholding and clean-up nb
138 | - [x] evaluation scripts
139 | - [x] training image mask/tile creation nb
140 |
--------------------------------------------------------------------------------
/archive/znz-eval-20190118.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "Eval scripts adapted from https://github.com/SpaceNetChallenge/utilities/tree/master/python"
8 | ]
9 | },
10 | {
11 | "cell_type": "code",
12 | "execution_count": 1,
13 | "metadata": {
14 | "collapsed": true
15 | },
16 | "outputs": [],
17 | "source": [
18 | "import numpy as np\n",
19 | "import geopandas as gpd\n",
20 | "import rtree\n",
21 | "\n",
22 | "from pathlib import Path\n",
23 | "\n",
24 | "import matplotlib.pyplot as plt\n",
25 | "import matplotlib as mpl\n",
26 | "%matplotlib inline\n",
27 | "\n",
28 | "from tqdm import tqdm"
29 | ]
30 | },
31 | {
32 | "cell_type": "code",
33 | "execution_count": 2,
34 | "metadata": {
35 | "collapsed": true
36 | },
37 | "outputs": [],
38 | "source": [
39 | "def create_rtree_from_poly(poly_list):\n",
40 | " # create index\n",
41 | " index = rtree.index.Index(interleaved=False)\n",
42 | " for idx, building in enumerate(poly_list):\n",
43 | " minx, miny, maxx, maxy = building.bounds\n",
44 | " envelope = (minx, maxx, miny, maxy)\n",
45 | " index.insert(idx, envelope)\n",
46 | "\n",
47 | " return index\n",
48 | "\n",
49 | "def search_rtree(test_building, index):\n",
50 | " # input test poly ogr.Geometry and rtree index\n",
51 | " if test_building.type == 'Polygon' or \\\n",
52 | " test_building.type == 'MultiPolygon':\n",
53 | " minx, miny, maxx, maxy = test_building.bounds\n",
54 | " envelope = (minx, maxx, miny, maxy) \n",
55 | " fidlist = index.intersection(envelope)\n",
56 | " else:\n",
57 | " fidlist = []\n",
58 | "\n",
59 | " return fidlist\n"
60 | ]
61 | },
62 | {
63 | "cell_type": "code",
64 | "execution_count": 3,
65 | "metadata": {
66 | "collapsed": true
67 | },
68 | "outputs": [],
69 | "source": [
70 | "def iou(test_poly, truth_polys, truth_index=[]):\n",
71 | " fidlistArray = []\n",
72 | " iou_list = []\n",
73 | " \n",
74 | " if truth_index:\n",
75 | " fidlist = search_rtree(test_poly, truth_index)\n",
76 | "\n",
77 | " for fid in fidlist:\n",
78 | " if not test_poly.is_valid:\n",
79 | " test_poly = test_poly.buffer(0.0)\n",
80 | "\n",
81 | " intersection_result = test_poly.intersection(truth_polys[fid].buffer(0.0))\n",
82 | " fidlistArray.append(fid)\n",
83 | "\n",
84 | " if intersection_result.type == 'Polygon' or \\\n",
85 | " intersection_result.type == 'MultiPolygon':\n",
86 | " intersection_area = intersection_result.area\n",
87 | " union_area = test_poly.union(truth_polys[fid].buffer(0.0)).area\n",
88 | " iou_list.append(intersection_area / union_area)\n",
89 | "\n",
90 | " else:\n",
91 | " iou_list.append(0)\n",
92 | "\n",
93 | " else:\n",
94 | " for idx, truth_poly in enumerate(truth_polys):\n",
95 | " if not test_poly.is_valid or not truth_poly.is_valid:\n",
96 | " test_poly = test_poly.buffer(0.0)\n",
97 | " truth_poly = truth_poly.buffer(0.0)\n",
98 | "# print(f'fixed geom error at {idx}')\n",
99 | "\n",
100 | " intersection_result = test_poly.intersection(truth_poly)\n",
101 | " #print(idx, intersection_result.type)\n",
102 | "\n",
103 | " if intersection_result.type == 'Polygon' or \\\n",
104 | " intersection_result.type == 'MultiPolygon':\n",
105 | " intersection_area = intersection_result.area\n",
106 | " union_area = test_poly.union(truth_poly).area\n",
107 | " iou_list.append(intersection_area / union_area)\n",
108 | " # print(f'found intersect at test_poly {i} with truth poly {idx}')\n",
109 | " # print(intersection_area/union_area)\n",
110 | " else: \n",
111 | " iou_list.append(0)\n",
112 | " \n",
113 | " return iou_list, fidlistArray"
114 | ]
115 | },
116 | {
117 | "cell_type": "code",
118 | "execution_count": 4,
119 | "metadata": {
120 | "collapsed": true
121 | },
122 | "outputs": [],
123 | "source": [
124 | "def score(test_polys, truth_polys, threshold=0.5, truth_index=[],\n",
125 | " resultGeoJsonName = [],\n",
126 | " imageId = []):\n",
127 | "\n",
128 | " # Define internal functions\n",
129 | "\n",
130 | " # Find detections using threshold/argmax/IoU for test polygons\n",
131 | " true_pos_count = 0\n",
132 | " false_pos_count = 0\n",
133 | " truth_poly_count = len(truth_polys)\n",
134 | " \n",
135 | " true_ids = []\n",
136 | " false_ids = []\n",
137 | "\n",
138 | " for idx, test_poly in tqdm(enumerate(test_polys)):\n",
139 | " if truth_polys:\n",
140 | " iou_list, fidlist = iou(test_poly, truth_polys, truth_index)\n",
141 | " if not iou_list:\n",
142 | " maxiou = 0\n",
143 | " else:\n",
144 | " maxiou = np.max(iou_list)\n",
145 | "\n",
146 | "# print(maxiou, iou_list, fidlist)\n",
147 | " if maxiou >= threshold:\n",
148 | " true_pos_count += 1\n",
149 | " true_ids.append(idx)\n",
150 | " minx, miny, maxx, maxy = truth_polys[fidlist[np.argmax(iou_list)]].bounds\n",
151 | " envelope = (minx, maxx, miny, maxy) \n",
152 | " truth_index.delete(fidlist[np.argmax(iou_list)], envelope)\n",
153 | " #del truth_polys[fidlist[np.argmax(iou_list)]]\n",
154 | " else:\n",
155 | " false_pos_count += 1\n",
156 | " false_ids.append(idx)\n",
157 | " else:\n",
158 | " false_pos_count += 1\n",
159 | " false_ids.append(idx)\n",
160 | "\n",
161 | " false_neg_count = truth_poly_count - true_pos_count\n",
162 | "\n",
163 | " return true_pos_count, false_pos_count, false_neg_count, true_ids, false_ids"
164 | ]
165 | },
166 | {
167 | "cell_type": "code",
168 | "execution_count": 5,
169 | "metadata": {
170 | "collapsed": true
171 | },
172 | "outputs": [],
173 | "source": [
174 | "def evalfunction(image_id, test_polys, truth_polys, truth_index=[], resultGeoJsonName=[], threshold = 0.5):\n",
175 | "\n",
176 | " if len(truth_polys)==0:\n",
177 | " true_pos_count = 0\n",
178 | " false_pos_count = len(test_polys)\n",
179 | " false_neg_count = 0\n",
180 | " else:\n",
181 | " true_pos_count, false_pos_count, false_neg_count, true_ids, false_ids = score(test_polys, truth_polys,\n",
182 | " truth_index=truth_index,\n",
183 | " resultGeoJsonName=resultGeoJsonName,\n",
184 | " imageId=image_id,\n",
185 | " threshold=threshold\n",
186 | " )\n",
187 | "\n",
188 | "\n",
189 | " if (true_pos_count > 0):\n",
190 | "\n",
191 | " precision = float(true_pos_count) / (float(true_pos_count) + float(false_pos_count))\n",
192 | " recall = float(true_pos_count) / (float(true_pos_count) + float(false_neg_count))\n",
193 | " F1score = 2.0 * precision * recall / (precision + recall)\n",
194 | " else:\n",
195 | " F1score = 0\n",
196 | " return ((F1score, true_pos_count, false_pos_count, false_neg_count), true_ids, false_ids, image_id)"
197 | ]
198 | },
199 | {
200 | "cell_type": "code",
201 | "execution_count": 6,
202 | "metadata": {
203 | "collapsed": true
204 | },
205 | "outputs": [],
206 | "source": [
207 | "def precision_recall(true_pos_count, false_pos_count, false_neg_count):\n",
208 | " precision = float(true_pos_count) / (float(true_pos_count) + float(false_pos_count))\n",
209 | " recall = float(true_pos_count) / (float(true_pos_count) + float(false_neg_count))\n",
210 | " return (precision, recall)"
211 | ]
212 | },
213 | {
214 | "cell_type": "code",
215 | "execution_count": 7,
216 | "metadata": {
217 | "collapsed": true
218 | },
219 | "outputs": [],
220 | "source": [
221 | "TRUTH = Path('znz-input')\n",
222 | "TEST = Path('znz-20190118')"
223 | ]
224 | },
225 | {
226 | "cell_type": "code",
227 | "execution_count": 95,
228 | "metadata": {
229 | "collapsed": true
230 | },
231 | "outputs": [],
232 | "source": [
233 | "df_truth = gpd.read_file(f'{str(TRUTH)}/grid_042.geojson')\n",
234 | "df_test = gpd.read_file(f'{str(TEST)}/grid_042_20190118_07_classes.geojson')"
235 | ]
236 | },
237 | {
238 | "cell_type": "code",
239 | "execution_count": 96,
240 | "metadata": {},
241 | "outputs": [
242 | {
243 | "data": {
244 | "text/html": [
245 | "
\n",
246 | "\n",
259 | "
\n",
260 | " \n",
261 | " \n",
262 | " \n",
263 | " id \n",
264 | " changeset \n",
265 | " problemati \n",
266 | " condition \n",
267 | " area \n",
268 | " geometry \n",
269 | " \n",
270 | " \n",
271 | " \n",
272 | " \n",
273 | " 0 \n",
274 | " 1 \n",
275 | " 2017-09-03T23:40:59 \n",
276 | " None \n",
277 | " Complete \n",
278 | " 16.93017578125 \n",
279 | " POLYGON ((39.33633038681167 -5.920836943343485... \n",
280 | " \n",
281 | " \n",
282 | " 1 \n",
283 | " 2 \n",
284 | " 2017-09-03T23:40:59 \n",
285 | " None \n",
286 | " Complete \n",
287 | " 21.62890625 \n",
288 | " POLYGON ((39.33628382960306 -5.92092792350677,... \n",
289 | " \n",
290 | " \n",
291 | " 2 \n",
292 | " 3 \n",
293 | " 2017-09-03T23:40:59 \n",
294 | " None \n",
295 | " Complete \n",
296 | " 11.2216796875 \n",
297 | " POLYGON ((39.33622587109281 -5.920941122736775... \n",
298 | " \n",
299 | " \n",
300 | " 3 \n",
301 | " 4 \n",
302 | " 2017-09-03T23:40:59 \n",
303 | " None \n",
304 | " Complete \n",
305 | " 46.849609375 \n",
306 | " POLYGON ((39.33368444829663 -5.923518950659385... \n",
307 | " \n",
308 | " \n",
309 | " 4 \n",
310 | " 5 \n",
311 | " 2017-09-03T23:40:59 \n",
312 | " None \n",
313 | " Complete \n",
314 | " 7.458984375 \n",
315 | " POLYGON ((39.33414129839756 -5.923375141989136... \n",
316 | " \n",
317 | " \n",
318 | "
\n",
319 | "
"
320 | ],
321 | "text/plain": [
322 | " id changeset problemati condition area \\\n",
323 | "0 1 2017-09-03T23:40:59 None Complete 16.93017578125 \n",
324 | "1 2 2017-09-03T23:40:59 None Complete 21.62890625 \n",
325 | "2 3 2017-09-03T23:40:59 None Complete 11.2216796875 \n",
326 | "3 4 2017-09-03T23:40:59 None Complete 46.849609375 \n",
327 | "4 5 2017-09-03T23:40:59 None Complete 7.458984375 \n",
328 | "\n",
329 | " geometry \n",
330 | "0 POLYGON ((39.33633038681167 -5.920836943343485... \n",
331 | "1 POLYGON ((39.33628382960306 -5.92092792350677,... \n",
332 | "2 POLYGON ((39.33622587109281 -5.920941122736775... \n",
333 | "3 POLYGON ((39.33368444829663 -5.923518950659385... \n",
334 | "4 POLYGON ((39.33414129839756 -5.923375141989136... "
335 | ]
336 | },
337 | "execution_count": 96,
338 | "metadata": {},
339 | "output_type": "execute_result"
340 | }
341 | ],
342 | "source": [
343 | "df_truth.head()"
344 | ]
345 | },
346 | {
347 | "cell_type": "code",
348 | "execution_count": 97,
349 | "metadata": {},
350 | "outputs": [
351 | {
352 | "data": {
353 | "text/html": [
354 | "\n",
355 | "\n",
368 | "
\n",
369 | " \n",
370 | " \n",
371 | " \n",
372 | " cat \n",
373 | " building_id \n",
374 | " conf_foundation \n",
375 | " conf_completed \n",
376 | " conf_unfinished \n",
377 | " geometry \n",
378 | " \n",
379 | " \n",
380 | " \n",
381 | " \n",
382 | " 0 \n",
383 | " conf_completed \n",
384 | " 0 \n",
385 | " 0.0049 \n",
386 | " 0.9765 \n",
387 | " 0.0185 \n",
388 | " POLYGON ((39.33541308434184 -5.933007141989886... \n",
389 | " \n",
390 | " \n",
391 | " 1 \n",
392 | " conf_completed \n",
393 | " 1 \n",
394 | " 0.0096 \n",
395 | " 0.6228 \n",
396 | " 0.3669 \n",
397 | " POLYGON ((39.33543994125422 -5.932787098088375... \n",
398 | " \n",
399 | " \n",
400 | " 2 \n",
401 | " conf_completed \n",
402 | " 2 \n",
403 | " 0.0062 \n",
404 | " 0.9525 \n",
405 | " 0.0408 \n",
406 | " POLYGON ((39.33536607110349 -5.932866080282638... \n",
407 | " \n",
408 | " \n",
409 | " 3 \n",
410 | " conf_completed \n",
411 | " 3 \n",
412 | " 0.0189 \n",
413 | " 0.9730 \n",
414 | " 0.0079 \n",
415 | " POLYGON ((39.33511558848227 -5.932883043772769... \n",
416 | " \n",
417 | " \n",
418 | " 4 \n",
419 | " conf_foundation \n",
420 | " 4 \n",
421 | " 0.8673 \n",
422 | " 0.0280 \n",
423 | " 0.1034 \n",
424 | " POLYGON ((39.33529523898535 -5.932884091309337... \n",
425 | " \n",
426 | " \n",
427 | "
\n",
428 | "
"
429 | ],
430 | "text/plain": [
431 | " cat building_id conf_foundation conf_completed \\\n",
432 | "0 conf_completed 0 0.0049 0.9765 \n",
433 | "1 conf_completed 1 0.0096 0.6228 \n",
434 | "2 conf_completed 2 0.0062 0.9525 \n",
435 | "3 conf_completed 3 0.0189 0.9730 \n",
436 | "4 conf_foundation 4 0.8673 0.0280 \n",
437 | "\n",
438 | " conf_unfinished geometry \n",
439 | "0 0.0185 POLYGON ((39.33541308434184 -5.933007141989886... \n",
440 | "1 0.3669 POLYGON ((39.33543994125422 -5.932787098088375... \n",
441 | "2 0.0408 POLYGON ((39.33536607110349 -5.932866080282638... \n",
442 | "3 0.0079 POLYGON ((39.33511558848227 -5.932883043772769... \n",
443 | "4 0.1034 POLYGON ((39.33529523898535 -5.932884091309337... "
444 | ]
445 | },
446 | "execution_count": 97,
447 | "metadata": {},
448 | "output_type": "execute_result"
449 | }
450 | ],
451 | "source": [
452 | "df_test.head()"
453 | ]
454 | },
455 | {
456 | "cell_type": "code",
457 | "execution_count": 98,
458 | "metadata": {},
459 | "outputs": [
460 | {
461 | "data": {
462 | "text/plain": [
463 | ""
464 | ]
465 | },
466 | "execution_count": 98,
467 | "metadata": {},
468 | "output_type": "execute_result"
469 | },
470 | {
471 | "data": {
472 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAAIMCAYAAABIYfB/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd8lfXd//H398zsPUhIQiCMMGQZVEBQ3FqVqtXa2lY7HK3e1e56+7tbW21rbXvbPmrbu84OtWq1tu4qLlBACELChhBWICF7r5Nzvr8/ElNQECTjXElez8cjD3Ku6zrX9TmA8s53GmutAAAA4FyucBcAAACAj0ZgAwAAcDgCGwAAgMMR2AAAAByOwAYAAOBwBDYAAACHI7ABAAA4HIENAADA4QhsAAAADucJdwH9KSUlxebm5oa7DAAAgKNas2ZNtbU29ViuHVaBLTc3V4WFheEuAwAA4KiMMbuP9Vq6RAEAAByOwAYAAOBwBDYAAACHI7ABAAA4HIENAADA4QhsAAAADkdgAwAAcDgCGwAAgMMR2AAAAByOwAYAAOBwBDYAAACHI7ABAAA4HIENAADA4QhsAAAADkdgAwAAcDgCGwAAgMMR2AAAAByOwAYAAOBwBDYAAACHI7ABAAA4HIENAEaQvbWtkqS6lk61B4JhrgbAsSKwAcAIkp0UJUmqaelUfWsgzNUAOFaecBcAABh849Niwl0CgI+BFjYAAACHI7ABAAA4HIENAADA4QhsADDM7alp1faKRtW1dIa7lI9UtLc+3CUAjkVgA4BhLic5Sp1Bq66Q7fO9bntmvQLBUD9U9WGdwZCs7XuNwHDELFEAGAGmjo7vl/ukx0UoEAzJ6+7/n/fn5Cb1+z2B4YLABgA4Zl8/c0K4SwBGJLpEAQAAHI7ABjjAk4V7w10CAMDBCGyAA5w9OT3cJQAAHKxPgc0Yc7sxZp8xZl3P1wVHuO5mY8wGY8xGY8wtBx2/vOdYyBhT8IH33GqMKTHGbDXGnNuXOgGnS4z2hbsEAICD9UcL2z3W2pk9Xy9+8KQxZpqkayWdJGmGpAuNMe+PWt0g6VJJSz/wnimSrpQ0VdJ5kn5vjHH3Q62AYz1ZuFcNbMYNADiMwegSnSxppbW21VrbJektSZdIkrV2s7V262Hes1jS49baDmvtTkkl6g58wLB1RUG24qO84S4DAOBA/RHYbjLGFBtjHjLGJB7m/AZJC40xycaYKEkXSMo+yj1HSzp4FHZZz7EPMcZcZ4wpNMYUVlVVHU/9AAAAjnbUwGaMWdIz/uyDX4sl/UFSnqSZksol/eqD77fWbpb0c0mvSnpZUpGkrqM99jDHDrv8tbX2PmttgbW2IDU19WgfBwAAYMg56sK51tqzjuVGxpj7JT1/hHs8KOnBnut+qu4Ws49SpkNb4bIk7T+WOgAAAIabvs4SzTjo5SXq7v483HVpPb/mqHuSwd+OcutnJV1pjPEbY8ZKmiBpVV9qBQAAGKr6ujXV3caYmerurtwl6XpJMsZkSnrAWvv+Mh9PG2OSJQUk3Witreu57hJJv5WUKukFY8w6a+251tqNxpgnJW1Sd/fpjdbaYB9rBQAAGJKMtYcdGjYkFRQU2MLCwnCXAQAAcFTGmDXW2oKjX8lOBwAAAI5HYAMAAHA4AhsAAIDDEdgAAAAcjsAGAADgcAQ2wEE6uoLaV98W7jIAAA5DYAMcJBC0WrO7LtxlAAAchsAGOEiM36OLZ2SGuwwAgMMQ2AAAAByOwAYAAOBwBDYAAACHI7ABAAA4HIENAADA4QhsAAAADkdgAwAAcDgCGwAAgMMR2AAAAByOwAYAAOBwBDYAAACHI7ABAAA4HIENAADA4QhsAAAADkdgAwAAcDgCGwAAgMMR2AAAAByOwAYAAOBwBDYAAACHI7ABAAA4HIENAADA4QhsAAAADkdgAwAAcDgCGwAAgMMR2AAAAByOwAYAAOBwBDZgmLHWandNS7jLAAD0IwIbMMwYYzQmOTrcZQAA+hGBDQAAwOEIbAAAAA5HYAMAAHA4AhsAAIDDEdgAAAAcjsAGAADgcAQ2AAAAhyOwAQAAOByBDQAAwOEIbAAAAA5HYAMAAHA4AhsAAIDDEdgAAAAcjsAGAADgcAQ2AAAAhyOwAQAAOByBDQAAwOEIbAAAAA5HYAMAAHA4AhsAAIDDEdgAAAAcjsAGAADgcAQ2AAAAhyOwAQA+pLKpPdwlADgIgQ0A8CErS2vDXQKAgxDYAAAfcvGMzHCXAOAgBDYAAACHI7ABAAA4HIENAADA4QhsAAAADkdgAwAAcDgCGwAAgMMR2AAAAByOwAYAAOBwBDYAAACHI7ABAAA4HIENAADA4QhsAAAADkdgA/CxHGhsD3cJADDiENgAfCxxEd5wlwAAIw6BDcDHEulzh7sEABhxCGwAAAAOR2ADAABwOAIbAACAwxHYAAAAHI7ABgAA4HAENgAAAIcjsAEAADhcnwKbMeZ2Y8w+Y8y6nq8LjnDdzcaYDcaYjcaYWw46fnnPsZAxpuCg47nGmLaD7vt/fakTAABgKPP0wz3usdb+8kgnjTHTJF0r6SRJnZJeNsa8YK3dLmmDpEsl/fEwb91hrZ3ZD/UBAAAMaYPRJTpZ0kprbau1tkvSW5IukSRr7WZr7dZBqAEAAGDI6o/AdpMxptgY85AxJvEw5zdIWmiMSTbGREm6QFL2Mdx3rDFmrTHmLWPMgiNdZIy5zhhTaIwprKqqOs6PAAAA4FxHDWzGmCU9488++LVY0h8k5UmaKalc0q8++H5r7WZJP5f0qqSXJRVJ6jrKY8sl5VhrZ0n6pqTHjDFxh7vQWnuftbbAWluQmpp6tI8DAAAw5Bx1DJu19qxjuZEx5n5Jzx/hHg9KerDnup9KKjvKMzskdfR8v8YYs0PSREmFx1ILAADAcNLXWaIZB728RN3dn4e7Lq3n1xx1TzL421Hum2qMcfd8P07SBEmlfakVAABgqOrrLNG7jTEzJVlJuyRdL0nGmExJD1hr31/m42ljTLKkgKQbrbV1PdddIum3klIlvWCMWWetPVfSQkk/NsZ0SQpKusFaW9vHWgEAAIYkY60Ndw39pqCgwBYW0msKAACczxizxlpbcPQr2ekAAADA8QhsAAAADkdgAwAAcDgCGwAAgMMR2AAAAByOwAYAAOBwBDYAAACHI7ABAAA4HIENAADA4QhsAAAADkdgAwAAcDgCGwAAgMMR2AAAAByOwAYAAOBwBDYAAACHI7ABAAA4HIENAADA4QhsAAAADkdgAwAAcDgCGwAAgMMR2AAc0Yvry7WjqjncZQDAiOcJdwEAnGt3Taua2gPKS40JdykAMKIR2AAc0edOyVFbZzDcZQDAiEdgA3BEsRFexUZ4w10GAIx4jGEDAABwOAIbAACAwxHYAAAAHI7ABgAA4HAENgAAAIcjsAEAADgcgQ0AAMDhCGwAAAAOR2ADAABwOAIbAACAwxHYAAAAHI7ABgAA4HAEtj5atr0q3CUAAIBhjsDWB62dXZqZnRDuMgAAwDBHYDtOy0uqNeUH/9Yf3yoNdykAAGCYI7B9TEV763X9XwuVGuvX2JRoRfrc4S4JAAAMc8ZaG+4a+k1BQYEtLCwc0Ge0B4Jq6ehScox/QJ8DAACGN2PMGmttwbFc6xnoYoabCK9bEV5a1QAAwOChSxQAAMDhCGwAAAAOR2ADAABwOAIbAACAwxHYAAAAHI7ABgAA4HAENgAAAIcjsAEAADgcgQ0AAMDhCGwAAAAOR2ADAABwOAIbAACAwxHYAAAAHI7ABgAA4HAENgAAAIcjsAEAADgcgQ0AAMDhCGwAAAAOR2ADAABwOAIbAACAwxHYAAAAHI7ABgywzq6Q7n19e7jLAAAMYQQ2YID5PC7duGh8uMsAAAxhBDZgEBhjwl0CAGAII7ABAAA4HIENAADA4QhsAAAADkdgAwAAcDgCGwAAgMMR2AAAAByOwAYAAOBwBDYAAACHI7ABADBMVDd3qKEtEO4yMAA84S4AAAD0jwivWx4XO6sMRwQ2AACGiRg//6wPV3SJAgAAOByBDQAAwOEIbH20aX+jAsFQuMsAAADDGIGtj9oCQVkb7ioAAMBwxujEPjpxTGK4SwAAAMMcLWwAAAAOR2ADAABwuD4FNmPM7caYfcaYdT1fFxzhupuNMRuMMRuNMbccdPwXxpgtxphiY8wzxpiEg87daowpMcZsNcac25c6AQAAhrL+aGG7x1o7s+frxQ+eNMZMk3StpJMkzZB0oTFmQs/pVyVNs9ZOl7RN0q0975ki6UpJUyWdJ+n3xhh3P9QKAAAw5AxGl+hkSSutta3W2i5Jb0m6RJKsta/0HJOklZKyer5fLOlxa22HtXanpBJ1Bz4AAIARpz8C2009XZoPGWMON2Vyg6SFxphkY0yUpAskZR/mui9Jeqnn+9GS9h50rqzn2IcYY64zxhQaYwqrqqqO/1MAAAA41FEDmzFmSc/4sw9+LZb0B0l5kmZKKpf0qw++31q7WdLP1d39+bKkIkldB19jjLmt59ij7x86TCmHXe3MWnuftbbAWluQmpp6tI8DAAAw5Bx1HTZr7VnHciNjzP2Snj/CPR6U9GDPdT9Vd4vZ+++7WtKFks60tncJ2jId2gqXJWn/sdQBAAAw3PR1lmjGQS8vUXf35+GuS+v5NUfSpZL+1vP6PEnfk3Sxtbb1oLc8K+lKY4zfGDNW0gRJq/pSKwAAwFDV150O7jbGzFR3d+UuSddLkjEmU9ID1tr3l/l42hiTLCkg6UZrbV3P8Xsl+SW9aoyRuicn3GCt3WiMeVLSJnV3ld5orQ32sVYAAIAhydhhtBFmQUGBLSwsDHcZAAAAR2WMWWOtLTiWa9npAAAAwOEIbAAAAA5HYAMAAHA4AhsAAIDDEdgAAAAcjsAGAADgcAQ2AADgaBv3N4S7hLAjsAEAAEebmhkf7hLCjsAGAADgcAQ2AACGsGDIKhAMhbsMDDACGwAAQ9jm8ka9W1ob7jIwwAhsAAAMQct3VGtPbatWltbo1Akp4S4HA8wT7gIAAMDHNy8vRW2dQV02OyvcpWAQENgAABiiIn1uRfrc4S4Dg4AuUQAAAIcjsAEAADgcgQ0AAMDhCGwAAAAOR2ADAABwOAIbAACAwxHYAACAY5QcaFJnF1ttfRCBDQAAOIbLZeTzEE8+iN8RAADgGONSY8JdgiMR2AAAAByOwAYAAOBwBDYAAACHI7ABAAA4HIENAADA4QhsAAAADkdgAwAAcDgCGwAAgMMR2AAAAByOwAYAAOBwBDYAAACHI7ABAAA4HIENAADA4QhsAAAADkdgAwAAcDgCGwBgyGkPBPW/r2xVR1dQWyoaNfuOV3X1Q6vCXRYwYAhsAIAh56bH3tNfV+7W7ppWRXk9qmvtVHlDW7jLAgaMJ9wFAADwcbQHglo4MVWN7V2akBYjSSr96QVhrgoYWLSwAQCGlKb2Lt310hblJkepsb1L8+96Xe/urJUxJtylAQOGwAYAGFKifG61BYJ6+r198rmNWgNBvbWt6pBr3t5erX9vrJAk1bV0qqE1EI5SgX5DlygAYEiJ9nv01dPyJEl/WbFbt180RTOyEyVJSzYdkMdt9Ni7e1RW16Zzp47SX1fuVnykV1fPyw1j1UDf0MIGABhyvntevvIz4vSzl7YoGJLGpkTrD2/u0A2PrNE1D69WelyEMhMiJUkJUV5F+2mfwNDG32AAwJB02oRULZyYqlU7azQrJ0FZiZG6aEamPjkzU3PzUuTzdLdJfGFurqy1Ya4W6Bta2AAAQ1J8lFcZcRF6vrhcxWX1mp+XrJQYn777dLFe33JAklTd3KGJ/+8l/Wn5LoVCVvvq2/SDf20Ic+XAx0dgAwAMWd8/P1/v/eBs7alt00k/fU1769oU6e2elCBJ0T6Pzp6crkivW4FQSJv3N2rtnvowVw18fHSJAgCGLK/HpZ3VLUqK9ikjIUI/vniK1u6pl9/r1isbKxSy0u+umt17/VlT0nXWlPQwVjx8dQVDWre3XjnJUWpsC2h8Wmy4SxpWaGEDAAxZ//vKNp3362WqaGjXm986Xat21ur6R97Tw+/sUkFukmbnJIS7xBGjtrVTb26tUnK0X9lJUeEuZ9ghsAEAhqzzpo2SJJVUNWnmj19VSWWLzpmSrtgIj5KifUqLiwhzhSNHWmyEvn3uJLldRn6PO9zlDDt0iY4wy0uqNTMnQVE+/ugBhE9XMCS3y8hayeU6/h0KZuckaP3t58jrMvrMA+9qZ02LfnX5DMVE8P84DC+0sI0w2UlR+sd7ZeEuA8AIVN/aqafXlOnJ1Xv1wvpyNbQFtKK0pk/39Lhdio3wKsLn0TNfm69fXDZdZ9+zVDuqmvupasAZ+BFkhEmI8srrdikYsnL34adaAPi4dla36Ft/L5Ikrbz1TBWV1SurZ3Hb/vJ/S0t12sQUdXSF+vW+QLgR2EaYt7ZVqSA3ibAGYNClxPh106LxCoasPG6jxCifissalNePswlvXDSe/79hWCKwjTAXTs8MdwkARihrpXV76xUIhvS9mHylxPjlMv0brghrGK4YwwYAGBQpsT4VldVr0/5GldW1SpKmjY7vPf/G1kpJ0vPF+/XvjRVhqRFwKlrYAACDIsrn0U8vOUHGSJ2HGWN2z6vbtGhSmr77VLESo3w6d+qoMFT5H6GQ1aubKzQlI14xfo9cLqP4SG9Ya8LIRQsbAGDQzM1L1m+WbNdX/lyo9p7to9538YzuIRu//cws/fYzs8JR3iEqGtv1P//cqOeK9ys2wqNoH2uLIXwIbACAQZMS41cwZFVa3aLlO6p7j//ujRI99u4eSVJGfIR217YMSj3NHV2qbGzXs0X7tWFfg279R7H++NYOXf3QKjW1BzQvL1luY+Rxu+Rxd/+TGQiGtO1Ak+pbOwelRkAisAEABtkNp+fpzk9O02kT03qP+T0udQa7u0k37G/Uj5/bpOKyej2ycveA1vLAslL9afku/e3dPdpT26K/rdqrjfsb9da2KlU3d+j1LZV6u6RaZXWt2lffJkkqqWzWOfcs1T/X7hvQ2oCDMYYNADCorijIPuT11oomPbWmTJfOzpIk1bZ0qq41oK6gVXVzx4DW8tmTc9TZFZLP49LYlBidNDZJuclRuvOT0zQrJ1GLZ45WlN8tr9uldXvrlRkfoQhvd9doCYvzYhAR2AAAYWWMlBYXoY6u7jFtZ+anaXxqjHKSo3TLmIkD+uy02O69Rm85q/s53ztvkto6Q1q1s0ZRPo9Kq5v16FdO0aPv7tZtz2zQszfNU/6oOD1x3SnKS4sZ0NqAgxlrbbhr6DcFBQW2sLAw3GUAI9aGfQ2HLNMAHIvOrpCMkbzu/4zSaWwP6KnCMl0zL1f/868N+trpeXp9a5VWltboN5+e2TuerL/srW1VYrRPK3bUqLWzS+2BoDwul0bFR2j++BTtq2/T+rIGLcpPld/j1jsl1Wrr7FJMhFenjEvu11owchhj1lhrC47lWsawAeg3eam0OODYhEJWwVB3g8GzRfs09Yf/1ssbyiVJS7dV6YsPr1ak16UVpTUanRChxGif7npxs14oLtfbJdUfdevj8l9/W6vdNS06e0q6xqfFqLSqRVXNHZo/PkWSlBkfoV8v2aZv/71Y33xinW5+fJ1+/PwmfeHBVQqFhk/DB5yLLlEA/SaSZQ9wjDZXNOqi376tx6+bq/TYCC2ekanM+O59RYMhqzW763T6pFRVNnVqYnqMonwe/eqKmcofFavclOh+r+ecqelKj/WrurlDUzPjNTE9VgfvmWCtFBfpVVN7QAsnpCotLkLWWp2QFa+QtXKJHRYwsAhsAICwmJmdoNgIj37wrw3aUtGkHy2eKkk6eVySfG6XkqJ9+uxJOTI921edN21gFtLdX9+m5GifdtW0qrKpQxeckHFI96wkuVxGM7MT1BW0unperlbsqNGsnARF+/lnFIODLlEAwKCqaGjX8pIa/fTSE5QW69dVp4zRl08d27uvaJTPo0tmZaq+NdAb1gbSHc9v0veeXi+Xy+iCEzJ6j/9lxS61df5ncd/tB5q0Znet3i2tUXZSpJo7uga8Nqd48O2derZof7jLGNH40QAAMKi2VDTqJy9u1sKSFI1NjtZnTs6R3+3qXS5DkqqbO7W7tlU3Lho/4PWcPSVdY5KjlZUYecjxL8zNPeT1jOwE7axuUWK0T9ZK6XERA16bU1w4PUM7WMYkrAhsAIBBlT8qTj/55DTtqGrWmZPT9Y/3yvTUmn26Ys5/1me76uQc1bcG9Na2Kp02MXVA63l//beDNbYHdMvj63T1vNze51c1dWhXdYsCwZAmZ8QNaE1Okx4XMaICqhMR2AAAg2pUfIRkpD8t36X/vmCy7ltaqgU9szFfKC7XpFGxWlZSrYff2SW/x6Utd5w3KF2jB4v1e7Svrk27qlt6A9tPLjlhUGsADkZgAwAMujPy0zT/W6ersyukutbO3kH+5Q1tOmdquq6ck6Ozp6T3zhwdbMYYvXTzArlczP6EMxDYAACDLqMniIVCVg9dM0funha0rywYJ0lq7ghoTHK0RieEJ7BJIqzBUZglCgAYdH9dsUsL735DzxXtV8GdS/TlP6/WruoW3f3yFhXuqtXdL2/VDX9dE+4yAceghQ0AMOjqWgPaU9uqffVtkqSukFVNS4d+/+YONbYHNCY5StmJUWGuEnAO9hIFAAy6rRVN2l7ZpPGpMSpvbFcoZOVxG8X4vJqVkyCXy2jptiptrWjSZSdmKSnaF+6SB9XaPXWalZMY7jIwwNhLFADgaJNGxerC6ZnKz4jToklp2rS/UVc/tFqX/d9yNbV3L0i7dFuVfvLiZtW2dIa52sF339LScJcAh6FLFAAQdjNzEnT13DGHHEuPi9CouAhFeF368/JdagsEdd2CcSNiMsC8vGQV7qpVQW5SuEuBQ9AlCgBwvIvvfVu7qltUfPu54S7luJU3tGnZtmrFRng0Ny9ZCVGHdvM2tQfkMob9SUeQj9Mlyt8KAIDjrNpZq+U7qnXLWRMlSSflJumzJ+WoqrFDxfvqlRDl1YljhlbrU3FZg777dLEk6aWbFyghyndIK9rzxeV6eUOFmtoDqm7u1M8vm65Ir0szGcsGMYYNAOBApVXNemTl7t7XUzLj9D//2qA/r9ipjfsb1RUcer1DKTE+nTd1lObkJmpUzzZPB3d5Rvs92lndIpcxsrKKi/ToH2v3hatcOAwtbAAAx/n0nGx9ctbo3teRPrfm56UoJzlaVxRkf8Q7nWfN7jp98eFVmpAeq6e/Ok81zR1qDQQV0RlUpM+tlzaU6/6lpXrg6jmK9rk1IT1GmfGR2lHVogUTBnYfVQwdtLANYe+UVIe7BADoNzurW/Tb17brnZJqGWMU4XX3niutatH2yuYhF9ak7s/V2N6l1s6gJOmrj7yn+Xe9rte3VEqSKhraFQxZdXaF9HxxuZaXVOtAY7sivC4lx4ys5UxwZLSwDWGzchLCXQIA9IvG9oCK9tbpgbd36r98bs0fn6K6lk7FR3pljHT6pFTF+D36/lNFkjG67MQszRkiMygvmz1aiyal9i5PctmJo3VibqKk7m7dL84fqy/OHytJmpuXrPFpMaprDeidkmpdf1qerLV65N09+vwpY470CIwAfWphM8bcbozZZ4xZ1/N1wRGuu9kYs8EYs9EYc8tBx39hjNlijCk2xjxjjEnoOZ5rjGk76L7/15c6h6soH3kbwNBXXFavOXcu0SubKrXuB2crMcqngjuXaNYdr6qsrk1/XFqqZdur9blTxmhjeaOWba9WZWNHuMs+Zo+s3K3zfrNMK0prdPuzG/V8cblW76zRjY+tVVXToZ/jstlZmpGVoGmj4/WlU7tDnDFGnzs5Jxylw0H641/8e6y1vzzSSWPMNEnXSjpJUqekl40xL1hrt0t6VdKt1touY8zPJd0q6Xs9b91hrZ3ZD/UBABwsf1Sc/B6X3impVnlDm4yRIrwueV1GJVVNmpGVoOaOLq3YUaPFM0ZrUkbskGlds9aqoyukqqYOVTZ2qKisXpv2N6ogt3vmZ3Vzh1Jj/b3Xv1NSrWseXqWUGL/e/t4ZvceNGbi1517fckDPF5UrNc6vW8+fPGDPQd8MRhPNZEkrrbWtkmSMeUvSJZLutta+ctB1KyV9ahDqAQA4iM/j0h8/X6D99W2ad9cbmpwRp8tPzNLv39yht7fX6AcXTZEkXfPwKnlcRl9ZOC7MFR+7Z4v2a1J6rP5+w1yNiotQaqxPNyzM08njkmQkRfnc+uuKXdpc0aRvnT1RoxMj9eVTx6qhLSCfZ3CGme+qbtU/1u7TxPQYApuD9cffhpt6ujQfMsYcbrGYDZIWGmOSjTFRki6QdLhRo1+S9NJBr8caY9YaY94yxizohzoBAA41Ny9ZM7IT5HUbxfjdvVtXzTxorG5LR5c27W8MY5Uf37Lt1VowMVVzcpOUFudXSoxfp01K1fp9Dfre0+u1rbJZr2+p1GPv7pHbZZSXGqPbPjFFd39qxqDVGBfp0c8/dYLu/tQM3fz4WuV+/wUt2XRg0J6PY3PUFjZjzBJJow5z6jZJf5B0h7pHTt4h6VfqDl69rLWbe7o7X5XULKlIUtcHnnFbz7FHew6VS8qx1tYYY06U9E9jzFRr7Yf+SzXGXCfpOknKyaGPHwCGqnEp0Vp/+7mK8Lq1ametLi8YLaP/dAXOzknU+LSYMFb48U1Kj+393u9x6xPTMyVJCyak9i7ZERfp1VmT0xQf6VVrZ5cCQav4SK9e3lCukJUuOCFjQGv81Svb9MX5uZqZnaBAMDSgz8LxO2pgs9aedSw3MsbcL+n5I9zjQUkP9lz3U0llB73vakkXSjrT9uyTZa3tkNTR8/0aY8wOSRMlfWjfKWvtfZLuk7q3pjqWWgEAzuNyGf1txR7tqGrW0m3VmpObqLV76vX6t0+XJH15wVg9sGyn9ta2KjspSqGQ1abyRk0bHd97jze2VGpmdoISo52xHMa1x9B929IRVGVTh4wxuu2ZDWpoC+iha+ZIkiYMUED9y4pdausM6rqF4/SNsycq2ufWc0X7NX98ir5zbr6yEyMH5Lk4fn0aw2aMybDWlvf/1f19AAAgAElEQVS8vETd3Z+Huy7NWltpjMmRdKmkuT3Hz1P3JIPT3h/j1nM8VVKttTZojBknaYKk0r7UioG1v75N6XERco+ATZkBDJxIr1vxkV7dftEU5aXGqDMY0paKRkX7PGoPBHXf0lKdN22UGtoCenzVHuVnxB4S2LYdaFJ6XIRjAttHqWxq1+cfWKVov1u/+fRMtXUG9czafbp2Qffs0POmDVzL2hOr92rj/kZdXpCthtaAVuyo0c7qFq3bW6//+9xsjU2JHrBn4/j0ddLB3caYmeruEt0l6XpJMsZkSnrAWvv+Mh9PG2OSJQUk3Witres5fq8kv6RXe2bArLTW3iBpoaQfG2O6JAUl3WCtre1jrRhAf16xS98+Z5LcIrABOH5XntQ9tOWO5zdpw/5GzchO0NUPrdJ1C8fpa6fn6YbT8pQS7ZeV1UljkzTxoC5HSTpv2ijFRXjDUfrHdqChQ7kpUWpoDSgx2qdIn1vFt5+jUKi7s2hHVbPaOoOHBNL+8rlTxijC61KE16WLZ2bqzMlpspKifR4lDYGwOxKZnl7IYaGgoMAWFn6o1xQAMERVN3foidV7tWhSmqZkxvUef2NrpfbVtaqioUMXzcjUjY+9pyvnZOvMyen64bMbNSUjTt8/Pz+MlR/e1oomTRrVHTIfX71H3396vVJj/Vp9W/foo9bOLkV63TLGaPG9b2tzRZO23Xn+gNXz2uYDWra9WrdfPHXAnoEjM8assdYWHMu1bE0FAHCkzq6Qaps7lRLj05jkSK3dU9d7blZ2gs6cnK4/Lt2h1btqVVLZrNLqFiVF+7R0W5WK9taHsfIje3/UiLVWv32tRKdNTNW3z5nYe/6ah1Zr/l2v6+UNFfrE9Ax9qWcHhIHi87j0ysaK3la9o9lb26qXN1QMaE04PJbKBwA4Um1Lh5Zur9SybTXKS43W3ro2WSvVtHTqlHFJyoiP1B8/f6KmZyVo8cxMxUZ41dAa0LfPmaipmf3fjdhXpVXNGpfaPYkgZKXvnZ+vvxfuVXZiVO81c/OS1RlMVHqcX+dNO9wCDf2jPRCU22W0t7ZNt188Va4jjD/+59p9emlDuc6ZMkqfmJ4hv8elaH/3LN6Txvbf4sWhkD1iDehGCxsAwJFSYvz65MwsnTQuSaVVrXp10wEV7q7VtgNN6gp2twidkZ+uqqYOfe/pYm3Y16C5d72morIGLcpPC3P1H/bTF7eosS0gSVq1s1avbT6gaxeM07zxKZKkZdur9MjK3frq6XmalXO4ZU37z8rSGm2taFJBbqICXSFt2t+o9kDwQ9cVldXrtc2Vqmru0K3/WK+61oBiI7z6zlNF2lHV3G/1PPTOTrV2dh39whGMFjYAgCN53C6lxPr1tdPz9HZJtWqaO/Wl+WPlcXe3NXQFQwpaK5cxenF9hbITo9TaGVRVU4estQO6ndPRbC5v1A/+tUGfOCFDy3fUaHpWvH60eKoeW7VHNy4ar9gIj1zG6I2tlVo4sXs9tikZcfrF5dO1/UCT/r3xgK46OUdjkvt3tmZtS6f++x/rVdvaqT9cNVuBoNWfV+xSYoxPt180VRnxhy7n8dXT83T13FzlpkSrPRBUhNetzq6QvnXOJI3rmUn6+pYDmpoZr/S4iOOu6ysLhs7uFeFCCxsAwNGMMVowIVUnj03Sc8X7JXWPATvtF2/qmfe6t1Q6Iz9NE9Jjdev5+br8xKywhjVJmpwRpyevn6uFE1P1yqYDenVzpV4o3q+1e+pU09yhaaPjdc+nZ+qHF3UP9n9xfbleXF+u6VkJ2ri/UfctLdUTq/f2e11RPrde3tg9Bi05xq8X1pdr1a46hULdC/t+UFpshHJTovW9p4r12ftXSuoe93bxjMze3+Mz8tP7FNZwbAhsAADHq2vpVFFZQ2+IMcbopjPGa3xajGpaOvXQNXO0ubxRP3tpi55+r+wodxscxhglRvn09TMn6KLpGbp6Xq4uL8jW1oomLbj7dV3wm2WqbGqXJD1ZuFfr9zWooyukiWmx+tL8XM3I7v9xeBFet1bfdpYe/fLJkqRxqdE6aWySIr1uNbUHjvg+v9el2Qd107Z1BlXd3NHv9eHI6BIFADheIBTSTYvy5Pe69a91+7R45mh9pmfNtidX79EVc3I0OSNOsREeTc6IC3uX6PsSo3365tn/mQV67tRRausM6ocXTlXh7jqlRPslSfd9vkBtnUHFR3nV1B5Qcoxf2YkDs3htaqxfj767W1edPEaLJqVpdk6iTr3rdbUFgrr/C4dfYSJ/VJxe3lih+5eWavHMTC3ZXKmLZgzsllk4FIENAOB4abERWrGjRrc9s0EtnV1KivZpwYRUdQVDSojqXuj1wukZumhGRm/XXnsgKK/bFdYdWBpaA/r642tV19qpqRlx2lbZrK+fOV47q1t04fQMuVxGlU3t+uYTRfrhRVMUH+VV/qg45Y+KO/rNj9NNj72nXTUtuurkMZKkWL9H3zlvkhKjjrxgblN7QLUtHWrq6FJje0Dr99XrzMlpih0iixQPBwQ2AMCQcObkdD27br/io7yqbGzX954q1rq99ZqVk6BZOYlKjfUfcv3b26u1t65VXxzgtcw+SrTfrWXbqxSy0oNXFyg1NkKtnV2666Wt2ri/Qb++cpY6AiGlxPgGLVj+5spZOvhRe+tatXZPve759Mwjvuf60/J0/Wl5va9/dun0gSwRh0FgAwaQU7plgOEgxu/Rgz2boj+ycreeKOwez3bDaeO0fEe14iK9WjSpezmPQDCk8WkxOmtKeu/7B/q/x/VlDXptywFdUZCtzITu2ZYet0t3LJ6qkqqW3kAW5fPot5+Z1buMRnZSlJKi/dpd29q7TttA2rCvQfe+UaIrCrJ19pR0+TwujUmOOvobEVZMOoCjhUJWFQ3t4S7juL22uVI7q1vCXQYw7Fw6e7S+fsZ43X7RFK3aVSuXMdpf36YdVc2qaGjXnJ8s0Zf+tFpSd3fe4t+9o2eL9g9oTU0dAd23tFRltW2qavrPgHyfx62H39mlHz23SZLU2B6Q3+PS5Izubs9QyOpf6/ZpfVnDgNb3vurmDr266UBvYMyIj1RStE/PFe0blOfj+BDY4GjtXUFtPdAU7jKO21lT0jU2ZWAGDgMjWZTPo2+eM0nlDe3aU9uqN7ZU6rZnNujt7dVKi/VrbEq0zpycpq5gSJFetzbua9BzReX9XsebWyt1/9JSlVY1a15eijb+6FydNC7pkO7ZE7LidcNp41QwpnuW5fKSGt35wqbewORyGb36zdN04+l5h31Gf5s0KlY/uWSaZvfU09AWUEKUT143kcDJ+NOBo0X5PDqtZ1FJAPigWy+YrEe/ckrvNkmbyxv185e36PqF43TbJ6bI43bJ43ZpUX6aJqT3f3fj61sq9ZMXN+v1LZWS9KEu16K99cofFafnisr11HvdLVhvbq3UrurW3mUxqps7tPh3bw/a1kxZiVG66uQxGp0QqfuW7tCV963UOVPSNTcv5SOX9kB4MYYNADDknZGfpievn6tR8X49X1yu3A+0bB9puYq+uqIgW/mjYjUhPUZtnUG9uvmAMuL8mjM2WZI0IztBkuT3uNTQ2ilJ2lffpq0HmhTt9+jt7dXaUdWs756bH5bxrpkJkXr8ulMU4XXL7TIy6h7jNm10vLZWNCkxyqu0uAh1BUOS1LvLBAYfgQ0AMOSlxUUorWe1/a+dPn5An7W/vk0/f3mLCnKT9PlTxui9PXXasK9RkzPi9fW/rdXPLj1Bc8Ym67Zn1ishyqvvnJuvZ742X1H+7uVGzsxPU25ytJKifDp1QopOnZAyoPV+lAunZ0qSXigu16njUxQf5VVyTPfyHlVNHWru6FJaXITufGGzPjE9Q3Ny+2/Dd3w8xlob7hr6TUFBgS0sLAx3GQCAYay2pVOz73hVF5wwSr+/6kTVt3YqGLJKjPJp/b4GjYqPUGKUTyfe8arS4yP060/PVHNHl04ckzjkx4mFQlYVje3KiI9gBnw/MMassdYeU/MvLWwAAHwMSdE+/ebKmZqaGa9QyOrOFzZrRla8zj8hQ4t/946+enqepmTE6YGrC5QU7dNfV+7WX1bs1vzxyXr0K6eEu/zj9srGCr27s1Z/XbFbz9w4T+lxEfrL8l2Ki/SyefsgILBh0Hzx4VX6wrzc3nWSAMDJ3i2t0ROFe/W/V3x4QdnFM0ertbNLLpfRe7vr1NYZ1GdOytGCCSmqae5QlM+tk8d1j2P70cVTdeWcHLV0dg32R+hXbpdRXIRX3z53oqZmdu9z+rs3dyjK5yawDQICGwbN1xaN15gkFmcEMDRE+Txauq1abZ1BRfrch5x76O2duufVbXrplgX60xfnqLyhXVbSjKwElVQ2q7SqRWdO7r7WGKMpmQO31dRAqWhoV9BapcT4FAp17zRx5uTuhYirmzvUFQzpjEmpvYsEY2AN7c50DClzcpN6BwUDgNNNGx2nlbeecUhYq2/t1P1LSzUmOUqTM+NUXFava/60Wp++b6V2VreocHetXt5Yoe2VR14/sqKhfdAWye2LX72yVfPvel13v7xVhbtr1dzR1bt23F9W7NYpP3tdUzLjNW10vH73RkmYqx3+aGEDAOAwjDHyuA8dWP/46r2666UtumnReD15/VwVl9UrKcqnGy7LU0qMXz+/bLoivG6lf8QPp62dXSqra9UJWfED/RH65LqF4zQ3L1n76tqUHheh83+zVONSYvTnL52k1Bifpo2O05jkKL20oULbDzTJ4zI6ZVxy71Im6F8ENgAAjtHlJ2apqrldY1O713mbnpWgp746r/d8UrTvqPcYlxozKHuGStLyHdVat7deXz51rLwul1aW1mhuXvIxzfDMTYnWFX9coab27hmuBxo6NCE1Ri9vKNdb26r160/P0vi0GCVF+1Rc1qB7lmzTd8/NJ7ANEAIbAADHKDnGr1i/V996skjxER6dOTndkctbWGtV1dyhN7ZU6v5lO3XJrNFaWVqjbzxRpFvPz1d+Rpz+67H3dNdl03XBCRmHvYfX7dJPLzlBWyoaNS0rXvd+dpZaO4P6w5s7VFTWoFk5CVpZ6tV7u+sU7ffolVsWKjnGrz01rVqxo1pnTx2l9kCQMW79hDFsAIARobyhTX8v3KtfL9nWp/tcMmu0vnHWRM0ek+TIsCZJX/rTap30k9cUF+nVVSfnyO0yemXjAfk8Ln1y1mgFukJqbO9SW2fwI+/zXPF+3fvGDi0vqdZ7e+r1y1e26sunjtVtn5isL87P1Y6qZi3dXq0nVu9VRkKkov0e7ahq1piUKLUHglqy+cAgfeLhj4VzAQAjwi//vVX3vlEij8uo+PZzVFzWoCdX79WvrpjxkcGruaNLMf6h1SH129e2a0tFk65dMFZdIavmji4tnJCqd3fWKMLrlmQVDElxkV5lJUYqynfo52vu6NI3nlin6xaMVUqsX/vq2pUc41NxWb2ifR799zPrtfS7i5QQ1d0F/H6WcGqAdSoWzgUA4AMunJGh/IxYFe2tV0lls9oDQb25rUp7als1Jjn6Q9e3B4L69ZLt+suKXXrqhnlDammOGdkJuveNEjW2B9TaGdSGfQ3aeuf5ivF7ddG9b0uSrl0wVvcv26nPnzJG3zpnopZtr9bcvGSlxPgV4/fo15+eoduf3aRfXD5DiVE+bTvQrE/PydHe2lb97NLph4TYpdurtb6sXtOzErRwYmrv8dKqZjV3dGl6FuPa+oouUQDAiJA/Kk4XTs9UUrRfHpfRggmpWv79M1RS2ayn1pR96Hqv26WWji5NzohTc8fQWfT2/W2yOrpCqm7u1Bn5aTprcrpCIavRiZH64vxczctLVpTPrXl5yZo9JkENbQH919/W6jt/L+q9T7Tfqy/MzdUbWyt14W/f1pX3rdD2A03KTorSJ6ZnHLIR/F+W79IvX9mmF4rLD6llw/5G/XPt/kH77MMZLWwAgBHj2r8U6q1tVVqUnyq3y2jFjjrd/Pg6/dcZH94w3u0yuuOT08JQ5fH7xhPrFBfh0bfPnaSXb16grMRIxUR4JUkPv7NTBxo79MOLpn7ofU3tAV09d4zOmTrqkOMnZMWruKxeDW0BfefcfGUfYfHzb5w9UTeeMV7J0T5d9ofl+t1nZ2tUfIRmZMXLN8T3T3UKAhsAYMSYkBajxCivAsGQJGluXnL3WKzI7mNH2py9tKpZ9yzZrv/3ickfucbaYCuvb1NlU7t217aprqVTd39quprau7S/vl0ul1FRWYNmZico2u/Ro+/uUV5KtHZUNeu93XU6dUKKMuK7Z3DGRnj1o8WHD6fTsxK04tYzP3Ic37TR8XpgWaka2wNKjPKqorFdo+IjNCY5+rDdzfj4iL0AgBFj/vgUPbN2n5Ztr5bU3Yr2fPF+zfjRK/rjWzskdQ+g/+CEvNW7avVc0X49snL3oNd8JE3tAbndRh63S8tLqvXPdfu0bHuVTrzzVZXVtaqqsUPv7qzRyxu7uylvPnOCLpmdpcJdtfrOU8Uq2tugn7+8RTf8dc1Rn3Usky4qGtr1r3X79furTtRM1mLrd7SwAQBGjNyUaH3mpBxlJ/6nay8hyqfRiZFKi+1uOVu3t17j02IU29OVKEmXzc6S3+PWxTMyB73mD6pv7dR5v16m+Eiv/v2NhUqLjVBKrF9761r1+pZKWSvtqW1VSWWzJqXHalxKjLYdaNKi/DR1doV0oLFdq/77TCVGd8/6dLv6NrNzS0Wj1u6p17fPnaRvnTNJPg9tQQOB31UAwIgxOiFSLR1BlVQ29x678IQMvXzLQs3MSdDXHl2j0YmRh4Q1SfK4u9cvc/WEm8FaEuvrf1urqx5Yecix+EivxqfFaG5ecm8d++vatLWiSXF+jzb86FylxPj16Lt71NAWUHNHl865Z6lW76rVlopGLdterasfXq3XNlfqu+fl63dXzT7u+qy1+s7fi/U//9ygkspm1bd16pm1Zfq/ntZK9B9a2AAAI8pPLpkm/0GtQO+HsJfWV+jF9RX61IlZKsh1y+9xye9xH/LeQDCkqx54Vx6X0WPXnjLgtRaV1auzK3TIMWOMHvnKyYccG5McrdaNFapv714zLn9UrM6Zkq65ecm94/LqWjp16ewsjU+LUWlVs1Jjj76N1tEYY/SrK2bo0t8v15aKJrmM9M0ni+TzuHTdgnG9v7foOwIbAGBE6V449sNuPmuCTpuUqvL6Ns2/63X9v09M1qfn5BxyTWdXSKt31SrK65a1dsAWim1sD+iF4nJdND1TCVHeI14XClnVtXYqNyVKM7LiFePr/mwT0mN13xe612OtbGrXZ0/O0aieyRJpsRH66ul5Gt1PW0ZNTI/Vm985XSkxfpVUNmnxzEzlj4oTa+j2L7pEAQAjzvqyBt37+nZded8KLS+p7j0+MztBmQmRivC6dbhez2i/R49+5WS98Z3T+xTWtlY0fehYaVWzXtlYIUl6Y0ullm6r0osbyhUM2d7z33hinYr21staqx8/t0mn/Ow13fLEOi2eOVpbKpq0qfzQ+z78zk4ZGZ0/bZTS4iIUCllN++G/9bkH31VZXdtx1/9BKTF+SdL4tFj95spZ+urpeex60M9oYQMAjDi/eGWrlm6rks/jUlVzxyHnZmQnaPn3z+jtSizcVauN+xu1aFKacpKjNC8vpU/PfqekWlc98K5e/cZCTUiP7T3e3NGl3JQoVTa1KzM+QlednKOXNlSovKFdJZXNauno0jNr92n++BTNyE7Qjqpmpcb6FRvR/U/5hdMzlZ0UqafWlOlAY7tSYnxqaAto2fYqffPJIl0zL1ffPz9f41KjtbumVamx/j59DgwuAhsAYMS5bsE4XT13jObmJX9oH01JvWGttbNL3/57kXbVtCr9cxHKST78wrEfxVqr3TWtyk3pXo/sd2+U6OIZmb1h7V/r9um0ian66iPvqS0Q1FvfOV2dwZAeX71XzxeXKy7Co8tmZykp2qdTxiappaNLq3fV6uIZmfrW34u0paJJtS2dvYv8fvlPq2WM0WkTU9QeCGlieqzu/OQ0Tc6IU4TXrWdvOvV4f9sQRgQ2AMCIc+qEY2sl87hc+tKpYxXhcWvqce4l+nxxudbuqdOOqhb99NITdP8XCtQeCPaeXzxztCTpmnm5qmhsV2yEVxPT43Tq+BS1dHQpwutWeUObrKxW767Typ21mpQeq4e+OEc3LsrTqLhIPVu0T2dNTldWYpTOnJyuM/LTNCr+Pwv8Ts2MU8cHJi9gaCGwAQBwBD6PS1+Ym9une0waFas3t1bqvT11ivK6Fe33KPowC9HWt3VqZWmNfrNku24+a4LW72tQdlKUMuIj9PXH12rSqDhNzYxTZ1dIGfGR2rCvQedMGaWrH16l+taAcpOjlZUYpc+enPOhe1/6h+XyuV0anRip/71iZp8+D8KDSQcAAAygiemx+uXlM/TPG+