├── .gitignore
├── LICENSE
├── README.md
├── figures
├── abund-nfindr-1.png
├── endmmbrs-nfindr.png
├── sampleSlice.png
├── targets_spectra.png
└── truecolor.png
├── functions
├── README.md
├── fnnls.m
├── hyperAce.m
├── hyperAmsd.m
├── hyperAtgp.m
├── hyperCem.m
├── hyperConvert2Colormap.m
├── hyperConvert2d.m
├── hyperConvert3d.m
├── hyperConvexHullRemoval.m
├── hyperCorr.m
├── hyperCov.m
├── hyperDemo.m
├── hyperDemo_ASD_reader.m
├── hyperDemo_RIT_data.m
├── hyperDemo_detectors.m
├── hyperDemo_mams_RIT_data.m
├── hyperDestreak.m
├── hyperFcls.m
├── hyperFclsMatlab.m
├── hyperFileFind.m
├── hyperGetEnviSignature.m
├── hyperGetHymapWavelengthsNm.m
├── hyperGlrt.m
├── hyperHfcVd.m
├── hyperHud.m
├── hyperIcaComponentScores.m
├── hyperIcaEea.m
├── hyperImagesc.m
├── hyperImshow.m
├── hyperMatchedFilter.m
├── hyperMax2d.m
├── hyperMnf.m
├── hyperNapc.m
├── hyperNnls.m
├── hyperNormXCorr.m
├── hyperNormalize.m
├── hyperOrthorectify.m
├── hyperOsp.m
├── hyperPct.m
├── hyperPlmf.m
├── hyperPpi.m
├── hyperReadAsd.m
├── hyperReadAvirisRfl.m
├── hyperReadAvirisSpc.m
├── hyperReadSpecpr.m
├── hyperResample.m
├── hyperRmf.m
├── hyperRoc.m
├── hyperRxDetector.m
├── hyperSam.m
├── hyperSaveFigure.m
├── hyperSid.m
├── hyperSignedAce.m
├── hyperUcls.m
├── hyperVca.m
└── hyperWhiten.m
└── newFunctions
├── README.md
├── hyperAmee.m
├── hyperAvmax.m
├── hyperDemo2.m
├── hyperNfindr.m
├── hyperRnfindr.m
└── hyperTruecolor.m
/.gitignore:
--------------------------------------------------------------------------------
1 | *~
2 | .DS_Store
3 | *.sublime-workspace
4 | *.sublime-project
5 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | ### HyperSpectral Toolbox ###
2 |
3 | For better viewing, visit
4 |
5 | Originally created by [Isaac Gerg](http://www.gergltd.com/home/) and maintained by him [here](https://github.com/isaacgerg/matlabHyperspectralToolbox).
6 |
7 | # Note #
8 |
9 | **This repository is no longer being maintained or updated.**
10 |
11 | Isaac (the original creator of 99% of this work) has [his own GitHub repository](https://github.com/isaacgerg/matlabHyperspectralToolbox) with this work and intends to actively maintain / update it there.
12 |
13 | _Please use that repository and see his BibTeX citation for correctly referencing the software in your research._
14 |
15 | **Dependencies**
16 | FastICA -- [from Aalto University](http://research.ics.aalto.fi/ica/fastica/code/dlcode.shtml))
17 |
18 | ## Setup ##
19 |
20 | In the terminal type:
21 |
22 | cd ~/path-to-directory
23 | git clone https://github.com/davidkun/HyperSpectralToolbox.git
24 | git clone https://github.com/davidkun/FastICA.git
25 |
26 | Open Matlab. The default directory should contain a file `startup.m`. If not, create it:
27 |
28 | % in Matlab command window
29 | uPath = userpath;
30 | cd(uPath(1:end-1)); % removes trailing colon
31 | edit startup.m % may ask if you'd like to create it; click Yes
32 |
33 | Add the following code to it (make sure to modify `path-to-directory` so it matches the actual path):
34 |
35 | addtopath('~/path-to-directory/FastICA', ...
36 | '~/path-to-directory/HyperSpectralToolbox/functions', ...
37 | '~/path-to-directory/HyperSpectralToolbox/newFunctions');
38 |
39 | You're ready to go now! Check out the demo files `hyperDemo.m` in `functions/` and `hyperDemo2.m` in `newFunctions/` to learn how to use the toolbox, or see the examples further down this page.
40 |
41 | ***
42 | [Back to top](https://github.com/davidkun/HyperSpectralToolbox#welcome-to-my-project)
43 | ***
44 |
45 | ## Description ##
46 |
47 | The open source Matlab Hyperspectral Toolbox is a Matlab toolbox containing various hyperspectral exploitation algorithms. The toolbox is meant to be a concise repository of current state-of-the-art exploitation algorithms for learning and research purposes. The toolbox includes functions for:
48 |
49 | * **Target detection**
50 | * Constrained Energy Minimization (CEM)
51 | * Orthogonal Subspace Projection (OSP)
52 | * Generalized Likelihood Ratio Test (GLRT)
53 | * Adaptive Cosine/Coherent Estimator (ACE)
54 | * Adaptive Matched Subspace Detector (AMSD)
55 | * **Endmember Finders**
56 | * Automatic Target Generation Procedure (ATGP)
57 | * Independent component analysis - endmember extraction algorithm (ICA-EEA)
58 | * **Material abundance map (MAM) generation**
59 | * **Spectral Comparison**
60 | * Spectral angle mapper (SAM)
61 | * Spectral information divergence (SID)
62 | * Normalize cross correlation
63 | * **Anomaly Detectors**
64 | * Reed-Xiaoli Detector (RX)
65 | * **Least Square Solvers** (for abundance map estimation)
66 | * Fully-constrained least squares (FCLS)
67 | * Non negative least squares (NNLS)
68 | * **Material Count Estimation**
69 | * HFC virtual dimensionality (VD) for material count estimate
70 | * **Automated processing**
71 | * **Change detection**
72 | * **Visualization**
73 | * **Reading / writing files** (.rfl, .asd, ect)
74 |
75 | ***
76 | [Back to top](https://github.com/davidkun/HyperSpectralToolbox#welcome-to-my-project)
77 | ***
78 |
79 | ## Examples ##
80 |
81 | Download the Cuprite, Nevada hyperspectral image (HSI) from [here](http://aviris.jpl.nasa.gov/data/free_data.html). This will contain reflectance data and a .spc file with the spectral bands. The following samples of code are from `hyperDemo2.m`.
82 |
83 | Show a 'slice' of the HSI:
84 |
85 | slice = hyperReadAvirisRfl(rflFile, [1 512], [1 614], [bndnum bndnum]);
86 | figure; imagesc(slice); axis image; colormap(gray);
87 |
88 | 
89 | _Figure 1: 1997 AVIRIS flight over Cuprite, NV_
90 |
91 | View an enhanced truecolor composite of the HSI:
92 |
93 | tColor = hyperTruecolor(rflFile, 512, 614, 224, rgbBands, 'stretchlim');
94 | figure; imagesc(tColor); axis image
95 |
96 | 
97 | _Figure 2: Truecolor composite from RGB bands_
98 |
99 | Plot the spectral signatures of 20 random pixels in order to determine which bands are greatly affected by water absorption and/or have a low signal-to-noise ratio (SNR):
100 |
101 | 
102 | _Figure 3: Pre-processing: removal of poor spectral bands from original HSI_
103 |
104 | Using the resampled HSI cube, perform an endmember extraction algorithm, for example, the N-FINDR algorithm:
105 |
106 | Unfindr = hyperNfindr(M2d, q);
107 | figure; plot(lambdasNm, Unfindr, '.'); grid on;
108 |
109 | 
110 | _Figure 4: Endmember signatures estimated by PPI_
111 |
112 | Generate abundance maps using the non-negative constrained least squares method for each extracted endmember signature, for example:
113 |
114 | abundanceMaps = hyperNnls(M2d, Uppi);
115 | abundanceMaps = hyperConvert3d(abundanceMaps, h, w, q);
116 | figure; imagesc(abundanceMaps(:,:,1)); colorbar; axis image;
117 |
118 | 
119 | _Figure 5: Abundance map from first N-FINDR-recovered endmember_
120 |
121 | These are just a few features of the Hyperspectral Toolbox.
122 |
123 | ***
124 | [Back to top](https://github.com/davidkun/HyperSpectralToolbox#welcome-to-my-project)
125 | ***
126 |
127 | ### Algorithms to be added (requested by Dr. Gerg): ###
128 |
129 | (Joint) Affine Matched filter
130 | Generalization of matched filter which includes signature statistics
131 | RAF-SAM, an improvement to SAM from: Improving the Classification Precision of Spectral Angle Mapper
132 | ELM for radiance to reflectance conversion - http://www.cis.rit.edu/files/197_SPIE_2005_Grimm.pdf
133 | Covariance matrix inversion methods (e.g. Dominant Mode Rejection)
134 | Quadratic Detector
135 | SMACC - http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=844250
136 | ~~AMEE - http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1046852~~
137 | ~~N-FINDR - http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=994814~~
138 | Fast PPI - http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1576691
139 | ~~Joshua Broaderwater's hybrid detectors (HUD, etc)~~
140 | Variations on ACE - e.g. adaptive covariance estimated ACE, etc
141 |
142 |
143 | ***
144 | [Back to top](https://github.com/davidkun/HyperSpectralToolbox#welcome-to-my-project)
145 | ***
146 |
--------------------------------------------------------------------------------
/figures/abund-nfindr-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/davidkun/HyperSpectralToolbox/9dc222bb9c863e19b8a3f1946e947125dacc49cb/figures/abund-nfindr-1.png
--------------------------------------------------------------------------------
/figures/endmmbrs-nfindr.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/davidkun/HyperSpectralToolbox/9dc222bb9c863e19b8a3f1946e947125dacc49cb/figures/endmmbrs-nfindr.png
--------------------------------------------------------------------------------
/figures/sampleSlice.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/davidkun/HyperSpectralToolbox/9dc222bb9c863e19b8a3f1946e947125dacc49cb/figures/sampleSlice.png
--------------------------------------------------------------------------------
/figures/targets_spectra.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/davidkun/HyperSpectralToolbox/9dc222bb9c863e19b8a3f1946e947125dacc49cb/figures/targets_spectra.png
--------------------------------------------------------------------------------
/figures/truecolor.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/davidkun/HyperSpectralToolbox/9dc222bb9c863e19b8a3f1946e947125dacc49cb/figures/truecolor.png
--------------------------------------------------------------------------------
/functions/README.md:
--------------------------------------------------------------------------------
1 | Matlab Hyperspectral Toolbox
2 |
3 | Copyright 2008-2012 Isaac Gerg
4 |
5 | -------------------------------------------------------------------------
6 |
7 | A Note on Notation
8 |
9 | Hyperspectral data is often expressed many ways to better describe the
10 | mathematical handling of the data; mainly as a vector of pixels when
11 | referring to the data in a space or a matrix of pixels when referring to
12 | data as an image.
13 |
14 | For consistency, a common notation is defined to
15 | differentiate these concepts clearly. Hyperspectral data examined like an
16 | image will be defined as a matrix Mm x n x p of dimension m x n x p where m
17 | is defined as the number of rows in the image, n is defined as the
18 | number of columns in the image, and p is defined as the number of bands
19 | in the image. Therefore, a single element of such an image will be
20 | accessed using Mi,j,k and a single pixel of an image will be accessed
21 | using Mi,j,: Hyperspectral data formed as a vector of vectors
22 | (i.e. 2D matrix) is defined as M(mn) x p of dimension (mn) x p
23 |
24 | A single element is accessed using Mi,j and a single pixel is
25 | accessed using M:,j . Notice the multi-element notation is consistent
26 | with MatlabTM this is intentional.
27 |
28 | The list below provides a summary of the notation convention used
29 | throughout this code.
30 |
31 | M Data matrix. Defined as an image of spectral signatures or vectors:
32 | Mmxnxp. Or, defined as a long vector of spectral signatures:
33 | M(mn) x p
34 |
35 | N The total number of pixels. For example N = m x n.
36 |
37 | m Number of rows in the image.
38 |
39 | n Number of columns in the image.
40 |
41 | p Number of bands.
42 |
43 | q Number of classes / endmembers.
44 |
45 | U Matrix of endmembers. Each column of the matrix represents an
46 | endmember vector.
47 |
48 | b Observation vector; a single pixel.
49 |
50 | x Weight vector. A matrix of weight vectors forms an abundance
51 | map.
52 |
53 | -------------------------------------------------------------------------
54 | Dependencies
55 | FastICA - http://www.cis.hut.fi/projects/ica/fastica/code/dlcode.shtml
56 |
57 | -------------------------------------------------------------------------
58 | Functions
59 |
60 | Reading/Writing Data Files
61 |
62 | - hyperReadAvirisRfl - Reads AVIRIS .rfl files
63 | - hyperReadAvirisSpc - Read AVIRIS .spc files
64 | - hyperReadAsd - Reads ASD Fieldspec files. (.asd, .000, etc)
65 |
66 | Data Formatting
67 |
68 | - hyperConvert2D - Converts data from a 3D HSI data cube to a 2D matrix
69 | - hyperConvert3D - Converts data from a 2D matrix to a 3D HSI data cube
70 | - hyperNormalize - Normalizes data to be in range of [0,1]
71 | - hyperConvert2Jet - Converts a 2D matrix to jet colormap values
72 | - hyperResample - Resamples hyperspectral data to new wavelength set
73 |
74 | Unmixing
75 |
76 | - hyperAtgp - ATGP algorithm
77 | - hyperIcaEea - ICA-Endmember Extraction Algorithm
78 | - hyperIcaComponentScores - Computes ICA component scores for relevance
79 | - hyperVca - Vertex Component Analysis
80 | - hyperPPI - Pixel Purity Index
81 |
82 | Target Detection
83 |
84 | - hyperACE - Adaptive cosine/coherent estimator
85 | - hyperGLRT - Generalized liklihood ratio test
86 | - hyperHUD - Hybrid instructured detector
87 | - hyperAMSD - Adaptive matched subspace detector
88 | - hyperMatchedFilter - Matched filter
89 | - hyperOsp - Orthogonal subspace projection
90 | - hyperCem - Constrained energy minimization
91 | - hyperPlmf - PCA local matched filter
92 | - hyperRmf - Regularized match filter
93 |
94 | Material Count Estimation
95 |
96 | - hyperHfcVd - Computes virtual dimensionality (VD) using HFC method
97 |
98 | Data Conditioning
99 |
100 | - hyperPct - Pricipal component transform
101 | - hyperMnf - Minimum noise fraction
102 | - hyperDestreak - Destreaking algorithm
103 |
104 | Abundance Map Generation
105 |
106 | - hyperUcls - Unconstrained least squares
107 | - hyperNnls - Non-negative least squares
108 | - hyperFcls - Fully constrains least squares
109 |
110 | Spectral Measuring
111 |
112 | - hyperSam - Spectral Angle Mapper
113 | - hyperSid - Spectral Information Divergence
114 | - hyperNormXCorr - Normalized Cross Correlation
115 |
116 | Miscellaneous
117 |
118 | - hyperMax2d - Finds the max value and corresonding position in a matrx
119 |
120 | Sensor Specific
121 |
122 | - hyperGetHymapWavelengthsNm - Returns list of Hymap wavelengths
123 |
124 | Statistics
125 |
126 | - hyperCov - Sample covariance matrix estimator
127 | - hyperCorr - Sample autocorrelation matrix estimator
128 |
129 | Demos
130 |
131 | - hyperDemo - General toolbox usage
132 | - hyperDemo_detectors - Target detection algorithms
133 | - hyperDemo_RIT_data - RIT target detection blind test
134 | - hyperDemo_ASD_reader - Reads ASD Fieldspec files
135 |
136 |
137 |
138 |
--------------------------------------------------------------------------------
/functions/fnnls.m:
--------------------------------------------------------------------------------
1 | function [x,w] = fnnls(XtX,Xty,tol)
2 | %FNNLS Non-negative least-squares.
3 | %
4 | % Adapted from NNLS of Mathworks, Inc.
5 | %
6 | % x = fnnls(XtX,Xty) returns the vector X that solves x = pinv(XtX)*Xty
7 | % in a least squares sense, subject to x >= 0.
8 | % Differently stated it solves the problem min ||y - Xx|| if
9 | % XtX = X'*X and Xty = X'*y.
10 | %
11 | % A default tolerance of TOL = MAX(SIZE(XtX)) * NORM(XtX,1) * EPS
12 | % is used for deciding when elements of x are less than zero.
13 | % This can be overridden with x = fnnls(XtX,Xty,TOL).
14 | %
15 | % [x,w] = fnnls(XtX,Xty) also returns dual vector w where
16 | % w(i) < 0 where x(i) = 0 and w(i) = 0 where x(i) > 0.
17 | %
18 | % See also NNLS and FNNLSb
19 |
20 | % L. Shure 5-8-87
21 | % Revised, 12-15-88,8-31-89 LS.
22 | % (Partly) Copyright (c) 1984-94 by The MathWorks, Inc.
23 |
24 | % Modified by R. Bro 5-7-96 according to
25 | % Bro R., de Jong S., Journal of Chemometrics, 1997, 11, 393-401
26 | % Corresponds to the FNNLSa algorithm in the paper
27 | %
28 | %
29 | % Rasmus bro
30 | % Chemometrics Group, Food Technology
31 | % Dept. Dairy and Food Science
32 | % Royal Vet. & Agricultural
33 | % DK-1958 Frederiksberg C
34 | % Denmark
35 | % rb@kvl.dk
36 | % http://newton.foodsci.kvl.dk/rasmus.html
37 |
38 |
39 | % Reference:
40 | % Lawson and Hanson, "Solving Least Squares Problems", Prentice-Hall, 1974.
41 |
42 | % Copyright (c) 1999, Rasmus Bro
43 | % All rights reserved.
44 | %
45 | % Redistribution and use in source and binary forms, with or without
46 | % modification, are permitted provided that the following conditions are
47 | % met:
48 | %
49 | % * Redistributions of source code must retain the above copyright
50 | % notice, this list of conditions and the following disclaimer.
51 | % * Redistributions in binary form must reproduce the above copyright
52 | % notice, this list of conditions and the following disclaimer in
53 | % the documentation and/or other materials provided with the distribution
54 | %
55 | % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
56 | % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 | % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 | % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
59 | % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 | % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 | % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 | % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 | % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 | % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 | % POSSIBILITY OF SUCH DAMAGE.
66 |
67 | % initialize variables
68 | if nargin < 3
69 | tol = 10*eps*norm(XtX,1)*max(size(XtX));
70 | end
71 | [m,n] = size(XtX);
72 | P = zeros(1,n);
73 | Z = 1:n;
74 | x = P';
75 | ZZ=Z;
76 | w = Xty-XtX*x;
77 |
78 | % set up iteration criterion
79 | iter = 0;
80 | itmax = 30*n;
81 |
82 | % outer loop to put variables into set to hold positive coefficients
83 | while any(Z) & any(w(ZZ) > tol)
84 | [wt,t] = max(w(ZZ));
85 | t = ZZ(t);
86 | P(1,t) = t;
87 | Z(t) = 0;
88 | PP = find(P);
89 | ZZ = find(Z);
90 | nzz = size(ZZ);
91 | z(PP')=(Xty(PP)'/XtX(PP,PP)');
92 | z(ZZ) = zeros(nzz(2),nzz(1))';
93 | z=z(:);
94 | % inner loop to remove elements from the positive set which no longer belong
95 |
96 | while any((z(PP) <= tol)) & iter < itmax
97 |
98 | iter = iter + 1;
99 | QQ = find((z <= tol) & P');
100 | alpha = min(x(QQ)./(x(QQ) - z(QQ)));
101 | x = x + alpha*(z - x);
102 | ij = find(abs(x) < tol & P' ~= 0);
103 | Z(ij)=ij';
104 | P(ij)=zeros(1,max(size(ij)));
105 | PP = find(P);
106 | ZZ = find(Z);
107 | nzz = size(ZZ);
108 | z(PP)=(Xty(PP)'/XtX(PP,PP)');
109 | z(ZZ) = zeros(nzz(2),nzz(1));
110 | z=z(:);
111 | end
112 | x = z;
113 | w = Xty-XtX*x;
114 | end
115 |
116 |
--------------------------------------------------------------------------------
/functions/hyperAce.m:
--------------------------------------------------------------------------------
1 | function [results] = hyperAce(M, S)
2 | % HYPERACE Performs the adaptive cosin/coherent estimator algorithm
3 | % Performs the adaptive cosin/coherent estimator algorithm for target
4 | % detection.
