├── environment.yml
├── .gitignore
├── LICENSE
├── index.ipynb
├── notebooks
├── cobweb.py
└── cobweb-models.ipynb
└── README.md
/environment.yml:
--------------------------------------------------------------------------------
1 | name: sfi-complexity-economics
2 |
3 | dependencies:
4 | - python=3.5
5 | - ipywidgets
6 | - numpy
7 | - matplotlib
8 | - seaborn
9 | - scipy
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 |
5 | # C extensions
6 | *.so
7 |
8 | # Distribution / packaging
9 | .Python
10 | env/
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | *.egg-info/
23 | .installed.cfg
24 | *.egg
25 |
26 | # PyInstaller
27 | # Usually these files are written by a python script from a template
28 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
29 | *.manifest
30 | *.spec
31 |
32 | # Installer logs
33 | pip-log.txt
34 | pip-delete-this-directory.txt
35 |
36 | # Unit test / coverage reports
37 | htmlcov/
38 | .tox/
39 | .coverage
40 | .coverage.*
41 | .cache
42 | nosetests.xml
43 | coverage.xml
44 | *,cover
45 |
46 | # Translations
47 | *.mo
48 | *.pot
49 |
50 | # Django stuff:
51 | *.log
52 |
53 | # Sphinx documentation
54 | docs/_build/
55 |
56 | # PyBuilder
57 | target/
58 |
59 | # IPython checkpoints
60 | .ipynb_checkpoints/
61 | notebooks/.ipynb_checkpoints/
62 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | The MIT License (MIT)
2 |
3 | Copyright (c) 2015 David R. Pugh
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
23 |
--------------------------------------------------------------------------------
/index.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "
SFI Complexity Economics MOOC
\n",
8 | "\n",
9 | " Prof. J. Doyne Farmer and Dr. David R. Pugh
\n",
10 | "\n",
11 | "Here are links to the current list of lectures...\n",
12 | "\n",
13 | ""
16 | ]
17 | },
18 | {
19 | "cell_type": "code",
20 | "execution_count": null,
21 | "metadata": {
22 | "collapsed": true
23 | },
24 | "outputs": [],
25 | "source": []
26 | }
27 | ],
28 | "metadata": {
29 | "kernelspec": {
30 | "display_name": "Python 3",
31 | "language": "python",
32 | "name": "python3"
33 | },
34 | "language_info": {
35 | "codemirror_mode": {
36 | "name": "ipython",
37 | "version": 3
38 | },
39 | "file_extension": ".py",
40 | "mimetype": "text/x-python",
41 | "name": "python",
42 | "nbconvert_exporter": "python",
43 | "pygments_lexer": "ipython3",
44 | "version": "3.4.4"
45 | }
46 | },
47 | "nbformat": 4,
48 | "nbformat_minor": 0
49 | }
50 |
--------------------------------------------------------------------------------
/notebooks/cobweb.py:
--------------------------------------------------------------------------------
1 | import ipywidgets
2 | import matplotlib.pyplot as plt
3 | import numpy as np
4 | from scipy import optimize
5 |
6 |
7 | EPSILON = 0.01
8 | a_float_slider = ipywidgets.FloatSlider(value=3.0,
9 | min=0.0,
10 | max=10.0,
11 | step=EPSILON,
12 | description=r"$a$")
13 |
14 | b_float_slider = ipywidgets.FloatSlider(value=0.25,
15 | min=0.0,
16 | max=1.0,
17 | step=EPSILON,
18 | description=r"$b$")
19 |
20 | w_float_slider = ipywidgets.FloatSlider(value=0.3,
21 | min=0.0,
22 | max=1.0,
23 | step=EPSILON,
24 | description=r"$w$")
25 |
26 | gamma_float_slider = ipywidgets.FloatSlider(value=3.6,
27 | min=0.0,
28 | max=10.0,
29 | step=EPSILON,
30 | description=r"$\gamma$")
31 |
32 | p_bar_float_slider = ipywidgets.FloatSlider(value=5.0,
33 | min=0.0,
34 | max=10.0,
35 | step=EPSILON,
36 | description=r"$\bar{p}$")
37 |
38 | initial_expected_price_slider = ipywidgets.FloatSlider(value=5.0,
39 | min=0.0,
40 | max=10.0,
41 | step=EPSILON,
42 | description=r"$p_0^e$")
43 |
44 | T_int_slider = ipywidgets.IntSlider(value=50,
45 | min=1,
46 | max=500,
47 | step=EPSILON,
48 | description=r"$T$")
49 |
50 |
51 | def _excess_demand(price, D, S, a, b, gamma, p_bar):
52 | """Excess demand function."""
53 | return D(price, a, b) - S(price, gamma, p_bar)
54 |
55 |
56 | def _forecast_error(D_inverse, S, expected_price, **params):
57 | """Difference between observed price and expected price."""
58 | return observed_price(D_inverse, S, expected_price, **params) - expected_price
59 |
60 |
61 | def _simulate(X0, F, T, **params):
62 | """Simulate a map F for T periods starting from X0."""
63 | X = np.empty(T + 1)
64 | X[0] = X0
65 | for t in range(T):
66 | X[t+1] = F(X[t], **params)
67 | return X
68 |
69 |
70 |
71 | def quantity_demand_plot(D, a, b):
72 | """Plot quantity of goods demanded as a function of the observed price."""
73 | prices = np.linspace(0, 10, 1000)
74 | plt.plot(prices, D(prices, a, b), label=r"$D(p_t)$")
75 | plt.xlabel("Prices", fontsize=15)
76 | plt.ylabel("Quantities", fontsize=15)
77 | plt.ylim(0, 1.05 * a)
78 | plt.title("Goods demand function", fontsize=25)
79 | plt.legend()
80 |
81 |
82 | def quantity_supply_plot(S, gamma, p_bar):
83 | """Plot quantity of goods supplied as a function of the expected price."""
84 | expected_prices = np.linspace(0, 2 * p_bar, 1000)
85 | plt.plot(expected_prices, S(expected_prices, gamma, p_bar),
86 | label=r"$S(p_t^e)$")
87 | plt.xlabel("Prices", fontsize=15)
88 | plt.ylabel("Quantities", fontsize=15)
89 | plt.xlim(0, 2 * p_bar)
90 | plt.ylim(0, 3.5)
91 | plt.title("Goods supply function", fontsize=25)
92 | plt.legend()
93 |
94 |
95 | def supply_demand_plot(D, S, a, b, gamma, p_bar):
96 | """Plot demand and supply curves to find the market clearing equilibrium."""
97 | equilibrium_price = optimize.bisect(_excess_demand, 0, 100 * p_bar,
98 | args=(D, S, a, b, gamma, p_bar))
99 |
100 | prices = np.linspace(0, 2 * equilibrium_price, 1000)
101 | plt.plot(prices, S(prices, gamma, p_bar), label=r"$S_{\gamma}(p_t^e)$")
102 | plt.plot(prices, D(prices, a, b), label=r"$D(p_t)$")
103 | plt.plot(equilibrium_price, D(equilibrium_price, a, b), linestyle='none',
104 | marker='o', color='k', label=r"$p^*={}$".format(equilibrium_price))
105 | plt.xlabel("Prices", fontsize=15)
106 | plt.ylabel("Quantities", fontsize=15)
107 | plt.xlim(0, prices[-1])
108 | plt.ylim(0, 1.05 * a)
109 | plt.title("Market clearing equilibrium", fontsize=25)
110 | plt.legend()
111 |
112 |
113 | def time_series_plot(F, X0, T, **params):
114 | """Plot time series of some map F."""
115 | delta = 1e-6
116 | traj1 = _simulate(X0, F, T, **params)
117 | traj2 = _simulate((1 + delta) * X0, F, T, **params)
118 |
119 | fig, ax = plt.subplots(1, 2, sharex=True)
120 | ax[0].plot(traj1)
121 | ax[0].set_xlabel('Time', fontsize=15)
122 | ax[0].set_ylabel('$p_t^e$', fontsize=15, rotation='horizontal')
123 |
124 | ax[1].plot(np.abs(traj1 - traj2))
125 | ax[0].set_xlabel('Time', fontsize=15)
126 | ax[1].set_yscale('log')
127 | ax[1].set_title("Dependence on initial conditions?", fontsize=15)
128 | fig.tight_layout()
129 |
130 |
131 | def forecast_error_plot(D_inverse, S, F, X0, T, **params):
132 | """Plot forecast errors."""
133 | trajectory = _simulate(X0, F, T, **params)
134 | errors = _forecast_error(D_inverse, S, trajectory , **params)
135 |
136 | fig, ax = plt.subplots(1, 2)
137 | ax[0].plot(errors)
138 | ax[0].set_xlabel('Time')
139 |
140 | ax[1].hist(errors, bins=20)
141 | fig.suptitle('Forecast errors', fontsize=25)
142 | ax[1].set_xlabel('Errors')
143 | fig.tight_layout()
144 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | [](http://mybinder.org/repo/davidrpugh/sfi-complexity-mooc)
2 |
3 | # SFI Complexity Economics MOOC
4 |
5 | Instructors: Prof. J. Doyne Farmer and Dr. David R. Pugh (and co-conspirators!)
6 |
7 | From one of Gabby’s previous emails…
8 |
9 | > On average an SFI MOOC is 10 weeks long, with 1 unit per week. Each unit is made up of roughly six-ten subunits. Most of the subunits consists of 1 to 3 video segments (ideally less than 10 minutes long), exercises (if appropriate) a quiz, and quiz solutions (in text or video form). The last subunits may not have video, instead having a homework assignment and homework solution, and an end of unit test. As an example of how a course is structured see the outline for the Introduction to Complexity MOOC.
10 |
11 | # Course Outline
12 |
13 | ## Lecture 1: Introduction to Complexity Economics
14 | We want to highlight the frontier research (hopefully in a way the will make it digestible to second year undergraduates).
15 |
16 | Might make sense to have the following sub-units:
17 | Introductory video providing clear explanation of what complexity economics is (and what it isn’t). We will want to define key themes that will run throughout the course as well as terms and definitions (i.e., what is equilibrium, etc). A constructive critique of the mainstream approach to economics.
18 |
19 | * Video on the scientific method and how it differs in physics and economics.
20 | * Discussion of pre-requisites with pointers to other relevant SFI MOOCS as well as third-party materials.
21 | * Primer on use of Jupyter notebooks in the cloud (include pointers to instructions for installing software including on where to go to learn more about [best-practices for scientific computing](http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745); no support for software install will be given!).
22 |
23 | Also we will need to leave time to cover usual course logistics.
24 |
25 | ## Lecture 2: Cobweb Models and Expectations
26 | **Key ideas: Illustrate the important role of expectations in economic models. Distinguish between extreme forms of expectations (i.e., naive vs rational) and stress that real expectations formation rules fall somewhere in between.**
27 |
28 | ### YouTube length segments...
29 |
30 | 1. Discuss the basic idea behind the cobweb model. Explain the basic building blocks of the classic Brock and Hommes' [Rational Route to Randomness](http://www.ssc.wisc.edu/~wbrock/rp457a.pdf). This model provides a nice framework that can be easily extended to incorporate some of the ingredients of Car's more recent work.
31 | 2. Describe different rules for forming expectations in the cobweb model. Expectation formations rules are predictor functions that take a time series of prices and return a predicted value for a future price. Contrast various expectations formation rules with rational expectations.
32 | 3. Simulate the Brock and Hommes model with homogenous beliefs (i.e., all agents use the same expectation formation rule)! Under what conditions does one get limit cycles? Chaotic dynamics? Equilibria? Brock and Hommes model with homogenous beliefs is *very* close to the earlier Hommes model in [Dynamics of the cobweb model with adaptive expectations and non-linear supply and demand](http://www.parisschoolofeconomics.eu/docs/guesnerie-roger/hommes94.pdf).
33 | 4. Simulate the Brock and Hommes model with heterogenous beliefs (i.e., agents use different expectation formation rules!). Under what conditions does one get limit cycles? Chaotic dynamics? Equilibria?
34 | 5. Short quiz.
35 | 6. **Cars Hommes contribution: Lecture on experimental evidence on how real market participants form expectations. Need to discuss this with Cars ASAP!**
36 | 7. Explicitly make the link between simulation and computation and experimental work by use simulations to replicate some of the experimental evidence that Cars discusses in his lecture.
37 | 8. Short quiz.
38 |
39 | ## Lecture 3: Networks
40 | **Summary: Majority of economic interactions typically involves a very small minority of the population. The tendency to focus our attention on a few individuals or activities is an attribute of the real-world that is typically omitted from the standard characterization of markets in economics. In standard models of markets, agents interact impersonally and efficiently with
41 | countless other faceless agents. This lecture looks into the consequences of including explicit connections between agents in economic decision making. Agents are assumed to occupy the nodes of a network and to interact exclusively with agents to whom they are directly linked. As motivating examples we will look at both the evolution of game strategies and the effectiveness of exchange as the topology of the underlying network is altered. Conclusion: networks matter, in particular, changes in a network’s structure can alter both the steady-state attributes of an economy as well as its dynamics.**
42 |
43 | Lecture draws heavily from Allen Wilhite's [Economic Activity on Fixed Networks](http://www.sciencedirect.com/science/article/pii/S1574002105020204) (Chapter 20 of the Handbook of Computational Economics, Vol 2).
44 |
45 | ### YouTube length segments...
46 |
47 | 1. Some notable networks: Provide basic concepts and terminology (i.e., graph, node/vertex, edge, directed vs. undirected, weighted vs. unweighted, etc). Discuss the following classes of networks that show up repeatedly in the literature:
48 | * The complete network
49 | * The star
50 | * The ring
51 | * The grid
52 | * The tree
53 | * Small-worlds
54 | * Power networks
55 | Again, this lesson should summarize relevant bits of the network literature and point interested students at the SFI MOOC on networks for more details.
56 | 2. Short quiz.
57 | 3. Coordination and Cooperation on Networks: In this section we describe a few canonical games (i.e., coordination games and the prisoner's dilemma) that agents might play on some network. Using these rules, we simulate agent-based computational models in which agents play games on each of the seven networks of interest. We show how to use Monte Carlo experiments (for each network and updating routine) to derive "typical" outcomes for each model.
58 | 3. Homework assignment.
59 | 4. Exchange on Networks: This section considers exchange when it is shaped
60 | by a network. The pure exchange economy created here differs from
61 | the games played above because agents do not alter their behavior based on a neighbor’s behavior. Agents simply exchange if they find it beneficial, and prices are set by an exogenous formula known by all. Thus the economic problem is one of matching voluntary traders. Our primary interest is how the topology of a network affects the efficiency of exchange.
62 | 5. Homework assignment.
63 | 6. Conclusions: Summary of key ideas and pointers to additional (more advanced material). In particular, further applications of networks in complexity economics can be found on Prof. Leigh Tesfatsion's [website](http://www2.econ.iastate.edu/tesfatsi/anetwork.htm). Other resources include Matt Jackson's book and Sanjeev Goyal's book. For recent applications of networks in mainstream macroeconomics see Acemoglu et al's [Network Origins of Aggregate Fluctuations](http://economics.mit.edu/files/8135) and [Networks, Shocks, and Systemic Risk](http://economics.mit.edu/files/10423).
64 | 7. End of unit test.
65 |
66 | ## Lecture 3: Business Cycles
67 | Key idea: business cycles are fundamentally endogenous phenomena and are not driven by exogenous shocks as is typically (but not always!) assumed in mainstream approaches. Models of "Predator-prey" dynamics.
68 |
69 | ## Lectures 4 and 5: Growth and Innovation
70 | Will use the Solow growth model as point of departure for lecture 4 Will need to explain the basic idea behind the model to non-economics audience. Solow model can be used to motivate the importance of explicitly modeling the process of technological innovation.
71 |
72 | Evolutionary view of technological progress. See W. Brian Arthur’s Nature of Technology. We should ask Brian if he would be interested in giving some parts of lectures 4 and 5.
73 |
74 | ## Lectures 6 and 7: Financial Markets
75 | This lecture will motivate the use of ABMs by covering two different ABMs of financial markets: SFI stock market (old) and Farmer, et al Leverage Causes Fat Tails and Clustered Volatility model (new).
76 |
77 | ## Lecture 8: Game Theory
78 | Obvious ties with the mainstream literature. Motivated by recent (and ongoing) work of Farmer & Galla. Key idea: learning and convergence to “equilibrium”. When and under what circumstances do learning rules lead to a convergence to Nash-like equilibrium in games.
79 |
80 | Iterated Prisoner's dilemma tournament using code from Alan Isaac's [Simulating Evolutionary Games: A Python-Based Introduction(http://jasss.soc.surrey.ac.uk/11/3/8.html). Perhaps could make use of Luzius's code to run the tournament. Each student would submit a simple Python agent with a particular strategy and then we would run face them off against one another.
81 |
82 | ## Lectures 9: Inequality
83 | Sugarscape-esque simulations to demonstrate conditions for skewed distributions of wealth. Can be tied to Edgeworth Box diagrams. Contrast the robustness of the first welfare theorem, with the fragility of the second welfare theorem.
84 |
85 | ## 10: Overflow!
86 | I expect that this lecturers will fill out once we start filling in lecturers 1-8…
87 |
88 | Topics that don’t seem to fit anywhere yet:
89 |
90 | Rob’s model of firms…
91 | Brian’s work on increasing returns to scale and path dependence.
92 | Need to figure out a way to incorporate ScalABM to some extent. Possibly have some web application running interesting model on AWS that students can interact. Fabulous opportunity to build user community…
93 | However, ScalABM is cutting edge research tool. Pedagogically better to teach simulation and computation using Python a la Software Carpentry.
94 |
95 | ## Additional teaching resources
96 | Leigh Tesfatsion’s [excellent website](http://www2.econ.iastate.edu/tesfatsi/ace.htm). We need to find a way to include more of her work into the course!!!!
97 |
--------------------------------------------------------------------------------
/notebooks/cobweb-models.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "The Cobweb Model
\n",
8 | "\n",
9 | "Presentation follows Hommes, JEBO 1994. Let $p_t$ denote the observed price of goods and $p_t^e$ the expected price of goods in period $t$. Similarly, let $q_t^d$ denote the quantity demanded of all goods in period $t$ and $q_t^s$ the quantity supplied of all goods in period $t$.\n",
10 | "\n",
11 | "\\begin{align}\n",
12 | " q_t^d =& D(p_t) \\tag{1} \\\\\n",
13 | " q_t^s =& S(p_t^e) \\tag{2} \\\\\n",
14 | " q_t^d =& q_t^s \\tag{3} \\\\\n",
15 | " p_t^e =& p_{t-1}^e + w\\big(p_{t-1} - p_{t-1}^e\\big) = (1 - w)p_{t-1}^e + w p_{t-1} \\tag{4}\n",
16 | "\\end{align}\n",
17 | "\n",
18 | "Equation 1 says that the quantity demanded of goods in period $t$ is some function of the observed price in period $t$. Equation 2, meanwhile, states that the quantity of goods supplied in period $t$ is a function of the expected price in period $t$. Equation 3 is a market clearing equilibrium condition. Finally, equation 4 is an adaptive expectation formation rule that specifies how goods producers form their expectations about the price of goods in period $t$ as a function of past prices.\n",
19 | "\n",
20 | "Combine the equations as follows. Note that equation 3 implies that...\n",
21 | "\n",
22 | "$$ D(p_t) = q_t^d = q_t^s = S(p_t^e) $$\n",
23 | "\n",
24 | "...and therefore, assuming the demand function $D$ is invertible, we can write the observed price of goods in period $t$ as...\n",
25 | "\n",
26 | "$$ p_t = D^{-1}\\big(S(p_t^e)\\big). \\tag{5}$$\n",
27 | "\n",
28 | "Substituting equation 5 into equation 4 we arrive at the following difference equation\n",
29 | "\n",
30 | "$$ p_{t+1}^e = w D^{-1}\\big(S(p_t^e)\\big) + (1 - w)p_t^e. \\tag{7}$$"
31 | ]
32 | },
33 | {
34 | "cell_type": "code",
35 | "execution_count": 1,
36 | "metadata": {
37 | "collapsed": true
38 | },
39 | "outputs": [],
40 | "source": [
41 | "%matplotlib inline"
42 | ]
43 | },
44 | {
45 | "cell_type": "code",
46 | "execution_count": 2,
47 | "metadata": {
48 | "collapsed": true
49 | },
50 | "outputs": [],
51 | "source": [
52 | "%load_ext autoreload"
53 | ]
54 | },
55 | {
56 | "cell_type": "code",
57 | "execution_count": 3,
58 | "metadata": {
59 | "collapsed": true
60 | },
61 | "outputs": [],
62 | "source": [
63 | "%autoreload 2"
64 | ]
65 | },
66 | {
67 | "cell_type": "code",
68 | "execution_count": 4,
69 | "metadata": {
70 | "collapsed": false
71 | },
72 | "outputs": [],
73 | "source": [
74 | "import functools\n",
75 | "\n",
76 | "import ipywidgets\n",
77 | "import matplotlib.pyplot as plt\n",
78 | "import numpy as np\n",
79 | "from scipy import optimize\n",
80 | "import seaborn as sns\n",
81 | "\n",
82 | "import cobweb"
83 | ]
84 | },
85 | {
86 | "cell_type": "code",
87 | "execution_count": 5,
88 | "metadata": {
89 | "collapsed": true
90 | },
91 | "outputs": [],
92 | "source": [
93 | "def observed_price(D_inverse, S, expected_price, **params):\n",
94 | " \"\"\"The observed price of goods in a particular period.\"\"\"\n",
95 | " actual_price = D_inverse(S(expected_price, **params), **params)\n",
96 | " return actual_price\n",
97 | "\n",
98 | "\n",
99 | "def adaptive_expectations(D_inverse, S, expected_price, w, **params):\n",
100 | " \"\"\"An adaptive expectations price forecasting rule.\"\"\"\n",
101 | " actual_price = observed_price(D_inverse, S, expected_price, **params)\n",
102 | " price_forecast = w * actual_price + (1 - w) * expected_price\n",
103 | " return price_forecast\n"
104 | ]
105 | },
106 | {
107 | "cell_type": "markdown",
108 | "metadata": {},
109 | "source": [
110 | " Non-linear supply functions
\n",
111 | "\n",
112 | "When thinking about supply it helps to start with the following considerations...\n",
113 | "\n",
114 | " - ...when prices are low, the quantity supplied increases slowly because of fixed costs of production (think startup costs, etc).\n",
115 | "
- ...when prices are high, supply also increases slowly because of capacity constraints.\n",
116 | "
\n",
117 | "\n",
118 | "These considerations motivate our focus on \"S-shaped\" supply functions...\n",
119 | "\n",
120 | "$$ S_{\\gamma}(p_t^e) = -tan^{-1}(-\\gamma \\bar{p}) + tan^{-1}(\\gamma (p_t^e - \\bar{p})). \\tag{10}$$\n",
121 | "\n",
122 | "The parameter $0 < \\gamma < \\infty$ controls the \"steepness\" of the supply function."
123 | ]
124 | },
125 | {
126 | "cell_type": "code",
127 | "execution_count": 6,
128 | "metadata": {
129 | "collapsed": true
130 | },
131 | "outputs": [],
132 | "source": [
133 | "def quantity_supply(expected_price, gamma, p_bar, **params):\n",
134 | " \"\"\"The quantity of goods supplied in period t given the epxected price.\"\"\"\n",
135 | " return -np.arctan(-gamma * p_bar) + np.arctan(gamma * (expected_price - p_bar))"
136 | ]
137 | },
138 | {
139 | "cell_type": "markdown",
140 | "metadata": {},
141 | "source": [
142 | " Exploring supply shocks
\n",
143 | "\n",
144 | "Interactively change the value of $\\gamma$ to see the impact on the shape of the supply function."
145 | ]
146 | },
147 | {
148 | "cell_type": "code",
149 | "execution_count": 7,
150 | "metadata": {
151 | "collapsed": true
152 | },
153 | "outputs": [],
154 | "source": [
155 | "ipywidgets.interact?"
156 | ]
157 | },
158 | {
159 | "cell_type": "code",
160 | "execution_count": 8,
161 | "metadata": {
162 | "collapsed": false
163 | },
164 | "outputs": [
165 | {
166 | "data": {
167 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfoAAAF7CAYAAAA6+Uk0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4E3X+B/D35G6bntCLtrScDeUuoiJCK4dyuZxFQEBW\nFGVFAXfXHyKw4onosqscu+CFqKDCgiByg3igyKFc5ZLK1fs+kqZJk8zvj7axpaVNoTn7fj1PniZz\n5ZNvk7wzM9+ZEURRFEFEREQeSeLsAoiIiMh+GPREREQejEFPRETkwRj0REREHoxBT0RE5MEY9ERE\nRB6MQU92JYoi9u/fj+eeew5Dhw5Fz5490aVLF/Tr1w9Tp07FmjVrUFBQ4OwybTZgwABoNBps2rTJ\n2aW4nRUrVkCj0eDhhx+2+3N9+OGHGDp0KLp164a77roLCxcutPtzNqWUlJQaj9PS0qDRaKDRaHD9\n+nUnVUXuikFPdnPq1CmMGDECTz31FL766itkZGSgVatWiIuLg1wux9GjR7Fs2TIMGjQIGzdudHa5\nNhMEwdklUD0++OADvPHGG7hy5QpCQkIQGRmJyMhIZ5dlk9OnT2P8+PFYvXp1neMlEn5lU+PJnF0A\neaYff/wRM2fOhNFoRNu2bTFnzhwkJiZCoVBYp7l27RpWrlyJbdu2YdGiRZDL5Rg1apQTqyZPsGvX\nLgiCgOHDh+Ott95ydjmNsn79epw6dQoxMTE1hoeGhmLnzp0AgFatWjmhMnJn/HlITS4vLw9z586F\n0WhE7969sWnTJtx///01Qh4AWrdujTfeeAOPPvooRFHE66+/Dq1W66SqyVNU7Qq68847nVxJ05HJ\nZGjTpg3atGkDqVTq7HLIzTDoqcm98847KCoqgq+vL/7973/D29u73ulnz56NkJAQFBcXW9daiG6V\n2WwGgFo/LImaKwY9NanS0lJs27YNgiBg4sSJCAoKanAehUKBp59+Gs899xzuueeeOqfZvXs3Hnvs\nMfTp0wddunTBvffei2eeeQaHDx++6XItFgs2btyIKVOm4M4770TXrl1x33334bnnnsPZs2dvOl9O\nTg7eeOMNPPDAA+jevTvuu+8+vPHGG/VubTAYDFizZg3Gjh2Lnj17olu3bhgwYAD++te/4pdffmmw\nDW506tQpzJkzB/3790eXLl1w55134qGHHsKaNWug0+lqTFvVUatTp0437ahV1Ynwyy+/tA47cuQI\nNBoNRo8eDaPRiH//+98YNGgQunXrhoEDB2LhwoW4du1arWVt2bIFGo0Gs2bNglarxcsvv4yEhAR0\n794dDzzwAN544w3k5uY2+BpFUUT//v2h0Wiwdu3am063YMECaDQaLF68uN7lTZkyBRqNBunp6QCA\nefPmQaPRYODAgTXqTkxMrHP+6u1YtQzgj06Ey5YtQ0FBAV555RUMHDgQXbt2Rd++ffHss8/i4sWL\nN63r/PnzWLhwIQYPHoxu3brhzjvvxLRp07B7927rNFX/iy1btkAQBGzbtg0ajQZTp06tVVtd/+Mr\nV67gH//4B+6//3507doVd9xxBx566CGsXbsWBoOh1vRVbfP5558jLS0Nzz//PBISEtC1a1ckJCRg\nwYIFSEtLq7e9yX0w6KlJHT58GHq9HkBFuNgqKSkJf/7znxEREVFjuMlkwqxZszB79mwcOnQIcrkc\ncXFxsFgs2Lt3L6ZNm4Y33nij1vK0Wi0mTZqEhQsX4tixY/Dz84NGo4FWq8W2bdswbty4OsPl/Pnz\nGD16ND788ENkZGSgffv2kMlkWLt2LSZOnIiysrJa8xiNRjzyyCNYtmwZLly4gFatWqFjx47Q6XT4\n+uuv8fDDDzeql/6ePXswadIk7N69GyaTCRqNBkFBQTh9+jSWLVuGCRMm1Ap7W9ysE6HJZMITTzyB\n//73vzAYDOjYsSPy8/OxceNGjBkzBkeOHKlzPq1Wi4kTJ2L9+vWQSqVo164d0tPT8eGHH2LMmDH4\n7bffGqxn9OjRAIBt27bVOY3BYLDucx87dmy9y4uNjUWvXr2sa/IxMTHo1asXunXrVu98thAEAWlp\naRg1ahTWr18PQRDQvn17FBYWYseOHXjooYdw7ty5WvN9+umnGDduHDZt2oSCggJ07NgRPj4++Pnn\nnzF79mz8+9//BgD4+vqiV69eaNmyJURRRIsWLdCrVy/ExsY2WNu2bdvwpz/9CV988QVycnIQGxuL\n4OBgnDp1CkuWLEFSUhKysrJqvR5BEJCcnIyRI0di27Zt8PLyQkxMDLKzs7Fp0yaMHz++1nzkpkSi\nJrR8+XIxNjZW7NSpk2g2m297eS+99JIYGxsrxsfHi3v27LEOt1gs4qeffip27txZ1Gg04tq1a2vM\n98QTT4ixsbHivffeKx49etQ63Gg0iu+8844YGxsrajQace/evdZxJpNJHDZsmKjRaMQ///nPYl5e\nnnXcd999J/bq1cs638aNG63jNmzYIMbGxopDhw4VMzMzrcMNBoP48ssvi7GxsWLv3r1Fg8HQ4Ou1\nWCxi3759RY1GI37wwQeixWKxjjt79qzYp08fUaPRiGvWrLEOT01NtdZ17dq1Opd73333iRqNRtyy\nZYt12M8//yzGxsZa/18fffSRdVxxcbH41FNPibGxsWLfvn3FkpIS67jNmzdb5+vWrZv49ddfW8dl\nZWWJEyZMEGNjY8URI0bUeA9UvTcmTZpkHXb16lVr7b/99lutur/66ivrsmxV12utXndCQkKd81Vv\nx7S0tFp1V/2Pk5OTreMuX74sJiQkiBqNRnzqqadqLO/48eNip06dRI1GIy5btqzG/3/z5s3WcT/+\n+KN1+Lx588TY2Fjx73//+01rq/4/PnHihPUzsGjRIlGr1VrHnTt3ThwyZIgYGxsrjhkzpsb/oup5\nYmNjxQkTJohXr16tscz4+HhRo9GIr732Wp1tRe6Fa/TUpHJycgAAAQEBt30oUFZWFj7//HMIgoCX\nX34ZgwcPto4TBAGTJk3CM888A1EUsXLlSuuWhJMnT+LgwYMQBAErVqzAHXfcYZ1PLpfj6aefxkMP\nPQRRFPHmm29ax+3ZswcpKSnw8/PD22+/XWO3Q79+/bBgwYI66zx//jwEQUC/fv0QGhpqHa5QKPDc\nc8/h3nvvxf3334/CwsIGX3N+fr51s3dSUlKNtfBOnTph7ty5GDRoEAICAhpclq0EQcC0adOsm4mB\nijXMZcuWITIyEnl5ediwYUOd8z333HMYNmyYdVhISAhWrlwJX19fXLp0Cbt27ar3uVu3bo3evXsD\nALZu3VprfNWm7IbW5h1BEAQsW7YMcXFx1mExMTGYNm0aRFGstYtm1apVEEURw4YNw9y5c2v0GRg9\nejTGjRsHALd1ToZ33nkHZrMZ9957LxYvXgwfHx/rOI1Gg3fffRcqlQpnz57F119/XWt+hUKBlStX\nonXr1tZh3bt3x+jRo+t8TeSeGPTUpERRbHCaqn2udd2q7z/97rvvYDKZ0LJlyxphUt2UKVMgl8tR\nUlJi3cR84MABAEC3bt3QvXv3Oud79NFHAVQc4nfp0iUAsP44GDhwIHx9fWvNM2LEiDqHx8TEQBRF\nbNq0CRs2bEB+fr51nEKhwHvvvYdXXnkFISEhDbZNYGAg/P39AQB//etfceLEiRptmpSUhOXLlyMp\nKanBZTXGtGnTag1TKBTWL/z9+/fXGu/t7V1nHUFBQRg8ePBN57vR2LFjIYoivvrqqxrDc3JycPjw\nYUilUvzpT3+y/cXYSUhICDQaTa3hbdu2BQAUFxdbh5WVleHnn38GAIwfP77O5c2ZMwe7du3C0qVL\nb6kevV5vfc9X/5FWXWRkJAYNGgRRFLFv375a47t06VJnP5p27doBqPmayH0x6KlJBQYGAgAKCwth\nsVjqnCY6Ohq9evWqcbvxuGEA+P333wGgxhrUjby8vNCmTRsAwOXLl61/BUFA586dbzpfdHQ01Gp1\nrfkAoGPHjnXOI5PJ0L59+1rDx40bhw4dOqC0tBSLFy9G3759MWbMGLz55ps4fPiwtRe4LSQSCf72\nt78BqPihM2HCBNx999145pln8Pnnn9tln2lISMhNf4RU7SO+cuVKneNu1rO9vvluNGTIEPj4+CAr\nKws//fSTdfjWrVthNpuRkJBgU6dOe6u+taY6lUoFADX+z+np6SgvLweAOn8cABU/iKKjo2/5cLnr\n169bn6O+93qXLl0A/PH+rq4xr4ncF4OemlTVF7woirVO41nl8ccfx6efflrj9sQTT9SarqqXe1Ug\n30zV+Krpq/7WtfZdXdVmzqqObUVFRQBQ7+GAVWvbNz7/559/jqeeegrR0dEAgHPnzuH999/HtGnT\n0L9//0ad+S8pKQnr1q3DfffdB5VKheLiYuzduxf/+Mc/kJiYiCeffLJJA7+u11Slqo3qOuKgvvmq\n2rCkpKTB51epVBg2bBhEUazRKe/LL7+EIAgYM2ZMg8twBLlcbvO01XfTNHR46a2q/j+p771+4/u8\nuoZeky1b6Mj1MeipSd1zzz2QySpOuFj98KFbUV/IVFe1ebEq8Kvmayhkquarmr5qa0R9z1dXr3ug\n4st81qxZ2L17N/bs2YOXXnoJI0aMgL+/P/Lz87Fo0aI6N53eTO/evbFq1SocOXIE77//Pp544gnr\nmtnBgwfx5JNP1jnfzb6Yq/ovNHZcVRtWtY2t81W1oa1r4lX74Pfs2QOj0Yhz587h0qVLCAwMvOnh\ncLfqVtqosaqH+60cIWGL6vvj63uv3/g+p+aHQU9NKiAgACNGjIAoitiwYQPy8vJueVlV+z7rO+Zd\nq9VaNw9XrU23bdsWoigiOTn5pvOlpKRYv9ir5mvTpg1EUaz3+ar251eXn5+PY8eOWc/IFhUVhaSk\nJLz11ls4ePCgdbNqXZ3NblReXo6UlBScOnUKQMV+8nvuuQdz5szBpk2b8M9//hNARQfACxcuAID1\nhxVQcajfjQwGQ71BkJGRgdLS0jrHVR0y1qFDh1rj6moLW+arS48ePdCuXTuUlpbi0KFD2Lt3LwBg\n5MiRTXYmuKrl1NVGAJCdnd0kzwNUvAeqnu9mhxmeOXMGkyZNwvz582/pOVq3bm3939f3Xj9z5gwA\n1Ll7jJoHBj01ublz58LPzw/5+fmYM2dOg73N9Xq9tQNddf3794dMJkNubi527NhR57yffPIJTCYT\nVCqVtff2fffdB6DipDMnTpyoc76qY+jDw8Ot++Tvv/9+ABWd+er60j9w4ECdJ4KZPn06Jk+eXONk\nNFW8vLzQo0cPiKJo0/7O7777DsOHD8eMGTOs+1+rq35Coao+EAEBAdbe+VX9Gqrbv38/TCbTTZ/T\nbDZjy5YttYaXlZVh69atEAQBQ4cOrTU+Ly8PBw8erDU8Ozsb+/btgyAIGDJkyE2f90ZVnfL27NmD\n/fv31zjOvilUbZUoKiqq0WGyyp49e5rsuXx8fBAfHw9RFPG///2vzmm++uor/PLLL0hNTbUOq/o/\n2rLJ3MvLC3fddRdEUcRHH31U5zTXr1/HgQMHrEeFUPPEoKcmFxoaipUrV8LHxwdHjx7FyJEjsXHj\nxlprlVlZWfjggw8wePBg7N27F4Ig1OgIFxYWhvHjx0MURSxYsKDGrgBRFLF+/XqsWLECgiDgqaee\nsm6679GjBxISEiCKImbNmlXjhC9GoxHvvPMONm7cCEEQ8Pe//906LjExEfHx8SgtLcWTTz5Z4wxk\nx44dw4IFC+o86czIkSMBVJxB7fvvv68x7tixY9awtGUTdP/+/REYGIiioiL83//9n7XfAFCxCXjJ\nkiUAKn6gVK0tK5VKxMXFQRRFLF++vMaPlB9++AEvv/xyg1fce+utt2rsWsjPz8fTTz+N9PR0tG3b\n9qYXG5o/fz6OHz9ufZyamoqZM2eitLQUd911F/r27dvga64ycuRIyGQy7N69GxcuXEBcXNxNO0be\niu7du0Mmk0EURbz22mvWM8aZTCZ89NFH1vdEU/nLX/4CQRCwdetWrF69usYPvS1btuCTTz6BIAh4\n/PHHrcOrNvlXPzNffZ5++mnIZDIcOnQIixYtqrGb4Pz583j88cdhMBjQqVOnWv9DXoWx+eDV68gu\nevfujc8//xwLFizAiRMnsHDhQixevBhhYWEIDAxEXl4eMjIyIIoiBEFAVFQU/vKXv9Rag5s3bx6y\ns7Oxf/9+6znxw8LCcP36dRQUFEAQBEyePBmPPfZYjfmWLl2KmTNn4tdff8XUqVMRERGBoKAgXL58\nGVqtFjKZDHPnzq2xpioIAv75z3/i8ccfx7lz5zBkyBB07NgRer0eV65cQVRUFEJDQ3H+/PkazzV1\n6lT89NNP+O677/D4449be7Hn5+cjPT3deshe1XHT9ZHL5Xj77bfx2GOPYefOndi/fz9at24NiUSC\na9euQa/Xw8vLC2+88UaNTfZz5szBzJkzcenSJQwaNMh61rb09HR069YN8fHx9R7qFhUVhVmzZiEi\nIgIBAQH47bffUF5ejoiICLzzzjt1dtry9fWFSqXCww8/jDZt2kClUuHixYuwWCyIi4ur84yF9WnR\nogUSEhKsa/NNfey8n58fHnvsMaxevRrbt2/H999/j8jISKSlpaGoqAgTJ07E/v37m2wTfp8+fTB/\n/nwsWbIE//rXv/DBBx8gKioKmZmZyM3Ntf5Arb6mXXWEyfHjxzF06FC0b98ey5cvv+lz9OjRA6++\n+ioWLlyIjRs3Ytu2bdZdIFVHn2g0GixfvrzW/5Ad7ZoPBj3ZTbt27bBhwwYcPXoUO3futG6mzMzM\nhK+vLzQaDeLj45GQkID+/fvXuQyFQoEVK1Zg165d2LRpE5KTk3H+/Hm0bNkSffv2xUMPPWTdZF+d\nv78/Pv74Y2zevBnbtm3DxYsXkZubi9DQUAwbNgyTJk2q87Cn8PBwfPbZZ/j444+xY8cOXLlyBT4+\nPkhKSsLcuXPx17/+tdY8EokEK1euxIYNG7Bz506kpKTg/Pnz8Pf3R79+/TBq1CgMHz7c5na78847\n8cUXX2Dt2rU4fvw4rl69CqlUivDwcNx777149NFHERYWVmOefv36Yf369Xj33Xdx7NgxpKSkIDIy\nEnPmzMH06dMxf/78etfgPvnkE/znP//Brl27rPMOHToUU6dOvWnvem9vb2zcuBFvv/02Dhw4gMzM\nTHTo0AEjR47ExIkTrYdoVVd16tWbGT16NPbv3w+FQoERI0bY2GK13ew55syZgw4dOmDDhg04d+4c\nrly5go4dO2Ly5MkYPny49UdGY+u+2fgpU6agZ8+eWLt2LY4ePYoLFy7Ax8cHiYmJmDZtGu6+++4a\n048aNQqXL1/Gl19+ibS0tFq7e262Ralbt2748MMP8dNPP+HSpUvw9vZGr169MGLECIwdO7bOwyBv\n9TWR+xFE/qwjapaOHDmCqVOnWs95buuZDLds2YLnn38eYWFhde6jvx2ffPIJXnnlFQwbNgzLli1r\n0mUTNVcOXaO3WCxYsGABLl++DIlEgsWLF9c4AcnatWuxadMm6yE5L730EnuKEjUjX3zxBQRBaPIz\n/xE1Zw4N+qrenxs2bMCRI0ewbNkyrFq1yjo+OTkZS5curfdMaETkOfR6Pa5fvw6VSoX33nsPFy9e\nhEajQZ8+fZxdGpHHcGjQDxo0yHrp0rS0tFr7/pKTk7F69Wrk5OQgMTERM2bMcGR5RORgWq22xnns\npVIpFi1a5MSKiDyPww+vk0gkmDdvHl599VU8+OCDNcYNHz4cixcvxrp163D8+HF8++23ji6PqFm5\n1Q5XTdVRKzg4GDExMVAoFNBoNFi1ahXi4+Nve7lE9AendcbLy8tDUlISduzYYe2dq9VqrcdCr1+/\nHkVFRZg5c+ZNl1F1aBYRERHVzaGb7rdu3YqsrCzMmDEDSqUSEonE2tNXq9VixIgR2LlzJ1QqFQ4f\nPtzgcceCICAnp+GLZtCtCw72ZRs7ANvZ/tjG9sc2dozg4Pov2HUjh67R6/V6PP/888jNzYXJZMKM\nGTNQWloKvV6PpKQkbNu2DevWrYNSqUSfPn0wa9asBpfJN5V98YPrGGxn+2Mb2x/b2DFcOujtgW8q\n++IH1zHYzvbHNrY/trFjNDboea57IiIiD8agJyIi8mAMeiIiIg/GoCciIvJgDHoiIiIPxqAnIiLy\nYAx6IiKiJmQ0Gp1dQg0OPTMeERGRJzh//hxOnToBPz8/FBcXIzw8HP36JeLQoe/RpUtXKBSKBpeR\nknIJRqMBnTp1tmutXKMnIiJqBIPBgK1bN2P8+IkYMmQ4jEYDOnSIRV5eLkpLdfD3D6hzvqtXr2DH\njq/w00+HAADt2rXHyZO/wmQy2bVeBj0REVEjpKT8BoOhzPq4e/eeCAsLx9dfb0P//ok3ne/TTz9C\nu3YdEBERaR3Wu/fd+OabffYsl5vuiYiIGiM6OgbHjh3BU089jgEDBmPs2PEAgIKCAiiVFVdjPXPm\nFL7//lu0a9cBSqUCRUVF6NWrNyQSAXq93rqsdu3a46uvtmDw4CF2q5dBT0REbueLA5dw9Hx2ky6z\ntyYE4we0b3A6Hx811q//H7777ht8/vl6BAQEYuDAwTAaDdZpRFGE2WxGdHQMYmM1eOaZJ/HOO/9t\n0nptxU33RERENjKZTDh//hzUajWGDXsQ06ZNR2FhgXVcla5du+Py5d8RG6tBcXGxddzZs2dqLbP6\nGr49cI2eiIjczvgB7W1a+25qFy6cR3p6KjSaTgCAy5d/x7BhDwIApFKpdbry8nIIQsX9Q4e+wwMP\nDAMA/PTTIcTFdamxTIlECnti0BMREdkoNfUaysrKsG3bFhgMBnTu3BVhYeEAAJVKZZ3u/PmzkMvl\n+OGH75Cbm4spU6bhp58OQRAE6HRa+PiordNWn88eGPREREQ2qlozr0twcChKSkrg6+uL06dPISlp\nIuLj78C99/YHABQVFWLYsAehUnlZ50lLS0W7dvbdMsF99ERERE3gwQdH4cCBvUhLS8W+fbuQnZ1V\nY3x5eTmys7MgiqJ12I8//mDXHvcA1+iJiIiahFqtRkxMW8hkMnzwwae1xj/44Kgaj9PSUtG+fQco\nlUq71sWgJyIiaiLdu/ewedqQkNAaJ8+xF266JyIicgK5XO6Q52HQExEReTAGPRERkQdj0BMREXkw\nBj0REZEHY9ATERF5MAY9ERGRB2PQExEReTAGPRERkQdj0BMREXkwBj0REZEHY9ATERF5MAY9ERGR\nB2PQExEReTAGPRERkQdj0BMREXkwBj0REZEHkznyySwWCxYsWIDLly9DIpFg8eLFaN++vXX8gQMH\nsGrVKshkMowdOxZJSUmOLI+IiKhBFouIcrMF5aaKm6na/arhJnPVTbTeN5sr5jNXH2YRUW6qHGap\nOU/16aqGSSQC3v7rfY2q16FBf+DAAQiCgA0bNuDIkSNYtmwZVq1aBQAwmUxYsmQJNm/eDKVSiYkT\nJ2LgwIEICgpyZIlERORGLKKI8nILDOVmGMvNMJgsMFbdL6+8b6p2v9xcI6Srh/PNQvvG4WaL6PDX\nKREEyKQCVMrGx7ZDg37QoEEYMGAAACAtLQ3+/v7WcSkpKYiOjoZarQYA9OrVC0ePHsUDDzzgyBKJ\niMgORLFijVRvNKPMaEaZwVTx12hGmbHafevwir+1A/yPUDdWBm9TEwDIZRLIZRLIZBLIpRKoFHLr\nMLn0j+HWYTJp5XDBOlwmrbhJpRXDpFIBMknlcNkf96VSoXJaodY8MqkAqUQCiUS45dfj0KAHAIlE\ngnnz5mHfvn145513rMO1Wi18fX2tj318fFBSUuLo8oiIqA4Wi4hSg6niVlaO0jJTxc1ggq7ysSgI\nyCvUVw4vR5mhZojfzpqwIABKuRQKuRQKmQQBaiUUcimUcol1WMVjKRRyCRSyyr/VhillUsgrx1UP\n7eqBLpdJIJUIEIRbD1ZX4/CgB4AlS5YgLy8PSUlJ2LFjB1QqFdRqNbRarXUanU4HPz+/BpcVHOzb\n4DR0e9jGjsF2tj+2cQWz2YLiUiOKtUYU64wo0hkq/mqNKNYZrMOLdUZo9UZo9RVB3hhSiQAvpQxe\nKhlaBigq7lc+tt6vvHlXG+6tlNeYRqWQQqmQQiaVeFT4OpJDg37r1q3IysrCjBkzoFQqIZFIIJFU\ndPxv164drl69iuLiYqhUKhw9ehTTp09vcJk5OVzrt6fgYF+2sQOwne3P09tYFCvWuAtLDCjUGVGk\nNaBQa0Sh1oCiyr8VwV0OnY2hrVRIoVbJEOSrQlSwDN6qyptSDh9VRTj7VD72VskQGe4Pg94Ib6UM\nCvntB7NYboK+3AS97rYW43Ea+4NVEEXRYb0K9Ho9nn/+eeTm5sJkMmHGjBkoLS2FXq9HUlISDh48\niBUrVkAURYwbNw4TJ05scJme/MF1BZ7+5egq2M725+5trDeYkFdUhrziylvl/fxiAworQ91kvvn+\nakEAfL3k8PVWwNdbDnXl/Yq/cqi9K8dZh8sgl0kbVaO7t7G7cOmgtwe+qeyLH1zHYDvbn6u3scUi\nIr+4DFkFemQVlCIzvxS5hX+Eeqmh7rVwiSDAX62Av48CAWolAtQK+N/wN0CthK+3HFKJfU+d4upt\n7CkaG/RO2UdPRNRcGYxmpOXqkJqjRWZeKbIKSpFVoEd2gb7ONXKlXIoW/iq0i/BHC38VWvgp0cJP\nVXlfhQC18rZ6ZJPnY9ATEdmBRRSRlV+K69lapObokJajRWqOFrmFZbhxM6qXUobIYB+EBXkjJNAL\noUHeCA2suO+jkrETGt0WBj0R0W0SRRH5xQZczii23q5mlUBvMNeYTu0lR2zrAEQGqxEZokZ4C2+E\nBnnD10vOMCe7YdATETWSRRSRlqPDhWsFuHi9EBdTi1CsM1rHCwDCWnijR3s/RIeqERGiRmSwGn7e\nDHRyPAY9EZENsgpKcTolD2evFOC31MIah6gFqBXoFRuMNuF+aBPuh5gwX3jdwqlKieyB70QiojqU\nmyy4cK0Ap1LycPr3PGQV6K3jWvqr0KN9S3RsHYDY1oEI9ldxTZ1cFoOeiKiSyWxB8uV8HD2fjV9/\ny7HuY1fgiMisAAAgAElEQVQqpOjZoSW6tWuBLm1aoIW/ysmVEtmOQU9EzZooivgttQg/nMrA8Ys5\n0Fcer97CT4l+3Vqhe7sW6BAVAJnUvsegE9kLg56ImqUinRE/nsnA9yczkJlfCgAI8lOiX7dw9O4U\ngrbhftwcTx6BQU9EzUpqjha7j1zD4eQsmC0iZFIJ7o4LRb/urRDbOgAShjt5GAY9ETULp1NysX7n\nOZy5nA8ACAvyxoD4CPTpEgYfldzJ1RHZD4OeiDza5YxibP42BclXCgAAsVEBeOCu1ujWrgXX3qlZ\nYNATkUfKLijFF9+k4JeLOQCAHh2DMfzu1mjXyt/JlRE5FoOeiDyKsdyMHYevYsfhazCZLWgf4Y8x\n/dui3x2teWU1apYY9ETkMc5eycfaneeRW1SGALUCEwZ2QG9NCHvPU7PGoCcit2coN+N/B1Ow73gq\nJIKAIXe1xoP3xPA0tERg0BORm0vL1WHVltPIyCtFeAtvPDYiDm3C/ZxdFpHLYNATkds6dj4b7+84\nB4PRjIG9IpGU2A4KudTZZRG5FAY9EbkdURSx5fvfsf3Hq1DKpXhyZGfc2SnU2WURuSQGPRG5FZPZ\ngo92nceh05kICfTC02O6IiJY7eyyiFwWg56I3Iah3Iz/fHkGp1Ly0CbcF7OTusPPW+HssohcGoOe\niNxCucmM5f87hbNXCtClTRD+MroLVAp+hRE1hJ8SInJ5JrMFK7ecwdkrBejRviX+MroLLxtLZCN+\nUojIpYmiiPe2n8WplDx0aROEmaMY8kSNwU8LEbm0rT9cxpFz2Wgf6Y+nxnSFXMavLaLG4CeGiFzW\n4eRMbDt0BS39VZg1piuUPEaeqNEY9ETkklJztPhw53l4KaXsXU90Gxj0RORyDOVm/HdrMspNFkwf\nHoeIlj7OLonIbTHoicjlbNh3Eem5OgzsFYn4jsHOLofIrTHoicilnLyUi+9OZqB1qBrj72vv7HKI\n3B6Dnohcht5gwsd7LkAqEfDYiDj2sCdqAvwUEZHL2Pzd78gvNmDY3dGI5PnriZoEg56IXMLv6cU4\ncDwVYUHeGHFPtLPLIfIYDHoicjpRFPHZgd8gApj6QCzkMh4vT9RUGPRE5HS/XMzBpdQi9OzQEpro\nQGeXQ+RRHHZRG5PJhPnz5yMtLQ3l5eV48sknMWDAAOv4tWvXYtOmTQgKCgIAvPTSS4iJiXFUeUTk\nJCazBZsOpkAqEZDEXvZETc5hQb9t2zYEBgZi6dKlKCoqwqhRo2oEfXJyMpYuXYq4uDhHlURELuCn\nM5nIKtDjvvgIhAV5O7scIo/jsKAfOnQohgwZAgCwWCyQyWo+dXJyMlavXo2cnBwkJiZixowZjiqN\niJzEbLHg65+uQiYVMKJPjLPLIfJIDgt6Ly8vAIBWq8Xs2bMxd+7cGuOHDx+Ohx9+GGq1Gk899RS+\n/fZbJCQkOKo8InKCI2ezkV2oR2LPCAT6Kp1dDpFHcmhnvIyMDDzyyCMYPXo0hg0bVmPcI488goCA\nAMhkMiQkJODs2bOOLI2IHMwiitj+0xVIJQKG3d3a2eUQeSyHrdHn5uZi+vTpWLRoEe6+++4a47Ra\nLUaMGIGdO3dCpVLh8OHDGDdunE3LDQ72tUe5VA3b2DGaWzv/cj4bGXmlGHBHFDq1D3HIcza3NnYG\ntrHrcVjQr169GsXFxVi1ahVWrlwJQRAwfvx46PV6JCUl4dlnn8WUKVOgVCrRp08f9O/f36bl5uSU\n2Lny5i042Jdt7ADNsZ3/d+AiAODeLqEOee3NsY0djW3sGI39MSWIoijaqRaH4JvKvvjBdYzm1s5Z\n+aV4fs1htI/wx/wpvRzynM2tjZ2BbewYjQ16njCHiBzuwC9pAICBvSKdXAmR52PQE5FDlZss+PFM\nBvy85egVy2vNE9kbg56IHOpUSi50ZSbc3TkMMim/gojsjZ8yInKoQ6czAQB9u4Y7uRKi5oFBT0QO\nU6wz4vTveWgdqkZUCK83T+QIDHoicpifz2XBbBHRtwvX5okchUFPRA5z7Hw2BAB3xoU6uxSiZoNB\nT0QOUaQ14FJqETpEBcDfR+HscoiaDQY9ETnELxdzIALo1ZGH1BE5EoOeiBzi2IUcAOCx80QOxqAn\nIrvT6stx4Voh2oT7IchP5exyiJoVBj0R2d2plFxYRJFr80ROwKAnIrs783s+AKBb2xZOroSo+WHQ\nE5FdWUQRZy7nI0CtQESwj7PLIWp2GPREZFdXM0ug1ZejS9sWEATB2eUQNTsMeiKyqzO/5wEAurQJ\ncnIlRM0Tg56I7OrM5XwIAhAXw6AncgYGPRHZjd5gQkpaMdqG+0HtJXd2OUTNEoOeiOzmt9QiWEQR\nnWICnV0KUbPFoCciu7l4vRAAEBvFoCdyFgY9EdnNhesFkAgC2kX4ObsUomaLQU9EdmEoN+NKRgmi\nw3yhUsicXQ5Rs8WgJyK7+D2tCGaLiNioAGeXQtSsMeiJyC4uVO6f78igJ3IqBj0R2cXF64UQAHSI\n8nd2KUTNGoOeiJqc2WLB7xnFaBXsAx8Vj58nciYGPRE1ufTcUhjLLWgbzt72RM7GoCeiJnc5oxgA\n0KYVg57I2Rj0RNTkfk+vCHqu0RM5H4OeiJrc5YxiKGQStGrJ688TORuDnoialMFoRlqODq3DfCGT\n8iuGyNls/hSKooitW7ciMzMTALBy5UqMGDECL7zwAkpLS+1WIBG5l6tZJbCIIjfbE7kIm4N+xYoV\nePHFF5GZmYmjR49i+fLl6N27N3799Ve8+eab9qyRiNyItSMeg57IJdgc9Fu2bMGbb76JHj16YNeu\nXYiPj8c//vEPvPrqq9i7d689ayQiN/JH0Ps6uRIiAhoR9Dk5OejSpQsA4IcffkC/fv0AAMHBwdBq\ntfapjojczvVsLbyUMgQHeDm7FCICYPMlpaKionDmzBnk5+fj6tWr6N+/PwDgm2++QVRUlN0KJCL3\nYSg3IzO/FB0iAyAIgrPLISI0Iugfe+wxzJ07FxKJBL1790bnzp2xatUqrFy5Eq+99lqD85tMJsyf\nPx9paWkoLy/Hk08+iQEDBljHHzhwAKtWrYJMJsPYsWORlJR0a6+IiJwmLUcHUQSiQtTOLoWIKtkc\n9GPGjEFcXBxSU1Otm+179OiBtWvXonfv3g3Ov23bNgQGBmLp0qUoKirCqFGjrEFvMpmwZMkSbN68\nGUqlEhMnTsTAgQMRFBR0iy+LiJzhenYJAKA1g57IZTTqIFeNRoMePXrgxIkTKCsrQ2xsrE0hDwBD\nhw7F7NmzAQAWiwUy2R+/MVJSUhAdHQ21Wg25XI5evXrh6NGjjSmNiFzAteyK/jpRoQx6Ildh8xq9\n0WjEiy++iM2bN0MikWD37t1YsmQJtFotVqxYAV/f+nvYenlVdMzRarWYPXs25s6dax2n1WprzO/j\n44OSkpLGvhYicrLrWVpIBAERPCMekcuwOehXrFiB06dPY/369Zg+fTqAiv328+bNw5tvvomXXnqp\nwWVkZGRg1qxZmDx5MoYNG2Ydrlara/Tc1+l08POz7Rjc4GAewmNvbGPHcPd2tlhEpOVqERmqRqvw\nAGeXUyd3b2N3wDZ2PTYH/c6dO/HKK68gPj7eOqxnz554+eWX8eyzzzYY9Lm5uZg+fToWLVqEu+++\nu8a4du3a4erVqyguLoZKpcLRo0etPyYakpPDNX97Cg72ZRs7gCe0c1ZBKfQGM1q18HbJ1+IJbezq\n2MaO0dgfUzYHfXZ2Nlq1alVreMuWLW3azL569WoUFxdbe+oLgoDx48dDr9cjKSkJzz//PB599FGI\nooikpCSEhIQ06oUQkXNdz6rcP8+OeEQuxeag79SpE/bv349p06bVGP7FF19Ao9E0OP8LL7yAF154\n4abjExMTkZiYaGs5RORiUnMqgz6YQU/kSmwO+r/97W947LHHcOLECZhMJrz77rtISUnByZMnsWbN\nGnvWSERuID2v4uJWvDQtkWux+fC6O+64Axs2bIBcLkd0dDROnz6NVq1aYfPmzbjnnnvsWSMRuYGM\nXB1UCikCfZXOLoWIqrF5jR6o2HzPK9UR0Y1MZgsy80sRHebLU98SuZh6g37hwoWYN28efHx8sHDh\nwnoX9PLLLzdpYUTkPnIK9TBbRLRqwc32RK6m3qC/cuUKzGaz9T4RUV3Sc3UAuH+eyBXVG/Qff/xx\nnfdvlJeX13QVEZHb+SPovZ1cCRHdyObOeJ06dUJ+fn6t4enp6Rg0aFCTFkVE7sXa456b7olcTr1r\n9Dt27MD3338PABBFEa+88gqUypo9alNTU+Hjww83UXOWnquDQi5BkL/K2aUQ0Q3qDfr4+Hhs2rQJ\noigCqDg7nlwut44XBAEBAQHsiU/UjFksIjLyShER7AMJe9wTuZx6gz4sLAwffPABAOD555/HCy+8\nALWaZ70ioj/kFOlhMlu42Z7IRdUb9FlZWQgNDQUAzJkzBzqdDjqdrs5pq6YjouaFHfGIXFu9QZ+Y\nmIgffvgBLVq0QEJCQp0nwhBFEYIg4Ny5c3YrkohcFw+tI3Jt9Qb9Rx99BH9/fwDAunXrHFIQEbmX\n9Fz2uCdyZfUG/Z133mm9f+TIEUyfPh1eXl41ptFqtVi+fHmNaYmo+cgqKIVUIqBlAHvcE7mieo+j\nz8/PR3p6OtLT07Fy5Ur8/vvv1sdVt8OHD2PDhg2OqpeIXExWfimCA7wgldh8Wg4icqB61+i/++47\nzJs3z7pvfty4cXVON3jw4KavjIhcnlZfDl2ZCR0iA5xdChHdRL1BP2rUKLRu3RoWiwWTJ0/GqlWr\nrPvsgYrj6H18fNC+fXu7F0pEricrv2L/fEigVwNTEpGzNHiZ2vj4eADA/v370apVK16CkoisMiuD\nPjSIh9YRuSqbr0cfHh6O7du348SJEygvL7eeLa8KL1NL1PxkFegBAGFcoydyWTYH/auvvooNGzYg\nNja21tnxuJZP1DxlcY2eyOXZHPTbt2/HkiVL8Kc//cme9RCRG8kqKIVCJkGAr7LhiYnIKWw+HsZk\nMqFnz572rIWI3Igoisgq0CMk0IsXsyFyYTYH/cCBA7Fjxw571kJEbqRIZ4TBaEZoIDfbE7kymzfd\nh4WFYeXKlThw4ABiYmKgUChqjGdnPKLmhfvnidyDzUH/66+/onv37gCA9PR0uxVERO6hqsd9KHvc\nE7k0m4P+448/tmcdRORmuEZP5B5sDnqg4tz3ly9fhsViAVDRGcdoNOL06dOYOXOmXQokItdkXaNn\n0BO5NJuD/ssvv8SiRYtgNBohCIL1OvQA0Lp1awY9UTOTVVAKlUIKP2+5s0shonrY3Ov+v//9L0aN\nGoW9e/fCz88Pmzdvxpo1axAeHo4nnnjCnjUSkYuxiCKyC/QIDfLmCbOIXJzNQZ+amoo///nPiIqK\ngkajQXZ2Nvr164cXXngB69ats2eNRORiCooNKDdZ2BGPyA3YHPReXl6QVF5vOjo6GhcvXgQAdOrU\nCVevXrVPdUTkkjILKjvi8Rh6Ipdnc9D37NkT77//PgwGA+Li4vDNN98AAE6ePAkfHx+7FUhErie7\nssd9GDviEbk8mzvjPfvss5g+fTpat26NCRMmYPXq1bjrrrug0+kwdepUe9ZIRC6mqsd9SBA33RO5\nOpuDXqPRYN++fdDr9VCr1fj888+xfft2hIeHY+jQofaskYhcjPU69Nx0T+TyGnUcvZeXF7y8Kn7B\nh4SE4NFHH7VLUUTk2rIK9FB7yaH24qF1RK7O5qDv3LlzvYfRnDlzpkkKIiLXZrZYkFuoR0yYr7NL\nISIb2Bz0L7/8co2gN5lMuHLlCr788ks899xzNj/hyZMn8dZbb9U6pe7atWuxadMmBAUFAQBeeukl\nxMTE2LxcInKM3KIymC0iz4hH5CZsDvoxY8bUObxz587YtGkTRo4c2eAy3nvvPWzdurXOXvrJyclY\nunQp4uLibC2JiJwgK58XsyFyJzYfXncz3bt3x/Hjx22aNjo6GitXrqxzXHJyMlavXo1JkyZhzZo1\nt1sWEdlJVgEvZkPkTm4r6A0GA9avX4+WLVvaNP3gwYMhlUrrHDd8+HAsXrwY69atw/Hjx/Htt9/e\nTmlEZCfZ1jV6Bj2RO7itznhmsxmCIGDx4sW3XcgjjzwCtVoNAEhISMDZs2eRkJDQ4HzBwewQZG9s\nY8dwl3YuKDUCAOI6BMNb5V697t2ljd0Z29j12Bz0r7zySq1hcrkc3bt3R1RUVKOeVBTFGo+1Wi1G\njBiBnTt3QqVS4fDhwxg3bpxNy8rJKWnUc1PjBAf7so0dwJ3aOTWzBH7ecuhKyqArKXN2OTZzpzZ2\nV2xjx2jsjymbgv7atWtISUnBr7/+ivz8fPj5+aFbt26YNGkSoqKi8PrrryMqKgqTJ0+26Umrtgxs\n374der0eSUlJePbZZzFlyhQolUr06dMH/fv3b9QLISL7M5ktyC0qQ9sIP2eXQkQ2EsQbV69vsGXL\nFrz44ouQy+Xo0aMHAgICUFxcjJMnT0Kn02H69On4+OOPsWXLFkRHRzuqbiv+erQv/kJ3DHdp58z8\nUsxfcxh9u4Zh+nD3OkLGXdrYnbGNHaNJ1+hPnDiBhQsX4vHHH8fMmTOhUCis44xGI959912sWLEC\nkydPdkrIE5FjZfHUt0Rup96gf//99zF69GjMnj271jiFQgG1Wg2pVIrr16/brUAich3Wi9nwGHoi\nt1Hv4XW//vorHnrooZuO//jjj/G3v/0Np06davLCiMj1ZPM69ERup96g1+l01lPS1mXLli0YPHgw\n9Hp9kxdGRK6Ha/RE7qfeoI+MjKz3YjW+vr44ffo0IiMjm7wwInI9Wfml8PdRwEvZqAtfEpET1Rv0\nQ4cOxb/+9S+UlNTdi7KwsBBvv/02HnzwQbsUR0Suw2S2IK+4jOe4J3Iz9Qb9o48+CrlcjpEjR+LT\nTz/F2bNncf36dZw5cwYfffQRRo8eDbVajWnTpjmoXCJylpxCPUQRCOE57oncSr3b31QqFT799FO8\n9tprWLJkCUwmk3Vc1Q+A//u//6tx2B0ReSZetY7IPTW4o83X1xevv/465s+fj9OnT6OgoACBgYHo\n2rUrfH15TmOi5oI97onck809anx9fXHPPffYsxYicmHscU/knm77evRE1DxkcY2eyC0x6InIJln5\negSoFVAqpM4uhYgagUFPRA0qN5mRX1yGEK7NE7kdBj0RNSi7sAwi2OOeyB0x6ImoQdYe9zyGnsjt\nMOiJqEE8hp7IfTHoiahB6Xk6AEB4Cx8nV0JEjcWgJ6IGZeaVQiIIPIaeyA0x6ImoXqIoIiNPh+BA\nL8ik/Mogcjf81BJRvUr05dCVmRDOjnhEbolBT0T1ysyr6HEf3oJBT+SOGPREVK+Myo54YQx6IrfE\noCeiemVY1+jZ457IHTHoiahemfkVQR/GffREbolBT0T1ysjTwc9bDrWX3NmlENEtYNAT0U2Vm8zI\nLSxDGDfbE7ktBj0R3VRWvh4i2OOeyJ0x6InopjIq98/zGHoi98WgJ6Kbqjq0LrwlN90TuSsGPRHd\nVHpuZdBzjZ7IbTHoieim0nJ0UCqkCPJXObsUIrpFDHoiqpPJbEFmfikiW/pAIgjOLoeIbhGDnojq\nlJlXCrNFREQw988TuTMGPRHVKTVHCwCICFY7uRIiuh0MeiKqU2pORUe8SAY9kVtj0BNRnf5Yo+em\neyJ35vCgP3nyJKZMmVJr+IEDBzBu3DhMmDABGzdudHRZRHSDtBwd/HwU8PNWOLsUIroNMkc+2Xvv\nvYetW7fCx6fmGoLJZMKSJUuwefNmKJVKTJw4EQMHDkRQUJAjyyOiSnqDCXnFZYiLCXR2KUR0mxy6\nRh8dHY2VK1fWGp6SkoLo6Gio1WrI5XL06tULR48edWRpRFRNGvfPE3kMhwb94MGDIZVKaw3XarXw\n9fW1Pvbx8UFJSYkjSyOiarh/nshzOHTT/c2o1WpotVrrY51OBz8/P5vmDQ72bXgiui1sY8dwpXbO\nKioDAPTQhLlUXbfLk16Lq2Ibux6nBL0oijUet2vXDlevXkVxcTFUKhWOHj2K6dOn27SsnByu+dtT\ncLAv29gBXK2dz1/Jh0wqwEvqOZ8xV2tjT8Q2dozG/phyStALlafT3L59O/R6PZKSkvD888/j0Ucf\nhSiKSEpKQkhIiDNKI2r2TGYL0nK0iAxWQyblEbhE7s7hQR8REYHPPvsMADBixAjr8MTERCQmJjq6\nHCK6QVqODiaziJgwboIl8gT8uU5ENVzNqtj02ppBT+QRGPREVMPVzIqg5xo9kWdg0BNRDVcySyCV\nCIhoyWPoiTwBg56IrExmC65naxER7AO5jF8PRJ6An2QiskrP1cFktnCzPZEHYdATkVVKejEAoG0r\nfydXQkRNhUFPRFaXUosAAO0jGPREnoJBT0RWKWlF8FHJENbC29mlEFETYdATEQCgSGdEdqEebVv5\nQ1J59koicn8MeiICULE2DwDtI2y7oBQRuQcGPREBAC6lcf88kSdi0BMRgIqgFwSgTSuu0RN5EgY9\nEcFYbsaVjBJEhaihUjjlopZEZCcMeiJCSloRTGYLNK0DnV0KETUxBj0R4ezVAgBAp2gGPZGnYdAT\nEc5dLYBUIqBjVICzSyGiJsagJ2rmSstMuJxRjDbhfvBScv88kadh0BM1cxevF0IUAQ032xN5JAY9\nUTN39mo+ACCOQU/kkRj0RM1c8uV8KGQStOOJcog8EoOeqBnLLihFRl4p4mKCIJfx64DIE/GTTdSM\nnbiUBwDo0aGlkyshInth0BM1Yycv5QIAurVr4eRKiMheGPREzVRpmQkXrxeiTbgvAtRKZ5dDRHbC\noCdqps5czoPZIqJ7e262J/JkDHqiZur4hRwAQA8GPZFHY9ATNUNlRhNOXspFaJA3okLUzi6HiOyI\nQU/UDP36Wy6MJgvu6hQCQRCcXQ4R2RGDnqgZOnI2CwBwV1yokyshIntj0BM1M1p9Oc5czkfrUDXC\nW/g4uxwisjMGPVEzc/RcFswWkWvzRM0Eg56oGRFFEQdPpEMqEXBP5zBnl0NEDsCgJ2pGLmeU4Hq2\nFj06tIQ/T5JD1Cww6ImakW9PpAEAEnq0cnIlROQoDHqiZqK0zISfz2Whpb8KcTFBzi6HiByEQU/U\nTHx7Ig3GcgsSe0ZAwmPniZoNmSOfTBRFvPjii7hw4QIUCgVeffVVREVFWcevXbsWmzZtQlBQxdrG\nSy+9hJiYGEeWSOSRTGYL9h67DqVCikRutidqVhwa9Pv27YPRaMRnn32GkydP4vXXX8eqVaus45OT\nk7F06VLExcU5siwij3c4OQuFWiPu7x0Fb5Xc2eUQkQM5NOiPHz+Ofv36AQC6d++OM2fO1BifnJyM\n1atXIycnB4mJiZgxY4YjyyPySBZRxK4j1yARBAy+I6rhGYjIozh0H71Wq4Wvr6/1sUwmg8VisT4e\nPnw4Fi9ejHXr1uH48eP49ttvHVkekUc6cjYL6bk69Okcihb+KmeXQ0QO5tA1erVaDZ1OZ31ssVgg\nkfzxW+ORRx6BWl1xJa2EhAScPXsWCQkJ9S4zONi33vF0+9jGjmGPdjaZLfjqx6uQSQVM+1MXBDfz\nU97yvWx/bGPX49Cgj4+PxzfffIMhQ4bgxIkT6Nixo3WcVqvFiBEjsHPnTqhUKhw+fBjjxo1rcJk5\nOSX2LLnZCw72ZRs7gL3a+dsTacjI0+G++AhILZZm/b/ke9n+2MaO0dgfUw4N+sGDB+PQoUOYMGEC\nAOD111/H9u3bodfrkZSUhGeffRZTpkyBUqlEnz590L9/f0eWR+RRSstM2PL9ZShkEozoE+PscojI\nSQRRFEVnF3E7+OvRvvgL3THs0c6f7f8Ne45ex+h+bfBg3zZNumx3xPey/bGNHaOxa/Q8YQ6RB0rL\n1WH/8VQEB6gw5K7Wzi6HiJyIQU/kYSwWEWt3noPZImLCwA6Qy6TOLomInIhBT+Rh9hy9jpS0YvTW\nhKBnh2Bnl0NETsagJ/Ig6bk6bPn+d/h6y/Hw/R0bnoGIPB6DnshDGIxmrPryDMpNFkx9QAM/b4Wz\nSyIiF8CgJ/IAoihi3e4LSM/VYVCvSPSK5SZ7IqrAoCfyAAdPpOOn5Ey0CffD+AHtnV0OEbkQBj2R\nmzuVkodP91yE2kuOmSM7Qyblx5qI/sBvBCI3djWzBP/58gykUgGzx3VDywAvZ5dERC6GQU/kptJy\ntFj2xQkYy82Y8WAc2kX4O7skInJBDHoiN5Seq8ObG35FSWk5pjwQi16xIc4uiYhclEMvakNEt+9K\nZjH+/cVJFJeWY/L9HZHYM8LZJRGRC2PQE7mRUyl5+M+XZ2AsN2PK/R1xX3yks0siIhfHoCdyA6Io\n4uCvafh072+QSgX8ZXRXHitPRDZh0BO5OIPRjHW7z+On5CyoveR4Zlw3tGfHOyKyEYOeyIWl5mix\nelsy0nJ0aBPuh7+M6oIW/ipnl0VEboRBT+SCzBYLdv18DV9+fxlmi4gB8RF4aEAHyGU8UIaIGodB\nT+RiLmcU4+PdF3AlswT+agUeGaJBj/YtnV0WEbkpBj2RiyguNeJ/B1Pww6kMiAD6dA7FxEEdofaS\nO7s0InJjDHoiJ9MbTNiw5wK2HLwEvcGEiGAfPDyoIzTRgc4ujYg8AIOeyEnKjCbsP56KXT9fg67M\nBLWXHBMHdcCA+AhIJdwXT0RNg0FP5GD5xWXYfzwV355IR6nBBG+lDJOHatBHEwIvJT+SRNS0+K1C\n5AAWUcTFa4X49mQ6jp3PhtkiwtdbjlH3tsGgOyIRHRWEnJwSZ5dJRB6IQU9kR/nFZTh0JhM/nEpH\nTmEZACAi2Af33xGFuzuHQi6TOrlCIvJ0DHqiJlZQYsDxC9k4dj4bv6UWQQSgkEvQt0sY7u0Wjo5R\nARAEwdllElEzwaAnuk2iKCItV4czv+fjl99ycCm1CAAgAOgQ6Y8+XcJwZ6dQ7n8nIqfgNw/RLdCV\nlf7+9aoAAAxpSURBVOPclQKc/j0PZy7no6DEAKAi3GOjAnCHJgTxHYMR6Kt0bqFE1Owx6IlsUKg1\n4OL1Qvx2vQgXUwuRmq2FWDlO7SXHXXGh6NImCF3atoC/j8KptRIRVcegJ7qBwWjGtewSXMkswdXM\nElxKLUJ2od46XiaVoENUAOKiA9GlbQvEhPlCIuE+dyJyTQx6ataKdUak5+pwPVtbEexZJcjI00EU\n/5jGWylDt3Yt0DEqAB0jAxAd5suLyxCR22DQk8cTRRHFpeVIz9VZb2mVf7X68hrTKhVSdIgMQEyY\nL6LDfBET5ovQIG9I2EueiNwUg548gtliQX6xAdmFeuQU6Gv8zS7Uw2A015heABAc6IX2Ef6ICPZB\nREsfRDPUicgDMejJ5YmiCF2ZCfnFZcgvMaCgxFBxv9iAgpKKYXlFZTBbxFrzKuQShAR4ITjAC61a\n+qBVy4pQDwvyhkLOk9UQkedj0JPTmC0WlJSWo1hnRLHOiKLqf0uNKNIaK4O9DMZyy02X4+ctR3SY\nrzXQQwIrbwFe8PNR8OQ0RNSsMeipSYiiCL3BDG1ZOXT6ilvFfVPF/cpbVYgX64zQlpaj9jp4TWov\nOcKCvBHkq0KgnxJBvkoE+aoQ5KdEoJ8KgWoFTyNLRFQPBj0BqAjqMqMZZUYzSg0mlBlM0BtMkKUV\nIztXi9IyE8qMJpQaTNCXmaDVl0Nn/VsR6Baxodiu4K2Uwc9HgfAWPvDzUcDfWwE/tQL+Pgr4eSvg\n56OAn48c/j4McSKi2+XQoBdFES+++CIuXLgAhUKBV199FVFRUdbxBw4cwKpVqyCTyTB27FgkJSU5\nsjy3IYoiTGYRhnIzjOUV4XzjfUO5GQbrfYv1fpnRZA1zfWWglxoqhtuY01YSQYCPlwxqLzlCA72h\n9pLDRyWDj5ccPl5y6+OKvxWP/XzkDG8iIgdyaNDv27cPRqMRn332GU6ePInXX38dq1atAgCYTCYs\nWbIEmzdvhlKpxMSJEzFw4EAEBQU5ssRbZhFFlJssKDdZYCw3o9xsQXm5BUaTBeUm8x/jTBYYTWaY\nrPctlePM1e5XTXtjWJtgKK9Yfl0dzxpDEAAvhQxeSila+CnhpfSBl1JWcVNI/7+9+4+pqv7jOP7k\nci/Ij6vgFTe30Eoz9B9TcjkZhZjzx0RnmQIXpFn9IX/IlAmrYaitGKVrU3ABtmHYxnQ5h45+rmlF\nv6hlDTdzo5bXNB1gKo7ynnvu9w/wfiEVqYATh9dju+Oc8zmf4/ucOV67l8/9fELbCZ4YAn6j59ye\n1xgnsWNcREWG6+/fIiL/ccMa9N9++y2pqakAzJo1i5aWllBba2srU6ZMITY2FoDk5GSam5tZvHjx\nHa93pbN79LURMDECwb/8NG+z37NtmBhmsOeniWHc5pzbbPsDJoGAiT8QJBDoG9JG4N8F752EARGu\ncCIjwol0OYiNcvVs97x6b/91v6dP7+NjesI90jWwkE5IcGuddBGREWxYg76zsxO32/3/f9zpxDRN\nHA7HLW0xMTFcu9Z/wOSUvjdktf6VIywMpzMMp8OB0+nAGR5GVKSTsdEOIlwOIpzdxyOc4b22Hbic\nDlw9x1yhY+G9tnuOu8JxhTtwubqv4ep1vt41i4jIPzWsQR8bG8v169dD+zdD/mZbZ2dnqO369euM\nHTu23+sd3bVyaAqVPhIS3Hc/Sf41Peehp2c89PSM/3uGdcLuOXPmcOLECQBOnjzJ9OnTQ21Tp07l\nl19+4erVq9y4cYPm5mYeeuih4SxPRETEdsKCwb871vqf6z3qHqCsrIxTp07R1dXFU089xfHjx6mo\nqCAYDLJ69WqysrKGqzQRERFbGtagFxERkeGltTZFRERsTEEvIiJiYwp6ERERGxuRQR8MBiktLSUz\nM5N169bh8/msLsl2DMOgqKgIr9fLmjVr+Pjjj60uybba29tJS0vj559/troU26quriYzM5Mnn3yS\nd955x+pybMcwDAoLC8nMzCQnJ0f/lwfZ999/T25uLgBnz54lOzubnJwctm/fPqD+IzLoe0+lW1hY\nSFlZmdUl2U5DQwPx8fG8/fbb1NTU8NJLL1ldki0ZhkFpaSljxoyxuhTb+vrrr/nuu++or6+nrq6O\nCxcuWF2S7Zw4cQLTNKmvryc/P5/XX3/d6pJsY9++fZSUlOD3+4Hub6tt3ryZAwcOYJomH3300V2v\nMSKDvr+pdGVwLF26lIKCAqB7YiOnUwsdDoXy8nKysrKYOHGi1aXY1meffcb06dPJz89nw4YNLFiw\nwOqSbOfee+8lEAgQDAa5du0aLpfL6pJsY8qUKVRWVob2T506xcMPPwzAo48+yhdffHHXa4zI3979\nTaUrgyMqKgroftYFBQVs2rTJ4ors5/Dhw3g8HlJSUnjjjTesLse2Ll++zPnz56mqqsLn87Fhwwbe\ne2/4ps8eDWJiYjh37hxLlizh999/p6qqyuqSbGPRokX8+uuvof3e34gfyFTxMELf0fc3la4MngsX\nLpCXl8eqVatYtmyZ1eXYzuHDh2lqaiI3N5fTp09TXFxMe3u71WXZTlxcHKmpqTidTu677z4iIyPp\n6Oiwuixbqa2tJTU1lffff5+GhgaKi4u5ceOG1WXZUu+sG8hU8TBCg76/qXRlcLS1tfHMM8+wZcsW\nVq1aZXU5tnTgwAHq6uqoq6sjKSmJ8vJyPB6P1WXZTnJyMp9++ikAFy9e5I8//iA+Pt7iquxl3Lhx\noZVH3W43hmFgmqbFVdnTzJkzaW5uBuCTTz4hOTn5rn1G5Ef3ixYtoqmpiczMTAANxhsCVVVVXL16\nlb1791JZWUlYWBj79u0jIiLC6tJsSSsUDp20tDS++eYbVq9eHfrGjp734MrLy+OFF17A6/WGRuBr\ngOnQKC4uZuvWrfj9fqZOncqSJUvu2kdT4IqIiNjYiPzoXkRERAZGQS8iImJjCnoREREbU9CLiIjY\nmIJeRETExhT0IiIiNqagFxkl0tPTSUpKCr1mzpzJ3Llzee655zh9+vQd+yUlJXH06NFhrFREBpO+\nRy8ySqSnp5ORkcG6deuA7qmj29ra2LFjB2fPnuXDDz8kOjr6ln7t7e243W5NliQyQukdvcgoEhUV\nhcfjwePxkJCQwIwZM0Jz7H/55Ze37ePxeBTyIiOYgl5klHM4HISFhREREUFSUhK7d+/mscceIy0t\njba2tls+uj9y5AgZGRnMmjWLpUuXcuTIkVDbb7/9xsaNG0lOTiYlJYXNmzdz6dKlUPvJkyfJyspi\n9uzZPPLIIxQVFXHlypVhvV+R0UZBLzKK+Xw+du3axcSJE5k9ezYAhw4dorq6mj179jBhwoQ+5zc2\nNlJSUsLatWs5duwY69evp6SkhM8//5yuri5yc3OJjo7m4MGDvPnmmxiGQV5eXmiRk/z8fFJSUmhs\nbKSmpoaWlhZeffVVK25dZNQYkYvaiMg/s3fv3tBa4YZhEAgEmDFjBnv27CEmJgaAJ554ggcffPC2\n/d966y1WrFhBTk4OAImJiXR1dWGaJseOHaOrq4uysrLQojE7d+5k3rx5fPDBB6SkpHD58mU8Hg+T\nJk1i0qRJVFRU4Pf7h+HORUYvBb3IKOL1esnOzgYgPDycuLi4Wwbg3XPPPXfs/+OPP7Jy5co+x24O\n7tuxYwcdHR3MmTOnT/uff/5Ja2sry5YtY/369Wzfvp3du3czf/580tPTWbx48WDcmojcgYJeZBQZ\nN24ciYmJ/Z7T3/KiLper37YHHniAioqKW9rcbjcAW7Zswev1cvz4cZqamnj++ec5dOgQtbW1A7sB\nEfnb9Dd6ERmw+++/n5aWlj7HioqKePnll5k2bRrnzp0jLi6OxMREEhMTiY+P55VXXuHMmTP4fD62\nbdvGhAkTyM7OprKykvLycr766is6OjosuiMR+1PQi8iAPfvsszQ0NFBfX4/P5+PgwYM0NjaycOFC\nVqxYQVxcHAUFBbS0tHDmzBkKCwv54YcfmDZtGvHx8bz77rts27aNn376idbWVhobG5k8eTLjx4+3\n+tZEbEtBLzJK3Bwg93fP6X3s8ccf58UXX6S2tpbly5dTV1fHa6+9xrx584iMjKS2tpaoqCiefvpp\nvF4vpmmyf/9+xo8fT2xsLDU1Nfh8PtauXcuaNWvw+/1UV1cP6n2KSF+aGU9ERMTG9I5eRETExhT0\nIiIiNqagFxERsTEFvYiIiI0p6EVERGxMQS8iImJjCnoREREbU9CLiIjYmIJeRETExv4HEIi0kltk\nYFMAAAAASUVORK5CYII=\n",
168 | "text/plain": [
169 | ""
170 | ]
171 | },
172 | "metadata": {},
173 | "output_type": "display_data"
174 | }
175 | ],
176 | "source": [
177 | "interactive_quantity_supply_plot = ipywidgets.interact(cobweb.quantity_supply_plot,\n",
178 | " S=ipywidgets.fixed(quantity_supply),\n",
179 | " gamma=cobweb.gamma_float_slider,\n",
180 | " p_bar=cobweb.p_bar_float_slider)\n"
181 | ]
182 | },
183 | {
184 | "cell_type": "markdown",
185 | "metadata": {},
186 | "source": [
187 | " Special case: Linear demand functions
\n",
188 | "\n",
189 | "Suppose the the quantity demanded of goods is a simple, decresing linear function of the observed price.\n",
190 | "\n",
191 | "$$ q_t^d = D(p_t) = a - b p_t \\implies p_t = D^{-1}(q_t^d) = \\frac{a}{b} - \\frac{1}{b}q_t^d \\tag{11} $$\n",
192 | "\n",
193 | "...where $-\\infty < a < \\infty$ and $0 < b < \\infty$. "
194 | ]
195 | },
196 | {
197 | "cell_type": "code",
198 | "execution_count": 9,
199 | "metadata": {
200 | "collapsed": true
201 | },
202 | "outputs": [],
203 | "source": [
204 | "def quantity_demand(observed_price, a, b):\n",
205 | " \"\"\"The quantity demand of goods in period t given the price.\"\"\"\n",
206 | " quantity = a - b * observed_price\n",
207 | " return quantity\n",
208 | "\n",
209 | "\n",
210 | "def inverse_demand(quantity_demand, a, b, **params):\n",
211 | " \"\"\"The price of goods in period t given the quantity demanded.\"\"\"\n",
212 | " price = (a / b) - (1 / b) * quantity_demand\n",
213 | " return price"
214 | ]
215 | },
216 | {
217 | "cell_type": "markdown",
218 | "metadata": {},
219 | "source": [
220 | " Exploring demand shocks
\n",
221 | "\n",
222 | "Interactively change the values of $a$ and $b$ to get a feel for how they impact demand. Shocks to $a$ shift the entire demand curve; shocks to $b$ change the slope of the demand curve (higher $b$ implies greater sensitivity to price; lower $b$ implies less sensitivity to price)."