crMfrIS2nsqm7VnNwkpfQstxGyVq2dQfm9bmUlRml0QoSevelUvfj1U7W9sknX/3WNlmw+oKt6AtqR9vmUpE/OHK0TRsfL2sFbQw79ywynP7iCggJbWFgY7jIAADhudS2dCoRCvTsvPPzOTm2vbNaouAi9tqVSX5iboxi/V69sPKCrTsnRmKQoFZc1aP74lI/cZWD7gSY99V6ZUmP8+sqCcYP1cfARjDFrrLUFx3ItXaJwrL21rR/5EyMADDfWWn3/H8V6bXOl7vvCiTojP13/XLdfG/Y1aPHMTBXtrdfeSak6Z0q8rpk/RtsqmtXeGdSi/LTD3q++tVO/XrJdUT635uQm6Y9vlSo+0qv2QPd7on2e3skQcDYCGxypoyuoxb97Rw1tAf38sun61IlZ4S4JAAZceyCk+taAkqJ9mpObJEm6c/E0RfndivZ59I2zJirS51bBnUs0OydB7+2p1+dOydG88YefROH3uPXou7sVH+nVl08dq6+fMV6zxiSqpaNL//PPDZqdk6j/d+GUwfyIOE4ENjiS3+PWTYvG67UtB5R7HNPoAWAoivS59di1p2hXTUvvfqYnZMUfco21VqdPStWEtBj9ePG0j+yJiPS5NT0rQXtrW9XeFdI3z5nUe+7C6eHfyB7HjjFsAAAMY1VNHUqO9rGvpwMxhg0AAEgSOxoMEyzrAQCAQ1Q0tKuqqePoF2LEIbABAOAQbYGg7lmyLdxlwIEIbAAAOMTYlGjdftHUcJcBB2IMGwAADvJRi9+i/7QHgmpq75LXbeRxu+RxGXlcRm6XkTHOm6BBYAMAACPOvzdW6ObH1x323GdOytbPLp0+yBV9NAIbAAAOUlrVrMyESL24vlwZ8ZGam5cc7pKGpdk5ifrV5TMUCIYUCIbU0RVSIGgVCIY0LtV5uz8Q2AAAcJjZd7yq1s6g0uP8eve/zwp3OcNSdlLUkNr+kI5yAAAcZFxqjJJjfJKkA40dau3sCnNFcAICGwAADjM2Jab3+13VrWGsZHi6b+kO/WvdvnCX8bEQ2AAAcJhxKf8ZQ7W7piWMlQxPf3yrVM+u2x/uMj4WxrABAOAwZ09JV3pchLISIxWyVkVl9Yr2uTUuJUatgf/f3p3H11XWeRz//HJzc7O3WZomXdIlXaEtLQ1VaClLEQFRQERxVMARHQVGAR0dR4dF0BFcBx2BgowwA4jiaEERpBUUpKUttJSkLN0buqZJmjb7cp/5457GtIQ2Lffec27yfb9e95V7n3Oek9/5vU6SX57nLN3kRvTn+90wg+4Ue5a6RthEREQCZu6EYk4YNYTq7Y1c/dAqlm6oY2djO/UtHVz/SN+3opCjYURTq15TwSYiIhJEu/a3sWlPE+dOL+WUiiLmTSwmzYyrz5jwjn0aWztZsbleFyocQZpBNMUqNhVsIiIiAbO1roXvP/UmbzW0ccEJI7n7LxsB2NvSwfrdTQet65zjO0+8xuY9zazcXM8ldy3lXx5d40fYKcMMoik2JapJcBERkYApzM1g295WIulpdEejHDcin2k3PkV31PHHL5160LpmRsWwHMLpaUwpy+e7H57OiKFZPkWeGgqyM8jOiJVAz62rZclru+mOOrqdIxp15EbS+eb5x/kc5cFUsImIiARMbiSdwpwMRhZkcceS9YRDxvJ/W8BDy7cytjgH59xBz7v82EnlPe8vnVPe1yallyevnd/zvmrbPn7xwmYgNlWaHkqjKCcjcAWbuRQbEjycyspKt3LlSr/DEBERedf2tXXS0t7F6d9/llEF2Sy+/rSeQm3l5no++8BKln59AZnhkN+hprSOrihR5wiH0gilJfeh72b2knOusj/r6hw2ERGRAAqZccndS2nrjDJ95BCAnlG12WMKWHz9aT3FWtW2RpZuqGMgDcIkS0Z6GpnhUNKLtaOlgk1ERCRAOrqiXPvLVeRE0ll8/WlcdXoFt1447aB1zIyi3AgQuzL0w3e+wMfvWcbLWxsSElNNfQuL1+5KyLalf1SwiYiI+Ky+uaNndCwjPY3r3jcJgEh6iK+eM4Wcw9wod0hWmItPHMncCUVkhBIzPVq1rZE/rd2ZkG1L/+iiAxEREZ999dFXeH3n/p5pzjFFOUfu1MstF0wjPZS4MZhwKI3jyvITtn05MhVsIiIiPrv38pOoa2o/5gsIElmsAZx13PCEbl+OTFOiIiIiAXDgnDSRvqhgExER8UlLRxdd3VFd3SlHpClRERERn9z/wha2723lspPHMHF4nt/hSIBphE1ERCTBduxt5aKf/Y37vTvqHxhRO2PKMErzIz3Toc45Pbhd+qSCTUREJAGcc/xqZQ0fuOM5PnXfcqq2NbK5rpnKW5/mkRU1AOxobOPBF7dSmJPBrn1tVN66mJseq6a+ucPn6CVoNCUqIiKSAGbGwr9uZP3uJjLS0/jM3HEsmDqcyjGFzCofCsCU0jzOmVZGd9RRkhfhlIpiMsMhWju7fY5egkYjbCIiInHW2NrJzsY25k8q5pSKIu69bDbvrSjiv7cMC/sAABJVSURBVJ5dz47GVkYMzQKgbEgWw/MjvLSlATNjT1M7Dyzdwu9WbfN5DyRoNMImIiISR6u2NvCxu5dx/gllrNhcT019K/MmFlOcG+HZN2oZkhXuWffptbuoaWihICeDOeMKOf+EMk6fPIyTxhb4uAcSRCrYRERE4mj6yCEMy4uwr7WTH310Ju1dUcYW59DU1sWJ5UP5yOxRPesOyQwzuTSf1o7YFOi44hwefektppbl45zredi7iAo2ERGROEoPpfHBE8q457lNVJTkctXpE3joxa28tKWeH39sFqMKsvjJknWsqtnL3AlF3PvcJuaMK+TSOaOJRh35mWHmTxrm925IwKhgExERibMzJpfQ3hWlvqmDB17YzC9e2ExmOMSG2ibKi7L5n2Vb2L2/nc+eOo6lX1/Arn1tbK1v4ZM/Xw7Ade+bdNDUqYgKNp9sqG2iYliu32GIiEgCvGd8EZNL8/j2H17jvBllLJg6nFe37WVUQRa3/n4tt144jcmleZQXZvOlX65i0ertfPMDU/nSgomMLswmlKapUDmYCjaf6EdRRGRgG5qdwfcuOQGAF9bv4Vcr3+KXy2tYVbOXwtwMzj6+FICJJblkhtPY19rJ9WdPpqa+hdaObnIj+hMtf6ejwSfjNbomIjJonDKhmFMmFPPw8q04YGxRTs+yf5w3jn86rYJwKHanrfv+tomJJXn8w3vKfYpWgkgFm4iISJL8/pXtjC3K5rzpZT1t2RkH/ym+4fzjiOpZ8HII3ThXREQkCRqaO/jbhjrqWzoPu56Z6Rw2eZt3XbCZ2U1mts3MVnuv895hvS+ZWZWZVZvZtb3abzGzNV7fP5nZCK/dzOwOM1vvLT/x3cYqIiLil0g4jZ994kQ+f9p42vToKTlK8Rph+5Fzbqb3euLQhWY2DfgsMAc4ATjfzCZ6i7/nnJvhnJsJ/B64wWs/F5jovT4H3BmnWEVERJIuOyOd86aX8d5xRZz2vWf47h9f9zskSSHJOodtKrDMOdcCYGZ/AS4CbnfO7eu1Xg5wYOb+AuAB55wDlpnZUDMrc87tSFLMIiIicZeWZrz4b2fR2R31OxRJIfEaYbvGm7a8z8z6egBaFTDfzIrMLBs4Dxh9YKGZfdvMaoBP8PcRtpFATa9tvOW1iYiIpLwDV4WK9Ee/jhYzW+ydf3bo6wJiU5UVwExgB/CDQ/s7514DbgOeBp4EXgG6ei3/hnNuNPAgcM2Bb9tHKG+7bsbMPmdmK81sZW1tbX92R0RERCSl9GtK1Dl3Vn/WM7N7iJ2H1tc2fg783FvvO8RGzA71EPAH4EZv+ehey0YB2/vY7kJgIUBlZaUuhBYREZEBJx5XiZb1+ngRsenPvtYr8b6WAx8GHvY+T+y12oeAA2dhPgZc5l0t+l6gUeevydF4Y+d+djS2+h2GiIjIuxaPiw5uN7OZxKYrNwP/BODdnuNe59yB23z8xsyKgE7gaudcg9f+XTObDESBLcDnvfYniJ3rth5oAT4dh1hlEJlcmud3CCIiInFhsYswB4bKykq3cuVKv8MQEREROSIze8k5V9mfdXWJikgfFq3extUPvux3GCIiIoCeJSrSp5PHFzFvQjHOOcz0iBgREfGXCjaRPpTkZ/odgoiISA9NiYqIiIgEnAo2ERERkYBTwSYiIiIScCrYRERERAJOBZuIiIhIwKlgExEREQk4FWwiIiIiAaeCTURERCTgdONcERGRY9QdddQ3d7B7XxsNLZ3Mm1jsd0gyQKlgExEROYya+hZ+u2obE0tyOXd6WU/7ptomPrZwGRXDchlTlM3z6/fw/NfOxDkHoMfaSVxpSlREROQwaupb+OHTb/L4mu0HtQ/NziA3M53heRHmTijiurMmceX9Kxj39SeobWr3KVoZqFSwiYiIHEZWRogppXmMLsg+qL0gJ4N7L6vkieqdvLChnotnj8LMMIP2zqhP0cpApSlRERGRw5hVXsCT187vc9n4Ybmcc3wpowqyAFj4qdmaCpWEUMEmIiJyDKJRR01DC3d8fFZPm4o1SRRNiYqIiByDB5ZuZu32fexv6+RP1Tt4c9d+v0OSAUwFm4iIyDGoa+6gOC9CRiiN59bt4U/VO/0OKfAeXr5VeTpGmhIVERE5Bl8+e3LP+1sunO5jJMFWu7+dax9ZxQdnjGByaR45GSo9joWyJiIiInHX1N7FxtomQmZs2N3En1/fzaVzyv0OK2VpSlRERETi7sZF1Xzop39jfW0TOZF0inIz2LSnmZsfr6arW7c9OVoaYRMREZG46Y46nHN8YEYpY4qyKMzOYMmXTwdiNyEeU5hNmq6mPWoaYRMREZG4eHrtLqbe8CRLN9Zx5pThjCrIZsnruwH42bPrueSupVw0axQ3P17NPz+8ijuWrPM54tShETYRERGJi1nlQzmuLJ+QN4I2aXgeWeEQAJ1djp372li2qY7frd7O/rZOzj6u1M9wU4oKNhERkWO0e38bbzW0cmJ5gd+hBEJxboTfXT0XAOcc2/a2smxjHfvburikchQzy4cyfcQQvn/JDBpaOvhopS5C6C9NiYqIiByj2v3t3Lio2u8wAsnMeP/xpTy/fg/Prd/DiKFZnDZpGPlZ6ZjBlroWvvX4Wr/DTBkq2ERERI5RfmaYMYXZbKlr9juUwJo3oZjS/Ah/fbOWaNSRHkpj9dZG/uuZDazYXE+nrhjtFxVsIiIix+iXK7by+1d3sGj1dr9DCayTK4q59/lNXHbfcnbuawPg8lPGsOS6+cwcPZTFa3f5HGFq0DlsIiIiR9Addby+cx+d3Y6Zo4f2tF96UjkzRxfwnnEFPPjiFto6o3xm3jgfIw2eUQVZnD9jBJfMHkVhTgZPvLqDrz26hlnlQ1m5pYG65nZWbG5gSFaYz5w6jtyISpO+aIRNRETkCDq6onzgjue55qGXAaje3kg06vjKr1+hvaub2558g2/8toonXt3hc6TBsLG2qef9tJFD+MnHZzF/0jAywyGyM0Lsb+9i295WZpUPZemGOnY0tvKjxW/2XF0qb6cyVkRE5Agyw2nMm1BMTiRENOr432Vb+NYF0yjJzyQ/M8w1Z07giwsmUpIX8TvUQHiqehf/MCfCkOxwT9szb+zmhkVVPH71PG750PGcXFHM/vZOhmSFeXlLAyV5EbIyQj5GHWwq2ERERI7AzPjfK9/T8/kLp09gb3MH/37+VJZvqqdsSJaP0QXPF06veFtbJD2NmvpW/rJuN4++/BYjCrJYMHU4AOOH5fKRytHJDjOlaEpURESkH9o6u1n41w3cuKiKdIOM9BDZGek9J81vrWvh4wuXAdDa0c0XH17lZ7iBM744lyvnjWNKaT43fPA45k0s9juklKKCTUREpB/SzPj+U29y/9It7GnuIJxutLR3cdvFMwDojEY5aWzsBrp1ze0smFriZ7iBUzokk8xwiP9cso7xxblE0jX9eTQ0JSoiItIPGelp/OCjJ1CUk8G44hx+taKGTXuaufqMCZSEQ1QMy+X6sycDsXO4zpyigu1QL2zYQ2NrJ2u2NXJi+VDyMsNH7iSACjYREZF+S08zvvzrV7jurElcMffg23dc8d/L+cWn59DVHeXZN3bzj3PH+hNkgP3fVXP9DiFlaUpURESkn8KhNPa1drJtb+vblu1sbGNXY+zGsHd/ajY2SG5R0djayYsb6/wOY8BTwSYiItJPZ0wpoerm9zOmKPtty568dj6rahpobu/md6u2c8OiqoPuRzZQZWeEmDOu0O8wBjwVbCIiIv0USjPMjGffqO1z+cSSPJZurOPptTt5YOkWWju7kxxh8oVDaYNmNNFPOodNRETkKFRta+SKdzg/raIkl4qSXMYPy+Hi2aOYWJKX3OBkwFLBJiIichRyIulMK8457DqThucxafjBxVprRzd/rNpBVjjEudPLEhmiDECaEhURETkK445QrL2TqHN87TdruPMvG+IckQwGKthERESSICeSzkljC9nb0knbIDi3TeJLU6IiIiJJcvenZpMbSddJ+nLUNMImIiKSJHmZ4YOKtR2Nrcy//RmWbtB9zOTwVLCJiIj4JJRmlBdms2lPs9+hSMBpSlRERMQHq7Y2EEozqrc3MqVUt/+Qw1PBJiIikmCv7djHlrpmzpkWu53H1Q+9TDTq+OFHZ3LPZZVMKcv3OUIJOk2JioiIJNjUsvyeYg2gIDtMe1eU6u2NbN/bSkNzh4/RSSrQCJuIiEiS3XrhdACuevAlnnh1J3d98kRGF779+aQiB6hgExER8cn7jy9l8vD8tz0VQeRQKthERER8csHMkX6HIClC57CJiIiIBJwKNhEREZGAU8EmIiIiEnAq2EREREQCTgWbiIiISMCpYBMREREJOBVsIiIiIgGngk1EREQk4FSwiYiIiAScCjYRERGRgFPBJiIiIhJwKthEREREAk4Fm4iIiEjAqWATERERCTgVbCIiIiIBp4JNREREJOBUsImIiIgEnAo2ERERkYBTwSYiIiIScCrYRERERAJOBZuIiIhIwJlzzu8Y4sbMaoEtfscRB8XAHr+DGISU9+RTzpNPOU8+5Tz5UiXnY5xzw/qz4oAq2AYKM1vpnKv0O47BRnlPPuU8+ZTz5FPOk28g5lxToiIiIiIBp4JNREREJOBUsAXTQr8DGKSU9+RTzpNPOU8+5Tz5BlzOdQ6biIiISMBphE1EREQk4FSwJYCZZZrZcjN7xcyqzexmr/1MM3vZzKrM7H4zS++j7xgze8nMVnt9P99r2bfNrMbMmg7pc4WZ1Xp9VpvZlYnfy2BJRM7NLNvM/mBmr3vt3+3VJ2Jmj5jZejN70czGJmtfg8KHnOs4T9zvlid7bfMuMwt57YVm9rSZrfO+FiRvb4PBh5zfZGbbeh3n5yVvb4MhUTnvtc5jZlbV63NqHOfOOb3i/AIMyPXeh4EXgVOAGmCS1/4t4DN99M0AIt77XGAzMML7/F6gDGg6pM8VwE/93u+BlnMgGzij1zrPAed6n68C7vLeXwo84ncOBkHOdZwn7ndLfq/t/wa41Pt8O/Cv3vt/BW7zOweDIOc3AV/xe78HYs69tg8DDwFVvdpS4jjXCFsCuJgDo2Bh79UNtDvn3vTanwYu7qNvh3Ou3fsYodcoqHNumXNuR+IiT12JyLlzrsU598yBdYCXgVHeehcA93vvHwUWmJnFd6+CzYecD3oJ/N2yz3ubTuwP3oGTm3sf5/cDF8ZpV1KGDzkf9BKVczPLBa4Hbj2kW0oc5yrYEsTMQma2GthN7MBaDoTN7MCN/D4CjH6HvqPNbA2x/yZuc85t78e3vNjM1pjZo2bW53YHukTm3MyGAh8ElnhNI711cc51AY1AUXz3KPiSnHPQcZ6wnJvZU9429xP7JwRg+IF/Er2vJQnYpcBLcs4BrvGO8/sCOz2XYAnK+S3AD4CWQ7qkxHGugi1BnHPdzrmZxEYH5gDHE5s6+5GZLSf2A9r1Dn1rnHMzgAnA5WY2/Ajf7nFgrNdnMX//T2FQSVTOvfMkHgbucM5tPNDc12bitjMpIsk513FO4nLunHs/sVMuIsCZid2L1JLknN8JVAAzgR3ECoxBJ945N7OZwATn3G+Tswfxp4ItwZxze4FngXOcc0udc6c65+YAfwXWHaHvdqAaOPUI69X1GgK+B5j9rgNPYQnI+UJgnXPux73a3sL7784rLoYA9XHbiRSTjJzrOD9YIn63OOfagMeITREB7DKzMgDv6+647kSKSUbOnXO7vGIlSuw4nxP3HUkhccz5ycBsM9sMPA9MMrNnvVVT4jhXwZYAZjbMm87BzLKAs4DXzazEa4sAXwPu6qPvKK8P3lD4XOCNI3y/sl4fPwS8Fo/9SCWJyrmZ3UqsGLv2kG6PAZd77z8C/Nk5N6hG2JKdcx3nicm5meX2+mOVDpwHvO51632cXw4sStS+BVWyc37IcX4RUMUgk4icO+fudM6NcM6NBeYBbzrnTve6pcZx7gJw5cNAewEzgFXAGmI/bDd47d8j9kfmDeDaXutXAvd679/n9XvF+/q5XuvdTmxkJ+p9vclr/w9i/0W8AjwDTPE7BwMh58SG4p3Xf7X3utJblgn8GlhP7NyK8X7nYBDkXMd5YnI+HFjhtVUDPwHSvWVFxM4hXOd9LfQ7B4Mg5/8DvOotewwo8zsHAyHnh2x/LAdfJZoSx7medCAiIiIScJoSFREREQk4FWwiIiIiAaeCTURERCTgVLCJiIiIBJwKNhEREZGAU8EmIiIiEnAq2EREREQCTgWbiIiISMD9P/klivt9KaUEAAAAAElFTkSuQmCC\n",
473 | "text/plain": [
474 | ""
475 | ]
476 | },
477 | "metadata": {},
478 | "output_type": "display_data"
479 | }
480 | ],
481 | "source": [
482 | "df_truth.geometry.plot(figsize=(10,10))"
483 | ]
484 | },
485 | {
486 | "cell_type": "code",
487 | "execution_count": 99,
488 | "metadata": {},
489 | "outputs": [
490 | {
491 | "data": {
492 | "text/plain": [
493 | ""
494 | ]
495 | },
496 | "execution_count": 99,
497 | "metadata": {},
498 | "output_type": "execute_result"
499 | },
500 | {
501 | "data": {
502 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAAIWCAYAAADqLNGCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd41eX9//HXfVb2XiSQkLBkz4CKSp1VcaBWbfu12uFs7a+1fruXVrusVfvt0lq1tlq1WuuuCLhFAYMMA4Q9kkBCBtnJyRn374+ECBhkJTmfJM/HdeVKzufc53Pe57oweXlPY60VAAAAnMsV6QIAAADwyQhsAAAADkdgAwAAcDgCGwAAgMMR2AAAAByOwAYAAOBwBDYAAACHI7ABAAA4HIENAADA4TyRLqAnpaen2/z8/EiXAQAAcEjLly+vttZmHE7bARXY8vPzVVRUFOkyAAAADskYs/1w2zIkCgAA4HAENgAAAIcjsAEAADgcgQ0AAMDhCGwAAAAOR2ADAABwOAIbAACAwxHYAAAAHI7ABgAA4HAENgAAAIcjsAEAADgcgQ0AAMDhCGwAAAAOR2ADAABwOAIbAACAwxHYAAAAHI7ABgAA4HAENgAAAIcjsAEAADgcgQ0AAMDhCGw4IqGwjXQJAAAMOgQ2HJGlW2siXQIAAIMOgQ1HZPbI9EiXAADAoENgAwAAcDgCGwAAgMMR2AAAAByOwAYAAOBwBDYAAACHI7ABAAA4HIENAAap3Y1tbIYN9BMENgAYpOJ8HllLYAP6A0+kCwAAREZcFH8CgP6CHjYAAACHI7ABAAA4HIENAADA4QhsADBIFJfXac3O+kiX8YlWltapsS0Q6TIAx2HGKQAMEtnJMUqI8ka6jE+UmxIjt8tEugzAcQhsADBIpMVFRbqEQ0qLd36NQCQwJAoAAOBwBDYAAACHI7ABDrCytE5rdzZEugwAgEMdU2AzxtxqjCk3xqzs/Jp7kHbfNMYUG2PWGGNu2uf6ZZ3XwsaYwgNe8wNjzCZjzHpjzNnHUifgdFNzkzU+JzHSZQAAHKonFh3cY6397cGeNMZMlHStpFmS2iXNN8a8ZK3dKKlY0iWS/nLAa8ZL+pykCZJyJC0yxoyx1oZ6oF4AAIB+pS+GRMdJWmKtbbHWBiW9KeliSbLWrrPWru/mNfMkPWGt9Vtrt0rapI7ABwxYpbUtWrFjT6TLAAA4UE8Etq8bY1YbYx4yxqR083yxpDnGmDRjTKykuZJyD3HPoZJK93lc1nkNGLByU2M1La+7/4QAAIPdIQObMWZR5/yzA7/mSbpX0khJUyXtknTXga+31q6TdIekhZLmS1olKXiot+3mmj1IfdcZY4qMMUVVVVWH+jgAAAD9ziHnsFlrzzycGxlj/irpxYPc40FJD3a2+6U6esw+SZn274UbJmnnQe59v6T7JamwsLDbUAcAANCfHesq0ex9Hl6sjuHP7tpldn7PU8cig8cPcevnJX3OGBNljCmQNFrSsmOpFQAAoL861lWivzHGTFXHcOU2SddLkjEmR9ID1tq923w8bYxJkxSQdKO1dk9nu4sl/UFShqSXjDErrbVnW2vXGGOelLRWHcOnN7JCFAAADFbG2oEzilhYWGiLiooiXQYAAMAhGWOWW2sLD92Skw4AAAAcj8AGAADgcAQ2AAAAhyOwAQAAOByBDQAAwOEIbAAAAA5HYAMAAHA4AhvgMMu318ofZJ9oAMBHjvWkAwA9bMbw1EiXAABwGHrYAAAAHI7ABgAA4HAENgAAAIcjsAEAADgcgQ0AAMDhCGwAAAAOR2ADAABwOAIbAACAwxHYAAAAHI7ABgAA4HAENgAAAIcjsAEAADgcgQ0AAMDhCGwAAAAOR2ADAABwOAIbAACAwxHYAAAAHI7ABgAA4HAENgAAAIcjsAEAADgcgQ0AAMDhCGwAAAAOR2ADAABwOAIbAACAwxHYAAAAHI7ABgAA4HAENgAAAIcjsAEAADgcgQ0AAMDhCGwAAAAOR2ADAABwOAIbAACAwxHYAAAAHI7ABgAA4HAENgAAAIcjsAEAADgcgQ0AAMDhCGwAAAAOR2ADAABwOAIbAACAwxHYAAAAHI7ABgAA4HAENgAAAIcjsAEAADgcgQ0AAMDhCGwAAAAOR2ADAABwOAIbAACAwxHYAAAAHI7ABgAA4HAENgAAAIcjsAEAutXkD0a6BACdCGwAgG69VrI70iUA6ERgAwB068IpOZEuAUAnAhsAAIDDEdgAAAAcjsAGAADgcAQ2AAAAhyOwAQAAOByBDQAAwOEIbAAAAA5HYAMAAHA4AhsAAIDDEdgAAINKezCssj0tkS4DOCIENgDAoOLzuDQsJTbSZQBHhMAGAADgcAQ2AAAAhyOwAQAAOByBDQAAwOEIbAAAAA5HYAMAAHA4AhsAREgobCNdAoB+gsAGABHS0BqIdAkA+gkCGwBESEqcL9IlAOgnCGwAAAAOR2ADAABwuGMKbMaYW40x5caYlZ1fcw/S7pvGmGJjzBpjzE37XL+s81rYGFO4z/V8Y0zrPve971jqBAAA6M88PXCPe6y1vz3Yk8aYiZKulTRLUruk+caYl6y1GyUVS7pE0l+6eelma+3UHqgPAACgX+uLIdFxkpZYa1ustUFJb0q6WJKsteustev7oAYAAIB+qycC29eNMauNMQ8ZY1K6eb5Y0hxjTJoxJlbSXEm5h3HfAmPMCmPMm8aYUw7WyBhznTGmyBhTVFVVdZQfAQAAwLkOGdiMMYs6558d+DVP0r2SRkqaKmmXpLsOfL21dp2kOyQtlDRf0ipJwUO87S5JedbaaZJulvSYMSaxu4bW2vuttYXW2sKMjIxDfRwAAIB+55Bz2Ky1Zx7OjYwxf5X04kHu8aCkBzvb/VJS2SHe0y/J3/nzcmPMZkljJBUdTi0AAAADybGuEs3e5+HF6hj+7K5dZuf3PHUsMnj8EPfNMMa4O38eIWm0pC3HUisAAEB/dayrRH9jjJkqyUraJul6STLG5Eh6wFq7d5uPp40xaZICkm601u7pbHexpD9IypD0kjFmpbX2bElzJN1mjAlKCkm6wVpbe4y1AgAA9EvG2oFz+HBhYaEtKmLUFAAAOJ8xZrm1tvDQLTnpAAAAwPEIbIDDbalqinQJAIAII7ABDleQHhfpEgAAEUZgAxzOGBPpEgAAEUZgAwAAcDgCGwAAgMMR2AAAAByOwAYAAOBwBDYAAACHI7ABAAA4HIENAADA4QhsAAAMIOHwwDkjHB8hsAEAMIDsamiLdAnoBQQ2AAAGkKHJMZEuAb2AwAYAAOBwBDYAAACHI7ABAAA4HIENAADA4QhsAAAADkdgAwAAcDgCG4BPVFLREOkSAGDQI7AB+EQ3PbFS1rJzOgBEEoENwCf66qkjxUk3ABBZnkgXAMDZ5k0dGukSAGDQo4cNAADA4QhsAAAADkdgAwAAcDgCGwAAgMMR2AAAAByOwAYAAOBwBDYAAACHI7ABAAA4HIENAADA4QhsAAAADkdgAwAAEVe0rVbba5ojXYZjcZYoAACIuBEZ8Yr1uSNdhmMR2AAAQMSlxvkiXYKjMSQKAADgcPSwHaWHF29VyEpnT8jSsJTYSJcDAAAGMALbEWryBxXrdevNDVV6fX2Vor0uXXH88EiXBQAABjAC2xGqa2mXNyFKt144Qbe7jNLioiJdEgAAGOAIbEdo7/Dn8LS4CFcCAAAGCxYdAAAAOByBDQAAwOEIbAAAAA5HYAMAAHA4AhsAAIDDEdgAAAAcjsAGAADgcAQ2AAAAhyOwAQAAOByBDQAAwOEIbAAAAA5HYAMAAHA4AhsAAIDDEdgAAAAcjsAGAADgcAQ2AAAAhyOwAQAAOByBDQAAwOEIbAAAAA5HYAMAAHA4AhsAAIDDEdiAPrC6rE7W2kiXAQDopwhsQB+oawnIGBPpMgAA/RSBDegDc8ZkRLoEAEA/RmADAABwOAIbAACAwxHYAAAAHI7ABgAA4HAENgAAAIcjsCGi6lsC2rS7MdJlAADgaJ5IF4DBLSnWq6RYb6TLAADA0ehhAwAAcDgCGwAAgMMR2AAAGGDK9rREugT0MAIbAAADzLCU2EiXgB5GYAMAAHA4AhsAAIDDEdgAAAAcjsB2DEprW/T08rJIlwEAAAY4Ns49BrmpscpNZWInAADoXfSwAQAAOByBDQAAwOGOKbAZY241xpQbY1Z2fs09SLtvGmOKjTFrjDE37XP9TmNMiTFmtTHmGWNM8j7P/cAYs8kYs94Yc/ax1AkAANCf9UQP2z3W2qmdX/898EljzERJ10qaJWmKpPONMaM7n14oaaK1drKkDZJ+0Pma8ZI+J2mCpHMk/dkY4+6BWgEAAPqdvhgSHSdpibW2xVoblPSmpIslyVq7oPOaJC2RNKzz53mSnrDW+q21WyVtUkfgAwAAGHR6IrB9vXNI8yFjTEo3zxdLmmOMSTPGxEqaKym3m3ZfkfRy589DJZXu81xZ5zUAAIBB55CBzRizqHP+2YFf8yTdK2mkpKmSdkm668DXW2vXSbpDHcOf8yWtkhTct40x5ked1/6591I3pdiD1HedMabIGFNUVVV1qI8DAADQ7xxyHzZr7ZmHcyNjzF8lvXiQezwo6cHOdr9UR4/Z3td9UdL5ks6w1u4NZWXavxdumKSdB7n3/ZLul6TCwsJuQx0AAEB/dqyrRLP3eXixOoY/u2uX2fk9T9Ilkh7vfHyOpO9JutBa27LPS56X9DljTJQxpkDSaEnLjqVWAACA/upYTzr4jTFmqjqGK7dJul6SjDE5kh6w1u7d5uNpY0yapICkG621ezqv/1FSlKSFxhipY3HCDdbaNcaYJyWtVcdQ6Y3W2tAx1goAANAvmY9GIfu/wsJCW1RUFOkyAAAADskYs9xaW3g4bTnpAAAAwOEIbAAAAA5HYAMAAHA4AhsAAIDDEdgAAEC/YK1VXUt7pMuICAIb0I9VNfoVDIUjXQYA9AljjJJjfZEuIyIIbEA/lhTjldvV3UluvWvNzvo+f08AGMwIbEA/5vO41LnpdJ+akJPU5+8JAJt2N0a6hIghsAEAgH5hVGZCpEuIGAIbAACAwxHYAAAYAIrLmVs6kBHYAADox0prWyRJAVaMD2ieSBcAAACO3u5Gv97YUKVRGfGRLgW9iMAGAEA/NmN4imYMT4l0GehlDIkCAAA4HIENAADA4QhsAAAADkdgAwAAcDgCGwBgQKlsaFM4bCNdBtCjWCUKABhQshKjI10C0OPoYQOATvUtgUiXAADdIrABQKekWG+kSwDQaXNVU6RLcBQCGwAAcJwR6XGRLsFRCGwAAMBxjDGRLsFRCGwAAAAOR2ADAABwOAIbAACAwxHYAAAAHI7ABgAA4HAENgAAAIcjsAEAADgcgQ0AAMDhCGwYsEJhG+kSAADoEQQ2DFj//XBXpEsAAKBHENgwYF0wJSfSJQAA0CMIbAAAAA5HYOsh4bDVo0u2a9HaykiXAgAABhgCWw9xuYz+9X6pKhraIl0KAAAYYDyRLmAgefbGk+R2mUiXAQCD0vqKRrUHw5o0LCnSpQA9jh62HkRYA4C+0xYI6aYnVmhlaZ0k6X/+ukSfue/dCFcF9A4CGwCgX1q4tlKL1u1WZkKUJOmMcZk6/bhM9mDEgMSQKACgX2ppD+rKE/KUGudTfWtAt144QbE+/qxhYKKHDQDQL/3lzS16YfUuNbYFddWDS/XIe9sjXRLQawhsAIB+KTMxSmV7WlVcXq9peSl6e2P1fs8Xl9frZy+skbVWlQ1tendz9UHuBDgffccAgH7p++eOk7VWz68s1/S8FP34vHGSpPnFu7Srvk0uY/S3xdv0jdNHa0tVsx56Z6tmj0yPcNXA0aGHDQDQL03NTdbU3GQ9v2qXFq7bLY/bpXc3V+uGRz/Qz19aJyvpx+eNk8dtlJcWq5NGEdbQf9HDBgDot4wxuvmsMdpW06JnV5TrnIlDdNu8CfrUmAzF+jzK6FxBWtcS0OljMyVJ1lr9bfE2XXFCnqI87kiWDxw2etgAAP1aQUacPG4jY6T3ttSoPRjSWXe/pf97dUNXm+/+e7V+t2ijAqGwWtpDuu3FtdpW3RLBqoEjQw8bAKBfmz0yXbNHpmvdrgad+39v65YLxuvCqTm6vDBXUkeP2jfOGC2P26gtEJIxRtfNGaHEGP4Eov/gXysAoF+ravTr7Y1VSoz2alpesi6eNlTRXrcWra3UmKwE/frlEt164YT9XvPDueMiVO3A997mGmUmRqmmqV2zClIjXc6AQWADAPRr22qadfOTqzQzP0X3X1moivo23f7iWoXCHT1rt1wwPtIlDipN/qAybBRhrYcR2AAA/dq03GQdl5WgUZkJuuHR5UqN8+nywlzFR3kUtpLHcM5zXzprfFakSxiQCGyDzKK1lZqWl6y0+KhIlwIAkqTKhjZlJUYf9es9bpde+dYcSdLy7bVau6tRl04fprC18nlYW4eBgX/Jg8xJo9L1wuqdkS4DwCD2yJLtuu2FtSrb07FK0/bgWe0zhqfqM9OH6ttPrdKTRaU9d2MgwuhhG2TK61pUkBYna60MwwQA+lg4bHXfG5tVXtequZOGKCXWp1BPJjZJ6ysadfaELA1Nie3R+wKRRGAbZNqDVlPzUghrACLC5TL6/eenqr41oNGZCQqGrPyBUI++x7S8FE3LS+nRewKRRmAbZMbnJEa6BACDWFsgpG/9a5V2N7Zp3W3nyBgjF5NzgEPiPxMAQJ+J9ro1KjNebYGwVpXVS5ISor1dzy/dUqNmf1DPrSzXXQvWR6pMwHEIbACAPvWj88bpjHGZCoet7AHz197aWKWW9pBeXbdbz69yxgKpkooGvb5+d6TLwCBHYAMA9KkR6XFau7NBVz20TCUVjV3XQ2GrcyYOUUK0W985+7iPnU4QKU8sK9Wb66siXQYGOQIbAKBPGWN0yuh0NfmDWr9PYHtuZbku+MNi1TQHlBjtVfmeVkkdK0t7U2NbQGt2dgzPWmt1zd+LdMfLJTrr7jf1xLIdSo3zaenW2o+9bkNlo1aX1fVqbcBeBDYAQJ+7bs5I/eMrs3TRtKFd18ZkJeizhblKjfVpV0Or7ni5RP5ASN99enWv1lLXEtCPny2W1BEmf3vZZH31tJHaXNWkJn9QLe0hbahsVNsBq1l//tI6/eq/Jb1aG7AXq0QBAH1uVGa8RmXGdz1ubQ/p839douMLUhXjc6vZH1SjP6jdjX4lxXg/4U7HblhKjP59w2y9u6laU/OSFQpbxUd5dNMZY3TNKSP0zsYqZSVGqT0Y1kurd2lmfqry0mJlJDW3B3u1NmAvAhsAIOLC1uqLJ+bL4+7YI3JqbopKbj9Htc3t+sn5vXt4uzFGbiPNHpUuSdpa3ay0+CgFwmFJ0qslu3XNKSMUF+XRd59erV9dMkl5abH625dmyuViT0v0DXPgCp3+rLCw0BYVFUW6DADAEWppD6rZH1J6vG+/jb1fWVOhU4/L0H1vbNZlhbl6tWS3nvmgTL+5dLJGZSb0aA0lFQ2K8boV5XGrtrld1U1+vbR6l358/riurUfqWwNdPX4fltVrQ2Wj/MGwThuboeykmB6tBwOfMWa5tbbwcNoyhw0AEDFVjX61BUIq2rZHM3+xSH9+Y7MkqbrJr9PvekM761q1dEutRmUmKCc5Rq+uq9TK0jq9t7mmx2t5buVOVTX6NSQpWiMy4jQkKVpp8b799on73aINOv2uN3T9I0V6taRS//vUKv3wmQ9VXN7Q4/UA+2JIFAAQEeGw1cxfLNKvL5mk8dmJ+taZo3Vy57BkUoxXZXtatb2mRV8+qUC76jtWjP5o7jjdc/lUpcT5erye8ydnKyM+SsXl9Zo4NEljshL03XPG7tfm+II0pcT6lBLr1dTcFA1NjlF+epzGZXOKDHoXPWwAgIgIhq2+NDtf47IT9ciS7bpn0UZFe92SJK/bpXMnDtGQpGhJ6hpuHJ2V0CthrarRrzXlDWppD6m8rnW/5/adOpQQ7dHr63frrPFDNGlYki4rzNXM/FTFR9H/gd5FYAMA9Lm2QEh3LViviUOT5HYZfXF2vu77wgwNTfloHtjEnCStKu2bfc5KKhr03adX66UPd+nsCUO6rm/a3aQ1Oz8a7nQZo6QYrzxuo131rapvDfRJfU4QDIV1wyPLtbW6OdKlDEoENgBAn6tu8usvb23R/W9t1r1vblZqnE9LttTIs8+qy4L0OLUesPdZb5mZn6qbzhyti/fZF07q2H5k4tCkrsfWWgVDVs+v3Kn4KE+vbzniJB63S7fNm6AhidGRLmVQIrABAPpcRkKUHrl6lkZlxuu3l07R6rJ6Pbpku3zuj/4sjc3u2Ej3qaJS+YO9G9yivW7ddOYY5STvv9Lz969u1K9f/mhz3MQYr4alxKggPW6/xQiDRWZitGJ87kiXMSgR2AAAfS7K41ZCtFf//bBCIWv1ypoKzR6ZJpfL6J2N1app8mtHTYu++s8PdNsLa1XfEpmhx9zUGFl9NIdt4tAk/fozk3Xa2MyI1IPBi1mSAICIGJ+dqJLbz1G0163kWK/2DobGRrnlcbtUmJ+qVT/9tBJjPPvtzdaXLp42LCLvCxyIwAYAiAif56NBnstm5CrcuRpzel6KJKm4vF7+YEgzhqdGpD7ASRgSBQBExOvrd2vG7Qv1xLIduulfK/S5+5eoyR/Ujf/8QM+sKNPTH5TpigeWaiCdyAMcLXrYAAAR4XW5VNPcrlVldYrxuhXtdSvG69b722rl87h0xrhMTRmWLGulCI2IAo7BWaIAgIho8ge1vqJBCdFe5STHyG2kxZtqZCWdPCpdMT63isvr9e/lZbr65ALlpsZGuuQ+VdfSrrqWgPLT4yJdCnoJZ4kCABwvPsqjGcNTNSYrQfFRHlU1tuuafxTp2n8UaXttx+asO2pb9PC727TzgNMHBoPyulYt374n0mXAIRgSBQA4wtCUGN33henyul0ak5kgScpKjNKsglTF+jx6raRSi9bt1vVzRmh42sDvdcpOilGcz6MdNS3KSxtcvYv4OAIbAMAR3C6jcyZm73dtxvBUPXn9iZKkW58v07/eL9V1p4yIRHk95qmiUrldRpOHJWlUZzA9kLVWqXE+pfbCuanonxgSxYCzuaop0iUA6AGhsNVNT6zoWiV6xfF5uufyKUqO9er19bv1/KqdEa7w6Nwxv0Q3P7lKL62u6Pb5eX9arFtfWKMpP1ugR97bpor6NlU3+fu2SDgOPWwYcFhMBgwMTW1Bbapqkj8YVrTXrUZ/UDf9a6UunTFMM/NT9zsovj8IhMLyuIy+ecZo7W706/gR3e8vl5sSI5cxGpUZL5fLaGt1s7KTopUeH9XHFcNJCGwYcEZkxEe6BAA9ICnWqxf/3yldj1NifbpgSo5OGJGmS6b3vxMIPn3PWyrb06KnbpitkRlx2lbdom3VzcpPj1NFfZvuWrBexw1J0J2XTtHK0jrdcsEESdK/3t+hE0emRbh6RBpDov3YK2u6704HgP5qT3O7bn9xrf65dPvHnqtsaNNzK3fq3APmufUH1loZScGwVXq8T4s31eiCP76jHz37oSSpLRBSfnqc8lJjVdXo1xsbdne9tiCd/wkFPWz92ukcPgxgAGlsC2hnXateL9mtrMRcSR17tUV5XPK6XRqXnahHrz5ejy3boSGJUTpvck6EKz58xhi99u1TFQyF5XYZhcPS7RdNULTHrdrmduWnx+nG00ZJ6th/7fxJHZ/tkfe26eTRGRGsHE5xTD1sxphbjTHlxpiVnV9zD9Lum8aYYmPMGmPMTftcv9MYU2KMWW2MecYYk9x5Pd8Y07rPfe87ljoHKq+bDlIAA0NNk18zfr5INz72gRbe/CnNKkjTjNsXatKtr2jFjjpJUlKMVyePTlfZnhY1+YMRrvjI+IMhjf3Jy/rMfe9p8aYaXfOP97WjpkXf+fdqPXZAb2JyrE8ThyYqHLa68sR8FbBxLtQzQ6L3WGundn7998AnjTETJV0raZakKZLON8aM7nx6oaSJ1trJkjZI+sE+L928z31v6IE6AQAOlRYfpUlDk1TV6Nfqsjq1+IOaOylbn5uZp5WlH20eu7qsTtlJ0Zozpn/1OkV53AqFrfY0t6vJH9SGyiYZYxTjdSsU/nj7c//vbU29bYFq+nB16C//u07f+/dqNut1qL4YEh0naYm1tkWSjDFvSrpY0m+stQv2abdE0qV9UA8AwIH++D/T5A+Edepv31C016W7L5+qr/3zA512XIaumzNSUsfc3fnFFV2P+4Mmf1DWWr30jVOUFONVXJRHf75iuk4amarrTimQldGOmhb99PliXTYjV+dNzta3P32cttU0Ky6q72YuvV6yWxt3N2nG8BRNz0uW4QBXR+mJfwlfN8ZcJalI0v9aaw+M5sWSfmGMSZPUKmluZ9sDfUXSv/Z5XGCMWSGpQdKPrbVvd/fmxpjrJF0nSXl5ecf0QQAAkZOdFCNrrbISo1SQHqfspGhde0qBpuamdLVp9oe0pbpZ/3hvmy6dMUyxPudPxV66pUYet0uf6uwVfHNDlU4ala6EKI9++nyxJg9LVmZClN5YX6XjCzpWg545PqtPayyva9WXT8rXSaPSFetza+Itr+jcSdn67WVT+rQOHNwh/6UbYxZJGtLNUz+SdK+k2yXZzu93qSN4dbHWrjPG3KGO4c8mSask7Tf5wBjzo85r/+y8tEtSnrW2xhgzQ9KzxpgJ1tqGA4uw1t4v6X6p4/D3Q30eAIBzGWP0zvdOl8dltGZng6bnpey32/9Jo9KVFOOVx+WSq5/0AGUlRiva6+56/Kl9hnN/ftEkSdIzK8p0xthMXTTt4wspfvbCmq4tPnrLhopG3frCWm34+bkKhsKK8XlU1chmvU5yyMBmrT3zcG5kjPmrpBcPco8HJT3Y2e6Xksr2ed0XJZ0v6QzbuZ21tdYvyd/583JjzGZJY9R9zxwAYABZtrVWNz72gU47LlPPrChXfJRHxT87W5J01vgsrSqt06ShSV0h6MOyek0altT1+k27G9XkD2lqbnJE6j/QxKFJh2yTHOtTZWObGtuC2ry7Wit27NGNp42Sy2V6bUeA0toWvfThLk0amqTpw1P0v5+hSvtnAAAgAElEQVQeo6rGNs0vrtCvL5nU5718+GTHukp0381wLlbH8Gd37TI7v+dJukTS452Pz5H0PUkX7p3j1nk9wxjj7vx5hKTRkrYcS63oXTvrWtXaHop0GQAGgCm5ybpwSo6+cfooLfvRGVr6wzO0uapJGyobJUnPrCjX6vI6NbQF9LMX1uj19ZX7vb6qsV0rd/SfifO3Pr9Gd85fr8sLczUmK0Gryur08Lvb5HJ19CCe0kvbeuxpadevXy7Ri6t3KinGqyeWlWp9ZZN+8twa/fyltb3ynjh6Zu8ZbUf1YmMekTRVHUOi2yRdb63dZYzJkfSAtXZuZ7u3JaVJCki62Vr7auf1TZKiJNV03nKJtfYGY8xnJN2mjmHSkKRbrLUvHKqewsJCW1REJ1wkPL9qp04elc5BxQB6zDMfdASz750zVmN/Ml9njsvSA18s1JsbqjQsJUZDk2O0YkedEqLcmjjso960hraAmv1BZSf1j6Or7n19k9ZWNOj0sZm6eFrHCQ7BUFget0v1LQGtKN2jCTlJykjo2aOp2gIhzS+u0IzhKcpNjdXOulalxvnU5A8qOcYrD1tH9TpjzHJrbeFhtT2WwOY0BDYAGFj2Ht00v3iXRmTEa0xWQtdzuxvb9FrJbt3xcoke+OJM3fvGZkV5XPrTFdP1nadWqb41oPuvOqy/hX1qT3O7YnxuRXvdstZq2u0LVdcS0H1fmKFzJg6RPxiS2xh53C69sX63vvS39/Wbz0zW5TNze62mP72+SVefXLDfXDv0viMJbMRnAIBj5afHaU9Lu6yVEqI9Wr69tuu5jPgoXTp9mEZnJeivb21RY1tALe0da9q217bozQ1VCna3yVkEtQfDCu/TUfJ/r27UiPQ4fe3UkTp5dLok6e0N1Zp220J984kVGpYSq9vmTdDUvN6djxcIhVXb3H7Y7TftburFatAd56+HBgAMaj/8z4cdPWmfmaywtWptD6u+NaCpeckamhyjn180UWlxPqXE+uRyGQVDYf1o7jgFQmHHrSRtaAvI4zJdPVnnTcpWRX2b6loDiu/ccy05zqsvzs7XnDEZGpUZr1GZvXeWaEt7ULE+j1aW1un/nT76oO1++d91qm7y69YLxisYlmK9LpXWtigt3tejW6tYa9n/7SDoYQMAONrdl0/V6ls+rUAorCfeL5WVVUVDm/yBjoVOY7ISlBjj1c9eWKOFayv1vac/1A/+86EmDk3qmrjvFMu21qq4vGOHKmutfrdoo2J9Hn3708d1tfm/RRuVHOvVrILUXq/njfVVkqR5U3O0u6FN26qbu233/MqdemN9lVoDYV37jyKlxkfpifd36MVVu3qslnDY6on3S3vsfgMNPWwAAEeL8bk1v7hCH+yoU1KMVxNykrpWTlprFQhZ+TwuLd5co7C1emVNhZJivKppbtfQZGcsPHjg7S1atrVWv7h4kh5dsl0njUpT2EonjEjVG+urtG+s/P65Y5WREKU/vrZRcVEeffmkgh6v5/lVO7WmvL7riK9AMKwf/OdDzZ2Urfxuzi595aY58nlcivG59fRXZ0uSrjwhX/vm4eXb92jG8JSPvfZwuVxGn5/FBvgHQw8bAMDxzpk4RL+6ZJLmTc3R48t2dF3//tMf6jfzSyRJ/zMrT2OGJOqXl0zUFcfnKauHV1Uei3c2VWvB2kqV7mnWQ+9s1a76NoVtx+HuD35pplLifGoLhHTLc8UKhqwyE6J135tbdO8bm3ulnl11rbr/7S1KjPZKku59c4ve2FClwvzuA1dSrFftobDO+d1bemHVTknSkKRoZSZGd7U5lrCGQ6OHDQDQL4TCViUVjXp0yXZdP2eEPG6X5k3NkcftUmNbQF+ana+3N1Xr6offl8tldN2cEZEuucsXT8zX7JFpGpocq1e//SmlxPr01UeXa83OBt142ih94YThWrerQY8s2a7MxGhNyEnUj88bp0C4d3ZyuOKE4bryxOFd88/+Z1aeVpXVafn2PRqR0f2cOZ/bJZ/HpbzU2F6pCZ+MbT0AAP1COGy1srROidEerdnVoLMnDOmavP96yW6dMjpdze0hXfngUp0/OVtXnpCvGJ9ztqlo8ge7FhZIHduSbKxs0pCkaI3sDElN/qBqm/wakhQjn6d3B8FKa1uUu0/4+sd72/TA21v1i4snHnSz3m8+sULVTX797MIJqm8NKhgK6/gRab1a50DGth4AgAHH5TJKj4/ShX9arG8+sVIPvrNVUkeQi4vqCGZJMV49//WTdd2ckYrxuRUOW7UHI7+1x8OLt+qGR5brnY3VXddW7KhTrM+t4Z2h6a4F6/XEsh3KS4vr9bD2wY49uulfK7uGNyVpel6Kbj5rjAq6mcO2V11LQD63S9ZKu+pbta2m+0UK6HkMiQIA+o28tFhdNmOYGv1B5afF6u6FG/SfD8p01YnDVdsc0DkTh+zXvrrJr4cWb9P3zx0boYo7lNe16p1N1TprfFbXfmtul/TZ+5doTec5qUkxXnn76HSB6XkpXYsH9lqypUazClI1LOXgQ55//8qsrp9H77OJMXofgQ3YR1sgpEAorITOibgAnOdn8yZK6hjS+/rjK2St5HG75HMbPbx4q77UuarSWisr9XlYu+/NzZoxPEUz8z/aluPKE/KVkRCl5NiPfrecPCpDT98wuyukTRqapFfWVKqmya+0+N5fMPGb+SVqaQ/plgvGyxijvNRYxXDSgWMxJArHO5Ldt49VtNe93xyTY9UWCOnZFeU9dj8AH8lNjdXPLpygP3x+mqoa/appbld2UrSWbe04DeGCP76jE371qhraApKkO18p0U+fK+71uuYXV2jdrgaVVDR0XctLi9UfXtukbz+1SoFQWNZaNbQGVJDx0fDjitI6PVlUqsoGf6/XKEnvb6vV/OKKro1qTx+bqac/4PeVU9HDBscr3mevoL7Qk7tsR3vdumja0B67H4D9XXVivl5dV6nl2/fI6zL6/WubNG9qjmYVpGrelKGalZ+mYKhjcd3GyiYt375HN581Rsmxvh6roaK+TQvXVWpMZryOH5GmZ288qdt2Pz1/vPa0tCsYDMvldet3r27UJdOGqrCzJ+7qkwt07Skj5O6jzX6/f+64/eb3uV1GsQ5apIH9EdjgeH0Z1gD0Hw1tAYXDVmeMy9IZ47JUWtui37+2SdtrWvTY0h2K9rn10wvGd7U/cWSaorzuHl+EUNvcrp88W6xZBal68voTP/Z8VaNfVlY1ze369cslmjd1qHZWNmrJ5hodl5XQFdjuWbhBY4ck6MSR6crogz3k9u6bVt8S0A2PLtecMRn6xhkHP54KkUVgAwD0S4nRXoX32acsJzlGT1x3ggrS4/Tm+iqNTNt/teOXTyrQl7vv/DoiW6qalBTj7ZpnNiIjTg9/eaYa2zoOnl+xY4/qWwOaMixZKXG+rvCVHOOVMdKu+jZVN7VrS3Wz/MGO47W+89QqfXbmMBWkx/fJ/LV9JcZ4NHtkmi6cmtPt8+srGnXckI4FBsFQWJ4+WhiB/bEPGwAAR8AfDMlljB5bukPbapp1ywUT5A+G9KWH3tfj152g7z+9Ws3+oH5+0ST5QyE9VVSmz83MVVKMV2Er+TwdB6c/+M5WXV6Yq/E5iZH+SJI6FmmUVDRqXPb+9dy1YL3+99PHaX1FoxZvqtZXTu75o7IGqyPZh43ABsfa09yulLiem2cCAD3py39bptfXV2nLL+fK5TLaWdeqnOQYtbYH1R4MKynWp1/9d53+8tYWvfzNk1W2p03T85L7vAetN/iDIVmrro2LcXSOJLAxJArHio3iF0FfaWkPdh1R01vK61odcxA30BO+fvpoffPMMXK5jJ5ZUaYPttfp9osm6rtPf6j3t9bqiuPzdPnMXF0wJUdRHre+9s/lCoSsXvx/J2vi0KRIl3/U7n9rs14r2a3jshJ0WWGuojwuPb9qp84Yl6WpucmRLm/AYiAafaa1PdQ1X+NwRHkIbH2lL/ZeIqyhP2oPhnXzv1Zqd0Pbx56bMTxFU3OTFQpb7ahp1X8+KFNLe1CFw1M0Y3iKYnxujcyI18ShSRqREa+lPzxTf/j8tI8NOfY39a0Bjc9O0nmTc5STHKONu5v0h9c2qWhbbaRLG9DoYUOfaQuE5HYbgpjD1LcGFON1y+fpm60EgP7E53Fpc1WTNlQ2KTMxer/nNlc16Xv/Xq3zJmfr6lMKdMn0HHndLk3ISdSWqiatLqtXWyDUNWyYGufTBVO6n9jvZO3B8H5HZX3n7I82IrbWKi81VhdOyen3QdTpCGzoM8xHcya3y6hjP3gA3Xn2xpM+tj9jcXlHGAuGrTITovXbV9br4Xe36ZcXT1K016W/v7ddKbFefdI08bc3Vh30kHWnaA+GNeGW+Yr2urXsh2cq5oB92s665y3VtbTrv984RU+8X6r0+KiuFaXoWQQ2YJDryZMdgIHowLDW0BbQZ+59V2OzE/Vc5ya5Dy3eqp+eP17T8pKVkxyjt75zmoalxMj1CZvgri6rd3xgcxnpyetPVF1Lu9bsrNfG3R09h1efnK9RmQk6LitB5XWtchmjuxduUF1Lu44bkqBLZ+T22QbAgwW/qQEAOAKJ0V796LxxSojyqL41oKQY78cOUk+KOfR5xDeeNqq3StxPIBTWi6t36risxCPeQsTjdiktLkqfvX+JCoenaO6kbC1cW6ETRqRqa3WLJg1L0p+umK7W9pBuv2iiKupb9eNni3XZjNxe+jSDF4sOAAA4QmeMy9K3nlylfy3boZb2YKTLOahw2Kq1PagfP1OsZ1eWy1qrm59cqS88sFSSdMtzxXp48dZPvEdmYpT+fMV0fWl2vi6fMUzXnFygEelxuvYfRbp74Qa1tof0+9c2qqK+VZOHJWv+TXPkchnVtwb0YVl9X3zMQYHABgAYVMrrWvWn1zcd0ar1Aw1NjtH1nxqhmQWpvb4lzrHYXtuiKx9cpqtm5+vCKTnaVtOil1bv0rCUjlXbG3c36blVOz/xHoFQWF/75wf6/Wsb5fW49NDibXpnU41uPmuM/vD5aapqbNNzK8r193e3a8mWGo3MiJck/ffDXXK7jFbs2KNd9a29/lkHOjbOBQAMGpUNbXqqqFS/XbBBT91wosZkJuh3r27QrPxUnTspO9Ll9bi7F25QIBTWTWeO1paqZmUlRquupV1RXpdivR7VtviVFhulxBhvt/PtFqypUHldq8ZnJ8rtMpoxPEXPr9qpjIQo/buoTDnJMfr22cd1tbfWfmzOHw6OjXMBAOhGVmK05k7KVnZyjJrbgnK7jRasqVSM161zJg7pNmysKq3TvW9s1uxRabrqxPy+L/oYVNa36Y0NuzV7ZJqufHCZbp83QVeemK8fPvOhHlu6Q2Oy4pWXGqvX11fp7e+epvZgWJKUmxort8vo0xOGdN2rPRhWKGx1yugMpcb5ZGSUus/q/0AorDfWV6mlPajzJmXvd+ZocXm9jhuSIC/nkB41AhsAYFAZkRGvkopGtQVDio/y6J3vnfaJvULrdjVoT0u7WtqPfgg1UvzBkCob/GpsC+r8ydka2jkUOnditrZWNSslrmNxxGPXHK/MhCj99Pk1emzpDj1340macsCpBX95c7MeXbpdozLj9c9rTtCJI9P2e762uV3XPVIklzHKT4vb7/X3vrlZ3zpzjEZlxvfyJx64CGwAgEHlPx+U6eF3t3X1lh1qCO9zs/L0uVl5fVBZz1hdVqffzF+v2+ZN0PfPHafbLpqoxGiv5k7KVrM/qCseWKI7PjNZj193wsdee9LIdLW1h7rdS61sT6uyk2L0tVO7X92alRitOy+dopNGpWlVab0WrC3p2mR33pQcRXnoXTsWBDYAwKAStlJyjFc5ydGHbrwPfzCkJ5aVanRmvGaPSu+l6o7O8u21Coas/vr2Fv34vPF65OpZMsZofUWjhiR99DlLKhq0eFONyva0qi0QVmNbQNPyUrqeP29yts6b3P1cvlsuHK8Yr/sTA+45E4fo7gUbND4nUR+WNygUth8bWsXRIe4CAAaVS2cMU9meVt37xuaua1urm3XVQ8v0pb8tO+jr9jQH9IuX1umOV9b3RZlHpLqpXbsb/Vq0brcWrK3QNX8v0j0LNyhsrd7dXK2HF29Vkz+o4Wlx+vlFEzUmK0E/fa5YP3qmWOGw1eX3vaelW2o+8T1ifZ7DWlCwobJRKbFe/eMrs9g8twfRwwYAGHSuPWWE0hM+mjA/JDFaZbUtOvW4TFlrtacloG01zZq+T+/TkKRo3XX5FBXmp3R3yz730Dtb9eiS7frzF6br7AlDtKmySZ+flatVpXVqbAuqor5jRezIjHgNS4lVOBxWlMelL5wwXJJ0z2enKtrjlj8YVkNbQMHwse0asXhTtUZmxOvRa47viY+HA9DDBgAYdDISorSzrq3rcYzPrVf/91P6yfnjdO+bm9UaCO0X1va6YEqOspNi+rJUvbu5Wlc+uFTvb6vd73pqnE9p8T41+zs27m3wB7R0S63WVTTq3i9M1+0XTdSqsnrd/tJanT42Uz98plhzf/+29m7n9fKHu/T71zYqxufW/Jvm6KRjGObdUtWkqx5apl+9vE6StL2mWS+s2qmVpXVHfU/sj8AGABh0Tj0uQ5cVDtvvmjFGO2pbdPeCDbpzfokkdW1zcaA/vrZR5/zuLVU3+Xu91tLaFr29sVr1LYH9rl80baieumG2ZgxPlSSNz05UUqxX7cGwPG6XfB6XTh+bqc/PypPLZeRzu1Ra29q12jU2yiOPu2eGLEdkxOtbZ47W5qomBUNh3fbCWv2/x1dofnFFj9wfDIkCAAYhj9u13z5hew1Pi9PfvjxTw9Nidc3f31esz6Pff37ax9ptqGxSSUWj1u1q6NUD3N/eWKX4KI+uOaVAo7MOviVGOGwV5XGptT2ksj2tqm/pOON03/NK54zJUFKsV3FRHX/6Ly/s2fM+v3rqKF198gh53C6delyGUuJ8KhzujOHjgYAeNgDAoFTd5NeLq3fqp88Va+Hayq7rp4zOUF5qnBragvIcZNL8taeM0L9vOFEz81OP+v2Doe57755ZUaZQ2OrDsno9vbxMNc3teuDtraqo7xjCfa2kUs+tLJcktbaHdOcrJZpwyyvaWt3cNT+t0R/42H1nFqTqiyfmy1qrfy8v0/l/eFt3L9xw1PUfyO0yivG5JUlXnpiv3142RWeOz+qx+w929LABAAalx5fu0F2dgSU+yqOzDggXT15/YtfPNU1+Ld++R9PyUpSREKVJw5KO+f2rmvzaWdemGfv0QgVCYU0elqxAKKwYn1sXTx8qWenaUwoU7XWrtT2kx5aWqtkf1LypQ+UPhvTQO9vUGghpV32bxmUn6NyJQ+Rzu/Tv5WWakpukXXVtykuN1befWqWVpXXa+ItzZa1V2Z5W1fTBkC56BoENADAoXTx9qMYMSdC0vGRlJnzynmwPLd6qP72+WV87daS+e87Yo3q/1vZQVw+UJGUnxXQtYKhp8mtbTYuWbq3Rb+av192XT9HYIYl64O2tGp4Wq0eX7FBBepwyE6M0KjNe2UnR2lrdrMwEn0ZkxGnNzgatLqvXV08dqRnDU7WhslE/ebZYv/vsVK3d1aDEGK++fFKBKhraZIzRZYW5uqyHh0TRuwhsAIBBaVhKrIalxB5W2/HZSfrxeeM0eVjyoRsfxBUPLFGUx63vnzv2Y8c+pcVHKS0+SoFQWJdMG6ohidEan5OoT43JUIzPrdkj05QWF6XyPa0alhKjX79colueX6PHrj1en52Zq0AorPy0OBWX12vi0CTFeN367WVTdPbEITp7YsemtVNzj752RB5z2AAAOITzJmfrmlNGaFbB0c1ZawuElJkQrfe21GhV2cG3ukiN86mqyd91+sCsglSFwlZXnThcf3t3qy697z3VtbTL4zaakJOg6sZ2zZs6VJkJUfrqPz/Q7S+uldRxePuBJxYUl9frhF++qqeKSlW2p+WoPgcihx42RMTe40oAYDCI9rp135UztHx7rcZnH3z+W/meVq3d2aB7Fm3QD+eO09bqZr21oVpDk6OVFOPVjOEpOm1spr5++mgt2VKjz92/RFEelxbcNEdXHJ+nrMSDD+1mJkbp9HGZWrC2Uokx3sPuXYQzmL0b6A0EhYWFtqioKNJl4BCstSqpaNS47MRIlwIAjrXvnLfKhjb954NyzSpI0b+Xl6s9GNYP547VY0t3qK41oJ+cP17vbq5WcoxP43M++XdrcXm9lmyp0WUzcpUU6+2Lj4KDMMYst9YWHk5bhkTR54wxhxXWBtL/TADAkdhS1aRZv1ikuxasV11Lu1aV1umO+SV6qqhMjy/boddKKhUX5dGlhcN01YnDtWhtpY4vSDtoWNte06zfv7pR7cGwfrdoo37+0jrduaBEVQ1+tQVCffzpcDQYEoVjfe/p1XqtpEpXn1ygr546MtLlAECfWV1Wr+b2oJJivEqO9em0sZm689LJmjc1RxdOzVFmQrR+9sIaPb6sVOdPHqIXV1do1S2fVlJM9z1mb2+s1t0LN2jysCSdPSFL43MSNWd0ur715Eptr23Wk9ef2OdHbuHIENjgWGeMy9KanQ1KjOGfKYDB5aJpQzVxaKLy0+IkSV63q2sbjtkjO878nDIsWbsb/Pr0+CG68oR8xUcd/HflnM7TGDZUNuq6OR/9DzAHtfcfzGEDAKCf+s5Tq/Slk/I1IeeTN/K11qq6qV0ZCVF9VBkOx5HMYaPrAgCAfurOy6YcVjtjDGGtn2PRAQAADtPY9vGzQDG4EdgAAHCY376yXi3twUiXAQdhSBQAAIf5wdxx8rnpU8FHCGwAADhMtNd96EYYVAhsAAAcQkt7UE3+oDITDn70E/qnO+aXaOHaSrmM5Ha55HZJKbE+PXK1s7Y8IbABAHAIsT6PYn199yfTHwzJZYy8bpea/UFFe939/vzlDZWNGpOV0KfvuXZng7bVNGvupOyDtpmQk6i6loDCYauQtfIHw31Y4eEjsAEA4DA7alr06rpKPbJkh8rrWvXo1cfr5NHpkS7rmJTXtfZ5YEuP9yl8iP1mz5+co/Mn5/RRRUePGY0AADjM6KwERXvdKq9rlSTt7Pzen512XGafv2dmYrQmDv3kTYX7CwIbAAAONCIjvuvnjbsbI1jJwGSt1fLttdrd2BbpUg4LgQ3oR/Y0t0e6BAB9ZGTmR4FtfWVTBCsZmNoCYX3m3vf07IrySJdyWJjDBvQjKXG+SJcAoI/kJEXrwik5ykuN1ayCFLW2hxTjY7uPnhZy5hqDj6GHDQAABzLG6Pefn6bc1Bj9473tumvBer24eqck6YG3t2jplpoIV9i/mc5Ft4dalOAUBDYAABzsz29s1pDEaMVFebpWM144NUezClIP+ppgf+k2coBQmMAGAACOwSPvbVNBWpyunTNCO2pbVN/ScSj8g+9slTH778vW2BbQyx/ukiTd+NgHmv2rV7VpN3PfDsbTua9df9nfjjlsAAA4lNftUnZytFrbQ8pMiNK/inZowZpKXTCl+33DajoXJs2dlK2RGfFKjObP/MEEO3vW9ga3jZWNqm8NKBi2cruMZuYfvAczEoztJ2O3h6OwsNAWFRVFugwAAHpE0bZafeXh93XzWWN0+0vrdM9np6itPaTTxmYqg2Oyjom1Vm2BsIzpOLv1oj8t1srSOklSSqxXK3766V6vwRiz3FpbeDhtid4AADhUTnKM/v6VWVq8qVqhsFV8lEenj81SbOfh8Gt3Nmh8TmKEq+yfjDH7rbr9xcUT5Q+G5XO7FB/lvHjkvIoAAICkjsC2dGuNniwqU1KMV1mJ0fuFifSE/bf6aWwLKCHa29dlDggTcpx9IgKBDQAAByour1dCtEdTc1P0uf/f3p1HV1Weexz/PpnJQEhCEkIYIgmTKCKmOIsTy6EoUjvY2trJetV6W3V1cNVqvc5aW12ttV603nptbR0odaxeqKK2KjQgQxgFhZIEEoaQOWQ47/3jbGLAIEFyzt4n+X3WOuvs8+69z3n2s94kT953n72njWR0dtrHioq8btOiv3l9Aw8sWM/1M8Zz1enFEYkpFHK0dnSSmqTyIdqUcRERkQBKiDdSkxLIzUjm6tNLDrr9Z48uYHVVfddJ9JFw19/WMPvYEZqG9YEKNhERkQBYsLqaR976gCunF3PGhDwmDDu0oqhoaBq/uXRqhKILa2rrJCtNU65+UMEmIiISAGdNzKM4L52UxOBeIvXO2Uf7HcKApYJNRERiVnV9K/mD+8flLcyMI4am+R2GBFRwy3gREZGD6C/FmsjBqGATERHxUSjkeGDBer/DkIBTwSYiIhIlC9fV8Ku/v79PW1ycUbapllCM3IRc/KFz2ERERCKotb2Thetq+Ot7VaSnJPDOxp2kJSdQUdvMzy6YBMDJJTls3N7I2PwM5r1XwY6GNi47aTTJCfEHeXcZKDTCJiIiEkFz3vyAK/+wlFdWbaOtI8TMYwrISEmgcMigrm2qdrdS29wOQH1LB0s217KxpsmvkCWAVLCJiIhEiHOOk4pz+NzUQr5/Vgm3XTSJI3LS2N3cxuWnjuna7roZ40hOCP9JHpObxvw11Vz5hyV+hS0BpIJNREQkAm57cTXnPvAWiz/cxV+WVvLyym0MTknkpufKuetva7vOWdu0o4mzf/kGNz9XDoTvaXlycQ7fOrmI1vYOPw9BAkTnsImIiETA2m31bNzeSEleOrdddBQpCXGYGccfkcOejk7aOkOkxMWTkZLAw1+dChihkCM7LYn2TscFxwznjfU7OGfSML8PRQJAI2wiIiIRcN3Z4zh17FD+55+b+NoJo5k5eTgvLK/i6tOL+fMVJ7KnPcQT72yicU8H2WlJfPmRd/lwZ/i8tQuOKaAj5FSsSRcVbCIiIhFQnJvOv3c109LewZ8Wb+aHzy7nwdc2MHdpJfFxxmP//JCbnlvF/NXVlORlUH7LORTnpihwW/UAABE+SURBVHPjvJX8ZF45L63Y6vchSIBoSlRERCQCstKSWHD9dK5/ejn/2lTLNWcWs6OhjWlHZLOtrpVx+Rl8/6yxnDJ2KBW1zdz36jpa2js5/+gCquv3UJg16OAfIgOGCjYREZEIMTPu+8IxxMeFz0+7+KFX+d5ZY7n7lbVMGTmEeVefDEBLWycvrNhKYrzx6y9PZdaUQp8jl6DRlKiIiEgExccZEL6jwRs/OoPTxuYSb0Zre4jmtvC3QAclxfPUFSfw9g1nkZQQx66mNq7SZT2kG42wiYiIRMnQ9GTer27ky8eP5IfnTCA16aM/w6VF2V3LqUnxXHNmiR8hSkBphE1ERCSK5i6t4Il3/o0LHXiblMR4Jg3PjF5QEniHXbCZ2S1mVmlmy7zH+QfY7vtmVm5mq8zs2m7tt5nZCm/f/zOz4V67mdmvzGyDt37q4cYqIiLit5NLcrjitDGkJes+odJ7fTXCdr9zbor3eHn/lWZ2FPAdYBpwDDDTzMZ6q3/unJvsnJsCvAjc7LWfB4z1HlcAv+2jWEU+0frqBr9DEJF+bPaxI/jJ+ROZu7SC655aRkfnJwy1iXiiNSU6EXjXOdfsnOsA3gBmAzjn6rttlwY4b3kW8L8u7F1giJkVRCleGcDyM1L8DkFEBoDTxuXy1RNGkRCvs5Pk4Pqql1zjTVs+ZmZZPawvB04zsxwzSwXOB0buXWlmd5jZFuBSPhphKwS2dHuPCq9NJKIyUxP9DkFEBoCCzEEcNzr74BuK0MuCzcwWeOef7f+YRXiqshiYAmwFfrH//s65NcA9wHzgFWA50NFt/Y3OuZHAH4Fr9n5sD6G4/RvM7AozKzOzsu3bt/fmcERERERiSq8u6+GcO7s325nZI4TPQ+vpPX4H/M7b7k7CI2b7exJ4CfiZt35kt3UjgKoe3ncOMAegtLT0YwWdiIiISKzri2+Jdj+vbDbh6c+etsvznkcBnwP+5L0e222zC4G13vLzwGXet0VPAOqcc7qxmhySD7Y3+h2CiIjIYeuLC+fea2ZTCE9XbgL+A8C7PMejzrm9l/mYa2Y5QDvwXedcrdd+t5mNB0LAZuBKr/1lwue6bQCagW/2QawywIzKTvU7BBERkcNmzvWfWcTS0lJXVlbmdxgiIiIiB2VmS5xzpb3ZVt8lFulB454OXinfSk19q9+hiIiIqGAT6UlDazubdjbT2Y9GoEVEJHbp5u8iPSjIHMSV04v9DkNERATQCJuIiIhI4KlgExEREQk4FWwiIiIiAaeCTURERCTgVLCJSFQ55+hP138UEYkGFWwiElWVu1uobW73OwwRkZiiy3qISFSNyNLtwkREDpVG2EREREQCTgWbiIiISMCpYBMREemF2qY2mts6ul7X1LdSXlnH3CUVrKyoY311A5fMeYfK3S0+Rin9lQo2ERGRXjjlntf4yiOLul7nDU7hqMJM5q+u5rqnlxFyjo5Ox+qqOm76azlvb9jhY7TS36hgExER6YWkhDhWVOz+2GVpbjhvAudOGsZ9r67n2atOIiEujife3czabQ0+RSr9kb4lKiIi0gt/vuJE4nsY5igamkZDazuLPtxJbVMbRw4fzCOXlTJhWEb0g5R+y/rTBSxLS0tdWVmZ32GIiEiUbd7ZRP7gFFIS4335/LrmdhITjNQkjYNI75nZEudcaW+2Vc8SEZGYNzonzZfPrWtpp6K2mUnDMwmF+s8AiASPzmETERH5lFZV1vFMWQUAzyzZwosrqnyOKDYs/nAXHZ0hv8OIKSrYREREPqWpo7O46vRiAL70mVFMLhzic0TBVVHbzDNlW3DO8ZelFZiZ3yHFFE2JioiIfEopifH7nDc3Kke3XjuQ55dXce8r6zhudBZ3XzzZ73Bijgo2ERERiQjnHN99cimGMX18LgDLtuxmTG66z5HFHhVsIiIiEhFmxvrqRgoyUzjnyHymXj+dwiGD/A4rJukcNhERkT6wdls95ZV1focRCC+v3Mp9r64DYMH10ynKSWNXczvFuWmsqqrj9XU1dHSGqK5vZUNNA7ub23yOOPhUsImIiPSBCcMGc1Rhpt9hBMKarfXMeeuDrm+CNu3poK0jvPztx8u46+U1rKqq5/g7/87Zv3yT+aur/Qw3JmhKVERERPrUN08+gstPGUOCd2uIO2YfTVNbB87BF0tHYGYMy0zhp5+dSGK8cVLJUJ8jDj6NsImIiBymCx/8B3Ut7X6HERjZaUlkpiZ2vV67rZ7S2xfw9sad3PjZI/nJ+RPJH5zC6Jw0ivUFhF5RwSYiInKYZkzMZ0O1bvZ+IFmpSQBU1bXs0/7HRZv52mOLeewfH/oRVkzRlKiIiMhhqKlv5fdvb2Lj9kaOK8r2O5xAKswaxM0zj2T+6mrWb2vgpzOPBODsifnMPLqAEdmDcM7pYrqfQCNsIiIihyE7LYnxwzKYWDAYgK37jSIJJMbHkZwYx6YdTaSnhMeK3t6wg9b2TnY27eGSOYtYUVnHph1NtOuWVT1SwSZdmvZ06ObFIiKf4NG3PuBL//0OW3Y1d7UlxMfx5HdOYNaUQi57bDHT711I454OH6MMpkuPH81L3zuVa88eB8CzSyu4/aU11LWEc7VwbQ0z7n+Db/3+X36GGViaEpUuacnqDiIin2TttgYWfbiLjdsbGZm9722ostOSGJ2dygWTC4jTzB4A896rYPaxI7peJyXEsfTftbS2d3LRlEKqdrcwc3IB2+paKcxKJS8jheGZurBuT8y5/jOiUlpa6srKyvwOQ0RE+qnq+lacg5z0JBLjP5qkqmloJS8jxcfIgqmnvFz/9DJ2Nrbx4FeO5YEF73OTdz7bXu2doX1y25+Z2RLnXGlvth0YGREREekD+YNTSE2Op6PT0dzWwZLNtQDcMHclnd4pJeWVdV1X7l+2ZfeAnh7tqYjNTk2iobWdV8q3kZYUz/4DRwOlWDtUmgMTERE5BHe8uIanl2zh1gsn8bUTiwC45swSOkOOlvZO/vpeJeccNYzPFGXz0OsbeOjSqf4GHDA/PncCW+tayRyUuM+12uSTqWATERE5BEeNyKS2uY2MlETWbWvgmbItHDc6i6mjskhKiOMH54wnIc4IhRz/eWZJ19X+JWzjjkbOfeAtBqcksPSmGcpPL6lgExEROQSXThtFckK4yBiTm8aPz5tAgvctgxUVuynIHERuRjIL19VQU7+Ho0cM8TPcwCnKSePWWZO6LqYrvaOCTURE5BCYwY3zVlKcm85Fxxbus+61tTWU5KUzc/JwEuLimHXscJ+ijD7nHJ0hd9ARs5TEeC7zppKl91SwiYiIHAIz446LjiY7Lanr6vxbdjVTkJnCjCPzSYyPo7yyjmlHZFO5u4WRWYMGxLRfXUs7TW2dFA7RZTkiof/3IBERkT72xc+MZGVlHRW14bsajMxOJSE+jknDMxmVncrOxj2s2VrPGfct5NYXV/scbXQMSU1SsRZBKthEREQ+hdKiLJrbOj/WnpIYz7DMQdS3tjOtKJujhmf6EJ30N5oSFREROUSbdzYxfljGAS+WO35YBuOHZXDq2Nwe14dCjjjdDkEOgUbYREREDtHonLRPfWeD/3phFdPuXEBr+8dH50QORAWbiIhIFA1NT2ZHYxvvfrDT71AkhmhKVEREJIpmTRlOW0eIkrx0v0ORGKKCTUREJIpGZKVy3YxxfochMUZToiIiIj6ra2ln3bYGv8OQAFPBJiIi4qOG1nbueGk1sx/6J845v8ORgNKUqIiISJRsqGmgJC8DgN3NbayqqmdDdQNfLB3JCWNyfI5OgkwjbCIiIlHz0bXXyivrufTRRZTkp5M5KJH8wcmY6dps0jMVbCIiIlHS/ZuhEwsyuO8Lx3DE0HRm3P8mP3p2pY+RSdBpSlRERMQHOenJfP64EYRCjsU3nkW8RtfkE6hgExER8VFcnH3quybIwKEpUREREZGAU8EmIiIiEnAq2EREREQCTgWbiIiISMCpYBMREREJOBVsIiIiIgGngk1EREQk4FSwiYiIiAScCjYRERGRgFPBJiIiIhJwKthEREREAk4Fm4iIiEjAqWATERERCTgVbCIiIiIBp4JNREREJOBUsImIiIgEnAo2ERERkYBTwSYiIiIScCrYRERERAJOBZuIiIhIwKlgExEREQk4c875HUOfMbPtwGa/4+gDQ4EdfgcxACnv0aec+0N5jz7l3B9Bz/to51xubzbsVwVbf2FmZc65Ur/jGGiU9+hTzv2hvEefcu6P/pR3TYmKiIiIBJwKNhEREZGAU8EWTHP8DmCAUt6jTzn3h/Iefcq5P/pN3nUOm4iIiEjAaYRNREREJOBUsEWAmaWY2WIzW25mq8zsv7z2M81sqZmVm9njZpbQw76jzWyJmS3z9r2y27o7zGyLmTXut883zGy7t88yM7s88kcZLJHIuZmlmtlLZrbWa7+72z7JZvaUmW0ws0VmVhStYw0SH/Kuvh653y+vdHvPh80s3mvPNrP5Zva+95wVvaMNDh/yfouZVXbr6+dH72iDIVI577bN82ZW3u11sPu6c06PPn4ABqR7y4nAIuAkYAswzmu/Ffh2D/smAcnecjqwCRjuvT4BKAAa99vnG8CDfh93f8s5kAqc0W2bt4DzvNdXAw97y5cAT/mdgwGSd/X1yP1+Gdzt/ecCl3iv7wVu8JZvAO7xOwcDJO+3AD/w+7j7Y869ts8BTwLl3doC3dc1whYBLmzvKFii9+gE9jjn1nvt84GLe9i3zTm3x3uZTLdRUOfcu865rZGLPHZFIufOuWbn3Ot7twGWAiO87WYBj3vLzwJnmZn17VEFnw95H/Ai+Pul3ltMIPzHbu8Jzt37+uPARX10KDHFh7wPeJHKuZmlA9cDt++3W6D7ugq2CDGzeDNbBtQQ7lCLgUQz23sBv88DIw+w70gzW0H4v4h7nHNVvfjIi81shZk9a2Y9vm9/F8mcm9kQ4ALg715TobctzrkOoA7I6dsjig1Rzjuor0cs52b2qveeDYT/EQHI3/uPovecF4FDiglRzjvANV5ffyxw03NREqGc3wb8Amjeb5dA93UVbBHinOt0zk0hPDIwDZhEeOrsfjNbTPgHs+MA+25xzk0GSoCvm1n+QT7uBaDI22cBH/2HMKBEKufe+RF/An7lnPtgb3NPb9NnBxNDopx39XUil3Pn3DmET7tIBs6M7FHEnijn/bdAMTAF2Eq4wBhw+jrnZjYFKHHOzYvOEfQdFWwR5pzbDSwEznXOveOcO9U5Nw14E3j/IPtWAauAUw+y3c5uQ7+PAMcdduAxLAI5nwO875x7oFtbBd5/dV5hkQns6rODiEHRyLv6+r4i8fvFOdcKPE94egig2swKALznmj49iBgUjbw756q9YiVEuK9P6/MDiSF9mPMTgePMbBPwD2CcmS30Ng10X1fBFgFmlutN5WBmg4CzgbVmlue1JQM/Bh7uYd8R3j54Q+AnA+sO8nkF3V5eCKzpi+OIJZHKuZndTrgYu3a/3Z4Hvu4tfx54zTk34EbYop139fXI5NzM0rv9oUoAzgfWert17+tfB56L1LEFWbTzvl9fnw2UM8BEIufOud8654Y754qAU4D1zrnTvd2C3dddAL750N8ewGTgPWAF4R+ym732nxP+A7MOuLbb9qXAo97yDG+/5d7zFd22u5fwyE7Ie77Fa7+L8H8Py4HXgQl+56A/5JzwELzz9l/mPS731qUAzwAbCJ9TMcbvHAyQvKuvRybn+cC/vLZVwK+BBG9dDuFzCN/3nrP9zsEAyfsTwEpv3fNAgd856A853+/9i9j3W6KB7uu604GIiIhIwGlKVERERCTgVLCJiIiIBJwKNhEREZGAU8EmIiIiEnAq2EREREQCTgWbiIiISMCpYBMREREJOBVsIiIiIgH3/wDLcRDSryurAAAAAElFTkSuQmCC\n",
503 | "text/plain": [
504 | ""
505 | ]
506 | },
507 | "metadata": {},
508 | "output_type": "display_data"
509 | }
510 | ],
511 | "source": [
512 | "df_test.geometry.plot(figsize=(10,10))"
513 | ]
514 | },
515 | {
516 | "cell_type": "code",
517 | "execution_count": 100,
518 | "metadata": {},
519 | "outputs": [
520 | {
521 | "data": {
522 | "text/plain": [
523 | "conf_completed 365\n",
524 | "conf_unfinished 108\n",
525 | "conf_foundation 51\n",
526 | "Name: cat, dtype: int64"
527 | ]
528 | },
529 | "execution_count": 100,
530 | "metadata": {},
531 | "output_type": "execute_result"
532 | }
533 | ],
534 | "source": [
535 | "df_test['cat'].value_counts()"
536 | ]
537 | },
538 | {
539 | "cell_type": "code",
540 | "execution_count": 101,
541 | "metadata": {},
542 | "outputs": [
543 | {
544 | "data": {
545 | "text/plain": [
546 | "Complete 373\n",
547 | "Incomplete 112\n",
548 | "Foundation 66\n",
549 | "Name: condition, dtype: int64"
550 | ]
551 | },
552 | "execution_count": 101,
553 | "metadata": {},
554 | "output_type": "execute_result"
555 | }
556 | ],
557 | "source": [
558 | "df_truth['condition'].value_counts()"
559 | ]
560 | },
561 | {
562 | "cell_type": "code",
563 | "execution_count": 102,
564 | "metadata": {
565 | "collapsed": true
566 | },
567 | "outputs": [],
568 | "source": [
569 | "cats = [('conf_foundation','Foundation'),('conf_unfinished','Incomplete'),('conf_completed','Complete')]"
570 | ]
571 | },
572 | {
573 | "cell_type": "code",
574 | "execution_count": 103,
575 | "metadata": {},
576 | "outputs": [
577 | {
578 | "name": "stderr",
579 | "output_type": "stream",
580 | "text": [
581 | "51it [00:00, 372.86it/s]\n",
582 | "35it [00:00, 346.39it/s]"
583 | ]
584 | },
585 | {
586 | "name": "stdout",
587 | "output_type": "stream",
588 | "text": [
589 | "Foundation\n",
590 | "(0.717948717948718, 42, 9, 24) (0.8235294117647058, 0.6363636363636364)\n"
591 | ]
592 | },
593 | {
594 | "name": "stderr",
595 | "output_type": "stream",
596 | "text": [
597 | "108it [00:00, 394.50it/s]\n",
598 | "50it [00:00, 493.64it/s]"
599 | ]
600 | },
601 | {
602 | "name": "stdout",
603 | "output_type": "stream",
604 | "text": [
605 | "Incomplete\n",
606 | "(0.7545454545454546, 83, 25, 29) (0.7685185185185185, 0.7410714285714286)\n"
607 | ]
608 | },
609 | {
610 | "name": "stderr",
611 | "output_type": "stream",
612 | "text": [
613 | "365it [00:00, 442.09it/s]"
614 | ]
615 | },
616 | {
617 | "name": "stdout",
618 | "output_type": "stream",
619 | "text": [
620 | "Complete\n",
621 | "(0.7100271002710028, 262, 103, 111) (0.7178082191780822, 0.7024128686327078)\n"
622 | ]
623 | },
624 | {
625 | "name": "stderr",
626 | "output_type": "stream",
627 | "text": [
628 | "\n"
629 | ]
630 | }
631 | ],
632 | "source": [
633 | "for (test_cat, truth_cat) in cats:\n",
634 | " test_polys = [geom for geom in df_test[df_test['cat'] == test_cat].geometry]\n",
635 | " truth_polys = [geom for geom in df_truth[df_truth['condition'] == truth_cat].geometry]\n",
636 | " truth_index = create_rtree_from_poly(truth_polys)\n",
637 | " scores = evalfunction(grid_num,test_polys, truth_polys, truth_index=truth_index)\n",
638 | " print(truth_cat)\n",
639 | " print(scores[0],precision_recall(*scores[0][1:]))"
640 | ]
641 | },
642 | {
643 | "cell_type": "code",
644 | "execution_count": 104,
645 | "metadata": {
646 | "collapsed": true
647 | },
648 | "outputs": [],
649 | "source": [
650 | "test_polys = [geom for geom in df_test.geometry]\n",
651 | "truth_polys = [geom for geom in df_truth.geometry]\n",
652 | "truth_index = create_rtree_from_poly(truth_polys)"
653 | ]
654 | },
655 | {
656 | "cell_type": "code",
657 | "execution_count": 105,
658 | "metadata": {},
659 | "outputs": [
660 | {
661 | "name": "stderr",
662 | "output_type": "stream",
663 | "text": [
664 | "524it [00:01, 380.99it/s]\n"
665 | ]
666 | },
667 | {
668 | "data": {
669 | "text/plain": [
670 | "((0.7962790697674418, 428, 96, 123), (0.816793893129771, 0.7767695099818511))"
671 | ]
672 | },
673 | "execution_count": 105,
674 | "metadata": {},
675 | "output_type": "execute_result"
676 | }
677 | ],
678 | "source": [
679 | "scores = evalfunction(grid_num,test_polys, truth_polys, truth_index=truth_index)\n",
680 | "scores[0],precision_recall(*scores[0][1:])"
681 | ]
682 | }
683 | ],
684 | "metadata": {
685 | "kernelspec": {
686 | "display_name": "Python [conda env:fastai-cpu]",
687 | "language": "python",
688 | "name": "conda-env-fastai-cpu-py"
689 | },
690 | "language_info": {
691 | "codemirror_mode": {
692 | "name": "ipython",
693 | "version": 3
694 | },
695 | "file_extension": ".py",
696 | "mimetype": "text/x-python",
697 | "name": "python",
698 | "nbconvert_exporter": "python",
699 | "pygments_lexer": "ipython3",
700 | "version": "3.6.4"
701 | }
702 | },
703 | "nbformat": 4,
704 | "nbformat_minor": 2
705 | }
706 |
--------------------------------------------------------------------------------
/archive/znz-inference-20190118.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {
7 | "collapsed": true
8 | },
9 | "outputs": [],
10 | "source": [
11 | "import numpy as np\n",
12 | "\n",
13 | "import rasterio\n",
14 | "from rasterio import Affine\n",
15 | "from rasterio.windows import Window\n",
16 | "from rasterio.transform import from_bounds\n",
17 | "\n",
18 | "from pathlib import Path\n",
19 | "\n",
20 | "import matplotlib.pyplot as plt\n",
21 | "%matplotlib inline\n",
22 | "\n",
23 | "from tqdm import tqdm\n",
24 | "\n",
25 | "from skimage.transform import rescale, resize"
26 | ]
27 | },
28 | {
29 | "cell_type": "code",
30 | "execution_count": 16,
31 | "metadata": {
32 | "collapsed": true
33 | },
34 | "outputs": [],
35 | "source": [
36 | "# grid_119\n",
37 | "COG_URL = 'https://oin-hotosm.s3.amazonaws.com/5ae38a540b093000130afe97/0/5ae38a540b093000130afe98.tif'"
38 | ]
39 | },
40 | {
41 | "cell_type": "code",
42 | "execution_count": 2,
43 | "metadata": {
44 | "collapsed": true
45 | },
46 | "outputs": [],
47 | "source": [
48 | "# grid_029\n",
49 | "COG_URL = 'https://oin-hotosm.s3.amazonaws.com/5ae242fd0b093000130afd38/0/5ae242fd0b093000130afd39.tif'"
50 | ]
51 | },
52 | {
53 | "cell_type": "code",
54 | "execution_count": 2,
55 | "metadata": {
56 | "collapsed": true
57 | },
58 | "outputs": [],
59 | "source": [
60 | "# grid_042\n",
61 | "COG_URL = 'https://oin-hotosm.s3.amazonaws.com/5ae318220b093000130afd64/0/5ae318220b093000130afd65.tif'"
62 | ]
63 | },
64 | {
65 | "cell_type": "code",
66 | "execution_count": 3,
67 | "metadata": {
68 | "collapsed": true
69 | },
70 | "outputs": [],
71 | "source": [
72 | "def get_windows(rst_h, rst_w, max_h, max_w, col_off = 0, row_off = 0):\n",
73 | " wins = []\n",
74 | " rows = rst_h // max_h + 1\n",
75 | " cols = rst_w // max_w + 1 \n",
76 | " \n",
77 | " for r in range(rows):\n",
78 | " if r == rows-1: height = rst_h % max_h\n",
79 | " else: height = max_h\n",
80 | " \n",
81 | " for c in range(cols):\n",
82 | " if c == cols-1: width = rst_w % max_w\n",
83 | " else: width = max_w\n",
84 | "\n",
85 | " if width != 0 and height != 0: \n",
86 | " wins.append(((r,c),Window(c*max_w+col_off, r*max_h+row_off, width, height)))\n",
87 | " return wins"
88 | ]
89 | },
90 | {
91 | "cell_type": "code",
92 | "execution_count": 4,
93 | "metadata": {
94 | "collapsed": true
95 | },
96 | "outputs": [],
97 | "source": [
98 | "def get_tfm(window, rst_full):\n",
99 | " c_o, r_o, w, h = window.flatten()\n",
100 | " left, top, right, bottom = *rst_full.xy(r_o, c_o, offset='ul'), *rst_full.xy(r_o+h, c_o+w, offset='lr')\n",
101 | " tfm = from_bounds(left,bottom,right,top, w, h)\n",
102 | " return tfm"
103 | ]
104 | },
105 | {
106 | "cell_type": "code",
107 | "execution_count": 5,
108 | "metadata": {
109 | "collapsed": true
110 | },
111 | "outputs": [],
112 | "source": [
113 | "def save_subwin(arr, crs, tfm, save_fn):\n",
114 | " im = (arr*255).astype('uint8')\n",
115 | " with rasterio.open(OUTPUT/f'{save_fn}.tif', 'w', driver='GTiff', \n",
116 | " height=im.shape[0], width=im.shape[1],\n",
117 | " count=3, dtype=im.dtype, crs=crs, transform=tfm, compress='JPEG', tiled=True) as dst:\n",
118 | " for k, a in [(1, im), (2, im), (3, im)]:\n",
119 | " dst.write(a, indexes=k)"
120 | ]
121 | },
122 | {
123 | "cell_type": "code",
124 | "execution_count": 6,
125 | "metadata": {
126 | "collapsed": true
127 | },
128 | "outputs": [],
129 | "source": [
130 | "def pad_window(window, pad):\n",
131 | " col_off, row_off, width, height = window.flatten()\n",
132 | " return Window(col_off-pad//2, row_off-pad//2,width+pad,height+pad)"
133 | ]
134 | },
135 | {
136 | "cell_type": "code",
137 | "execution_count": 12,
138 | "metadata": {
139 | "collapsed": true
140 | },
141 | "outputs": [],
142 | "source": [
143 | "OUTPUT = Path('outputs')"
144 | ]
145 | },
146 | {
147 | "cell_type": "code",
148 | "execution_count": 13,
149 | "metadata": {},
150 | "outputs": [
151 | {
152 | "data": {
153 | "text/plain": [
154 | "{'driver': 'GTiff',\n",
155 | " 'dtype': 'uint8',\n",
156 | " 'nodata': None,\n",
157 | " 'width': 40551,\n",
158 | " 'height': 40592,\n",
159 | " 'count': 3,\n",
160 | " 'crs': CRS({'init': 'epsg:32737'}),\n",
161 | " 'transform': Affine(0.07398000359535217, 0.0, 534722.5625,\n",
162 | " 0.0, -0.07398000359535217, 9347193.0)}"
163 | ]
164 | },
165 | "execution_count": 13,
166 | "metadata": {},
167 | "output_type": "execute_result"
168 | }
169 | ],
170 | "source": [
171 | "raster = rasterio.open(COG_URL,'r')\n",
172 | "raster.meta"
173 | ]
174 | },
175 | {
176 | "cell_type": "code",
177 | "execution_count": 14,
178 | "metadata": {},
179 | "outputs": [
180 | {
181 | "data": {
182 | "text/plain": [
183 | "DynamicUnet(\n",
184 | " (layers): ModuleList(\n",
185 | " (0): Sequential(\n",
186 | " (0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n",
187 | " (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
188 | " (2): ReLU(inplace)\n",
189 | " (3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n",
190 | " (4): Sequential(\n",
191 | " (0): BasicBlock(\n",
192 | " (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
193 | " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
194 | " (relu): ReLU(inplace)\n",
195 | " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
196 | " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
197 | " )\n",
198 | " (1): BasicBlock(\n",
199 | " (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
200 | " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
201 | " (relu): ReLU(inplace)\n",
202 | " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
203 | " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
204 | " )\n",
205 | " (2): BasicBlock(\n",
206 | " (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
207 | " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
208 | " (relu): ReLU(inplace)\n",
209 | " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
210 | " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
211 | " )\n",
212 | " )\n",
213 | " (5): Sequential(\n",
214 | " (0): BasicBlock(\n",
215 | " (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
216 | " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
217 | " (relu): ReLU(inplace)\n",
218 | " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
219 | " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
220 | " (downsample): Sequential(\n",