5 | %
6 | % Usage
7 | % [results] = hyperAce(M, S)
8 | % Inputs
9 | % M - 2d matrix of HSI data (p x N)
10 | % S - 2d matrix of target endmembers (p x q)
11 | % Outputs
12 | % results - vector of detector output (N x 1)
13 | %
14 | % References
15 | % X Jin, S Paswater, H Cline. "A Comparative Study of Target Detection
16 | % Algorithms for Hyperspectral Imagery." SPIE Algorithms and Technologies
17 | % for Multispectral, Hyperspectral, and Ultraspectral Imagery XV. Vol
18 | % 7334. 2009.
19 |
20 |
21 | [p, N] = size(M);
22 | % Remove mean from data
23 | u = mean(M.').';
24 | M = M - repmat(u, 1, N);
25 | S = S - repmat(u, 1, size(S,2));
26 |
27 | R_hat = hyperCov(M);
28 | G = inv(R_hat);
29 |
30 | results = zeros(1, N);
31 | % From Broadwater's paper
32 | %tmp = G*S*inv(S.'*G*S)*S.'*G;
33 | tmp = (S.'*G*S);
34 | for k=1:N
35 | x = M(:,k);
36 | % From Broadwater's paper
37 | %results(k) = (x.'*tmp*x) / (x.'*G*x);
38 | results(k) = (S.'*G*x)^2 / (tmp*(x.'*G*x));
39 | end
40 |
--------------------------------------------------------------------------------
/functions/hyperAmsd.m:
--------------------------------------------------------------------------------
1 | function [results] = hyperAmsd(M, B, target)
2 | % HYPERAMSD Adaptive matched subspace detector (AMSD) algorithm
3 | % Performs the adaptive matched subspace detector (AMSD) algorithm for
4 | % target detection
5 | %
6 | % Usage
7 | % [results] = hyperAmsd(M, U, target)
8 | % Inputs
9 | % M - 2d matrix of HSI data (p x N)
10 | % B - 2d matrix of background endmebers (p x q)
11 | % target - target of interest (p x 1)
12 | % Outputs
13 | % results - vector of detector output (N x 1)
14 | %
15 | % References
16 | % Joshua Broadwater, Reuven Meth, Rama Chellappa. "A Hybrid Algorithms
17 | % for Subpixel Detection in Hyperspectral Imagery." IGARSS 004. Vol 3.
18 | % September 2004.
19 |
20 | [p, N] = size(M);
21 | I = eye(p);
22 |
23 | E = [B target];
24 | P_B = I - (B * pinv(B));
25 | P_Z = I - (E * pinv(E));
26 |
27 | results = zeros(N, 1);
28 | tmp = P_B - P_Z;
29 | for k=1:N
30 | x = M(:,k);
31 | % Equation 16
32 | results(k) = (x.'*tmp*x) / (x.'*P_Z*x);
33 | end
--------------------------------------------------------------------------------
/functions/hyperAtgp.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/davidkun/HyperSpectralToolbox/9dc222bb9c863e19b8a3f1946e947125dacc49cb/functions/hyperAtgp.m
--------------------------------------------------------------------------------
/functions/hyperCem.m:
--------------------------------------------------------------------------------
1 | function [results] = hyperCem(M, target)
2 | % HYPERCEM Performs constrained energy minimization (CEM) algorithm
3 | % Performs the constrained energy minimization algorithm for target
4 | % detection.
5 | %
6 | % Usage
7 | % [results] = hyperCem(M, target)
8 | % Inputs
9 | % M - 2d matrix of HSI data (p x N)
10 | % target - target of interest (p x 1)
11 | % Outputs
12 | % results - vector of detector output (N x 1)
13 | %
14 | % References
15 | % Qian Du, Hsuan Ren, and Chein-I Cheng. A Comparative Study of
16 | % Orthogonal Subspace Projection and Constrained Energy Minimization.
17 | % IEEE TGRS. Volume 41. Number 6. June 2003.
18 |
19 | % Check dimensions
20 | if ndims(M) ~= 2
21 | error('Input image must be p x N.');
22 | end
23 |
24 | p = size(M,1);
25 |
26 | if ~isequal(size(target), [p,1])
27 | error('Input target must be p x 1.');
28 | end
29 |
30 | % CEM uses the correlation matrix, NOT the covariance matrix. Therefore,
31 | % don't remove the mean from the data.
32 | R_hat = hyperCorr(M);
33 |
34 | % Equation 6 : w = inv( target'*inv(R)*target ) * inv(R)*target
35 | invRtarget = R_hat\target; % inv(R)*target
36 | weights = ( target'*invRtarget ) \ invRtarget;
37 |
38 | results = weights'*M;
39 |
--------------------------------------------------------------------------------
/functions/hyperConvert2Colormap.m:
--------------------------------------------------------------------------------
1 | function [imgOut] = hyperConvert2Colormap(imgIn, cmap)
2 | %HYPERCONVERT2COLORMap Converts a matrix to a specified colormap
3 | % Converts a matrix into the specified colormap values. Useful
4 | % for writing float data to a color image (e.g. .png) file.
5 | %
6 | % Usage
7 | % [imgOut] = hyperConvert2Colormap(imgIn, cmap)
8 | % Inputs
9 | % imgIn - input matrix, must be 2D
10 | % cmap - (optional) Colormap to use. If not specified, jet is used.
11 | % Outputs
12 | % imgOut - 3D matrix containing corresponding jet colormap values
13 |
14 | if (ndims(imgIn) ~= 2)
15 | fprintf('Need a two dimensional image.');
16 | return;
17 | end
18 | if (nargin == 1)
19 | tmpJet = jet;
20 | end
21 | tmpJet = cmap;
22 | s = size(tmpJet, 1);
23 | imgIn = hyperNormalize(imgIn);
24 | [h, w] = size(imgIn);
25 | imgOut = zeros(h, w, 3);
26 | for j=1:h
27 | for i=1:w
28 | v = tmpJet(round(imgIn(j, i)*(s-1))+1, :);
29 | imgOut(j, i, :) = v;
30 | end
31 | end
--------------------------------------------------------------------------------
/functions/hyperConvert2d.m:
--------------------------------------------------------------------------------
1 | function [M] = hyperConvert2d(M)
2 | % HYPERCONVERT2D Converts an HSI cube to a 2D matrix
3 | % Converts a 3D HSI cube (m x n x p) to a 2D matrix of points (p X N)
4 | % where N = mn
5 | %
6 | % Usage
7 | % [M] = hyperConvert2d(M)
8 | % Inputs
9 | % M - 3D HSI cube (m x n x p)
10 | % Outputs
11 | % M - 2D data matrix (p x N)
12 |
13 | if (ndims(M)>3 || ndims(M)<2)
14 | error('Input image must be m x n x p or m x n');
15 | end
16 | if (ndims(M) == 2)
17 | numBands = 1;
18 | [h, w] = size(M);
19 | else
20 | [h, w, numBands] = size(M);
21 | end
22 |
23 | M = reshape(M, w*h, numBands).';
24 |
25 | return;
--------------------------------------------------------------------------------
/functions/hyperConvert3d.m:
--------------------------------------------------------------------------------
1 | function [img] = hyperConvert3d(img, h, w, numBands)
2 | % HYPERCONVERT2D Converts an 2D matrix to a 3D data cube
3 | % Converts a 2D matrix (p x N) to a 3D data cube (m x n x p)
4 | % where N = m * n
5 | %
6 | % Usage
7 | % [M] = hyperConvert3d(M)
8 | % Inputs
9 | % M - 2D data matrix (p x N)
10 | % Outputs
11 | % M - 3D data cube (m x n x p)
12 |
13 |
14 | if (ndims(img) ~= 2)
15 | error('Input image must be p x N.');
16 | end
17 |
18 | [numBands, N] = size(img);
19 |
20 | if (1 == N)
21 | img = reshape(img, h, w);
22 | else
23 | img = reshape(img.', h, w, numBands);
24 | end
25 |
26 | return;
--------------------------------------------------------------------------------
/functions/hyperConvexHullRemoval.m:
--------------------------------------------------------------------------------
1 | function normalizedU = hyperConvexHullRemoval(U,wavelengths)
2 | %HYPERCONVEXHULLREMOVAL Performs spectral normalization via convex hull removal
3 | %
4 | % Usage
5 | % [ normalizedU ] = hyperConvexHullRemoval( U, wavelengths )
6 | %
7 | % Inputs
8 | % U - 2D HSI data (p x q)
9 | % wavelengths - Wavelength of each band (p x 1)
10 | %
11 | % Outputs
12 | % normalizedU - Data with convex hull removed (p x q)
13 | %
14 | % Author
15 | % Luca Innocenti
16 | %
17 | % References
18 | % Clark, R.N. and T.L. Roush (1984) Reflectance Spectroscopy: Quantitative
19 | % Analysis Techniques for Remote Sensing Applications, J. Geophys. Res., 89,
20 | % 6329-6340.
21 |
22 | % Metadata and formatting
23 | wavelengths = wavelengths(:);
24 | p = length(wavelengths);
25 | q = size(U,2);
26 | U = U.';
27 |
28 | U(:,1) = 0;
29 | U(:,420) = 0;
30 |
31 | normalizedU = zeros(q,420);
32 |
33 | % The algorithm
34 | for s = 1:q,
35 | rifl = U(s,:);
36 | k = convhull(wavelengths,rifl');
37 | c = [rifl(k); wavelengths(k)'];
38 | d = sortrows(c',2);
39 |
40 | xs = d(:,2);
41 | ys = d(:,1);
42 | [xsp, idx] = unique(xs);
43 | ysp = ys(idx);
44 | rifl_i = interp1(xsp,ysp,wavelengths');
45 |
46 | for t = 1:420,
47 | if rifl_i(t) ~= 0
48 | normalizedU(s,t) = rifl(t)/rifl_i(t);
49 | else
50 | normalizedU(s,t) = 1;
51 | end
52 | end
53 | end
54 |
55 | normalizedU = normalizedU.';
56 |
--------------------------------------------------------------------------------
/functions/hyperCorr.m:
--------------------------------------------------------------------------------
1 | function [R] = hyperCorr(M)
2 | % HYPERCORR Computes the sample autocorrelation matrix
3 | % hyperCorr compute the sample autocorrelation matrix of a 2D matrix.
4 | %
5 | % Usage
6 | % [R] = hyperCorr(M)
7 | %
8 | % Inputs
9 | % M - 2D matrix
10 | % Outputs
11 | % R - Sample autocorrelation matrix
12 |
13 |
14 | [p, N] = size(M);
15 |
16 | R = (M*M.')/N;
17 |
--------------------------------------------------------------------------------
/functions/hyperCov.m:
--------------------------------------------------------------------------------
1 | function [C] = hyperCov(M)
2 | % HYPERCOV Computes the covariance matrix
3 | % hyperCorr compute the sample covariance matrix of a 2D matrix.
4 | %
5 | % Usage
6 | % [C] = hyperCorr(M)
7 | %
8 | % Inputs
9 | % M - 2D matrix
10 | % Outputs
11 | % C - Sample covariance matrix
12 |
13 | [p, N] = size(M);
14 | % Remove mean from data
15 | u = mean(M.').';
16 | for k=1:N
17 | M(:,k) = M(:,k) - u;
18 | end
19 |
20 | C = (M*M.')/(N-1);
21 |
--------------------------------------------------------------------------------
/functions/hyperDemo.m:
--------------------------------------------------------------------------------
1 | function hyperDemo
2 | % HYPERDEMO Demonstrates the hyperspectral toolbox
3 | clear; clc; dbstop if error; close all;
4 | %--------------------------------------------------------------------------
5 | % Parameters
6 | % resultsDir = 'results\\';
7 | % dataDir = 'data\\AVIRIS\\';
8 | % fastIcaDir = 'FastICA_25\\';
9 | resultsDir = '~/Downloads/data/results/';
10 | dataDir = '~/Downloads/data';
11 | %--------------------------------------------------------------------------
12 |
13 | fprintf('Storing results in %s directory.\n', resultsDir);
14 | mkdir(resultsDir);
15 | % addpath(fastIcaDir);
16 |
17 | %% Read in an HSI image and display one band
18 | slice = hyperReadAvirisRfl(sprintf('%s/f970620t01p02_r03_sc02.a.rfl', dataDir), [1 100], [1 614], [132 132]);
19 | figure; imagesc(slice); axis image; colormap(gray);
20 | title('Band 132');
21 |
22 | %% Read part of AVIRIS data file that we will further process
23 | M = hyperReadAvirisRfl(sprintf('%s/f970620t01p02_r03_sc02.a.rfl', dataDir), [1 100], [1 614], [1 224]);
24 |
25 | % Read AVIRIS .spc file
26 | lambdasNm = hyperReadAvirisSpc(sprintf('%s/f970620t01p02_r03.a.spc', dataDir));
27 | figure; plot(lambdasNm, 1:length(lambdasNm)); title('Band Number Vs Wavelengths'); grid on;
28 | xlabel('Wavelength [nm]'); ylabel('Band Number');
29 |
30 | %% NDVI - I believe this should ideally be done with radiance data and not
31 | % reflectance as we are doing here.
32 | nir = M(:,:,59);
33 | vis = M(:,:,27);
34 | ndvi = (nir - vis) ./ (nir + vis);
35 | figure; imagesc(ndvi); title('NDVI of Image'); axis image; colorbar;
36 |
37 | %% Isomorph
38 | [h, w, p] = size(M);
39 | M = hyperConvert2d(M);
40 |
41 | %% Resample AVIRIS image.
42 | desiredLambdasNm = 400:(2400-400)/(224-1):2400;
43 | M = hyperResample(M, lambdasNm, desiredLambdasNm);
44 |
45 | %% Remove low SNR bands.
46 | goodBands = [10:100 116:150 180:216];
47 | M = M(goodBands, :);
48 | p = length(goodBands);
49 |
50 | %% Demonstrate difference spectral similarity measurements
51 | M = hyperConvert3d(M, h, w, p);
52 | target = squeeze(M(32, 257, :));
53 | figure; plot(desiredLambdasNm(goodBands), target); grid on;
54 | title('Target Signature; Pixel (32, 257)');
55 |
56 | %% Spectral Angle Mapper
57 | r = zeros(h, w);
58 | for i=1:h
59 | for j=1:w
60 | r(i, j) = abs(hyperSam(squeeze(M(i,j,:)), target));
61 | end
62 | end
63 | figure; imagesc(r); title('Spectral Angle Mapper Result [radians]'); axis image;
64 | colorbar;
65 |
66 | %% Spectral Information Divergence
67 | r = zeros(h, w);
68 | for i=1:h
69 | for j=1:w
70 | r(i, j) = abs(hyperSid(squeeze(M(i,j,:)), target));
71 | end
72 | end
73 | figure; imagesc(r); title('Spectral Information Divergence Result'); axis image;
74 | colorbar;
75 |
76 | %% Normalized Cross Correlation
77 | r = zeros(h, w);
78 | for i=1:h
79 | for j=1:w
80 | r(i, j) = abs((hyperNormXCorr(squeeze(M(i,j,:)), target)));
81 | end
82 | end
83 | figure; imagesc(r); title('Normalized Cross Correlation [0, 1]'); axis image;
84 | colorbar;
85 |
86 | %% PPI
87 | U = hyperPpi(hyperConvert2d(M), 50, 1000);
88 | figure; plot(U); title('PPI Recovered Endmembers'); grid on;
89 |
90 |
91 | %--------------------------------------------------------------------------
92 | %% Perform a fully unsupervised exploitation chain using HFC, ATGP, and NNLS
93 | fprintf('Performing fully unsupervised exploitation using HFC, ATGP, and NNLS...\n');
94 | M = hyperConvert2d(M);
95 |
96 | %% Estimate number of endmembers in image.
97 | q = hyperHfcVd(M, [10^-3]);
98 | %q = 50;
99 |
100 | %% PCA the data to remove noise
101 | %hyperWhiten(M)
102 | M = hyperPct(M, q);
103 | %p = q;
104 |
105 | %% Unmix AVIRIS image.
106 | %U = hyperVca(M, q);
107 | U = hyperAtgp(M, q);
108 | figure; plot(U); title('ATGP Recovered Endmembers'); grid on;
109 |
110 | %% Create abundance maps from unmixed endmembers.
111 | %abundanceMaps = hyperUcls(M, U);
112 | abundanceMaps = hyperNnls(M, U);
113 | %abundanceMaps = hyperFcls(M, U);
114 | % abundanceMaps = hyperNormXCorr(M, U);
115 | abundanceMaps = hyperConvert3d(abundanceMaps, h, w, q);
116 |
117 | for i=1:q
118 | tmp = hyperOrthorectify(abundanceMaps(:,:,i), 21399.6, 0.53418);
119 | figure; imagesc(tmp); colorbar; axis image;
120 | title(sprintf('Abundance Map %d', i));
121 | hyperSaveFigure(gcf, sprintf('%s/chain1-mam-%d.png', resultsDir, i));
122 | close(gcf);
123 | end
124 | fprintf('Done.\n');
125 | %--------------------------------------------------------------------------
126 | %% Perform another fully unsupervised exploitation chain using ICA
127 | fprintf('Performing fully unsupervised exploitation using ICA...');
128 | [U, abundanceMaps] = hyperIcaEea(M, q);
129 | abundanceMaps = hyperConvert3d(abundanceMaps, h, w, q);
130 | for i=1:q
131 | tmp = hyperOrthorectify(abundanceMaps(:,:,i), 21399.6, 0.53418);
132 | figure; imagesc(tmp); colorbar; axis image;
133 | title(sprintf('Abundance Map %d', i));
134 | hyperSaveFigure(gcf, sprintf('%s/chain2-mam-%d.png', resultsDir, i));
135 | close(gcf);
136 | end
137 | fprintf('Done.\n');
138 |
139 |
140 |
--------------------------------------------------------------------------------
/functions/hyperDemo_ASD_reader.m:
--------------------------------------------------------------------------------
1 | clear; close all; clc; dbstop if error;
2 |
3 | %--------------------------------------------------------------------------
4 | % This file demonstrates how to read data from an ASD Fieldspec
5 | % spectrometer.
6 | %--------------------------------------------------------------------------
7 | % Parameters
8 | inputFilename1 = 'data\spectra\sample00000.asd';
9 | inputFilename2 = 'data\spectra\gypsum.000';
10 | %--------------------------------------------------------------------------
11 |
12 | % Read from a file containing a reflectance signature
13 | [spectraReflectance, lambda] = hyperReadAsd(inputFilename2);
14 | % Display results
15 | figure; plot(lambda,spectraReflectance); grid on;
16 | title('Signature'); xlabel('Lambda [nm]'); ylabel('Reflectance [0,1]');
17 | axis([350,2500,0,1]);
18 |
19 | % Read from a file containing digital number (DN) signature
20 | [measuredSpectra, lambda, referenceSpectra] = hyperReadAsd(inputFilename1);
21 | % Display results
22 | figure; plot(lambda,measuredSpectra); grid on;
23 | title('Measured Signature'); xlabel('Lambda [nm]');
24 | ylabel('Digital Number');
25 | figure; plot(lambda,referenceSpectra); grid on;
26 | title('Reference Signature'); xlabel('Lambda [nm]');
27 | ylabel('Digital Number');
28 | reflectance = measuredSpectra./referenceSpectra;
29 | figure; plot(lambda,reflectance); grid on;
30 | title('Dervied Reflectance'); xlabel('Lambda [nm]');
31 | ylabel('Reflectance [0,1]');
32 | axis([350,2500,0,1]);
--------------------------------------------------------------------------------
/functions/hyperDemo_RIT_data.m:
--------------------------------------------------------------------------------
1 | clear; close all; clc; dbstop if error;
2 |
3 | %--------------------------------------------------------------------------
4 | % This demo process the data from the RIT Target Detection Blind Test
5 | % contest which is located at: http://dirsapps.cis.rit.edu/blindtest/
6 | % To use this file, you select a target detection algorithm and a target to
7 | % find and then the script runs the algorithm and outputs the data into the
8 | % outputDir. Two files are outputted, a .img and a .hdr. You upload these
9 | % files to the RIT website and they are automatically scored.