223 | ]
224 | },
225 | {
226 | "cell_type": "code",
227 | "execution_count": 10,
228 | "metadata": {
229 | "collapsed": false
230 | },
231 | "outputs": [
232 | {
233 | "data": {
234 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfoAAAF7CAYAAAA6+Uk0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdYFHf+B/D30BFQQEQFkRppKopisCBYY42aiNGoJGeN\nF09NLpdTY6oxeqZHzS+mqNEkFlAido2IvSAKCoKGLmChWFhEEZnfH7grCOKCzCy7vF/Pc8/FnZ3Z\n7352ls/Oznu+K4iiKIKIiIh0kp6mB0BERETSYaMnIiLSYWz0REREOoyNnoiISIex0RMREekwNnoi\nIiIdxkZPdSKKIvbv3493330XgwcPRufOndG+fXsEBAQgJCQEP/74I27cuKHpYaqtb9++8PDwQFhY\nmMbGEB4eDg8PDwQFBWlsDNqmrq/bwYMHMXbsWPj6+sLX1xfDhw+XaITSSE5OrnJbQ9iHqWEy0PQA\nSPucO3cO8+bNQ0pKCgRBgLGxMezt7WFmZoa8vDxER0fj1KlTWLlyJebOnYvg4GBND1ktgiBoeghU\nB7V93c6fP48ZM2ZAFEVYWlqiTZs2aNWqlUSjq1+5ublYsmQJzpw5gwMHDlRZzn2YqsNGT7Vy7Ngx\nzJgxAyUlJXBxccGcOXMQFBQEIyMj1X0yMzOxYsUKRERE4IMPPoChoSFGjhypwVETPbJnzx6UlZXB\nwcEBO3bsqLTvNnRHjhzBjh07qv1g8uuvv6K0tBQtWrTQwMioIWOjJ7Xl5+fjrbfeQklJCfz8/PDD\nDz+gSZMmVe7Xtm1b/O9//4ONjQ1++eUXLF68GP3794e5ubkGRk1UmfKUUseOHbWqyT+Ng4ODpodA\nDRTP0ZPavvvuO9y6dQsWFhb45ptvqm3yFc2ePRu2tra4ffs2du3aJdMoiWpWVlYGAFrZ5DljOdUF\nj+hJLXfu3EFERAQEQcC4ceNgbW391HWMjIzwr3/9CwqFAj169Kj2Pnv27EFoaCgSEhJQWFgIS0tL\n+Pr64tVXX4W/v3+165SVlWHz5s2IiIjAxYsXUVxcDBsbG/j5+eH111+Hl5dXtevl5uZi1apViIyM\nxNWrV2FtbY1BgwbhzTfffOJzuHfvHn799Vfs2bMHqampePDgAWxsbNC5c2eMHz8evr6+T63D4/bt\n24fffvsNFy9eRElJCby9vfHGG288db2kpCSsXr0ap06dQl5eHpo0aYL27dvjlVdewcCBA6vcf+LE\niYiOjsbq1athbm6O77//HmfPnsW9e/fg7OyMkJAQ1SmV0NBQrF+/HmlpadDX14ePjw9mzZoFHx+f\nKtstLCzE+vXrcejQISQnJ0OhUMDU1BQODg7o27cvQkJC0LRp00rreHh4QBAExMXF4eDBg1i7di2S\nkpJw//59ODs7Y8SIEZgwYQIMDKr+SarL61ad5cuXY/ny5ap/h4eHIzw8HAAQGRkJURTRr18/CIKA\nvXv3VnuE3LdvX+Tk5GDJkiWq2p06dQohISHo1KkTfvvtN6xduxZbt25FRkYGDA0N4eXlhZCQEPTr\n16/aceXl5eH333/H/v37kZWVBVEU4ezsjKFDh2LixImqDyQeHh6qda5evaqqaWJiYqWxffrppxg9\nenSlx7h9+zbWrl2L/fv3Iz09HaIows7ODoGBgZg0aVKVr/vDw8Mxb948DB06FJ9++ilWrlyJ3bt3\nIycnB6ampujcuTOmTJmCrl271uo1IM1goye1nDhxAsXFxRAEAX379lV7vScF8UpLSzFnzhz89ddf\nEAQBLVq0gJeXF7KysrBv3z7s3bsX//jHP/Df//630noKhQJTpkxBbGwsBEGAvb09HB0dkZ6ejoiI\nCGzfvh3vvvsuXn/99UrrJSUlYcqUKcjLy4ORkRGee+453L59G2vWrMGRI0dw9+7dKmMsKSnBa6+9\nhtjYWBgYGMDR0RGmpqa4fPkyduzYgZ07d2LhwoVV/qjW5OOPP8b69eshCAJat24NBwcHxMfHY/Lk\nyejWrdsT1/v999/x2WefoaysDE2aNMFzzz2Hmzdv4tixYzh69CiGDx+OpUuXVgljCYKA3bt3Y/Pm\nzTAyMoKTkxNycnJw4cIFzJs3D8XFxYiJicH27dthY2MDZ2dnJCcn4+jRozh9+jQ2bdoEd3d31fYy\nMjLw2muv4erVq6qa2NvbIycnB4mJibhw4QJ27tyJzZs3w9TUtMrz+Oabb7Bq1So0adIETk5OuH79\nOpKSkpCYmIjz58/jyy+/fObX7Ulat26NLl26ICMjA3l5ebCxsYGjo6MqUKrutp4UeCspKcHUqVNx\n/PhxWFtbw9XVFWlpaTh58iROnjyJjz/+GK+88kqldWJiYjBr1izk5+fDwMAAbm5uKCkpQVJSEi5c\nuIBDhw7hl19+gYGBAbp06YL8/Hykp6fDyMgIHTp0qPb1flxSUhKmTp2K3Nxc6Ovrw8XFBYaGhrh0\n6RJWr16NLVu2YNmyZdXuf7dv38aYMWOQnJwMW1tbuLm5ISUlBVFRUTh8+DC+//57BAYGqlU30iCR\nSA3Lli0T3d3dRU9PT/HBgwfPvL1PPvlEdHd3F319fcW9e/eqbi8rKxN///130dvbW/Tw8BDXrFlT\nab3p06eL7u7uYq9evcTo6GjV7SUlJeJ3330nuru7ix4eHuK+fftUy0pLS8UhQ4aIHh4e4j/+8Q8x\nPz9ftezQoUNily5dVOuFhoaqlq1fv150d3cXBw8eLF69elV1+71798SFCxeK7u7uop+fn3jv3j21\nnvPWrVtFd3d3sUOHDuKOHTtUtxcWFopz5swR3d3dRXd3dzEwMLDSelFRUaKHh4fYoUMH8bfffhPL\nyspUy44fPy726NFD9PDwEL/99ttK602YMEG1zdmzZ4uFhYWq8U+aNEn08PAQPT09RR8fH3Hbtm2q\n9XJycsSgoCDRw8NDnDdvXrXbHDt2rJiXl1fl+Xl6eooeHh7i77//XmmZsr4eHh7i119/rapZWVmZ\n+NVXX6mWJyYmqtap6+v2NHPnzhXd3d3FuXPnVro9KytLtb3MzMxq1+3Tp4/o4eEhhoeHq247efKk\nqs6+vr5VXtvXX39ddHd3F/39/Su9d27duiX27NlT9PDwEKdPn17p+cXHx4vdu3cXPTw8xK+++kp1\n+5YtW6rdRyqOrWItFAqF2KtXL9HDw0McN26cmJWVpVqWn58vzpgxQ7UfV1ymfBzle+3YsWOqZbm5\nueKLL74oenh4iCNHjqy2TtSw8Bw9qSU3NxcAYGlpCT29Z9ttrl27ho0bN0IQBCxcuBADBgxQLRME\nAa+++ipmzZoFURSxYsUKFBcXAwDi4uIQFRUFQRCwfPnySl8bGhoa4l//+hdeeeUViKKIzz//XLVs\n7969SElJQdOmTfHtt99WOu0QEBCABQsWVDvOpKQkCIKAgIAAtGzZUnW7kZER3n33XfTq1QsDBw7E\nzZs31XreP/zwAwRBwBtvvIEhQ4aobjc3N8fSpUvh7Oxc7Xpff/01AOCdd97B+PHjKx21+fv7Y8mS\nJRBFEatXr8atW7eqrG9lZYUlS5aowpBGRkaYNGkSRFGEKIqYMmUKhg0bprp/69at8fLLL0MURVy4\ncEF1e35+PpKTk6Gnp4dPP/0UzZs3r/Q4L774ouqo8NKlS9U+l759+2LOnDmqr6MFQcDs2bPRrFkz\nAMCZM2dU963r66YpgiBg1qxZVV7b//znPwCAmzdvIi0tTbVsw4YNyMvLg729Pb777rtKz8/b2xvz\n588HAERERNR5TL///jtyc3PRvHlzrFy5Evb29qpl1tbW+Pbbb9GuXTsUFhbihx9+qPY5ffjhh+je\nvbvqNhsbG8ycOROiKCIpKUn1/qSGi42e1CKqEQJasGABPDw8qv1fxUlgDh06hNLSUtjY2FT6o1jR\nxIkTYWhoiMLCQpw6dQpA+XlUoDwtXd25YwCYNGkSgPJL/JSTiig/HPTr1w8WFhZV1hk2bFi1tzs5\nOUEURYSFhWH9+vUoKChQLTMyMsLPP/+MTz/9FLa2tk+tzeXLl5GamgoAGDVqVJXlhoaG1Z4CyM7O\nRlJSEgA8cVKXgIAAWFlZ4e7duzh+/HilZYIgoFu3bjAxMal0e8U/+L17966yTeUHG4VCobqtefPm\nOH78OGJjY+Hq6lplnQcPHqg+TDzpa/DqJgPS09ODo6MjgPLz/0p1fd00qU+fPlVuq1ir27dvq/5b\n+fxGjBhRbTBw0KBBCA8Px+7du+s8ngMHDkAQBIwaNaraWhkaGmLixIkQRVH1/qpIX1+/2v3DxcVF\n9d8VXzNqmHiOntRiZWUFoPyopKysrNqjekdHR3Tp0qXSbcpzihUpG96TQnMAYGpqCmdnZ/z9999I\nS0tDYGAg0tLSIAgCvL29n7ieo6MjzM3NUVRUhLS0NLi5uamOotq1a1ftOspzo7GxsZVuHz16NDZv\n3ozk5GR8/PHH+OSTT+Dp6Ynu3bsjICAAfn5+0NfXf+JYKlKOwczMDK1bt672Pp6enlVu+/vvv1X/\n/bTQIPCothVV93iGhoaq/64uWKkMxVX3Ac/IyAg5OTk4f/48MjIykJWVhZSUFCQmJuLOnTsQBEGV\nbH9cxW9GKjI2NgZQnt1QquvrpknVPT/lcwPKPwwpZWZmAqgcsqvIwMDgicvUpdwfanrPKJcVFBTg\n1q1bqm9XAKBZs2bVfgip+MGx4nOihomNntSiDGSJooiUlBQ899xzVe4zdepUTJ06tdJtyvRuRcqj\nxKddV69crry/8v+fdhRnZmaGoqIiFBUVAYDq6+yaLges+Met4uNv3LgRq1atwrZt25CZmakKnP3y\nyy9o3rw55syZo9bMf8ojueoCakqPJ9WBykdLZ8+eferjVHd0VdNjAqjVqZi0tDR88MEHiI6OBvAo\n/GVubg4/Pz9VuO5JKn7AqE7FDxZ1fd00qTbPT3nK52mXqT4L5XugpvdMxfdhUVFRpZo+7fkAvORP\nG7DRk1p69OgBAwMDPHjwAHv27Km20avLzMwMQOWvhaujbI7KP0TK9Z72VaFyPeX9rayskJmZWePj\nPemr5iZNmmDmzJmYOXMmLl++jBMnTuDkyZM4fPgwCgoK8MEHH8DKygr9+/evcUyWlpYAHv3hVXcM\nyiZtaWlZ5Wt5uRUUFGD8+PG4ceMG7OzsMHbsWHh6esLFxUV1KuCdd95RXe71rJ7ldXtWT2pe9Xk+\n2tTUFAqFosZ94lmZmZnh9u3bNb5nKuY6lO8Z0i08R09qsbS0xLBhwyCKItavX4/8/Pw6b0t5fq9i\n0OtxCoVC9ZW/8vyti4sLRFFEQkLCE9dLSUlR/TFWrufs7FwlWPa46n4kpKCgAKdPn1bNpObg4IDg\n4GB88cUXiIqKUn3luXXr1iduV0kZtCsuLkZGRobaY1Cud/PmzRprHhMTg5SUFNVX+FIICwtDQUEB\nmjVrhvDwcEybNg0BAQGVzvdfu3at3uZbr+vrVlcVr+EvKSmpsvzevXv1ej7ayckJwJODi6WlpRg3\nbhxmzZqFrKysOj2Gcv+p6T0THx8PoPwbpYb2DQnVDzZ6Uttbb72Fpk2boqCgAHPmzHlq2ry4uLja\ngE/v3r1hYGCAvLw87Ny5s9p1f/vtN5SWlsLExAR+fn4AHgWdzp0798TzsmvWrAFQfl5aeW5XOZlM\nZGQkrl+/XmWdyMhI5OXlVbl98uTJmDBhAv78888qy0xNTdGpUyeIoqjWOUp7e3tVJmH9+vVVloui\niM2bN1e53dXVVfWBZd26ddVuOyYmBuPHj8ewYcMQFxf31LHUlbLZ2NnZVdsQkpOTVacX6uO8bV1f\nt7qytLRUfUipLuuwf//+ShmCZxUYGAhRFLFt27Zqt3vw4EGcPXsWR44cgY2NDYBHp0rU/bq8b9++\nEEUR4eHh1X5IuX//Pv744w8IgsDr4XUYGz2prWXLllixYgXMzMwQHR2NESNGIDQ0tMofkGvXrmHV\nqlUYMGAA9u3bB0EQKgWqWrVqhTFjxkAURSxYsAB79uxRLRNFEX/88QeWL18OQRDw5ptvqr6679Sp\nk+qP48yZM1VpfKD8COy7775DaGgoBEFQXdIElCe9fX19cefOHbzxxhu4fPmyatnp06exYMGCao9C\nR4wYAaB8RrXDhw9XWnb69Gls3boVgiCo/bOy//73vyGKItatW4dff/1V9cf67t27WLBgAc6fP1/t\nerNnz4Yoivjxxx/x888/4/79+5XGMXv2bAiCgE6dOtU46c6zUn4Tc/HiRezdu7fSskOHDmHKlCmq\nBl8fX3HX9XVTR3XrGRsbw8vLC6IoYtmyZZU+XBw5cgQLFy6s11+He/XVV2FpaYnMzEy8/fbblb5C\nP3fuHD766CMIgoDx48erwm/Kr9Zv3bqFO3fuPPUxxo0bh5YtWyIvLw9Tp06t9M1Afn4+Zs2ahb//\n/htmZmaYOXNmvT03alh4jp5qxc/PDxs3bsSCBQsQGxuL999/Hx9//DFatWoFKysr5Ofn48qVKxBF\nEYIgwMHBAf/85z+rXFI2d+5cXL9+Hfv371fNid+qVStcvnwZN27cgCAImDBhAqZMmVJpvaVLl2LG\njBk4e/YsQkJCYG9vD2tra6SlpUGhUMDAwABvvfUWBg8erFpHEAR8+eWXmDp1KhITEzFo0CC0a9cO\nxcXFSE9Ph4ODA1q2bFklRBYSEoLjx4/j0KFDmDp1KmxtbWFra4uCggLk5OSoLv1Sd2a8nj174j//\n+Q++/PJLLF68GD/99BNat26N1NRU3LlzBwMHDqzSQAFgyJAhyMjIwLJly/DFF19g5cqVcHJyQkFB\nAbKzsyEIAlxcXLBixYoq69ZnUGr06NFYv349MjMzMWvWLNjZ2cHa2hpXrlxBfn4+DA0N0a1bN5w8\neRJXr1595ser6+umjifVZc6cOZgxYwaSk5PRv39/uLm54ebNm8jJyUHHjh3h6+uL/fv3P+tTA1B+\ntcPy5cvx5ptvYt++fYiKioKbmxsKCwtVDTkgIAD/+te/VOu4u7tDT08P9+7dwwsvvABbW1usWrXq\niV+5W1hY4IcffsD06dMRFxeHgQMHwtXVVTUz3oMHD2BlZYWvvvoKbdu2rZfnRQ0Pj+ip1lxdXbF+\n/XqsXbsWr776quqPYWJiIoqLi+Hh4YHx48dj5cqV2LdvX7XXjRsZGWH58uX4+uuv0atXL9y/fx9J\nSUkwNTXFsGHDsHbtWrz33ntV1mvWrBnWrVuHTz75BH5+flAoFLh06RKsra0xZswYhIWFYfLkyVXW\na926NTZs2IBZs2bBxcUF6enpUCgUCA4OxsaNG1VhuYr09PSwYsUKzJ8/H76+vrh37x6SkpJw7949\nBAQE4IsvvsDy5ctrlVqfPHky1q5dq5pGODk5Ga6urvjqq6/w2muvQRCEao8aZ8yYgQ0bNuDFF1+E\nhYUFLl68iBs3bsDLywtz5sxBWFhYtZfJPe0ItKblj4/F3NwcmzdvxrRp0/Dcc8/hxo0bSE5Ohrm5\nOYKDgxEeHo5FixYBKD/v/Hizr8vRcF1eN3U8qc4BAQH4448/0L9/f5iZmSElJQWmpqaYM2cOfv/9\ndzRp0qTa9Z60vcfv87iuXbti27ZteO2112Bvb4/U1FTk5+fDx8cHn3zyCX788cdKl7e1bdsWS5Ys\ngZOTE27duoVr164hOzu7xsf19PTE9u3b8eabb6Jdu3bIyspCRkYGXFxcMGPGDERERFSaEOdZnxM1\nPILIayOIiIh0Fo/oiYiIdBgbPRERkQ5joyciItJhbPREREQ6TKsvrystfYAbN55+LSnVnZVVE9ZY\nBqyz9Fhj6bHG8mjRona/2qjVR/QGBur9chjVHWssD9ZZeqyx9FjjhkmrGz0RERHVjI2eiIhIh7HR\nExER6TA2eiIiIh3GRk9ERKTD2OiJiIh0GBs9ERGRDmOjJyIi0mGyNvqysjLMnz8f48aNw/jx45Gc\nnFxpeWRkJEaPHo2xY8ciNDRUzqERERHVm5KSEk0PQUXWRh8ZGQlBELB+/XrMnj0bX331lWpZaWkp\nlixZgjVr1mDdunXYuHEjCgoK5BweERHRU23atB4vvTQU27f/ic2bN+F//1uEK1dyVMuPHj2M4uKn\nTwWckpKMxMQEKYcKQOZG379/fyxcuBAAkJ2djWbNmqmWpaSkwNHREebm5jA0NESXLl0QHR0t5/CI\niIieyt3dE926+WPYsJF4+eUxmDx5Or77rvzANT8/D3fuFKFZM8unbsfV1Q1xcWdRWloq6XhlP0ev\np6eHuXPnYtGiRRg+fLjqdoVCAQuLRxP1m5mZobCwsMZtJaTmQxRFycZKRET0uMTEeHh6eqv+bWNj\ng7S0FADAjh0R6N07SO1t+fn548CBv+p7iJVoJIy3ZMkS7NmzBwsWLMDdu3cBAObm5lAoFKr7FBUV\noWnTpjVuZ+6KI/jstxj8nXVT0vESEREpJSYmwMvLu9JtCkX5gemNGzdgbGwCAIiPP4f/+79l2Lt3\nNw4ejERERHiVbbm6uiEh4byk45X1Z2q3bt2Ka9euYdq0aTA2Noaenh709Mo/a7i6uiIjIwO3b9+G\niYkJoqOjMXny5Bq3171Daxw/fwWLfzsD//atEDLECw4ta/fzffR0tf1JRKob1ll6rLH05Kjxqm0J\nOBqXXa/b7Oljj0nDvZ9+RwAZGWnw9/dV9a/4+Hh4enqiRQsL6OmVqWrQrJkpjI310amTF7y9vRES\nEoLJk0Nw7tw5dOzYUbU9U1MjSesma6MfOHAg5s2bhwkTJqC0tBTz58/H3r17UVxcjODgYMybNw+T\nJk2CKIoIDg6Gra1tjdub/3o3HD+bhU1RyTgRfxWnEq6hdyc7jOjphGbmxjI9K93WooUFcnNrPoVC\nz451lh5rLD25alx8pwQPHtTvadviOyVqjf3mzZto0sQc+flFqtvCw7dhyJARyM0thEJRrNqOg8Nz\nSEhYhkmT/omUlGwUF99Dbm4hdu7ci9atnVXrFxTcqlXdavuhQNZGb2pqim+++eaJy4OCghAUFFSr\nbbq1aYZ5431x9u88hEWlIOpsNo7HX8UL3Rww6Pm2MDGS9SkSEZHExvR1w5i+bhp57PLz816qf6ek\nJOPGjQL06dMfAKCvr69adv/+fQhC+X8fPXoIL7wwBMePH4UgCCgqUsDMzBwAoKf3aB0p6EQXFAQB\nvu1awMetOQ7HXcGfR9IQcTQdUbE5GNHTCQE+djDQ59xARERUd/Hx57B58yY0a2aJ7du34u7dYty9\nexf/+c981X1MTExU/52UdAGGhoY4cuQQ8vLyMHHi69i9eweGDBkOExPTateRgk40eiV9PT0EdbaH\nv3dL7Dl1GbtPZmLd3kvYezoLowNd4dvOBoLy4xUREVEttG/fEV988V2N92nRoiUKCwthYWGB8+fP\nITh4HHx9u6JXr94Ayo/yr1+/BhubFgCA7OwsuLpK++2ETjV6JRMjA4zo5YygzvaIOJKGg7E5WBF+\nHm72zRDcxxXPtXn69Y1ERES1NXz4SOzfvxddu3bDX3/thrW1dZXlFR07dgQvvjhK0jEJopZfiK5O\ngOFKfhG2HExFzKVcAIBvuxZ4OdAFrZubST08rccAkzxYZ+mxxtJjjcvFxcWiVatWaNmyVY33y87O\nwvXr19C5c5dabb+2YbxG0eiVkrNuYdOBZCRn34KeIDChrwa+ceXBOkuPNZYea1w79+/fh6GhYa3X\na9Cpe01za9MM8yaUJ/RDKyT0Bz3fFi90c2BCn4iIZFOXJl8Xja6zKRP6HV2b4/C5K9h6JA1bj6Th\nwNlsjOjljICOrZnQJyIindFoO5qBvh76dLbHkun+GNHLGfdKHmDdnot4/5dTiLmYyzn0iYhIJzS6\nI/rHqRL6newQcTS9UkJ/TB83uLVp9vSNEBERNVCNKoynjiv5Rdh8MBVnmNAHwHCNXFhn6bHG0mON\n5cEw3jNq3dwMM1/qgL+zbiL0QArOXMpF7N95COxkhxd7OaOZmZGmh0hERKQ2NvoneK6NJeZN8MWZ\nS3kIO5iCA2ezcYwJfSIi0jLsVjUQBAFd3B/Ooc+EPhERaSF2KTU8KaH/wS+ncOYSE/pERNRw8Yi+\nFiom9LceTceh2Bws38KEPhERNVxM3T+DxxP6Xdq1wMtBrmhl3URjY6pvTNHKg3WWHmssPdZYHkzd\ny6hiQn/TgWTEXMrFWSb0iYioAWGjrwfPtbHE/AldcOZSLsIOppYn9BOuYlA3JvSJiEiz2IHqSXlC\n3xY+bjY4HJdTKaE/spczAnxaQ1+P2UciIpIXO089M9DXQx/fNlg8vTte7OmEeyUPsHbPRbz/MxP6\nREQkPx7RS8TU2AAjA1zQp7N95YR+m4cJfXsm9ImISHpM3cvkSn4RwqJScPbvPADak9BnilYerLP0\nWGPpscbyYOq+gWrd3Az/erlj1YR+Zzu82JMJfSIikgbP0ctMmdB/c1R7tLA0wYEz2Zi78jgijqTh\nbkmppodHREQ6hkf0GlBdQv/PinPoM6FPRET1hN1Egx5P6BeXlGLtwzn0zzKhT0RE9YBH9A2AMqEf\n1NkeEUfScCjuCpZtOY/nHib0XZnQJyKiOmLqvgGqktB3b4GXAzWT0GeKVh6ss/RYY+mxxvJg6l4H\nKBP6ly7fROiBZMRczEXs33no3YkJfSIiqh2eo2/A2jlYYv7ELvjnyPawacaEPhER1R6P6Bs4QRDQ\n1cMWnZ6zwaG4HERUTOgHOCOgIxP6RET0ZOwQWsJAXw99H0/o72ZCn4iIasYjei3DhD4REdUGU/da\nLievCJsPPkrod32Y0G9ZTwl9pmjlwTpLjzWWHmssD6buGxk7m8oJ/dMXH86h/zCh35QJfSKiRo3n\n6HXE4wn9yDPZ+O/K44g4moZ7JQ80PTwiItIQHtHrkMcT+luPpOHPw2k4cIYJfSKixop/9XWQMqG/\nZHp3DO/xWEL/byb0iYgaEx7R6zBTYwOM6u2CPr722HokDYficrBs83m0a9MMwX3d4GrHhD4Rka5j\n6r4RqUtCnylaebDO0mONpccay4Ope3qiign9TUzoExE1CrI1+tLSUsyfPx/Z2dm4f/8+3njjDfTt\n21e1fM2kxW9xAAAgAElEQVSaNQgLC4O1tTUA4JNPPoGTk5Ncw2tU2jlY4r2JXRBzMRdhB1MQeSYb\nR+OvYvDzbfGCX1sYG+lreohERFRPZGv0ERERsLKywtKlS3Hr1i2MHDmyUqNPSEjA0qVL4eXlJdeQ\nGrWKCf2DsTmIOPowoX82GyN7OaMXE/pERDpBtkY/ePBgDBo0CABQVlYGA4PKD52QkICVK1ciNzcX\nQUFBmDZtmlxDa9QM9PXQr0sb9GjfCrtPZmJPdCZ+3X0Re6MvY3SQKwbYmGt6iERE9Axka/SmpqYA\nAIVCgdmzZ+Ott96qtHzo0KEYP348zM3N8eabb+LgwYMIDAyUa3iNnjKhH9S5PKF/+Fx5Qj/ybA5G\n9nJiQp+ISEvJmrq/cuUKZs6ciQkTJmDUqFGVlikUCpiblx89/vHHH7h16xZmzJgh19DoMZlXb2Pt\nzkScTLgKAOjpY4eQIZ6w4xE+EZFWka3R5+XlISQkBB988AH8/f0rLVMoFBg2bBh27doFExMTzJ49\nG6NHj0bv3r2ful1eyiGta7fv4cfw80i7chv6egKCOtljeE8nJvTrGS9Lkh5rLD3WWB61vbxOtka/\naNEi7Nq1Cy4uLhBFEYIgYMyYMSguLkZwcDAiIiKwdu1aGBsbo3v37pg5c6Za2+VOJa0WLSxw/fpt\nVUL/+o1iGBvpY8jzbTGQCf16wz+Q0mONpccay6PBNnqpcKeSVsU3bumDMlVCv/DOfTQzN2JCv57w\nD6T0WGPpscbyqG2j519nUpsyob9kencM6+GE4nul+PXhHPqxf+dxDn0iogaIM+NRrZkaG+Cl3i7o\nUyGh/93mc2jnYIngPq5M6BMRNSD86p5qpM5Xcdl5RdgclYLY5Idz6HvY4uVAF7S0evIc+lQZv/KU\nHmssPdZYHpzrnmRnb2OGWaM74mLmDWw6kILTSddx9lIuE/pERA0Az9FTvXFva4UFIV3wz5Ht0byZ\nCfafycLclcex7Vg67pU80PTwiIgaJR7RU72qbg798EOpiDyThVEBLujZoRUT+kREMuJfXJJElYT+\n3VKs2ZWED1dFM6FPRCQjHtGTpCon9FNx+NwVVUJ/TB83uNg11fQQiYh0GlP3VKP6TtEyoV89ppWl\nxxpLjzWWB1P31KA9MaHf+WFCvwkT+kRE9Ynn6EkjlAn9GSPbo3lTE+yPycLcHx4m9O8zoU9EVF94\nRE8aIwgC/Dxs0flhQn/rkfKE/oEzWRjJhD4RUb3gX1HSOGVC/39vdMewHo64UzGhn8yEPhHRs+AR\nPTUY5Ql9V/Tp3OZRQj+MCX0iomfB1D3VSJMp2uxcBcKiUhCXkg8A8HuY0LfVwYQ+08rSY42lxxrL\ng6l70hn2LcwxO9jnYUI/GdFJ13GGCX0iolrhOXpq8MoT+l2rJPS3M6FPRPRUPKInrVAxoR91NhsR\nR9Ox5eEc+iMDXNCrQ2vo6QmaHiYRUYPDI3rSKgb6eujf1aGahP4pxDGhT0RUBY/oSStVTOj/eTgV\nR85fwbdh5+DuYIlgJvSJiFSYuqcaaUuKVtsT+tpSZ23GGkuPNZYHU/fUKD0pod+nsz2GMaFPRI0Y\nz9GTTlEm9N8Y4Q3rpsb4iwl9ImrkeERPOkcQBHTzbAnfdi2qJPRHBbigJxP6RNSI8IiedJYyob9k\nencM7V6e0F/NhD4RNTI8oied18TEAC8HuqKvb+WEvkfb8oS+c2sm9IlIdzF1TzXSxRRt1sOE/rmH\nCf1unrZ4qbdmE/q6WOeGhjWWHmssD6buiZ6iTQtzzAn2QVLGDYRGJeNU4nXEXCxP6A/v6QQLJvSJ\nSIfwHD01Wh6O1ST0Vx7HjuNM6BOR7uARPTVqFRP6B85mY9vRdGw+mIrIM9kY2cuZCX0i0no8oidC\neUJ/QIWEvqL4fnlCfzUT+kSk3XhET1SBMqHfp7M9/jyShqNM6BORlmPqnmrU2FO0ciX0G3ud5cAa\nS481lgdT90T1qGJCf9OBCgl9X3sM78GEPhE1fDxHT6QGD0crLHitPKFvZWGMv04zoU9E2oFH9ERq\n0qspoR/gjJ7tmdAnooaHR/REtVRtQn9neUL/XAoT+kTUsPCInqiOqiT0z13BN6FM6BNRw8LUPdWI\nKVr1ZV1XIOzgYwn9QFfYWpo+dV3WWXqssfRYY3kwdU+kIW1syxP6iRk3EMqEPhE1EDxHT1TPPB8m\n9Ke/WDWhX8KEPhHJTLYj+tLSUsyfPx/Z2dm4f/8+3njjDfTt21e1PDIyEt9//z0MDAzw8ssvIzg4\nWK6hEdU7PUHA817lCf2os9nYdowJfSLSDNkafUREBKysrLB06VLcunULI0eOVDX60tJSLFmyBFu2\nbIGxsTHGjRuHfv36wdraWq7hEUnC0EAPA/wc0LNDa+w6mYG90ZexemcS9kZfRnCQKzq4NIcgsOET\nkXRk++p+8ODBmD17NgCgrKwMBgaPPmOkpKTA0dER5ubmMDQ0RJcuXRAdHS3X0Igkp0zoL57mj14d\nWiMntwjfhJ7D5+vPIu3KbU0Pj4h0mGxH9Kam5cljhUKB2bNn46233lItUygUsLB4lCI0MzNDYSGT\nm6R7rJuaYNJQTwz0c1Al9Bf+ehq9O13BEP+2aiX0iYhqQ9bU/ZUrVzBz5kxMmDABQ4YMUd1ubm4O\nhUKh+ndRURGaNlXvGuTaXmZAtcca178WLSzQ2bs1ziXnYvW2BByKzcax8zkY0tMZr/R3R1MzJvSl\nwH1ZeqxxwyPbdfR5eXkICQnBBx98AH9//0rLSktLMXToUISGhsLExARjx47FDz/8AFtb26dul9ds\nSovXxUqvTBRxMfs2Vm9LQN6tuzA1NsAQ/7YY0NUBRob6mh6ezuC+LD3WWB61/TAlW6NftGgRdu3a\nBRcXF4iiCEEQMGbMGBQXFyM4OBhRUVFYvnw5RFHE6NGjMW7cOLW2y51KWnzjyqNFCwvkXLn1cA79\nNBTdLYWVhTET+vWI+7L0WGN5NNhGLxXuVNLiG1ceFet85+597DyRiX2nL+N+aRnsW5ghOMgNHVys\nmdB/BtyXpccay6O2jZ4T5hA1ME1MDDE66PGEfhy+2BCL9KtM6BNR7fCInmrET+jyqKnOj8+h/7xX\nS7zU2wUtmNCvFe7L0mON5cG57ol0jGoO/fQCbIpKwckL13A66Tr6+rbB8J5OMDc11PQQiagB41f3\nRFrC08ka77/WFdNe9IKVhTH2nb6M//5wHDtPZHAOfSJ6Ih7RE2kRPUGAv1crdGlnq0roh0WlYH9M\nFkYFuKBH+1ZM6BNRJTyiJ9JChgZ6GOjngP+90R2D/dtCUXwfq3Ym4qPVp3AuJR9aHr0honqkdqMX\nRRFbt27F1atXAQArVqzAsGHD8N577+HOnTuSDZCInqyJiSGCg9yweJo/enZohWwm9InoMWo3+uXL\nl+Ojjz7C1atXER0djWXLlsHPzw9nz57F559/LuUYiegprJuaYPJQL3w0qRs6uDRHYsYNfLLmNH6M\nSEDuzWJND4+INEjtRh8eHo7PP/8cnTp1wu7du+Hr64sPP/wQixYtwr59+6QcIxGpycHWHG+N8cF/\nxnaCY0sLnLhwDe/9dAIb9v8NRfF9TQ+PiDRA7Uafm5uL9u3bAwCOHDmCgIAAAECLFi0q/SANEWme\np5M13n+9PKFvaW6MvdFM6BM1Vmqn7h0cHBAfH4+CggJkZGSgd+/eAIADBw7AwcFBsgESUd1USuif\nycK2Y+lM6BM1Qmo3+ilTpuCtt96Cnp4e/Pz84O3tje+//x4rVqzAZ599JuUYiegZGBroYWC3tujV\nsTV2nMjAvugsrNqZiL3RmQju44b2zpxDn0iX1WoK3KSkJGRlZSEgIADGxsY4duwYDA0N4efnJ+UY\na8TpFqXFKS3lIWedC27fRfjhVBw7fxUiAE9HK4zp4wbHVrr9O+Lcl6XHGstD8l+vy8vLQ0pKCnx8\nfFBUVITmzZvX6gHrG3cqafGNKw9N1PnydQXColJwPrV8Dn1/r5YYpcNz6HNflh5rLA/J5rovKSnB\nRx99hC1btkBPTw979uzBkiVLoFAosHz5clhY6PbRAJGuUSb0L6QXIPRACk5cuIbTF8vn0B/Wg3Po\nE+mKWl1Hf/78efzxxx8wNjYGUH7e/urVq7yOnkiLeSkT+sMrJ/R3MaFPpBPUbvS7du3CggUL4Ovr\nq7qtc+fOWLhwISIjIyUZHBHJQ08Q4O/dCoum+mNsXzfoCUBoVArm/XgCR89fQVkZp9Ql0lZqN/rr\n16/Dzs6uyu02NjYoLOQ5GSJdoEzoL3mjOwY/3xaFd+7jlx2J+Gh1NM6ncg59Im2kdqP39PTE/v37\nq9y+adMmeHh41OugiEizzEwMEdzn4Rz67VshO1eBrzeVz6GfcZUf7Im0idphvHfeeQdTpkxBbGws\nSktL8dNPPyElJQVxcXH48ccfpRwjEWlI82YmmDzMCwO7tUVoVDLiUwvw8Zpo+Hu3xEsBLrDR0YQ+\nkS6p1eV1iYmJWLVqFRITE2FoaAg3NzdMnToV7dq1k3KMNeKlHNLi5TLy0JY6J6QXIPRAMjKvKWCg\nL2hVQl9baqzNWGN5SH4dfUPDnUpafOPKQ5vqXCaKOHXhGjYfTEX+7btoYmyAod0d0a9LGxgZ6mt6\neE+kTTXWVqyxPOr1Ovr3338fc+fOhZmZGd5///0aN7Rw4cJaPTARaSdlQr+Luy0iz2Rh+7F0hEal\nYP+Z8jn0u3tzDn2ihqTGRp+eno4HDx6o/puISMnQQA8vPJxDf+fxDOw7nYVfdiRiz6nLGNPHFd6c\nQ5+oQaiXr+7z8/M1NhUuvyaSFr+Kk4cu1Dn/1l38eTgVx+LL59D3crJCcFDDmUNfF2rc0LHG8qjt\nV/e1uryuoKCgyu05OTno379/rR6UiHSPMqH/4T/80N7ZGhfSb+DjNdH4cVsC8m4Wa3p4RI1WjV/d\n79y5E4cPHwYAiKKITz/9VDX9rVJWVhbMzMykGyERaZW2LS3w9iudVAn9EwnXcDqJc+gTaUqNjd7X\n1xdhYWGq2bCuX78OQ8NHb1JBEGBpacm57omoCm8na3i+7oeTF65hy8FU7I2+jCPnrmBoD0f079IG\nhgYNN6FPpEvUPkc/b948vPfeezA3N5d6TLXC80HS4jk3eeh6ne+XPkDkmWxsP5aOorulsG5qLHtC\nX9dr3BCwxvKo1+vor127hpYtW6r+uybK+8mNO5W0+MaVR2Opc9Hd+9hxPAN/nc5C6YMyONiaI7iP\nK9o7Sx/mbSw11iTWWB712ug9PT1x5MgRNG/eHB4eHtVeKiOKIgRBQGJiYu1HWw+4U0mLb1x5NLY6\n59+6i/DDqTguY0K/sdVYE1hjedRroz916hR8fX1hYGCAU6dO1bihbt261eqB6wt3KmnxjSuPxlrn\nzGuFCItKQXxa+RU93b1bYlRvF9g0q/859BtrjeXEGsujXmfGq9i8T506hcmTJ8PUtPIbUKFQYNmy\nZRpr9ESkvVQJ/bTyhP7xhGuITrqOfl3aYGh3JvSJ6kONR/QFBQW4e/cuAKBfv34ICwuDlZVVpftc\nuHABb7/9Ns6dOyftSJ+Anx6lxU/o8mCdy+fQVyb0VXPo12NCnzWWHmssj3o9oj906BDmzp2rOjc/\nevToau83YMCAWj0oEdHj9AQB3b1boat7C+yPycaO4+kIPZCCyJgsjOrtAn/vVtDjlLpEtfbUy+vO\nnDmDsrIyTJgwAd9//z2aNWv2aGVBgJmZGdzc3KCvr5lrYvnpUVr8hC4P1rmq+k7os8bSY43lIdnP\n1GZnZ8POzq7B/UgFdypp8Y0rD9b5yR5P6Hs7WWF0HRL6rLH0WGN5SNboy8rKsGPHDsTGxuL+/ft4\nfDVN/Uwtdypp8Y0rD9b56TKvFSI0KgUJaQUQAPjXMqHPGkuPNZZHvZ6jr2jRokVYv3493N3dq8yO\n19CO8olI97RtaYF/M6FPVGtqN/rt27djyZIlePHFF6UcDxFRjbydreHp5IeTCdew5VAK9py6jMNx\nVzCshxP6dbHnHPpEj1H7Z2pLS0vRuXPnZ37AuLg4TJw4scrta9aswbBhwxASEoKQkBCkp6c/82MR\nkW7SEwR0b98Kn03zx5g+bhAEYNOBZMz/8QSOxV9BmXpnJIkaBbWP6Pv164edO3di+vTpdX6wn3/+\nGVu3bq32Z20TEhKwdOlSeHl51Xn7RNS4GBroY9DzbRHg01qV0P95eyL2nrqM4D5u8Ha21vQQiTRO\n7UbfqlUrrFixApGRkXBycoKRkVGl5eqE8RwdHbFixQq8++67VZYlJCRg5cqVyM3NRVBQEKZNm6bu\n0IiokTMzMcSYPm7o62uP8ENpOJFwFV9ujIW3kxWC+7ihbUvp5tAnaujUbvRnz56Fj48PACAnJ6dO\nDzZgwABkZ2dXu2zo0KEYP348zM3N8eabb+LgwYMIDAys0+MQUeNk08wUU4d74YVuDqqE/oXV0fD3\nbokpIzuCsWFqjNRu9OvWrZNyHHjttddUaf7AwEBcuHCBjZ6I6kSZ0I9Py0fogZSHCf396N+lDYb2\ncISZCRP61Hio3eiB8rnv09LSUFZWBqD8J2pLSkpw/vx5zJgxQ+3tPH4NvkKhwLBhw7Br1y6YmJjg\nxIkTT5xu93G1vZ6Qao81lgfrXP/6tLBAYFdHHDybhXW7ErH7VCYOn7+CMf3aYVgvZxgZMqFf37gf\nNzxqT5jz559/4oMPPkBJSQkEQVD9Dj0AtG3bFnv27FHrAbOzs/Hvf/8bGzZswPbt21FcXIzg4GBE\nRERg7dq1MDY2Rvfu3TFz5ky1tsfJGaTFCTDkwTpLr5llE2zck4Ttx9Jx514pmjc1xku9XfG8d0vO\noV9PuB/LQ7KZ8QYNGoRu3bph6tSpGD16NFavXo38/Hx8+OGHmDlzJl566aU6DfhZcaeSFt+48mCd\npaessaL4PnYez8BfMZdR+kBEW1tzJvTrCfdjedS20at9HX1WVhb+8Y9/wMHBAR4eHrh+/ToCAgLw\n3nvvYe3atbUeKBGRJpibGmJMXzd8Ns0f3b1b4fJ1Bb7cGIsvN8Yi8xqbFOketRu9qakp9PTK7+7o\n6IhLly4BADw9PZGRkSHN6IiIJKJM6H/wuh+8nayQkFaAj1dH46dtF5B3q1jTwyOqN2o3+s6dO+OX\nX37BvXv34OXlhQMHDgAon+muuglwiIi0gWMrC/x7bGe8/YoP2tia43jCVcz/8SQ2RSaj6O59TQ+P\n6Jmpnbp/++23MXnyZLRt2xZjx47FypUr8fzzz6OoqAghISFSjpGISHLtnZvDy8kaJxKuYsuh1PKE\n/rkcDO3OOfRJu6kdxgOA4uJiFBcXw9raGtevX8f27dvRunVrDB48WMox1ojBD2kxXCMP1ll6tanx\n/dIH2B+TzYR+LXE/lodkqfuGijuVtPjGlQfrLL261LhKQr/lw4S+ExP61eF+LA/JGr23t3eNvzsf\nHx9fqweuL9yppMU3rjxYZ+k9S43zbhYj/HAqjidcA1D+U7nBQa6cQ/8x3I/lUdtGr/Y5+oULF1Zq\n9KWlpUhPT8eff/5Z7Y/UEBHpChtLU0wd7o2Bfm0RGpVcPod+WgG6t2+FUQEuaN7MRNNDJHqiZ/7q\nfufOnQgLC8OqVavqa0y1wk+P0uIndHmwztKrzxor59C/fF0BA3099O/aBkO7cw597sfykGzCnCfx\n8fFBTEzMs26GiEhrtHdujg9f98PkoZ5oamaI3SczMfeH49h9MhP3Sx9oenhElTxTo7937x7++OMP\n2NjY1Nd4iIi0gp6egJ4dWmPxNH8E93GFKAKbDiRj/o8ncTzhKsq0O+dMOkTtc/TVhfEePHgAQRDw\n8ccf1/vAiIi0gaGBPgY/74iAjnbYcTwd+2Oy8NO2C9hzKpMJfWoQ1D5HHx4eXuU2Q0ND+Pj4wMHB\nod4Hpi6eD5IWz7nJg3WWnlw1fjyh397ZGqMbSUKf+7E8JEndZ2ZmIiUlBWfPnkVBQQGaNm2Kjh07\n4tVXX4WDgwMWL14MBwcHTJgwoU6DJiLSFRUT+psOJCM+rQAJTOiTBj31iD48PBwfffQRDA0N0alT\nJ1haWuL27duIi4tDUVERJk+ejHXr1iE8PByOjo5yjVuFnx6lxU/o8mCdpaeJGouiiIS0Amw6kIKs\nXN1P6HM/lke9HtHHxsbi/fffx9SpUzFjxgwYGRmplpWUlOCnn37C8uXLMWHCBI00eSKihkwQBLR3\nKZ9D/3jCVYQfTsXuk5k4HJeDYT2c0Ne3DQwNnvniJ6Ia1djof/nlF4waNQqzZ8+usszIyAjm5ubQ\n19fH5cuXJRsgEZG2Uyb0u3na4q+YLGw/loGNkcnYH5OFUb1d8LwX59An6dT4UfLs2bN45ZVXnrh8\n3bp1eOedd3Du3Ll6HxgRka5RJvT/90Z3vNDNATcV9/DTtgv4ZE00LqQXaHp4pKNqbPRFRUWwtn7y\npSHh4eEYMGAAiouL631gRES6ytzUEK/0fQ6fTfWHv3dLZF5T4IsNsfhqYywyr/EcN9WvGr+6b9Om\nDeLj42FnZ1ftcgsLCxw9ehRt2rSRZHBERLrMxtIU04Z74wUm9ElCNR7RDx48GF9//TUKC6v/hHnz\n5k18++23GD58uCSDIyJqDBxbWeCdsZ3w9hgf2Lcwx7H4q5j34wmEHkjGnbv3NT080nI1Xl539+5d\njBkzBgqFApMnT0bnzp1hYWGBW7duISYmBmvWrIGNjQ1+//33Sol8OfFSDmnxchl5sM7S05Yal5WJ\nqoR+we17MDMx0JqEvrbUWNvV++/RFxYW4rPPPsP27dtRWlqqut3Q0BAjRozAf//7X5ibm9dttPWA\nO5W0+MaVB+ssPW2rccn9B9gfk4XtxzNQfK8UNs1M8FJvF3RrwAl9bauxtqr3Rq9UWFiI8+fP48aN\nG7CyskKHDh1gYaH5KR25U0mLb1x5sM7S09YaK4rvY/uxdESeyULpAxGOLS0Q3McVXg1wDn1trbG2\nkazRN1TcqaTFN648WGfpaXuN824WY8vhVJxQzqHvYo3gIDc42GruG9XHaXuNtYUkc90TEZFmKRP6\nA/0cEHogBfGpBUhIPYUe7VthVG8XWDdlQp+qx0ZPRKRFnFo1xTtjOyE+rQChB5JxNP4qTiZex4CH\nc+g30cE59OnZsNETEWkZQRDQwaU5vB/Oob/lUCp2nczEobgcDO/hhD5akNAn+XBPICLSUso59BdP\n80dwkCvKRGBDZDLe++kETiRcRZl2R7ConrDRExFpOSNDfQz2L59Df6Bf+Rz6P267gIVrTnMOfWLq\nnmrGFK08WGfpNaYa594sRvihVJy4IG9CvzHVWJOYuiciauRaWJpi2oveGNjtsYR+h/I59JnQb1zY\n6ImIdFSVhP75qziVeB39u7bBUH8m9BsLNnoiIh1WMaF/LL58Dv1dJzJxKJYJ/caCry4RUSOgpyeg\nV8fyhP7oxxP6F5jQ12Vs9EREjYiRoT6GVEjo3yi8hx8jLmDhr6eRyIS+TmLqnmrEFK08WGfpscbV\ny71ZjC2