221 | " (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
222 | " (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
223 | " )\n",
224 | " )\n",
225 | " (1): BasicBlock(\n",
226 | " (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
227 | " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
228 | " (relu): ReLU(inplace)\n",
229 | " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
230 | " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
231 | " )\n",
232 | " (2): BasicBlock(\n",
233 | " (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
234 | " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
235 | " (relu): ReLU(inplace)\n",
236 | " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
237 | " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
238 | " )\n",
239 | " (3): BasicBlock(\n",
240 | " (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
241 | " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
242 | " (relu): ReLU(inplace)\n",
243 | " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
244 | " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
245 | " )\n",
246 | " )\n",
247 | " (6): Sequential(\n",
248 | " (0): BasicBlock(\n",
249 | " (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
250 | " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
251 | " (relu): ReLU(inplace)\n",
252 | " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
253 | " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
254 | " (downsample): Sequential(\n",
255 | " (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
256 | " (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
257 | " )\n",
258 | " )\n",
259 | " (1): BasicBlock(\n",
260 | " (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
261 | " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
262 | " (relu): ReLU(inplace)\n",
263 | " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
264 | " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
265 | " )\n",
266 | " (2): BasicBlock(\n",
267 | " (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
268 | " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
269 | " (relu): ReLU(inplace)\n",
270 | " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
271 | " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
272 | " )\n",
273 | " (3): BasicBlock(\n",
274 | " (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
275 | " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
276 | " (relu): ReLU(inplace)\n",
277 | " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
278 | " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
279 | " )\n",
280 | " (4): BasicBlock(\n",
281 | " (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
282 | " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
283 | " (relu): ReLU(inplace)\n",
284 | " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
285 | " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
286 | " )\n",
287 | " (5): BasicBlock(\n",
288 | " (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
289 | " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
290 | " (relu): ReLU(inplace)\n",
291 | " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
292 | " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
293 | " )\n",
294 | " )\n",
295 | " (7): Sequential(\n",
296 | " (0): BasicBlock(\n",
297 | " (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
298 | " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
299 | " (relu): ReLU(inplace)\n",
300 | " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
301 | " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
302 | " (downsample): Sequential(\n",
303 | " (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
304 | " (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
305 | " )\n",
306 | " )\n",
307 | " (1): BasicBlock(\n",
308 | " (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
309 | " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
310 | " (relu): ReLU(inplace)\n",
311 | " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
312 | " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
313 | " )\n",
314 | " (2): BasicBlock(\n",
315 | " (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
316 | " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
317 | " (relu): ReLU(inplace)\n",
318 | " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
319 | " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
320 | " )\n",
321 | " )\n",
322 | " )\n",
323 | " (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
324 | " (2): ReLU()\n",
325 | " (3): Sequential(\n",
326 | " (0): Sequential(\n",
327 | " (0): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
328 | " (1): ReLU(inplace)\n",
329 | " )\n",
330 | " (1): Sequential(\n",
331 | " (0): Conv2d(1024, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
332 | " (1): ReLU(inplace)\n",
333 | " )\n",
334 | " )\n",
335 | " (4): UnetBlock(\n",
336 | " (shuf): PixelShuffle_ICNR(\n",
337 | " (conv): Sequential(\n",
338 | " (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1))\n",
339 | " )\n",
340 | " (shuf): PixelShuffle(upscale_factor=2)\n",
341 | " (pad): ReplicationPad2d((1, 0, 1, 0))\n",
342 | " (blur): AvgPool2d(kernel_size=2, stride=1, padding=0)\n",
343 | " (relu): ReLU(inplace)\n",
344 | " )\n",
345 | " (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
346 | " (conv1): Sequential(\n",
347 | " (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
348 | " (1): ReLU(inplace)\n",
349 | " )\n",
350 | " (conv2): Sequential(\n",
351 | " (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
352 | " (1): ReLU(inplace)\n",
353 | " )\n",
354 | " (relu): ReLU()\n",
355 | " )\n",
356 | " (5): UnetBlock(\n",
357 | " (shuf): PixelShuffle_ICNR(\n",
358 | " (conv): Sequential(\n",
359 | " (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1))\n",
360 | " )\n",
361 | " (shuf): PixelShuffle(upscale_factor=2)\n",
362 | " (pad): ReplicationPad2d((1, 0, 1, 0))\n",
363 | " (blur): AvgPool2d(kernel_size=2, stride=1, padding=0)\n",
364 | " (relu): ReLU(inplace)\n",
365 | " )\n",
366 | " (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
367 | " (conv1): Sequential(\n",
368 | " (0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
369 | " (1): ReLU(inplace)\n",
370 | " )\n",
371 | " (conv2): Sequential(\n",
372 | " (0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
373 | " (1): ReLU(inplace)\n",
374 | " )\n",
375 | " (relu): ReLU()\n",
376 | " )\n",
377 | " (6): UnetBlock(\n",
378 | " (shuf): PixelShuffle_ICNR(\n",
379 | " (conv): Sequential(\n",
380 | " (0): Conv2d(384, 768, kernel_size=(1, 1), stride=(1, 1))\n",
381 | " )\n",
382 | " (shuf): PixelShuffle(upscale_factor=2)\n",
383 | " (pad): ReplicationPad2d((1, 0, 1, 0))\n",
384 | " (blur): AvgPool2d(kernel_size=2, stride=1, padding=0)\n",
385 | " (relu): ReLU(inplace)\n",
386 | " )\n",
387 | " (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
388 | " (conv1): Sequential(\n",
389 | " (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
390 | " (1): ReLU(inplace)\n",
391 | " )\n",
392 | " (conv2): Sequential(\n",
393 | " (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
394 | " (1): ReLU(inplace)\n",
395 | " )\n",
396 | " (relu): ReLU()\n",
397 | " )\n",
398 | " (7): UnetBlock(\n",
399 | " (shuf): PixelShuffle_ICNR(\n",
400 | " (conv): Sequential(\n",
401 | " (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1))\n",
402 | " )\n",
403 | " (shuf): PixelShuffle(upscale_factor=2)\n",
404 | " (pad): ReplicationPad2d((1, 0, 1, 0))\n",
405 | " (blur): AvgPool2d(kernel_size=2, stride=1, padding=0)\n",
406 | " (relu): ReLU(inplace)\n",
407 | " )\n",
408 | " (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
409 | " (conv1): Sequential(\n",
410 | " (0): Conv2d(192, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
411 | " (1): ReLU(inplace)\n",
412 | " )\n",
413 | " (conv2): Sequential(\n",
414 | " (0): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
415 | " (1): ReLU(inplace)\n",
416 | " )\n",
417 | " (relu): ReLU()\n",
418 | " )\n",
419 | " (8): PixelShuffle_ICNR(\n",
420 | " (conv): Sequential(\n",
421 | " (0): Conv2d(96, 384, kernel_size=(1, 1), stride=(1, 1))\n",
422 | " )\n",
423 | " (shuf): PixelShuffle(upscale_factor=2)\n",
424 | " (pad): ReplicationPad2d((1, 0, 1, 0))\n",
425 | " (blur): AvgPool2d(kernel_size=2, stride=1, padding=0)\n",
426 | " (relu): ReLU(inplace)\n",
427 | " )\n",
428 | " (9): MergeLayer()\n",
429 | " (10): SequentialEx(\n",
430 | " (layers): ModuleList(\n",
431 | " (0): Sequential(\n",
432 | " (0): Conv2d(99, 99, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
433 | " (1): ReLU(inplace)\n",
434 | " )\n",
435 | " (1): Sequential(\n",
436 | " (0): Conv2d(99, 99, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
437 | " (1): ReLU(inplace)\n",
438 | " )\n",
439 | " (2): MergeLayer()\n",
440 | " )\n",
441 | " )\n",
442 | " (11): Sequential(\n",
443 | " (0): Conv2d(99, 2, kernel_size=(1, 1), stride=(1, 1))\n",
444 | " )\n",
445 | " )\n",
446 | ")"
447 | ]
448 | },
449 | "execution_count": 14,
450 | "metadata": {},
451 | "output_type": "execute_result"
452 | }
453 | ],
454 | "source": [
455 | "from fastai.vision import *\n",
456 | "\n",
457 | "path = Path('data/znz-segment/znz-train-all')\n",
458 | "path_img = path/'images-512'\n",
459 | "path_lbl = path/'masks-512'\n",
460 | "get_y_fn = lambda x: path_lbl/f'{x.stem.split(\"_img\")[0]}_mask_buffered.png'\n",
461 | "codes = np.array(['Empty','Building'])\n",
462 | "unet_sz = 768\n",
463 | "bs=1\n",
464 | "\n",
465 | "data = (SegmentationItemList.from_folder(path_img)\n",
466 | " .random_split_by_pct()\n",
467 | " .label_from_func(get_y_fn, classes=codes)\n",
468 | " .transform(get_transforms(), tfm_y=True, size=unet_sz)\n",
469 | " .databunch(bs=bs)\n",
470 | " .normalize(imagenet_stats)) \n",
471 | "\n",
472 | "learn = unet_learner(data, models.resnet34)\n",
473 | "learn.load('20190108-rn34unet-comboloss-alldata-512-unfreeze-best')\n",
474 | "learn.model.eval()"
475 | ]
476 | },
477 | {
478 | "cell_type": "code",
479 | "execution_count": 15,
480 | "metadata": {
481 | "collapsed": true
482 | },
483 | "outputs": [],
484 | "source": [
485 | "def get_pred(learn, tile):\n",
486 | " t_img = Image(pil2tensor(tile,np.float32))\n",
487 | " outputs = learn.predict(t_img)\n",
488 | " im = (outputs[2][1]).numpy()\n",
489 | " return im"
490 | ]
491 | },
492 | {
493 | "cell_type": "markdown",
494 | "metadata": {},
495 | "source": [
496 | "# Run inference on subwindows of windows and save raster"
497 | ]
498 | },
499 | {
500 | "cell_type": "code",
501 | "execution_count": 16,
502 | "metadata": {},
503 | "outputs": [
504 | {
505 | "name": "stdout",
506 | "output_type": "stream",
507 | "text": [
508 | "512 256 768\n"
509 | ]
510 | }
511 | ],
512 | "source": [
513 | "tif_sz = 20480 \n",
514 | "tile_sz = 512\n",
515 | "pad_sz = tile_sz//2\n",
516 | "pred_sz = tile_sz+pad_sz\n",
517 | "\n",
518 | "print(tile_sz, pad_sz, pred_sz)\n",
519 | "assert pred_sz == unet_sz\n",
520 | "\n",
521 | "scale_factor = 1\n",
522 | "save_prefix = f'grid_042_20190118_test{scale_factor}x'"
523 | ]
524 | },
525 | {
526 | "cell_type": "code",
527 | "execution_count": null,
528 | "metadata": {
529 | "collapsed": true,
530 | "scrolled": true
531 | },
532 | "outputs": [],
533 | "source": [
534 | "tile_scaled = tile_sz*scale_factor\n",
535 | "pad_scaled = pad_sz*scale_factor\n",
536 | "test_wins = get_windows(raster.meta['height'], raster.meta['width'], tif_sz, tif_sz)\n",
537 | "\n",
538 | "print(len(test_wins))\n",
539 | "for idx, win in enumerate(test_wins):\n",
540 | " print(idx, win)\n",
541 | " \n",
542 | " # make subwindows and blank array to fill in\n",
543 | " col_off, row_off, rst_w, rst_h = win[1].flatten()\n",
544 | " sub_wins = get_windows(rst_h, rst_w, tile_scaled, tile_scaled, col_off, row_off)\n",
545 | " new_arr = np.zeros((rst_h, rst_w))\n",
546 | "\n",
547 | " for (row_idx, col_idx), window in tqdm(sub_wins):\n",
548 | " win_padded = pad_window(window, pad_scaled)\n",
549 | " win_img = np.rollaxis(raster.read(window=win_padded, boundless=True),0,3)/255\n",
550 | "\n",
551 | " # scale down windowed read to unet input size\n",
552 | " win_img = rescale(win_img,1/scale_factor,anti_aliasing=False)\n",
553 | " placeholder = np.zeros((pred_sz,pred_sz,3))\n",
554 | " placeholder[:win_img.shape[0],:win_img.shape[1]] = win_img\n",
555 | " \n",
556 | " # skip inference if empty window\n",
557 | " if placeholder.max() > 0: pr = get_pred(learn, placeholder)\n",
558 | " else: pr = placeholder[:,:,0]\n",
559 | " \n",
560 | " # scale back up to original tile size to fill into blank array at right place\n",
561 | " pr = rescale(pr, scale_factor, anti_aliasing=False)\n",
562 | " pr = pr[pad_scaled//2:-pad_scaled//2,pad_scaled//2:-pad_scaled//2]\n",
563 | "\n",
564 | " try: \n",
565 | " width, height = window.flatten()[-2:]\n",
566 | " start_y = row_idx*tile_scaled\n",
567 | " start_x = col_idx*tile_scaled\n",
568 | " new_arr[start_y:start_y+height, start_x:start_x+width]= pr[:height,:width]\n",
569 | " except Exception as exc: print(f'{exc}')\n",
570 | " \n",
571 | " tfm = get_tfm(win[1], raster)\n",
572 | " save_subwin(new_arr, raster.meta['crs'].data['init'], tfm, f'{save_prefix}_id{idx}')"
573 | ]
574 | },
575 | {
576 | "cell_type": "code",
577 | "execution_count": 52,
578 | "metadata": {},
579 | "outputs": [
580 | {
581 | "data": {
582 | "text/plain": [
583 | ""
584 | ]
585 | },
586 | "execution_count": 52,
587 | "metadata": {},
588 | "output_type": "execute_result"
589 | },
590 | {
591 | "data": {
592 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2EAAANSCAYAAADs4sY8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3WuMpNl5H/b/877V3XOf3VnuLi9LkRRFSRYtm5YoUrGi2A5hiVIMS/5ghEpgEY6CtQ0LiAEnsBR/kGEjgOPYMSDAUEDHiqXElqAgkU0bUmhqo0QJYtGkLqZEWhRXFMkd7nJvM7Nz6ZnurnpPPlT1TM/s7HW6q6q7fj+g0FVvvdX19Exf6l/nnOdUay0AAADMR7foAgAAAFaJEAYAADBHQhgAAMAcCWEAAABzJIQBAADMkRAGAAAwR0sTwqrqg1X1uap6vKp+ZNH1AAAAHIRahn3CqqpP8rtJ/mSS80k+meQHWmufXWhhAAAA+2xZRsLel+Tx1toXWmvbSX42yfctuCYAAIB9N1p0ATNvSfLEntvnk7z/zpOq6tEkjyZJn/5bT+TMfKoDAIADUl2XNgx7DlSqanq9tbS05KAnr1Wmz7H7kdvcyLVst63ar8+3LCHsbl/Qi/77W2sfSfKRJDlT59r76wOv/wlHo6S6tPFOsgRTMgEAWE3Vj9IyufWatPa+NN49No9C7vjITZ9oj+3r51uWEHY+yVv33H4kyZMH9myzb+w2ucs3u0AGAMActfH4jgNejx51y7Im7JNJ3lVV76iq9SQfSvLRA3u21mYBbDbsW5VaX0/1/YE9JQAAQLIkI2GttXFV/XCSjyXpk/xka+0zB/ykN6/uBrA2eNcBAAA4WEsRwpKktfYLSX5hIc+9vZ30/XR0DAAA4AAtTQhbqNZePBcXAADgACzLmjAAAICVIIQBAADMkRAGAAAwR0IYAADAHAlhAAAAcySEAQAAzJEQBgAAMEdCGAAAcLuqRVdwpAlhAADA7VpbdAVHmhAGAAAwR0IYAADAHAlhAAAAcySEAQAAzJEQBgAAMEdCGAAAwBwJYQAAAHMkhAEAAMyREAYAADBHQhgAAMAcCWEAAABzJIQBAADMkRAGAAAwR0IYAADAHAlhAACrpOsXXQGsPCEMAGBVdH36c/elRqNFVwIrTQgDVkfVoisAWKw2ZLj0QtrQFl0JrDRvgwCro3nRAdAmE78PYcGEMACAVSF8wVIwHREAAGCOhDAA4OBU6cYHcAchDICF0aFtBbSWDJODfx5BDzhEhDAAFqZNJrpWsj/mEfQA9om3IAFYHE0CAFhBRsIAAADmSAgDAACYIyEMAABgjoQwAAA4Cqo0OzokhDAAADjsqqbNjuqIvLw/4mHyiPwvAQDwmhk5ORq6/la32aOwXcMKfE9qUQ8AsMpsFXH4HYXgtdcKfE8aCQMAWFUr8GIXlpEQBgAAMEdCGAAAwBwJYQAAAHMkhAEAAMyREAYAADBHQhgAAMAcCWEAAABzJIQBAADMkRAGr1bVrY+71wEA4DUSwuDVai2pSvV9qu8XXQ0AAIfUaNEFwGHThpa0YdFlAABwSBkJg9dKAAMA4B4YCYPXorVFVwAAwCFnJAwAAGCOhDAAAIA5EsIAAADmSAgDAACYIyEMAABgjnRHhEXr+tTaKDUapW3vpNZGyWwz6OHaZqqrtPF4wUUCALBfhDBYsNHDD2Z48L7UjZ3UC1eSc2eTZy8k951J9/RzqWPHkq4yefb5ZJgsulyA+el6v/eAI0kIgwWq0SjZWM+1rz2Taw/3ufKOh3LsGy+lfvkbcu1913Pm9Hr+8ENP5qnNM3nu2jvz0H/yVIYrVxZdNsB8tGHRFQAcCCEMFqUqSdIuvZAT589k7fJGaljPxUeO5fSQvPkNl/KBN34uf+L0Z3OytvPs5HT+7nv/0/S//OsLLhxgTlpbdAUAB0JjDngtqm6/3Hn3aJRaW5+OcN3l/hc/oEuGlv78s9l46nJOf3kn7cJ6Tp+f5Fve8ET+4PHzeaC7nmM1ydeuXcj5P7FxAF8UAADzJITBa9Ha9FLd9NJNG2ikatpgYzSaNtlYX0+N1l42iNX6etJN7588fzF19XquPzjK6KHrufLWPk9eP5tJKue6SY7VJDuty8OftDYCAOCwE8LgtapKdTUNW2uzGb27U2a6bnr/+lrq2MY0qL2E7vixVNXNINY21rL5cJfvfPsXsvnmli++cC7/6InvzCTJJJXf2X44p37jKwf8xQEAcNCsCYPXo7pU36dtb9861oa0yWQ6wrWxkW5tbXr4+vW0od3e4asqecO51AtXUxvrqZ1x0nXZuNDyf376D+TUc5Xnfv9c3vf+38zTk/X84pU/lP/3uXemu3Fjzl8oALBwVdZIHjFCGLwObTKZBq7ZKNZ0jVg3nYbYd9M9v04eT504ljz1TGoYUn2fyeXLNz9Hbe2ktSFZX5s+bnsn933hRp5/z0ZOPN1SQ59feeRr88D61fzPv/n+PPhLGzm3+W8X9BUDAAsjgB05Qhi8Gl0/Hfka76RmGym34fZfiN3xY+nuO5t24lgmZ46ntseZnNrI2tZ2UpXhvlMZPXsp4688Of1lurMz/TzPXUiOH5tOY9wecvZ3u5z6yla2T2/k8hfP5qef/I688f/pMoyStmPTZgCAw04Ig1ehOzbtSlh9lzYevyiApbW08Xi6vqvvUjuT1PY4a09dT9u8kXSVbmecNh6nO3kyw7VrGa5cTVpLrU+nLQ6nj2ftiefyhvUu6196PmePP5yHP3kjT/37p3Pq/PWkm47AAQBwuAlh8EpmjTba9k7aZM/GoW1IuyMTtavXUlvbqY31ZHsnw9Vr0zsmkwyzUaxam7Wvn0zSJkPazjhddanr22knjqW/tpNU5eRnnk62tvOm/2tIW+vSf+npTAYhDADgsBPC4FUYrs8aYrRhOgrWhhfNz27b2xkut9SxjdTW9s1jGdrNEaxaG92cUtgmw811ZW1rK93VzbRTJ9I/fyXt4qVkaNMGH08+m2zvZHLx4vy+YAAADowQBi+l66cdDVu71QVx1hUxrabTD/dqLW28k3Ztkm59Len7aQv6tdkasp3ttO3hZtv6tjMLaumT7e0MFy+lrm1m2Pt8m5vTAGdBLnAP+vvOZnLphUWXAcCMEAYvZe/Uv9Zu7Q/Wd2nj4aUfl2TY3kl1sxGvO9eP3eV52jBb77W1dev5APZJ295ZdAkA7GGzZnglVdNRscwCVde9dLBq7Wbb+ja0pLp0xzam68Bmn2P3vJd6vAAG7Ldhc3PRJQCwh5Ew2KNGo6Tv099/X5Kk7ewkO+Pk4Tfk6je9Icee206u3Ej/5acyXL8xXd91R7OMaZfE/mbjjul0wj0jZy/VXEP4AgBYCUIYzNTaetKmmyq31tIePpfu4tVc/ra3ZLJeef7dlTd+Yj3twfWc2FhLfeb3Xnrfrt2g1SY3N3K+WzMPAABWjxAGM228k+7UqWnr+IfP5dK778uwdn+efd+QNhpSx8e58uRG+hvJsae7jDY2Utvbtw1y3f0Tt7yol/1eVcIZAMAKsSYMkptBqN3YmjbguL6d8bHKs//hdursds688Uq6UcvkWOX0E9vZObOWOnF8On3xXglgAAArxUgYJDeDUBtPO4jVcxfz0C+Pc98XHsiVRzZy4Q8ey+TBnVz5uknu/50u1ZIMQ9L3L/NJAQDgxYQw2KtNN1YeNjfTjUZZ++qVnE7S72xkvLGW9atD1q7sZP3JS2njSdIZTAYA4LURwmCvqum+XdtDhosXU5ubGZ1/KmePH0vuP5u6upnJcxfSzpxKu7Fl7x0AAF4zIQz22l2f1VraeDxtL5+ktneSK1eToaWNdzK8cHmBRQIAcJgJYfBydteKTSapVtMNmGdTFm+2nQcAgNdACIO7qZp+3B0ZGya3561XajsPAAAvQQiDu9E2HgCAA6K1GwAAwBwJYQAAAHMkhAEAAMyREAYAADBHrzuEVdVbq+qXq+rfVdVnquq/mB3/G1X1lar6zdnle/c85ker6vGq+lxVffee4x+cHXu8qn7k3r4kAACA5XUv3RHHSf5qa+3Xq+p0kl+rqo/P7vv7rbW/u/fkqvqmJB9K8u4kb07yS1X19bO7/0GSP5nkfJJPVtVHW2ufvYfaAAAAltLrDmGttaeSPDW7fqWq/l2St7zMQ74vyc+21raS/H5VPZ7kfbP7Hm+tfSFJqupnZ+cKYQAAwJGzL2vCqurtSf5Ikk/MDv1wVX26qn6yqu6fHXtLkif2POz87NhLHb/b8zxaVZ+qqk/tZGs/Sl9qtbGx6BIAAIB9ds8hrKpOJfnfkvyV1trlJD+R5J1J3pPpSNnf2z31Lg9vL3P8xQdb+0hr7b2ttfeu5egHlO7EiUWXAAAA7LN7WROWqlrLNID9k9ba/54krbWn99z/D5P8y9nN80neuufhjyR5cnb9pY6vtMnFi4suAQAA2Gf30h2xkvyjJP+utfbf7zn+pj2n/Zkkvz27/tEkH6qqjap6R5J3Jfk3ST6Z5F1V9Y6qWs+0ecdHX29dAAAAy+xeRsK+I8mfS/JbVfWbs2P/dZIfqKr3ZDql8ItJ/kKStNY+U1U/l2nDjXGSv9xamyRJVf1wko8l6ZP8ZGvtM/dQFwAAwNKq1u66/Grpnalz7f31gUWXAQAAHHGfaI/lcrtwt14Wr8u+dEcEAADg1RHCAAAA5kgIAwAAmCMhDAAAYI6EMAAAgDkSwgAAAOZICAMAAJgjIQwAAGCOhDAAAIA5EsIAAADmaLToAgAAYGVVJa0lXZ9aG6X6PqlKrY0yXL+RtrW16Ao5AEIYAAAsgRqNkq5L9d00gO2Mk65P2jANahwZQhgAACxCVVJdkiFJ0sbjZGhpXU3vF76OLGvCAABgEapLrc3GRNqQqkp3/Fi6UydTo1FqtDYNahw5RsIAAGAR2pBMJtPRrlnYGra2UuPx9P5OADuqjIQBAMCCtN3AlWTY3klVJcOQDMOsSYeX60eRkTAAAFiEO9Z7VVfJ2to0hO0e6/s0a8OOHNEaAAAWadago9bXpyNg6+tJN32ZXr2X60eRkTAAAFiw6irp+9TG+nTUa5iOfrXJ8MoP5tARwgAAYJGqmwawvksmQ9p4fKtd/W7jDo4UIQwAABapzUa7qpt2RByG6UbN1oIdWUIYAAAsUmvpTpxIJpNMLl0RvFaAlX4AALBgdeZUxt/8tdO29Bx5RsIAAGDBxl96IvWlJ2IMbDUYCQMAAJgjIQwAAGCOhDAAAIA5EsIAAADmSAgDAACYIyEMAABgjoQwAACAORLCAAAA5kgIAwAAmCMhDAAAYI6EMAAAgDkSwgAAAOZICAMAAJgjIQwAAGCOhDAAAFhFVYuuYGUJYcAtXb/oCgCAeWlt0RWsLCEMSJKM3vLm1Ld+06LLAAA48oQwIEnSrlxNt7m96DIAAI680aILAJbD5PLl5DOXF10GAMCRZyQMAABgjoQwAACAORLCYBVoQQsAsDSEsFfixStHQXXT9vO+nwEAFk4IeyX2T+AoaEPShtRozV5gAAALJoTBqmgtbWc7GSaLrgQAuItaW/dm6YoQwmAVtGYqIgAsuzZ4s3RFCGGwKkytBYCl1sbjRZfAnAhhAAAAcySEAQAAzJEQBgAAq8D68KUhhAEAwCqwPnxpCGEAAABzdKhDWI1G9lIAAAAOlUMdwtrQ7KUAAAAcKoc6hAlgAADAYXO4QxgAAMAhI4QBAADMkRAGAAAwR0IYAADAHAlhAAAAcySEAQAAzJEQBsDh0PVJ1aKrAIB7Nlp0AQDwqtgbEoAjQggDAIDk9tH21hZXB0ee6YgAcNC6ftEVAK9Ga7cucICEMAAOj8O6JqwNi64AgCViOiIAy6nqRe9G12gttTZKm0zStrYWVNjr4F11APYwEgbAcrpbcGlD2mSS7sSJ+dcD7K+q1Gg0fcPlsI5yw+skhAGw3Pasp2rjcdrWViYXLy6wIOB12w1cXZ9UlxqNMnr4odT6uiDGSjEdEZZZ12vLDX4G4GipLt2xjVkY6zJcvnLzeJqfd1aDkTBYUv0bHsgXf+bd3hkE4EiptdHNANadPTOdltj3GtiwUoyEwZKaPPd83v4fP7/oMgBgf00m2V3x2ba2U8ePpY4fT/vqM2k72wstDebFSBgAAHPTJpNkMpmOfiVJ36dtb98aIYMVYCQMAOCwuMvWDYdKaze7Itb6WtJV2ub1ZBiml+pSo34a1NpwuL9WeBlCGADAYXGUQslolHblapKkRqMM4/F0G4rxy4Svwx5CYUYIAwBgvvpZi/r1tWRjI+3qtWTYE666Oxp11GwFjW6pHBFCGAAA8zWZpG1uTj9evzENYHunH965NEznRI4YIQwAgPmZBa02HidDu7X+67Zz7hgFE8I4YoQwmDfz2QFYccP2zq1gNWvWcdvfxtuum4LI0aNFPcybAAbAKtvbhn73b6K/jawYIQwAgPlpbdpgo7wMZXX57gcAYP6s82KFCWEAAMzfUZ2C2PWpkbYLvDzfIQAAsF+GiUE+XpGRMFZT3bkByZyecxHPCwDAUhHCWE3VJV0/n6cajabPZQEyAADZhxBWVV+sqt+qqt+sqk/Njp2rqo9X1ednH++fHa+q+vGqeryqPl1V37Ln83x4dv7nq+rD91oXvKxhMr28Vl3/2kazqtKGlur7dMePpUZr6Y4de+3PCwDAkbFfb83/idbae1pr753d/pEkj7XW3pXksdntJPmeJO+aXR5N8hPJNLQl+bEk70/yviQ/thvcYJlc+Og705048conVt0c/aquUutrqb5PukqbmCgOwArq+tTa+qKrgKVwUPOjvi/JT82u/1SS799z/Kfb1K8mua+q3pTku5N8vLV2obV2McnHk3zwgGqD1+3cn/rdDNeuveh4d+xYxh/41oze/jU3Q1p3bCO1NkobWrrTp5K+nwYxq3UBWEXDJG3yOmahwBG0HyGsJflXVfVrVfXo7NjDrbWnkmT28aHZ8bckeWLPY8/Pjr3U8dtU1aNV9amq+tROtvahdNgHXZ9659vyd/7Hn0j7n8bTNWDVZbixler7aRDbvJ46tpE2maQNR7QlLwC8ktezFACOoP1oUf8drbUnq+qhJB+vqt95mXPvtpimvczx2w+09pEkH0mSM3XOK1mWwzDJ5DOfy1//xu9M/1CXyebmzT8yw+ZmkmSytZVcvrzIKgEAWBL3PBLWWnty9vGZJD+f6Zqup2fTDDP7+Mzs9PNJ3rrn4Y8kefJljsOh0ba2Mn7ifNp4vOhSAIAlUBsbtqfhru4phFXVyao6vXs9yXcl+e0kH02y2+Hww0n++ez6R5P84KxL4rcneWE2XfFjSb6rqu6fNeT4rtkxAAA4vJrJW7zYvU5HfDjJz9c04Y+S/NPW2v9RVZ9M8nNV9UNJvpzkz87O/4Uk35vk8SSbSf58krTWLlTV30ryydl5f7O1duEeawMAgIVpW3oYcHfVDmk6P1Pn2vvrA4suAwAAOOI+0R7L5XZh3+aWHlSLegAAAO5CCAMAAJgjIQwAAGCOhDAAAIA5EsIAAADm6F5b1APLoutTfZ+0IW1oyTBZdEUAANyFkTA4ImptlO74sXT335+0YdHlAADwEoyEwRHRtrYy2d0UsvZtGwsAAPaZkTA4ig7pJuwAAKtACAMAAJgjIQxmutOnU2vriy4DAIAjTgiDZLqG6m1vSfd1b7OeCgCAAyWEwUz3/KXkmefTnz6d7Q9+W37wc0/kyZ//pkWXxSJV5efO/+s89+i/t+hKAIAjRAiDZLa/VkutraX76Mns/JXn870nnsjJje1Fl8YCdX/oG7OWPn/tv/yniy4FADhChDBI0sbjjL/6dMZffTq//7F35IVfemM+8N/81TzwQ1cXXdr+q0p92zfno1/5ZE7+yoOpkZ0qXkp9+av5+Wtvyk7zbwQA7J9qh7SV9Zk6195fH1h0GXD4VOXh/+90fvptv5Ik+e5HvjUZJgsuCgBgeX2iPZbL7cK+NQ4wEgZzsFRdF1vLe06fT5JM2pD+/rMLLggAYLUIYbw6Ogbek7azXGvLnts5detG1y+uEADgQPUPP5Ta2Fh0GdzBQgdelfZH/3BGz1zO5PNfWHQp7IPf+A/O5j86+d1p43Emzz+36HIAgAMyXLiU6rsczgVIR5cQxqty8Uc389yTD+TrHxXCjoLhypUMV64sugwA4IC1ne20nUVXwZ2EMF6Vh/7zF/LgznPRvgEADoGq5JA2X+OA+d5YCkcnhO2uWfJNdSDGX3160SVwL/zCBVgth+V3vr9P8+ffeykcncYc1SXVTfc80kQCbucXLsDqqDpcr4U0iGIFHY0QVpW0Yc/t7rb7lqo9OADAQWrt8Lz51pq9KllJhz+EzYaxq+/TnzqZWl9Pdbe/A7Rs7cEBAIDVdfhD2EwbWobrN5JhNiK2Oxp2WN4JAgAAVsLhb8yxG7LakDaZfkx1qT5phrcBAIAlc/hD2K7Wkja5bWkYAADAsjky0xEBAAAOAyEMAABgjoQwAACAORLCAAAA5kgIAwAAmCMhDAAAYI6EMAAAgDkSwgAAAOZICAMAAJgjIQwAAGCOhDAAAIA5EsIAAGDVdP2iK1hpQhgAAKyY/uventrYWHQZL69q0RUcGCEMAABWSddn5+Ez6c/dv+hKXl5ri67gwIwWXQAAADBHwySjX//dtL6fjjYtY9jZHQVbxtr2gRAGAAArZrh2bdElvLwjGr52mY4IAAAwR0IYAADAHAlhAAAAcySEAQAAzJEQBgAAMEdCGAAAwBwJYQAAwHLY3R/siBPCAACAxdsNYCsQxIQwAABg4arvk1qNeDJadAEAAABtPF50CXOzGlETODhdv+gKAICjomolpiMaCQPuzTBZdAUAwFHR2qIrmAsjYQAAwPI5wiNiQhgAALAYVS9e2nCEw9cu0xEBAID52xu2ZkGsukqqS5tMjvSSByGMlVVr62k724suAwDgcKq6tzVcrd0MYtVV0vep0SyebCdNCIOjpztzKpMLF1dmASgAwIG6cxrhK73G6vp062tJ36c7fSqttWQ8TruxlTq2kTbeObKv06wJY+X0953N6JG3ZPL8hSP7gw0AcODufB3V2u2XV3z8kDYeT/cHO34sbfN60vWpYxupE8cPpuYlYSSMlTO5fDV19dqiywAAWHltMknG44y/dD7VVYZrm+mOH0sbH+3XakIYq2eYpA2LLgIAYMXtWRO29/XZcO3ake+QaDoiAACr7Yi/4F9qLzVt8dVOaTykhDAAAFZXVfqzZ168VxUcICEMAIDV1Vraja3pdSNizIk1YQAArLThxo1Fl8CKMRIGAAAwR0IYAADAHAlhAAAAcySEAQAAzJEQBgDAvdPiHV41IQwAgHvXBi3e4VXSoh4AgHvX2qIrgEPDSBgAAMAcCWEAAABzJIQBAADMkRAGAAAwR0IYAADAHAlhAAAAcySEAQCwXKrsOcaRZp8wAACWiz3HOOKMhAEAAMyREAYAADBHQhgAAMAcCWEAAMyfxhusMCEMAID5q04QY2UJYQAAzF8bdEFkZQlhAAAAcySEAQAwf0bBWGGvO4RV1TdU1W/uuVyuqr9SVX+jqr6y5/j37nnMj1bV41X1uar67j3HPzg79nhV/ci9flEAAADLavR6H9ha+1yS9yRJVfVJvpLk55P8+SR/v7X2d/eeX1XflORDSd6d5M1Jfqmqvn529z9I8ieTnE/yyar6aGvts6+3NgAAgGX1ukPYHT6Q5Pdaa1+ql+5y831Jfra1tpXk96vq8STvm933eGvtC0lSVT87O1cIAwAAjpz9WhP2oSQ/s+f2D1fVp6vqJ6vq/tmxtyR5Ys8552fHXur4i1TVo1X1qar61E629ql0AACA+bnnEFZV60n+dJL/dXboJ5K8M9Opik8l+Xu7p97l4e1ljr/4YGsfaa29t7X23rVs3FPdAAAAi7Af0xG/J8mvt9aeTpLdj0lSVf8wyb+c3Tyf5K17HvdIkidn11/qOAAAwJGyH9MRfyB7piJW1Zv23Pdnkvz27PpHk3yoqjaq6h1J3pXk3yT5ZJJ3VdU7ZqNqH5qdCwDAYfbSvQJgpd3TSFhVnci0q+Ff2HP471TVezKdUvjF3ftaa5+pqp/LtOHGOMlfbq1NZp/nh5N8LEmf5Cdba5+5l7oAAFgC9gKDu6p2SH84ztS59v76wKLLAAAAjrhPtMdyuV3Yt6Hd/eqOCAAAwKsghAEAAMyREAYAADBHQhgAAMAcCWEAAABzJIQBLELXL7oCAGBBhDCARRgmi64AAFgQIQwAAHix2rdtsbjDaNEFAAAAS2BP6KrRWtJV2s44aUPS2u3n7N6eZ23zfs4DJIQBAMAqu3PEq7qkq9RolOr7tO3ttMkkqS7VTc9tQ5vv1PojFMASIQwAAFZXVWq0luq7tPE4bWipvk/tjjzVNIy1oU0DWHXTQNaGRVd+qFkTBgAAq2o2wtTG46TvpwHs2Ebq9Ol05+5PG4+nt7vdaYjD7dMTeV2EMAAAWGFtMp1WWFXJLGzVqE/G43THj01Pqu72C/fEdEQAAFhVtRu6RknXpfo+3ckTaefOJjvTUbB29dqtoDYbLWuJEbF7IIQBsNz2Lhj3xx5gf9U0eCWZTkc8dizZWM9wfC3t9EZqPKRbG6W7ei1tcmsdWPV90mo6jZHXTAgDYLntBq+uT5pNrgEOSo1GqfW1DGdP5vobT6Qbt6y9sJ2u626Grd0GHXPvjnjECGEALLeuv/UHH4B9V2uj1OlTqaq04xtp66NUaxkf79Jv9RlOT9eFtaElbfB+2D6wqg44Wu7c64TbVaXW1jN60xsPz7/VMJm+A+sdV4D914bpeq/JZPo3Ymhpoy5rl8dZvzzO+vlL6Z994fa29NWZHn6PjIQBR8dsr5O0wRz1l1B9n+7UyWR9bdGlALAMWpsGsMmQ1raTnZ2MhiGT+0+n7yu5fHU2ArYndBkKu2dCGHB0tJa2sz1dO8RdtfE4k0uXkkuXvIsJQJJpi/q2vZ10Xdr2drrJkO7EsbRRl7Z5Pe3G1qJLPHKEMODoMW3t5QlfAOzVWobNzVvXh5Z6YpzuzOkMya1piOwbIQwAAFZZ19/2BmYb7yTXh4yvbXpb8c+hAAAgAElEQVRj84BozAEAAKtqt0lT1W0Nm7SgP1hGwgAAYJXtTjfcna7eWhJTEA+SkTAAAFhVtwWvmSrrhw+YEAYAAKvszsAlgB04IQwAAGCOhDAAAFg1XX97Uw7mSggDAIBVY++vhRLCAABg1bSWVHfrOnMlhAErr0aj1Nr6ossAgPmY7QlWnWmIiyKEAZRfhQCsmOqmGzKzEDZrBlZbVdp4x1QMAFZHa4lBsIUSwoDVJnwBsIqGia6IC2QODgAArJoqb0QukBAGAACrRgBbKCEMAABgjoQwAACAORLCAAAA5kgIAwAAmCMhDAAAYI6EMAAAgDkSwgAAAOZICAMAAJgjIQwAAGCOhDAAAIA5EsJgmVUlXT/9CADAkTBadAHAXVSlf+Bc6tixDC9cznBtM8mQtLboygAAuEdCGCyh6vu06zeS8Tjtxtb09iRJhukJwhgAwKFlOiIsm65Pavqj2W5spU0mSZuFr/IjCwBw2BkJg2UzTNKGSdrO9jSQtWE2ChYjYAAAR4C31WEZ7TbkeKn7AAA4tIyEwTJqLbet/9oNXgIYAMChJ4TBsnqpqYemJAIAHGqmI8Ky2jvqtRu8BDAAgENPCINldOf0wyoBDADgiDAdEZbRnYFLAAMAODKMhAEAwFH3Ul2XWQghDAAAjrph8srnMDdCGAAAwBwJYQAAAHMkhAEAwFFWdfvWNyyc7ogAAHCU6bK8dIyEAQAAzJEQBgAAMEdCGAAAwBwJYQAAAHMkhAEAAMyREAYAADBHQhgAAMAcCWEAAABzJIQBAADMkRAGAAAwR6NFFwAAAEdWVarvU+vryTCktZbq+wzXryetLbo6FsRIGAAAHISqpLq0oaXtjJO+TyaTtMkk/X33pTtxYtEVsiBCGAAAHJDq+3THNlJ9l7a9Mw1lO+MMV6+lNjZSGxuLLpEFEMIAAOAgtJZ0lQzD9HZXSVeprpI2ZNjcnE5TZOVYEwYAAAehKt2JE2njcbKzM52KOMzWgbUhlaRtby+0RBZDCAMAgIPQWiYvXE7abCSsZpPQZrfb0FKZLKg4Fsl0RAAAOEjVJdVNpyHedrhujYyxUoQwAAA4CLP29GnDNIBVN23SsWcd2J3BjNVgOiIAAByE1tImk2kQS1Jro2mTjsl0CmKbmIq4qoyEAQDAvaqXGNEaJtPGHH0/3ax5Mty6z2bNK8tIGAAAy6/rk2EJR466Pv3ZMxne/uZ0m1vJMKQmQyZnT2ZyZj395jjdta3U9a0MZ06kvnB+2hFxaEnN1oWNx4v+KpgzIQwAgOW3jAEsSdqQtrWVbnuc7TefyWS9y2hzksnxPuvPXs9wYi3D2vHsvPVMjn/xUjIaTdvVd5U2maQt6ZfFwRLCAADg1brLtMO2M04NQ7bPjLJ1ps/6tT6ja5Nsvu1kbpzts351yGSj0u2czcaoT3312bQXLk+7JrbhLk/CUSeEAQDAa3Hnfl/jneSZ53OqKqeqMqyPMpxYy6WvO5EXvm0rJ87cyOiXz2bo19NtH8/6hfVpa/o2WBe2ojTmAACAV6vNwtMwuRmgqu+TnXHqymbq6maGE2t5/t3Hc/U7NvPOtz6Ta5eO5+TTQ879xsWsfeZLGXY3cBbAVpYQBgAAr8Ud4alGo2R9LRmPk/Ek/dWt9FvJ+OpaHj5+JSc+v56zn7mY+vKTGTY303Y04lh1piMCAMBrtWdtWGst2dpOnTyRtr6WrQdP5OrXVM58di2/9pVvytt/8VKytT3dF2xoSTfdxLlNJkbDVtSrGgmrqp+sqmeq6rf3HDtXVR+vqs/PPt4/O15V9eNV9XhVfbqqvmXPYz48O//zVfXhPce/tap+a/aYH696qY0WAABgCbSWVJcaraWqpqNhVWkb6xldn6R1yfWHWtauJuNT66mh3TZ9sUYjAWyFvdrpiP84yQfvOPYjSR5rrb0ryWOz20nyPUneNbs8muQnkmloS/JjSd6f5H1Jfmw3uM3OeXTP4+58LgAAWC67bfP7ftqq/vqNdM9fSv/CjZz+UsvpLyYP/sZWatKSzeup0SjdqZPT8zurglbZq/rfb639SpILdxz+viQ/Nbv+U0m+f8/xn25Tv5rkvqp6U5LvTvLx1tqF1trFJB9P8sHZfWdaa/+6tdaS/PSezwUAAEur7WxnuH4jw9Vr07bz62vprlzLuX97Ofc9vp21y1sZPX81bWs7bXs77fr1ZGdnumEzK+te1oQ93Fp7Kklaa09V1UOz429J8sSe887Pjr3c8fN3OQ4AAMtvmKS1Shta6vLV1MkT6a7dyMa1G6nxJBmGtPW11GQyXT82maSNNedYZQcxDnq39VztdRx/8SeuerSqPlVVn9rJ1j2UCAAA+6i1aRgbj9OubSYXL6cdX087tp60llpfT/p+Oho2mSy6WhbsXkLY07OphJl9fGZ2/HySt+4575EkT77C8UfucvxFWmsfaa29t7X23rVs3EPpAACw/4YrVzK5dCntypXUeEi2dzKcPZl24ljqxPF0p06m2/A6dtXdSwj7aJLdDocfTvLP9xz/wVmXxG9P8sJs2uLHknxXVd0/a8jxXUk+NrvvSlV9+6wr4g/u+Vxw7zTbBADmqbUMW1sZPvd7yQtXU5tbqRtbyfpaan09w5YZXavuVa0Jq6qfSfLHk7yhqs5n2uXwbyf5uar6oSRfTvJnZ6f/QpLvTfJ4ks0kfz5JWmsXqupvJfnk7Ly/2VrbbfbxlzLtwHg8yS/OLvD6Vd3e9vXO2wAAB6m1tPE4k+cvpC5enE5HHIYM2zu3uiqysqod0hemZ+pce399YNFlsKz2hq7ZSFiN1tLGO8IYAACvySfaY7ncLuzb9CobFHA07Q1as80UAQBgGXhlympoQ2ptlOr7RVcCAMCKu5d9wuDwaC3Dja2kDYuuBACAFWckjNVQNQ1g1oMBALBgRsJYDcIXAABLwkgYAADAHAlhAAAAcySEAQAAzJEQBquoKt2xYzc3sgYAYH6EMFaDsHG71jLcuKFhCQDAAghhrA5BDACAJaBFPavBiA8AAEvCSBgAABwmZvccekIYAAAcFlVJeQm/H0ZvfDjp+oU8t/9BAAA4LKpL2jC7bkTsXrTN66l+MSHMmjAAADgshsmt69a835PJ5csLe24jYQAAAHMkhAEAAMyREAYAADBHQhgAAMAcCWEAAABzJIQBAADMkRAGAAAwR0IYwH7rFrPxIwBwOAhhAPupKt3JE+nvOyuMAQB3NVp0AQBHSnUZrm0mbVh0JQDAkhLCAPbTMFl0BQDAkjMdEQAAYI6EMAAAgDkSwgAAAOZICAMAAJgjIQwAAGCOhDAAAIA5EsIAAGBZVU0vHClCGAAALKnq+0WXwAEQwgAAYEm1ySRpbdFlsM+EMAAAWFYC2JEkhAEAwLKxFuxIE8IAAGDZGAE70oQwAABYRoLYkSWEAQAAzJEQBgAAMEdCGAAAwBwJYQAAAHMkhAEAAMyREAYAADBHQhgAAMAcCWEAAABzJIQBLJuqRVcALCO/G+DIGC26AABu6c+cybC1lbYzTtqQtDZ94dXaoksDFm2Vfw9UJTUbO2hDkqTb2EibDLfOmR1vQ0uGybwrhNdECANYJm95OP3Fy2mb1zNsbk5fTLThlR8HcFR1faqbjgK2oaXb2Eh3/31p951OXXghmUxSo1HaZEjb3Ey2ttKaN69YbkIYwBKprZ208Xg6GjZ4AQErz0h40oa0oUv1fbr1LnX8eHbe8XC2HthIt3NfamjJ0NLvDFn76pXkS+enD5tM/NuxtIQwgCXSLr6QtrWVTCZGwABTkmeqq9SxjdRolDx4LpffcTzX3tJl/G1X0vdDbtxYy7l/dTz9mzdy7vLVTC5cnP4ehSWlMQccAqN3vC0nf+XBPPlf/dFFl8IBm1y8OJ2GOB5PX3TtXoDVtcq/A6pSo7XUxiyAvenBXPqWB/PMt7e89Xu+mO/92s/ke97+2bz1wYt59jt3sn5lSDt1YtFVwysSwuAQaFc387ff9s/yA3/usUWXAgDz1VWq75PRKG19lOtv6PKeP/yF/IEzX80Da9eSJM9dPZnsdLn+QJ/hzPFpYIMl5jsUDoHJc8/lifGZ/KNP/9F8XX5j0eUAwMGbteSvvk/W11LHNtKSjI8nT2+ezqgb8rkrD+dLF+/P1adO5ZFfqqxf2k53fSetM87AchPCWHq1tp50le6+s5k8/cyiy1mM1vJ33vnNAhgAR8/e9vPJrfby1U2bckwmqfE47fr11OZGTj45ZPNfvDG/ff8bc/2RcTbOXc/px0c582tPJJMhw8VL0yndR1HXp/o+bWd70ZVwj4Qwll7b2bZBJQAcUd3x4+nOnE67cSPtxlaGG7MQNkySqrTt7QxDS/Vdansn5z6ZpO8yOXs8Ww9s5PJbT+WNv/xMhmefn3ZEHNrR7Yw4TNI0bToShDAOh9ZWdxQMAI6wtr2d4dILGbZ30q2v3XHntDtkG++kjZNs76T78nbq+PGMLh9PTR5It7ORPH9xusl9Zq3pj/JmzUcxXK4gIQwAgIVqkyFpQ4btnbvcOQsdVbPpidNNmbs2pPvyOMe+nLSr12b7iQkor4ttEOZOCAMAYGHaZJJkNnL1KqbatfFOarSW4dr15Nr1W+GrDYLE67G75EMQmyshDACAxXm1G1LvnpdMA1ff35yCeKSnH96Lm/9eL/NvK3gthBAGAMBivdogMDuvjcfJZHLbMe7Cv83SEsIAADh8BAwOMTvZAQCwOLahYQUJYQAALI4RLVaQEMZq8C4bAABLQghjNXiXDQCAJSGEAQAAzJEQBgDLwtRpgJUghAHAEuhOnsznf+qPpNbWF10KAAdMCAOAJfENj342bWd70WUAcMBs1sxqqNKcA1hqw+am31MAK8JIGEdb1eziWx1YcgIYwMowEsbRtvuipk0WWwcAAMwYHgAAAJgjIQwAAGCOhDAAAIA5EsIAAADmSGMOAGD/Ve253iVtmDZL2ntcR0hgRRkJAwD2R1XS9elOnkytr6c/d39SXbr1taS61MZGqu9tGwKsPCNhAMD+aC1pkwzXbyRJJhdfmI6Ara2lWpsGsNEo2dq6uXNIjUZp4/ECiwaYPyEMANhfbUitrydDS/VrqTc/nG5nnLaxlrqxneHpZ5Pt7VvnV5maCMtmd+qwn80DIYQBsH+qUn2fNpn4w73KWkuG6f9/nTqZrUfO5tob17JzsnL2C9s5vr2T4fkLSd+nbe+kP30ik8uXF1w0cPMNkb1rNzkQQhgA+6Y/eyZX/9g3ZFirnP7F385w7dqiS2LeZi/e2mSSWhulTp3M+HifF76uy86plmMXRzleldZasr2TdJW2vW00DBatatZEZ3IriPmZPDBCGAD7ZnLphRz/F7+W7uSJDJubiy6HRdh90VbT9V7D2ZN58jv7nPrGC/nQ2z+d/6X9sYyPf00e+NhOJs8+n0qf1oycwkJ1/XQacd9PR6jHO34mD1i1Q/oPfKbOtffXBxZdBgDwanhXHZZbVWq0llpfmzbLmUxMLd/jE+2xXG4X9m2eph6xAMDB80IOltverSOGljb4mT1IpiMCAMAqq0p1NR352hpubbA+u8+bKPtPCAMAgFVXXZLJbATMNMSDZjoiAAenKsMf+yPpjh3T8hhgWbU2a8Yx3Lr4nX2gXjGEVdVPVtUzVfXbe479d1X1O1X16ar6+aq6b3b87VV1vap+c3b5H/Y85lur6req6vGq+vGq6f9sVZ2rqo9X1ednH+8/iC8UgPnrvvkb8jX/7edTX/s13lUFWGatTUfDdi9+Zx+oVzMS9o+TfPCOYx9P8gdba38oye8m+dE99/1ea+09s8tf3HP8J5I8muRds8vu5/yRJI+11t6V5LHZbQCOgPbZx/PV7z+Z9oUvL7oUAF7J7jqwvSNhRsQOxCuGsNbaryS5cMexf9VaG89u/mqSR17uc1TVm5Kcaa396zbtif/TSb5/dvf3Jfmp2fWf2nMcgEOujccZf/XpDDduLLoUAF6F6ur2TolGxA7EfqwJ+8+S/OKe2++oqt+oqv+7qr5zduwtSc7vOef87FiSPNxaeypJZh8feqknqqpHq+pTVfWpnWztQ+kAAKyMquml6xddyXJqbbY32J7OiEbCDsQ9dUesqr+eZJzkn8wOPZXka1prz1fVtyb5Z1X17iR3+997zbG6tfaRJB9Jpps1v76qAQBYSa3NWq4Pi65kee1tT58YCTsgrzuEVdWHk/ypJB+YTTFMa20rmQ5RtdZ+rap+L8nXZzrytXfK4iNJnpxdf7qq3tRae2o2bfGZ11sTAAC8rN0gxku7M4ix717XdMSq+mCSv5bkT7fWNvccf7Cq+tn1r820AccXZtMMr1TVt8+6Iv5gkn8+e9hHk3x4dv3De44DAADzNEyml9aMgh2gVxwJq6qfSfLHk7yhqs4n+bFMuyFuJPn4rNP8r846If4HSf5mVY2TTJL8xdbablOPv5Rpp8Xjma4h211H9reT/FxV/VCSLyf5s/vylQEAwN0IFyxYtUP6TXimzrX31wcWXQYAALA7xfOQZotX8on2WC63C/s2j/WeGnMAAAAr5s7ANbtd/bTrZG1sZLh+IxkmqdEo3YkTaeNx2s44bbxze1C7uR9Zd7M9fnfmVCbP37ZD1pEjhAEAAK9d1R2Bqku6aajqz5yaBrEkdeJ4MhmSa9dS62tp2ztp453UaC21NkqGIXX2TLK9k/Td9OOdn/uIEcIAAIBXb2+Hyapbo1hJMrSk61Jnz6QbjVKjUYZr0z5+dfxY2vZOan3tZlirjY3UfWey9bYHsv7stUxOrmf0xLPJlSuL+MrmRggDAABem91Rqq5P9X2q79JaS4aW7tx9ufbuN2btyjijK1upayeTC5f2BLB+Oip24nhqbS2pyjCqDMfXsnPfRkZPjVJ9nzYeL/ZrPEBCGAAA8LrV2iipSk0myVqfbG3n5Ge+enO0rK2vpT3ycLoXrqVdeiHt+o0MN7bSj0Zp1aWu38ixf/P55KEHUmc3krXRkQ5gyevcJwwAACBtSNv+/9u79xjJrvs+8N9fVT+GDw2HI4sMQ8oSZdBxZCxWlARLTiJvYMWyJNiR85axWBGJAa0NG7CRBIgcY9fGJn/ECZwFhM1aUNZaSVmvJD+USAkiKAJhxH9Epk1Z1GtpidSLHIsamhySM+TM9KPq7B91e9gcTZMzPd33dlV/PkChq089+ld1+lbVt865567PRq660bF29lza2fNpT52Zha6V5Zz8S8fSVldSR46klmbjQG0ySTY3086dmy3ccfKxrD70RHL23JCPqBdGwgAAgN1pLW0yyfTs2bTJJC1JLS1nNKpkPE4yTrtmOdc8Ns3kxmszfvJ0sryUTCeZnjufWlu7sKDHaGU5eeyJTJ5+ZuhHte+MhAEAwB4Yv/h4anll6DIG0aZt+y+z5eifOTvb52s6zepTk4wfOzNb+XA0fnZhj25/shqPk+WV1OrKbHrjghPCAABgD3zlF783Gz/03w1dxjDadDaiVbN4sbVPV5tMM/7W4znyuYeSx07NRszOdqsljipVlVpZmY2ajSptMp3dX+3ZcZEPpMWPmQAA0IPv+cd/MHQJw+iWrN9apr5NW6rabJGOjfW06Xi2MmJVRkePJtNJcvbsbBTs+utmy9Qnaddfm7SWWltb+NURjYQBAABXp9s3LDWbWlgry7PRrWlLJpNkOk2uOZK6/trk+LHZ9brjiCVdABuPMjl2bbJ12wVmJAwAALh6raVtrM/Od1MNW5LRsRvS1s/MVkJ8+mzqRdfNrr62lnZkNbW0lLVbb8jZm5dzzZ9tZLy+kbaxuKNgiRAGAADssba2lpbM9u168qnZvl61NrvsmWdmi3dMR8nGZtqNKxmtT3L9w5OMn9lIVpZTo0pr9exBoReMEAYAAOyP1i4sttE2N2cjXG164eLp2bMZrx3N8refyvSGazN+bBbY2rQtbABLhDAAAGAfXZiiuLXiYY1mQWxrNGxUSVU2bjiS2pikutUTU0bCAAAAdq9bRfE5v2ea6aknU9dek9UvnEldd03aaDybjjgdJW0yWLn7yeqIc2Tpz9288MdMAABggW2NbG372dbXZ6soTifJ+bVka+Rs27TFRSOEzZFrfnuSpZe9dOgyAABg9y4KV219PdMnn8r0qdOZnj6T6TPnBiqsP6YjzpFz77gumw+dGLoMAADYvYv382otbXNjdn5jc3a8sTZd2P3BEiFsrmx+/ZtDlwAAAHuvC1wXFvFYcKYjAgAA9EgIAwAA6JEQBgAA0CMhDAAAoEdCGAAAQI+EMAAAgB4JYQAAAD0SwgAAAHokhAEAAPRICAMAAOiREAYAzI+qoSsAuGpCGAAwP1obugKAqyaEAQAA9EgIAwAA6JEQBgAA0CMhDAAAoEdCGAAAsDtVVi3dBSEMAADYna0VS0fjYeuYM0tDFwAAAMyx1pJMh65irhgJAwAAro5j+F0RIQxgYEu3vyybP/yaocsAAHpiOiLAwDa//s0sff2bQ5cBAJevyujXVTASBgAAXD6rIV41IQwAAKBHQhgAAHD5TEO8akIYAABwZQSxqyKEAQAA9EgIAwAA6JEQBgBXy0phAFwBIQwArpZ9IwC4AkIYAABAj4QwAACAHglhAAAAPRLCAAAAeiSEAQAA9EgIAwAA6JEQBsD8cnwuAOaQEAbAXKqlpTz8Sz+YWl4ZuhQAuCJCGABzqU0meflHvp22uTF0KQBwRZaGLgAAdqW1TB742tBVAMAVMxIGAADQIyEMAACgR0IYAABAj4QwAACAHglhAAAAPRLCAAAAeiSEAQAA9EgIAwAA6JEQBgBcnarU8srQVQDMDSEMALgqtbQ8dAkAc0UIAwCuzqgyuv66oasAmBtLQxcAAMy3traWyfr60GUA7KiWV9I2Ds7rlJEwAODqtTZ0BQA7ek4Aq5qdBmQkDAAAODwOwJdGRsIAAAB6JIQBAAD0SAgDAOC5Bt5fBhadEAYAwHMdgH1mYJEJYQAAAD0SwgAAAHokhAEAAPRICAMAAOiREAYAANAjIQwAAKBHQhjAXqtKRuOhqwAADighDOBq7BS4ppP+awEA5oIQBrDXHOQUAHgeQhjAblWlxuOkTYeuBGBf1dLS0CXAQhHCWBxVz/7cOg99KC+lwAKrSpsa4Ye95JMD828rdG1NAWttdhLE2G+tpU3bbDTM/xuwoGo8nr3ODVaA11cWzwuGsKp6X1U9WlVf3Nb2K1X1p1V1X3d667bLfrGqHqyqL1fVj25rf3PX9mBVvWtb++1VdU9VPVBVH6mqlb18gBwCW6ELhjCdpG2s+x8EFlbb3Jy9zg1WgNdXFs/ljIS9P8mbL9H+v7fWXtWd/nOSVNUrk7w9yfd3t/k/q2pcVeMk/ybJW5K8MslPdtdNkl/t7uuOJE8k+amreUBwgRdtAAAOoBcMYa21309y6jLv721JPtxaW2utfT3Jg0l+oDs92Fr7WmttPcmHk7ytqirJDyf5ne72H0jyE1f4GAAAAObG1ewT9nNV9fluuuKNXdutSR7edp0TXdtO7S9O8mRrbfOidgCAA2F87Ab7JQF7arch7NeTfE+SVyV5JMmvde2XeoVqu2i/pKp6Z1XdW1X3bmTtyirmcLFCIgB75PQbvy/jFx8fugxggezqoA+ttZNb56vq3yb5T92vJ5K8dNtVb0vyre78pdofS3Ksqpa60bDt17/U331vkvcmydE6bocfdmZ/MKBTS0sZ3XF7Jvc/MHQpzJnxzTeljqzmuo/+YSbeV4A9tKuRsKq6ZduvfyPJ1sqJH0/y9qpararbk9yR5A+T/FGSO7qVEFcyW7zj4621luT3kvzt7vZ3JfnYbmoCgJ3Uk2eGLoF5tLaWTKZZuvmmoSsBFswLjoRV1YeS/NUk31VVJ5L8cpK/WlWvymzq4DeS/M9J0lr7UlX9VpL/L8lmkp9trU26+/m5JJ9MMk7yvtbal7o/8U+SfLiq/nmSzyb5jT17dAAcem1zM5uPfHvoMphDkyefyiPv//NZ/dixHP+/T77wDQAuU7U5HV4/Wsfb6+qNQ5cBACywuvP7c/6Wa7P6iXtNdYdD7J52d063U3u24MCu9gkDADgM2me/lNXPDl0FsGiuZol6AAAArpAQBgAA0CMhDAAAoEdCGAAAQI+EMAAAgB4JYQAAAD0SwgAAAHokhAEAAPRICAMAAOiREAYAANAjIQwAAKBHQhgAAECPhDAAALiEWloaugQWlBAGAAAXGV17bUbHbhi6DBaUeH9YjcZJmyatDV0JAMCB09bX09bXhy6DBWUk7DCqymhleegqAAAOrLa5mba5OXQZLCgh7DCqUabrG0NXAQylKhmNMzpyZDYqDgD0Sgg7jKaT2VRE4NCr8fhCKEvV0OUAwKFgn7DDyr5gcPhUJTVKjSq1spJaWkqNx5mePfvsfg9VXh8AYJ8ZCQM4LFqbjXyNx2mTSTKqZGU5NR6nlpaTGnUnI2LAgLwGcQgIYQCHSJtMkuksjD3+46/M6b9ye0YvPp5aXsroyOrQ5QHAoSCEARwWo/FsKuKR1dR11+XcTZXxekt76nQynaZtbKaWl2ajYQBDMSWaQ8A+YQCHQXdswDYdJefOJUn+/LvvTR1ZzXR9PZlM0qYt42PHM3n81MDFAsBiE8IADpPpJK1V2tNPZ3TNNZk+c/bZ1VJrlMljjw1bHwAcAkIYwG5s7Tg+L9NmppNnz3c1T7sRsWfbp8+5HADYH0IYwG4sQlC5+DFYnh4AemHvawBmBDAA6IUQBgAA0CMhDAAAoEdCGAAAQI+EMAAAgB4JYQDMp9H42UMFAMAcEcIAmE9bxzUDgDkjhAEwn1pLLS0PXQUAXDEhDIC51TbWhy4BAK6YEAYAANAjIQwAAKBHQhgAAECPhDAAAIAeCWEAMK8cKw1gLi0NXQAAcIW2gpdjpQHMJSEMAOZNa0NXAMBVMB0RAACgR0IYAABAj838FTMAABWkSURBVIQwAACAHglhAAAAnVpe2fe/YWEOAJhH25emt1AHwJ5pG+v7/jeMhAHAnKql5dTSsmOFAcwZI2HA5anybTscJK318m0tAHvPSBhweS4OYKPxMHUAAMw5IQzYnelk6AoAAOaSEAYAANAjIQwAAKBHQhgAzJuq1NLSs6siWh0RYK4IYQAwb7YWyqmRlUsB5pAl6gFgHlw02tUm3eI4AhjA3DESBgAH3U6jXQIYwFwSwgDgoGvtuSNhwhfAXBPCAGAebA9e9gMDmGtCGADMGwEMYK5ZmAMA5oXwBbAQjIQBsHujsWNUAcAVEsIA2LWlW27O0s03CWKHib4GuGpCGAC71jY3uzOmyR0WSy//7qFLAJh79gkDYNcmj/7Z0CXQs8nDfzp0CQBzTwgDYPeMgB06F0Y/Adg10xEBAAB6JIQBAEAfLGxDRwgDAIB9Nj56NA/+u1flG//8Bw9sGKvllWQ0Tq2uDl3KwrNPGAAcQuNjN2T9zu/Jydceye0/9rU8ef6a/Pztd+c9D/8PefQ/vTTf9fm1rHz6/kzPryXTydDlwtybfN/L8ve+/zO56c7T+cT/cuPQ5XyHWl7JMz92Z84fG2VpreXYR+/L9Pz5octaWEbCAOAQmp47n5Vvn8mLHpomSW669ky+eO62LI8mmawmqw89Mfu2vk0HrhQWw1feuZpfvukzecO1XzmQixq1ySSnvm+cczdVbvzkVwSwfVbtAP4TXI6jdby9rt44dBkAMH+qMrr22oxe8uI89oZb89SPP52q5PwTRzI+M87L/+N6lv/oy5meO28UDPZa1YEMYUkuTENsa2sDV3Lw3NPuzul2as/mkZqOCACHTWtpm5tpp57MdOnWrD96bdqo5egDS7nuW9Os3H8i07U1o2CwHw5oAEuErz4JYQBwiN3w9bU8dcdqapK8+AtrWX30mbQzT6dND+4HRYB5Z58wADiMpi3Tc+ez9NRaVk5Xrj1ZueaBR1MPPZK2vj4bBTvA39jDolm67dahS6BHRsIA4BBqmxtJjTI+8Wiuf/hFWT7b0laW086vGQWDPnXL1U+fOj1wIfRJCAOAw6i1pE3Szp7NjV86nc3rV1Ln19NGI/uCQZ+6Eefp008PXAh9EsIOu6qkulmpVsACOHSmZ89mfOJkVpaW0s6fnx0XzDRE6J/t7lARwg671pJMU0vLqWuOpK2tpW1uDl0VAD1qTz+TlmS6vmEUDKAHQhhJkhqPMrrxWNp118yWLn7oTx2kD+AwaG22HD0AvbE6IrM34PPnMzn5Z8mjjydL49SR1QsH7ANgwbX23BMA+0oI44I2maSdO5ecfCxtYzOxOhbA4VKVWlpKRuMLK7YBsPdMR+Q5pusbyfpT9gkAOIxaS5u21KiSjO0jDLBPhLDDrio1HifjcTKZpE0mpqIAHGbTSVrrRsGqvCcA7APTEQ+7Gs0OyjltAhgAM1vvBeVjAsB+8OpKRtccyeiGF6WWlu0DAMCzTE0H2BemI5LpufOptbXZiBgAbE1VT8ySANgHQthhN50k6b7sNPcfgGS2QMdkYjoiwD7x6sqzBDB6dmEpbODg8Z4AsG+EMGAQo+uuy1d+7bUZ33jD0KUAO7FPGMC+eMEQVlXvq6pHq+qL29o+UlX3dadvVNV9XfvLq+rctsves+02r6mqL1TVg1X17qrZChBVdbyqPlVVD3Q/b9yPBwocLNNnnsnRr47SbrnJgjBwULVmRAxgH1zOSNj7k7x5e0Nr7e+11l7VWntVkt9N8tFtF39167LW2k9va//1JO9Mckd32rrPdyW5u7V2R5K7u9+BQ+Dmd/+3TL/4Jz7kAQCHyguGsNba7yc5danLutGsv5vkQ893H1V1S5KjrbVPt9Zakg8m+Ynu4rcl+UB3/gPb2gEAABbO1e4T9oYkJ1trD2xru72qPltV/7Wq3tC13ZrkxLbrnOjakuTm1tojSdL9vGmnP1ZV76yqe6vq3o2sXWXpAAAA/bvaJep/Ms8dBXskyXe31h6vqtck+Q9V9f1JLrXDxxXPP2qtvTfJe5PkaB03fwkWyOjIkUzPnx+6DACAfbfrkbCqWkryN5N8ZKuttbbWWnu8O/+ZJF9N8r2ZjXzdtu3mtyX5Vnf+ZDddcWva4qO7rQmYT4/8o7+UR++60wIdAMChcDXTEf9akj9prV2YZlhVL6mqcXf+FZktwPG1bprhmap6fbcf2TuSfKy72ceT3NWdv2tbO3BI3PaBL+cl7/uMBToAgEPhcpao/1CSTyf5C1V1oqp+qrvo7fnOBTl+KMnnq+pzSX4nyU+31rYW9fiZJP9XkgczGyH7RNf+L5L8SFU9kORHut+BQ2Ty2ONpG+tDlwEA0Itqc/rN89E63l5Xbxy6DAAAYMHd0+7O6XZqz/abuNrVETlI7E8DAAAHnhC2SOZ0VBMAAA4TIQwAAKBHQhgAAECPhDAAAIAeCWEAAAA9EsIAAAB6JIQBAAD0SAgDAADokRAGwOFQ5aD2ABwIS0MXAAC9cEB7AA4II2EAAAA9EsIAAAB6JIQBAAD0SAgDAADokRAGAADQIyEMAACgR0IYAABAj4QwAABgOFVDV9A7IQwAAOhdLa8cygCWCGEAAMBQ6nDGkaWhCwAAAA6ftrE+dAmDOZzREwAAYCBCGAAAQI+EMAAAgB4JYQAAAD0SwgAAAHokhAEAAPRICAMAgMsxGg9dAQtCCAOAg6xq6AqALdPJ0BWwIIQwADiotgKYIAawUJaGLgAA2EFrQ1cAwD4wEgYAANAjIQwAAKBHQhgAAECPhDAAAIAeCWEAAMD8m6OVZIUwAGDXankltbwydBkAqaXluQliQhgAsDujcca33ZLzP/Lfz80HH2BxtY31uTm0h+OEAfuram5eEIErNJ1k8+vfzOo3HrKdA1wBI2HAvlr6czfnzNtf71tyWGQCGMAVMRIG82iORpc2H/l2XvSRk3NTLwDAfjMSBvNo3gLNvNULALCPhDAAAIAeCWEAAAA9EsIAAAB6JIQBAAD0SAgDAADokRAGAADQIyEMAACgR0IYAABAj4QwAACAHglhAAAAPRLCAADYX1VDVwAHihAGwHzwIQ7mV/nICdvZIgCYH4IYzKfpZOgK4EARwgAAAHokhAEwP1obugIAuGpCGADzQQADYEEIYQAAwMFVtXD7BC8NXQAAAMCOFnAmhJEwAACAHglhAAAAF6ml/Zs0uLghrCoZjYeuAgAAmENtMtm3fdEWN4QlqZEgBgAA7EJr+7Y/2mKGsKrUeJzUaBbEAAAADojFDGGtzYYPBTAAAOBK7fOS+IsRwkbj2emiJ6ttbKZN28IdVwAAANhHtb8xaTFCWJt2P7cFrtZm7W26kMcWWEjCMgAAB0CN93ddicUIYVu2PsRv/zAvgM2Pg9xXAiIAwKHRNtb39f4XI4R1o14XFuMYz6YnjlZXfXhmT9R4vK/HigAA4PBYqE+VbdoyWllOktTyctr6emo8TtvcHLgy5p3/IQAA9spijIRtmU4yXVtLm0xTS0upO27P+OabUssrQ1cGAACQZJFGwrb2J2otbWM9kyfWkyeeyHTYqgAAAJ5jcUbCRvu7ggkAAMBeWJwQNp0MXQEAAMALWpwQBgAAMAeEMAAAgB4JYQAAsCgcI3cuCGEAALAItgKYBesOPCEMAAAWQXfIphoZDTvohDAAAFgUraVtbg5dBS9ACAMAAOiREAYAANAjIQwAAKBHQhgAAECPhDAAAIAeCWHsr6pkNM7ouutSS0tDVwMwMxo7jg4Ag/GpmH0zPnZD6siRtMk0SVLLS5k+/YxlU4HhTSfPHtQUAHomhLFv2vpG2mSaWl3J9KkzSZumTdvs2+fpZOjygMOuO6gpAPTtBacjVtVLq+r3qur+qvpSVf181368qj5VVQ90P2/s2quq3l1VD1bV56vq1dvu667u+g9U1V3b2l9TVV/obvPuKl9PLoLpuXPJxkYmp55M21ifjYBNJwsfwMZHj/qGHQCAHV3OPmGbSf5Ra+0vJnl9kp+tqlcmeVeSu1trdyS5u/s9Sd6S5I7u9M4kv57MQluSX07yuiQ/kOSXt4Jbd513brvdm6/+oTG41jI9f37hQ9fF6oajz37DLowBAHCRFwxhrbVHWmt/3J0/k+T+JLcmeVuSD3RX+0CSn+jOvy3JB9vMHyQ5VlW3JPnRJJ9qrZ1qrT2R5FNJ3txddrS19unWWkvywW33xbzrFuY4TGFk8+ETz/7Sx3SnrecYAIC5cEWrI1bVy5PcmeSeJDe31h5JZkEtyU3d1W5N8vC2m53o2p6v/cQl2plnVbNTa7ORMCND+8d+LQAAc+WyQ1hVXZ/kd5P8Qmvt9PNd9RJtbRftl6rhnVV1b1Xdu5G1FyqZIbV26XAgMOyPNh26AgDYd7W6OnQJsCcuK4RV1XJmAew3W2sf7ZpPdlMJ0/18tGs/keSl225+W5JvvUD7bZdo/w6ttfe21l7bWnvtcmyEcIFwC8Ah0NZ8Cc9iuJzVESvJbyS5v7X2r7dd9PEkWysc3pXkY9va39Gtkvj6JE910xU/meRNVXVjtyDHm5J8srvsTFW9vvtb79h2XwAAAAvlco4T9peT/E9JvlBV93Vt/zTJv0jyW1X1U0keSvJ3usv+c5K3Jnkwydkkfz9JWmunquqfJfmj7nr/W2vtVHf+Z5K8P8k1ST7RnQAAABZOtTmdxnS0jrfX1RuHLgMAZrYWIwJg4dzT7s7pdmrPVpi7otURAYAdCGAL78H/586Mj90wdBnAAhDCAAAuw7/8gd9NlleGLgNYAJezTxgAwKH33u99RZI/G7oMYAEYCQMAAOjR4oaw2rP95gAAAPbMQoawWl5JaiEfGgAAfKcqgxBzZCGTSttYT438EwIAcDjUeGwQYo4sbE+1zc2hSwAAAPgOi7064micGlXaZOL4LQAALCwDEPNlIUfCanU1tbSUGo9TK/YPAwAADo6FHAmrqmR1NbW8lDaZDl0OAADABQsZwtpkmrQ2G5adtqQJYgAAwMGwmCFsY/3ZJTprZH8wAADgwFjIEJbk2eDVJsPWAQAAsE21OR0lqqozSb48dB0kSb4ryWNDF8EF+uPg0BcHi/44WPTHwaEvDhb9cXBs74uXtdZesld3PM8jYV9urb126CJIqupefXFw6I+DQ18cLPrjYNEfB4e+OFj0x8Gxn31h7XYAAIAeCWEAAAA9mucQ9t6hC+ACfXGw6I+DQ18cLPrjYNEfB4e+OFj0x8Gxb30xtwtzAAAAzKN5HgkDAACYO0IYAABAj+YuhFXVm6vqy1X1YFW9a+h6FlVVvbSqfq+q7q+qL1XVz3ftv1JVf1pV93Wnt267zS92/fLlqvrRbe367CpV1Teq6gvdc35v13a8qj5VVQ90P2/s2quq3t0935+vqldvu5+7uus/UFV3DfV45llV/YVt///3VdXpqvoF20Y/qup9VfVoVX1xW9uebQtV9ZpuW3uwu231+wjnyw798a+q6k+65/zfV9Wxrv3lVXVu2zbynm23ueTzvlPf8p126Is9e12qqtur6p6uLz5SVSv9Pbr5s0N/fGRbX3yjqu7r2m0b+6h2/kw77HtHa21uTknGSb6a5BVJVpJ8Lskrh65rEU9Jbkny6u78i5J8Jckrk/xKkn98ieu/suuP1SS3d/001md71h/fSPJdF7X9yyTv6s6/K8mvduffmuQTSSrJ65Pc07UfT/K17ueN3fkbh35s83zq/r+/neRlto3envMfSvLqJF/c1rZn20KSP0zyg91tPpHkLUM/5oN82qE/3pRkqTv/q9v64+Xbr3fR/Vzyed+pb50uuy/27HUpyW8leXt3/j1Jfmbox3yQT5fqj4su/7Uk/2t33raxv32x02faQd875m0k7AeSPNha+1prbT3Jh5O8beCaFlJr7ZHW2h93588kuT/Jrc9zk7cl+XBrba219vUkD2bWX/ps/7wtyQe68x9I8hPb2j/YZv4gybGquiXJjyb5VGvtVGvtiSSfSvLmvoteMG9M8tXW2jef5zq2jT3UWvv9JKcuat6TbaG77Ghr7dNt9q76wW33xSVcqj9aa/+ltbbZ/foHSW57vvt4ged9p77lIjtsGzu5otel7lv9H07yO93t9cULeL7+6J7Pv5vkQ893H7aNvfE8n2kHfe+YtxB2a5KHt/1+Is8fDNgDVfXyJHcmuadr+rluePZ924a/d+obfbY3WpL/UlWfqap3dm03t9YeSWYvMElu6tr1RX/enue+ido2hrFX28Kt3fmL29m9f5DZt8Jbbq+qz1bVf62qN3Rtz/e879S3XL69eF16cZInt4Vr28bVeUOSk621B7a12TZ6cNFn2kHfO+YthF1qfqU19vdRVV2f5HeT/EJr7XSSX0/yPUleleSRzIbTk537Rp/tjb/cWnt1krck+dmq+qHnua6+6EG3P8RfT/LbXZNt4+C50uden+yhqvqlJJtJfrNreiTJd7fW7kzyD5P8v1V1NJ73/bRXr0v6aG/9ZJ77BZ5toweX+Ey741Uv0bbn28e8hbATSV667ffbknxroFoWXlUtZ/bP+puttY8mSWvtZGtt0lqbJvm3mU1dSHbuG322B1pr3+p+Pprk32f2vJ/shsC3piw82l1dX/TjLUn+uLV2MrFtDGyvtoUTee7UOX2yS90O6z+W5H/spuekm/r2eHf+M5nte/S9ef7nfae+5TLs4evSY5lNyVq6qJ0r1D2HfzPJR7babBv771KfaTPwe8e8hbA/SnJHt0LPSmZTgT4+cE0LqZuv/BtJ7m+t/ett7bdsu9rfSLK16s/Hk7y9qlar6vYkd2S2k6I+u0pVdV1VvWjrfGY7vX8xs+dxa2Weu5J8rDv/8STv6Fb3eX2Sp7ph9k8meVNV3dhNSXlT18buPOebTNvGoPZkW+guO1NVr+9eA9+x7b64TFX15iT/JMlfb62d3db+kqoad+dfkdm28LUXeN536lsuw169LnVB+veS/O3u9vpi9/5akj9prV2Yvmbb2F87fabN0O8dL7Ryx0E7ZbZiyVcy+5bgl4auZ1FPSf5KZkOpn09yX3d6a5J/l+QLXfvHk9yy7Ta/1PXLl7NtVRh9dtV98YrMVqj6XJIvbT2Hmc3RvzvJA93P4117Jfk33fP9hSSv3XZf/yCzHbAfTPL3h35s83pKcm2Sx5PcsK3NttHPc/+hzKbubGT27eNP7eW2kOS1mX1Q/WqS/yNJDf2YD/Jph/54MLP9JrbeO97TXfdvda9hn0vyx0l+/IWe95361umy+2LPXpe696I/7Pr3t5OsDv2YD/LpUv3Rtb8/yU9fdF3bxv72xU6faQd979jqSAAAAHowb9MRAQAA5poQBgAA0CMhDAAAoEdCGAAAQI+EMAAAgB4JYQAAAD0SwgAAAHr0/wMxSb/bWarnuQAAAABJRU5ErkJggg==\n",
593 | "text/plain": [
594 | ""
595 | ]
596 | },
597 | "metadata": {
598 | "needs_background": "light"
599 | },
600 | "output_type": "display_data"
601 | }
602 | ],
603 | "source": [
604 | "plt.figure(figsize=(15,15))\n",
605 | "plt.imshow(new_arr)"
606 | ]
607 | },
608 | {
609 | "cell_type": "markdown",
610 | "metadata": {},
611 | "source": [
612 | "## Merge rasters"
613 | ]
614 | },
615 | {
616 | "cell_type": "code",
617 | "execution_count": 18,
618 | "metadata": {
619 | "collapsed": true
620 | },
621 | "outputs": [],
622 | "source": [
623 | "from rasterio.merge import merge"
624 | ]
625 | },
626 | {
627 | "cell_type": "code",
628 | "execution_count": 19,
629 | "metadata": {
630 | "collapsed": true
631 | },
632 | "outputs": [],
633 | "source": [
634 | "fns = sorted([o.name for o in OUTPUT.iterdir() if save_prefix in o.name])"
635 | ]
636 | },
637 | {
638 | "cell_type": "code",
639 | "execution_count": 20,
640 | "metadata": {},
641 | "outputs": [
642 | {
643 | "data": {
644 | "text/plain": [
645 | "['grid_042_20190118_test1x_id0.tif',\n",
646 | " 'grid_042_20190118_test1x_id1.tif',\n",
647 | " 'grid_042_20190118_test1x_id2.tif',\n",
648 | " 'grid_042_20190118_test1x_id3.tif']"
649 | ]
650 | },
651 | "execution_count": 20,
652 | "metadata": {},
653 | "output_type": "execute_result"
654 | }
655 | ],
656 | "source": [
657 | "fns"
658 | ]
659 | },
660 | {
661 | "cell_type": "code",
662 | "execution_count": 21,
663 | "metadata": {
664 | "collapsed": true
665 | },
666 | "outputs": [],
667 | "source": [
668 | "src_files_to_mosaic = []\n",
669 | "\n",
670 | "for fn in fns:\n",
671 | " src = rasterio.open(OUTPUT/fn)\n",
672 | " src_files_to_mosaic.append(src)"
673 | ]
674 | },
675 | {
676 | "cell_type": "code",
677 | "execution_count": 22,
678 | "metadata": {
679 | "collapsed": true
680 | },
681 | "outputs": [],
682 | "source": [
683 | "mosaic, out_tfm = merge(src_files_to_mosaic)"
684 | ]
685 | },
686 | {
687 | "cell_type": "code",
688 | "execution_count": 23,
689 | "metadata": {},
690 | "outputs": [
691 | {
692 | "data": {
693 | "text/plain": [
694 | "(Affine(0.07398361590021522, 0.0, 534722.5625,\n",
695 | " 0.0, -0.07398361590021522, 9347193.0), (3, 40592, 40551))"
696 | ]
697 | },
698 | "execution_count": 23,
699 | "metadata": {},
700 | "output_type": "execute_result"
701 | }
702 | ],
703 | "source": [
704 | "out_tfm, mosaic.shape"
705 | ]
706 | },
707 | {
708 | "cell_type": "code",
709 | "execution_count": 24,
710 | "metadata": {},
711 | "outputs": [
712 | {
713 | "data": {
714 | "text/plain": [
715 | "{'driver': 'GTiff',\n",
716 | " 'dtype': 'uint8',\n",
717 | " 'nodata': None,\n",
718 | " 'width': 20071,\n",
719 | " 'height': 20112,\n",
720 | " 'count': 3,\n",
721 | " 'crs': CRS({'init': 'epsg:32737'}),\n",
722 | " 'transform': Affine(0.07398368951053305, 0.0, 536237.6729736328,\n",
723 | " 0.0, -0.0739836819964856, 9345677.889526367)}"
724 | ]
725 | },
726 | "execution_count": 24,
727 | "metadata": {},
728 | "output_type": "execute_result"
729 | }
730 | ],
731 | "source": [
732 | "out_meta = src.meta.copy()\n",
733 | "out_meta"
734 | ]
735 | },
736 | {
737 | "cell_type": "code",
738 | "execution_count": 25,
739 | "metadata": {
740 | "collapsed": true
741 | },
742 | "outputs": [],
743 | "source": [
744 | "out_meta.update({\"driver\": \"GTiff\",\n",
745 | " \"count:\":1,\n",
746 | " \"height\": mosaic.shape[1],\n",
747 | " \"width\": mosaic.shape[2],\n",
748 | " \"transform\": out_tfm,\n",
749 | " \"compress\": \"jpeg\",\n",
750 | " \"tiled\": True\n",
751 | " })"
752 | ]
753 | },
754 | {
755 | "cell_type": "code",
756 | "execution_count": 26,
757 | "metadata": {
758 | "collapsed": true
759 | },
760 | "outputs": [],
761 | "source": [
762 | "with rasterio.open(OUTPUT/f'{save_prefix}_merged.tif', \"w\", **out_meta) as dest:\n",
763 | " dest.write(mosaic)"
764 | ]
765 | }
766 | ],
767 | "metadata": {
768 | "kernelspec": {
769 | "display_name": "Python [default]",
770 | "language": "python",
771 | "name": "python3"
772 | },
773 | "language_info": {
774 | "codemirror_mode": {
775 | "name": "ipython",
776 | "version": 3
777 | },
778 | "file_extension": ".py",
779 | "mimetype": "text/x-python",
780 | "name": "python",
781 | "nbconvert_exporter": "python",
782 | "pygments_lexer": "ipython3",
783 | "version": "3.5.3"
784 | }
785 | },
786 | "nbformat": 4,
787 | "nbformat_minor": 2
788 | }
789 |
--------------------------------------------------------------------------------
/static/grid119_preview.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/daveluo/zanzibar-aerial-mapping/5e78ff82b0fadcd809946c6756562553ab2f24ac/static/grid119_preview.png
--------------------------------------------------------------------------------
/static/overview_predict.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/daveluo/zanzibar-aerial-mapping/5e78ff82b0fadcd809946c6756562553ab2f24ac/static/overview_predict.png
--------------------------------------------------------------------------------
/static/overview_train.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/daveluo/zanzibar-aerial-mapping/5e78ff82b0fadcd809946c6756562553ab2f24ac/static/overview_train.png
--------------------------------------------------------------------------------
/static/znz-demo.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/daveluo/zanzibar-aerial-mapping/5e78ff82b0fadcd809946c6756562553ab2f24ac/static/znz-demo.gif
--------------------------------------------------------------------------------