10 | %--------------------------------------------------------------------------
11 | % Parameters
12 | inputFilename = 'data\blind_test\HyMap\blind_test_refl.img';
13 | fasticaToolboxPath = '..\matlab_hyperspectral_toolbox\trunk\FastICA_25';
14 | targetFilenames = {'data\blind_test\SPL\F5\F5_f.txt'};
15 | outputDir = 'RIT Data Results';
16 | % See switch statement for algorithm choices
17 | algorithm = 'ace'
18 | %algorithm = 'rmf-sum';
19 | %algorithm = 'plmf'
20 | %algorithm = 'matchedFilter';
21 | %algorithm = 'sam'
22 | %--------------------------------------------------------------------------
23 |
24 | addpath('gmm');
25 |
26 | addpath(fasticaToolboxPath);
27 | mkdir(outputDir);
28 |
29 | % Read in the data
30 | w = 280;
31 | h = 800;
32 | p = 126;
33 | M = multibandread(inputFilename, [w h p], 'int16', 0, 'bil', 'ieee-le')/1e4;
34 | lData = hyperGetHymapWavelengthsNm();
35 |
36 | % Read in target signatures
37 | [sig1, lSig] = hyperGetEnviSignature(targetFilenames{1});
38 |
39 | % Get signature from data for comparison
40 | fsig1 = squeeze(M(122,495,:));
41 | %sig1 = fsig1;
42 |
43 | % Resample data to commone wavelength set
44 | desiredLambdas = lData;
45 | sig1 = squeeze(hyperResample(sig1, lSig, desiredLambdas));
46 | figure; plot(sig1); grid on; title('Signature 1');
47 | xlabel('Wavelength [nm]'); ylabel('Reflectance [%]');
48 | hold on; plot(fsig1, '--');
49 | legend('Recorded', 'From Image');
50 |
51 | goodBands = 1:p; %[3:63 69:93 98:123];
52 |
53 | % Image sharpening
54 | if 0
55 | ff = fspecial('unsharp',0.2);
56 | for k=1:p
57 | M(:,:,k) = imfilter(M(:,:,k),ff,'same');
58 | M(:,:,k) = imfilter(M(:,:,k),ff,'same');
59 | %M(:,:,k) = imfilter(M(:,:,k),ff,'same');
60 | end
61 | end
62 |
63 | figure; imagesc(M(:,:,40)); axis image; colormap(gray);
64 |
65 | % Try to discover in-situ to lab kernel.
66 | % TODO
67 | % sub(:,1) = M(144,515,:);
68 | % sub(:,2) = M(144,516,:);
69 | % sub(:,3) = M(144,517,:);
70 | % sub(:,4) = M(145,515,:);
71 | % sub(:,5) = M(145,516,:);
72 | % sub(:,6) = M(145,517,:);
73 | % sub(:,7) = M(146,515,:);
74 | % sub(:,8) = M(146,516,:);
75 | % sub(:,9) = M(146,517,:);
76 | %
77 | % alpha = pinv(sub)*sig1; %alpha = alpha ./ sum(alpha(:));
78 | % err = sub*alpha - sig1; err = err - mean(err); badBands = find(abs(err)>0.02);
79 | % goodBands = setxor(1:p,badBands);
80 | % figure; plot(err); hold on; plot(sig1,'.'); plot(fsig1,'.-'); hold off; grid on;
81 | % legend({'err','lab sig','in situ sig'})
82 | % alpha = reshape(alpha,3,3);
83 | % figure; imagesc(alpha);
84 | %
85 | % for k=1:p
86 | % %M(:,:,p) = conv2(M(:,:,p),alpha,'same');
87 | % end
88 |
89 | % Emperical dervied
90 | goodBands = [3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 ...
91 | 19 20 22 23 24 26 28 29 31 32 33 34 35 36 37 ...
92 | 38 39 40 41 42 43 44 45 46 49 51 52 53 54 55 ...
93 | 56 57 58 59 60 61 62 66 69 70 71 72 86 87 88 ...
94 | 89 90 91 92 93 96 97 98 99 100 101 102 103 104 105 ...
95 | 106 107 108 109 110 111 112 113 115 116 117 119 120 121 122];
96 | %sig1 = squeeze(hyperResample(sig1, lSig, desiredLambdas));
97 | figure; plot(sig1(goodBands)); grid on; title('Signature 1 - good bands only');
98 | xlabel('Wavelength [nm]'); ylabel('Reflectance [%]');
99 | hold on; plot(fsig1(goodBands), '--');
100 | legend('Recorded', 'From Image');
101 |
102 |
103 | % Display data
104 | M = hyperConvert2d(M);
105 | %[M, H, snr] = hyperMnf(M, w, h);
106 | M_pct = hyperPct(M, 3);
107 | M_pct = hyperNormalize(hyperConvert3d(M_pct,w,h,3));
108 | figure; imagesc(M_pct); axis image; title('Scene');
109 |
110 | % Data conditioning
111 | M = M(goodBands, :);
112 | sig1 = sig1(goodBands);
113 | %fsig1 = fsig1(goodBands);
114 | %sig1 = fsig1;
115 |
116 | %q = hyperHfcVd(M);
117 |
118 | % Do PCT
119 | if 0
120 | M = [M sig1];
121 | %[M,V] = hyperPct(M,size(M,1));
122 | [M,V] = hyperPct(M,55);
123 | sig1 = M(:,end);
124 | M = M(:,1:end-1);
125 | p = size(M,1);
126 | goodBands = 1:p;
127 | end
128 |
129 | %q = hyperHfcVd(M);
130 | q = 39;
131 |
132 | algorithm = lower(algorithm);
133 | tic
134 | switch algorithm
135 | case 'ica-eea'
136 | [U, X] = hyperIcaEea(M, 50, sig1);
137 | r = X(1,:);
138 | r = hyperConvert3d(r, w, h, 1);
139 | case 'rx'
140 | r = hyperConvert3d(hyperRxDetector(M), w, h, 1);
141 | case 'matchedfilter'
142 | r = hyperConvert3d(hyperMatchedFilter(M, sig1), w, h, 1);
143 | case 'ace'
144 | r = hyperConvert3d(hyperAce(M, sig1), w, h, 1);
145 | case 'mace'
146 | r = hyperConvert3d(hyperMace(M, sig1), w, h, 1);
147 | case 'sid'
148 | r = hyperConvert3d(hyperSid(M, sig1), w, h, 1);
149 | case 'cem'
150 | r = hyperConvert3d(hyperCem(M, sig1), w, h, 1);
151 | case 'plmf'
152 | r = hyperPlmf(hyperConvert3d(M,w,h,p),sig1,9);
153 | case 'rmf-sum'
154 | r = hyperRmf(hyperConvert3d(M,w,h,p),sig1,11,'sum');
155 | case 'rmf-meanlocal'
156 | r = hyperRmf(hyperConvert3d(M,w,h,p),sig1,11,'meanLocal');
157 | case 'rmf-meangloballocal'
158 | r = hyperRmf(hyperConvert3d(M,w,h,p),sig1,11,'meanGlobalLocal');
159 | case 'glrt'
160 | r = hyperConvert3d(hyperGlrt(M, sig1), w, h, 1);
161 | case 'osp'
162 | U = hyperAtgp(M, q, sig1);
163 | r = hyperConvert3d(hyperOsp(M, U, sig1), w, h, 1);
164 | case 'amsd'
165 | r = hyperConvert3d(hyperAmsd(M, U, sig1), w, h, 1);
166 | case 'hud'
167 | U = hyperAtgp(M, q, sig1);
168 | r = hyperConvert3d(hyperHud(M, U, sig1), w, h, 1);
169 | case 'nnls'
170 | U = hyperAtgp(M, q, sig1);
171 | r = hyperConvert3d(hyperNnls(M,U),w,h,q);
172 | r = r(:,:,1);
173 | case 'fcls'
174 | U = hyperAtgp(M, q, sig1);
175 | r = hyperConvert3d(hyperFcls(M,U),w,h,q);
176 | r = r(:,:,1);
177 | case 'ucls'
178 | U = hyperAtgp(M, q, sig1);
179 | r = hyperConvert3d(hyperUcls(M,U),w,h,q);
180 | r = r(:,:,1);
181 | case 'sam'
182 | r = (1./(eps+hyperConvert3d(hyperSam(M, sig1), w, h, 1)));
183 | otherwise
184 | error('Incorrect algorithm name specified!\n');
185 | end
186 | toc
187 |
188 | % Display results and write to file
189 | figure; imagesc(r); axis image; colorbar;
190 | title(algorithm);
191 |
192 | [a,b]=sort(r(:),'descend');
193 | tmp = a(1:20);
194 | figure; plot(tmp./tmp(1)); grid on;
195 | [x, y, val] = hyperMax2d(r);
196 |
197 | % d1 = r(122,494)
198 | % d2 = r(127,490)
199 | % N = prod(size(r));
200 | % [v] = sort(r(:),'ascend');
201 | % idx = find(v==d2);
202 | % N-idx
203 | % figure; hist(r(:),100);
204 |
205 | tmp = (hyperNormalize(r)*2^10);
206 | multibandwrite(tmp, sprintf('%s\\results.img', outputDir), 'bil', 'PRECISION', 'int16', 'MACHFMT', 'ieee-le');
207 |
208 | [pd,fa] = hyperRoc(r);
209 | figure; plot(fa,pd,'.'); grid on; title(sprintf('%s\n%s',algorithm, targetFilenames{1}));
210 |
211 |
212 |
213 |
--------------------------------------------------------------------------------
/functions/hyperDemo_detectors.m:
--------------------------------------------------------------------------------
1 | function hyperDemo_detectors
2 | % HYPERDEMO_DETECTORS Demonstrates target detector algorithms
3 | clear; clc; dbstop if error; close all;
4 | %--------------------------------------------------------------------------
5 | % Parameters
6 | resultsDir = 'results\\';
7 | dataDir = 'data\\AVIRIS\\';
8 | %--------------------------------------------------------------------------
9 |
10 | mkdir(resultsDir);
11 |
12 | % Read part of AVIRIS data file that we will further process
13 | M = hyperReadAvirisRfl(sprintf('%s\\f970620t01p02_r03_sc02.a.rfl', dataDir), [1 100], [1 614], [1 224]);
14 | M = hyperNormalize(M);
15 |
16 | % Read AVIRIS .spc file
17 | lambdasNm = hyperReadAvirisSpc(sprintf('%s\\f970620t01p02_r03.a.spc', dataDir));
18 |
19 | % Isomorph
20 | [h, w, p] = size(M);
21 | M = hyperConvert2d(M);
22 |
23 | % Resample AVIRIS image.
24 | desiredLambdasNm = 400:(2400-400)/(224-1):2400;
25 | M = hyperResample(M, lambdasNm, desiredLambdasNm);
26 |
27 | % Remove low SNR bands.
28 | goodBands = [10:100 116:150 180:216];
29 | M = M(goodBands, :);
30 | p = length(goodBands);
31 |
32 | % Demonstrate difference spectral similarity measurements
33 | M = hyperConvert3d(M, h, w, p);
34 | target = squeeze(M(11, 77, :));
35 | figure; plot(desiredLambdasNm(goodBands), target); grid on;
36 | title('Target Signature; Pixel (32, 257)');
37 |
38 | M = hyperConvert2d(M);
39 |
40 | % RX Anomly Detector
41 | r = hyperRxDetector(M);
42 | r = hyperConvert3d(r.', h, w, 1);
43 | figure; imagesc(r); title('RX Detector Results'); axis image;
44 | colorbar;
45 | hyperSaveFigure(gcf, sprintf('%s\\rx detector.png', resultsDir));
46 |
47 | % Constrained Energy Minimization (CEM)
48 | r = hyperCem(M, target);
49 | r = hyperConvert3d(r, h, w, 1);
50 | figure; imagesc(abs(r)); title('CEM Detector Results'); axis image;
51 | colorbar;
52 | hyperSaveFigure(gcf, sprintf('%s\\cem detector.png', resultsDir));
53 |
54 | % Adaptive Cosine Estimator (ACE)
55 | r = hyperAce(M, target);
56 | r = hyperConvert3d(r, h, w, 1);
57 | figure; imagesc(r); title('ACE Detector Results'); axis image;
58 | colorbar;
59 | hyperSaveFigure(gcf, sprintf('%s\\ace detector.png', resultsDir));
60 |
61 | % Signed Adaptive Cosine Estimator (S-ACE)
62 | r = hyperSignedAce(M, target);
63 | r = hyperConvert3d(r, h, w, 1);
64 | figure; imagesc(r); title('Signed ACE Detector Results'); axis image;
65 | colorbar;
66 | hyperSaveFigure(gcf, sprintf('%s\\signed ace detector.png', resultsDir));
67 |
68 | % Matched Filter
69 | r = hyperMatchedFilter(M, target);
70 | r = hyperConvert3d(r, h, w, 1);
71 | figure; imagesc(r); title('MF Detector Results'); axis image;
72 | colorbar;
73 | hyperSaveFigure(gcf, sprintf('%s\\mf detector.png', resultsDir));
74 |
75 | % Generalized Likehood Ratio Test (GLRT) detector
76 | r = hyperGlrt(M, target);
77 | r = hyperConvert3d(r, h, w, 1);
78 | figure; imagesc(r); title('GLRT Detector Results'); axis image;
79 | colorbar;
80 | hyperSaveFigure(gcf, sprintf('%s\\cem detector.png', resultsDir));
81 |
82 |
83 | % Estimate background endmembers
84 | U = hyperAtgp(M, 5);
85 |
86 | % Hybrid Unstructured Detector (HUD)
87 | r = hyperHud(M, U, target);
88 | r = hyperConvert3d(r, h, w, 1);
89 | figure; imagesc(abs(r)); title('HUD Detector Results'); axis image;
90 | colorbar;
91 | hyperSaveFigure(gcf, sprintf('%s\\hud detector.png', resultsDir));
92 |
93 | % Adaptive Matched Subspace Detector (AMSD)
94 | r = hyperAmsd(M, U, target);
95 | r = hyperConvert3d(r, h, w, 1);
96 | figure; imagesc(abs(r)); title('AMSD Detector Results'); axis image;
97 | colorbar;
98 | hyperSaveFigure(gcf, sprintf('%s\\amsd detector.png', resultsDir));
99 | figure; mesh(r); title('AMSD Detector Results');
100 |
101 | % Orthogonal Subspace Projection (OSP)
102 | r = hyperOsp(M, U, target);
103 | r = hyperConvert3d(r, h, w, 1);
104 | figure; imagesc(abs(r)); title('OSP Detector Results'); axis image;
105 | colorbar;
106 | hyperSaveFigure(gcf, sprintf('%s\\osp detector.png', resultsDir));
107 |
108 |
--------------------------------------------------------------------------------
/functions/hyperDemo_mams_RIT_data.m:
--------------------------------------------------------------------------------
1 | clear; close all; clc; dbstop if error;
2 |
3 | %--------------------------------------------------------------------------
4 | % This demo process the data from the RIT Target Detection Blind Test
5 | % contest which is located at: http://dirsapps.cis.rit.edu/blindtest/
6 | %--------------------------------------------------------------------------
7 | % Parameters
8 | inputFilename = 'data\self_test\HyMap\self_test_rad.img';
9 | fasticaToolboxPath = '..\matlab_hyperspectral_toolbox\trunk\FastICA_25';
10 | outputDir = 'RIT MAMS\';
11 | %--------------------------------------------------------------------------
12 |
13 | addpath(fasticaToolboxPath);
14 | mkdir(outputDir);
15 |
16 | % Read in the data
17 | h = 280;
18 | w = 800;
19 | p = 126;
20 | N = w*h;
21 | M = multibandread(inputFilename, [h w p], 'int16', 0, 'bil', 'ieee-le')/1e4;
22 | lData = hyperGetHymapWavelengthsNm();
23 |
24 | % Select good bands. In this case, all bands are okay to use.
25 | goodBands = 1:p;
26 |
27 | % Display data
28 | M = hyperConvert2d(M);
29 | M_pct = hyperPct(M, 3);
30 | M_pct = hyperNormalize(hyperConvert3d(M_pct, h, w, 3));
31 | figure; imagesc(M_pct); axis image; title('Scene');
32 |
33 | % Data conditioning
34 | M = M(goodBands, :);
35 |
36 | % Compute the number of endmembers/materials in the scene.
37 | %q = hyperHfcVd(M);
38 | q = 53;
39 |
40 | modelErr = [];
41 | for q = 1:p
42 | % Find the endmembers/materials in the scene.
43 | fprintf('Searching for fundemental endmembers...\n');
44 | [U,idx] = hyperAtgp(M, q);
45 | idx
46 | figure; plot(U); title('ATGP Recovered Endmembers'); grid on;
47 |
48 | % Create abundance maps from unmixed endmembers.
49 | fprintf('Generating material abundance maps (MAMs)...\n');
50 | %abundanceMaps = hyperUcls(M, U);
51 | %abundanceMaps = hyperNnls(M, U);
52 | abundanceMaps = hyperFcls(M, U);
53 | % abundanceMaps = hyperNormXCorr(M, U);
54 | abundanceMaps = hyperConvert3d(abundanceMaps, h, w, q);
55 |
56 | % Display results and save figures to disk.
57 | for i=1:q
58 | figure; imagesc(abundanceMaps(:,:,i)); colorbar; axis image;
59 | title(sprintf('Abundance Map %d', i));
60 | hyperSaveFigure(gcf, sprintf('%s\\chain1 - mam - %d.png', outputDir, i), 'wysiwyp');
61 | close(gcf);
62 | end
63 |
64 | % Compute abundance fraction sums for each pixel.
65 | abundanceMaps = hyperConvert2d(abundanceMaps);
66 | tmpMap = zeros(h*w,1);
67 | for k=1:N
68 | tmpMap(k) = sum(abundanceMaps(:,k));
69 | end
70 | tmpMap = hyperConvert3d(tmpMap, h, w, 1);
71 | figure; imagesc(tmpMap); colorbar; axis image;
72 | title('Sum of Each Pixel Abundance');
73 |
74 | % Compute error between decomposed signature and real signature
75 | tmpMap = zeros(h*w,1);
76 | reconstructedM = U*abundanceMaps;
77 | for k=1:N
78 | tmpMap(k) = norm(reconstructedM(:,k)-M(:,k));
79 | end
80 | tmpMap = hyperConvert3d(tmpMap, h, w, 1);
81 | figure; imagesc(tmpMap); colorbar; axis image;
82 | title('Model Error');
83 | close all;
84 |
85 | modelErr(q) = sum(tmpMap(:));
86 | end
87 |
88 | figure; plot(1:p,modelErr(1:p)); grid on;
89 | title('Model Error');
90 |
91 | fprintf('Done.\n');
92 |
93 |
94 | %---------------
95 | t = tmpMap(:);
96 | [~,tMaxIdx]=max(t);
97 | figure;plot(M(:,tMaxIdx));
98 |
99 | [a,b]=sort(t,'descend');
100 | b(1:100)
101 | figure; plot(a);
102 | figure; hist(a,100);
103 |
104 | figure; plot(M(:,b(1:100)));
105 | title('100 worst model fits')
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
--------------------------------------------------------------------------------
/functions/hyperDestreak.m:
--------------------------------------------------------------------------------
1 | function [M, alpha, beta] = hyperDestreak(M)
2 | % HYPERDESTREAK Destreaks a hyperspectral data cube.
3 | % hyperDestreak removes vertical streaking artifacts from an HSI image.
4 | %
5 | % Usage
6 | % [M, alpha, beta] = hyperDestreak(M)
7 | % Inputs
8 | % M - 3D cube of HSI data.
9 | % Outputs
10 | % M - Destreaked data
11 | % alpha - mean value of column and band
12 | % beta - offset value of column and band
13 | %
14 | % References
15 | % Data, et al. "Processing E)-1 Hyperion Hypespectral Data to Support
16 | % the Application of Agricultural Index." IEEE TGRS. Vol 41. No 6. June
17 | % 2003.
18 |
19 | [h, w, p] = size(M);
20 | m = zeros(p,1);
21 | for k=1:p
22 | tmp = M(:,:,k);
23 | tmp = tmp(:);
24 | m(k) = mean(tmp);
25 | s(k) = std(tmp);
26 | for kk=1:w
27 | tmp = squeeze(M(:,kk,k));
28 | ml = mean(tmp);
29 | sl = std(tmp);
30 | alpha(k,kk) = s(k) / sl;
31 | beta(k,kk) = m(k) - alpha(k,kk)*ml;
32 | tmp = alpha(k,kk)*tmp + beta(k,kk);
33 | M(:,kk,k) = tmp;
34 | end
35 | end
36 |
--------------------------------------------------------------------------------
/functions/hyperFcls.m:
--------------------------------------------------------------------------------
1 | function [ X ] = hyperFcls( M, U )
2 | %HYPERFCLS Performs fully constrained least squares on pixels of M.
3 | % hyperFcls performs fully constrained least squares of each pixel in M
4 | % using the endmember signatures of U. Fully constrained least squares
5 | % is least squares with the abundance sum-to-one constraint (ASC) and the
6 | % abundance nonnegative constraint (ANC).
7 | %
8 | % Usage
9 | % [ X ] = hyperFcls( M, U )
10 | % Inputs
11 | % M - HSI data matrix (p x N)
12 | % U - Matrix of endmembers (p x q)
13 | % Outputs
14 | % X - Abundance maps (q x N)
15 | %
16 | % References
17 | % "Fully Constrained Least-Squares Based Linear Unmixing." Daniel Heinz,
18 | % Chein-I Chang, and Mark L.G. Althouse. IEEE. 1999.
19 |
20 | if (ndims(U) ~= 2)
21 | error('M must be a p x q matrix.');
22 | end
23 |
24 | [p1, N] = size(M);
25 | [p2, q] = size(U);
26 | if (p1 ~= p2)
27 | error('M and U must have the same number of spectral bands.');
28 | end
29 |
30 | p = p1;
31 | X = zeros(q, N);
32 | Mbckp = U;
33 | for n1 = 1:N
34 | count = q;
35 | done = 0;
36 | ref = 1:q;
37 | r = M(:, n1);
38 | U = Mbckp;
39 | while not(done)
40 | als_hat = inv(U.'*U)*U.'*r;
41 | s = inv(U.'*U)*ones(count, 1);
42 |
43 | % IEEE Magazine method (http://www.planetary.brown.edu/pdfs/3096.pdf)
44 | % Contains correction to sign. Error in original paper.
45 | afcls_hat = als_hat - inv(U.'*U)*ones(count, 1)*inv(ones(1, count)*inv(U.'*U)*ones(count, 1))*(ones(1, count)*als_hat-1);
46 |
47 | % See if all components are positive. If so, then stop.
48 | if (sum(afcls_hat>0) == count)
49 | alpha = zeros(q, 1);
50 | alpha(ref) = afcls_hat;
51 | break;
52 | end
53 | % Multiply negative elements by their counterpart in the s vector.
54 | % Find largest abs(a_ij, s_ij) and remove entry from alpha.
55 | idx = find(afcls_hat<0);
56 | afcls_hat(idx) = afcls_hat(idx) ./ s(idx);
57 | [val, maxIdx] = max(abs(afcls_hat(idx)));
58 | maxIdx = idx(maxIdx);
59 | alpha(maxIdx) = 0;
60 | keep = setdiff(1:size(U, 2), maxIdx);
61 | U = U(:, keep);
62 | count = count - 1;
63 | ref = ref(keep);
64 | end
65 | X(:, n1) = alpha;
66 | end
67 |
68 | return;
69 |
--------------------------------------------------------------------------------
/functions/hyperFclsMatlab.m:
--------------------------------------------------------------------------------
1 | function [ X ] = hyperFclsMatlab( M, U )
2 | %HYPERFCLSMATLAB Performs fully constrained least squares on pixels of M.
3 | % hyperFclsMatlab performs fully constrained least squares of each pixel
4 | % in M using the endmember signatures of U. Fully constrained least s
5 | % quares is least squares with the abundance sum-to-one constraint (ASC)
6 | % and the abundance nonnegative constraint (ANC).
7 | % This method utilizes Matlab's built-in solver to compute the answer.
8 | %
9 | % Usage
10 | % [ X ] = hyperFclsMatlab( M, U )
11 | % Inputs
12 | % M - HSI data matrix (p x N)
13 | % U - Matrix of endmembers (p x q)
14 | % Outputs
15 | % X - Abundance maps (q x N)
16 |
17 | if (ndims(U) ~= 2)
18 | error('M must be a p x q matrix.');
19 | end
20 |
21 | [p1, N] = size(M);
22 | [p2, q] = size(U);
23 | if (p1 ~= p2)
24 | error('M and U must have the same number of spectral bands.');
25 | end
26 |
27 | Minv = pinv(U);
28 | X = zeros(q, N);
29 | for n1 = 1:N
30 | %X(:, n1) = Minv*M(:, n1);
31 | X(:, n1) = lsqlin(U, M(:, n1), [], [], ones(1,q), 1, zeros(q,1),[], []);
32 | end
33 |
34 | return;
35 |
36 |
37 |
--------------------------------------------------------------------------------
/functions/hyperFileFind.m:
--------------------------------------------------------------------------------
1 | function listOfMatchingFiles = hyperFileFind(startingDirectory, nameTemplate)
2 | % HYPERFILEFIND Searches through directories for files with specified name
3 | % Searches through the specified directory and sub-directories looking
4 | % for files matching the specified template. Returns the full, partial
5 | % path for each file matching the template
6 | %
7 | % Usage
8 | % [listOfMatchingFiles] = hyperFileFind(startingDirectory, nameTemplate)
9 | % Inputs
10 | % startingDirectory - Directory to begin search
11 | % nameTemplate - Template for file nameTemplate matching
12 | % Outputs
13 | % listOfMatchingFiles - Cell array with each element containing a string of a
14 | % file matching the name template.
15 |
16 |
17 | % Find all directories
18 | tmp = dir(startingDirectory);
19 | dTmp = [];
20 | for i=3:length(tmp)
21 | if (tmp(i).isdir == 1)
22 | dTmp = [dTmp; tmp(i)];
23 | end
24 | end
25 |
26 | dTmp = [dTmp; dir(fullfile(startingDirectory, nameTemplate))];
27 | listOfMatchingFiles = {};
28 | for i=1:length(dTmp)
29 | if (dTmp(i).isdir == 1)
30 | listOfMatchingFiles = [listOfMatchingFiles; hyperFileFind(fullfile(startingDirectory, dTmp(i).name), nameTemplate)];
31 | else
32 | listOfMatchingFiles = [listOfMatchingFiles; fullfile(startingDirectory, dTmp(i).name)];
33 | end
34 | end
35 |
--------------------------------------------------------------------------------
/functions/hyperGetEnviSignature.m:
--------------------------------------------------------------------------------
1 | function [refl, lambdaNm] = hyperGetEnviSignature(filename)
2 | % HYPERGETENVISIGNATURE Reads an ENVI hyperspectral reflectance signature
3 | % hyperGetEnviSignature reads the RIT Target Detection Blind Test
4 | % signature files.
5 | %
6 | % Usage
7 | % [refl, lambdaNm] = hyperGetEnviSignature(filename)
8 | %
9 | % Input
10 | % filename - Filename of signature.
11 | % Output
12 | % refl - Reflectance values [0, 1].
13 | % lambdaNm - corresponding wavelengths in nanometers
14 |
15 | fid = fopen(filename);
16 |
17 | for k=1:3
18 | dummy = fgetl(fid);
19 | end
20 |
21 | num = 1;
22 | while 1
23 | tmp = fgetl(fid);
24 | if (tmp == -1), break, end;
25 | v = sscanf(tmp, '%f');
26 | refl(num) = v(2);
27 | lambdaNm(num) = v(1);
28 | num = num + 1;
29 | end
30 |
31 | refl = refl / 100;
--------------------------------------------------------------------------------
/functions/hyperGetHymapWavelengthsNm.m:
--------------------------------------------------------------------------------
1 | function lambdaNm = hyperGetHymapWavelengthsNm()
2 | % HYPERGETHYMAPWAVELENGTHSNM Returns list of wavelengths for Hymap Sensor
3 | %
4 | % Usage
5 | % lambdaNm = hyperGetHymapWavelengthsNm()
6 | %
7 | % Inputs
8 | % None
9 | % Outputs
10 | % lambdaNm - Hymap instrument wavelengths in nanometers
11 |
12 | lambdaNm = [...
13 | 453.799988, 467.399994, 481.899994, 496.899994, 511.700012, 526.500000, ...
14 | 541.599976, 556.500000, 571.200012, 585.900024, 600.700012, 615.500000,...
15 | 630.000000, 644.299988, 658.900024, 673.599976, 688.000000, 702.400024,...
16 | 716.900024, 731.299988, 745.400024, 759.599976, 773.900024, 788.099976,...
17 | 802.200012, 816.299988, 830.700012, 844.900024, 858.900024, 872.500000,...
18 | 874.799988, 891.900024, 907.299988, 922.799988, 938.599976, 954.099976,...
19 | 969.200012, 984.400024, 999.900024, 1014.900024, 1029.900024, 1045.099976,...
20 | 1060.099976, 1074.599976, 1089.199951, 1104.099976, 1118.599976, 1133.000000,...
21 | 1147.400024, 1161.800049, 1176.000000, 1190.199951, 1204.300049, 1218.300049,...
22 | 1232.099976, 1246.099976, 1260.199951, 1274.099976, 1287.599976, 1301.199951,...
23 | 1315.199951, 1328.900024, 1389.300049, 1404.199951, 1419.300049, 1433.500000,...
24 | 1448.000000, 1462.400024, 1477.000000, 1490.900024, 1504.800049, 1518.599976,...
25 | 1532.500000, 1546.099976, 1559.800049, 1573.199951, 1586.400024, 1599.500000,...
26 | 1612.800049, 1626.000000, 1638.800049, 1651.699951, 1664.500000, 1677.199951,...
27 | 1689.699951, 1702.300049, 1714.900024, 1727.300049, 1739.500000, 1751.800049,...
28 | 1764.000000, 1776.000000, 1788.000000, 1799.900024, 1952.400024, 1971.699951,...
29 | 1991.000000, 2010.099976, 2029.000000, 2048.000000, 2067.199951, 2086.199951,...
30 | 2104.800049, 2123.000000, 2141.000000, 2159.100098, 2177.000000, 2194.600098,...
31 | 2213.399902, 2231.000000, 2248.199951, 2265.699951, 2283.100098, 2300.600098,...
32 | 2317.600098, 2334.500000, 2351.100098, 2367.600098, 2384.399902, 2401.100098,...
33 | 2417.699951, 2433.699951, 2449.600098, 2465.300049, 2480.899902, 2496.300049];
34 |
--------------------------------------------------------------------------------
/functions/hyperGlrt.m:
--------------------------------------------------------------------------------
1 | function [results] = hyperGlrt(M, t)
2 | % HYPERGLRT Performs the generalized liklihood test ratio algorithm
3 | % Performs the generalized liklihood test ratio algorithm for target
4 | % detection.
5 | %
6 | % Usage
7 | % [results] = hyperGlrt(M, U, target)
8 | % Inputs
9 | % M - 2d matrix of HSI data (p x N)
10 | % t - target of interest (p x 1)
11 | % Outputs
12 | % results - vector of detector output (N x 1)
13 | %
14 | % References
15 | % T F AyouB, "Modified GLRT Signal Detection Algorithm," IEEE
16 | % Transactions on Aerospace and Electronic Systems, Vol 36, No 3, July
17 | % 2000.
18 |
19 | [p, N] = size(M);
20 |
21 | % Remove mean from data
22 | u = mean(M.').';
23 | M = M - repmat(u, 1, N);
24 | t = t - u;
25 |
26 | R = inv(hyperCov(M));
27 |
28 | results = zeros(1, N);
29 | for k=1:N
30 | x = M(:,k);
31 | results(k) = ((t'*R*x)^2) / ((t'*R*t)*(1 + x'*R*x));
32 | end
--------------------------------------------------------------------------------
/functions/hyperHfcVd.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/davidkun/HyperSpectralToolbox/9dc222bb9c863e19b8a3f1946e947125dacc49cb/functions/hyperHfcVd.m
--------------------------------------------------------------------------------
/functions/hyperHud.m:
--------------------------------------------------------------------------------
1 | function [results] = hyperHud(M, B, S)
2 | % HYPERHUD Performs the hybrid unstructured detector (HUD) algorithm
3 | % Performs the hybrid unstructured detector algorithm for target
4 | % detection.
5 | %
6 | % Usage
7 | % [results] = hyperHud(M, B, S)
8 | % Inputs
9 | % M - 2d matrix of HSI data (p x N)
10 | % B - 2d matrix of background endmembers (p x q)
11 | % S - 2d matrix of target endmembers (p x #target_sigs)
12 | % Outputs
13 | % results - vector of detector output (N x 1)
14 | %
15 | % References
16 | % J Broadwater & R Chellappa. "Hybrid Detectors for Subpixel Targets."
17 | % IEEE PAMI. Vol 29. No 11. November 2007.
18 |
19 |
20 | [p, N] = size(M);
21 | % Remove mean from data
22 | u = mean(M.').';
23 | M = M - repmat(u, 1, N);
24 | S = S - repmat(u, 1, size(S,2));
25 |
26 | numTargets = size(S,2);
27 | %sigma = 1e-5;
28 | E = [S B];
29 | %E = [sigma*E; ones(1,size(E,2))];
30 | q = size(E, 2);
31 |
32 | R_hat = (M*M.')/N;
33 | G = inv(R_hat);
34 |
35 | results = zeros(1, N);
36 |
37 | R = ones(q,1);
38 | P = R - 1;
39 | % TODO - put in the whitened version of fcls
40 | a_hat_tmp = hyperNnls(M, E);
41 | %a_hat_tmp = hyperFcls(M, E);
42 | for k=1:N
43 | x = M(:,k);
44 | a_hat = a_hat_tmp(:,k);
45 | % Take the top r values from a_hat where r is number of targets. We
46 | % are only interested in the abundances for the targets. From J
47 | % Broadwater email 11/17/09.
48 | a_hat = a_hat(1:numTargets);
49 | % % x = [sigma*x; 1];
50 | % % FCLS optimzation
51 | % lambda = zeros(q,1);
52 | % aPrev = lambda;
53 | % for kk=1:100
54 | % a_hat = inv(E.'*G*E)*E.'*G*x - inv(E.'*G*E)*lambda;
55 | % norm(a_hat-aPrev)
56 | % lambda = E.'*G*(x-E*a_hat);
57 | % idx = find(a_hat>0);
58 | % P(idx) = 1;
59 | % R(idx) = 0;
60 | % aPrev = a_hat;
61 | % end
62 | % a_hat = a_hat(1:numTargets);
63 | results(k) = (x.'*G*S*a_hat) / (x.'*G*x);
64 | end
--------------------------------------------------------------------------------
/functions/hyperIcaComponentScores.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/davidkun/HyperSpectralToolbox/9dc222bb9c863e19b8a3f1946e947125dacc49cb/functions/hyperIcaComponentScores.m
--------------------------------------------------------------------------------
/functions/hyperIcaEea.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/davidkun/HyperSpectralToolbox/9dc222bb9c863e19b8a3f1946e947125dacc49cb/functions/hyperIcaEea.m
--------------------------------------------------------------------------------
/functions/hyperImagesc.m:
--------------------------------------------------------------------------------
1 | function [rgb] = hyperImagesc(img, bands)
2 | %UNTITLED1 Summary of this function goes here
3 | % Usage: plotAvirisRgb(img, bands)
4 |
5 | [h, w, p] = size(img);
6 |
7 | if (nargin == 1)
8 | bands = [1 round(p/2) p];
9 | end
10 | blue = img(:,:,bands(1));
11 | green = img(:,:,bands(2));
12 | red = img(:,:,bands(3));
13 |
14 | rgb = zeros(size(img, 1), size(img, 2), 3);
15 | rgb(:,:,1) = hyperNormalize(red);
16 | rgb(:,:,2) = hyperNormalize(green);
17 | rgb(:,:,3) = hyperNormalize(blue);
18 |
19 | rgb = decorrstretch(rgb);
20 | red = rgb(:,:,1);
21 | green = rgb(:,:,2);
22 | blue = rgb(:,:,3);
23 | rgb(:,:,1) = adapthisteq(red);
24 | rgb(:,:,2) = adapthisteq(green);
25 | rgb(:,:,3) = adapthisteq(blue);
26 |
27 | imshow(rgb); axis image;
28 |
--------------------------------------------------------------------------------
/functions/hyperImshow.m:
--------------------------------------------------------------------------------
1 | function [rgb] = hyperImshow( img, bands )
2 | %UNTITLED1 Summary of this function goes here
3 | % Detailed explanation goes here
4 |
5 |
6 | [h, w, p] = size(img);
7 |
8 | if (nargin == 1)
9 | bands = [p round(p/2) 1];
10 | end
11 | red = img(:,:,bands(1));
12 | green = img(:,:,bands(2));
13 | blue = img(:,:,bands(3));
14 |
15 | rgb = zeros(size(img, 1), size(img, 2), 3);
16 | rgb(:,:,1) = adapthisteq(red);
17 | rgb(:,:,2) = adapthisteq(green);
18 | rgb(:,:,3) = adapthisteq(blue);
19 |
20 | imshow(rgb); axis image;
21 |
22 |
23 |
24 | % tmp = zeros(100, 614, 3);
25 | % tmp(:,:,1) = histeq((img(:,:, [36])));
26 | % tmp(:,:,2) = histeq((img(:,:, [24])));
27 | % tmp(:,:,3) = histeq((img(:,:, [12])));
28 | % image(tmp);
--------------------------------------------------------------------------------
/functions/hyperMatchedFilter.m:
--------------------------------------------------------------------------------
1 | function [results] = hyperMatchedFilter(M, t)
2 | % TODO Fix this
3 | % HYPERACE Performs the adaptive cosin/coherent estimator algorithm
4 | % Performs the adaptive cosin/coherent estimator algorithm for target
5 | % detection.
6 | %
7 | % Usage
8 | % [results] = hyperAce(M, S)
9 | % Inputs
10 | % M - 2d matrix of HSI data (p x N)
11 | % S - 2d matrix of target endmembers (p x q)
12 | % Outputs
13 | % results - vector of detector output (N x 1)
14 | %
15 | % References
16 | % X Jin, S Paswater, H Cline. "A Comparative Study of Target Detection
17 | % Algorithms for Hyperspectral Imagery." SPIE Algorithms and Technologies
18 | % for Multispectral, Hyperspectral, and Ultraspectral Imagery XV. Vol
19 | % 7334. 2009.
20 |
21 |
22 | [p, N] = size(M);
23 | % Remove mean from data
24 | u = mean(M.').';
25 | M = M - repmat(u, 1, N);
26 | t = t - u;
27 |
28 | R_hat = hyperCov(M);
29 | G = inv(R_hat);
30 |
31 | results = zeros(1, N);
32 | tmp = t.'*G*t;
33 | for k=1:N
34 | x = M(:,k);
35 | results(k) = (x.'*G*t)/tmp;
36 | end
37 |
--------------------------------------------------------------------------------
/functions/hyperMax2d.m:
--------------------------------------------------------------------------------
1 | function [x, y, val] = hyperMax2d(mat)
2 | % HYPERMAX2D Finds the max value and position in a matrix
3 | %
4 | % Usage
5 | % [x, y, val] = hyperMax2d(mat)
6 | % Inputs
7 | % mat - Input matrix
8 | % Outputs
9 | % x - X position of maximum value
10 | % y - Y position of maximum value
11 | % val - Maximum value in matrix
12 |
13 | [dum, y] = max(mat);
14 | [val, y] = max(dum);
15 | [dum, x] = max(mat(:,y));
--------------------------------------------------------------------------------
/functions/hyperMnf.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/davidkun/HyperSpectralToolbox/9dc222bb9c863e19b8a3f1946e947125dacc49cb/functions/hyperMnf.m
--------------------------------------------------------------------------------
/functions/hyperNapc.m:
--------------------------------------------------------------------------------
1 | function [M, H, noiseFractions] = hyperNacp(M, h, w)
2 | % HYPERNAPC Performs the noise adjusted principal component transform (NACP)
3 | % hyperNacp performs the noise adjust principal component transform on the
4 | % data and uses spatial (row) offsets of the data to estimate the
5 | % covariance matrix of the data.