HUnHyYUK/g0tzBAe5ok0dEvqssTyYuiciIrW1sDTF9Be98UI3B2yKTMb51HzEp+Yzoa9D\n2OiJiAhOrZriP+M643xqAcKiHiX0B3R1wBD/tkzoazE2eiIiAlCe0O/o2hztnR8l9HeeyMDB2GwM\n7+mMPp3tmdDXQnzFiIiokqoJfREb9v/NhL6Wkr3Rx8XFYeLEiVVuj4yMxOjRozF27FiEhobKPSwi\nInqMMqG/ZHp3DOjKhL62kvWr+59//hlbt26FmZlZpdtLS0uxZMkSbNmyBcbGxhg3bhz69esHa2tr\nOYdHRETVsGhihHH9n0O/rm0Q/jCh//mG2GdK6JN8ZD2id3R0xIoVK6rcnpKSAkdHR5ibm8PQ0BBd\nunRBdHS0nEMjIqKnsH2Y0H//ta7waGuJ86n5+HDVKazakYiC23c1PTx6AlmP6AcMGIDs7OwqtysU\nClhYPLou0MzMDIWFvBaTiKghcm79KKEfGpWMI+ev4GTiNYzo7Yqgjq3RxIQ574akQbwa5ubmUCgU\nqn8XFRWhadOmaq1b24kDqPZYY3mwztJjjetXP9umCOrmiAOnL+O33YkIi/wbe05kYOyAdhjcwwmG\nBvqaHiJBQ43+8cn4XF1dkZGRgdu3b8PExATR0dGYPHmyWtviLEzS4kxX8mCdpccaS8fH2QqeU57H\nscTrCN1/CT9tjUd4VDJeDnSFn6ct9ARB00PUKVoxM57w8EXfvn07iouLERwcjHnz5mHSpEkQRRHB\nwcGwtbXVxNCIiKgOjAz1EdyvHbq4Ncf2YxmIPJOFlREJ2H0qE2P6uMHT0UrTQ2y0ONc91YhHQfJg\nnaXHGkuvYo2v3yzGloMpOJV4HQDQ0bU5RgcyoV8ftOKInoiIdJutpSneGNEeL3S7jdADyTiXko/z\nKfno2aE1RgY4cw59GbHRExGRZB4l9PMRGpWiSugP9HPA4OcdmdCXAStMRESSKp9D3wbtnZvjaPwV\n/Hk4DTuOZ+BgbA6G93BCH197GOhzRnapsLJERCQLPT0BAR3t8Nk0f7wc6IIHZWVY/3AO/ZMXrnEO\nfYmw0RMRkayMDfUxtLsTlkzvjv5d26Dg9j2sjEjAp7+eRmLGDU0PT+cwdU81YlJZHqyz9Fhj6dW1\nxtUm9INc0aYFE/rVYeqeiIi0SrUJ/dSHCf1eTOg/KzZ6IiJqECol9A+k4Mi5Kzh5gQn9Z8WqERFR\ng8GEfv1jtYiIqMGpKaF/KpEJ/dpgoyciogaruoT+D1vLE/pJTOirhal7qhGTyvJgnaXHGktPjhpf\nv3EHWw6lNuqEPlP3RESks2ytmjwxoT8qwAVWFsaaHmKDw0ZPRERap7qE/qkL1zCACf0qWAkiItJK\nlRL6568g/HDqo4R+Tyf06cyEPsAwHhERaTk9PQEBPnZYPL07Xg50QemDMqz/61FCX8ujaM+MjZ6I\niPJJ1wsAAA45SURBVHSCKqH/Rnf071Ihob+2cSf0mbqnGjGpLA/WWXqssfQaWo2rS+gHB7nCXssT\n+kzdExER4VFCf6Bf5YR+rw6tMbIRJfTZ6ImISKe52DXFu692xrmUfIRFpeDwwzn0G0tCX7efHRER\nEcoT+j5uNujg0vgS+rr5rIiIiKpRMaH/Uu/GkdBnoyciokbH2FAfw3pUn9C/mKlbCX2m7qlGDS1F\nq6tYZ+mxxtLT5hpfu3EHWw6mIjqpPKHv83AO/YaY0GfqnoiIqJZaWjXBjJHt8UJOeUI/LiUf53Qk\noc9GT0RE9JAyoR+nQwl97RsxERGRhARBQCc3G3RwscbR81fxZ4WE/os9nRCkZQl97RkpERGRjPT1\n9ND7sYT+H3/9jQU/ndSqhD4bPRERUQ0qJvT7dWmD/Nt3Hyb0Y7Qioc/UPdVIm1O02oR1lh5rLL3G\nUmNNJ/SZuiciIpJQxYT+pgoJ/YCOrTGiV8NL6LPRExER1YGLXVP8t0JC/1DcFZxIuIaB3coT+qbG\nDaPFNoxREBERaaHHE/rhh1Ox/VgGos42nIQ+w3hERETPSJnQXzKtO0Y9ltCPTrqu0YQ+j+iJiIjq\nibGRPob3cEJgJztsO5qOqLPZ+L8/4+HcuinG9HGFe1sr2cfE1D3VqLGkaDWNdZYeayw91riqazfu\nYPPBVJx+mNDv5GaDl4NcYW9jVudtMnVPRETUQLS0aoJ/jmyPlJxbCD2QgtjkPMSl5Mma0GejJyIi\nkpirXbPyhH5yPkKjkmVN6LPRExERyUAQBHR6zgYdXKsm9Ef0ckZgJztJEvpM3RMREcmoUkI/wBml\nD8rw+75LWPCzNAl9HtETERFpgLGRPob3dEZgJ/vyhH5seULfxa4pgoPqL6Eva+peFEV89NFHuHjx\nIoyMjLBo0SI4ODiolq9ZswZhYWGwtrYGAHzyySdwcnKqcZtMeEqLKVp5sM7SY42lxxo/m2sFd7D5\nUOWE/uggV9g9ltBv0Kn7v/76CyUlJdiwYQPi4uKwePFifP/996rlCQkJWLp0Kby8vOQcFhERkca1\ntK6Q0I9MrpDQt8OIXs51TujL2uhjYmIQEBAAAPDx8UF8fHyl5QkJCVi5ciVyc3MRFBSEadOmyTk8\nIiIijXO1a4b/jvetkNDPwYmEqxjYrS0GP9+21tuTNYynUChgYfHoKwcDAwOUlZWp/j106FB8/PHH\nWLt2LWJiYnDw4EE5h0dERNQgKBP6n0zuhtcGucPUxADbj6Vj7srjtd6WrEf05ubmKCoqUv27rKwM\nenqPPmu89tprMDcv/z3fwMBAXLhwAYGBgTVus7bnKqj2WGN5sM7SY42lxxrXv9EDmmFYbzdsPZSC\nvacya72+rI3e19cXBw4cwKBBgxAbG4t27dqplikUCgwbNgy7du2CiYkJTpw4gdGjRz91mwx+SIvh\nGnmwztJjjaXHGkurbyc79O1kV+v1ZG30AwYMwNGjRzF27FgAwOLFi7F9+3YUFxcjODgYb7/9NiZO\nnAhjY2N0794dvXv3lnN4REREOoc/akM14id0ebDO0mONpccay6O2p0c4Mx4REZEOY6MnIiLSYWz0\nREREOoyNnoiISIex0RMREekwNnoiIiIdxkZPRESkw9joiYiIdBgbPRERkQ5joyciItJhbPREREQ6\njI2eiIhIh7HRExER6TA2eiIiIh3GRk9ERKTD2OiJiIh0GBs9ERGRDmOjJyIi0mFs9ERERDqMjZ6I\niEiHsdETERHpMDZ6IiIiHcZGT0REpMPY6ImIiHQYGz0REZEOY6MnIiLSYWz0REREOoyNnoiISIex\n0RMREekwNnoiIiIdxkZPRESkw9joiYiIdBgbPRERkQ5joyciItJhbPREREQ6jI2eiIhIh7HRExER\n6TA2eiIiIh3GRk9ERKTD2OiJiIh0GBs9ERGRDpO10YuiiA8//BBjx45FSEgILl++XGl5ZGQkRo8e\njbFjxyI0NFTOoREREekkWRv9X3/9hZKSEmzYsAH//ve/sXjxYtWy0tJSLFmyBGvWrMG6deuwceNG\nFBQUyDk8IiIinSNro4+JiUFAQAAAwMfHB/Hx8aplKSkpcHR0hLm5OQwNDdGlSxdER0fLOTwiIiKd\nI2ujVygUsLCwUP3bwMAAZWVl1S4zMzNDYWGhnMMjIiLSOQZyPpi5uTmKiopU/y4rK4Oenp5qmUKh\nUC0rKipC06ZNn7rNFi0snnofejassTxYZ+mxxtJjjRseWY/ofX19cfDgQQBAbGws2rVrp1rm6uqK\njIwM3L59GyUlJYiOjkanTp3kHB4REZHOEURRFOV6MFEU8dFHH+HixYsAgMWLF/9/e3cWEuUahwH8\nsVJzwxnHBKFptRq9CbNIGiyzJJU0LHMbzbC60IskRaWwUqPCFgI3cgmmxkCUREymlbDFNoIWFEyw\nwLGscGm5mGrG8VxEQ9HJPOfM8WPeeX7gxXzf9w7/dxAf5vP9/i+6u7thNBqxdetWdHR0oLKyEuPj\n40hISEBKSspUlUZERCSkKQ16IiIimlpsmENERCQwBj0REZHAGPREREQCs8ug/1MrXfrvzGYzCgoK\noNFokJiYiBs3bkhdkrCGh4cRHh6Oly9fSl2KsGpra5GcnIwtW7bgwoULUpcjHLPZjLy8PCQnJyMt\nLY2/yzb29OlTpKenAwD6+/uRmpqKtLQ0lJSUTGq8XQb9RK10yTba2togl8tx/vx51NXV4dChQ1KX\nJCSz2YyDBw9i5syZUpcirIcPH+Lx48dobGyETqfD4OCg1CUJ5+bNm7BYLGhsbER2djZOnToldUnC\nqK+vR1FREUwmE4BvT6vl5uaioaEBFosF169f/+N72GXQT9RKl2wjOjoaOTk5AL41NpoxY0p7KzmM\nsrIypKSkwM/PT+pShHXnzh0sXrwY2dnZyMrKwtq1a6UuSTjz5s3D2NgYxsfH8enTJzg7O0tdkjDm\nzp2Lqqoq6+vu7m4sX74cALB69Wrcu3fvj+9hl3+9f9dK93uXPfrv3NzcAHz7rHNycrBnzx6JKxJP\nS0sLFAoF1Go1Tp8+LXU5whodHcXr169RU1MDg8GArKwsXL58WeqyhOLh4YGBgQFERUXh/fv3qKmp\nkbokYURGRuLVq1fW1z8+ET/ZVvF2mYwTtdIl2xkcHERGRgbi4+MRExMjdTnCaWlpQWdnJ9LT09HT\n04PCwkIMDw9LXZZwZDIZwsLCMGPGDMyfPx+urq7cGdPGtFotwsLCcOXKFbS1taGwsBBfv36Vuiwh\n/Zh1k20Vb5fpOFErXbKNoaEh7NixA/n5+YiPj5e6HCE1NDRAp9NBp9NBpVKhrKwMCoVC6rKEExIS\ngtu3bwMA3r59i8+fP0Mul0tclVi8vb3h6ekJAPDy8oLZbLZuWEa2FRQUZN3Z9datWwgJCfnjGLu8\ndR8ZGYnOzk4kJycDABfj/Q9qamrw8eNHVFdXo6qqCk5OTqivr4eLi4vUpQnJyclJ6hKEFR4ejkeP\nHiEhIcH6xA4/b9vKyMjAvn37oNForCvwucD0/1FYWIj9+/fDZDJh4cKFiIqK+uMYtsAlIiISmF3e\nuiciIqLJYdATEREJjEFPREQkMAY9ERGRwBj0REREAmPQExERCYxBT+QgIiIioFKprD9BQUFYsWIF\ndu3ahZ6ent+OU6lUuHjx4hRWSkS2xOfoiRxEREQEYmNjsW3bNgDfWkcPDQ2htLQU/f39uHbtGtzd\n3X8ZNzw8DC8vLzZLIrJT/EZP5EDc3NygUCigUCgwa9YsBAYGWnvs379//2/HKBQKhjyRHWPQEzm4\nadOmwcnJCS4uLlCpVCgvL8eaNWsQHh6OoaGhX27dt7a2IjY2FkuXLkV0dDRaW1ut5968eYPdu3cj\nJCQEarUaubm5ePfunfX8kydPkJKSguDgYKxcuRIFBQX48OHDlM6XyNEw6IkcmMFgwMmTJ+Hn54fg\n4GAAQHNzM2pra1FRUQFfX9+frtfr9SgqKkJSUhLa29uRmZmJoqIi3L17F0ajEenp6XB3d0dTUxPO\nnDkDs9mMjIwM6yYn2dnZUKvV0Ov1qKurQ1dXF44dOybF1Ikchl1uakNE/051dbV1r3Cz2YyxsTEE\nBgaioqICHh4eAIDNmzdjyZIlfzv+3LlziIuLQ1paGgBAqVTCaDTCYrGgvb0dRqMRR48etW4ac+LE\nCYSGhuLq1atQq9UYHR2FQqGAv78//P39UVlZCZPJNAUzJ3JcDHoiB6LRaJCamgoAmD59OmQy2S8L\n8GbPnv3b8c+fP8emTZt+OvZ9cV9paSlGRkawbNmyn85/+fIFfX19iImJQWZmJkpKSlBeXo5Vq1Yh\nIiICGzZssMXUiOg3GPREDsTb2xtKpXLCaybaXtTZ2XnCc4sWLUJlZeUv57y8vAAA+fn50Gg06Ojo\nQGdnJ/bu3Yvm5mZotdrJTYCI/jH+j56IJm3BggXo6ur66VhBQQEOHz6MgIAADAwMQCaTQalUQqlU\nQi6X48iRI+jt7YXBYEBxcTF8fX2RmpqKqqoqlJWV4cGDBxgZGZFoRkTiY9AT0aTt3LkTbW1taGxs\nhMFgQFNTE/R6PdatW4e4uDjIZDLk5OSgq6sLvb29yMvLw7NnzxAQEAC5XI5Lly6huLgYL168QF9f\nH/R6PebMmQMfHx+pp0YkLAY9kYP4vkDun17z47H169fjwIED0Gq12LhxI3Q6HY4fP47Q0FC4urpC\nq9XCzc0N27dvh0ajgcViwdmzZ+Hj4wNPT0/U1dXBYDAgKSkJiYmJMJlMqK2ttek8iehn7IxHREQk\nMH6jJyIiEhiDnoiISGAMeiIiIoEx6ImIiATGoCciIhIYg56IiEhgDHoiIiKBMeiJiIgExqAnIiIS\n2F+F2OX91AJuaAAAAABJRU5ErkJggg==\n",
235 | "text/plain": [
236 | ""
237 | ]
238 | },
239 | "metadata": {},
240 | "output_type": "display_data"
241 | }
242 | ],
243 | "source": [
244 | "interactive_quantity_demand_plot = ipywidgets.interact(cobweb.quantity_demand_plot,\n",
245 | " D=ipywidgets.fixed(quantity_demand),\n",
246 | " a=cobweb.a_float_slider,\n",
247 | " b=cobweb.b_float_slider)\n"
248 | ]
249 | },
250 | {
251 | "cell_type": "markdown",
252 | "metadata": {},
253 | "source": [
254 | " Supply and demand
\n",
255 | "\n",
256 | "Market clearing equilibrium price, $p^*$, satisfies...\n",
257 | "\n",
258 | "$$ D(p_t) = S(p_t^e). $$\n",
259 | "\n",
260 | "Really this is also an equilibrium in beliefs because we also require that $p_t = p_t^e$!"
261 | ]
262 | },
263 | {
264 | "cell_type": "code",
265 | "execution_count": 13,
266 | "metadata": {
267 | "collapsed": false
268 | },
269 | "outputs": [
270 | {
271 | "data": {
272 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAF7CAYAAAAQSbibAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xdc1fX3wPHX514uGwQFnLhAlgPFVTnTzJGalpo7S7Ns\nfdtDG34ry+pXVpb1rcyVinuvXKmYuXEhTlAQAQUUZHO5vz/wXkCG97Iu4zwfDx/c+5mH971y7vv9\neX/OVXQ6nQ4hhBBCVGoqcwcghBBCiPuThC2EEEJUAZKwhRBCiCpAErYQQghRBUjCFkIIIaoASdhC\nCCFEFSAJu5q4du0aPj4+hn8zZswwar+5c+ca9unZs2f5BnnXmjVrKvR8ABcvXizX4//444/4+Pgw\nZsyYcj1PaY0bNw4fHx++//57c4dSpfXq1QsfHx9WrlxpWHbo0CF8fHzw9fUlOzvbsPy9997Dx8eH\nd955J98x9P/vDhw4UKaxyWtcfUnCrmYURUFRFP766y+jtt+yZYthn+ooPDyciRMn8vHHH5s7lEqj\nur7WFc3YdtT//yps+/J6LeQ1rp4szB2AKHtqtZrY2FiOHTtGQEBAkdtFRERw+vRpFEWhutbP2bhx\nI/v376d9+/bmDqVS+Prrr0lNTcXZ2dncoVRpCxYsICsrC1dX1/tu++abbzJ58mQcHBwqIDJ5jasz\nSdjV0AMPPEBQUBBbt24tNmFv3rwZAF9fX0JCQioqPGFG9erVM3cI1YK7u7vR27q4uODi4lKO0eQn\nr3H1JUPi1VD//v0B7jssvmXLFtRqtWF7IYQQlZck7GqoQ4cOuLq6EhMTw/HjxwvdJiwsjNDQUDp1\n6lTsp3+tVsvatWt54YUX6N69O23atKFdu3b07duXjz/+mPDw8AL76Ce97N27l59++okuXbrQtm1b\nBg0aRFhYWLGxL168GB8fH/z8/Fi6dGmB9Tt27GDy5Mk89NBDtGrViu7du/Pmm28WGCHQT8L78ccf\nURSFo0eP4uPjQ+/evYs9/73WrVvHM888Q9euXWnVqhW9evVi6tSpXLlyxaTjGBt3Xjdu3GDWrFkM\nHz6czp0706pVKzp37szIkSOZN28e6enphf7OXbt2JTY2lsmTJ+Pv70/nzp156623gMInJOXdD2DF\nihUMHz6cgIAAAgICGDlyJKtXry4yzrCwMKZOncojjzxCmzZt6N27N1999RV37twxnO/w4cMmtVdE\nRATTp0/n0UcfpU2bNnTs2JExY8awYsWKfBO67rV9+3aefvppHnjgAQICAhg3bhxBQUFcvXq10ImO\n95ugpZ9MOH78+HzLC5t0VpSiJp3ltX79ep588knatm1L586deeGFF/jnn38KbFfa19jX15eIiIhC\nY9D/TmvXrjUs00+kGzNmDBkZGfzyyy8MGDCANm3a0LVrV959911iY2MN53jvvffo2rUrrVu3pk+f\nPnz33XdkZGTct42EcWRIvBpSqVT07duXP//8k61bt9KuXbsC22zatAlFURgwYECRx0lPT+e5557j\n0KFDKIpCw4YN8fb2Ji4ujqtXr3LlyhXWr1/P0qVL8fHxybevoij88ssvHDt2jCZNmuDo6EhycjJN\nmzYlODi40PMtW7aMzz77DLVazaeffsoTTzxhWKfVann33XfZuHEjiqJQp04dwx+fzZs3s3XrVqZO\nnWqYpW1lZUX79u25fv06UVFRODg44OXlhZubm1FtmJKSwiuvvML+/ftRFIX69evj7e1NeHg4q1ev\nZuvWrSxevBhfX99ij2Nq3HrBwcFMnjyZxMRErK2tcXd3R6PREBkZyYkTJwgODmbXrl0sXLiwwASj\nzMxMJk6cSHh4OC1atOD69es0atQo32tTlHfffZd169ZRq1YtmjVrlu984eHhvPHGG/m237dvH6++\n+ippaWnY2Njg7e1NTEwM8+bNY/fu3VhYWJg8Aeqvv/7inXfeIT09HWtrazw8PEhJSeHYsWMcPXqU\nzZs3M2fOHGxsbPLtN336dAIDA1EUhXr16tGoUSNOnjzJ5MmTmThxYpHnK+kELVMnnRVlzpw5HD58\nGHt7e1q0aEFUVBR79uzh77//5uWXX+bll18usE9pXuP7xVqYtLQ0nn76aYKDg2nUqBFNmjQhLCyM\ndevWcfz4cT7//HOef/55MjIyaNq0KZaWlkRGRvLLL78QERHBN998U6J4RH7Sw66m+vXrBxQ9LL5l\nyxYsLCzo27dvkcf49ddfOXToELVr12blypXs2LGDFStWsGvXLlasWIGrqytpaWn88ssvBfbV6XQc\nP36cd955h23btrFlyxZWrVpV5B+ElStXMn36dNRqNV988UW+ZA3w3XffsXHjRho0aMDcuXMJCgpi\nxYoVHDhwgA8++ABFUZgxY4bhFhkXFxcWL15sOI6XlxeLFy9m1qxZ9288YObMmezfv5/atWszb948\ndu3axapVq9izZw99+vQhJSWFl1566b6T9UyNGyA7O5u3336bpKQkHn30Ufbt28eGDRtYvXo1Bw4c\n4M033wTgyJEj7N27t8A5b9++zc2bN1m3bh2rV69m3759PPfcc/f9nW/evMmmTZv48MMP+ffff1m1\nahX79u1j8ODBAPzxxx8kJCQYto+Pj+fNN98kLS2NoUOHsn//flasWMHevXv5/PPPiYiI4MKFC0a1\nt15oaChvvfUWGRkZvPjiixw8eJA1a9awbds21qxZQ9OmTfn333+ZPn16vv3Wrl1LYGAgFhYWfPHF\nF+zevZuVK1eyZ88eunXrxm+//WZSHGWtuPfJkSNHGDFihOG9ERQUxGuvvQbATz/9xL///ltgn5K+\nxiV15swZLly4wG+//cb27dvZsGEDv//+O4qiEBERwfjx42nbti179uxhw4YN7Nq1i5deegnImSsT\nFRVVbrHVJJKwq6kOHTrg5uZGdHR0gR7t+fPnuXTpEl26dMHR0bHIYxw4cAC1Ws3LL79My5Yt861r\n1aoVo0aNQqfTcf78+UL3b9CgAc8++6zheVGzVteuXctHH32EWq3mq6++MiQIvbi4OBYsWICiKMyZ\nM4eHHnrIsE5RFMaMGcOECRPIzs7mu+++K/L3MdaNGzdYsWIFiqLw1Vdf8cADDxjW2dvb89VXX+Ho\n6Eh0dHShw5aljTs0NJTExESsrKz49NNP880uVqvVTJo0yTDpqbC21x+7efPmAFhYWGBnZ3ff31tR\nFEaPHs2YMWMMH6wsLS15//33URQFrVbLyZMnDdvPnTuXxMRE/P39+fzzz/P1eIcOHWpIOqaYPXs2\nmZmZjBs3jldeeQVLS0vDOh8fH2bPno1KpWLDhg1cunTJsO7nn39GURQmT57MkCFDDMudnJz44Ycf\naNy4scmxVJQOHTrwySefYG1tDeS8Ds8//zyDBw9Gp9Px66+/FtinpK9xSSmKwpQpUwyXTSBncqu/\nvz86nQ5bW1u+//57ateubVj//PPPo9FoAGRSaxmRhF2N9evXD51Ox9atW/Mt1w+HP/bYY8Xuv2TJ\nEk6ePMnIkSMLXa//A5OWllZgnaIohQ7F32vjxo1MnToVnU7HrFmzCh2i37t3LxkZGXh6ehYYetd7\n/PHHATh58iTx8fH3PW9x/v77b3Q6HfXr18/3B0rPxsaGZcuWsW/fPrp06VLkcUoat5+fHwcPHuTQ\noUPUqlWrwD4ZGRmG5YW1PVDs3QHFefjhhwssc3JyMvwhTkpKMizfsWMHiqIwYsSIQo81evRowx9s\nY2RkZLBv3z4ABg0aVOg2LVq0wMfHB51Ox99//w3A5cuXDXMKhg0bVmAfKysrRo8ebXQcFW3UqFGF\nLte366FDhwp9nUv6GpdUjx49Cixr2LChIRZ7e/t86zQajeFD+p07d8o/wBpArmFXY/3792fhwoVs\n27aN9957z7B8y5YtWFlZGTUBS61Wk5iYaLiGGRERQXh4OGfPnuXmzZsARU4Cut89qvHx8bz77ruG\n4UL98e6l70VGR0cX+Yc3bwyXL1/O90nfVFevXgXA29u7yG2aNWt23+OUNm5LS0vCwsIICQnh6tWr\nREREcPHiRc6dO0d6ejqKopS47YtS1DV+KysrALKysoCc5HrlyhUURSnyw4itrS3NmjUzelj8ypUr\nZGRkoCgK06dPz9e7zisqKgqdTsfly5cBDJOobG1tadCgQaH7tGnTxqgYzMHPz6/Q5fr3n1arJTw8\nvEA7l/Q1LqnCbhfTv0ZF/X+zsJAUU5akNauxdu3aUb9+faKjozlx4gT+/v6GP/79+vXD1ta22P2T\nk5P57LPP2LBhA1lZWYZhUo1Gg5+fH35+foVeQ9XT98CLkpmZiUajoXfv3vz11198/fXXdO/e3fCp\nXU//6fzOnTtFznqH3Mk9eXuBJXHr1i2A+7bP/ZQm7hMnTjB9+nTOnj1r2AZyLiv06NGDkJAQrl27\nVuQx79f2RSkqSd5L30ZQfDvd2+sqTt7f/8yZM8Vum7e99D+Li8PJycnoOCpaUUPZeZcX1sMu6Wtc\nUsW1r1RWqxiSsKu5vn37Mn/+fLZu3Yq/v7/Rw+EAU6ZM4dChQ9jY2DB+/Hj8/f3x9PSkadOmqNVq\nwwSjkrKwsGDOnDk8+OCDPPnkk5w7d45p06Yxf/78fNvpr40++uijFVIfWX++5OTkMjmOqXFfunSJ\np59+mvT0dFq0aMGTTz6Jt7c3Hh4ehh7wqFGjik3Y5S3vH+/ihjtNacO8xzx+/LjRCUl/jb+4cxV1\n6UCvqElhKSkpRsVQGkWdI+8HmOLmmpiqqN81NTW1zM4hyodcw67m9EVRtm3bBuQMh9vZ2RV6PSqv\nEydOGG7n+vXXX3nnnXfo27cvHh4eqNVqIGeotzTq1KlD165dUavVzJgxA5VKxcGDBwvcf60ffi7u\nCzzS0tI4fPgwERERxd6na4ymTZsCFDuU+8MPPzBp0qR896zey9S49X9IFy5cSFpaGs2bN2flypVM\nmDCBBx98MN9wdUxMjCm/Upmzt7enfv36AJw7d67QbTIyMgq9T78o7u7uhvdWURMZAU6dOsX58+cN\nic7LywvISThF3R9f1PH0Q7ZF3Susv8e4POmH9u+ln6hlbW1NkyZNSnWOvEPThf2u6enppR6ZEuVP\nEnY15+/vT4MGDbh+/TqLFy8mKiqK3r1733foMzIy0vC4sGtsaWlpbNy4Eci9rlkaLVu2ZMKECeh0\nOr7++ut8vccePXqgVqu5fPlykd9sNG/ePMaNG8fQoUPz9RT0Q3Wm1Erv1q0bKpWKqKgoDh48WGB9\neno6q1atYv/+/cUex9S49QkoMjISRVHw8PAwXDvOa//+/YbbZLRardG/V1nr06cPOp2OVatWFbp+\n9erVBYq7FMfOzo5OnTqh0+lYtGhRodtEREQwatQoBg8ebPgQWr9+fVq1agVQaLEdyCkGUxhnZ+d8\n18PzSklJ4cCBA+U+3FtU+y1cuBDIeT/qP8iUlJOTk+H3KOx33blzZ5n8PxblSxJ2DdC3b190Oh3f\nfvvtfYul6OlvF4Gcak95/zNfvHiRSZMmGXoz9xtuNNarr75K48aNSU1NZdq0aYblDRo0YPjw4eh0\nOl5//XV2795tWKfT6VixYgU//fST4VaXvNf+9I9jYmKM7nm7u7szaNAgdDodb7/9dr7b4hITE3n7\n7beJiYmhYcOGxbZlSeNu3rw5Op2OoKAgjh49athHq9WyceNG3njjDcMfX3MOYz777LPY2dlx/Phx\npk+fnu99sH37dr788kuTj/nKK6+gVqvZuHEjM2fOzDdcfP78eSZPnkxWVhaNGjVi4MCBhnX6gi6L\nFi1iwYIFhg9o6enpTJ8+PV875qX/UpigoCC2b99uWB4bG8srr7xS6jsO9IpL+jt37mTWrFlkZmYC\nOXM7vvzyS3bv3o2lpSUvvvhiqc9vZWWFn58fOp2O2bNn5xs5CAoK4tNPPy33AjKi9OQadg3Qv39/\n5s2bR3JyMrVq1Sr0VqV7+fr6MmDAALZs2cK8efNYs2YNjRo14tatW4YeYJcuXdi/fz/JyckkJyfn\nS5Ql+fYv/X3HTz/9NAcPHmTx4sWGCmBTp04lJiaGv//+mylTpuDm5kbdunW5du0a8fHxKIpCv379\nCtz7q69EFhUVRZ8+fXB1dSUwMPC+sXz00Udcv36dw4cPM3LkSJo0aYKtrS1hYWGkpaXh7OzM7Nmz\n7ztSUZK4n332WTZt2kRCQgJjxoyhSZMm2NvbExkZye3bt7Gzs6Nt27YcP368REPjZfXNbPXq1eOr\nr77itddeY9myZaxfvx4PDw/i4uKIiorCz8+PCxcukJWVZXQPMSAggM8++4yPPvqIBQsWEBgYiIeH\nB8nJyYYPiK6urvzxxx/5bhl76KGH+PDDD5kxYwZffPEFv/76Kw0aNCAsLIzk5GT8/PwKvRd46NCh\nLF68mLCwMF555RUaN26Mra0tFy9eRKPR8MILL/Dzzz+Xuq2Ka/O+ffvyv//9j8DAQNzd3YmIiOD2\n7dtoNBpmzpxZ5Cx8U8/32muvMWXKFC5evMgjjzyCp6cnt27dIioqijZt2hAQEMDOnTvL5FyifEgP\nu5op7NNumzZtaNSoEYqi0Ldv30L/eBZWPvGbb77hk08+oU2bNuh0Os6dO0dmZia9e/fmf//7H3Pn\nzqVBgwYoipKv91hUHPc7H0Dnzp0N959+8803hqFxS0tLfv75Z2bNmkX37t3Jysri7NmzaLVaHnjg\nAb788ktmzZpV4JidO3fm3XffpUGDBsTGxhIVFUVcXFyxsUFOz3z+/Pl88skndOjQgYSEBC5evIir\nqyvjx49n/fr1BcqSFvY7lSTu+vXrs379ekaNGkWzZs2IiYkhLCws37lfe+01FEXh4MGDBUY4jGl7\nU5YXt753796sXr2aAQMGYGdnx7lz51Cr1bzwwgssXrzYsN29ZUSLM3ToUNatW8eIESNwc3Pj4sWL\nREdH4+npyXPPPce6desKLYQyevRoAgMD6dOnD9nZ2Vy4cAEPDw9mzZrFuHHjCj2Xra0ty5YtY9Kk\nSTRp0oTo6Ghu3rxJ//79WbNmDZ06dTLp++KL+97ropZ/8MEHfPzxx7i5uXHhwgUsLCx47LHHWLVq\nVZEjOCV5rbp168aSJUt45JFHsLOz49KlS9jY2PDaa6+xePFibG1tTYrdlPWibCg6+XgkhCgHqamp\ntGvXDkVR2Lt3b4XfN5zXmjVreP/996lXr56h4IoQVY30sIUQJfLBBx8wZMgQ1qxZU+h6fWKsU6eO\nWZO1ENWFJGwhRIl4e3sTGhrKt99+ayjwonfkyBE+++wzFEVh7NixZopQiOpFJp0JIUrkqaeeYtOm\nTZw4cYKhQ4fSqFEjnJycuHnzJtHR0YY5E5MnTzZ3qEJUC5KwhRAlYmlpyZ9//snGjRtZvXo1V69e\n5fz58zg7O9OzZ0+GDh1a7Ne3VjRTJo8JURlV6klnWVlaEhLKvzRgdeHsbCvtZQJpL+NJW5lG2ss0\n0l65XF0dilxXqa9hW1iUrrpPTSPtZRppL+NJW5lG2ss00l7GqdQJWwghhBA5JGELIYQQVYAkbCGE\nEKIKqPBZ4r/++iu7du0iMzOT0aNH8+STT1Z0CEIIIUSVU6EJ+9ChQxw/fpzAwEBSUlL4448/KvL0\nQgghRJVVoQk7KCgILy8vXnzxRZKTk3nnnXcq8vRCCCFElVWhCTshIYGoqCj+97//ERERwZQpU9i6\ndWtFhiCEEEJUSRWasJ2cnPDw8MDCwoJmzZphZWVFfHw8tWvXrsgwhBBCiCqnQhN2+/btWbRoERMm\nTCAmJoa0tDScnZ2L3ae4qi+iIGkv00h7GU/ayjSVsb0yMjKwtLQ0dxiFqoztVdlUaMLu2bMnR44c\nYdiwYeh0Oj7++OP71va9cSOpgqKr+lxdHaS9TCDtZTxpK9NUZHuFhp7l5MlgHB0dSUxMpH79+nTr\n1rPAdvv376NVq9bUquV032NeunSRjIx0fH1blkPEBcn7K1dxH1wq/Laut956q6JPKYQQ1VJ6ejrr\n1q3m3XenAfDnn/Np0cK7wHZxcTdJSUkuNllfuRLOmTOncHauzYMPdmHp0j9p0cIbCwv5jqjKolIX\nTolLSTB3CEIIUWldunSB9PQ0w3N//3bUq1e/wHabNq2ne/eexR5r8eIFeHi0oGHDRgB06vQAu3fv\nKNN4RelU6oT92pb/sv/aQSrxF4oJIYTZNGnSlCNHDvHSS8+xatVyWrf2L3S7hIQErKysATh9+iQ/\n/zybv/7ayp49u1i/fg0A7dt3RKVSSE1NBcDDw5MzZ05VzC8ijFKpxzrUiool51Zx8mYIo32GUctK\nJiUIISqX5bsucjg0Nt8ytVpBqy15R6Ojjxsjennedzs7O3uWLFnF3r27WbZsCU5OzvTu3afAdhkZ\n6YbHOp0OrVZLkyZN8fb24dVXX2Dw4KH07TugxPGKilGpe9j/1+8DvJ09OR13lhmHviE4Vj7tCSEE\nQFZWFqGhZ7G3t2fAgEFMmDCRW7cKv4yo1WoNj1u39ics7DLe3j4kJiaSlZUFQEjI6QL76XvbonKo\n1D1sF9vavNx2Ensi/2Hdpc38dnoRneu1Z7jXYGwsbMwdnhBCMKKXZ4HecEXMej53LpSoqEh8fHwB\nCAu7zIABg/jnnyDOnj1D584PYWVlRYsWXqhUuX2zzMxM9Dfn7N+/19CzPnBgP35+rfKdQ6WS76mu\nTCp1wgZQKSoedu+Kb+0WLAgJ5GD0Uc4nXGK831N4OXuYOzwhhDCLyMirpKWlsX79GtLT02nZsjX1\n6tXH2dmZhx7qyu7dO2jfvhMA1tbWhv1CQ0PQaDQEBe3l5s2bjBs3gQMH9qMoCsnJd7Czszdsm3c/\nYX6VPmHr1bOry1vtX2ZL+A62XdnND8d/5WH3rgxu3g+NWmPu8IQQokIVdc1ZP7nMyckZR0dHAFxd\n65KUlISDgwOnTp1k+PBRBAR0oGvX7gDcvn2LAQMGYW2dO3J57VokHh73v44uKk6lvoZ9L7VKzcDm\nfXkj4EVcbeqwK2IfXx75gYika+YOTQghKpW8160HDRrCrl3buXYtkh07thIbG5Nv28zMTGJjY/Ld\nkfPPP0H06dOvwuIV96foKvk9U0VdB0rXZrD24ib2XjuAWlHzWLM+9GnSE5VSpT6DlCmpFmQaaS/j\nSVuZpjK214kTwdSrV4+6devdd9tr1yKJjY2hXbv2FRBZ5Wwvc6lUlc7KipXakqe8h9LKxY/FZ5ez\n/vJWTsedZbzvSFxt65g7PCGEqFT8/dsava2bW11DARVReVT57mjLOt5M7fwGAW5tuHz7Cp8fnkXQ\ntX+l2IoQQpSQRiPzgiqjKp+wAew1djzbcgwT/EahVtQsPbeaX07O43a6DLEIIYSoHqpFwgZQFIWO\n9doxrdPrd4uthEqxFSGEENVGtUnYes7WTrzcdhLDWgwmQ5vBb6cXsTBkGalZUrFHCCFE1VVlJ50V\nR4qtCCGEqG6qXQ87L32xlf5NH+F2RiLfH/8fqy5sIFObae7QhBBCCJNU64QN+mIrj/JGwIu42bhI\nsRUhhBBVUrVP2HrNajXmvU6v0b3hg1xPjuHrIz+yNXwX2mzt/XcWQgghzKzGJGzILbbykv9E7DW2\nbLi8lVnHfiE25aa5QxNCiHKTkZFh7hBEGahRCVvPr4430zq/SYBbG8ISr/DF4e+k2IoQokpavnwp\nTzzxGBs3rmXVquV8+eUMrl+PMqzfv38fqakp9z3OpUsXOXv2THmGKkqpRiZsADuNrRRbEUJUed7e\nvnTq9AADBw7hySdHMHHi8/zww7cAxMXdJCUlmVq1nO57HA8PT06cOE5WVlZ5hyxKqMYmbMhfbMXH\nuYWh2MpxKbYihKgizp49ja9vS8NzFxcXwsIuAbBp03q6d+9p9LE6dnyA3bt3lHWIooxUy/uwTeVs\n7cRLbSeyN/IAay9t4vfTi+hcrz3DvQZjY2Fz/wMIIWqs1Rc3FviQr1YpaLNLfomtnVtrnvAcaNS2\nZ8+eYezYCfmW3bmTM1KYkJBg+H7s06dPsm/fHjw8WmBlZcnt27cZPHhovv08PDzZsGGNfK1mJVWj\ne9h5qRQVPd278F7H12js0JCD0UeZcXAW5xMumjs0IYQo0qVLl/DwaGF4Hhp6Fg8PLwAyMtINy3U6\nHVqtliZNmtKjRy927NgGQEjI6YoNWJSY9LDvUc/Ojbfav8yW8J1su7KL74//Si/3bgxu3g+NWr7B\nRgiR3xOeAwv0hivq+51v3bqFo6MjKlVu3+vvv3cyZMgTAPmuR7du7c/8+XPx9vYhMTHRsO7Agf34\n+bUybJeaKmWcKyvpYRdCX2zlzfYv4mabU2xlphRbEUJUMjnXr/0Mzy9dukhCQjwPP/wIAGq12rAu\nMzMTRcl5vH//Xvr2HcCBA/tRFIXk5DuG7VSq3H1E5SIJuxhNHRvzfsfX6N7wIaKTY/jqyGwptiKE\nqBROnz7JqlXLuXXrFhs3rmPlykAOHAji7benGraxtrY2PA4NDUGj0RAUtJebN2/y+ONPcPv2LQYM\nGIS1tU2h+4jKRYbE78NSbclT3kNo7eLLn2eXs+HyVk7fPMt4v6dws3Uxd3hCiBqqVas2/N///VDs\nNq6udUlKSsLBwYFTp04yfPgoAgI60LVrdyCn1x0bG4OLiysA165F4uHhWe6xi5KRHraR9MVW2rv5\nG4qt7JNiK0KISmzQoCHs2rWda9ci2bFjK7GxMQXWt2nTFguLnL7bP/8EyQzxSkx62Caw09jybKsx\ntIn2I/D8WgLPrebUzRDG+AyjlpWjucMTQoh87O3tadq0ORYWFvzxx+Jit712LRJPzxZYWVlVUHTC\nVIqukncRK2KmZUkkpN3iz7MrCE24gJ3GllHeT9LOrbVZY6qomanVhbSX8aStTFMV2yszMxONxjx3\nwlTF9iovrq4ORa6TIfES0hdbGd7icTK0Gfx+ehELQgJJzZJbIoQQVY+5krUwngyJl4K+2IpP7RYs\nCAnkUPQxLiRcZpzvCLxry8QNIYQQZUd62GUgp9jKSwxo+gi3MxL5IfhXVl5YT4Y209yhCSGEqCYk\nYZcRtUp9/8B1AAAgAElEQVTNY3mKreyOCOJLKbYihBCijEjCLmOFF1vZKcVWhBBClIok7HKgL7by\nsv8kHDT2bLi8jVnHfiE25aa5QxNCCFFFScIuR751vJjW+Y3cYiuHZkmxFSGEECUiCbuc6YutPOM3\nCrXKgsBzq/n55DxupyeaOzQhhBBViCTsCtKhXjumdXodH+cWnIkLZcahbzkWe9LcYQkhqqmwsMul\nPsalSxeBnCpoGRkZBdZnZ2fz119b2LNnF2vWrCxyWWZmJlu3bmLPnl18/vl/SUtLy7fdkiVLDMfU\n6XTMnv2t4XlExFVWr16R76tCC1tWVLwHDx5g5cpAVq1aTnp6GgDz5/9OUNAeFi78w6Tz6iUlJTFn\nTk4d96ysLFatWs7SpX/y228/G9pg4cI/2L59K+vXrym+kU0gCbsCGYqteD1OhjaTuaf/ZP6ZQFIy\npdiKENXZmjUr6dHjQerXd6ZHjwcNiay8XLhwnqNHD7Fnz+5SHeeVV57n8cf7sXfv31haWhZYf/Dg\nPzRv7kmPHr2oXbs258+HFlh24cI5zp49w+HDB+nRoxcpKckcPXo433YuLi5cuHCOxMREli9fQnDw\nccM5YmNjmD37WwYOfITHH+/LO++8VuiywuJNTLzN1q2bGDZsJLduJXDlSjhHjhwCoGvXHmRlZXHi\nRLDR59Xbvn0rt24lALB79w769OnHqFFjuXIlnJCQ0+zYsY26devRp08/IiMjiImJLtXroCeFUyqY\nSlHRs1EXfJ1bsCBkGYdjjnHxlhRbEaK6WrNmJc8//6zh+dmzZwzPhw4dVi7n1OmyiY+Px8GhdN9x\n8Nprb/Poo0V/GYitrR1z5/7CRx99xs2bN2jfvhOpqakFltnb29O8ec7ft1u3buHr60dExFXDdrGx\nsbRo0Rp7e3ueemoM+/fvM5wjLS2NnTv3o1KpOH36JE5Ozly5El5gWWHx7ty5HT+/VgA8/fRELCws\nmDfvN7y8fADw8vLm2LHD+Pu3Neq8kNPzrl+/PqGhIQBcvXqF5OQ7DBkyjAYNGnLjRiwnT56gV6+c\n7ySvV68+J04EF9uOxqrwHvYTTzzB+PHjGT9+PFOnTr3/DtVUXTs33mz/ohRbEaKa++67bwpd/v33\n3xa63FinT5/k559n89dfW9mzZ1e+oVcvLx/69OlH374DSnWOc+dCOHAgiKVL/yx0vb9/OxwcHBk3\nbgQ2NrbY29sXugxyho4DA/9kwIBB1K5dJ992tra5292rS5duqFQqUlJSiIqKolEj90KXFRbv5cuX\nuHEjhgMHgggMzFmWkBCPjU3O93/b2NgSFxdn9Hkh51JDs2Yehu3GjXuG/v0HAjlD8n5+rbC1tUWr\nzbmVV6fTcfNmrPGNXowK7WHrryksXLiwIk9baemLrbR08WFBSCC7I4I4G3+Bp/2eorFDI3OHJ4Qo\nA+fPh5q03Fg6nQ6tVkuTJk3x9vbh1VdfYPDgoYb1zZo1L3S/sLDLHD58EEVRCqzr339gvsT58suv\noygKUVFRHDr0L506PZBv+7i4m7Rp44+/fzt+//0XOnbsjEqlKrDM1dUNJycnRo4cywcfvEPDhu40\natTIsN0PP/yAj48/rq5uRf6+y5cv4amnxhS7TB/v9evXOXjwADpdNnZ29jz4YFfCwsI4cCCI7Gwd\nKlVOXzU7W4taXXy/Ne85Tp06QevW/oZr4YDhUsGJE8G0b98BV1c3Hn20PydPBtOxY2cuXbqAu3uT\nYs9hrApN2KGhoaSkpDBx4kS0Wi2vv/46/v7+FRlCpaQvtrL20mb2RP7D10d+5LFmfejTuCdqldrc\n4QkhSsHLy4ezZ88Uurw0Wrf2Z/78uXh7+5CYmFjo5KjCNGvWvMhkntfmzRvIztYycOAQrKysuHjx\nQoGEvWHDWsaNewa1Wk39+g3YseMv0tPT8i3bufMvRo4ca9inceOmbN++FRcXF8N2vr6e7NjxF6NG\njb03DINjx44wYcKkIpfljdfS0pJLly7g4uKKi4srAI6Ojly+fIk6deqQmpozbyg5Odkw1G3Mea9e\nvUJkZAS3bt3i2rVITp8+RatWrUlKSuLkyWDGjZsAgKdnCxITb3PgwH5cXd1o3tyjmDMYr0ITtrW1\nNRMnTmT48OGEh4fz3HPPsW3bNsOnnZrMUm3JCK8htK7jx6Kzy9lweRunb55lvN9I3GxdzB2eEKKE\nXnvtzXzXsPX+8583SnXczMxM9J3k/fv3Gj38re9h30tRFPr1ewwHh5yvd6xVywk/v5YAREdfp127\n9obH9erVzxeHWq3Gw8OThIR4IiKuFli2aNF8MjMzePbZySQkxOPh4cmdO3cM23l5eREWFmk45r21\nKq5evUJmZmaxywqLV6PRcOzYEQASExPx9PTCwsKCs2fP8OCDXQgJOUOHDp2MPu9jjw02HD8s7BKt\nWuV8pfLOndsYM2Y8WVlZBAcfIzs7m9jYGAYOfJyDBw/Qvn3Hol8QE1Rowm7atClNmjQxPHZycuLG\njRvUrVu3yH2K+27Q6sjVtT0BzXz4/Vgg/1w9wszD3zGu7ZP08ehW6BBWwf1rVnuVlrSX8aStTKNv\nr8mTn8HR0YYvvviCkJAQ/Pz8eP/99xk5cmSpjn/s2DHs7Gw4deowaWlJTJ482ci4/OnU6f4jm48/\n3p9FixbdnTDWmH79epGYmMiMGR8RGBgIwPPPT2T58uW4ubmhKAojRz55d8Z1/mWRkZEEBwezd+9f\nODk58MILk0hKSiqwXUpKCsuXLycy8iqbNq3iqaeewsbGhvh4DY0bN8r3Hrx3WWHxAoSGnmTv3r+o\nVcuWgQMfRafTceLEYY4e3Y+dnRWPPdbHpPOmp6fzxx9ruHAhlPDwUMLCwvj11znMnfs/dDodf/75\nJ9bW1uzaFcX27Rt44onB1K9ffC/eWIquAstuLV26lPPnz/Pxxx8TExPDM888w8aNG4vtYdfkLzU/\nEhNM4Lk1pGal4lfHm7E+w6llVfSsT/kSeNNIexlP2so0FdFeS5YswsfHl4CADuV6noog769cxX0w\nrtCx6GHDhpGUlMTo0aN58803+fzzz2U4vBgd6rblg85v4Fvbi5C4c8w4KMVWhBA5hUF27NhKbGyM\nuUMRFahCe9glIZ+6cq6r7L12gDUXN5GZnUnHugGM8HocW41Nvu3kU6pppL2MJ21lGmkv00h75Squ\nhy2FU6oARVHo0eghfJw9pdiKEELUUDIeXYUYiq006yPFVoQQooaRhF3FqFVqHmvWh7fav0RdW1d2\nRwTx5eHvuZoUef+dhRBCVFmSsKuoJo7uvNfxP/Ro9BDRKbF8feRHVp3ZjDZba+7QhBBClANJ2FWY\nvtjKy20n4WjpwLLTG5h17GdiU26YOzQhhBBlTBJ2NeBb24tpnV6nS+MOhCVe5YtD37Hv2oECVXuE\nEEJUXZKwqwlbjS3/eXAiz7QcjVplQeC5Ncw5+Qe30xPNHZoQQogyIAm7mpFiK0IIUT1Jwq6GnKxq\n8ZL/REZ4DSEjO5O5p/9k/pmlpGSmmjs0IYQQJSSFU6qpgsVWjnPhbrEVn9otzB2eEEIIE0kPu5rL\nW2wlMSOJ2cG/sfK8FFsRQoiqRhJ2DVCg2Erk3WIriVJsRQghqgpJ2DVIbrGVLjnFVo7+yJawnVJs\nRQghqgBJ2DVMTrGVxw3FVjaGbZNiK0IIUQVIwq6h9MVWOtRtayi2sjdSiq0IIURlJQm7BrPV2PJM\ny9E823I0FioLlp1fw5wTf3Ar/ba5QxNCCHEPSdiC9nXbMk1fbCX+HJ8fnCXFVoQQopKRhC2A3GIr\nT0mxFSGEqJSkcIowUBSF7o0ewtvZkwVnpdiKEEJUJtLDFgXUtXPjzYAXeSxPsZUV59dJsRUhhDAj\nSdiiUGqVmgGGYitu/B25n5lSbEUIIcxGErYolr7YSs9GXYgxFFvZIcVWhBCigknCFvdlqdYwPF+x\nlb/49tjPxEixFSGEqDCSsIXR8hZbCU+8ykwptiKEEBVGErYwiRRbEUII85CELUqksGIrR2NOmDss\nIYSotiRhixK7t9jKH2cWM+/MElIyU8wdmhBCVDtSOEWUiqHYSu0WLAgJ5EhMMBdvhUmxFSGEKGPS\nwxZloq6tK28GvMjAZo9KsRUhhCgHkrBFmVGr1PRv9kiBYitXEiPMHZoQQlR5krBFmbu32Mr/Hf1J\niq0IIUQpScIW5UJfbOWVts9JsRUhhCgDkrBFufKp3SJfsZUvDn3H3sh/pNiKEEKYSBK2KHe5xVbG\noFFZsOz8Wn46MVeKrQghhAkkYYsK076uv6HYytn488w4+K0UWxFCCCNJwhYVKrfYylCysrOk2IoQ\nQhhJCqeICpdTbOVBvGt7SrEVIYQwkvSwhdkUVmxl+fl1ZGgzzB2aEEJUOpKwhVndW2xlT+R+Zh7+\nQYqtCCHEPSRhi0qhsGIrm8O2S7EVIYS4SxK2qDTuLbayKWw73xybI8VWhBACMyTsuLg4evbsSVhY\nWEWfWlQROcVW3qBj3XZcSYyQYitCCEEFJ+ysrCw+/vhjrK2tK/K0ogqy1dgwoeUoJrYai6VKI8VW\nhBA1XoUm7C+//JJRo0bh5uZWkacVVViAWxumdn79nmIrweYOSwghKlyFJezVq1dTp04dunTpIkOb\nwiQFi60skWIrQogaR9FVUPYcO3YsiqIAEBoaSrNmzfj555+pU6dOsfvduJFUEeFVC66uDtW+vWJT\nbrAgZBnhiVdxsqpVqmIrNaG9yoq0lWmkvUwj7ZXL1dWhyHUVlrDzGjduHJ988gnNmjWr6FOLakCb\nrWXt2W2sPLMJrS6bfi16MqbNUKwsLM0dmhBClBuzlCbV97SNIZ+6jFeTPqV2d+tGU+tmzA8JZOuF\nvzl+7QxP+42kiaO70ceoSe1VWtJWppH2Mo20V65K18M2hbyIxquJb/oMbSbrL21hd2QQKkVFv6a9\n6dekF2qV+r771sT2KilpK9NIe5lG2itXcQlbCqeIKs1SrWGY12BDsZXNUmxFCFFNScIW1UJusZUA\nQ7GVPVJsRQhRjUjCFtVGTrGVkYZiK8ul2IoQohqRhC2qHX2xFb/a3lJsRQhRbUjCFtWSk1UtXvR/\nlpHeUmxFCFE9mOW2LiEqgqIodGv4IN7OniwIWcaRmGAu3gpjrO9wfGt7mTs8IYQwifSwRbXnZuvK\nGwFTGNisL4kZSfwY/DvLz68lPSvD3KEJIYTRpIctagS1Sk3/Zr1pWcebBSGB7In8hwu3LzHWe4RJ\nxVaEEMJcpIctapTGjo14t+N/eNi9K1FJMfzf0Z/YFLYdbbbW3KEJIUSxJGGLGsdSrWFYi8F82PM/\nucVWjs4hJjnW3KEJIUSRjE7YOp2OdevWER0dDcBPP/3EwIEDmTZtGikpMvNWVD2t6/rkFltJiuCL\nw99LsRUhRKVldML+8ccfmT59OtHR0Rw+fJjZs2fTsWNHjh8/ztdff12eMQpRbqTYihCiqjA6Ya9Z\ns4avv/6atm3bsnXrVgICAvj444+ZMWMG27dvL88YhSh3AW5tmNb5Dfzq5BZbOSLFVoQQlYjRCfvG\njRu0atUKgKCgILp16waAq6srd+7cKZ/ohKhAtawcebFNbrGVeWeW8MfpxSRLsRUhRCVg9G1d7u7u\nnD59mvj4eK5cuUL37t0B2L17N+7ucluMqB7yFltZGLKMo7EnuHgrjHF+I6TYihDCrIzuYU+aNInX\nX3+dUaNG0bFjR1q2bMmcOXOYOXMmkyZNKs8YhahwbrauvB4whUHN+5KUecdQbCVDK8VWhBDmoehM\nmBIbGhpKZGQk3bp1w8rKin/++QeNRkPHjh3LLUD5UnPjyZfAm8bY9rqaFMmCkGVEJ8dQ19aVp/1G\n1rhiK/LeMo20l2mkvXK5ujoUuc6k+7B9fHxo27YtwcHBpKWl4e3tXa7JWojKoLFDI97t8CoPu3cl\nJuVGTrGVy39JsRUhRIUyOmFnZGQwdepUunbtyjPPPMONGzf46KOPePrpp0lKkk9GonrTF1t5te1k\nalk6sjl8hxRbEUJUKJPuwz516hRLlizBysoKyLmuHR0dLfdhixrDu7YnUzu9nq/Yyt+R+8nWZZs7\nNCFENWd0wt6yZQsffPABAQEBhmXt2rXj008/ZdeuXeUSnBCV0b3FVlacX8dPwVJsRQhRvoxO2LGx\nsTRo0KDAchcXFxkSFzVS3mIroQkX+EyKrQghypHRCdvX15edO3cWWL58+XJ8fHzKNCghqorcYitP\noJViK0KIcmR04ZS33nqLSZMmERwcTFZWFr/99huXLl3ixIkT/Prrr+UZoxCVWk6xlQcKFlvxHYFv\nHSm2IoQoG0b3sDt06MDSpUvRaDQ0adKEU6dO0aBBA1avXs1DDz1UnjEKUSW42brwesALDGreL6fY\nyonfWXZOiq0IIcqGSYVTzEFupjeeFB8wTXm2V95iK262LkzwG1Wli63Ie8s00l6mkfbKVVzhlGKH\nxD/88EPee+897Ozs+PDDD4s9yaefflqy6ISohvTFVjZc3squiH3839Gf6NekF/2a9katUps7PCFE\nFVRswg4PD0er1RoeCyGMZ6nW8GSLQbSq48uis8vZHL6D03GhPO03knp2buYOTwhRxZTJkHhcXBx1\n6tQpi3gKkGES48mwkmkqsr1SMlNZcWEdh6KPoVFZMMTzMbo3fBCVYlJ1YLOR95ZppL1MI+2Vq0xq\nifv6+hIfH19geVRUFI888kjJIhOihrDV2PC030gmtRqHpdpSiq0IIUxW7JD45s2b2bdvHwA6nY7P\nPvvMUJZULzIyEjs7u/KLUIhqpJ1ba5rXasLi0JWciQvls4PfMtJrCB3qtTN3aEKISq7YHnZAQAAx\nMTFER0cDOdXOoqOjDf9iYmJwcnKSWuJCmKCWlSNT2jzDKH2xlZClUmxFCHFfxfaw69Wrxx9//AHA\n+++/z7Rp07C3t6+QwISozhRFoWvDB/C6p9jKWN/h+NXxNnd4QohKqNhJZzExMdStW9fwuDj67cqa\nTEQwnkzcME1laS9ttpbtV/ewKewvsnXZdG/4EEM9B2CptjR3aAaVpa2qCmkv00h75Srxfdg9e/Yk\nKCiIOnXq0KNHDxRFKbCNTqdDURTOnj1b+kiFqIHUKjX9mvbCr44XC0KWsffaP4QmnOdpv5E0dWxs\n7vCEEJVEsQl7wYIF1KpVC4CFCxdWSEBC1FSNHRrxXodXWX+32Mo3R+fQt0kv+kuxFSEE90nYnTp1\nMjw+dOgQEydOxMbGJt82d+7cYfbs2fm2FUKUjOZusZXWLr4sDFnOlvAdnJFiK0II7jNLPD4+nqio\nKKKiovjpp5+4fPmy4bn+37///svSpUsrKl4hagQvZ0+mdX6dzvXaczUpkpmHv+PviP1k67LNHZoQ\nwkyK7WHv3buX9957z3DtetiwYYVu16dPn7KPTIgazsbChvF+T9HaxY+l51ax4sI6Tt0MYazvcJyt\nncwdnhCighWbsIcMGULjxo3Jzs5m7NixzJkzx3BNG3JuTbGzs8PT07PcAxWipsopttKUxaErOBMX\nyoxDs6TYihA1kNG1xK9du0aDBg0KnSlenmSqv/Hk1gjTVLX20ul07I86yKqLG8nQZtDezZ+nvIdi\np7Et93NXtbYyN2kv00h75SrxbV151a9fn40bNxIcHExmZib35nn5ek0hypcUWxGiZjM6Yc+YMYOl\nS5fi7e1doNqZsb3u7OxsPvjgA8LCwlCpVPz3v/+V4XQhTORm68LrAS8Yiq38dGIu3Rs+yBDPx7Cq\nRMVWhBBly+iEvXHjRmbOnMngwYNLfLJdu3ahKApLly7l0KFDfPvtt8yZM6fExxOiptIXW2lZx5v5\nIYHsvXaA0PgLjPcbSbNaUmxFmE+2Tkd2ds4/bbYOnS7nZ3a2jmwdaLOz8zzOWZ6YriUuPjl3u2wd\nWp0OXXbefQs+1uU5hv58hvPrctZnZ+vQoSM7O+eyUr7lOu4+v7ufDnR3Y8vZJ+82+n3uri9wrPzL\n8x0r7zLdvcfNXa7TwdLPBhTZtkYn7KysLNq1K90kl0ceeYRevXoBOdfE805gE0KYzt2hoaHYyu6I\nIL49JsVWqhN9ssvMyiZLm33Pz5zlmXmW69dps3VotTnbaLN1aLP1j7PRanW5j7N1Oc/vLtdm68jS\n5u6f8zx32yxt7nLDOfIkzJzkWDMp5Iw2q1R3fyoKikLuT5Vyd3nuerVKQaVSGZar7jNabXTC7t27\nN5s3b+b5558v1S+lUql477332LFjBz/88EOpjiWEyFtsxY+FIcuk2Eo5y9bpSM/QkpGVTXqmloxM\nLRmZ2Tk/s7SkZ2ZjFZ5AXHwy6ZnZd5fl3Sb77v7aPAlYR6Y2m6y7CTjvT3MmQAVQq1Wo1QoWKiXn\nsSon0Vhp1KjViuG5SqWgVnJ+Gv4puevufazS76co2NlbkpGWhaLCsCzv+vseL9/zu0lSv2+eBKnc\nXXe/ZJq7Trm7jgLHujcxV8SEbKNniX/77bfMnz8fX19fmjZtiqVl/mtlpk46i4uLY/jw4WzevBlr\na2uT9hVCFC4lI5U/ji9jb/hBNGoNY9oMoV+LnqiUYmsk1Qg6nY70TC13UjJJSsngTkomd1IzSU3P\nJCUti9T0rDw/8yxLzyI1LYvU9ExS07NITdeWWUyKAhq1Co2FCo1GjcZChaWFCo1FzuOc52os8jzO\n2fae53f3sdSosFDn/NPoE22enwUeqxQ0FirUKhUW6pyEbGHYJ2e9qDyM7mEfP34cf39/AKKiokp0\nsnXr1hETE8PkyZOxsrJCpVKhUhX/h0Sm+htPbo0wTXVtr6eaP4mXvRdLz61i/vEV/BseXOpiK5Wx\nrTKzsklMziAxJYPbyRk5j5MzuJOaSfLdhJucmklyWhZ30jJJTs0iS2t6pThLCxXWlmqsrSxwc7LF\n2lKNlaUaK01Ogsz5qcbSIvdxHWdbMtIzsbybRO9db6XJSbAWaqXCb5UtIDsbsrPJyoIsIN0MIVTG\n95e5FHdbl9E97LKQmprK+++/z82bN8nKyuL555/n4YcfLnYfeRGNJ29601T39rqdnmQotmJjYcNT\nXkPoULdtiRJERbZVtk5HYnIGcYlpJCSmE5eYRnxiOgl30km8k87tlEwSkzNITc+677EUwNbaAjtr\nDXY2+p8a7O4us7W2wMbKAmtLde5PSwusrdRYW+Y8t1CbPjpR3d9bZU3aK1eZJez4+HjCwsLIzs75\nlKrT6cjIyODUqVNMmTKl9JEWQl5E48mb3jQ1ob3uLbYS4NaGkd5PmFxspazbKjU9i9iEVGJvpRIT\nn0JMQgo3bqURn5hGQlI62uzC/ywpgL2tBkc7SxxtLallZ5nz+O5zRztLHGzvJmQbDTZWFvedyFMe\nasJ7qyxJe+Uqk8Ipa9eu5aOPPiIjIwNFUQzfgw3QuHHjckvYQoiS0xdb8XZuwcKzgRyLPcmlW2GM\n9R1RIcVWUtOzuHYjmYgbd4i8cYdrsXeISUjldnJGwViBWvaWNK3ngLOjNbUdrKjtaE0dx5yfzg5W\nONhqUN/nMpoQ1ZXRCfuXX35hyJAhPPfccwwbNox58+YRFxfHxx9/XOqZ40KI8uVqW4fXA6aw/crf\nbArbXi7FVtIysgi7nsTlqNtcjkokIvYON2+n5dtGUaCOozUtm9WmrrMNbs621HW2oW5tW1xqWZdo\n+FmImsLohB0ZGcnPP/+Mu7s7Pj4+xMbG0rNnT6ZNm8bs2bN54oknyjNOIUQpqRQVfZv2wq+ODwtC\nlpa62Mqd1ExCryRw9koCFyJvc+3mHfJeYHO01eDX1JlGrvY0crXH3c2e+nVssdTI/eFClITRCdvG\nxsYwo7tJkyacP3+enj174uvry5UrV8otQCFE2XJ3aMC7HV5lw+Vt7IrYd7fYysP0b/pIscVWsnU6\nLl9LJPjiTULC47kSnWS4R9jSQkWLhrVo3rAWzes70ryBI7Ud5XZNIcqS0Qm7Xbt2zJ07l2nTpuHn\n58e6deuYPHkyJ06cwM7OrjxjFEKUMY1awxMtBtLKxfdusZWdnIkLxe2SPfN//p3z50Px8vLhP/95\nA9+A3qzce5n9J6O4fSfn2rNapeDl7oRfU2f8mtamST0HGc4WopwZPUs8NDSUiRMn8swzzzBy5EgG\nDRpESkoKycnJjB8/nnfeeadcApSZg8aTmZamkfbKkZqVyorz61mxehkHf9hRYH27AW/S0Kcb9jYa\n2rZwIcDLFd/GzlhZytB2UeS9ZRppr1xldltXamoqqamp1K5dm9jYWDZu3Ej9+vXp379/mQRaGHkR\njSdvetNIe+XXuUs7wi5cKrC8vrsnW3b+Q11HS5mhbSR5b5lG2itXmdzWBTnXsW1sbABwc3Pj2Wef\nLV1kQgizy9bpOHbuBuGXwgpdf+N6OP4tXOUPqhBmZnTCbtmyZbEVkk6fPl0mAQkhKs65qwks332R\nsOtJ2Nd2J+lmwQmkLo3rcic92QzRCSHyMjphf/rpp/kSdlZWFuHh4axdu7bcrl8LIcrH7TvpLN5+\nniPnbgDQydeNru+9x3tvFSyA1GSgL29u/ZRR3sNoWQHFVoQQhTM6YRd1n3XLli1ZuXIljz/+eJkF\nJYQoHzqdjn9ORxO48wLJaVl4NHRkZO8WeDSoBbTC2cGK77//1jBL/NVXX8c+wIWN4X8x58RcujV8\nkKFlWGxFCGG8Un/5x7Vr1xgwYAAnTpwoq5jyketmxpOJG6apae2Vmp7FvM1nOXLuBlYaNcMf9qBn\nu4ZG1dpOtrjFrP1zuZ4cg5uNS4mLrdQUNe29VVrSXrmKm3RWqimf6enpLFmyBBcXl9IcRghRzq7d\nTObTBUc4cu4GXu5OfDqxE70CGhn9xRhNnd15t8Or9Hbvzo3UOL49NoeNl7ehzS6774YWQhSvVJPO\ntFotiqLw3//+t8wDE0KUjfMRt/h+5UlS07Po16kxT/ZsXqLbs4oqtvK030jq2dUth8iFEHkZPSS+\nZu3BSoAAACAASURBVM2aAss0Gg3+/v64u7uXeWB6MkxiPBlWMk1NaK/jF27wy7ozZGfrePYxXx5s\nWa9Ex7m3rfTFVg5GH0WjsuBxjwH0aPQQKkXu04aa8d4qS9JeuUp9H/bVq1e5dOkSx48fJz4+HkdH\nR9q0acPo0aNxd3fniy++wN3dnbFjx5ZZ0EKI0gm+cJOfVp/GwkLh1WFtaN28Tpkd28bChvF+T9HG\ntSVLQ1ex8sJ6Tt0MYZzvCJytncrsPEKIXPf9OLxmzRoGDRpEYGAgNjY2tGzZklq1arF+/XoGDRrE\nrFmzWLFiBd26dauIeIUQRgi9ksCctaexUCu8MaJtmSbrvNq6tmJqpzdoVceXcwkXmXHoWw5FH6OU\nc1mFEIUotocdHBzMhx9+yHPPPceUKVOwtMy9lSMjI4PffvuNH3/8kbFjx9KkSZNyD1YIcX8x8SnM\nXn0KnU7Hy0+2wcu9fHu8tawceKHNBP65foiVFzawICSQkzdDGOk9FHuNfDGQEGWl2IQ9d+5chg4d\nyn/+858C6ywtLbG3t0etVhMREVFuAQohjJeansUPq3ImmE18zJdW5dSzvpeiKHRp0BkvJ08Wng3k\neOxJLt8KY4zvCCm2IkQZKXZI/Pjx4zz11FNFrl+0aBFvvfUWJ0+eLPPAhBCm0el0LNgayvW4FPp0\ncKdL6/oVHoOrbR1eD5jC4837cyczhTkn5hJ4bg3p2owKj0WI6qbYhJ2cnEzt2rWLXL9mzRr69OlD\nampqmQcmhDDNwZAYDp2NxbNhLUb08jBbHCpFxaNNH+btDq9Q364u+64dYOah7wi7XbBOuRDCeMUm\n7EaNGhX7pR4ODg6cOnWKRo0alXlgQgjjxSemseiv81hp1Ewa6FspvgbT3aFBvmIr3xydwwYptiJE\niRX7v7p///7MmjWLpKTC74+7desW33//PYMGDSqX4IQQxlm68wKp6Vk81dsTN2dbc4djoC+28p92\nk3G2dmJr+E6+Pvoj0ckx5g5NiCqn2IT97LPPotFoePzxx1m8eDEhISFERERw+vRpFixYwNChQ7G3\nt2fChAkVFK4Q4l5nwuM5eu4Gng1r0d2/gbnDKVQLZw+mdnqdB+p1ICLpGjMPf8/uiCCyddnmDk2I\nKqPYWeLW1tYsXryYzz//nJkzZ5KVlWVYp0/k7777br7bvYQQFSdLm82S7edRgDF9vIyuDW4ONhbW\njPMbQWtXPym2IkQJGF2aNCkpiVOnTpGQkICzszOtW7fGwaHoEmplRcrVGU/K+5mmOrTX3hNRzN8S\nSs+2DRjfz6fczlPWbZWYkcSS0JWcunkWGwtrRngNoWPddgW+r6Cqqg7vrYok7ZWr1KVJIWeC2UMP\nPVQmAQkhSi9Lm83Gf8KxUKsY1KWZucMxiaOlA8+3lmIrQpjC6IQthKhc/jkdzc3baTzSvhHODlbm\nDsdk+YutLMtTbGU4LeuU32iBEFWV+e/9EEKYTJud07vWWKgY8GDVLgucU2zlhTzFVv5g6bnVUmxF\niHtIwhaiCgq+EMfN22l0bV0fJ/uq17u+V95iKw3s6hF07V++ODRLiq0IkYckbCGqoJ1Hc+r392pf\nvYoWuTs04J0Or9C7cXdupsZLsRUh8pCELUQVE3njDqFXb+HbxJmGLtVvgpZGreEJz4LFVq5LsRVR\nw0nCFqKK2XXsGgC9q1nv+l6GYiv1c4ut7IrYJ8VWRI0lCVuIKiQzS8vBkBicHaxo6+li7nDKnY2F\nNeN8RzC59Xis1VasurCB2cG/E5+WYO7QhKhwkrCFqEJOXIwjNT2LB/zqolJVjyIjxvB3bcW0zm/Q\n2sWX8wkX+fzQLA5FH8PIuk9CVAuSsIWoQg6ciQbggZb1zBxJxdMXWxnt8yTZumwWhAQy9/Sf3MlM\nNndoQlQIKZwiRBVxJzWTU5fjaORqh7ubvbnDMQt9sRVvZ08WhCzj+I1TXLodzlgptiJqAOlhC1FF\nHDkXS5ZWVyN71/dysblbbMWjP8lSbEXUEJKwhagijp27AUAnXzczR1I5qBQVj/5/e3ce1dSBtw/8\nSUgCgbAEAgqIKIsC1VpUqtXX1traVlvrWB03BHu6TKeeGan6Vk9nnNa2b8uxy7Sj4tRlfq+K/oZq\na6116OY42tbWtW4oLgRRNsu+L1lu3j8CCC4oFnLvTZ7POZyEkJhvrsDDvbn3ueEPYjHLVshFMLCJ\nZKCx2YLsS5XoG6SDwVcr9jiS0sc7BIsT5uPhvg9cLVsxfgWLYLn1g4lkhIFNJAOnL1bAKthwT7Tz\nH8p1J9RKFaZEPY6U+BfsZSuX9uC9o2ksWyGnwsAmkoFjF8oAgIF9C9H6CJatkNNyWGBbLBYsXrwY\niYmJmD59Ovbs2eOopyaSNasg4KSxDHpvd4T3uvnJ7cmOZSvkrBwW2Dt37oRer8eWLVuwbt06vPnm\nm456aiJZyymoRn2TBfdEGaBQuE5Zyq91bdnKWwdZtkLy5rDAnjBhAlJSUgAAgiBApeIh4ES343Re\nBQBgcESAyJPIT2vZSmLMNNjAshWSN4elplZr37O1rq4OKSkpWLBggaOemkjWsvMqoVQoMLCvn9ij\nyJJCocCokHsxQB+JTSxbIRlT2By4fai4uBh/+MMfMGfOHEyZMsVRT0skW/WNZsz+SyYGhvvjnT+O\nEXsc2RMEAV+c242MrJ2wClY8HDkGyUOegofaQ+zRiG7JYWvYZWVlePbZZ/Hqq69i5MiRt/240tLa\nHpzKuQQGenN5dYEcltexC6UQbEB0qI+os8phWd2uUYb70HdYODaeycBu4/c4XnQGc+NmIsI3vNue\nw5mWlyNweV0VGHjzHUsd9h72mjVrUFNTg9WrVyMpKQnJyckwmVgjSNSZM3n2PZtjw/UiT+Jc2pet\nlDdW4K8sWyEZcOgm8TvBv7puH/9K7Ro5LK+l6w+irLoRq166Hyo38WoT5LCs7tSFylxsyv4YFU2V\nCNOFYO5dsxDs1etX/ZvOvLx6ApfXVZJYwyairqmua0ZRWT0GhPmJGtbOrkPZSl2RvWzl8ncsWyHJ\n4W8BIonKKawBAAwM497hPe1q2cpce9lKzi6sPLaOZSskKQxsIokyFlUDACJCfEWexHUMCbwLS0cs\nwmBDHM5XGfHWwQ9wsPgoy1ZIEhjYRBJlLKyGQgH0D2YdqSN5a3R4YfBcJMb8FjYI2JT9MdZnbUad\niWUrJC7WjRFJkMUqIO9KLfoE6uCh4Y+po9nLVhLaylaOl55CbnUeEmOmYZAhVuzxyEVxDZtIgvJL\n6mC2CIgM5eZwMRm0/nhp6Av4TeRENJgb8PeT/4t/nv0UTZZmsUcjF8TAJpKg3CL7DmeRIT4iT0JK\nhRLjw8diccJ8hHj1xg9FB5F6+EPkVl8SezRyMQxsIgkyFtp3OOMatnSE6oKvK1vZybIVciAGNpEE\nGYuq4eWhQi+9VuxRqB21UoUpUY8jJf4F+Hv44etLe/DekVUoqrsi9mjkAhjYRBJTU29CaVUTIkN9\nef5riYrWR+CVexfgvuAE5NcVYfmRFSxboR7HwCaSmLbN4Xz/WtK0Kg/Mif0ty1bIYRjYRBJjbNnh\nLILvX8tCa9nK3Ya72spW9l08wLIV6nYMbCKJMRZWQwEgIphr2HLhrdHhd4OTMaelbCXt0Easz0pn\n2Qp1KzYyEEmIVRBw8UoNQgK9oHXnj6ecKBQK3BeSgGh9JDJyPsHx0iwYq/MwJ+a3LFuhbsE1bCIJ\nKSiph8ksIJL94bJl0PrjtbEL8JvIiWg0N+LvJ/8X/59lK9QNGNhEEpJbxB3OnIFS2bFsZX9b2Uqe\n2KORjDGwiSSk9ZSaLExxDq1lK+P7jm0pW/k7y1bojjGwiSTEWFQNT3cVegd4ij0KdRO1UoXfRE3E\nS0N/z7IV+lUY2EQSUdtgQkllIyJCfKBkYYrTifLrjz/duwCj2pWt/JtlK9QFDGwiiWg9/pqbw52X\nh8oDibG/xQstZSvbc3ZhxbG1KG9k2QrdGgObSCK4w5nruLtd2cqFqly8fegDHCw+yrIV6hQDm0gi\njC07nEUwsF3CtWUrm7I/ZtkKdYrNDEQSIAg25BbXIDjAE54earHHIQdpX7ay6czHLFuhTnENm0gC\nCsvq0Wyy8v1rF2XQ+uOloS+wbIU6xcAmkgCeoYuUiqtlK6G6YJat0HUY2EQSYGzd4Yxr2C4vVBeM\nl4f/sUPZyufGL1m2QgxsIikwFtbAQ+OGkAAvsUchCehYtqLHN5f+g3dZtuLyGNhEIqtrNONKRYO9\nMEXJwhS6yl628hJGBSeggGUrLo+BTSSy3KLWw7m4OZyu175sRevmwbIVF8bAJhJZTssOZ1F8/5o6\ncXfgXfjziIUdylYOFB9h2YoLYWATiSynoAoKAFGh3EOcOte+bAWwIT17K8tWXAiLU4hEZLEKyC2q\nQUigFwtT6La0lq0M0EdiUzbLVlwJ17CJRJRfUgeTRUB0Hz+xRyGZCdD6IyX+BUyJerxd2conLFtx\nYgxsIhFdyK8CAETz/Wu6A0qFEg/3faBd2cohpB76AMaqPLFHox7AwCYS0YXWHc76MLDpznUoW2mq\nxAc/s2zFGTGwiURis9mQU1ANP50GBl8PscchmWPZivNjYBOJpLSqEdX1JkT18YNCwcIU6h7Xla0c\n/ht2X97HshUnwMAmEsmFAvvm8GhuDqdu1qFsRaXFZzn/YtmKE2BgE4nkQkHLDmcMbOohrWUrQ1i2\n4hQY2EQiyb5UCa27Cn2DvMUehZyYt0aH5wcnY07sdLSWrazLSketqU7s0aiLWJxCJILSqkaUVjUh\nPtrAE35Qj1MoFLgveDgG+EVgU/bHOFGahdzqPCTGTMNgQ5zY49Ftcvga9okTJ5CUlOTopyWSlOxL\n9vcS4/r5izwJuZJry1Y+OrkBW7I/QZOlSezR6DY4dA17/fr1+Pzzz+HlxXP+kms7k1cBAIjrpxd5\nEnI1rWUrsf4DsPFMBn4sPoTzlTlIjpuJSL9+Yo9HnXDoGnZ4eDjS0tIc+ZREkiPYbMi+VAk/nQa9\n/T3FHodcVGvZyiPhD7JsRSYcGtjjx4+Hm5ubI5+SSHIKS+tR22BGXD9/Hn9NolIrVZgcOaFD2co7\nR1aybEWiJL/TWWAg96DtCi6vrhFjeX2fZf9lOGJwsKz+v+Q0qxTIaXkFBt6Ne/oNwMbjn2BP7n4s\nP7ICswZPxuMDx0GpcMx6nZyWl1hECeyuHANYWlrbg5M4l8BAby6vLhBref1wvBAKAOGBXrL5/+L3\nVtfIdXlN7TcZA3TR2JL9CdJPfIoDl44hKXYGArQ9u6+FXJdXT+jsDxdRjsPmZkByVbUNJuQUViOy\njy98PDVij0N0ncGGOHvZSuCglrKVv+Inlq1IgsMDOzQ0FBkZGY5+WiJJOGksh80GxEcZxB6F6Ka8\nNTo8PygJSbHTAQCbWbYiCZJ/D5vImRzPKQMA3BPNwCZpUygUGBk8HNF+EUjP3movW6nKQ2Isy1bE\nwmpSIgcxW6zIyq1AkF7Lw7lINgK0/pgf/zt72YqFZStiYmATOUhWbgWazVbERxu4HwfJSmvZyuKE\n+QjVBePH4kN4+9CHMFbliT2aS2FgEznIT2d+AQCMiOsl8iREd6Z92UoFy1YcjoFN5AANTRacyClD\ncIAnwnvxeFOSr9aylQVDX0QAy1YcioFN5ABHz5fAbBEw8q7e3BxOTiHSrx9eufcljA65F4V1xVh+\n+G/YfXkfBJsg9mhOi4FN5AAHTts3h4/k5nByIh4qD8yOmYbf3/00tGotPsv5F/52bA3KGyvEHs0p\nMbCJelhJVSPOXqpEVB9fBPppxR6HqNsNNsThz/fay1Zyqi7i7UMfsGylBzCwiXrYf34ugA3AuPhQ\nsUch6jE3LFs5tYllK92IxSlEPajZZMX3J4rh46XB8Jggscch6lHXla2UnUbuwUssW+kmXMMm6kEH\nzlxBQ7MFDwwJgcqNP27kGli20jP4G4SohwiCDd8czodSocBYbg4nF9NatrIkIaVD2UpO1UWxR5Mt\nBjZRDzlyrgTF5Q0YNbg39N7uYo9DJIoQXW8sble28uHPH2FHTibMLFvpMgY2UQ8QBBt27s+DUqHA\nE6P6iT0OkahU15StfHt5L949shKFdcVijyYrDGyiHnD4bAmKyuoxanBvBPFQLiIArWUrC9rKVt45\nvMJetiKwbOV2MLCJulmz2YpP9uZA5ca1a6JreajcrytbeX3vhyxbuQ0MbKJu9uWBSyivacYjCX25\ndk10E+3LVrJLL9jLVooOs2ylEwxsom5UUtmAzAOXofd2xxOjwsUeh0jSWstW5t2bDADYfHYb1rJs\n5aZYnELUTQTBhvX/yobFKmDGuCh4aPjjRXQrCoUCY/vfh95uoUjP/hgny07jIstWbohr2ETd5KtD\nl5FTUI3hAwORwFYzoi4J0OoxP/53eCrqCTRam1rKVraxbKUdBjZRN8gprMZn3+XCV6dB8mMxPIUm\n0R1QKpR4qO/9WDJ8PvroQvBj8WGWrbTDwCb6lSprm5G2/RQEmw3PPxEHnVYt9khEshai642Xh/8B\nj4aPY9lKOwxsol+hsdmClZ+eRHW9CdMfjEJcP3+xRyJyCiqlCk9GPoaFw1i20oqBTXSHzBYrVm0/\nhbwrtRg9uDceSQgTeyQipxPh21q2MqKtbOXbS3sh2FyvbIWBTXQHms1WpH2WhexLlYiPNuDpCXzf\nmqin2MtWpraVrewwZuLDn9e4XNkKA5uoi+qbzHg/4zhOGssxqL8/fj/5Lrgp+aNE1NNay1buCRwE\nY/VFlytb4W8Zoi64UtGA1M0/I6ewGiPiemH+tLuhVrmJPRaRy/DW6PDcoCQkx84AoHCpshU2OxDd\npqPnSvGPf51Bk8mKRxLCMH1cFJTcDE7kcAqFAiOChyHKL6JD2crsmKm4O/AuscfrMVzDJrqFhiYL\n/l9mNtI+sx+69btJcZj5UDTDmkhkrWUrU1vKVtac2ojNTly2wjVsopuw2Ww4eq4U//z3BVTWNqNv\nkA7PTYpDn0Cd2KMRUQulQolxfe9HjP8AbDyTgZ+KD+N8pRHJcTMQ5ddf7PG6FQOb6AYuXalFxr8v\n4Fx+FdyUCkz+r/54/L5wqNy4UYpIilrLVjIv7sY3l/6DD3/+CA/3fQCPRzwCtdI5os45XgVRN8kt\nqsGuH/NwPKcMAHBPlAHTx0Wht7+nyJMR0a20lq0MMsRg45mP8e3lvThTcQ5z42YiVBcs9ni/GgOb\nXJ7FKuCksRx7fi7AmbxKAEBUqC8mj+mPu9hcRiQ7Eb798ErCS9ieswv7iw7incMr8ETEo3io7/1Q\nKuS7lYyBTS6rqKwOX3xnxPcni1FdZwIAxIbrMWlUPwzs68ciFCIZay1budsQh81nt2GHMROnyrKR\nHDcDBq08/xBX2CR+xHlpaa3YI8hGYKA3l9ctXKlowOGzJTh6tgSXS+zHbWrdVRg1qDceGBKCPkHc\noexG+L3VNVxeXdPTy6vOVI9/ntuO46Wn4O6mwbToybgveLgk/ygPDPS+6de4hk1OrclkwdnLVThz\nsQKn8ypQXN4AAHBTKjA8theGRPhjeEwQ3NUsPyFyVjqNF54bNAeHrvyMrec/x5az23Cq7Axmx0yF\nt0Y+f6QzsMmp1DSYYCyshrGwBjkFVTAW1cAq2DciuavdcE+UAcMGBiI+2oDwMH+uBRG5iNaylWh9\nBNLPbMXJstPIPZiH2THTMEQmZSsMbJKt6rpm5JfWIb/E/pFbWIOSqsa2rysA9Av2Rlw/fwzq74/I\nUF8elkXk4vw99Phj/PPYm/8DPs/9CmtPbcR9wQmYGj0JWpWH2ON1ioFNkiYINlTUNOGXykb8UtmA\nXyoaUVhWh4KSOtQ0mDvc18tDhcERAYgM8UFkqC/6B/vA04Pf4kTUUfuylU1tZSs5SI6bKemyFf42\nI1EJNhtq602oqG1GRU0TKmqaUV7ThJKWgC6taoTFev1+kQZfD8RH+yIsSIc+gTqEBekQqNeyLpSI\nbluIrjf+W0ZlK9KbiJyCxSqgrtGMmnqT/aPBhJp6M2oaTKiua0ZFTTMqaptQWdt8w0AGAE93FcKC\ndOil90SQXote/p7opfdEcIAntO781iWiX09OZSv8rUedEmw2NDVbUN9kQX2TGfVNFjS0Xm80t1y3\noKHJjLpGM6rrTahtsF/vjAKAj06DsCBv+Pu4w9/bAwE+7vD38YDexx1BflrotGpJHnZBRM6ntWzl\ns5xd+EGiZSsODWybzYZly5bh3Llz0Gg0eOuttxAWFubIEZyezWaDxWqD2WJFk6n9hwXN7a43maxo\nNFlbbrNcd79Gkz2YG5ot6MqR+l4eKvh4aRBq8IKPlwY+nhr4eKnbXbd/6L3duQMYEUmKh8ods2Km\nYrAhDlvOfiK5shWHBvbu3bthMpmQkZGBEydOIDU1FatXr3bkCA4h2GywWgV7cFoFWFsuLRYBlpbb\n7ZcdPzdbBJgsAsxmK0wWASaLFSbzNbe1XJo7XLei2Wz/t5pNVvyaJhwFAHeNGzw0bvDTuSPE4AUv\nDzW8PFTwbLtUwctDbb/UdvwaQ5iI5G6QIRZ/vndhW9nK24f+KomyFYcG9tGjRzFmzBgAwJAhQ5CV\nldXp/Strm1BR0wRBsMHa7kMQbLAIgv12qw1Wm/3Sfj/h6n2ttrbw7PjYa+7b9tjWD+Hq51b7Zftw\nNbcPWosAi9Aaxvb7tR7325OUCgXUaiXcVUqoVW7w9lTDU6u2B27Lba3Ba/9QdbjurnGD9ga3a9RK\nboYmIpd3o7KVk2WnkRgzTbSyFYcGdl1dHby9r9auqVQqCIIApfLGa2XJy7521Gi3TalQQKVSQO2m\nhJubEmo3BdzVbtB5qKFyU0LlprBfqpRQKRX2y5bbrz5GCbeWz6+9n0athEblBo1KCY3aDWqVsu26\npiWINWrlDddkWYdIRNR9ri1bOVV2Bv9z8H3RylYcGtg6nQ719fVtn3cW1gDwxfuTHTGWU+msh5au\nx+V1+7isuobLq2ukvLwC4Y3/CftvsceAQ99wHDp0KPbt2wcAOH78OAYMGODIpyciIpIth56tq/1e\n4gCQmpqK/v2l2ypDREQkFZI/vSYRERE5eJM4ERER3RkGNhERkQwwsImIiGRAcoFts9nw2muvYebM\nmUhOTkZ+fr7YI0maxWLB4sWLkZiYiOnTp2PPnj1ijyQL5eXlGDt2LC5evCj2KJK3du1azJw5E1On\nTsWnn34q9jiSZrFYsGjRIsycORNz5szh91cnTpw4gaSkJADA5cuXMXv2bMyZMwevv/66yJNJl+QC\nu3196aJFi5Camir2SJK2c+dO6PV6bNmyBevWrcObb74p9kiSZ7FY8Nprr8HDQ9onq5eCQ4cO4dix\nY8jIyEB6ejqKi4vFHknS9u3bB0EQkJGRgXnz5uGDDz4QeyRJWr9+PZYuXQqz2X6SoNTUVCxcuBCb\nN2+GIAjYvXu3yBNKk+QCu6v1pa5uwoQJSElJAWAvolGpeAK2W1m+fDlmzZqFoKAgsUeRvB9++AED\nBgzAvHnz8OKLL+LBBx8UeyRJ69evH6xWK2w2G2pra6FWq8UeSZLCw8ORlpbW9vnp06cxfPhwAMD9\n99+Pn376SazRJE1yv927Wl/q6rRaLQD7cktJScGCBQtEnkjatm/fjoCAAIwePRofffSR2ONIXmVl\nJYqKirBmzRrk5+fjxRdfxFdffSX2WJLl5eWFgoICPPbYY6iqqsKaNWvEHkmSxo8fj8LCwrbP2x9d\n7OXlhdpaVizfiORSsKv1pQQUFxdj7ty5mDJlCiZOnCj2OJK2fft27N+/H0lJSTh79iyWLFmC8vJy\nsceSLD8/P4wZMwYqlQr9+/eHu7s7KioqxB5LsjZs2IAxY8bg66+/xs6dO7FkyRKYTCaxx5K89r/j\n6+vr4ePjI+I00iW5JGR9adeUlZXh2Wefxcsvv4wpU6aIPY7kbd68Genp6UhPT0dMTAyWL1+OgIAA\nsceSrGHDhuH7778HAPzyyy9oamqCXq8XeSrp8vX1hU5nP5OTt7c3LBYLBEEQeSrpi4uLw+HDhwEA\n3333HYYNGybyRNIkuU3i48ePx/79+zFz5kwA4E5nt7BmzRrU1NRg9erVSEtLg0KhwPr166HRaMQe\nTfJ4GtFbGzt2LI4cOYJp06a1HcHB5XZzc+fOxZ/+9CckJia27THOnRtvbcmSJfjLX/4Cs9mMyMhI\nPPbYY2KPJEmsJiUiIpIByW0SJyIiousxsImIiGSAgU1ERCQDDGwiIiIZYGATERHJAAObiIhIBhjY\nRE5g3LhxiImJafuIi4tDQkICnn/+eZw9e/amj4uJicEXX3zhwEmJ6E7xOGwiJzBu3DhMmjQJycnJ\nAOyVvmVlZXjjjTdw+fJlfPvtt/D09LzuceXl5fD29mbRDpEMcA2byElotVoEBAQgICAAgYGBiI2N\nbetKP3DgwA0fExAQwLAmkgkGNpETUyqVUCgU0Gg0iImJwYoVK/DAAw9g7NixKCsru26T+I4dOzBp\n0iQMGTIEEyZMwI4dO9q+duXKFcyfPx/Dhg3D6NGjsXDhQpSUlLR9/fjx45g1axbi4+MxYsQILF68\nGNXV1Q59vUTOjIFN5KTy8/Px/vvvIygoCPHx8QCAbdu2Ye3atVi5ciUMBkOH+2dmZmLp0qWYMWMG\ndu3ahWeeeQZLly7Fjz/+iMbGRiQlJcHT0xNbt27FP/7xD1gsFsydO7ftBBfz5s3D6NGjkZmZiXXr\n1iErKwvvvPOOGC+dyClJ7uQfRHRnVq9e3Xb+ZYvFAqvVitjYWKxcuRJeXl4AgKeeegoDBw684eM3\nbdqEJ598EnPmzAEAhIWFobGxEYIgYNeuXWhsbERqamrbyT/ee+89jBw5Et988w1Gjx6NyspKBAQE\nIDg4GMHBwVi1ahXMZrMDXjmRa2BgEzmJxMREzJ49GwDg5uYGPz+/63Y069Onz00ff+7cOUyeKWxp\nzwAAAdhJREFUPLnDba07sb3xxhuoqKjA0KFDO3y9ubkZRqMREydOxDPPPIPXX38dK1aswKhRozBu\n3Dg8+uij3fHSiAgMbCKn4evri7CwsE7v09mpHtVqdadfi46OxqpVq677mre3NwDg5ZdfRmJiIvbu\n3Yv9+/fjlVdewbZt27Bhw4bbewFE1Cm+h01EAICIiAhkZWV1uG3x4sV46623EBUVhYKCAvj5+SEs\nLAxhYWHQ6/V4++23cf78eeTn52PZsmUwGAyYPXs20tLSsHz5chw8eBAVFRUivSIi58LAJiIAwHPP\nPYedO3ciIyMD+fn52Lp1KzIzM/HQQw/hySefhJ+fH1JSUpCVlYXz589j0aJFOHnyJKKioqDX6/Hl\nl19i2bJlyM3NhdFoRGZmJvr27Qt/f3+xXxqRU2BgEzmB1h3Bunqf9rc9/PDDePXVV7FhwwY88cQT\nSE9Px7vvvouRI0fC3d0dGzZsgFarxdNPP43ExEQIgoCNGzfC398fOp0O69atQ35+PmbMmIHp06fD\nbDZj7dq13fo6iVwZm86IiIhkgGvYREREMsDAJiIikgEGNhERkQwwsImIiGSAgU1ERCQDDGwiIiIZ\nYGATERHJAAObiIhIBhjYREREMvB/4/7YlrZhq6cAAAAASUVORK5CYII=\n",
273 | "text/plain": [
274 | ""
275 | ]
276 | },
277 | "metadata": {},
278 | "output_type": "display_data"
279 | }
280 | ],
281 | "source": [
282 | "interactive_supply_demand_plot = ipywidgets.interact(cobweb.supply_demand_plot,\n",
283 | " D=ipywidgets.fixed(quantity_demand),\n",
284 | " S=ipywidgets.fixed(quantity_supply),\n",
285 | " a=cobweb.a_float_slider,\n",
286 | " b=cobweb.b_float_slider,\n",
287 | " gamma=cobweb.gamma_float_slider,\n",
288 | " p_bar=cobweb.p_bar_float_slider)\n"
289 | ]
290 | },
291 | {
292 | "cell_type": "markdown",
293 | "metadata": {},
294 | "source": [
295 | " Analyzing dynamics of the model via simulation...
\n",
296 | "\n",
297 | "Model has no closed form solution (i.e., we can not solve for a function that describes $p_t^e$ as a function of time and model parameters). BUT, we can simulate equation 7 above to better understand the dynamics of the model..."
298 | ]
299 | },
300 | {
301 | "cell_type": "markdown",
302 | "metadata": {},
303 | "source": [
304 | "We can simulate our model and plot time series for different parameter values. Questions for discussion...\n",
305 | "\n",
306 | "\n",
307 | " - Can you find a two-cycle? What does this mean?
\n",
308 | " - Can you find higher cycles? Perhaps a four-cycle? Maybe even a three-cycle?
\n",
309 | " - Do simulations with similar initial conditions converge or diverge over time?
\n",
310 | "
\n",
311 | "\n",
312 | "Can we relate these things to other SFI MOOCS on non-linear dynamics and chaos? Surely yes!"
313 | ]
314 | },
315 | {
316 | "cell_type": "code",
317 | "execution_count": 30,
318 | "metadata": {
319 | "collapsed": false
320 | },
321 | "outputs": [
322 | {
323 | "data": {
324 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGBCAYAAACuKlFHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl4FFXW/7+9pJOQBMLSsokgIJtCAgyiQhDBMC4MDIoa\nlSAOOm7zyitRRkZ+IoyK4qgvCjoiDgg6kwE3RFBmGDEKjoIIgQAB2XdICJA9nXTX749OVVd1V926\n1V3dnW7O53l8JOnb955b1el76nzPudciCIIAgiAIgiCIGMEabQMIgiAIgiCMQM4LQRAEQRAxBTkv\nBEEQBEHEFOS8EARBEAQRU5DzQhAEQRBETEHOC0EQBEEQMQU5LwRBXNSMGDECvXr1kv7r27cvbrzx\nRrz88suoqqqKtnlcjBo1CvPnz4+2GRFlxIgR+Otf/8rV9vjx4+jVqxd+/vlnAMCFCxfw8ccfS69P\nnz4dv/vd77jH7tWrF1atWmXM4DDy9ttvY8SIEdLPcvtqa2vx97//XXpt/vz5+PWvfx0x28rLy/Hs\ns88iKysLgwYNwv33349du3aF3K/dBNsIgiBimoceeggTJ04EAFRXV6OoqAgvvfQSCgsLsXTpUtjt\n9FXZ1Pj444+RnJzM1bZDhw7YuHEj0tPTAQB/+ctfcPjwYdx+++0AgGeeeQaxvuWZxWKR/r1x40ak\npaUBAJYsWYIVK1bgnnvuAQBMnjwZEyZMiJhdU6dOxbFjx/D666+jVatWWLBgAXJzc7Fy5Upceuml\nQfdLkReCIC56kpOT0bp1a7Ru3RqdOnXCzTffjLfffhtbt25VPKETTYeWLVsiKSmJq63FYkHr1q1h\ns9kAIMBRSU1NlRb7eKB169ZwOBwAAI/Ho3gtOTlZcuLCzcGDB7Fx40bMnDkTv/rVr9C1a1e8/PLL\nSE1NDTlyRc4LQRCECn369MHAgQOxevVq6Xd79+7F5MmTkZmZieuvvx7PPvssKioqpNdHjBiBd999\nF5MmTUJGRgZGjx6Nf//734p+161bh7Fjx6Jfv3645ZZb8Le//U1aTEV541//+hduu+029O3bFzfd\ndBPWrVsnvd/lcmH27NkYPHgwBg8ejHfffTfA9p9++gk5OTnIyMhAdnY2XnvtNbhcLun1Xr164eOP\nP8aECRPQr18/3HDDDVi+fLmij88++wy/+c1vkJGRgZtvvhmfffaZ9NqpU6fw+OOPY+DAgRgyZAim\nTp2KM2fOMK/nRx99JPU3atQofPjhh9Jrn376KW6++WYsX74cI0aMQN++fXHvvffiwIEDmv3JZaP5\n8+fjgQcewFtvvYWhQ4ciIyMDDz30EEpKShTX9eeff8b8+fPx0UcfYdOmTejduzdOnDgRIButXbsW\n48ePR0ZGBjIzM3H33Xdjx44dzPnJKSgowJ133onMzEyMHDkS7733nvTa+fPn8eyzz2LYsGHIzMzE\npEmTsHv3bun13NxcvPbaa5g2bRoGDhyIwYMH489//rPCCVmzZg1uueUWZGZm4ve//z3OnTunGF+U\njT799FO88cYbOH78OHr37o3Nmzdj/vz5GDVqlNT25MmTeOKJJ3DttddiwIABeOyxx3D06FHFdV68\neDEefvhhZGZmYujQoQqJ8uzZs/if//kfDB48GP3798f999+P4uJiAF4Hc968eRg0aJDU3m63Izk5\nGeXl5dzXUw1yXgiCIDTo0aMH9u7dCwA4ffo0cnNz0bt3b6xcuRJvvvkmDhw4gD/84Q+K98yfPx9D\nhw7FypUrcdNNN+Hxxx/H1q1bAXgXtaeeegqTJk3C6tWr8dRTT2HZsmV46623FH288soryMvLw5o1\na9C7d29Mnz4dtbW1AIDnnnsO69evx//93//hgw8+wKZNmxSLze7du/HAAw/gpptuwhdffIHnn38e\n69evx8yZMxVjvPrqq8jNzcWaNWuQnZ2NWbNm4eTJkwC8i+OMGTNw11134YsvvsDvfvc7zJgxA99/\n/z1qamqQm5uLZs2aYfny5XjvvffQ0NCASZMmoaGhQfU6Ll68GM8//zwmTZqEVatW4YEHHsDcuXOx\nZMkSqc3Ro0exatUqLFiwACtWrMCFCxfw/PPPc9+rH3/8EXv27MH777+PxYsXY9euXXjjjTek10VZ\nZfLkyRg9ejT69++PjRs3ol27dop+duzYgSeeeAK33347vvzyS3zwwQcQBAHPPvsslx1bt27FI488\ngqysLKxcuRLTp0/H/PnzsWLFCng8Htx///0oKirCG2+8gRUrVqBly5aYMGECTpw4IfWxZMkSdOvW\nDZ999hmeeeYZ/OMf/5Cc6M2bNyMvLw+33XYbVq5cieuuu07hCMq59dZb8eCDD6J9+/bYuHEjMjMz\nFdeisrISOTk5KC8vx+LFi/HBBx+goqICubm5qKyslPp54403MHLkSHzxxReYNGkS5s+fL+UPPffc\nc2hoaEB+fj4+/fRTpKSk4PHHHwcApKenY9SoUQrZ9R//+AeOHj2Km2++met6aiIQBEFcxNxwww3C\n22+/rfra66+/Llx55ZWCIAjCa6+9JowfP17x+qlTp4SePXsK27Ztk/p6/PHHFW3uvfdeYerUqYIg\nCMLdd98tzJ07V/H6559/LmRkZAiCIAjHjh0TevbsKeTn50uv7969W+jVq5ewY8cOoaKiQrjyyiuF\nzz//XHr93LlzQkZGhvDmm28KgiAITz75pDBlyhTFGFu2bBF69uwplJSUCIIgCD179hReffVV6fWK\nigqhZ8+ewldffSUIgiDcddddwvTp0xV9vP/++8J3330nLF++XBgyZIjg8Xik1+rq6oT+/fsLq1ev\nVr2OQ4YMEV5//XXF71555RVhyJAhgiAIwieffCL06tVLOHDggGK8zMxM1f4EQXnf3nzzTeHKK68U\nqqurpddffPFFYfTo0YIg+K7rli1bBEEQhGeeeUbIzc2V2j799NPC/fffLwiC93r/85//VIz10Ucf\nCX369JF+7tmzp+IeyJk6daqib0EQhM8++0z44osvhG+++Ubo1auXcPjwYek1l8slDB8+XPpcTJgw\nQbjzzjsV7//tb38rzJ49WxAEQfjf//1fYdKkSYrXp0yZIowYMULVvrfeekvx2ptvvimMGjVKEARB\n+OCDD4T+/fsL5eXl0utlZWVCZmam8OGHHwqC4L3O4udXZNCgQcJ7770nCIIgjBkzRpg2bZpQV1cn\nCIIgnD17Vti0aZPqtfnwww+FXr16CR988IHq60agLDSCIAgNKisr0bx5cwBAcXExdu/ejf79+yva\nWCwW7N+/HxkZGQCgCJEDQEZGBr799lsA3qhIUVGRovpDEAS4XC4cO3ZMeiLu3Lmz9HpaWhoEQUB9\nfT0OHjwIt9uNPn36SK+np6fjsssuk37evXs3Dh8+HGCn1WrF/v370aZNm4AxUlNTAQD19fUAgD17\n9mDs2LGK94sJzbNnz0ZZWRkGDBigeL2urg779+/3v4QoKytDaWlpgD2DBg3Ce++9h7KyMgDe6+g/\nb9EeHpxOpyKBNy0tTSGV8dKrVy+kpaVh4cKF2LdvHw4fPozdu3cH5I5osXfvXlx//fWK34nXctGi\nRQH3KyEhAf369cMvv/wi/a5Lly6K96empkrX4pdffsHw4cMVr2dmZhqStUT27duHrl27KvJ9WrZs\niW7duinskd8Xf3seffRR/PGPf8TatWsxaNAgDBs2DL/5zW8Cxtq7dy9eeOEFPPXUU7j33nsN2+oP\nOS8EQRAa7Nq1C7179wbgXWSGDBmCGTNmBLRr2bKl9G//yiSPxwOr1Sr18cADD2DMmDEBfbRr1w6n\nT58GACnZUo4gCLBYLKpVMQkJCYp/jxs3Dg8++GBAO6fTKf1bawz//tTGuuKKK1RLs9WSXhMTE1X7\ncbvdAHzXy2q1StcpGNTmEwz//e9/8dBDD+HGG2/EgAEDMH78eBw8eBDPPfcc1/tZlWlaCcYej0fx\nPta9UfsMsO4XCzPs+fWvf40hQ4agoKAAGzduxNtvv4133nkHn3/+OVq1aiW1//rrr9G2bVtDJeks\nKOeFIAhCheLiYmzdulVyNLp37479+/ejQ4cO6NSpEzp16gQAeOGFF3Dq1CnpfUVFRYp+tm3bJkVK\nunfvjsOHD0vv79SpE4qLi/Haa69xlep27doVDodDyjcAvNGhQ4cOST+LdsrHKC0txUsvvcS9b03X\nrl0D5jFt2jS88MIL6N69O44dO4b09HSp/5YtW+LFF1+U8oPkpKSkoF27dgqbAW9ScZs2baTIViSR\nlxX78/7772Po0KF47bXXMGHCBFx99dU4duwYd99q1+7111/HH/7wB3Tr1g3nzp1T3K/6+nrs2LED\nV1xxBVf/vXr1knKoRFhRF9Zcu3XrhgMHDiiSZ8vKynDw4EEue9xuN15++WUcO3YMt956K1588UV8\n8cUXKC0txaZNmxRt09LSMHr0aN0+eSHnhSCIi57q6mqUlpaitLQUR48exerVq/Hoo4/i6quvlpyX\nCRMmoLy8HH/84x+xd+9e7NixA3l5eTh8+LAizL9y5UosX74chw4dwuuvv44dO3bgvvvuAwA88sgj\nWL16NRYuXIjDhw/jm2++wcyZM5GcnMz19NysWTPk5ORg3rx5WL9+Pfbt24c//elPqKurk9o8+OCD\nKCwsxEsvvYQDBw5g06ZNePrpp1FZWYnWrVtzXY8HHngAn3/+OfLz83H06FEsX74ca9aswciRIzFm\nzBikp6djypQpKCoqwt69e5GXl4ft27eje/fuqv098sgjWLp0KVasWIEjR45g+fLl+PDDD017CjdK\nSkoKTp8+jWPHjkkRIJH27dujuLgYhYWFOHbsGJYtW4alS5cCAJcMNXnyZGzevBlvv/02jhw5grVr\n12Lp0qUYOXIkrr32WmRmZiIvLw8///wz9u7di6effhoVFRW48847uWy/7777sH37drz++us4dOgQ\n8vPzsWbNGuZcy8vLcfDgwQD7x4wZg9atW+OJJ57Arl27sHPnTkydOhUtWrTALbfcomuLzWbDrl27\nMHPmTGzfvh3Hjh1Dfn4+EhIScOWVVyrajh07FpMmTeKaIw/kvBAEcdHz7rvvIisrC1lZWRg3bhze\neecd5OTkYOHChdKTa5s2bbB48WKcPXsWd911Fx588EF07NgRixcvVoTYx40bh1WrVmHs2LHYsGED\nFi1ahF69egEAsrKyMHfuXKxevRq/+c1v8Nxzz2HcuHGYNWuW9H61J2X57/74xz/i9ttvxzPPPIOc\nnBx07NgR/fr1k17v0aMHFi5ciK1bt2LcuHGYOnUqBg8erJB59Ma48cYb8eyzz2LJkiUYPXo0li1b\nhldeeQXXXHMNEhMTsWTJEiQnJ2PSpEm499574fF4sHTpUoVMIOeuu+7CE088gXfffRejR4/G+++/\njz/96U+4//77de+NFhaLhRlVYM3vtttug9vtxq233qooUwaAxx9/HH369MEDDzyA22+/HevWrcPL\nL78MwBfhYI3bp08fvPnmm1i7di1Gjx6NV199FU8++STGjRsHAHjrrbfQtWtXPPzww8jJycGFCxfw\n4YcfomPHjpp9y3931VVX4a9//SsKCgowduxYrFq1KsAJlLcfNWoUOnTogLFjx6KgoEDRzuFw4L33\n3oPD4cCECRNw//33o0WLFvjwww+lPCg9e1577TVceumlePjhh3Hrrbfi66+/xttvvy1FJkVeeOEF\n3HHHHZrXzSgWgSdWSRAE0cQpLS3FQw89FNVN5UaMGIE777wTDz/8cNRsIIiLgbAk7C5cuBBff/01\n6uvrcc8990hbMAPe+vWPPvpI8tBnz54dkFlNEARhlPfee096eiUIIr4xXTbatGkTtm7divz8fCxb\ntkza9Ehk586dmDt3LpYuXYqlS5eS40IQhCqFhYXIzc0F4K1smDlzJnJycjBx4kTFpmyAd+OrMWPG\naFa2RAojMgZBEMFjeuRlw4YN6NGjBx599FFUVVVh2rRpitd37tyJd955ByUlJRg+fDh+//vfm20C\nQRAxzqJFi7By5UqkpKQA8G6p73K5kJ+fj8LCQsyZMwdvvfUW5s2bh8OHD6OsrAzFxcXYvn071q5d\nG9FTc+X85z//icq4BHGxYbrzcu7cOZw4cQLvvPMOjh49ikceeQRfffWV9Pqtt96Ke++9F6mpqXjs\nscdQUFAQsKEPQRAXN507d8aCBQukh58tW7YgKysLgHfTN7EUdcqUKYr3TZs2LWqOC0EQkcN02Sg9\nPR1ZWVmw2+24/PLLkZiYKO2gCHjLvNLT02G323H99ddj165dun1STjFBXFxkZ2dLJwAD3r1M5Bug\n2e121R1P586dy9U/facQRGxjeuRl4MCBWLZsGSZNmoTTp0+jtrZW2n2ysrISo0ePxpdffomkpCT8\n8MMPGD9+vG6fFosFJSUVuu2aGk5nWszZHYs2A2R3JHE6A3dRDTepqamKDdbku9YGA32nRJZYtDsW\nbQZi224jmO68DB8+HD/99BPGjx8vncS5evVq1NTU4I477sDUqVORm5uLxMREXHvttRg2bJjZJhAE\nEWcMGDAA69evx0033YRt27ahR48e0TaJIIgoEpZS6SeffFLztTFjxqie60EQBKFFdnY2Nm7ciJyc\nHADAnDlzomwRQRDRhA5mJAiiSdKxY0fk5+cD8Mo88l1oCYK4uKHjAQiCIAiCiCnIeSEIgiAIIqYg\n54UgCIIgiJiCnBeCIAiCIGIKcl4IgiAIgogpyHkhCIIgCCKmIOeFIAiCIIiYgpwXgiAIgiBiCnJe\nCIIgCIKIKch5IQiCUKHO5Y62CQRBaEDOC0EQhAyPR8Cyf+3BY69/ix0HzkbbHIIgVCDnhSAIopH6\nBjfeXlmE9T8fh0cQ8MX3h6JtEkEQKtDBjARBEACqaxsw/5PtKD5yHj07pcNiAYqPnMeBE+Xo2qF5\ntM0jCEIGRV4IgrjoOV9Zh5f//jOKj5zHwB5OTL0rA7de1wUA8K/NR6JrHEEQAZDzQhDERY1HEPCX\n/G04eqYSwzM74JHfXoUEuw19OrfEpc4U/FRcgrLy2mibSRCEDHJeCIK4qDl4ohwnSqvwq16XIPfX\nPWG1WgAAFosFowZdBo8gYN2WY1G2kiAIOeS8EARxUbNtXykA4No+bWGxWBSvDe7TFs1THCjYdgI1\ndQ3RMI8gCBXIeSEIIuYpLi7GhAkTMH36dGzatMnQe7f+UooEuxV9Lm8V8FqC3YqRAzqipq4BG3ac\nNMtcgiBChJwXgiBinu3bt8PpdMJms6F79+7c7zt9rhonSqtwZZdWSEywqbYZ3r8jEuxW/HvzUXg8\nglkmEwQRAuS8EATRJCksLERubi4AQBAEzJw5Ezk5OZg4cSKOHj2qaDtw4ED8+c9/xoMPPoj33nuP\ne4xtv3glo8wr2mi2SWvmwJCr2qH0Qi22NrYnCCK6kPNCEESTY9GiRZgxYwbq6+sBAOvWrYPL5UJ+\nfj7y8vIwZ84cAMC8efOQl5eH4uJieDwepKWlwePxcI+z9ZdSWABkdNd2XgAge1AnAMBXmw5DECj6\nQhDRhjapIwiiydG5c2csWLAA06ZNAwBs2bIFWVlZAICMjAwUFRUBAKZMmQIA2Lp1K/785z8jISEB\njz32GNcYlTX1+OXYeXTt2BwtUhzMtu1bp6D/FW2w9ZdS7DhwFv26sZ0dgiDCCzkvBEE0ObKzs3H8\n+HHp58rKSqSlpUk/2+12eDweWK3e4HH//v3Rv39/Q2McPFMJQQCGZl4KpzNNt/3ksX3xP6+ux2cb\nDmH41V1gs1p03xMOeGxtisSi3bFoMxC7dhuBnBeCIJo8qampqKqqkn6WOy7B8u3P3r1benRIQ0lJ\nhW77ZnYLrruqHTbuOIUvCn7BdVe1D2n8YHA6+WxtasSi3bFoMxDbdhuBcl4IgmjyDBgwAAUFBQCA\nbdu2oUePHiH156p3o+hAGdq2TEa7Vs243/fboV1ht1nx6bcHUd/An1tDEIS5kPNCEESTJzs7Gw6H\nAzk5OXjppZcwffr0kPrbvq8UdfVu9L/CGbAxHYvWLZIwcmBHnC2vxfqtx/XfQBBEWCDZiCCIJknH\njh2Rn58PwLtV/6xZs0zr+8edpwCwS6S1uPXaLvi28AS++P4QhvZtj2ZJ9DVKEJGGIi8EQVx0bNp5\nCqnJCejesYXh96YmJ+CWazqjsqYeX22iE6cJIhqQ80IQxEVHWXktMrq3lg5hNMqNv+qEFqkO/Gvz\nEZyvrDPZOoIg9CDnhSCIi5LM7s6g35uYYMPYIZfDVe/Bv386qv8GgiBMhZwXgiAuOu7K7oGM7q1D\n6mNI33ZITrTjv0Wn6Mwjgogw5LwQBHHRMeGm3rDbQvv6S7DbMLj3JThf6cKuw2UmWUYQBA/kvBAE\nQQTJdX29G9V9v+NUlC0hiIsLcl4IgiCCpFuH5mjbMhlb9pagurYh2uYQxEUDOS8EQRBBYrFYMKRv\ne9Q3ePDTnjPRNocgLhrIeSEIggiB665qBwuAjTtORtsUgrhoIOeFIAgiBFo1T0Kvzi3xy7ELOH2u\nOtrmEMRFATkvBEEQITKUEncJIqKQ80IQBBEiA3o4keiw4fuiU/AItOcLQYQbcl4IgiBCJNFhw6Ce\nl+BseS32HjkfbXMIIu4h54UgCMIEhvRtB4ASdwkiElzUzstXPx7BjgNnmW32n7iA/ccvMNscPVOJ\nrXtLmG3OXqjFf4vYenhlTT2+LTyBBrdHs019gxvfFp5g7ikhCAI2bD+JcxXsA+O27DmDE6VVzDa7\nD5Xpzv/wqQps38++jmfOVePHXaeZbcqrXPi28ARzq/U6lxsF246j1qU9f48g4LvCE7igc2Dept2n\ncbqMnWBZdOAsDp4sZ7Y5cKIcOw+yd1g9ebYKPxWzS2nPV9bhu+0nIDBkh5q6BhRsOw5XvVuzjdvj\nwbeFJ1BR7WKO99+dp1B6vobZZtu+Uhw5XcFsQ3i5olM62rRIwk97SlBZUx9tcwgirolb5+W/O0+h\n9IL2F7Pb48Hy9fvw5Q+Hmf2898VuLFq9m9nmo2/2463PiuD2aDsdX/14BO9+sQsljMXi+6JTWPJl\nMfYc1Q477zx4Dku+LMam3dqOwImz1fjbmt3MA+Pq6t1467MifPrtAc02ALBo9W4sXbuH2eYf//kF\nb68sYrb54vvDeOfznSiv0l5QCwpPYMmXxTjAcBYK95fi/a/2YOveUs02h09VYPGXxVi/9bhmm8qa\nevx15U58vvEg0+53Pt+Jv6/by2zzwb/24N1VO5ltVm44iLc/K0JNnbbT9Z8tx7B4TTGOnqnUbPNT\n8Rm8/9UeptO979gFLPmyGBsYEYCy8lq8u2oX1jA+/4Ig4K1Pd2D5+n2abQgfVosFN/6qE+rq3fji\n+0PRNocg4pq4dF5Kz9fg3VW78NWPRzTbiE/3bp0D1erq3ahjPOUDQJ2rAW6PALdbu6/a+gapP1Y/\nAOByabfh68et26a+wQNBYLcBgFqXW7dNncvNtBkAauv1beKxu5ajjdiPq17bmXRJ9mi3Ecerc7Hb\n1NW7ufoRALgatNvx2M1zHaVrxLgndRz9uD0CGtyC7v1vCuzfvx/PPvsspk+fjn37ouds3dC/I9q0\nSMLXPx/TjWoRBBE8cem88HzBN7j5nBe326PfRtDvS3SWWJKIm8Oh4unHrLHEPvROzHV7BAgAs8rC\nLLt5nE6e++HmGEt8Xa96xO0RuK6j3ng+u7WdF575S2Mx7Dbrs9ZUWLFiBdq1aweHw4GOHTtGzY4E\nuxXjhnVFg1vAp9+xo5oEQQRPXDovXIsgxwInvs6zwMn71OpHbzzx/aH2Iy5+ZixMXAuzwHG9uew2\nx+kwywnyCF6nzCwHz/t/fcckEo6pmQ5uuCgsLERubi4Ar4Q1c+ZM5OTkYOLEiTh6VCmJHj58GBMm\nTMBNN92ETz/9NBrmSgzu0xaXXZKKH3aepnwhgggTcem8mLUIAt4FTD86Iyj+H+x4RvrhcgJY/bj1\nHRzv6xyRJ7EvxngNHA6V5HSFOn8pqqbtKDRwOBO++8GWhNyN0RlWoq0xu1nX0aT7b5IzGS4WLVqE\nGTNmoL7em/i6bt06uFwu5OfnIy8vD3PmzAEAzJs3D1OnTkWrVq2QlJSEFi1aMO9DJLBaLBh/QzcI\n8ObDEQRhPvZoGxAOzFooxHZ6X4VGZKNQFwvTZAMemwUBgsAXneG2KUS7PTxORwTt8R/PbrMEPZ7p\n9z8C0Zlw0blzZyxYsADTpk0DAGzZsgVZWVkAgIyMDBQVeRPEp0yZAgAoKirC//t//w+CIOCZZ56J\nuL3+XNmlFXp3bomig2XYdagMfbq0irZJBBFXxKXzYpZswPM673iGFguOJ/hI5s5wy0ZcTgeP3SzH\nxKPoj2lPBJxJeV8ejwDYgu+Lx25D9z/EHKRoRl6ys7Nx/LivWqyyshJpaWnSz3a7HR6PB1arN3h8\n1VVX4eWXXzY0htOZpt8oBH4/rh+e+L8CfLbhILIGXgarVd2xNUq47Q4XsWh3LNoMxK7dRohL54VH\nEnFLCwVbEvB4vJEXQRBgsah/+UhRnAgsFuJYXP0w5A4jORisNmEZL2TZqPH+M+5HA4cTxOMoydvx\nSGJs2ZA/V4nHCQr1OvLcj0iRmpqKqirfnkRyxyVYSkrCm4/SIsmGwX3a4sddp7Hmu/0Y3KdtyH06\nnWlhtzscxKLdsWgzENt2GyE+c15MknFExwXgTKINcfHm6Ue0oyHExE8e2Yw3L8isvowk44aa8yH2\n02DC4m2W3GNWMrb4+eFxzLgcriZwVs+AAQNQUFAAANi2bRt69OgRZYv4GDesKywWMPdcIgjCOHEZ\neeFbvHm+vH2veTwCbBqunpFwv1m5CiHLBibZLO8j5KgSh91mVxuFeh0N9xXJ+2/W/KMgG/mTnZ2N\njRs3IicnBwCkhN2mziXpybjq8tbYceAsjpdUoqMzNdomEURcEJfOi1mRAPlrbo+ABJ2+TFssIrBf\nihGbBcHr7Fi1ZDMhcnZHcp8XI+XkeuMZ2+cl9IghwBktNGH+4aJjx47Iz88HAFgsFsyaNSsqdoRK\nVr/22HHjxRvRAAAgAElEQVTgLL7bfhI5I6+ItjkEERfEp2zEk1/BFXnwyP4dahTHrFJhbxuW3NHA\n008QkSftvvTlFbEvlt2mlfgacF5DtUesyPK2D00S5CnxNkt+NGssQp/MK9ogNTkB/915inluGUEQ\n/MSl88LlmLj5Fy//fwc1XgRlA+npPOQEYj7nLZJyh7GIif7CzNWGsYeL3I5IVgCF/FkzUTYk2Nht\nVlx7ZTtUVNejcB/7AFOCIPiIS+clHLJRU8kxME02MiBRsPoSBIFrt2IPT4kzR4KoWYmvRq4jyyZu\nBzcaslEErhHBR1a/9gCADdtPRNkSgogP4tN5MfkLHtCTYMxZUI1IImzZiEN+MWAzqx3v4u2TaUKU\nOyT5jaeNObKR1yaN+buNzT8SnyOuXXiNjNUESqVjnUsvScXl7dOw/cBZnKuoi7Y5BBHzxKnzwlMq\n6vvy1pIEFItXBPZwMfJ0HmpSq2HnTaOd0ehUZGUjVj/8nxGWTfKITJOTDU2SjQSgSZRLxzpD+3WA\nIADfF52MtikEEfPEpfNiRFoAtL+YeRZm8fA+vfGiIhuZVG3CGk+5wIf/NOSYl41MuieR/Kzp9UXw\nMbj3JUiwW7Fh+8mon79EELFOXDovXFUiHF/McklBS8pQygahSiLigqJfJcKSXxrMGotn/ryykZFD\nByNwoCBfwrYsYVlTNuKsSDNQScZV2RbqIZgGKuT0xiP4aJaUgIE9nTh9rga/HLsQbXMIIqaJa+eF\n/ZTr+2Ju0Phi9t/nRa9NU6k2MfJ0Lu7hwhoL0Labe/4mnzdkVsJypGWzUKMqkt0hRqfMkg0JY2T1\n6wAA+I4SdwkiJOLSeQmLbBSJahOTcxV4JApWX8Zlo/AvqFGTjbTmL+jPX74XTKiHbprmmBitNiOZ\nwxR6XpaONi2SsLn4DKprG6JtDkHELHHpvPBINDxRlQYe2YB3IzuTZQMeuYNnLNZ4Ckkk1PlzbGTH\nVSVjqA3PJm3aCdsK2VCjLx7ZUPFZM0k2ZPXTYGj+ocmGhDGsFguuz+wAV70HazcdibY5BBGzxLXz\nwht50FpQwyIbmRSdMevpnNUXV1SBox/5XjBsuYO/xDn0aiNjkbdQ5m9mdKqpVZsRxrlxYCe0SHFg\n7eYjuFBJZdMEEQxx7bxwy0YRXJgiUW1ipCyZ1ZdZspmHwwmSjxcR2YijxNms+29mObk0/wiW7uv1\nRRgj0WHD2KGXw1XvwecbD0XbHIKISeLUedGXTRRP1TyyQYg5L0bO/+FamE3qh9VOIYloykYGpZWQ\n5Q6TNqlz6ydsN/BIaxwRPO7PCM99M1l+407YJufFVIb2a4+2rZqhYNsJnCqrjrY5BBFzxKXzYjgk\nrrGgejgWpmjtBWNWtQlrPB7HhEda4ZFo5H2ZJZtEXDYyKanbLNnM3PtPzouZ2G1WjL++KzyCgE8K\n9kfbHIKIOeLSeZGeKsG3oPB8eUdSNoi8bKThmHBIK1zyWxOXjbicLs02+tEZU2UjsUrIJNnI/99q\n/ej1RQTHgB5OdO3QHD/tKcH+E7TvC0EYIa6dF4AvYsIlm4QQnTC8kV2om925fdEZrqMPTJs/Rz+h\nyh1mnSNlWBLjaMOxkR1XlRiH3BXyJnUmbsBHBIfFYsEdw7sBAFas30+77hKEAeLSeeELiXM8MSue\nzvVlE9OSekOVjUyLKhh7Og9lLPlrEZeNQpgbl2zEkxws2wsm4rIRh93kvISHnpe1REa31th79Dx2\nHDgbbXMIImaIS+fFaMSAx8EJaYEPw+F9ZlZShWK34bFClDuMykZaT7M8NkVSNuSVaCTZyETnLR5k\no/fffx/Tp0/H3XffjX/84x/RNscQtw/vBgtAlUcEYYCwOC8LFy5ETk4Obr/9dnz88ceK177++muM\nHz8eOTk5WLFiRTiGNy/RlMsJCsP5NzxtWNVGHOOZZTfXZnccYwmCYFq1DU8yLk/CNo/cZ7QfrTOp\nePqR98WSFrmqtkyaf1Phvvvuw+zZs3HFFVfg7rvvjrY5hrjUmYq+3VrjwIlyHC+pjLY5BBETmO68\nbNq0CVu3bkV+fj6WLVuGkyd9x783NDTgpZdewpIlS7Bs2TL885//RFlZmdkmGI4YhCKJNOVqE1Zf\nhhf4MMtGvEm9RqqtWOOZZZNpY3FGpy6maqPCwkLk5uYC8Dq3M2fORE5ODiZOnIijR48GtF+9ejVG\njRoVaTNNYWjf9gCADTtO6rQkCAIIg/OyYcMG9OjRA48++igeeeQR3HDDDdJr+/fvR+fOnZGamoqE\nhAQMHDgQmzdvNtsEzogBx5d3GJygSGxSxpVjYZLdYckdCVE2iaTTpRhLS6IySX6Tv8Yz/5AP3eSU\nO8PBokWLMGPGDNTX1wMA1q1bB5fLhfz8fOTl5WHOnDkAgHnz5iEvLw8XLlzA5s2bMXTo0IjaaRaZ\nV7RBanICvi86hQY6ioEgdDHdeTl37hyKiorwxhtv4LnnnkNeXp70WmVlJdLS0qSfU1JSUFFRYbYJ\n5i1epuXOcNgjP7wvRAeHx27lHjYasoFs8dKSO5TXkUMSCaGN3Fb2GUE8uUqyNloLvEHZTHMso1Vb\nLEnM6IGKXPdf3yZWlVQ46Ny5MxYsWCD9vGXLFmRlZQEAMjIyUFRUBACYMmUKXn31VbRo0QK1tbUR\ntdFM7DYrrrmyLSqq67F9PyXuEoQedrM7TE9PR7du3WC323H55ZcjMTERZWVlaNWqFVJTU1FZ6dN0\nq6qq0Lx5c65+nc40/UaN2BNsMnuawelMDWjjSPRNPS0tSbX/Zs0c0r+TmzlU26SWVPn6dNgD2jid\naaiVrbM2u1W1n/oGWSOL/nzdHkGzjc3u80nT05vB2apZQJsEh2z+zZMVfYn/TkryzT8lJVF1vJRj\n5dK/ExMTVNucl52em5AQeI0AoLLaJf3bYlW/RgCkzf4EBF4j8WerVTb/lilokZoY0E9Cgvb8RZKS\nOeaf4pM9E5PUPyOny33n1yRofEasjhrpZ6tNe/5yp0PzM2KxSP9s2SoFSY7AP3Ob3fc30iK9mWpf\n8r+R1FT1v5FwkZ2djePHj0s/+z/42O12eDwexb1+9dVXDY0RyfnwMOb67lj30zFs3lOCXw/pqtmu\nqdnNSyzaHYs2A7FrtxFMd14GDhyIZcuWYdKkSTh9+jRqa2vRsmVLAEC3bt1w+PBhlJeXIykpCZs3\nb8bkyZO5+i0p4Y/Q1NTU+95XWokEBD41Vlb5Fsuyc1Wq/V8o9z3JlZfXqrY5d863tXdltUvRxulM\nQ0lJBUpLfQ5bbW29aj919W7p3656t+Z8RSfH4xFw5kw5LLKFShqjzucslJRWwOJ2B7Spqvaff5LC\nZgCoqPDN/8KFGvX5X5DNv6pOtc3Zsz4Hr7rGpdqmXGaPy9WgOX8xpN7g9qheawCoc/nmf6akAq4a\nF/yplv3u7NkqlDRLCGhTUemb/3mN+Z+/4HM6KirUPyNlZbL5a31GZP3UMeYvRknqGzyabVyyz9KZ\nMxVITgz8M6+p9f2NlJZWIsUe+DmqqvRdo/Pnq6XxovHFmJqaiqoq33X0d1yCwch3SiRITbCic7s0\nbN51GvsOlqo63fLPeSwRi3bHos1AbNttBNNlo+HDh6N3794YP348Hn30UTz77LNYvXo1VqxYAbvd\njunTp+N3v/sd7r77btxxxx245JJLzDaBUzYyWkmjL3d4uCQRfWkh1G3tjctGwcsGRvsJRcaTj8Fd\nbRSK3GdUNgxlQ0CO6yg/nZstG/Hs+svx+eeQDSPFgAEDUFBQAADYtm0bevToEVV7wsXQvu3hEQR8\nv/NUtE0hiCaN6ZEXAHjyySc1Xxs+fDiGDx8ejmElzFq8+JI6OUqOOXNeRNi7sCoXOZuK+8ljd4NZ\nCzxH4qdZjoL8Nd5qK61rGY6k3nA7b7xJvUadJe17op/PEymys7OxceNG5OTkAICUsBtvDO7TFv/8\neh82bD+Jm66+TDWyShBEmJyXaGN40THLweHYEM2sahP/9xjtq6lVG/FUSMlfE+B1+KwqX+6RtCks\n1zGEgyID+uL6/Ae/F1I46dixI/Lz8wF4t9KfNWtWxG2INKnJCRjQow027T6D/SfK0b1ji2ibRBBN\nkvjcYdekL2az5B6ujdw4n3K5qmQMHhbIM/+mIBt5PIIie0l7cz2zIg8m9WPwc6RZ/cXxufa3g+vE\ndA7nLRrOy8VKVr8OAIAN22nPF4LQIk6dF2Pb+pv1dG7W4m1ENtLrS1s2MlhOzOF0hVZObGxvHlZf\nis3lQnAEIlkGbvQ8KuYeLnJHSKMNl2zImYdFmEvvzi3RqnkiNu0+jTpXYLI9QRBx6rwYDeU3CfnF\n4OF9rPHCYTeXtBKC3GHUZu6+ImhTJGUjZl9hkLso8hI5rFYLhlzVHrUuN77bfiLa5hBEkyQunRfD\n1R1myUYcT7mhyE/ci5dh2cCk6EQoUQ6OE7z9f6/ZzqxokMGKNK1+GgzKhjwRPFZfPFKeWcnIRHgY\n+atLkeSwYdX3h1Aj2/qAIAgv5Lwg1GojcxwF/7HUTkMOXLw4+gpFNohkXojBflh9ecIg5UUin0ev\njf/9DuVaGr7/jOMoCPNp3syBmwZfhorqeqzddCTa5hBEkyMunRfD26OHsIdLOA7v8+9X671NQjYK\ngxNoqmxklk0hyE/hqGzS6ku+FwzAstucvWCI8DFqUCc0T3Fg7aajuFBZp/8GgriIiEvnhU/uMaki\nh6NKiEs24Igq8EYeeML9ZslmRhNNzYpyMMfjSFgNR5WQ9v0PT+RJrZ2/s8InG3HIfXRYYMRJctgx\ndujlqKt34/PvD0XbHIJoUlwEzov+oYOh5TyYLxsAQIPKohNUzkMIi260yokFqEcMuGWjcMg9Wv0Y\njLyZFeXyf4+WnVqff648LJKNok5Wv/Zo26oZvt12AqfLqvXfQBAXCXHpvBiXjUKQHwxGHngcJf9+\ntd4bktxh0qIbDolGqy+e+XsE5V4wkZSyInkdve8JdEyCcfBCmRsRXuw2K24f1hVuj4CPvz0QbXMI\noskQl84L15b9Rs//ieACp9WON2HTLLsNzy0EiYZv/uY4OMHYxDc3c3KnvCXxQc7fXzaKwK7PRHgZ\n2NOJrh2a46fiM9h75Fy0zSGIJkGcOi8ciw6XbGS+bMKdzxCkbOSfsKntvPkWUe3zfwweXqkp0Rjr\nR6svnvnzyiZc0qJCNtIqyzbp/gfYbdL8Ne6J/J5znf9EpdJRw2Kx4I7h3QAA76/eFWVrCKJpEJ/O\ni8E9U5rCgXpmRRV4qpb8f98UpBUeu82KzgRjk1myYbhls7DJRpTzElV6XtYSvTu3xPZ9pThFuS8E\nEZ/OC5djwlGREo4SV7dHXRIIWJiClQ1MlE3C4ZiEXTbyl02amCTG4wT596v1u1DuP8lGscewDDrz\niCBE4s558U/Y5Fu8eHIVOJwgjn5EG/XaqMkUPJIITz/+fTWEIpvwyC9BXCPV+XPssOv/Pi65KxRJ\nzKj8xtGPlk2B8w+ujSAIit+HYjcROQb0aIOU5ARsLDqp+XdEEBcLcee8+H/JsmQTi0X9PVJfHIu3\n6NRYwFoEfW3k7zHaRpyLxe89RvsRf6/Xxi1roxd5sLDGEsy5Rh5PeObPsomnH3E8vQiGBXzXUWs8\ns+bv/zkK5RoRkSPBbsP1/TviQqULRQfKom0OQUSVuHNexC9im9X7tcuKGDjsNu+/GbKRzWqBzWrR\nXXQSEqy6C1xCglXxHqNt3H5tWAuc1A8jYZnVj/h7njbieHqOSUKCVfM0ZB67g5o/wyYj89eTDXnv\nfyifEbPmH9Q1opyXJkH21Z0BkHREEHHnvIhfxA69L2a3Bwl29uLl9nhgbXRe9PZncdhtuvKD5Cyp\ntGvgaCM6Ysw24vzFNoycH7ENq9okwWZl9yMbT6+SRhyPFXli2e3fRs3ugH40Ig+CwHGN5A4ux9z0\nqnYcdhvXdfT+rC0b+uzWlg1Z/TT498OQ8lhjEZGn26UtcKkzFdv2laK82hVtcwgiasSh8+L9khUX\nXZZsJDovrCdPq9UCq9Wiu816gp0j8sAYz+PXhvlUzehHmr+OY+bxCBzOmwC7zQqrhSPyZOeIKjDt\n1p+/WW0C7GHMzdcPWzb0zp+dz5Ngt+ru4cK0W9C3O5h+eD4jTV022rFjB2bNmoWnnnoKxcXF0TYn\nbFgsFmT1aw+3R8APRaeibQ5BRI24c158iwnPUzU7quDxCLDzykYGFu+gHROORYenH3EvGP3FyyM5\nb6w24ni60kqIdgd3HbWjEzyOia6DKwiwWtjRuQC7WbJZiA5eMP0wZSOdz0hTYefOndi/fz9Onz6N\ndu3aRducsHLNlW1hs1qwYcdJVUeYIC4G4s554ZeNBMnB0YrOiJEXtmwkhuAZi7fb1wZQXwgaPPpt\n/Pthy0YMJ0BQttGSOxQ5PzpyB8t58UiSmH7EyMjc1Kqk/NsEex3F39ttVnYyrlsWneP4jGjZ5H//\nWc4by+nmuv8cbcR2em3CSWFhIXJzcwF4He6ZM2ciJycHEydOxNGjRxVt+/Tpg7/97W/4/e9/j2++\n+SbitkaStGYO9L+iDY6VVOHQqYpom0MQUSFunRdJNgohJG5MNvLmfKhKAoKvDaDuLAREjIJs4/Zr\nw1q8WW1EOyXnhXGNLBbvGSx65eQh2y1FefRzZ5jXUdBvI/7eZrXAZtOev8cjwGbTv0by8dQO3fS/\nt8HOzcz77428sK9RuFi0aBFmzJiB+vp6AMC6devgcrmQn5+PvLw8zJkzBwAwb948TJ06FfPmzYPF\nYkHLli1x/vz5iNoaDYb2aw+AEneJixd7tA0wG65qi8a9YHxPsNqygd1qAcCzMHn7EgRIJdgBNpkc\n7g9nP+LvJdmIpyLLVNko8J4EIy2ZNX+mgxMt2SjYfvxzZ1TaiHvBJNgsin4jRefOnbFgwQJMmzYN\nALBlyxZkZWUBADIyMlBUVAQAmDJlCgDgP//5D6ZNmwaHw4GnnnoqorZGgysvb4X0VAd+2HUad43o\nDkeCLdomEUREiTvnxRd+Z1XteH9nt+tIAh4BdpsFFlhQr7NJm/glL0Zr1MZjLRYNHAsqjyQQ2EbF\nCfBbvLQ2qVPKRtrz9y3w+kmtALtKhrnoclxHnoRlcXz9yJtHmr9eRRrTwXHrS2INHLJZ4HXUd3CC\n7Uf0i2xiwnaEnZfs7GwcP35c+rmyshJpaWnSz3a7vTEnyzuHkSNHYuTIkYbGcDrT9Bs1QUS7swd3\nxor//ILi4+UYOeiyKFulTyxe71i0GYhdu40Qd86LkSiHTVx0GDkvjgSbd3Mxl84Cb/M5Cwl+alyA\nQ6GyeAfmIfBEHniSUbWdAFYOBuB1qKw6sokorditFmkPF6tF3XmT5saokmHmqggcbTgcPJ7cEfnc\nWIs3l2zkH+lgykb6TlfIuUN+/ajv+Oxto3f/I0Vqaiqqqqqkn+WOS7CUlMRevojTmSbZPeiKNvhk\n/T58+NVu9OnUAnZb080CkNsdK8SizUBs222EpvtpDxIjC7xYJaJbbaSzeItJvfLxFf34yyYcJa5N\nRTayWb1P3mzZyCpFm0wrXw5jmwAZS01+adwLRnRMdfNirFGoNuOQjXjuB+szIjr40a42GjBgAAoK\nCgAA27ZtQ48ePaJqT1OgTXoybujfESXna1Gw7US0zSGIiBJ3zgtP+F10aMRkTD1JwMZYvOWygeZ4\nHDIFl9zh4eiHYyxf5MkKiyX0aiO9+QfsTxKk3BEgG6n0wyW/cchP4vt4qs2sFp9spJqwLY4nRudU\n2vjbzRV545Lf9GVDViTQ1vj5j/ZZOtnZ2XA4HMjJycFLL72E6dOnR9WepsLoIV2Q5LDh840HUVPX\nEG1zCCJiXNyykc2iuwGb1WrxykaM6IyYsCm+R60fgL2jq8e/DVPuYOxCKyjbsJwgVj6HmLCpn7Dq\nkRY4zfGC2BmYLQlpl7gHXkeWRKe/U61Vko20ZUOH3eqLvAmCdC2kvhrP0ZKkRaZsqF8lZGiHZY5+\nWKXbevc/nHTs2BH5+fkAvJuzzZo1K+I2NHWaN3Pg5sGX4dPvDmLtpiP4bVbXaJtEEBEh7iIvRspy\nrTpRBV7ZSMx5EN+j1o/XJnNC+WZVrXjtVpdExL55JBFlzk+wdnNEjDiqZIzMn7WHi/g7u9XKcf+t\nuvff1tgPqw2v3UbkJ67PGuNzpBedJKLPqEGXoUWKA2s3HcWFyrpom0MQESH+nBe/pE7m4m3xLrp6\nG5DZLDqygZ5sxLFYcCXaBiOt6EgiWnvYKBYvnVJhXdnI4z2d2M44J4lH7giQxFQiGA1c8ptvbloJ\n2/4OLo9sJH+f0m5BEZ3iqTZTvScczptZ1Ua895+IPokOG8YOvRx19W58vvFQtM0hiIgQd85LULKR\nxlO+AN8CJzD6Er/gAb1Qvv5iYfYOq8zFW9yfRC0Hw80nG7j95q81ntLB0d8Zl+c6smUj/nwW1nXU\nmz/v/edx8PTmZtYOyzyOskI2ikKpNGGMof3ao22rZijYdgKnyqqjbQ5BhJ24c1749gIRv5itjU+V\nOgmLOpKIKK1otfE5VOHfPZVn91ilbKTtvAH6skHg4q3umNhslsYN//TkDnPmxm6jn7Dtk430I09y\n2VDrWopjac7NrPtv4LPGOnRTntTNik4STQO7zYrbh3WFRxDwScH+aJtDEGEn/pwXjkVA+mK2aJeB\nuqXIAzufwftUrV8qbNVL6vVzuoLNVQh03rQdM59spB0JEeUO1mnIPFEFm04bs6qNjMhv0h4uqtdR\nts8J5yZ1muO5PbrRGX+5i2cvGLUqMSOykVQlxbiOJBvFDgN7OnF5++b4aU8Jzpyj6AsR38Sd86JM\nNNVwTOSRB41kTP8Fzvs7dUeAJ/KgJ5v4H5bIJa1wlMrqLd5aspHbTzaSv8+/Ly7ZiNN5MyQb8Uhr\nwcpGgr5sJO0FI5+bhiNgVXyOgpSN/LYBYFWScW8VoOm8+5w3ko1iA4vFghsHXgoA2LDjVJStIYjw\nEnfOi/ilKyVjsjapk/aw0JdN5O/z70vvqdojSgsM2UByOlhnMvm1YUorNu8eLmzHzKr5VK2UDTgq\nafQcHL2KHIFjbv7XiJX4zLiOSudVXRJRykbeiiz/yJM8d0qSDTU2vJPLjyFXGxm4RrrOe4iyIdG0\nGNDTieREGzbuOEn3jIhr4s954Qh3y/NZtGUjpWwgf59yPA7ZwOPxPp0znrylShobx6nKjW145I5g\nq43c8sVLw27/vWC844coG9k4cj5sjH1u3Mo2egnLWlEFeeRJvP/+l9s/qVdzPLe+g9vg8Z3O7X0P\nY5M6m3g6OSPyZtPewybg/jP68f0dRXeTOoKPxAQbru7dFucq6rDrUFm0zSGIsBG3zgsrV8E/YVNX\nNuLI5+CSDXiqTTgiBlIbnVwFLbnDsGygYbe/RCf/nf94+rKRRzk3jvmzk3rF+8FevLUWZjXHxL+d\nPHfKd/8ZsiGH/MhzzAJr/pL8xhGdYp2G7S8bkmwUOwzt1x4A8N32k1G2hCDCR9w5L/5RFXa1kU82\n0pQEdJ6YA2QjjcoNXdmIY3+agLwInaiS1uZybr82zGoTm7bc4T+Wlt1SRY6ObCLfCybYfJYASYy1\neNus2tVGgigbaUtiin50HVy2/Ob2l9+CPLzSP3cq2Jwv+b2VH7pJNH26tm+ODm1SsPWXElTW1Efb\nHIIIC3HnvPgvKDyyEcCWBLRkI/nhfXpPzLoLfOOTrp1j0bFzlYGHKBupRRU0Fm+lbMSIKjRGHlTl\nDkF5wKV6NMT7OzsrqZmjSkgeedJ0cFVkI/++VGUjDadD1wl2+82fUW1k56g2Ym0IqLj/WrKZEPg3\nQjkUsYHFYsHQvu3R4Bbw467T0TaHIMJC3DovVkZIvEFyXqyae7go5Rf1Nkr5gS3lWC181SYJHLvQ\n8pxtwxN54qnIYskd/v3I5+HfTjd3yM2fF8M6k8fjt+gyN6CzaCdsi3OVOyb+zoJqdC5Y2VAwIBtx\nnH9kFxO2WZGnxkgPj2ykZTfRNLn2qnawWS34bjudNk3EJ3HnvPDIRv45D/LfBfbDIRvoVNt4ZSMd\n2UDwOjh2xsnDgbKRzuZ6VotqmwDnRWUPF6VsxI486MlmUuRBr2qJ84woPtnIoikb+c9Nv9pIa/7K\n3Cktm3jmxhWdCYdsaNM420r22bZbtccjmiYtUhzo1601jpyuxOFTFdE2hyBMJ+6cF2lBYR06KHdw\ndKIKTNnArRJa55IN1OQO/+iE/h4uWlUrcrt5ZCO1vlQdE2bkiaPayKIewQB8zpteBAPg28iOLRvx\nR6e4ZSONU7UFQZBOmtZLWFZE8FTvm3IjO63rKLc7aNnIE/jZpshLbCEm7m7YQYm7RPwRh86L/uLV\nIJMEtJ6Yeb68PYLa4q1RbaJzeF9AOTErD6XxNGS9J2Ze2Uj+Pv82LLtVnTezZKMgD68MiLxxykb+\nkSe1+88lG7EcHJNkI2ZeVMA+R9qSGFs21K82I5o2fbu2RvMUB37YeQr1DVTqTsQXcee8yMP9WntY\nqC06mrKRTTtiwhOdEPvSO9uHt2pJGk9H7hDtZkcetOUuXz/am8v5kjq1+xH3guHa7E5vIztJNmHk\n/CjKt3Uib7IKKP/LrVZJxZTNNHKn5GOx5Bde2chi8eVF6ctGGrsn+32O9K4R63NLNF3sNiuuu6od\nqmobsPWXkmibQxCmEnfOC0+1DU9URXrytDCiE35PuWptxL70k1E9HNEJ/afqBj+7WbIBe/5BykYB\nzgsCxtKqkuGVjZg7HvvLRjqLt978WXNTJLVqyEbyqi3m/fevNuLYC0araktuN2ufG9/niJEXJbdb\npa+mwpo1a/CnP/0JL774Iqqr6VwfkaxG6ejLH49QqTsRV8S986JXSaOfjMuQjdT64Ti8UDPyoOfg\nCPpzC1iYGIs3T8IyUzZSuUasvBCbxgIPBMomwVZJ8SRsG8lnYc1NbZM+HtmI5/4HK78Znr9FfQ8X\n1VhkiI4AACAASURBVLyoJrz4ff3113j++ecxduxYfPrpp9E2p8nQvnUKBvdpi8OnKrB595lom0MQ\nphF3zotPNrJq5jwELxtpySYy2cAduMAJglfGsvNs5MYoufaXMnQlEc1qE3mVjFapuDLxWd631MYt\nz53Q6YcxltiXYiytzf6sFljEqJKeJGbTizzI5S6N3XNt2m38x9Lrx67RD+D9LCn70ZKWdE4wdyvt\nZkeetKU8eZQrWrJRYWEhcnNzAXjlx5kzZyInJwcTJ07E0aNHFW0nTJiAZ555BuvXr8f58+cjamdT\nZ9ywrrBZLfjk2/1oaMLRM4IwQtw5L/6ygYDAhVD5VK1euaGs2tHJZ2DIBjyVPeLvFBIVx0nPXNVG\nerKRgT1c/B0B1YRlrcVbMX/tLfTZic8eqQ9tuUOWjG3RWrwD5T7/a+kvv6m1UTtCgSeCw5SNdPYC\nEu+ZxcLepM482dDKtDtcLFq0CDNmzEB9vXeH2HXr1sHlciE/Px95eXmYM2cOAGDevHnIy8tDaWkp\nXnjhBQwcOBDt27ePmJ2xwCXpybihf0eUnK/FN1uPR9scgjCF+HNeVBZUlkOhG3mxMBYmlV1YzZIN\ntGQji4W9AZ+/3Wp7uBiSjRiygWHZiDX/xnJiXQev8fVwy0ZqCzyrjZbTwZM7Jf6OVzZizt9/kz4O\n2Yg1N4VsqOIIhYvOnTtjwYIF0s9btmxBVlYWACAjIwNFRUUAgClTpuDVV19Famoqnn76aXzyySe4\n+eabI2ZnrDB6SBckOWz4fOMh1NQ1RNscgggZe7QNMBvxadgui6q43QIaC1S8P6vIBtqykTXgfWr9\naEUV5DIWKxnTKxtZmZEHT6Ns4B1Tp5JKXrnT6BhIY8lKnHVLxS3asoER5023kiZgnxv1BV60RbcM\n3BZa5EFVNvTrS20LfXY/6hE8aS8YPWmtMfHbO6a6bKg8HoG9SZ2VKRv65mZnSHnhIjs7G8eP+6IE\nlZWVSEtLk3622+3weDzS3/g111yDa665xtAYTmeafqMmSDB2OwGMH3EFPviqGN8WncKEm3qbb5ie\nDTF4vWPRZiB27TZC3DkvPBUw6nt4KB0B+V4wFul96rKJ3AngiTxoSQLiU65FpR/xfTbZ4u2qZ5+G\nLHcEZD6YzG7t/Am5E6C7MIcYwZDmJncUGInPYn+syAsrOsXjUPnLL2o2+Zeuq82NK/GbI1oo/k5+\n/5lzE5031dwhuYOvZbcv56kp7POSmpqKqqoq6We54xIsJSWxt/Os05kWtN1D+rTFqu8O4NNv9uGa\nnk60SE002TptQrE7WsSizUBs222EuJWNFAsqo5IilEVXEXnQlA34FiZ/x0R18XbrL96qjpl/xEBF\nNmBVUmnJBjyRByPOm01HovB3XvQqkqxWds5TqNVGysgTO4LBHEu+2R8j54Vn/h6P93Ru0RFmbtLH\nuCfq9z96yZ4DBgxAQUEBAGDbtm3o0aNH1GyJVRIdNowdejlc9R6s3Hgo2uYQREjEn/Oisuur/5eu\n/w6jAHvx0pQNOBI/fbKRfj6H+PSuKXcIPgeHtXgFzM1/8TYiG1l9VTJa/Vi5+mEvlAL4Ig9GZSO5\nnfJ+RJu0ErZV5R4NJ5DldKjdD1Y/+tVG+s6b5OBobGSofk80ErYZsmEkyc7OhsPhQE5ODl566SVM\nnz49arbEMlkZ7dG2VTN8u+0ESi/URNscggia+JaNDGz97794yZ9OJdkoKNlAnoOgIxtxLDo2zsWb\n56maJ9GWK5/DatVM/FTLC9KWqKywNJ6+rSUb2SUHzwpXfWDioUI20tiJVm3xDkbuMyIbKq6j/+dI\nVTbS3qRObKt1/pXkBFt8CdsWWc6Toftv07Y73HTs2BH5+fkAAIvFglmzZkV0/HjEZrXilmsuw+I1\nxdi44xTGDr082iYRRFDEX+SFY0E1TTbiWOB4ZAP54X0AtBdvt69UWFs2UokGacg9xmUD406g8lrr\nl5yLbbVlI3nCskYbi0VygtTGU0s01ly85dVmrMiTTgSD5ZioRgtDkI3k11F1/gZlI62IERGbDOp1\nCRITbNiw/STtukvELHHsvPAdKKiXq8AV7rfpywYs2UjejzimvmzE3qRO7iyEurmcVrWJIqqkGeUI\nlOi0xhKvIevcJh7ZSH4d5f1L/agkLPsnbMujQVoVYOrVZozolO7nyCrt4RKSbCS7jnIbpDZulc92\nENEpIjZJctgxqPclOFtei+LD56JtDkEERdw5Lx5ZlYRmGahaoqn/gsKRjCnfU0VPouDpxycbaZe4\n+stGanu4yPeCkc83wG6zZCMbRwSDU6IAIJ30rDZ/nmojufymZ5Ne5I1XNtIsJ+eRjWRSl97cxM8Q\nq9pI/CxqJmMbqTaL0iZ1RHgRzzzasONklC0hiOCIO+dFrZKGSzbSyENQLLocVSuhShRAo2yktjD5\nVRsBgach+zs43vf5RQwM7oyrG3mQSTT+EQx1+UF7LLGt1u65StlEvY10HTXvSWAeEitipF1tFLjD\nrmZUiXMssa2//Caezq2Yv8YeNmGTjch5iRu6d2yBtq2aYcueElTX1kfbHIIwTFw6LxboHCioGjZn\nnFujt3jbGJvUCaJsZIWYM8nqR7RL+1RhXxstu6U2JsgGPE6XPDmaayyGEyjabYpsxFEBpJewzSut\n8FSbaZ1/FSgbBkbe5M602EY9qdkjk43MPZOKZKP4wWKxIKtfe9Q3ePAjHdhIxCCmOS///e9/sXDh\nQqxcuRK//PKLWd0axiNfvDjKgLVkIy7ZQLZ46ckGVqvsQEHGvjOi3aqSgKD/VK2QTfQWb5tB2UBL\nfmLJRmoRLIYTIP6fRzbSOg1ZVzZS2wuIFXnQkB+V919fNtTLi2JJYmrRKW3ZyD/nJ7AvC5QRI6bc\nxdh7hohdrruqHawWCzZsPxFtUwjCMKY4LydPnsTcuXPxwAMPIDMzE2VlZWZ0GxQNnkBpResp1rBs\n4LdQyg/v45EoxP70Fm/NqIKKbKTWF7dswDh00Nj+JFbNCAZP1UrAwqwim4mnc9sMzV8jqmBgczn5\n4s10TIzIhlpnRMnkLlbpvmiXrmykdeimEPg5Ykl5WlE+IrZJT03EVV1b4eDJChw7UxltcwjCEKY4\nL+vWrcPll1+ODRs24PDhwxg8eLAZ3QYF15e3ImzOljJYi7c88sAjGwDqZcD+OQ9aCauKqBJD7pD6\nMZCwGkquDuvQQZ9spL2Hi+8kbFHuUpFNAhw8badDfh3V2qjJRsyN4/RkI9b9F3z3X4oEasqGcgdX\n+5RvqY3GoZu6kSe3EOAEsqQ8rX6I2IcSd4lYRXeTOo/Hg4ULF2LHjh148MEHsX37dtTU1KC6uhpP\nPPEEACApKQnDhw/HsGHD4PF4sHfv3qht362W88Gz6LBkAylXJRjZSBblEdsGIxsF7AWjabcn8Kla\npY3e/IM9dJAnqqTnmKjJRr7FVJnzo9aXNcEm2aU1N3EvGM2EbZXFWzOpWbELrfY+L3rX0Wh0TrRb\nceimR8UxURnP3wkm2ejiJKN7G6QmJ+D7olMYP7wb7La4S4Mk4hTdT+rXX3+NMWPGoHnz5li6dCkm\nTpyIhx56CBs2bMCuXbsAALfccguOHDmCgoICrFq1Ch06dAi74Vr450UADMfEwpBEVM6b8e+nQdYP\nT3Kw+P9gZCM12UDNJoVsYuC8JU0HhymtBEprAbKRmvMWhGykdh215qYrm6nIb6yEbS0Hr0F2HXlk\nI6tF/dBNtfvPkt8UdqtcS935C769YPRyvliRJyL2sdusuO6qdqisqUfhvrPRNocguNF1Xi655BJ0\n6NABO3bsQG5urvR7l8uFffv2AQBSUlLwhz/8Addffz3Gjh2L1NTU8Fmsg8fjCfjyDpBWFAmb+nvB\naIXW1RJWWdEZ0SYtiUKeaOv2KCUBtX5U58bhvBmpyOJJ6mRKS+7AMmD/seQneIttWXlK8v+rOS/y\n/VK8vwuMmAQs8CEcXqmoSNOwm8sxZezz4u+8MefvJ5uxZCOecmqt+0/EB0MbpaOvfz4WZUsIgh9d\n56Vfv344f/48jh8/jr59+wIAKisrceDAgahGWLRQhs21SkVVZCOmbKBe4qp8OtWvNhFt0nNwxPHk\nJgXmPKiPJ1+YWVUyomygWSWj5rxp2G1nOS8auRrs+Wsv8Hr5PLySiF7ir+LeasiPXNVWMgdHa27y\n6i9xTO374Sebya6luBeMnmzqvUbeNpqHbsodM8ZhkUTsc6kzFVd2aYndh89h56HoFVsQhBG4BM4t\nW7agX79+sNu9KTLfffcd2rVrh4EDBwIAzp49i+eeey5sRhoheNlI/7wZlmyglRfDs3hr5TPI+9KS\njdQiJroJy7JrpLWRHU+1idrTOWuTOrG/YDap84/gSNEQlRPD9aMKKnlBAecW6W9SZ6TajC0b6m9S\nxyMbiVPgis4YkY0o5yXuGT+8OwDgo/X76bwjIibgcl5++ukntGjRAoBXLlq8eDFmzZolnVT7448/\nonfv3uGz0gBqkkDAuTUqCZvaTodVXzaQ9aWV1Cl3FrSqTVh5GFqykdruuUGVUzMOHQxJNlJ1TLSd\nQMB7Pf33cFG7jqp2qzivqpEHPdnIwOGVPBVpkt1q+TxcslGgg+Nvk1tFfpPbIG+nnxfk7cti0W5D\nxA+d26Xhmj5tcfh0BTbtPh1tcwhCF+7IS5cuXbB06VK89tpreOyxxzB06FAAwIYNG7B06VJUVlZi\n//79YTWWB7UyUFXN36b88tY6HkCZjKm/M25IsgGjkkZtLFW7eWUDq59swHLedGQTO88ZOfJrxCEb\nBczff4dZlV1fxb1g7NL9Z5RT25RtmLKR3tlW8morf2dKxW5WP6JN+vJboN1abbhkQxW7bdZGp5x2\n2L0oGDesK2xWCz4pOIAGv4cigmhq6JZK19TUYM+ePXj//feRnJwc8PrQoUPx7rvvYvLkyWEx0Ciq\nG3CpfHnrVW0onnQtvvcp2vg96aonYwbKHQELhZGn6oBkVIZsxJINdCIP8kRTrciTQjZqPA1ZU+6Q\n2V3v0q7s8bfbbvPNSz5vn2ykH53hyXkJJmHZSLVRMNVmgiBI0U21qi3vezmic0HKhoHXiBa0eMaZ\nnowbBnTEup+OYf3W48j+Vadom0QQmuhGXrZt24Zu3bqpOi6AN3k3mtVF/ngX78BFUNHG49sbQ28v\nGF7ZQPw/a78Y8f9alU2scL/WwiRvI+4Fo1dtor4wMRwTjcU72P1JtK4jy25N2Ugl8sCT8xRwHVUi\nDwGnczNkQ938Kh7ZyN9uIXBuweRFqVVu2fScYLmDQzkvFw2jr+uCJIcNqzYeQk1dQ7TNIQhNmM7L\npk2b8Morr+DcuXP4+9//rtpm+/bt6NevH44ePYqTJ6O/S6Pawqyq+duUX8ws2UBvvxT5eDxVMlp5\nEXaGQ+GTX7QjRgGH92k6Zh6ZzRqygRgNsmmf7SM+ictlGs3IkxFJRGU8NfnN3265jCXvLyDnyeOr\nttHa9VYhv2lEHuRVQlardw8Xzd1z5fefcYK3/P8KScjtd//VpDWNflSjc0YqsproDrs//PADZsyY\nAQDYunUrnn76aUyfPh2VlbTVfbA0b+bAzdd0RmVNPb788Ui0zSEITZiy0dVXX41PPvmE2YHT6ZTy\nXYYPHw4AuO2226RozKWXXooXX3xRar9kyRJ89NFHaNWqFQBg9uzZ6NKlSwhT8CHtQhuMbMRYUMVK\nIr0yaNYeHgrZiCFRyP/PVW0kqCxwHLKRI8EvOqXiUFnAjjyozl8nYVXdweORzTQWZrf2NWLJRpKM\npeWYcuRO+ScaW62BuycHOF2c0SkAaHALSGj8Cw2Q31Ts1k7qZkRVGH8jen9H0eTIkSPYvXs3XC4X\nAGD58uWYPXs2tm/fjtWrV+Ouu+6KsoWxy6hfdcLXW47hX5uPYOSAjmiRmhhtkwgiAN2cFz2uuOIK\n5OXlST+LXyZLly5Vbb9z507MnTsXffr0CXXoALQWL7Uvb9ZTvn9fPMcDiP/nkY0EeCMG/hEdLtmI\ncTxAYD8ce8FoOSZCoGzAik5J8+c4dFBXNmLMP1DK8EUxeMvJuWQjzgU+YP4c9z8o2Uhlszt/m3j6\nkeZvRDaKkPNSWFiIv/zlL1i2bBkEQcBzzz2HPXv2wOFw4IUXXkCnTr4cjMsuuwz3338/pk2b5rXN\n7YbD4YDT6cQPP/wQVjvjnUSHDaOv64IP/70X324/id9c1yXaJhFEAKYfZFFcXIzq6mpMnjwZkyZN\nQmFhoeL1nTt34p133sE999yDhQsXmjp24GKiIYmoLV4myEbMyAuH3OM7vNFrd4PKwuRfJcOUjTgW\nJmZFlq78xBNV8Wujcm6T9tb/csckcL8Uf7v95TdmzhPjfgBQRPB4nRe1yBOPtKgldykcE3fgdfSf\nP49s5PEIEMB2FMXx9CJPZrJo0SLMmDED9fX1ALyHvbpcLuTn5yMvLw9z5swBAMybNw95eXkoLy9X\nvD85ORkulwslJSVwOp1hs/Ni4bqr2sFht2LD9hO07wvRJAk58uJPUlISJk+ejDvuuAOHDh3Cgw8+\niLVr10oL8q233op7770XqampeOyxx1BQUIDrr7/elLF5NX+PR3Z4H2sjt8b9W8S+9OQem9WKuvqG\ngH7k46iVnQb2wxNV0V7geKpN9Np41BZ4nZOO1fawCSgDtvhOQxavrZGoAsuhEsfm2efE3wkIlI18\neUFa5eRqxxoEykYcm9S5A6vWvL9Xk4QYDo5fG7V+fE6wso3amVQJUnm7enTSTDp37owFCxZIkZQt\nW7YgKysLAJCRkYGioiIAwJQpU1Tff+edd2LmzJloaGjA7Nmzw2bnxUJyoh2/6nUJvi86hV+OnkfP\ny1pG2ySCUGC689KlSxd07txZ+nd6ejpKSkrQtm1bAMB9990n5cNcf/312LVrF5fz4nSm6bapqPZK\nVsnJCXA609DqQi0AICkpQfF+AYAjwQanMw22xAQAQEKCXdHGavNuCy/+zma1wCr7GQASHF4H6BJn\nGlq3SIbDYUNVbYOiTVKSt/9WrVLgdKYhufHnlq1SkJLs/XezlHMAgPQWyXA605Ca4tWYmzf+DABn\nKrxzS0tNgtOZhhbNkwAAqWmJUhuro8bbX7LDO/+z1Y3Xw6GwySMAiQ7vfOsb68ATHL75O51psFgt\nsNuscDrTZA6ITdGPvbGO+ZJLmiM1OQEJCTZ4PIKiTWLjfNu0SoXTmYakJO9HrlXrVOkE22bNvPNN\nT28GpzMNKc0cAIAWLZpJfaWd9c4tLc07/+Zp4vyTpDYtWjYDAKQ088635ckK7/yb+ebv8Xj3gklK\n9M63st4j2an4jFksSLB75y9WXdjsfvO3eeff9pLmSLBbkWC3wWJRfkYcjZ+vNm2880902OERlNco\nuXG+LVt659us8ef0ls3gbJxT6invXFo09843LdU7/7TmvvmLc0lJ8c43vYX3vc1SfJ+R2sa5JDfO\nt7TSG+lQ+xtJaPwbsTfeQ3uCcv5mkp2djePHj0s/V1ZWIi1N/lmzw3tiujJYPHfuXADAlVdeKUVn\neAnXXMJNpOwePawbvi86hc17SzF04GUh9xeL1zsWbQZi124jmO68fPzxx9i7dy9mzpyJ06dPo6qq\nSgrjVlZWYvTo0fjyyy+RlJSEH374AePHj+fqt6SkQrdNeZV3gW+od6OkpAIV5V7npaKyVvH++gYP\nBI+AkpIKlDc6PNU1LkWbujo3rFaL9DuL1YLaugZFm+oa7xf/+XPV8LgaIHgENLjdUhunMw0VlXVe\nGyq8NjTUuwEAp8+UI61xkbpQ7l2Yq6u8NtTVefstPVuJFoneBfJsWZXXrtp6lJRUoLrGa/e5c9XS\neGcbnbX6xvlXVnh/Lq9Qzt/t9sDj8aCkpAIXzjeOXe0d2+lM89rgcsMiu+4WC1BbV6/op6bWa+e5\nskrUOOywCALqG9yKNuL8L1yoRkmSTYoynD5dDkdj9OvCBa8NVY33qd7VIM0/qXGtKjvnnX9trdfO\nmmrl/J3ONJSWeqtM6l3e+1RZWdvYv2/+4uZbHrc4f6+DV1lZ5/cZccNq8d7/+ga3NF95m9rG+1RW\nVtkoLQpwuZTzr6ryzT/J6nWeGtwCzpwplxyd8sb7VCV+Rlze8UpKK2FpHLvsXLXiPtXWimP77n/p\nWe/8XY2f02px7PIaqU114/ukv5GKGvX517uBRLv3OjZ+zmtq6qVrHW5SU1NRVVUl/azmuIQKz3dK\nU0P8+4wEbdMcuCQ9GRsKj+P2rMuRnBj8chFJu80iFm0GYttuI5ie8zJ+/HhUVFTgnnvuQV5eHl58\n8UWsWbMGK1asQGpqKqZOnYrc3FxMmDABPXr0wLBhw0wb2z8kzkzYDJBEAsP9otQDeKUDvXA/TyWN\naq4Ch9wRsPW7Sh6OVl6I8vwb5eF9zGoTm+/jwS4D9/WleUaOeE9U7TYgd/jJb8y8EJWcp8AcHI2E\nbUXOh3ric4PHtxeM2E7zGvklyCoO3dSqNpNJcIG78GonLAfef5U2flsFBJxJpVa1F8FdVwcMGICC\nggIA3r2mevToEbGxCS8WiwVD+rWHq96DzcVnom0OQSgwPfKSkJCAv/zlL4rfZWZmSv8eM2YMxowZ\nY/awAGQLvM6hc4qcD0Yyrvh+sa9gqk2kxdLfJo5ES6Ob1GmWCitOHobqWKrzt5g3f1Y+i9busVxn\nGxnMC+Kp2pLm3/gaq9rMJvuM2KwW1Gvk/KjZ7T8H5j4v/nYzSqVZpeI8e8r42yfZGcHEzezsbGzc\nuBE5OTkAYFgSIsxhyFXt8Nm3B/Dd9hMYltEh2uYQhITpzks00Xo6VaskEr+Q7RobcMmjMwB7Z1xW\ntYlawiqgsaD6LRaq1UaMRNPA+att9uYXwdE4t8bt8cAh7s3f2JdW5Elc3G1Wq2bCKmu8wJOXGZvU\n+Z/tpOIE2QMiOGqRB/9IkPYmdVqHbsojWOJ4bq2jDwKigZ7/3967R1lRnumjT+1LdwPdTXNpkLTQ\nXBQvqAiYM95QEoeIoycZDSYdRzgxrJmlx1mL3wyJCaYTwpgEwsQ1Pycht9FkTpzfpFcy4sr8cpJM\nwhlvQVHDCAoiGW9AEJGbQDfQu/fedf7Yu2pXffVd3tq79qW632etrLh7f/ur96sq6nvqfd4L0vB7\nhijBuNpsI1XWltbzpCAvNc42AoCuri709fUBKJzztWvXVvV4DDPGt7dgzozx2PnWMbxzZAAfmDim\n3iYxGACqIBvVE0q3uc/zUChkR0qn9bxVy2Wj4Ju+DX1Zd12Kq1Y2Ukgi0g1erOEhk18MnieRvEll\nI0/zPse2iqoHa2QTlSTmlTuUWVuEzdt0/VXZZl7vnKzpJsmrQihSqJaNPPOoUuV1119ClJ3jBa9H\n7TwvjMbBtZdNAQD87pX6V1BnMBwMS/KiSzkNjNHJRmXIJt6/y23Slb5XExOxhouscJxSNiLIBuXK\nZsYNXnm+PfEchN5OKvlNGxekIwGac0Revy2sX9J0U6yMW65sqIwLqlQ2kvWRsv21YJymm7WUjRiN\ng3nnd2JMSwrP7nyXu00zGgbDi7yIbnOJRCE+4B1JQC4beSUBSTCm7a8Fk5AVjlNsFpQNVffGTJON\ngp4nsaR9yRMkkUQ85K1wjoQxouchUarhItpdqdxBkQSVRep851ER1FyO50kgb9oidRqPSeAekdWw\nEUiQzoOjk59K19/p7aSuO+QnpkHZkDEykE4lcOWcc3ByIIOdbx6rtzkMBoBhRl4CFWY1mS0pMVah\nDNnIGzvjPa4uk0a2eQcIhUzuUEgiYbNNlESpAtnIgc4bUGnTSdXaZHFBlRb7c3tkBcibKBvl/ddf\nKhuZKwOLHiNdMK5WNqJ48AiykZgh5owX18YYOVhYlI6e3vFOnS1hMAoYVuRF7VpX979x/ltVYdc/\nRty8grIJoI+x0MYzaLoYB2SjMqWVwOZlFbshRyQbKW0irF8vCdHHkDw4IQiOcv0y2Uhyjkzrp8lG\n5uaVovxWbraReK7d9XPMy4jFtMltmDGlHdtfP4K978avhghj+GF4kRexXorEyyFuJoDaqxLMNlKX\n2ffOqfN0SImJ8Fatl40Srs3ev/vnEUiQRjZyjutdv1sLxuh5CON5Mm+WOiknjGwURn6jBMc643Up\n985ctmRtYi0Y5fHc+1YdF+VmyUlqzwSztmSyEb2mUCCeiWNeRjRuu34mAODfnny9zpYwGMOMvFCC\nUUuykcGrks/7Ht5SgmMHs03E45XzpiuPZzC/eVOK1IleHmcur2zg1oIRZQPp5u2fR71+Qk8eTXFB\nlSSilY0IfaRkEo2YteUcL9DgM5BtJCcdMu+UjphIg5qF+1abBk4hygHZSE2mnfEsG41szJk+HnNm\njMeut49j11sc+8KoL4YVeQnUXdFUoTVJAhTZxNu8D4A0c0N80w1FOghF2iqVVpz/JskmYiaNKJto\njufwgHKzZCiZVIHNWxY7ItwjsoBtsmxElM3EeYx2h5HfQt4jFclmnGky4rH0+lkAgJ89+Tp74hh1\nxfAiL0KWhKwAHUU2KmTM+L0zyYQF2w7Gs4jSkvN38XhhJBGp3CFsuimd/KArUpcLkjcxk0QuG8iL\n1Jk9DwWCZwmyifR4JGlF7Z0RZTNdzFOguJzU8yB6ngTZ0BY8TwqPiXeMXjb0B3XrZSMCCZLMI8qG\nWjIlyoa8WY14dJ/ThivnTMa+Q/14YfehepvDGMEYVuQlTHCkTjaSERxpjIXtD+qVbd7iXLricuIY\nUjwH5Q3e9tvs/U63fp13xjmej7zJaoaEkE0C8Sy6Yn8U+Y1IXkVJROmdktRwociGZNmIEGgdqB6s\nk98U18Nrh1vDRUOCnfEsGzEA4NaFM5FMWNj01JsYyrI3jlEfDCvyEgjG1MQz+F3iCdKYwFxitpFU\nNvIHbFLedKUbnKIKK0la0MRFOP9Ny8jy13CRpRMXfu+fSyabyDwPertV8pu5Cq/M86SXzfw94ivH\nJgAAIABJREFUsrzr90KZbSZc/9CyEeG+1cUz0QriqdOgS8cSvFOcbcQA0NkxCh+a34UjJ87iye0H\n6m0OY4RiWJMXWTwDSTYS3nK9c4qbjr+QnerNWyYblCt3+GUDXTCmVH7IBdevivkwpoFLyuMHjpcP\n1svx2io7nvYchZHfZCQgjOdJk23k1oKREjPvXHnpefSTjrzveBTZSNcxW5u1JL3+cvIeCFhmzwuj\niP/z6uloaUrif295G2cGs/U2hzECMazIiyxWQdyYZBuzaozcY+Df5PyykXnzVnknvMeQyh1C8z6K\nbOTUcNHJBrL1q2Qj0SZVzI9ONiq/zkl42UgX8xT0PBFkI8n1MKWKK2UjQi0gv92F+0XXkysnkiDZ\nPAryJj1HInnjmBdGEW2jm3DTld3oPzOEJ19i7wuj9hhW5CWrdPeHC9iUkRdVrIJxg89FJBuomg4S\nSJfJ86CWDYJ2ZwWZwvd2rpA7pCRQ00JBR3Ao8UzaeUJ4nkS7bZQ2f3kJ/fJlIwvQ1oIJJRt5yGtw\nHrlsRrn+LBsxvLhhfhfSqQSeefmgT05mMGqBYUVeZG/VKkmIJhuF9Dwomg6aAjZVmzclYFU2j0/u\nStKCkSneCa9NYvM+51gym6SyUchOz5XIRiZJrBzPk3weecC2mLUlHZMMd49ovVOW+TzqApal608G\nA7YZIxujW9JYMLsT7x47jTcOnKy3OYwRhuFJXgKVcUPKRpJ0YlkQKSXbRC0bETbvCr0TznjRE1T4\nu1pay+aDY0S73XkkMT8BgmcoZCfKPbLA5yB5k6Vc+9fvxDz5Nmap50kR8+G7tv6mmxXLRkLV37De\nOVmdl5xw/5cIjserKPEYFWQjdeAzALdjNr9hM7y4ttjz6JmXuecRo7YYVuQlK2yCgIy8yN3m3hou\nOd3GVPxO1bwPEGWjPGFjImTJhCjr7jueRYvnML2di3KPzjtRjmyUTHi7cxclKo3co5WNdNe/XNlI\nkGAqlo3EekHS86iJi1KQae8Y6TmqUDb0jmsEbN26Fb29vcrPjOriwu5xmNDeghdeew9nMxy4y6gd\nhhV5CSMb6TYdimwkvuUCiqDeELKRGKsgffPWFKCT2p1MBOzxHsuZy3yO/J4O0Vuis8l/PeRZMgnB\nZnH9YsCyzoMleoPkHgy15ykvGSPKZqpjydfvl/EKYyiF7MqUjTz3kaqGSzmykXi8emPfvn3YvXs3\nMpmM9DOj+khYFq69bAoGMzn8/rXD9TaHMYIwrMiLilCY3yr9m67s7VzlefBtAoqAVWm2jSAb+Jv3\naTYvQg0PvWwU9DyJNVzElgY+m9zNWz6P11ZnnOkNXhxD2pglY1TXRNedu7R+fS0cUTYUa6p4xweJ\nieQe0chGlGBsnWwk2iSXDUXZyO8t8h7DZ3eVycuOHTuwbNkyAAXv5po1a9DT04Ply5dj//79vrHT\npk3DXXfdpfzMqA2uueQcAMDvWDpi1BDDkryIxEQmG+jiEOQkQCA4EolC1QhQNo9WNiB0FVZlNolr\nS1jmjTkQjBti85YHmvqPJz/X/g0+JdgM+JsFBjqGS+aRSoJJczyT6J2TyW9iPJNKfnTWA5S6c1Nk\nQ+m51niMdNlGojdI1rwyUKSO0LxTtClqPPzww+jt7cXQ0BAAYPPmzchkMujr68OqVauwbt06AMBD\nDz2EVatW4eTJQpCoGIfDcTm1xcSOUbioexz+8McTePfY6XqbwxghGFbkReXuN9W5kGXSAIoidZXK\nBoqNSbZRyGWjUp0XSzyWLVk/MdvI+x1FNlB5eeTrN3sVZERBJ2WJniDvcXVehTDZRj75zZKvXycb\nSu+1ZNBuakaSb/0yoqyQ+8z1aRLSBo8yQl1N2ai7uxsbN250P2/btg0LFy4EAMydOxc7d+4EAKxc\nuRIPPvgg2tvbAcCNlXIgfmZUHwuLgbtbXjlYZ0sYIwXDirxUUsPC+13ZspHM86CqwqrLWlI0+BPX\nppI7KMGoujd9imygCo712lpYpyJgVxfzIptH7BhOlY0UxEQbsE24R/TXX0MCHWISVjYq3i9ud25i\nx3SqbOiXjTSyYRXJy+LFi5FMJt3P/f39aGtrcz+nUilfVpSDDRs2aD8zqo/5szsxqjmFLa8c9D2T\nGIxqIVVvA6KEatPJSVNFJd6Q4oNdtQl4v9PJL6JMJd2YtLKRWjYoJ57BFNRK2XRVm7euPolTC8aU\nKhyQjRKObBRcW1A2MnkeLF9hPZ3HKJ+3kUhaUvIqSnlS2VDwmGRlJFgRjG2Mi7L9GVm6uCjxXMpl\nI4HgadLyvXbXcmNqbW3FwMCAx648vP2WKkVnZ5t5UAOiUe1etOBc/OrZt/HHY2dxxUWTA983qt06\nxNFmIL52h8HwIi+KeBaTbCS+xdOyjeTVfL1jnP8uN524XLkjGLAqGSOxO7Axa3o7lUiAWjbTkSBx\nbamk32ZxjDiXZVmFeB5NsTvHvvxQNjAmKYwp2aGQexSyke666SRK8ZqYvFPifVQ6FsXzFgxYFo/n\n1HCxPPeLSe6rNubPn48nnngCS5Yswfbt2zF79uxI5z98+FSk89UCnZ1tDWv3FedPxK+efRu/eOYN\ndE8c7fuuke1WIY42A/G2OwyGFXlRSQKUjBwAnkwaumyg8zxom/cJjfnMG5y/b410bYoYC3NchLAx\nSz0PZtlIPY855qcpXZILpPEctl1M/VXLHZTrr61Pk7OBNE1ao1x/6bmWpEqLnpdS80q/x1B3Pbz/\nrZeNNNe/WLdIOo/keNXG4sWLsWXLFvT09ACAG7DLaExMP6cN53aOwfb/PoL3jp/GpHGjzT9iMMrE\nsCIvqgJcTjxDwrKkmr/Kq6CTciiykUmicO0memdkc1HToEvzyElQ4fdqj4EYY1H25q0IRqXIRt61\nO8eWy0ZCJo0vnkNzTYS+RSTyJr1ueeU8Ks8TVTZyx1iSgG2FbDQ4JMk2U1z/ZIImG1YLXV1d6Ovr\nA1Dwrq1du7aqx2NEB8uycMvV0/G9n+/CpqffxN0fu6TeJjGGMYZXwC5hs9CnAavHlCMbaDe4sAGr\neX/zPud4VNnISR+VjRFlCkoaMMk7RZDoqOsXZRPv2rzzyGySe2c0cpcuI01cv0Y21N1HOtlIdo/I\n1q/KpNIR3HCyofr+ZzBkuOLCSeg+pw0v7H4Pb7/L/Y4Y1cOwIi+U7A556X95MCZJNtJ5XhSeEK89\nzlymt9x83t+8z7FbfDsP2FSUYJx9UBdoqpeNxHMUXFsqMA8ta4VapE66eZtSfBNCkTqt50EMxvYQ\nHCFgVVZTRfRgla6HrMJu4TunFowuvsiZU+p5IkiCZNkwhOeJwZAhYVm4fdEsAMC/PflGna1hDGcM\nK/KiCzQV06C1D2+pbKTINglJglSF7HQSDRDskeMc25e1pMg2KswlbMyazZuSbUIpZKc9lkAo5LKR\nvwCdXDYKFrLTxbxkJYHWwVgdebE775p03inXg6Vp8BnGE+gcNylk2qjjeQhF6jSkS1YvqFayESP+\nuHj6eFwyYzxeffs4dr51tN7mMIYpYkdeDr9/Bn/77d9h19vHAt9JGxMKxCSUbCR5wIeSjWRESVaf\nw/YTE6cbskk2IclGCo+Rzqukih2irj8nnmtTLZhyZaOEPGBZnMtbw0V7/