6 | %
7 | % Usage
8 | % M = hyperNacp(M, h, w)
9 | % Inputs
10 | % M - 2D matrix (p x N)
11 | % h - height of image in pixels
12 | % w - width of image in pixels
13 | % Outputs
14 | % M - 2D transformed data
15 | % H - 2D transformation matrix
16 | % noiseFractions - Estimates of the noise fraction for each band
17 | %
18 | % References
19 | % C-I Change and Q Du, "Interference and Noise-Adjusted Principal
20 | % Components Analysis," IEEE TGRS, Vol 36, No 5, September 1999.
21 |
22 | [p, N] = size(M);
23 |
24 | % Remove mean from data
25 | u = mean(M.').';
26 | for k=1:N
27 | M(:,k) = M(:,k) - u;
28 | end
29 |
30 | % Compute to rotation of the signal+noise
31 | sigmaZ = hyperCov(M);
32 | M = hyperConvert3d(M, h, w, p);
33 |
34 | % Estimate the covariance of the noise.
35 | dX = zeros(h-1, w, p);
36 | for i=1:(h-1)
37 | dX(i, :, :) = M(i, :, :) - M(i+1, :, :);
38 | end
39 | dX = hyperConvert2d(dX);
40 |
41 | % Compute the covariance of the noise signal estimate.
42 | sigmaN = hyperCov(dX);
43 |
44 | % Orthonormalize the noise subspace.
45 | [U,deltaN,E] = svd(sigmaN);
46 | F = E*inv(sqrt(deltaN)); % Rotation components of noise orthonormalized
47 | % F now whitens the noise.
48 |
49 | % Rotates the signal+noise cov so that the noise is whitened (all noise
50 | % powers are equal)
51 | sigmaAdj = F'*sigmaZ*F;
52 |
53 | [U,gammaAdj,G] = svd(sigmaAdj);
54 | H = G*F;
55 |
56 | % Compute noise fractions
57 | noiseFractions = diag(gammaAdj);
58 |
59 | % Perform transform
60 | M = H*hyperConvert2d(M);
61 |
62 |
--------------------------------------------------------------------------------
/functions/hyperNnls.m:
--------------------------------------------------------------------------------
1 | function [ X ] = hyperNnls( M, U )
2 | %HYPERNNLS Performs non-negative constrained least squares on pixels of M.
3 | % hyperFcls performs non-negative constrained least squares of each pixel
4 | % in M using the endmember signatures of U. Non-negative constrained least
5 | % squares with the abundance nonnegative constraint (ANC).
6 | % Utilizes the method of Bro.
7 | %
8 | % Usage
9 | % [ X ] = hyperNnls( M, U )
10 | % Inputs
11 | % M - HSI data matrix (p x N)
12 | % U - Matrix of endmembers (p x q)
13 | % Outputs
14 | % X - Abundance maps (q x N)
15 | %
16 | % References
17 | % Bro R., de Jong S., Journal of Chemometrics, 1997, 11, 393-401
18 |
19 | if (ndims(M) ~= 2)
20 | error('M must be a p x N matrix.');
21 | end
22 | if (ndims(U) ~= 2)
23 | error('U must be a p x q matrix.');
24 | end
25 |
26 | [p1, N] = size(M);
27 | [p2, q] = size(U);
28 | if (p1 ~= p2)
29 | error('M and U must have the same number of spectral bands.');
30 | end
31 |
32 | Minv = pinv(U);
33 | X = zeros(q, N);
34 | MtM = U.'*U;
35 | for n1 = 1:N
36 | drawnow;
37 | %X(:, n1) = Minv*M(:, n1);
38 | %X(:, n1) = lsqlin(U, M(:, n1), [], [], ones(1,q), 1, zeros(q,1),[], []);
39 | X(:, n1) = fnnls(MtM, U.' * M(:,n1));
40 | %X(:, n1) = lsqnonneg(U, M(:, n1));
41 | end
42 |
43 | return;
--------------------------------------------------------------------------------
/functions/hyperNormXCorr.m:
--------------------------------------------------------------------------------
1 | function [ result ] = hyperNormXCorr( a, b )
2 | % HYPERNORMXCORR Computes the normalized cross correlation
3 | % hyperNormXCorr computes the normalized cross correlation between two
4 | % vectors. The value returned is in [-1. 1]
5 | %
6 | % Usage
7 | % [ result ] = hyperNormXCorr( a, b )
8 | % Inputs
9 | % a - Vector 1.
10 | % b - Vector 2.
11 | % Outputs
12 | % result - Normalized cross-correlation result.
13 |
14 | if (size(a, 2) ~= 1)
15 | N = size(a, 2);
16 | q = size(b, 2);
17 | result = zeros(q, N);
18 | for x=1:N
19 | for y=1:q
20 | result(y, x) = abs(hyperNormXCorr(a(:, x), b(:, y)));
21 | end
22 | end
23 | else
24 | a = a(:); b = b(:);
25 | s = length(a);
26 | %err = normxcorr2(a, b);
27 | err = sum((a-mean(a)).*(b-mean(b))) / (std(a)*std(b));
28 | err = err * (1/(s-1));
29 | result = err;
30 | end
31 | return;
--------------------------------------------------------------------------------
/functions/hyperNormalize.m:
--------------------------------------------------------------------------------
1 | function [ normalizedM ] = hyperNormalize( M )
2 | %HYPERNORMALIZE Normalized data to be in range [0, 1]
3 | % hyperNormalize Normalizes data to be in range [0, 1]
4 | %
5 | % Usage
6 | % hyperNormalize(M)
7 | % Inputs
8 | % M - Input data
9 | % Outputs
10 | % normalizedM - Normalized data
11 |
12 | minVal = min(M(:));
13 | maxVal = max(M(:));
14 |
15 | normalizedM = M - minVal;
16 | if (maxVal == minVal)
17 | normalizeData = zeros(size(M));
18 | else
19 | normalizedM = normalizedM ./ (maxVal-minVal);
20 | end
21 |
--------------------------------------------------------------------------------
/functions/hyperOrthorectify.m:
--------------------------------------------------------------------------------
1 | function [ imgOut ] = hyperOrthorectify( imgIn, altitude, hpbw )
2 | %HYPERORTHORECTIFY Orthorectifies areal observed data.
3 | % Orthorectifies areal observed data using nearest neighbor interpolation.
4 | %
5 | % Inputs
6 | % imgIn Input image (m x n) or (m x n x p)
7 | % altitude Sensor altitude (meters)
8 | % hpbw Half power beam width (radians).
9 | % Outputs
10 | % imgOut Orthorectified image.
11 |
12 | % Input parameters
13 | if (ndims(imgIn) == 2)
14 | [h, w] = size(imgIn);
15 | p = 1;
16 | elseif (ndims(imgIn) == 3)
17 | [h, w, p] = size(imgIn);
18 | end
19 |
20 | radPerPix = hpbw/w;
21 | x = tan(hpbw/2)*altitude; % m
22 | gsd = altitude*radPerPix; % m
23 | n = x/gsd;
24 |
25 | imgOut = zeros(h, floor(n)*2, p);
26 | for k=1:p
27 | for j=1:h
28 | for i=-floor(n):1:floor(n)-1
29 | boresiteDistance = gsd*i;
30 | theta = atan(boresiteDistance/altitude);
31 | imagePix = round(theta / radPerPix);
32 | imgOut(j, floor(n)+i+1, k) = imgIn(j, (w/2)+imagePix+1, k);
33 | end
34 | end
35 | end
36 |
--------------------------------------------------------------------------------
/functions/hyperOsp.m:
--------------------------------------------------------------------------------
1 | function [nu] = hyperOsp(M, U, target)
2 | % HYPEROSP Performs the othogonal subspace projection (OSP) algorithm
3 | % Performs the othogonal subspace projection algorithm for target
4 | % detection.
5 | %
6 | % Usage
7 | % [results] = hyperOsp(M, U, target)
8 | % Inputs
9 | % M - 2d matrix of HSI data (p x N)
10 | % U - 2d matrix of background endmebers (p x q)
11 | % target - target of interest (p x 1)
12 | % Outputs
13 | % results - vector of detector output (N x 1)
14 | %
15 | % References
16 | % Qian Du, Hsuan Ren, and Chein-I Cheng. "A Comparative Study of
17 | % Orthogonal Subspace Projection and Constrained Energy Minimization."
18 | % IEEE TGRS. Volume 41. Number 6. June 2003.
19 |
20 | [p, N] = size(M);
21 |
22 | % Equation 3
23 | P_U = eye(p) - U * pinv(U);
24 |
25 | % For abundance estimation
26 | % Equation 4
27 | %w_osp = inv(target.'*P_U*target) * P_U * target;
28 |
29 | tmp = target'*P_U*target;
30 | nu = zeros(N, 1);
31 | for k=1:N
32 | nu(k) = (target'*P_U*M(:,k))/tmp;
33 | end
--------------------------------------------------------------------------------
/functions/hyperPct.m:
--------------------------------------------------------------------------------
1 | function [M_pct, V, lambda] = hyperPct(M, q)
2 | %HYPERPCA Performs the principal components transform (PCT)
3 | % hyperPct performs the principal components transform on a data matrix.
4 | %
5 | % Usage
6 | % [M_pct, V] = hyperPct(M, q)
7 | % Inputs
8 | % M - 2D matrix (p x N)
9 | % q - number of components to keep
10 | % Outputs
11 | % M_pct - 2D matrix (q x N) which is result of transform
12 | % V - Transformation matrix.
13 | % lambda - eigenvalues
14 | %
15 | % References
16 | % http://en.wikipedia.org/wiki/Principal_component_analysis
17 |
18 | [p, N] = size(M);
19 |
20 | % Remove the data mean
21 | u = mean(M.').';
22 | %M = M - repmat(u, 1, N);
23 | M_orig=M;
24 | M = M - (u*ones(1,N));
25 |
26 | % Compute covariance matrix
27 | C = (M*M.')/(N-1);
28 |
29 | % Find eigenvalues of covariance matrix
30 | [V, D] = eigs(C, q);
31 |
32 | % Transform data
33 | M_pct = V'*M_orig;
34 |
35 | lambda = diag(D);
36 |
37 | return;
38 |
--------------------------------------------------------------------------------
/functions/hyperPlmf.m:
--------------------------------------------------------------------------------
1 | function [results] = hyperPlmf(M, t, windowSize)
2 | % HYPERPLMF Performs the PCA local matched filter (PLMF) target detection algorithm
3 | % Performs the PCA local matched filter (PLMF) target detection algorithm.
4 | %
5 | % Usage
6 | % [results] = hyperPlmf(M, target, windodwSize)
7 | % Inputs
8 | % M - dd matrix of HSI data (m x n x p)
9 | % t - target of interest (p x 1)
10 | % Outputs
11 | % results - vector of detector output (m x n)
12 | %
13 | % References
14 | % Sofa, Geva, Rotman. "Improved covariance matrices for point target detection in hyperspectral
15 | % data." IEEE International Conference on Microwaves, Communications, Antennas and Electronics
16 | % Systems, 2009. COMCAS 2009.
17 |
18 | % windowSize must be odd number
19 | if ~mod(windowSize,2)
20 | error('windowSize must be an odd number.')
21 | end
22 |
23 | if (length(size(M)) ~= 3)
24 | error('M must be 3-dimensional matrix.')
25 | end
26 |
27 | [h,w,p] = size(M);
28 | N = h*w;
29 |
30 | % Remove mean from the target
31 | M = hyperConvert2d(M);
32 | u = mean(M.').';
33 |
34 | [Mpca,V,lambda] = hyperPct(M,p);
35 | t_pct = V.'*(t-u);
36 |
37 | % Create map to get neighbors
38 | map = 1:N;
39 | map = reshape(map,h,w);
40 |
41 | R_hat = hyperCov(Mpca);
42 | G = inv(R_hat);
43 |
44 | results = zeros(h,w);
45 | s = floor(windowSize/2)+1;
46 | for k=s:(h-s)
47 | for kk=s:(w-s)
48 | midIdx = map(k,kk);
49 | neighborhoodIdx = map((k-s+1):(k+s-1),(kk-s+1):(kk+s-1));
50 |
51 | Mlocal = M(:,neighborhoodIdx(:));
52 | [~,~,lambdaLocal] = hyperPct(Mlocal,p);
53 |
54 | y = Mpca(:,midIdx);
55 | results(k,kk) = sum((t_pct.*y)./max(lambdaLocal,lambda));
56 | end
57 | end
58 |
59 |
60 |
61 |
--------------------------------------------------------------------------------
/functions/hyperPpi.m:
--------------------------------------------------------------------------------
1 | function [U] = hyperPpi(M, q, numSkewers)
2 | % HYPERPPI Performs the pixel purity index (PPI) algorithm
3 | % Performs the pixel purity index algorithm for endmember finding.
4 | %
5 | % Usage
6 | % [U] = hyperPpi(M, q, numSkewers)
7 | % Inputs
8 | % M - 2d matrix of HSI data (p x N)
9 | % q - Number of endmembers to find
10 | % numSkewers - Number of "skewer" vectors to project data onto.
11 | % Outputs
12 | % U - Recovered endmembers (p x N)
13 |
14 | [p, N] = size(M);
15 | M_orig = M;
16 |
17 | % Remove data mean
18 | u = mean(M,2);
19 | M = M - repmat(u, 1, N);
20 |
21 | % Generate skewers
22 | skewers = randn(p, numSkewers);
23 |
24 | votes = zeros(N, 1);
25 | for kk=1:numSkewers
26 | % Project all the data onto a skewer
27 | tmp = abs(skewers(:,kk).'*M);
28 | [val, idx] = max(tmp);
29 | votes(idx) = votes(idx) + 1;
30 | end
31 |
32 | [val, idx] = sort(votes, 'descend');
33 | U = M_orig(:, idx(1:q));
34 |
35 |
36 |
--------------------------------------------------------------------------------
/functions/hyperReadAsd.m:
--------------------------------------------------------------------------------
1 | function [measuredSpectrum, lambda, referenceSpectrum] = hyperReadAsd(filename)
2 | % HYPERREADASD Reads spectra from an ASD Fieldspec spectrometer (e.g. .asd)
3 | % Reads in the measured and reference spectra from an ASD Fieldspec
4 | % spectrometer. If two output arguments are specified, hyperReadAsd assumes
5 | % the file contains reflectance. If three output arguments are specified,
6 | % hyperReadAsd assumes the file contains measured and reference spectra
7 | % in units of digital number (DN).
8 | %
9 | % Usage
10 | % [measuredSpectrum, lambda] = hyperReadAsd(filename)
11 | % [measuredSpectrum, lambda, referenceSpectrum] = hyperReadAsd(filename)
12 | % Inputs
13 | % filename - input filename (.asd)
14 | % Outputs
15 | % measuredSpectrum - measured spectrum of material (2151 x 1)
16 | % lambda - wavelenghts of spectra (2151 x 1)
17 | % referenceSpectrum (optional) - reference spectrum ("white" spectrum)
18 | %
19 | % Notes
20 | % Reflectance can be obtained by:
21 | % reflectance = measuredSpectrum./referenceSpectrum;
22 | %
23 | % Author
24 | % Luca Innocenti
25 | %
26 | % References
27 | % None
28 |
29 | % Open the file
30 | fid = fopen(filename, 'r');
31 |
32 | if (2 == nargout)
33 | fseek(fid,484,'bof');
34 | measuredSpectrum = zeros(2151,1);
35 | lambda = zeros(2151,1);
36 | for i=1:2151,
37 | lambda(i) = 349 + i;
38 | measuredSpectrum(i) = fread(fid,1,'single');
39 | end
40 | fclose(fid);
41 | return;
42 | end
43 |
44 | lungh_nota = 0;
45 | fseek(fid, 0, 'bof');
46 | % Get factory name
47 | nome_ditta = char(fread(fid, 3, 'uint8')); %Factory Name
48 | % Get note
49 | note = char(fread(fid,157,'uint8'));
50 |
51 | % count the note length string
52 | tt = isstrprop(note,'alphanum');
53 | for f=1:157,
54 | if tt(f) == 1
55 | lungh_nota = f;
56 | f = 157;
57 | end
58 | end
59 |
60 | %Extract Metadata from header file
61 | %Not needed for spectrum
62 |
63 | %Time of acquisition
64 | fseek(fid, 160, 'bof');
65 | sec_acq = fread(fid,1,'uint8'); %seconds
66 | fseek(fid, 162, 'bof');
67 | minsec_acq = fread(fid,1,'uint8'); %minutes
68 | fseek(fid, 164, 'bof');
69 | ora_acq = fread(fid,1,'uint8'); %hours
70 | fseek(fid, 166, 'bof');
71 | giorno_acq = fread(fid,1,'uint8'); %day
72 | fseek(fid, 168, 'bof');
73 | mese_acq = fread(fid,1,'uint8'); %month
74 | fseek(fid, 170, 'bof');
75 | anno_acq = fread(fid,1,'uint8'); %years from 1900
76 | fseek(fid, 172, 'bof');
77 | wday_acq = fread(fid,1,'uint8');
78 | fseek(fid, 174, 'bof');
79 | wdayy_acq = fread(fid,1,'uint16');
80 | fseek(fid, 178, 'bof');
81 | ver_programma = fread(fid,1,'uint8'); %software version
82 | fseek(fid, 179, 'bof');
83 | ver_file = fread(fid,1,'uint8'); %file version
84 |
85 | %Data acquisition metadata
86 | fseek(fid, 180, 'bof');
87 | itime = fread(fid,1,'uint8');
88 | fseek(fid, 181, 'bof');
89 | dc_corr = fread(fid,1,'uint8');
90 | fseek(fid, 182, 'bof');
91 | dc_time = fread(fid,1,'uint32');
92 | data_type = fread(fid,1,'uint8');
93 | ref_time = fread(fid,1,'uint32');
94 | ch1_wavel = fread(fid,1,'uint8');
95 | wavel_step = fread(fid,1,'uint8');
96 | data_format = fread(fid,1,'uint8');
97 | old_dc_count = fread(fid,1,'uint8');
98 | old_ref_count = fread(fid,1,'uint8');
99 | old_sample_count = fread(fid,1,'uint8');
100 | application = fread(fid,1,'uint8');
101 | channels = fread(fid,1,'uint8');
102 | fseek(fid, 425, 'bof');
103 | dc_count = fread(fid,1,'uint16');
104 | white_count = fread(fid,1,'uint16');
105 | fseek(fid, 431, 'bof');
106 | instrument_type = fread(fid,1,'uint8');
107 | fseek(fid, 390, 'bof');
108 | integration_time = fread(fid,1,'uint16');
109 | fo = fread(fid,1,'uint16');
110 | dc_correction_value = fread(fid,1,'uint16');
111 | fseek(fid, 398, 'bof');
112 | calibration = fread(fid,1,'uint16');
113 |
114 | %Spectrum
115 | referenceSpectrum = zeros(2151,1);
116 | measuredSpectrum = zeros(2151,1);
117 | lambda = zeros(2151,1);
118 |
119 | for x=1:2151,
120 | lambda(x) = 349 + x;
121 | end
122 |
123 | fseek(fid, 484, 'bof');
124 | for i = 1:2151,
125 | measuredSpectrum(i) = fread(fid,1,'double');
126 |
127 | end
128 |
129 | fseek(fid, 17712+lungh_nota, 'bof');
130 | for i = 1:2151,
131 | referenceSpectrum(i) = fread(fid,1,'double');
132 | end
133 |
134 | % Test Fixture
135 | % plot(lambda,referenceSpectrum)
136 | % title ('Digital Number White Reference');
137 | % xlabel('Lambda (nm)');
138 | % ylabel('Digital Number');
139 | % axis([350,2500,0,max(referenceSpectrum)])
140 | %
141 | %
142 | % figure
143 | % plot(lambda,measuredSpectrum)
144 | % title ('Digital Number Sample');
145 | % xlabel('Lambda (nm)');
146 | % ylabel('Digital Number');
147 | %
148 | % axis([350,2500,0,max(measuredSpectrum)])
149 | %
150 | % reflectance = measuredSpectrum./referenceSpectrum;
151 | %
152 | % figure
153 | % plot(lambda, reflectance)
154 | % title ('Reflectance');
155 | % xlabel('Lambda (nm)');
156 | % ylabel('Reflectance');
157 | %
158 | % axis([350,2500,0,1]);
159 |
160 | fclose(fid);
161 |
--------------------------------------------------------------------------------
/functions/hyperReadAvirisRfl.m:
--------------------------------------------------------------------------------
1 | function [ M, wavelengths_nm ] = hyperReadAvirisRfl(filename, height, width, bands )
2 | %HYPERREADAVIRISRFL Reads AVIRIS generated reflectance and .spc files.
3 | % This function reads AVIRIS .rfl, refelctance data, files. Optionally, it
4 | % reads in the corresponding .spc file to obtain the the wavelengths observed
5 | % by the sensor.
6 | %
7 | % Usage
8 | % [M, wavelengths_nm] = hyperReadAvirisRfl(filename, height, width, bands)
9 | % Intput
10 | % filename - filename image filename
11 | % height - vector of height range
12 | % width - vector of width range
13 | % bands - vector of band range
14 | % Output
15 | % M - reflectance data
16 | % wavelengths_nm - Wavelengths of reflectance data in nm.
17 | %
18 | % Format of the .rfl is below. Taken from the AVIRIS readme file.
19 | %
20 | % *.rfl AVIRIS INVERTED REFLECTANCE IMAGE DATA
21 | %
22 | % Contents: AVIRIS inverted reflectance data multipled by 10000 and stored as
23 | % 16-bit integers.
24 | % File type: BINARY 16-bit signed integer IEEE.
25 | % Units: 10000 times reflectance factor
26 | % Format: Band interleaved by pixel (channel, sample, line) with dimensions
27 | % (224, 614, 512). The last scene may be less than 512. To
28 | % calculate the number of lines divide the file size by 275,072
29 | % bytes per line.
30 | %
31 | % Example:
32 | % [img, lambda]= readAvirisRfl('f970620t01p02_r03_sc02.a.rfl', [1 100], [1 614], [1 224]);
33 | % Reads in all bands and rows of reflectance data from scanlines 1 to 100.
34 | %
35 | % Copyright (C) 2007 Isaac Gerg. All rights reserved.
36 |
37 | % Extract root filename.
38 | [shortFilename, pth] = findLast(filename, filesep);
39 | if (pth > 1)
40 | filePath = filename(1:pth);
41 | else
42 | filePath = '';
43 | end
44 | [tmp, pos] = findLast(shortFilename, '.');
45 | if (pos > 1)
46 | rootFilename = shortFilename(1:pos-1);
47 | else
48 | rootFilename = shortFilename;
49 | end
50 | [tmp, pth] = findLast(rootFilename, '_');
51 | rootFilename = rootFilename(1:pth-1);
52 |
53 | % Parse .spc file
54 | if (nargout==2)
55 | spcFilename = sprintf('%s%s%s', filePath, rootFilename, '.a.spc');
56 | wavelengths_nm = hyperReadAvirisSpc(spcFilename);
57 | end
58 |
59 | % Read in the reflectance data.
60 | fid = fopen(filename, 'r', 'ieee-be');
61 | data_type = 'int16';
62 | interleave = 'bip';
63 | M = multibandread(filename, [512 614 224], data_type, 0, interleave, 'ieee-be',...
64 | {'Row', 'Range', [height]}, {'Column', 'Range', [width]}, ...
65 | {'Band', 'Range', [bands]} );
66 |
67 | % Normalize to proper reflectance units.
68 | M = M ./ 10e3;
69 |
70 | return;
71 |
72 |
73 | %-------------------------------------------------------------------------------
74 | function [answer, pos] = findLast(str, char)
75 | slashes = find(str == char);
76 | if (length(slashes) > 0)
77 | lastSlash = slashes(end);
78 | else
79 | lastSlash = 0;
80 | end
81 | pos = lastSlash;
82 | answer = str(lastSlash+1:end);
83 | return;
84 | %-------------------------------------------------------------------------------
85 |
--------------------------------------------------------------------------------
/functions/hyperReadAvirisSpc.m:
--------------------------------------------------------------------------------
1 | function [lambda] = hyperReadAvirisSpc(filename)
2 | %HYPERREADAVIRISSPC Reads AVIRIS .spc files.
3 | % hyperReadAvirisSpc reads AVIRIS files containing information about the
4 | % wavelengths sampled during a collect with the AVIRIS sensor.
5 | %
6 | % Usage
7 | % [lambda] = hyperReadAvirisSpc(filename)
8 | % Input
9 | % filename - input filename of .spc file.
10 | % Output
11 | % lambda - wavelengths contained in .spc file.
12 |
13 |
14 | fid = fopen(filename, 'r');
15 |
16 | i = 1;
17 | done = false;
18 | while not(done)
19 | txt = fgetl(fid);
20 | if (txt == -1)
21 | break;
22 | end
23 | a = sscanf(txt, '%g %g %g %g %g');
24 | lambda(i) = a(1);
25 | i = i+1;
26 | end
27 | return;
28 |
--------------------------------------------------------------------------------
/functions/hyperReadSpecpr.m:
--------------------------------------------------------------------------------
1 | function [ records, spectra, rawSpectra ] = hyperReadSpecpr( filename )
2 | %HYPERREADSPECPR Reads USGS Specpr files.
3 | % hyperReadSpecpr reads USGS Specpr files.
4 | %
5 | % Usage
6 | % [ records, spectra, rawSpectra ] = hyperReadSpecpr( filename )
7 | % Inputs
8 | % filename - Input filename
9 | % Outputs
10 | % records - Individual records
11 | % spectra - The spectra post-processed
12 | % rawSpectra - The raw spectra
13 | %
14 | % References
15 | % http://speclab.cr.usgs.gov/specpr-format.html.
16 | dbstop if error;
17 | f = fopen(filename, 'r');
18 | if (f == -1)
19 | error(sprintf('Failed to open file: %s'), filename);
20 | end
21 |
22 | % Ignore the first record.
23 | r = uint32(fread(f, 1536, 'uint8'));
24 |
25 | firstTime = 1;
26 | records = {};
27 | spectra = [];
28 | rawSpectra = {};
29 | numRawSpectra = 0;
30 | numRecords = 0;
31 |
32 | done = 0;
33 | while (not(done))
34 | r = uint32(fread(f, 1536/4, 'uint32', 'ieee-be'));
35 | if (length(r) == 0)
36 | break;
37 | end
38 | numRecords
39 | r = swapbytes(r);
40 | r = typecast(r, 'uint8');
41 | % First two bits of file. I am making this verbose here so it is clear what I
42 | % am doing.
43 | firstTwoBits = dec2bin(bitand(r(4), 3));
44 |
45 | % Parse first two bits.
46 | if (firstTwoBits == '10')
47 | % This is a text record. Skip.
48 | numRecords = numRecords + 1;
49 | elseif (firstTwoBits == '0')
50 | % This is an actual (initial) data record.
51 | if (not(firstTime))
52 | numRecords = numRecords+1;
53 | records{record.irecno} = record;
54 | end
55 | record = [];
56 | data = [];
57 | firstTime = 0;
58 | iband = int32(zeros(2, 1));
59 | record.ititl = char(r(5:44)).';
60 | record.usernm = char(r(45:52)).';
61 | iscta = typecast(r(53:56), 'int32');
62 | isctb = typecast(r(57:60), 'int32');
63 | jdatea = typecast(r(61:64), 'int32');
64 | jdateb = typecast(r(65:68), 'int32');
65 | istb = typecast(r(69:72), 'int32');
66 | isra = typecast(r(73:76), 'int32');
67 | isdec = typecast(r(77:80), 'int32');
68 | record.itchan = swapbytes(typecast(r(81:84), 'int32'));
69 | irmas = typecast(r(85:88), 'int32');
70 | revs = typecast(r(89:92), 'int32');
71 | iband(1) = typecast(r(93:96), 'int32');
72 | iband(2) = typecast(r(97:100), 'int32');
73 | record.irwav = swapbytes(typecast(r(101:104), 'int32'));
74 | record.irespt = swapbytes(typecast(r(105:108), 'int32'));
75 | record.irecno = swapbytes(typecast(r(109:112), 'int32'));
76 | itpntr = typecast(r(113:116), 'int32');
77 | ihist = char(r(117:176)).';
78 | mhist = char(r(177:472)).';
79 | nruns = typecast(r(473:476), 'int32');
80 | siangl = typecast(r(477:480), 'int32');
81 | seangl = typecast(r(481:484), 'int32');
82 | sphase = typecast(r(485:488), 'int32');
83 | iwtrns = typecast(r(489:492), 'int32');
84 | itimch = typecast(r(493:496), 'int32');
85 | xnrm = typecast(r(497:500), 'int32');
86 | scatim = typecast(r(501:504), 'int32');
87 | timint = typecast(r(505:508), 'int32');
88 | tempd = typecast(r(509:512), 'int32');
89 | data = swapbytes(typecast(r(513:1536), 'single'));
90 | % Remove null data samples. Set to zero instead of -1.23e34.
91 | data(find(data < -1e34)) = 0;
92 | record.data = data;
93 | elseif (firstTwoBits == '1')
94 | % Continuation of data values.
95 | cData = swapbytes(typecast(r(5:1536), 'single'));
96 | cData(find(cData < -1e34)) = 0;
97 | data = [data; cData];
98 | record.data = data;
99 | else
100 | numRecords = numRecords + 1;
101 | end
102 | end
103 |
104 | % Convert to an array of signatures.
105 | % Resample to model AVIRIS sensor
106 | high = 2.40;
107 | low = 0.4;
108 | numBands = 224;
109 | %d.data = sortrows(d.data, 1);
110 | %[q, w, r ]= unique(d.data(:,1));
111 | %d.data = d.data(w, :);
112 | %lambda = d.data(:, 1);
113 | %reflectance = d.data(:, 2);
114 | s = length(records);
115 | numSpectra = 0;
116 | for q=1:s
117 | if (isempty(records{q}))
118 | continue;
119 | end
120 | if (records{q}.irwav == 0)
121 | continue;
122 | end
123 |
124 | if (not(isempty(strfind(records{q}.ititl, 'error'))))
125 | continue;
126 | end
127 | if (not(isempty(strfind(records{q}.ititl, 'Error'))))
128 | continue;
129 | end
130 | if (not(isempty(strfind(records{q}.ititl, 'Bandpass'))))
131 | continue;
132 | end
133 | if (not(isempty(strfind(records{q}.ititl, 'Wavelengths'))))
134 | continue;
135 | end
136 | % Find wavelengths
137 | if (isempty(records{records{q}.irwav}))
138 | continue;
139 | end
140 | lambdas = records{records{q}.irwav}.data;
141 | spectrum = records{q}.data;
142 | if (length(lambdas) ~= length(spectrum))
143 | fprintf('Error %d !!!\n', q);
144 | continue;
145 | end
146 | numRawSpectra = numRawSpectra + 1;
147 | rawSpectra{numRawSpectra}.name = records{q}.ititl;
148 | rawSpectra{numRawSpectra}.wavelengths = lambdas;
149 | rawSpectra{numRawSpectra}.reflectance = spectrum;
150 | goodIdx = find(lambdas > 0);
151 | lambdas = lambdas(goodIdx);
152 | spectrum = spectrum(goodIdx);
153 | % Ensure we have proper lower and upper bounds.
154 | if (lambdas(1) > low)
155 | %fprintf('Bad file: Lower wavelength value missing.');
156 | lambdas = [low; lambdas];
157 | spectrum = [spectrum(1); spectrum];
158 | end
159 | if (lambdas(end) < high)
160 | %fprintf('Bad file: Upper wavelength value missing.\n');
161 | %d.data = [];
162 | %fclose(fid);
163 | %return;
164 | lambdas = [lambdas; high];
165 | spectrum = [spectrum; spectrum(end)];
166 | end
167 | % Resample
168 | records{q}.ititl
169 | ts = timeseries(spectrum, lambdas);
170 | inc = (high-low) / (numBands-1);
171 | c = resample(ts, [low:inc:high], 'zoh');
172 | numSpectra = numSpectra + 1;
173 | spectra(numSpectra).data = [c.time c.data [1:numBands].'];
174 | spectra(numSpectra).name = records{q}.ititl;
175 | end
176 |
177 | return;
--------------------------------------------------------------------------------
/functions/hyperResample.m:
--------------------------------------------------------------------------------
1 | function [ M_resampled ] = hyperResample( M, currentWaveLengths, desiredWaveLengths )
2 | %HYPERRESAMPLE Resamples hyperspectral data to specified wavelenghts
3 | % hyperResample resamples hyperspectral data with specified wavelengths
4 | % to a new set of wavelengths.
5 | %
6 | % Usage
7 | % [ output ] = hyperResample( M, currentWaveLengths, desiredWaveLengths )
8 | % Inputs
9 | % M - HSI data (p x N)
10 | % currentWavelengths - Wavelengths of M. (p x 1)
11 | % desiredWavelengths - Desired wavelengths of M.
12 | % Output
13 | % M_resampled - Resampled version of M
14 |
15 |
16 | numDim = ndims(M);
17 |
18 | if (numDim == 3)
19 | h = size(M, 1);
20 | w = size(M, 2);
21 | numBands = size(M, 3);
22 | %M = reshape(M, w*h, numBands).';
23 | M = hyperConvert2d(M);
24 | elseif (numDim == 2)
25 | w = size(M, 2);
26 | numBands = size(M, 1);
27 | end
28 |
29 | % Determine if desiredWaveLengths is a subrage of currentWaveLengths
30 | if (min(desiredWaveLengths) < min(currentWaveLengths))
31 | sprintf('Desired wavelenths outside of lower range.\n');
32 | return;
33 | end
34 | if (max(desiredWaveLengths) > max(currentWaveLengths))
35 | sprintf('Desired wavelenths outside of upper range.\n');
36 | return;
37 | end
38 |
39 | % Resample to desired bands.
40 | ts = timeseries(M, currentWaveLengths);
41 | ts = resample(ts, desiredWaveLengths, 'linear');
42 | M_resampled = ts.data;
43 | clear tmp;
44 | clear M;
45 |
46 | if (numDim == 3)
47 | %output = reshape(output, h, w, length(desiredWaveLengths));
48 | M_resampled = hyperConvert3d(M, w, h, length(desiredWaveLengths));
49 | end
50 |
--------------------------------------------------------------------------------
/functions/hyperRmf.m:
--------------------------------------------------------------------------------
1 | function [results] = hyperRmf(M, t, windowSize, algorithm)
2 | % HYPERPLMF Performs the regularlzed matched filter (RMF) target detection algorithm
3 | % Performs the regularized matched filter (PLMF) target detection algorithm.
4 | %
5 | % Usage
6 | % [results] = hyperRmf(M, target, windodwSize)
7 | % Inputs
8 | % M - dd matrix of HSI data (m x n x p)
9 | % t - target of interest (p x 1)
10 | % windowSize - window size designating local pixel region (scalar)
11 | % algorithm - 'sum' designates sum of local and global eigenvalues.
12 | % 'meanLocal' desiginates to use the mean of the local
13 | % eigenvalues.
14 | % 'meanGlobalLocal' designates to use the mean of the local
15 | % and global eigenvalues.
16 | % Outputs
17 | % results - vector of detector output (m x n)
18 | %
19 | % References
20 | % Sofa, Geva, Rotman. "Improved covariance matrices for point target detection in hyperspectral
21 | % data." IEEE International Conference on Microwaves, Communications, Antennas and Electronics
22 | % Systems, 2009. COMCAS 2009.
23 |
24 | % windowSize must be odd number
25 | if ~mod(windowSize,2)
26 | error('windowSize must be an odd number.')
27 | end
28 |
29 | if (length(size(M)) ~= 3)
30 | error('M must be 3-dimensional matrix.')
31 | end
32 |
33 | if (nargin ~= 4)
34 | error('Not enough input arguments');
35 | end
36 |
37 | [h,w,p] = size(M);
38 | N = h*w;
39 |
40 | % Remove mean from the target
41 | M = hyperConvert2d(M);
42 | u = mean(M.').';
43 |
44 | [Mpca,V,lambdaGlobal] = hyperPct(M,p);
45 | t_pct = V.'*(t-u);
46 |
47 | % Create map to get neighbors
48 | map = 1:N;
49 | map = reshape(map,h,w);
50 |
51 | R_hat = hyperCov(Mpca);
52 | G = inv(R_hat);
53 |
54 | results = zeros(h,w);
55 | s = floor(windowSize/2)+1;
56 | for k=s:(h-s)
57 | for kk=s:(w-s)
58 | midIdx = map(k,kk);
59 | neighborhoodIdx = map((k-s+1):(k+s-1),(kk-s+1):(kk+s-1));
60 |
61 | Mlocal = M(:,neighborhoodIdx(:));
62 | [~,~,lambdaLocal] = hyperPct(Mlocal,p);
63 |
64 | y = Mpca(:,midIdx);
65 |
66 | switch algorithm
67 | case 'sum'
68 | results(k,kk) = sum((t_pct.*y)./(lambdaLocal+lambdaGlobal));
69 | case 'meanLocal'
70 | results(k,kk) = sum((t_pct.*y)/mean(lambdaLocal(:)));
71 | case 'meanGlobalLocal'
72 | results(k,kk) = sum((t_pct.*y)./((lambdaLocal+lambdaGlobal)/2));
73 | otherwise
74 | error('Algorithm option unknown.');
75 | end
76 | end
77 | end
78 |
79 |
80 |
81 |
--------------------------------------------------------------------------------
/functions/hyperRoc.m:
--------------------------------------------------------------------------------
1 | function [pd,fa] = hyperRoc(x)
2 |
3 | x = x(:);
4 |
5 | numTs = 100;
6 | pd = linspace(0,1,numTs);
7 | for k=1:numTs
8 | fa(k) = sum(x>=pd(k));
9 | end
10 |
11 | N = length(x);
12 | fa = fa./N;
13 | pd = 1-pd;
--------------------------------------------------------------------------------
/functions/hyperRxDetector.m:
--------------------------------------------------------------------------------
1 | function [result, sigma, sigmaInv] = hyperRxDetector(M)
2 | %HYPERRX RX anomaly detector
3 | % hyperRxDetector performs the RX anomaly detector
4 | %
5 | % Usage
6 | % [result] = hyperRxDetector(M)
7 | % Inputs
8 | % M - 2D data matrix (p x N)
9 | % Outputs
10 | % result - Detector output (1 x N)
11 | % sigma - Covariance matrix (p x p)
12 | % sigmaInv - Inverse of covariance matrix (p x p)
13 |
14 | % Remove the data mean
15 | [p, N] = size(M);
16 | mMean = mean(M, 2);
17 | M = M - repmat(mMean, 1, N);
18 |
19 | % Compute covariance matrix
20 | sigma = hyperCov(M);
21 | sigmaInv = inv(sigma);
22 |
23 | result = zeros(N, 1);
24 | for i=1:N
25 | result(i) = M(:,i).'*sigmaInv*M(:,i);
26 | end
27 | result = abs(result);
28 |
29 | return;
--------------------------------------------------------------------------------
/functions/hyperSam.m:
--------------------------------------------------------------------------------
1 | function [errRadians] = hyperSam(a, b)
2 | % HYPERSAM Computes the spectral angle error (in radians) between two
3 | % vectors, or between a vector and every column or row of a matrix
4 | %
5 | % Usage
6 | % [errRadians] = hyperSam(a, b)
7 | % [errRadians] = hyperSam(A, b)
8 | % [errRadians] = hyperSam(a, B)
9 | % Inputs
10 | % a - vector, (px1)
11 | % b - vector, (px1)
12 | % A - matrix, (pxN)
13 | % B - matrix, (pxN)
14 | % Outputs
15 | % errRadians - angle between vectors a and b in radians, (1xN)
16 |
17 | % Check dimensions
18 | if ~any(size(a)==size(b)),
19 | error('Incorrect dimensions provided.');
20 | elseif ~any([isvector(a),isvector(b)]),
21 | error('Incorrect inputs. At least one input must be a vector.');
22 | end
23 |
24 | % Turn row vectors to column vectors if necessary
25 | if isrow(a), a=a'; end
26 | if isrow(b), b=b'; end
27 |
28 | % Get dimensions
29 | p1 = size(a,1);
30 | p2 = size(b,1);
31 |
32 | % Transpose matrix if necessary
33 | if ~isvector(a), % a is a matrix, b is a vector
34 | if p1~=p2, a=a'; end
35 | errRadians = getSam(a,b);
36 | return
37 |
38 | elseif ~isvector(b) % b is a matrix, a is a vector
39 | if p2~=p1, b=b'; end
40 | errRadians = getSam(b,a);
41 | return
42 |
43 | elseif all([isvector(a),isvector(b)]) % a and b are both vectors
44 | errRadians = getSam(a,b);
45 | return
46 |
47 | else
48 | error('Unknown error. See help hyperSam.')
49 | end
50 |
51 |
52 | function errRadians = getSam(a, b)
53 | % GETSAM computes the spectral angle error between the vector b and
54 | % every column of matrix a (or just the first column, if a is a vector)
55 |
56 | [~,N] = size(a);
57 | errRadians = zeros(1,N);
58 |
59 | for k=1:N
60 | tmp = a(:,k);
61 | errRadians(k) = acos(dot(tmp, b)/ (norm(b) * norm(tmp)));
62 | end
63 |
--------------------------------------------------------------------------------
/functions/hyperSaveFigure.m:
--------------------------------------------------------------------------------
1 | function hyperSaveFigure(h, filename, fmt)
2 | % HYPERSAVEFIGURE Writes a figure to disk as an image.
3 | %
4 | % Usage
5 | % hyperSaveFigure(gcf, 'filename.png');
6 | % Inputs
7 | % h - Handle to figure
8 | % filename - Filename for output file. Extension determines image type.
9 | % fmt - Format of output image. 'wysiwyg' or wysiwyp' for 'what you see
10 | % is what you get' and what 'you see is what you print' respectively.
11 | % Outputs
12 | % none
13 |
14 | if (nargin == 2)
15 | fmt = 'wysiwyg';
16 | end
17 |
18 | fmt = lower(fmt);
19 |
20 | if strcmp(fmt, 'wysiwyp')
21 | saveas(h, filename);
22 | elseif strcmp(fmt, 'wysiwyg')
23 | set(h, 'Color',[1 1 1]);
24 | frame = getframe(h);
25 | [X,map] = frame2im(frame);
26 | imwrite(X ,filename);
27 | else
28 | error('Bad format string specified.');
29 | end
30 | %print(h, '-dpng', filename);
--------------------------------------------------------------------------------
/functions/hyperSid.m:
--------------------------------------------------------------------------------
1 | function [ err ] = hyperSid( M, b )
2 | % HYPERSID Computes the spectral information divergence between two vectors
3 | %
4 | % Usage
5 | % [err] = hyperSid(a, b)
6 | % Inputs
7 | % M - 2d matrix of data (p x N)
8 | % b - vector 2
9 | % Outputs
10 | % err - spectral information divergence between M and b
11 | %
12 | % References
13 | % C.-I Chang, "Spectral information divergence for hyperspectral image
14 | % analysis," IEEE 1999 International Geoscience and Remote Sensing Symp.,
15 | % Hamburg, Germany, pp. 509-511, 28 June-2 July, 1999.
16 |
17 | [p, N] = size(M);
18 | err = zeros(1, N);
19 | for k=1:N
20 | err(k) = abs(sum(M(:,k).*log(M(:,k)./b)) + sum(b.*log(b./M(:,k))));
21 | end
22 | err = 1./(err+eps);
23 |
--------------------------------------------------------------------------------
/functions/hyperSignedAce.m:
--------------------------------------------------------------------------------
1 | function [results] = hyperSignedAce(M, t)
2 | % TODO
3 | % HYPERACE Performs the adaptive cosin/coherent estimator algorithm
4 | % Performs the adaptive cosin/coherent estimator algorithm for target
5 | % detection.
6 | %
7 | % Usage
8 | % [results] = hyperAce(M, S)
9 | % Inputs
10 | % M - 2d matrix of HSI data (p x N)
11 | % S - 2d matrix of target endmembers (p x q)
12 | % Outputs
13 | % results - vector of detector output (N x 1)
14 | %
15 | % References
16 | % X Jin, S Paswater, H Cline. "A Comparative Study of Target Detection
17 | % Algorithms for Hyperspectral Imagery." SPIE Algorithms and Technologies
18 | % for Multispectral, Hyperspectral, and Ultraspectral Imagery XV. Vol
19 | % 7334. 2009.
20 |
21 |
22 | [p, N] = size(M);
23 | % Remove mean from data
24 | u = mean(M.').';
25 | M = M - repmat(u, 1, N);
26 | t = t - u;
27 |
28 | R_hat = hyperCov(M);
29 | G = inv(R_hat);
30 |
31 | results = zeros(1, N);
32 | tmp = (t'*G*t);
33 | for k=1:N
34 | x = M(:,k);
35 | results(k) = ((x'*G*t)*abs(x'*G*t)) / (tmp*(x'*G*x));
36 | end
37 |
--------------------------------------------------------------------------------
/functions/hyperUcls.m:
--------------------------------------------------------------------------------
1 | function [ W ] = hyperUcls( M, U )
2 | %HYPERUCLS Unconstrained least squares
3 | % hyperUcls performs unconstrained least squares abundance estimation
4 | %
5 | % Usage
6 | % [ W ] = hyperUcls( M, U )
7 | % Inputs
8 | % M - 2D data matrix (p x N)
9 | % U - 2D matrix of endmembers (p x q)
10 | % Outputs
11 | % W - Abundance maps (q x N)
12 |
13 | if (ndims(M) ~= 2)
14 | error('M must be a p x N matrix.');
15 | end
16 | if (ndims(U) ~= 2)
17 | error('M must be a p x q matrix.');
18 | end
19 |
20 | [p1, N] = size(M);
21 | [p2, q] = size(U);
22 | if (p1 ~= p2)
23 | error('M and U must have the same number of spectral bands.');
24 | end
25 |
26 | Minv = pinv(U);
27 | W = zeros(q, N);
28 | for n1 = 1:N
29 | W(:, n1) = Minv*M(:, n1);
30 | end
31 |
32 | return;
33 |
--------------------------------------------------------------------------------
/functions/hyperVca.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/davidkun/HyperSpectralToolbox/9dc222bb9c863e19b8a3f1946e947125dacc49cb/functions/hyperVca.m
--------------------------------------------------------------------------------
/functions/hyperWhiten.m:
--------------------------------------------------------------------------------
1 | function [X_whitened, Aw, u] = hyperWhiten( X )
2 | %HYPERWHITEN Whitens a data matrix
3 | % hyperWhiten whitens a data matrix by performing a transform upon it so
4 | % that diagonals of its covariance matrix are all unity. Whitening is
5 | % simply a coordinate rotation followed by a scaling factor.
6 | %
7 | % Usage
8 | % [X_whitened] = hyperWhiten( X )
9 | % Inputs
10 | % X - 2D matrix (p x N)
11 | % Outputs
12 | % X_whitened - 2D matrix (p x N), now whitened
13 | % Aw - 2D whitening matrix.
14 | % u - Vector of data mean
15 | %
16 | % References
17 | % http://en.wikipedia.org/wiki/Whitening_transformation
18 |
19 | [p, N] = size(X);
20 |
21 | % Remove the data mean
22 | u = mean(X.').';
23 | X = X - repmat(u, 1, N);
24 |
25 | % Compute covariance matrix
26 | sigma = hyperCov(X);
27 | % Compute SVD of covariance matrix to get eigenvectors/values
28 | % The columns of V are the eigenvectors of sigma.
29 | % Assume S is positive and U encodes the axis reflection information
30 | [U,S,V] = svd(sigma);
31 | Aw = inv(sqrt(S))* V.';
32 | % Whiten the data
33 | X_whitened = Aw * X;
34 |
35 | return;
--------------------------------------------------------------------------------
/newFunctions/README.md:
--------------------------------------------------------------------------------
1 | ## New Functions ##
2 |
3 | These are some of the functions I am working on adding to the Toolbox. Depending on the rate of progress, I hope that this list will continue to grow. Crossed out functions are done.
4 |
5 | ### Endmember Determination (Extraction) Algorithms ###
6 |
7 | * ~~Automated Morphological Endmember Extraction (AMEE)~~
8 | * ~~Alternating Volume Maximization (AVMAX)~~
9 | * ~~N-FINDR~~
10 | * Random N-FINDR (RN-FINDR)
11 |
12 | ### Other ###
13 | * ~~Demo file (guide) for using these functions~~
14 | * ~~Truecolor composite generation from RGB spectral bands~~
15 |
--------------------------------------------------------------------------------
/newFunctions/hyperAmee.m:
--------------------------------------------------------------------------------
1 | function [U] = hyperAmee(M, q, Smin, Smax, Imax)
2 | % HYPERAMEE Performs the AMEE algorithm to find q endmembers
3 | % Performs the Automated Morphological Endmember Extraction (AMEE)
4 | % algorithm to find q endmembers. If only M is
5 | % given as input, this function calls hyperHfcVd to estimate the number
6 | % of endmembers (q) and then hyperPct to reduce dimensionality to (q-1).
7 | %
8 | % Usage
9 | % [U] = hyperAmee(M, q, Smin)
10 | % [U] = hyperAmee(M, q, Smin, Smax)
11 | % [U] = hyperAmee(M, q, Smin, Smax, Imax)
12 | % Inputs
13 | % M - 3d matrix of HSI data (m x n x p)
14 | % q - Number of endmembers to find
15 | % Smin - minimum kernel size (Smin x Smin)
16 | % Smax - maximum kernel size (Smax x Smax)
17 | % Imax - maximum iterations
18 | % Outputs
19 | % U - Recovered endmembers (p x q)
20 | %
21 | % References
22 | % Plaza, Antonio, et al. "Spatial/spectral endmember extraction
23 | % by multidimensional morphological operations." Geoscience and
24 | % Remote Sensing, IEEE Transactions on 40.9 (2002): 2025-2041.
25 |
26 | % Error trapping
27 | if nargin < 3 || nargin > 5
28 | help hyperAmee
29 | error('Not enough input arguments. See function description.')
30 | elseif nargin == 3
31 | % i.e. Smax and Imax not given
32 | Smax = Smin;
33 | Imax = 1;
34 | elseif nargin == 4
35 | % i.e. if Imax not given
36 | if Smin <= Smax
37 | Imax = round((Smax-Smin)/2)+1;
38 | else
39 | help hyperAmee
40 | error('Smax cannot be less than Smin. See function description.')
41 | end
42 | elseif nargin == 5
43 | if Smin == Smax && Imax < 2
44 | help hyperAmee
45 | error('Cannot iterate more than once with these S limits.')
46 | elseif Imax > (Smax-Smin+1)
47 | Imax = round((Smax-Smin)/2)+1;
48 | end
49 | end
50 |
51 | if ndims(M) ~= 3
52 | error('Input image must be (m x n x p)');
53 | else
54 | [h, w, p] = size(M);
55 | end
56 |
57 |
58 | % Build pixel vectors from M
59 | pixVec = cell(h, w);
60 | for hIter = 1:h
61 | for wIter = 1:w
62 | pixVec{hIter,wIter} = squeeze(M(hIter,wIter,:));
63 | end
64 | end
65 |
66 | % Morphological Eccentricity Index Score (MEI)
67 | MEI = zeros(h, w);
68 |
69 | % Kernel (structuring element)
70 | for B = round(linspace(Smin, Smax, Imax));
71 | % Create non-overlapping arrays (to reduce computational load)
72 | hArray = 1:B:h; hArray(end) = h-B+1;
73 | wArray = 1:B:w; wArray(end) = w-B+1;
74 |
75 | % Move B though all pixels in M
76 | for wPixel = wArray;
77 | for hPixel = hArray;
78 | % (hPixel,wPixel) defines the top-left pixel of the current kernel
79 | ker = pixVec(hPixel:hPixel+B-1, wPixel:wPixel+B-1);
80 | [x, y, mei] = spatialSearch( ker );
81 | % global (x,y) from local (x,y)
82 | x = x+hPixel-1;
83 | y = y+wPixel-1;
84 | % set MEI value at max pixel location
85 | MEI(x, y) = mei;
86 | end
87 | end
88 | end
89 |
90 | % Find q largest MEI values
91 | [tmp,idx] = sort(MEI(:), 'descend');
92 | top = idx(1:q)';
93 |
94 | % Return endmembers
95 | U = cell2mat(pixVec(top));
96 |
97 | end % hyperAmee function
98 |
99 |
100 | function [xMax, yMax, mei] = spatialSearch( ker )
101 | %function [xMax, yMax, mei] = spatialSearch( ker )
102 | % spatialSearch finds the max and min cumulative distances
103 | % between each pixel vector and its neighbors inside a kernel
104 | % of size (B x B) and computes the local MEI.
105 |
106 | if ~iscell(ker)
107 | error('ker is not a cell! See line 57 of hyperAmee.m')
108 | end
109 |
110 | B = size(ker,1);
111 |
112 | dist = zeros(B);
113 | for i = 1:B;
114 | for j = 1:B;
115 | dist(i,j) = Dist(ker{i,j}, ker);
116 | end
117 | end
118 |
119 | % Morphological erosion to find minimum pixel vector in region B
120 | [tmp,rowIdx] = min(dist);
121 | [val,colIdx] = min(tmp);
122 | xMin = rowIdx(colIdx);
123 | yMin = colIdx;
124 |
125 | % Morphological dilation to find maximum pixel vector in region B
126 | [tmp,rowIdx] = max(dist);
127 | [val,colIdx] = max(tmp);
128 | xMax = rowIdx(colIdx);
129 | yMax = colIdx;
130 |
131 | % MEI computation
132 | mei = Dist(ker{xMin, yMin}, ker{xMax, yMax});
133 |
134 | end % spatialSearch function
135 |
136 |
137 |
138 | function dist = Dist(a, C)
139 | %function dist = Dist(a, C)
140 | % Cumulative distance measure between a pixel vector and its neighbor(s).
141 | % Plaza et al. used the Spectral Angle Mapper (SAM) measure.
142 | %
143 | % Inputs
144 | % a - pixel vector of interest (p x 1)
145 | % C - all pixels in neighborhood (or a single pixel vector)
146 | % Outpus
147 | % dist - (cumulative) SAM distance
148 |
149 | if ~iscell(C)
150 | dist = acos(dot(a,C)/(norm(a)*norm(C)));
151 | else
152 | dist = 0;
153 | for k = 1:numel(C);
154 | dist = dist + acos(dot(a,C{k})/(norm(a)*norm(C{k})));
155 | end
156 | end
157 |
158 | end % Dist function
159 |
160 |
161 |
162 |
--------------------------------------------------------------------------------
/newFunctions/hyperAvmax.m:
--------------------------------------------------------------------------------
1 | function [U] = hyperAvmax(M, q)
2 | % HYPERAVMAX Performs the AVMAX algorithm
3 | % Performs the Alternating Volume Maximization (AVMAX) algorithm
4 | % to find q endmembers. If only M is given as input, this function
5 | % calls hyperHfcVd to estimate the number of endmembers (q) and
6 | % then hyperPct to reduce dimensionality to (q-1).
7 | %
8 | % Usage
9 | % [U] = hyperNfindr(M)
10 | % [U] = hyperNfindr(M, q)
11 | % Inputs
12 | % M - 2d matrix of HSI data (p x N)
13 | % q - Number of endmembers to find
14 | % -- if not given, q is obtained from hyperHfcVd(M, 10^-3)
15 | % Outputs
16 | % U - Recovered endmembers (p x q)
17 | %
18 | % References
19 | % T.H. Chan et al., "A simplex volume maximization framework
20 | % for hyperspectral endmember extraction." Geoscience and Remote
21 | % Sensing, IEEE Transactions on 49.11 (2011): 4177-4193.
22 |
23 | % Error trapping
24 | if ndims(M) ~= 2
25 | warning('WarnTests:dim', ...
26 | 'Input image must be p x N.\n',...
27 | 'Converting with hyperConvert2d.\n')
28 | M = hyperConvert2d(M);
29 | end
30 |
31 | M_orig = M;
32 | [p, N] = size(M);
33 |
34 | if nargin == 1
35 | q = hyperHfcVd(M_orig, [10^-3]);
36 | M = hyperPct(M, q-1);
37 | elseif q < p+1
38 | M = hyperPct(M, q-1);
39 | warning('WarnTests:dim', ...
40 | strcat('AVMAX requires (q-1) spectral bands.\n',...
41 | 'Performing PCA to reduce dimensionality.\n'))
42 | elseif q > p+1
43 | warning('WarnTests:dim', ...
44 | strcat('AVMAX requires (q-1) spectral bands.\n',...
45 | 'Performing PCA to reduce dimensionality.\n'))
46 | error('ErrTests:dim', ...
47 | strcat('AVMAX cannot find more than (p+1) endmembers (q),\n', ...
48 | 'where p is the number of available spectral bands.\n'))
49 | end
50 |
51 | % Initialize
52 | M = M*1e2; % Scale up reflectances to reduce numerical errors
53 | tol = 5e-5; % Convergence tolerance
54 | maxitr = 1e2; % Maximum iterations for search
55 |
56 | % Step 1
57 | U_idx = randperm(N,q); % Random endmember selection
58 | U = [M(:,U_idx); % Initialize endmember matrix
59 | ones(1,q)];
60 | bj = zeros(q-1,1);
61 |
62 | % Step 2
63 | rho = det(U); % Initial volume
64 |
65 | % Begin search
66 | for zeta = 1:maxitr
67 |
68 | for j = 1:q
69 | % Step 3
70 | U_tmp1 = U;
71 | U_tmp1(:,j) = []; % Remove j-th column
72 | U_tmp2 = U_tmp1;
73 | for i = 1:q-1
74 | U_tmp2(i,:) = []; % Remove i-th row
75 | bj(i) = (-1)^(i+j) * det(U_tmp2);
76 | U_tmp2 = U_tmp1; % Add back i-th row
77 | end
78 |
79 | % Step 4
80 | [val,l] = max(bj.'*M);
81 | U(1:q-1,j) = M(:,l); % Update endmember matrix
82 | U_idx(j) = l; % Keep track of indices
83 | end
84 |
85 | % Step 5
86 | rho_bar = det(U);
87 |
88 | % Step 6
89 | if abs(rho_bar-rho)/rho > tol
90 | rho = rho_bar;
91 | else
92 | break
93 | end
94 | end
95 |
96 | if zeta == maxitr
97 | warning('WarnTests:maxitr', ...
98 | ['Maximum iterations reached without convergence.\n ', ...
99 | 'Convergence tolerance:\t %0.5g \n Limit reached: %0.5g \n', ...
100 | ' Iterations: %d \n'], ...
101 | tol, abs(rho_bar-rho)/rho, zeta)
102 | else
103 | fprintf('Total iterations: %d', zeta)
104 | end
105 |
106 | % Return endmembers
107 | U = M_orig(:, U_idx);
108 |
--------------------------------------------------------------------------------
/newFunctions/hyperDemo2.m:
--------------------------------------------------------------------------------
1 | function hyperDemo2
2 | % HYPERDEMO2 Demonstrates new functions in the hyperspectral toolbox
3 | clear all; close all; clc;
4 |
5 | %--------------------------------------------------------------------------
6 | % Measurements and reflectance (input) files/directory
7 | % The data files are obtained from: http://aviris.jpl.nasa.gov/data/free_data.html
8 | % (the reflectance .rar file for Cuprite)
9 | dataDir = ['~' filesep 'Downloads' filesep 'f970619t01p02r02c'];
10 | rflFile = [dataDir filesep 'f970619t01p02_r02_sc04.a.rfl'];
11 | spcFile = [dataDir filesep 'f970619t01p02_r02.a.spc'];
12 |
13 | % Results (output) directory
14 | resultsDir = '~/Dropbox/Purdue Grad/Semester 2/AAE 590/Project/Simulation/results';
15 | if ~isdir(resultsDir)
16 | mkdir(resultsDir);
17 | end
18 |
19 | %--------------------------------------------------------------------------
20 | % Record outputs (not including figures)
21 | diary(sprintf('%s/log.txt',resultsDir))
22 | dnt = fix(clock); % date and time
23 | fprintf('%d/%d/%d %d:%d:%d\n\n', dnt([2,3,1,4,5,6]))
24 |
25 | fprintf(' Reading data from %s \n in the directory %s.\n', rflFile, dataDir);
26 | fprintf(' Storing results in %s directory.\n', resultsDir);
27 |
28 | %% Read in an HSI image and display one band
29 | bndnum = 120; % Band Number
30 | tmp = hyperReadAvirisSpc(spcFile);
31 | bnd = tmp(bndnum);
32 | slice = hyperReadAvirisRfl(rflFile, [1 512], [1 614], [bndnum bndnum]);
33 | figure; imagesc(slice); axis image; colormap(gray);
34 | title(['Slice of HSI, at $\lambda=$',sprintf('%5.6g nm',bnd)],...
35 | 'Interpreter', 'Latex', 'FontSize', 14);
36 | print(gcf, '-r600', '-depsc', sprintf('%s/sampleSlice', resultsDir));
37 |
38 | %% True Color Composite
39 | rgbBands = [31,20,12]; % RGB bands (default): [665.73, 557.07, 478.17] nm
40 | tColor = hyperTruecolor(rflFile, 512, 614, 224, rgbBands, 'stretchlim');
41 | figure; imagesc(tColor); axis image
42 | title('Cuprite, Nevada. AVIRIS 1997 data.', 'Interpreter', 'Latex', 'FontSize', 14);
43 | print(gcf, '-r600', '-depsc', sprintf('%s/truecolor', resultsDir));
44 |
45 | %% Read part of AVIRIS reflectance data file that we will further process
46 | M = hyperReadAvirisRfl(rflFile, [1 512], [1 614], [1 224]);
47 |
48 | % Read AVIRIS .spc file
49 | lambdasNm = hyperReadAvirisSpc(spcFile);
50 |
51 | % Resample AVIRIS image
52 | [h, w, p] = size(M);
53 | M2d = hyperConvert2d(M);
54 | desiredLambdasNm = 400:(2400-400)/(224-1):2400;
55 |
56 | fprintf('Resampling M for desired wavelengths...\n'); tic;
57 | M2d = hyperResample(M2d, lambdasNm, desiredLambdasNm);
58 | et=toc; fprintf('...Done. (~%1.3g seconds)\n',et);
59 |
60 | %% Remove low SNR bands and bands affected by water absorption
61 | % Examine the spectral profile of some random pixels (targets)
62 | M = hyperConvert3d(M2d, h, w, p);
63 | ntarg = 20; % number of targets
64 | htarg = randi(h, 1, ntarg); % h position of targets
65 | wtarg = randi(w, 1, ntarg); % w position of targets
66 | targets = zeros(ntarg, p);
67 | for idx = 1:ntarg
68 | targets(idx,:) = squeeze(M(htarg(idx), wtarg(idx), :));
69 | end
70 |
71 | figure;
72 | set(0,'Units','pixels'); scnsz = get(0,'ScreenSize');
73 | set(gcf, 'OuterPosition',[1,1,scnsz(3)/3,scnsz(4)],'PaperPositionMode', 'auto');
74 | subplot(211);
75 | plot(desiredLambdasNm, targets, '.'); grid on; ylim([0,0.6]);
76 | title(sprintf('(a) %d Target Signatures (All Bands)', ntarg), 'Interpreter', 'Latex', 'FontSize', 14);
77 | ax(1) = xlabel('Wavelengths [nm]');
78 | ax(2) = ylabel('Reflectance');
79 | set(ax, 'Interpreter', 'Latex', 'FontSize', 12);
80 |
81 | fprintf('Removing low SNR bands...\n');
82 | % [rows,cols,vals]=find(sum(M2d,2)==0);
83 | % goodBands = [4:104 116:149 171:224];
84 | goodBands = [4:104 116:135 137:149 174:224];
85 | M2d = M2d(goodBands, :);
86 | p = length(goodBands);
87 | lambdasNm = desiredLambdasNm(goodBands);
88 |
89 | % Final hyperspectral data cube that will be used throughout this demo
90 | M = hyperConvert3d(M2d, h, w, p);
91 | fprintf('...Done\n');
92 |
93 | % Plot new target signatures (only good bands now)
94 | targets = zeros(ntarg, p);
95 | for idx = 1:ntarg
96 | targets(idx,:) = squeeze(M(htarg(idx), wtarg(idx), :));
97 | end
98 | subplot(212); plot(lambdasNm, targets, '.'); grid on; ylim([0,0.6]);
99 | title(sprintf('(b) %d Target Signatures (Good Bands)', ntarg), 'Interpreter', 'Latex', 'FontSize', 14);
100 | ax(1) = xlabel('Wavelengths [nm]');
101 | ax(2) = ylabel('Reflectance');
102 | set(ax, 'Interpreter', 'Latex', 'FontSize', 12);
103 | print(gcf, '-r600', '-depsc', sprintf('%s/targets_spectra', resultsDir));
104 |
105 | %% --------------------------------------------------------------------------
106 | % Perform various endmember determination algorithms
107 | % Estimate number of endmembers in image.
108 | % q = hyperHfcVd(M2d, [10^-3]); % doesn't work because corr(M') returns
109 | % some NaNs, which means that there's no variance in some of the bands...
110 | q = 6; % number of endmembers to find
111 | % M2dnorm = hyperNormalize(M2d); % normalized [0-1] reflectance
112 |
113 | %% PPI
114 | fprintf('Performing PPI for endmember determination...\n'); tic;
115 | Uppi = hyperPpi(M2d, q, 1000);
116 | et=toc; fprintf('...Done. (~%1.3g seconds)\n',et);
117 |
118 | % Plot endmember signatures
119 | figure; plot(lambdasNm, Uppi, '.'); grid on;
120 | title('PPI Recovered Endmembers', 'Interpreter', 'Latex', 'FontSize', 14);
121 | ax(1) = ylabel('Reflectance [0-1]');
122 | ax(2) = xlabel('Wavelength [nm]');
123 | set(ax, 'Interpreter', 'Latex', 'FontSize', 12);
124 | l = legend(cellstr(num2str((1:q)'))', 'Location', 'EastOutside');
125 | a = get(l, 'children'); set(a(1:3:end), 'MarkerSize', 20);
126 | print(gcf, '-r600', '-depsc', sprintf('%s/endmmbrs-ppi', resultsDir));
127 |
128 | %% N-FINDR
129 | fprintf('Performing N-FINDR for endmember determination...\n'); tic;
130 | Unfindr = hyperNfindr(M2d, q);
131 | et=toc; fprintf('...Done. (~%1.3g seconds)\n',et);
132 |
133 | % Plot endmember signatures
134 | figure; plot(lambdasNm, Unfindr, '.'); grid on;
135 | title('N-FINDR Recovered Endmembers', 'Interpreter', 'Latex', 'FontSize', 14);
136 | ax(1) = ylabel('Reflectance [0-1]');
137 | ax(2) = xlabel('Wavelength [nm]');
138 | set(ax, 'Interpreter', 'Latex', 'FontSize', 12);
139 | l = legend(cellstr(num2str((1:q)'))', 'Location', 'EastOutside');
140 | a = get(l, 'children'); set(a(1:3:end), 'MarkerSize', 20);
141 | print(gcf, '-r600', '-depsc', sprintf('%s/endmmbrs-nfindr', resultsDir));
142 |
143 | %% AVMAX
144 | fprintf('Performing AVMAX for endmember determination...\n'); tic;
145 | Uavmax = hyperAvmax(M2d, q);
146 | et=toc; fprintf('...Done. (~%1.3g seconds)\n',et);
147 |
148 | % Plot endmember signatures
149 | figure; plot(lambdasNm, Uavmax, '.'); grid on;
150 | title('AVMAX Recovered Endmembers', 'Interpreter', 'Latex', 'FontSize', 14);
151 | ax(1) = ylabel('Reflectance [0-1]');
152 | ax(2) = xlabel('Wavelength [nm]');
153 | set(ax, 'Interpreter', 'Latex', 'FontSize', 12);
154 | l = legend(cellstr(num2str((1:q)'))', 'Location', 'EastOutside');
155 | a = get(l, 'children'); set(a(1:3:end), 'MarkerSize', 20);
156 | print(gcf, '-r600', '-depsc', sprintf('%s/endmmbrs-avmax', resultsDir));
157 |
158 | %% AMEE
159 | fprintf('Performing AMEE for endmember determination...\n'); tic;
160 | Uamee = hyperAmee(M, q, 5);
161 | et=toc; fprintf('...Done. (~%1.3g seconds)\n',et);
162 |
163 | % Plot endmember signatures
164 | figure; plot(lambdasNm, Uamee, '.'); grid on; ylim([0,1]);
165 | title('AMEE Recovered Endmembers', 'Interpreter', 'Latex', 'FontSize', 14);
166 | ax(1) = ylabel('Reflectance [0-1]');
167 | ax(2) = xlabel('Wavelength [nm]');
168 | set(ax, 'Interpreter', 'Latex', 'FontSize', 12);
169 | l = legend(cellstr(num2str((1:q)'))', 'Location', 'EastOutside');
170 | a = get(l, 'children'); set(a(1:3:end), 'MarkerSize', 20);
171 | print(gcf, '-r600', '-depsc', sprintf('%s/endmmbrs-amee', resultsDir));
172 |
173 | %% --------------------------------------------------------------------------
174 | % Create abundance maps from unmixed endmembers
175 | %% From PPI results:
176 | fprintf('Creating abundance maps from PPI endmember results...\n'); tic;
177 | abundanceMaps = hyperNnls(M2d, Uppi);
178 | abundanceMaps = hyperConvert3d(abundanceMaps, h, w, q);
179 | et=toc; fprintf('...Done. (~%1.3g seconds)\n',et);
180 |
181 | fprintf('Plotting and saving PPI abundance maps...\n');
182 | for i=1:q
183 | if i==1; figure; end;
184 | clf; imagesc(abundanceMaps(:,:,i)); colorbar; axis image;
185 | title(sprintf('Abundance Map %d/%d', i, q), 'Interpreter', 'Latex');
186 | print(gcf, '-depsc', '-r600', sprintf('%s/abund-ppi-%d', resultsDir, i))
187 | end
188 | close(gcf); fprintf('...Done.\n');
189 |
190 | %% From N-FINDR results:
191 | fprintf('Creating abundance maps from N-FINDR endmember results...\n'); tic;
192 | abundanceMaps = hyperNnls(M2d, Unfindr);
193 | abundanceMaps = hyperConvert3d(abundanceMaps, h, w, q);
194 | et=toc; fprintf('...Done. (~%1.3g seconds)\n',et);
195 |
196 | fprintf('Plotting and saving N-FINDR abundance maps...\n');
197 | for i=1:q
198 | if i==1; figure; end;
199 | clf; imagesc(abundanceMaps(:,:,i)); colorbar; axis image;
200 | title(sprintf('Abundance Map %d/%d', i, q), 'Interpreter', 'Latex');
201 | print(gcf, '-depsc', '-r600', sprintf('%s/abund-nfindr-%d', resultsDir, i))
202 | end
203 | close(gcf); fprintf('...Done.\n');
204 |
205 | %% From AVMAX results:
206 | fprintf('Creating abundance maps from AVMAX endmember results...\n'); tic;
207 | abundanceMaps = hyperNnls(M2d, Uavmax);
208 | abundanceMaps = hyperConvert3d(abundanceMaps, h, w, q);
209 | et=toc; fprintf('...Done. (~%1.3g seconds)\n',et);
210 |
211 | fprintf('Plotting and saving AVMAX abundance maps...\n');
212 | for i=1:q
213 | if i==1; figure; end;
214 | clf; imagesc(abundanceMaps(:,:,i)); colorbar; axis image;
215 | title(sprintf('Abundance Map %d/%d', i, q), 'Interpreter', 'Latex');
216 | print(gcf, '-depsc', '-r600', sprintf('%s/abund-avmax-%d', resultsDir, i))
217 | end
218 | close(gcf); fprintf('...Done.\n');
219 |
220 | %% From AMEE results:
221 | fprintf('Creating abundance maps from AMEE endmember results...\n'); tic;
222 | abundanceMaps = hyperNnls(M2d, Uamee);
223 | abundanceMaps = hyperConvert3d(abundanceMaps, h, w, q);
224 | et=toc; fprintf('...Done. (~%1.3g seconds)\n',et);
225 |
226 | fprintf('Plotting and saving AMEE abundance maps...\n');
227 | for i=1:q
228 | if i==1; figure; end;
229 | clf; imagesc(abundanceMaps(:,:,i)); colorbar; axis image;
230 | title(sprintf('Abundance Map %d/%d', i, q), 'Interpreter', 'Latex');
231 | print(gcf, '-depsc', '-r600', sprintf('%s/abund-amee-%d', resultsDir, i))
232 | end
233 | close(gcf); fprintf('...Done.\n');
234 |
235 | %% Save data and end log file
236 | saveDataFile = 'dataOutput';
237 | fprintf('\nSaving endmemebers (from each method) to %s.mat...\n', saveDataFile);
238 | save([resultsDir,filesep,saveDataFile], 'lambdasNm', ...
239 | 'Uppi', 'Unfindr', 'Uavmax', 'Uamee');
240 | fprintf('...Done.\n');
241 | diary off; close all
242 |
--------------------------------------------------------------------------------
/newFunctions/hyperNfindr.m:
--------------------------------------------------------------------------------
1 | function [U] = hyperNfindr(M, q)
2 | % HYPERNFINDR Performs the N-FINDR (endmember extraction) algorithm
3 | % Performs the N-FINDR algorithm to find q endmembers. If only M is
4 | % given as input, this function calls hyperHfcVd to estimate the number
5 | % of endmembers (q) and then hyperPct to reduce dimensionality to (q-1).
6 | %
7 | % Usage
8 | % [U] = hyperNfindr(M)
9 | % [U] = hyperNfindr(M, q)
10 | % Inputs
11 | % M - 2d matrix of HSI data (p x N)
12 | % q - Number of endmembers to find
13 | % -- if not given, q is obtained from hyperHfcVd(M, 10^-3)
14 | % Outputs
15 | % U - Recovered endmembers (p x q)
16 | %
17 | % References
18 | % M. Winter, "N-findr: an algorithm for fast autonomous
19 | % spectral endmember determination in hyperspectral data," SPIE’s
20 | % International Symposium on Optical Science, Engineering, and
21 | % Instrumentation, pages 266–275. International Society for Optics
22 | % and Photonics, 1999.
23 |
24 | % Error trapping
25 | if ndims(M) ~= 2
26 | warning('WarnTests:dim', ...
27 | 'Input image must be p x N.\n',...
28 | 'Converting with hyperConvert2d.\n')
29 | M = hyperConvert2d(M);
30 | end
31 |
32 | M_orig = M;
33 | [p, N] = size(M);
34 |
35 | if nargin == 1
36 | fprintf('Implementing hyperHfcVd to determine the number of endmembers.\n')
37 | q = hyperHfcVd(M_orig, [10^-3]);
38 | fprintf('Reducing dimensionality to (q-1) using hyperPct.\n')
39 | M = hyperPct(M, q-1);
40 | elseif q < p+1
41 | warning('WarnTests:dim', ...
42 | strcat('N-FINDR requires (q-1) spectral bands.\n',...
43 | 'Performing PCA to reduce dimensionality.\n'))
44 | M = hyperPct(M, q-1);
45 | elseif q > p+1
46 | warning('WarnTests:dim', ...
47 | strcat('N-FINDR requires (q-1) spectral bands.\n',...
48 | 'Performing PCA to reduce dimensionality.\n'))
49 | error('ErrTests:dim', ...
50 | strcat('N-FINDR cannot find more than (p+1) endmembers (q),\n', ...
51 | 'where p is the number of available spectral bands.\n'))
52 | end
53 |
54 | % Initialize
55 | U_idx = randperm(N,q); % Random endmember selection
56 | E = M(:,U_idx); % Endmember matrix
57 | V = abs(det([ones(1,q); E])) / factorial(q-1); % Simplex volume
58 | vols = zeros(q,1);
59 |
60 | % Search for maximum volume simplex
61 | for j = 1:N;
62 | % Replace each column of E with sample vector M(:,j)
63 | % and compute the volume for each
64 | for k = 1:q;
65 | E_tmp = E;
66 | E_tmp(:,k) = M(:,j);
67 | vols(k) = abs(det([ones(1,q); E_tmp])) / factorial(q-1);
68 | end
69 | % If max volume is greater than previous V, update E and V
70 | [V_tmp,k_idx] = max(vols);
71 | if V_tmp > V
72 | V = V_tmp;
73 | E(:,k_idx) = M(:,j);
74 | U_idx(k_idx) = j;
75 | end
76 | end
77 |
78 | % Return endmembers
79 | U = M_orig(:, U_idx);
80 |
--------------------------------------------------------------------------------
/newFunctions/hyperRnfindr.m:
--------------------------------------------------------------------------------
1 | function [ U, X, n ] = hyperRnfindr( M, q, U_init )
2 | % HYPERRNFINDR Performs the RN-FINDR (endmember extraction) algorithm
3 | % Performs the RN-FINDR algorithm to generate abundance maps
4 | % and find the purest pixels. This function utilizes FastICA.
5 | %
6 | % Usage
7 | % [ U, X, n ] = hyperNfindr( M, q, U_init )
8 | % Inputs
9 | % M - HSI data in 2D (p x N)
10 | % q - Number of materials to unmix
11 | % U_init - Initia l endmembers (p x #)
12 | % Outputs
13 | % U - matrix of recovered endmembers (p x q)
14 | % X - material abundance maps (q x N)
15 | % n - (optional) Indicies of recovered endmembers (q x 1)
16 | %
17 | % References
18 | % C. Chang, C.C. Wu, and C.T. Tsai., "Random N-finder (N-FINDR)
19 | % endmember extraction algorithms for hyperspectral imagery."
20 | % Image Processing, IEEE Transactions on 20.3 (2011): 641-656.
--------------------------------------------------------------------------------
/newFunctions/hyperTruecolor.m:
--------------------------------------------------------------------------------
1 | function [tColor] = hyperTruecolor(rflFile, height, width, bands, rgbBands, strechtype)
2 | % HYPERTRUECOLOR Returns a truecolor composite image, given a reflectance file
3 | % hyperTruecolor returns a truecolor composite image, given an AVIRIS reflectance file,
4 | % with an optional enhancement of the image using one of two contrast streches.
5 | %
6 | % Usage
7 | % [tColor] = hyperTruecolor(rflFile, height, width, bands)
8 | % [tColor] = hyperTruecolor(rflFile, height, width, bands, rgbBands)
9 | % [tColor] = hyperTruecolor(rflFile, height, width, bands, rgbBands, strechtype)
10 | % Inputs
11 | % rflFile - Path and filename of AVIRIS reflectance measurements
12 | % height - Height in pixels
13 | % width - Width in pixels
14 | % bands - Number of bands
15 | % rgbBands - [Red, green, blue] bands (1x3 vector)
16 | % [31,20,12] is the default if no argument is given
17 | % strechtype - truecolor enhancement contrast strech (string):
18 | % 'none' : default if no argument is given
19 | % 'stretchlim' : linear contrast stretch
20 | % 'decorrstretch': decorrelation stretch
21 | % (enhanced color separation across highly correlated channels)
22 | % Outputs
23 | % tColor - Truecolor composite image
24 |
25 | if nargin < 4 || nargin > 6
26 | help hyperTruecolor
27 | error('Incorrect usage, see function description above.')
28 | end
29 |
30 | if nargin == 4
31 | % RGB bands: [665.73, 557.07, 478.17] nm
32 | rgbBands = [31,20,12];
33 | strechtype = 'none';
34 | elseif nargin == 5
35 | strechtype = 'none';
36 | end
37 |
38 | h = height;
39 | w = width;
40 | p = bands;
41 |
42 | % Read the 3 RGB bands
43 | tColor = multibandread(rflFile, [h w p], 'int16', 0, 'bip', 'ieee-be', ...
44 | {'Row', 'Range', [1 h]}, {'Column', 'Range', [1 w]}, ...
45 | {'Band', 'Direct', rgbBands} );
46 |
47 | % Normalize to proper reflectance units.
48 | tColor = tColor ./ 1e4;
49 |
50 | switch lower(strechtype)
51 | case 'none'
52 | return
53 | case 'stretchlim'
54 | % Apply a linear contrast stretch to the truecolor composite image
55 | tColor = imadjust(tColor, stretchlim(tColor));
56 | case 'decorrstretch'
57 | % Apply a decorrelation stretch to the truecolor composite image
58 | tColor = decorrstretch(tColor, 'Tol', 0.01);
59 | otherwise
60 | help hyperTruecolor
61 | error(sprintf('Unknown method %s. See function description above.', strechtype))
62 | end
63 |
--------------------------------------------------------------------------------