TXSWmSykUKiMXmnxMBv\n59gyr4q3RptSNtJdf513hskLg4CljvfliTd8L1gMRlSIHXl5/cAJvN+fwRsHTgS+02eS+L0BlBou\nvo1JKFkve8sNzuMEx8reYNWN+ZxxpjEBz4PGJkocTqUBqynVBq+Zp5CiS4uLEWWzhGWWjZSEQhOw\nLCNvYhAxaZ4Q3jnZGL9XTeZ5ElpfFLPWLEESzAtjAJNsKJP7goHWDIYK0ya34co5k7HvvX688Oqh\nepvDGIaIHXl5v38QAJDxZFA40MsUapd4cINXywZaaUEhUfkkCknpe1E2cuYyykbC5q1L8c0GNkuN\nbKCQH3xr040RN2+vB0uVtSRIVJaFgNzhPY/OvD5pRUa6xMJxUvIqj/mREooKZcOgd04XFyWkUwdi\nnmQEV+6ds0VJVCPl6QKtuXoqg4rbFs5EKmlh09NvYiibq7c5jGGG+JGXU4V295mh4D8Giivf3Zh0\nPWk0D3h3HkWxL98Ygmzg1IKRxrP43P155cbkHSPaJNpdtmxgmedRSVQ62ai0wQfjOcqRjbzduXXr\nl9mkk9ZCyYYaiaoi2UggbzLZSHYfyWxi2YhRbUzsGIUPzTsXR06cxX9s3VtvcxjDDPEjL47nJRt8\nA3TrXBBqj8i8Iboxqjonsiq8Jc9DsKZKYB7JWy4gj2cJbN6qOic60kVKg6Z0VTbLHbqAZV0AtTOX\nmEnj9eAAwc1bJb95j6fNEtKsTQwiDiNR6rwcqmNZ8BMFaraRjOB57ZUHo8sJvolQMRgm3Hx1N1JJ\nC7989m3u9s2IFDEmLxrPC8UboPEq6B7wAUlIdixN7EhKsVGULRsJm5cFuecpKBsRzpHGOyUjQWrZ\nSHMsHXkTmxcGZCNh81bIb97jSWUjRcfscmOHtERZmCcrkY3c9QfIm/4eUclGheOYvWpaKU+4tgwG\nBe2jmzDv/E7sP3QKbx7kui+M6BBf8qKJedHKRjJvSDmyESWegSBRyOZxjkfJNrLhlwSUsgFlY9LY\nLcZ8hJKNvMciFPtz128o0haQjcpdvyINXLe2cmUjikQlW1s+L5GNEuXLRtrrr8s247dnRkgsvGwK\nAOB3Lx+ssyWM4YRYkRfbtvF+vzrmxdngxGwLwBBjoKjhoi1SZzeCbCQU4JO+nRPWrwhG1W7euno5\novykk+gUngcZMQlkG4kET5ZOLEg5YeJQKKQjpQl8lgYsK48VzCTzEi4bZoJD8TzJ73+WjRjVw8XT\nx2Pi2BY8/+ohDEqe2wxGOYgVeTk9mMVQMdZFFvMiLWSm8gboipRpPA962cg8RqzhQo35UBWpE+02\nbd56uUOsHivbvIvzEDJSSJktEnucufzZNsFrm0qUuiE7a1Ru3rYjG6njeULFBcnSiRWF7MqSjTyt\nD2QkyPlNIKhXFfMjECqZTbq4IJaNGOUikbBwwwen4Wwmh2173qu3OYxhgliRl/dPDbr/rco2Ejc4\npZTjfTALNVxIngeCbCAjCs64SGQjSaxCIC6kHNlAQ3Aqlo3E6yHJ2nLX79js1IKRyCai3VHIZiTZ\nSJZtpsjIqlQ20hE8smzkmUv0Tor3kZy8s2zEKB83fHAaAJaOGNEhXuSlKBkBKs+Lv8w8EHzTp7jN\ndW+e7hhXNpLJBkKROsnbcHCDkxWpE8lLUFrw2iLLyClHNnA3VM3bOYXgSAlesYaLaWOWbt4S2chn\nt0420hETVcC2xPMkniOpbKitqWKuKVP4TSJ4HgPEtOCd8zbdlHnwRJtkxe58ayP0/2IwwmDKxDG4\nYGoHXtv3Pt47frre5jCGAWJGXvSeF13AqjbbSBGroZNWdCTAzWyRyEZAYcMLVOGVbt6F75zmfcq1\neciSWjZSx1iI2SbaWI2cuOmGK2RXWpt6HmeugNQROI9BmU65eecc2UhSC0bVtyqsbCiJQQqMEc5R\nVnH9C7KRWKlZ71XTX3/1PRK4t3PB44n/RhiMsLjWCdx95d06W8IYDogveVF4XlQPb12Ka0k2oscF\nSCujEmQDx6YwspEuqNc7h1Y2CiFl6AJWvVKOaDeFKJa1fgmZUNlNybYpyzsT5hxp7Hb+U0eCnHkp\n59H7fRjZyDePirzK7pFc8N8dg0HBFRdMQktTElteOcgkmFEx4kVeitV1kwlLHvMie/NOKogJSTYi\nbEw62UBTw0N3LGcMRVrxfi/PNpJLGb7mfSrZSCMbSGUjQX5QE5OEkZglEwmJ/CIPRvVvzPoidTmZ\n/KYiuATZkObB8pIXS07MJPctJZ3c+70qnVy0KSgbKa6/jLxzzAujTDQ3JfF/XDQZx08N4lVJY10G\nIwziRV6KnpeJY1vcrCMvpGX2A94QSoVZDTFxxsg8D45s5JEoxDHOXDqJwhnjdENWyU+yjcksG8mb\n9/nnkTXvE2UjSQfvwOZtToNWeR4oslG49TuSiCSoWxGwrZUNJXarsq3k178whlKkTneP+NYvW1sI\n71SYeKZGwNatW9Hb2wsAeO655/ClL30Jn/vc57Bnz546W8ZQwan58gwH7jIqROzISzJhYXx7C3J5\n233wO5C9VatkI9mmo/XOSDYK798BiWxEqJ5r2pjzeVsjG/lJhzzmJ1hcjiwb6DxPmkJmuk3QmYtC\ncIzeCQlZkMUXiXarvHMVByyrPHiaYGzl9bfoAcu54j1iQ32OvDaJQe1K2VCWKt8gqdL79u3D7t27\nkckUvLGDg4N44IEH8JnPfAZbtmyps3UMFWZ+oB1TJozGS/99GCcGMuYfMBgKxI68dLQ2oTmdBBCs\nsiut81F0/XvfqoPN++TVY0nxDJ4xlmUVAi1t/cac8Momyo2pRExUJEAqG0UpG+gkMe3mra5U6/xG\nHCMlL8UaLurzKJGNVBu8bT5H5WQblUPe5MRMXaSuRHDUcpdOfhJtoqaT68hbNbBjxw4sW7YMQCFI\nfc2aNejp6cHy5cuxf/9+39hp06bhrrvucj8vWrQIZ86cwaOPPoo///M/r5qNjMpgWRZuWHAusjkb\nv9jydr3NYcQYsSEv+WJ13Y7WZjSlC2aL/Y1U3ZkBvedBvel4s23MlWqdzxS5g7LBAYU3XR0J8M6h\nC0bNEzZvXbPA0nmkyCb0zVt3Hh27Ket3unMrpZVcSTZUy0ZmadG9tpo6L7rAX2cuk+cpjGyUz9ue\n6xFsXum1pUBezOn0hZR2CcGvUszLww8/jN7eXgwNDQEANm/ejEwmg76+PqxatQrr1q0DADz00ENY\ntWoVTp4s9Mlx0sSPHTuGBx54ACtXrsT48eOrYiMjGlw39wOY1DEKT24/wGnTjLIRG/LSf2YIubyN\njtZmpFMOeRE9LzRJhFrIjpZton5jzoaRjTTF5VS1QELFM3jK41PmEY8nygZS75RV6IZMkY0CjSJV\ngcY5s+fJ650ykVcpeVM0ZtR6niSxKoGmmwRiooxnKspGtoe8qbxKWYJ3zkuoKLKR0oNVJdmou7sb\nGzdudD9v27YNCxcuBADMnTsXO3fuBACsXLkSDz74INrb2wHAJVjf+MY3cOTIETz44IP4zW9+UxUb\nGdEglUzgtutnIpe3senpN+ttDiOmSNXbACqc6rodrc3Io/AAFTOOdBsTJdtEV7JeKRuIm64vViFE\nkTpFJk0ub3tK8atlA6cWjHptaoITiAvRSSLO5q3KEkoG11ZOGrSMmOhkIxUJkm3M6bQ520iUFimy\nEd3zFCxAF7iPiveDbes8eCW5U5m1Jalho6qX412bycsXNRYvXowDBw64n/v7+9HW1layMZUqes38\n127Dhg0ACuQlLDo728yDGhDDwe6bJrRi838dwAu730PPjVmcP3VcHS1TYzic6+GK+JCXYnXdjrYm\nDJzJAgjGvOgkoVCykeStWvRgqDwmhbdqtfzifKaMcY5nlk3ycLz5prgQqXdKsenKPA/eeWQ2SeWO\nGshG7jUzZOTINmYxYFt7j5QhG8nmGnI9YXK7feRVE9Qsrl8liXm9QeaMpLxWoqoFWltbMTAw4H6W\nEZdKcfjwqUjnqwU6O9uGjd23XjMdf9+3Hf/0+Cv4bM/lPpmyETCcznUcEJZwxUY2OtFf8rw4MS9D\nnpiXfF7eebcs2UhXgM0QjCuTjSgxD7ricrp6Mc6a3HlMsoGueZ9GylLKRppmgSppTS4bKTxGWtko\nGNQcDEYOluNXzeNeN6nnQV5hVwzYphIzo2zkIaYqEuRNAzfKbx6volo2KhFqtQerNkXq5s+fj6ee\negoAsH37dsyePbsmx2XUDhdNH49LZo7H7r3HsYvrvjBCIjbk5X0PeXFiXgY9nhflBifUXtGXRzdL\nAkbZKCGTjYJjnBouxjRYm5ZtpF5/ebJBMmGqBaOSe4KZVNoidQS7dSTIXb9DJkT5TSSvEvImD3xW\nHEtscCmR+8LERZlIh/faKuN5vPeReD0I2UYy2VCVkVbNbCMvFi9ejKamJvT09GD9+vVYvXp1TY7L\nqC2WXj8LFoB/e+INbvrJCIX4yUatTWhyU6VLnpdS/xdFPIO2eZ0oG2k8L4ZMooRllk2ksRoamUJW\nir8wxkkDV6fKBmQDSTq5TDbQbZTOGOn6JV4lnWyUVXievHaTZCOjtFLyPKhlE3VQczmyoZKYefoW\n5XPquKjS2gz3iIbgeO81tzs3QTaU2exdUzXQ1dWFvr4+AAUv1tq1a6t2LEZjYNrkNlw5ZzKe23UI\nz+86hKsuOafeJjFigth5Xsa2NpfqvAiyESDfTIDwspEYsBms4aJ60y15FdSSAEHu8HhDTNlG+byt\nrebrtZfSeVm2eSWEzVvvedLH8zgER5dJ4yUdKtnMP0Z+/QOZRFLZyD9GKhtJPBgym1Je2YgQF5RV\n3LfygGUFwfFKayJ593iedDE4Xnu1179GnhfGyMGtC2cimbDwq+f3uqnvDIYJsSIvqWQCY1pS0lRp\ntfvd6fTr0fMN8Qwy2QCgZQnJ4ll0m6UxniGvzqShzFPadClVaDWeB+LmLcskIskdmuMpM5tkHixR\nfvNs3m4tGKNsKPFOqdpMaHpSUTKySnKX+drq0sApslGJKIv3rL+GS8E7JUpd/n8jDEZUmNgxCpef\nNxF/PDyAvYfiF2jKqA9iRF4y6GhtgmVZaEoFK+wa40JCykbiGGdcGNmotDFXJgmovErOmCwhqDNs\ntpFsXZZ3Hq1sImzMmk1X5XlIyDZmLcEzZ+So5Ddx/aR7RCPTGGOeLMsXg2Vem+EesWmyUZh6QSbv\nFIMRJa7lnkeMkIgFecnlbZzoz6CjrRkA0OxU2B2SyEblbMziBi8ZA4heFfNbNaWhojpLRuJVKEc2\nkqTvUjZmGXnzb8yF/09pApZVngc3NTmnkY08dqvkF19GkmpM0rx5lysbWQiSLqpsZKNYgJAg9xkJ\nTk7nnSt5TNQdvAmykXAfMRhR4pKZ4zG2tQnP7zrkyyJlMFSIBXk52T+IvF2orgugFLArk41ID2ZV\nWm5RNpFIC0BRNhKzTSTHK0c2SoneGXez8KbBqrNkVF4e76brNO/TyQ/O/0s9T0laQ8nIZSOCV81E\n8KheLtX6g7JRMJ3YOZ5ZNgrGM4npyz7SoTyPniJ1hLUZs5Y8a6t3thFjZCGZSODqS87B6cEs/usP\nR+ptDiMGiAV5OXryLIBCphGAUsyLL9uI9lat9Tx4Sr+rZSMh20QqGziZJIYN1VOfQ/fmbZKNdBtz\nubKByvMUpWyU03iMxCwZk91KougNWDXJRjn1PeIGbBvOUSKRkMiGGo+RJmvLmYNyHlX1gvzzGDw4\nnkwy9b+j2tR5YYw8XHtpQTr63cvv1NkSRhwQC/JyrEhexhE8L4HGdJ4Hs1NCv2zZKGn2qqQSpRou\nxgwgW715+WUjc1dlVYVVqXdGUxDOGSsNWBbieZIJK1AVUy6tqbNklB4j78ZsytrSykaezC4lCfAH\nrMpko8Jc/rXJCC5JNgojieXzRvnN751Tz2MmU+qgds42YlQbUyaMwXnnjsWrbx/HkRNn6m0Oo8ER\nD/JywvG8FGNeZJ4XUzptjq75K2UjKygb6d+Y5RkpctmIIHeUFc8gScuWFJZz1u3YJZeNEjB5HnwF\n6Az1afR1bsxF6uSykaaQHUF+K63fnG2mGmMiby4x9dgtyoZSz5uG4JJkI+X18Hu5pLVgLAuWxeSF\nUV0svHQKbADPvvJuvU1hNDjiQV5E2UjieTERE90DPlDDRZdt5NmYxFowgIJ0qMbkNHEIkvoc2oBV\nimxEyGwp/H+wSJ3zu7xhjLeGi5FQajxPkclGEs+D8pppOm8D8BWXU8tGHtnQSJbzlclGnnvE5OUj\nyYaaPlLO7zjbiFFNXHHhJDSnk/jdKwe54i5Di3iRl2K2UVOImBcZmVBtOmbZKKHNyAD8pfaNcodu\nY0pKvBOqeAabJj8YC8JpZAPAkY3UPXK8c/m8IarWBzmClOEpUqcmb3liZpc5gFolLTrr8BI8s2yk\nJybkTCqT/JZXy2+UMZRjOXNlmbwwqohRzSl88MJJOHLiLPbsPV5vcxgNjFiQl6OCbNQkSZU2EwX1\nRun8zR+wKY/5MBGcMN6AvE2rPRImqLcc8uZwImO2UYISsBr0dGmbTqrstoJ2l+NVk8lGuhgklbfE\n+Z0vI0fSBVcuG8k9JpQ0+JzmHgmzft31l10z1fVnzwuj2nBrvrzCNV8YasSCvBw7eRbN6SRamgpy\nUTKRQCppYcgrGxE2uKzhwWwKxkwmStKSLubBmUMVYyFP31XFPNA8JqqgzpRk8xY9OE43ZK9spvI8\nUGrhBNem84aUH8/h3eDNLQQITTBz5s3bd49IUqWTCX/TTUuzNqo3SLk2TzByViE/pcqMLzLFMzEY\n1cL5547FpHGjsG3PYZw+O1RvcxgNitiQF6e6roN0KunvKk2Ii9Dp+d4aLtp4BqNsFIwxUKY45/Jq\n2YhAcCiykVQ2UGy6zuZtS+xx1+/xPOhkI12gsVzKKJ/g5HK03k4q8uYjuIrz6IyjEFxnLl06tWuT\nIQNKG89E6FskJWbKjCT1sZy5WDZiVBuWZeG6uR/AUDaPzdv+WG9zGA2KWJCXE/2DrmTkoCmd8DVm\nNMd8EN6qvQGbsg2e4Hnwp6/Si9RpAzYN8gs15qFEAtSZNLrNK0mqcyIhi+XIRhQPjrfzNKF5pVo2\nKwVs62UjTyYVhZioCI5ENtKSToJsRJGfzLVgzNIq13lh1AIfmteFttFp/Or5fTh5OlNvcxgNiFiQ\nF9suBes6aE4lFbKRIp3WJxsFl+0EY7rN+yTxDMliqnShG7I8YFOemqvZUMJkSYlvzIQWAinZPLK1\nFWWjUvaL/Bz5N2/JGO/6bbuYYquWTUyZVPR4DhVRlFShVVTGNZK3kJ4XHQk22+3xqqlLSxRfAAAg\nAElEQVTIm6fppuo8pgjERGYPZxsx6olRzSnccvV0DGZy+MWzb9fbHEYDIhbkBSilSTtIpxNCtpE5\nDVgrGxWJiSkjyZnLJBuRM0lUVU+LG35Ws8G5sgGhUqs5nsHyFXszyUamzduZS3WuRZt0RerUkpAn\n5sMgm2UpxERT7M6x27R+8XyrgnrdMSbZ0CMtUq6tTjZSenmKTTcpGXksGzFqhUWXd2Hi2BY8+dIB\nHHmfi9Yx/IgReRFkIzHmJUzMg+atWhsXIng6KNlGFvSyCaUAGSlLRvVWLVt/uZ4Hy1PDxbR52xrP\nQ0jZSOlVI3ieZMeSEYrA9ZetP+B50pA3nWxEkLJIcUGErCXvPUK5/s6xVPFM7Hlh1ArpVAK3LpyJ\nbM7G48+8VW9zGA2GqpCX2267DcuXL8fy5ctx//33+777z//8TyxduhQ9PT342c9+Rp5TJC/N6QSy\nnjohKtLhxDPosjYKv0v4gyMVshFQ2lAospFqo3DmCSMbBZr3yWrBUGQT6caUMMsGxePZtm7z9tsk\nPY+eLBm13GGWe/wBq861VcuGpXkUMT8+GU8uifnJm142K5A39RhvDRud3eoGj2XKb9JrYpG8c41E\nXrZu3Yre3l4AwK5du7B69WqsXr0ax44dq7NljKjwJ3MmY+qkVmzd9S72v9dfb3MYDYRU1BNmMoXg\nqh//+MeB77LZLNavX49NmzahubkZn/rUp3DDDTdg/PjxxnlF2cjpbzSUzaO5KaklHY7coQp8BFAi\nOFTZSFOFtzRGXanWO4/3b+KxshqbKJKAczp81VwVnodMNmeUjQp2F+bSy0aFMXrZKK+WzTzzZBV2\ne0lA1nge1QHUzt8KEo2avBXuo7yxFoxv/SbZiOIxq7Js5K5fcyznb40iG+3btw+7d+92nzeZTAZf\n/OIX8cwzz+Cll17CDTfcUGcLGVEgYVn4+PWz8D9/tgOPPfUG/sftc+ttEqNBELnn5bXXXsPp06ex\nYsUKfPrTn8aOHTvc79544w10d3ejtbUV6XQaCxYswIsvvkiaVwzYdTpLDxYzjrQP5qQFX/M61cPb\n1r+d+zwdtt7zoJUNkkGvgiqeQysbEVJlvTVcKpaNCJKIKHcYZSNTirtOEgshrRllo6RZNnKabprS\nqR27w8hGoknyFHeNd0YlrUllQ3UBRoeYib2WnLmq6XnZsWMHli1bBgCwbRtr1qxBT08Pli9fjv37\n9/vGTps2DXfddZf7ed68eXj99dfxox/9CBdddFHVbGTUHpfOHI8Lpnbg5TeOYs8+rrrLKCBy8tLS\n0oIVK1bgkUcewVe+8hV89rOfdV36/f39aGtrc8eOGTMGp06dIs3bMSYY8wKUquzqNuakKxvpN29d\nTQ3v30qykbpInSubKCr1OvNQNp2SbGRu8KeSKYyykSsb6LNNgMLmLWve5x2T123eBLlDmiWlrRdj\n7rytzTYSArZ1xCyrkx8DspGB4OYKHqxgd25zewhfY04TCdaQQABu0029d6Z6Reoefvhh9Pb2Ymio\nUJRs8+bNyGQy6Ovrw6pVq7Bu3ToAwEMPPYRVq1bh5MmTAAokBwBeeeUVzJkzBz/4wQ/wwx/+sCo2\nMuoDy7KwdNEsAODYF4aLyGWj6dOno7u72/3vjo4OHD58GJMnT0Zrayv6+0u65cDAANrb241zjm5J\noblYXddBc7FFgJMurQrqBDyykeHNO+/dvGXufp/cYcq2yRNkI7U3yCfRmGSDXGkeZcl6TSE3AG4w\nLkU2cs65dm05mnfG2CxQV4DO25hQNU+xGzIl22gok9du3s7fMkNq8iLKNCb5MWvwzugIJSVVnCK/\nOb/T9ZFy/parEnnp7u7Gxo0bcd999wEAtm3bhoULFwIA5s6di507dwIAVq5c6fudQ/r6+/tx//33\no6mpCZ/85CerYiOjfpjVNRZzZozHrreO4Z0jA/jAxDH1NolRZ0ROXh577DH84Q9/wJo1a3Do0CEM\nDAygs7MTADBr1izs3bsXJ0+eREtLC1588UWsWLHCOGfP4gvQ2dnm+1t7ewsAYHRrCzo72zBqdCEm\nZlzH6MDYpnQCsCy0FX/T3tYSGNPSnELetjG2YzQAoHVMU2BM65jCMcZ2jEbettHcnAra1VY4Rmv7\nKOTyNtKpRGDMuI7CW+PoMc1IFuWvyZPbkE6VCNr7Z7MAgObmNGAVvEsTJ4zxzTWqWLwplU5i1KiC\nbePHBdefSiZgJSy0thZsG9s+KniOmlPI2yUPVuuY5sCY0cVjtLWPKhy/JR08R8XAamdMc1MyMKaj\n+N2YMc1IJBNIJCxMmuQnseNPDhZ+PyqNpuK56JzYhs7xo90xiabC7ZtOp1y7x48bI11/MpHAmKL3\nTrr+phTOZHJoH1uwra1Vsv4WYf2j1OtvHzsKeRtoTgfvkbHF+7C1tQX5XCGoN3CPHDkNAGgZlUY6\nXVjn5EltGOsJXM/Acm1vbk4DACYI94hL2FJJd/3jOoLrT6cSsD1rU/0bqRYWL16MAwcOuJ9FL20q\nlUI+nw/UFtqwYQMA4KqrrsJVV10V6pji+uKCkWr3zdfOxK63juG/Xj+KuRedE5FVeozUcx0HRP40\nWrp0KVavXo077rgDiUQCX//61/HLX/4SZ86cwe23347Vq1fjM5/5DGzbxu23345JkyYZ57x10Xk4\nfNgvL+WKctGh905hbHMSJ04W6gD0958NjAWAoaEcjh0vbAhnzw4F5yt6Ew69V/h7JpMNjMlkCpvo\ne8Ux+Vw+MObsmQKhOH58ALl8obeNOKa/v9Bo8sSJMzhb7N1x7NiA74345IniegYGXWns5IkzOOyR\nIc4W7TlzZggnT6nXn7AK8tr77xfWf+Z0JjDGLr51O2/eg4PB9WeHssVzdNI9Z+KYQc96hrJ52HZw\n/adPF4jJ+yfOYDCTRcKygueo2Em8v38Qp4sk7cT7p5HIlWr7nBgo/P30mYzreTh16oxk/RbOZrJ4\nv3hOT58elKzfRjabx9GjA8X1B++RbNa5504Wz0cueI8UidbRYwPI5fKw7eA5OlNcz/H3TxeDetX3\nyKlTZ3Hac09lzpSqjZ4o1r4YOD0Iyy6s/+SJ4PotFO75E8X1DwwE1w84/0YK6z97JniP5HO1q67b\n2tqKgYGB0rElxKVSyM5Bo6Ozs23E2j1rcivGtKSw+cV9WPLBc5GSSORRYiSf63ogLOGKnLyk02l8\n85vf9P3t8ssvd/970aJFWLRoUcXHcbKNnBYBOj0/IUgiKtkI0EsirmyQJcoGubz0H5gYRGlJbJJJ\nK5QaNkp3f07dvA/wyEaEmI8MRTbK04u0mc4jqW9RziAbEuKZfOdRYzf5+htlo0KWlKqmjrs2hU2U\nrDXneI5EpVqbmG2kW1stMH/+fDzxxBNYsmQJtm/fjtmzZ9fs2IzGRDqVwJVzzsH/t+2PeOWNo5g3\nu7PeJjHqiNgUqRPRXJRbhorxB9qNSQhG1G0WQ5qNyfkbKeZDm23kD+rUzUPKyMkbangkzJk0YjyL\nLktId45o2UZCLRhCcLTseJRib844U/VkarYRQL3+hfgZ1fXwrs0UF+MGbCsClnX3iPM3f9aS/Hjm\nWkC1Iy+LFy9GU1MTenp6sH79eqxevbpmx2Y0LhZeNgUA8MzLB+tsCaPeqJ6IXWWki54XN1Va88bo\nZtvo6ry4b9U57TwAjeA4nZ6NAavKDd68eTtv0Lo+SoXfJTCUM6SKFz1EjkQlfzv3B0mrit15bTIS\nE2XKuZ/gyY5HCVh1/qbL2nLm8p9HdSZZaf1qr5obQKzxvDkB4qpeW6UxZs+TrvWFE4xuIiaUInXV\nRFdXF/r6+gAUAnHXrl1b1eMx4odpk9vQPbkNL79xFCf6B30xYIyRhdh6XppSzmZbzDYyFKBz0lIB\nxQaf9HtyyiU4ftlAkW0kSAJm+UlVgM4ibToF2USfSePY4JAXvWyUM87jFLIzySZOqrBujEru8h3L\nJJsYCtA5TTfdMVrZqLJz5Ms2ohQ7NMlGpp5UliAbEchLvWUjBkOFhXOnIG/beHbnu/U2hVFHxJa8\nNHsq7ALQxjwEitRpXPlDinLt3r/pZQNvDQ99kTpXNtB4OSi1R0xyB0k2shzyEo1s5NSCUfXIAfQt\nFEiep7CykYbgujFPmhouJNkoaT5HJNlI0opCrAXjrt93j6jbGpjKCZhaKNRSNmIwVPiTiycjlUzg\nmZcPunV+GCMPsSUv6ZRf5jAFY+qq2QKSzZskG2kkAU3/m0AhO0NQb6kcvboAnWnzMpEgZ9OleFW0\nG3PSIS+0uKC8rSJvQdkoUOekWMPF6FULyEZq0qWL+QnKRmqvGl1ay2s9gc61NRFlnecxmUwQqicn\nit4ZXS2Y2D4uGMMIY1rSWHBBJ949dhqvHzhRb3MYdUJsn0ZOttHgECHbSHSJazpGDxHc/bRsk7xm\n0ynJHaYGj0a5I+H3KumyjXR9awKyESHbRieJkTKScrS4oGzehmUZsmQ0XjXS+gl2h7n+lHlc2Ugb\n1KuW35KSe0QtG3l6W2nmUhX7U/2OwagHOHCXEWPy4pdwdA/mUk8as8fEmU/2du7KBkMVeid88Qzy\n5n2yTBq9bEQIWNV4cJy1DLqykeYcuXExmqDW4hhVcCzg8U6ZPE8KgufYoEsnd8YYPQ9uzJOavDlr\n0V5/cR5CPAsl20h2PzommgO2Q2SbOXZrpDwGo964sHscJrS34MXd77n1rhgjC7ElL81ubyNzqrT7\nYCYFY5rfmIcMEoVvjGYeUsxHsSeNpbApKBuVPwbQe54oaxNjR4xyhyrmR5BNVJJFKUtIT7pyNo28\n6a5tYEy558gnicllo5Rwj8jOo7fpJq31BeH6a/6NMHlhNAoSloVrL5uCwaEcnuPA3RGJ2JKXdNrf\nVZr2VmkmHSTy4nhVdCRIk7VE8Sr4so0U6cTOXJS3ahtAliDlDFKyjbRrSxDGCORNIXUA+qBWZy6S\nd8pTpE4vmxFkI11vI4s+j64WjJhOX/H6iWnQlL5NDEYjYNHlH0BTOoF/f/Zt97nFGDmILXlRdZWW\ny0bFDZUg5WQ1Y5y3YW08R8hsE1NcjNMNW/XWG2Zj0mcJ+UmHLtBUO48QsKoLjnWbNxqyjVQExxmX\n9cpGOs+DoRaQf23BfxpRZxtls4WMrHJlI2ecr3qwoqt6lEUKGYxGwNjWZiy+YipO9Gew+ff7620O\no8aILXkRu0qTZCNSMKbZ86D14BCyTQKykUISSFglSUB2rML8IeI5KNWDK43nIbRZECUxHQnIO94J\nzead9wSjqq5JIb7GfE0o142SbaYdIxIcidRFkY2c40UqGxGIGYPRKLjpT6ZhTEsKv9q6DwPFvmqM\nkYHYkpe0wvOir4zqBJFq5A5SzEulhdxK8Ry6YFT3rVqRTuzYQK7hQohnIclGhHlIhexyeeRts2yS\nV2TbOHNRZBOARqjCrK3ccy2OMWVbFciL/J+qd/2F1HGNbETJNstqss0U9yCDUS+Mbknj5qum4/Rg\nFr98bm+9zWHUELElL6lkocbHYHFD0r15kuQegmwUiIvRBJqSZAPTW7VH7qi+bFRcW5g6N4RaKGXX\nVLEsWChDNqpQyqm4t1UZx9IFx4aRjZTeObfpptobFLwmXKSOEQ98eH4XxrU1Y/O2P+JYsRs9Y/gj\ntuTFsiw0pZPBxoyEDZUUjKursEtJJ9bMI9aCUWXSeGMVZMdyjmcsUhdiQw1VpE5DFCleDt0Yx26d\ntOb81sk2UtaCCSHlhRpTZhXiAMElNK9Ue54S5qBmp6KzNuaHUD1acQ8yGPVEUzqJj107A0PZPP59\ny9v1NodRI8T6adScSribbZh4BlntEdE7U24arBuwSqwwq5rH+a1TC6Ui2ShBt4m0eWvmCXWsnJoE\nOb8Nk22kO4+hbSrT7nLOkTzmqfD/pPU79XI059FkU5h7m8FoNFxz6TmYMmE0fvfyQRw8OlBvcxg1\nQKzJSzqVdGNedKX/S94Ac/VcUoVdXeflpH+MXqJRH8v5bcE7I29e6PzWaXAIlDY93zxWNDYlE+Hn\nqXj9BNmsIBvp42KisIl0jgjnWhwjm6fUdJNw/XPqKrxeG0Ktn+u8MGKEZCKB266bhbxtY9PTb9bb\nHEYNEGvy0pROuBVhdSXkS4GmYWQjgneiXNmAMMaZvyQbqTcm2y6sP5mQB2wGZSO13DWoqZ4blDtk\nHiwx5sfc4FItiRUzqWyNtObJtlKOIdgdTAOn2E2QhMqMi3H+bvIqUe8Ro02Ue5uzjRgNjPmzJ2LG\nlDZs23MYh46frrc5jCoj5uQl6T5sTVk7gP7hHUo2ChEXUS5RAgpEzJWNDG/V2azu7ZzeDXuIUIBN\nF2gaJrPHuP6oZCOC3eWRTnPga0XXP2G53bmV5MVzj1Dv/0plQwajEWFZFv70iqkAgKdeeqfO1jCq\njXiTl1QCmaEcbE0HZ0DmDajMOxOmMaGKBFiWfh7nt24miTKeoZTirZyHYpPgedGn09LPI+lca+N5\n8rRsK4psFPX115CgjIbgBLLWNGnQpqBmb7aR7jz6bars3m4UbN26Fb29ve7nI0eO4OMf/3gdLWLU\nG1dcMAmto9L43SsH3RAAxvBEvMlLOlkoe58rbHC6BzxAq6uR1YwpvZ2qa2GUZAN1g7vCXInSGKUk\nkAghCeS00oLJJjHbSC93qOcR44vKncf5rdNQUietFOxWe54is1sco5UNQ8yjWVtpjEoSo2WkOcdT\n1YIh2d1AstG+ffuwe/duZDIZ92+PPPIIurq66mgVo95IpxJYeNkU9J8Zwu9fO1xvcxhVRLzJS6rk\nddBtcOGKlFUW8xA4luZtmCQbESqsOscjr1+3eRF624SRjZSeJ8MYZy5dPybR7kquf1kxT2XKhmFk\nM2NcjBUi20rnnQshiVULO3bswLJlywAAtm1jzZo16OnpwfLly7F/v7/8+7Rp03DXXXe5n3/yk5/g\nox/9KJqbm6tqI6Pxcf28LlgAnnjpQL1NYVQR8SYv6VJnad3DW6w9It+Y6BV2KcXudC5657ck2ShP\nS4PVykYhZAOtbESQn4KSSGXrp5xHx26KbGah8qDuSq8/ZR7nt5Tz6HgfKbKR6Tzq11a9x8XDDz+M\n3t5eDA0VSrxv3rwZmUwGfX19WLVqFdatWwcAeOihh7Bq1SqcPHnS9/tnn30WfX19ePnll/Ef//Ef\nVbOT0fiY1DEKc2aOx+sHTmD/e/31NodRJcSbvDiel6GcNuaBEofhDXw1jQnV20bjyqdkG2U1tTnE\n41EDVrWyESGdNoznSS+J0D0PlDRgs2ykvkdIBFfMEiIE/kpJEKFonvNbynl05lLJOt6AbfU89Kab\n1UB3dzc2btzoft62bRsWLlwIAJg7dy527twJAFi5ciUefPBBtLe3+37/rW99C2vXrsXcuXNx4403\nVs1ORjzwoXkF+fBJ9r4MW8SbvBQ9L4NDOVJcBEU2oDSvo/TRccv1G4rLFf5bfhkS3jGGeAZ9qrDZ\nJsraAvOUeY6cuYxjErQxzvFMXgVdCX3S9beEMRryppunVMPFtLYE4Twm3ONRzpGJBFKufzWwePFi\nJJNJ93N/fz/a2trcz6lUCvliIUovNmzYoP3MGJm4bNYEjGtrxrO73sWZwWy9zWFUAal6G1AJmjyd\npXM5G+km/QZf+mzu26IjOLoxwWPpN0vVPID/zb6iebxjNM37dJ9lNug8DyabvASKYndU66fMo5qL\ndo4Swmf18XQkUPxtLc+jai7Vb6uB1tZWDAyUKqUWmnNG+67V2dlmHtSAYLtp+LNrZuB//fo17Nr3\nPm66ekZZc/C5blzEm7x4Okvr3irFv+u8Ku5nQpEunedF9Vn2W5PcAeg9OKZ5vDaYspZKnyUBm5Z4\njsxBnericpZxDI2YJDz/bR6jOo9iywi554Ewhkrewl43wn2ka97ojidff/O9XU3Mnz8fTzzxBJYs\nWYLt27dj9uzZkR/j8OFTkc9ZbXR2trHdRCw4bwL6Ehb+/ek3seC8CdKXNh34XNcWYQlXvMlL0fMy\nmM0Xi9TRPC+yeziw6Woa/KnmBeDWcLHt4hjCZlEZ6Qi5eRPGqOYSN+9KPA/euSh2R0WCVPIbhXSR\nCB6RvKUSFgYNY0ITXKLnzTRGNZeKHFUDixcvxpYtW9DT0wMAbsAug0FFR2sz5p0/Eb/fcxhvvHMS\n53WNrbdJjAgRb/JS9LwMZfXZRuJGqatz4YAiG+jehrNOB19DlpDqWOJvI5NNCPao5qK8ncdVNiJd\nfyuacyT+tiLZqAqymanNRrXQ1dWFvr6+og0W1q5dW9XjMYY/PjT/XPx+z2H8y2/2YPVfLEBzU9L8\nI0YsEO+AXW+2kU42IpCAgMdA1v+G4HkQ56pI7khS5qmWbFQeeRP3vKjkDuX6k5RrG97zQAlYra1s\npPDOWN7zWL7nKawHi8GIAy6c1oHr5k7BvkP9ePgXryLvuMQZsUe8yUu6FPNCqUIL0DYT8Teqv9Fk\niohIR1SbN9HzIJtLJBmyuZxMGqNNIeUO5XkM6Z0yZRsBKNSCKdOrEriPFMdLUc5RLWUjgoynIkcM\nRqPCsizc+ZELcOG0Dmz7w2E8zh2nhw1i/TRyY16GihV2lQ/mMmQDmducEPMi/r2yYFTCxlzDbJMw\nspnJpmrIXVHJRpES3IjsVtsUjZePch+x54URR6SSCfzft16KSeNG4f99bi+2vHKw3iYxIkDMyUvB\n83I2U8jjr0w2Mr8xi3+r7E2XIAn4Nq/ygzrDZq2oxlHJC8nz5JM7Ktjgq+B5qiQuxrIsIhEgEAqK\ntBjyPEblCWQw4oTWUWmsXHoZRjen8P/8+jX8Yf/79TaJUSHiTV6KMS+ni0WIai8bRbN5RyYbEeIZ\nlCRISMuWBTVTZCPxeBRvWEWyUUTkLWxmV6Vz1U02qoAE1jLbiMGIGlMmjME9t16CfB7Y+PgrXLwu\n5og5eSl6XgbVXZ4B4ts5watSjmxS7SwZ3zyV1IIpQzageYyqvP6IZDNKLZh6Xv9GkN/Y88KIO+ZM\nH4+PfHAqTp0ewn//kb0vcUa8yUsx5sWRjSg1PChZG8pU0WINF9m8vrlqKXdE5cEJ6eUgH0/lDQqZ\nJVNJoCkp+6ucuKgKZMPovEHe81hdT6Dq7wxGnDBnxngAwJ59TF7ijHiTl6LnxXH/UTb4SlJXxe8o\nm45qQ4lONvJs3gS5Q715e+ZRenDCp4pT7CbNU0GKLymA2ns9CMfSzkUgbymK3V5CRfCq1ZJMMxhx\nxayudiQsC3s47iXWiDd5KXpezmTUnZAB4ts5YTMVv6tptk0DzFNODZdKPA/VkLuispk6V0XXLeTa\nWDZiMMxoaUph+pQ2vH3wlOu1Z8QPMScvTraRnryE3yjVp4X2phvS01HJPCE3JkrWisqDQ63hUo3s\nFlrWVm09D6pWKaGDkSuR33xevuoWqWPPC2O44IKpHcjbNl4/cKLepjDKRKzJS7qYbWSUjShvlQQZ\np/Cdud9OgrChJAkbSjViVUhZS0TZrKbpy5WsLSLCJV4PVaO3hC+ep5JrEn3fqoqkPi5SxxgmuGBa\nBwBwynSMEeunUcKykE4lXPJS7ZRT8buKZCOvJEDKEqIUu4so+0fTfbUacke15ZewnifdNXOGVUrw\nSMXlCPdILWVDlo0YwwXnn9sBy+Kg3Tgj1uQFKNR6iV42qtDzUMMNJap4hrDrV2VkiceoJNA0LFGK\nKgZJZbN3LirBjUw2iuo+qiCdnmUjxnDBqOYUpk1uw1sHTyIzlKu3OYwyEH/yki51CY2qXgY524gg\nLyhlg6R5ntCFzEjptOXLWN5x2rigkIXzovKYUbKtKsna8s5FlRZJspHKbtLaojpHNBLE9IUxXHDB\n1A5kczbeeOdkvU1hlIH4k5eUd6OooIS+RxKgvFVboL3FVuJVCFsLJCpPEEU20m7eoWWjaFofRJXZ\nRLn+lctG4bwhFa0tIu+U6TsGI064YGoh7mXPvuN1toRRDuJPXgieF0q2BeD1KkQnG5A2lAaLZ6jJ\n+qOSjUiBpoRjEa6Hd64o168j1GHmqTZRNn3HYMQJ50/tgAUO2o0rhgF5CZltUalXwRmjlRaiceXT\nZKNwkoiyCishVdp7PO05CpklQxlTidxFSgMmSF3euciyWSV2V0M2qoBM6exgMOKG1lFpdHW24o13\nTmIom6+3OYyQiD95SZU8L5WkpXq/q7lsUG3ZiCDjeGu41Hr9kXkVGkU2ElpNmGyqdqxW2Pgi7fo1\n5L/W2Lp1K3p7ewEAr732Gu68806sXr0aL7zwQp0tY8QFF0zrwFA2j7cOctxL3DAMyIvZ80Kp4QF4\nvQrmN29qOnG104Cjmsf7XcWySQ3ljqg25mrIZsmEuhZM2CyxirK2qtQeo57Yt28fdu/ejUwmAwB4\n+eWX0dnZiWQyifPOO6/O1jHiAjfuhaWj2CH+5MUT80JxrVfuVSgSHK20YC5kRxmTIs0TThJReae8\nc1EkMaq0QCIdhGybirJ2iPElYWq4aM9Rkn4f6eai9XYi3CPJkPej7t7WfFcpduzYgWXLlgEAbNvG\nmjVr0NPTg+XLl2P//v2+sdOmTcNdd93lfl6wYAEeeOAB/OVf/iUeeeSRqtnIGF6YXSQvf+Cg3dhh\nGJAXSkNB8xusd9ywk42I5C3q9VdcC4bgMaibV0V3H1n0eXTj6iYb6byKVZKNHn74YfT29mJoaAgA\nsHnzZmQyGfT19WHVqlVYt24dAOChhx7CqlWrcPJkwc1v2zYAYPfu3cjn82hra0M+z/ELDBraxzRh\nyoTReP3ASWRzfN/ECal6G1ApvDEvlRAFgOhVqKFsFDbFmZK1UhPZqAoEj0LeKpFW3O9yds3jokhr\nq7L85j119ZCNuru7sXHjRtx3330AgG3btmHhwoUAgLlz52Lnzp0AgJUrV/p+58hyXV1deOCBB5BO\np3HvvfdWxUbG8MQF08bhyZcOYO+7pzCra2y9zWEQEX/ykqa41i3jGCDCbKOkx/ukJD8AABIjSURB\nVPMQEXmpRBJJ+eQXQiZNpdk2IcbojkfL2iHIL4Tsp9JceaJsqLv+lIys6Amu8vonLOl/e+EEbOfy\nNunejhqLFy/GgQMH3M/9/f1oa2tzP6dSKeTzeYgtMDZs2AAAmDdvHubNmxfqmJ2dbeZBDQi2O1p8\ncM45ePKlAzhw7AyuvPxc33eNarMJcbU7DOJPXjyeF9XD27IsJCwLeduujVfBMo+JyqsQVn6qpWxU\neS2UcF21STVcaiEbUeapRluDCK5/Lm+Tr1s10draioGBAfezjLhUisOHT0U6Xy3Q2dnGdkeMye3N\nAICdrx/GdZee4/69kW3WIc52h8GwinmhSDmRyUaEB7zuYRtWEqqpbFTx+sOV0FfGxRA2eP/mXX5j\nSu93Fa+fQF6rEc9SKXkNE89TbcyfPx9PPfUUAGD79u2YPXt2TY7LGHloaSq8AOfydp0tYYTB8PK8\nGLJksjn9mFCyEUESSBGydnRz0WQjsyTilQT02Ub0AnQVZyRR1haVtEKQn7y/J43RZuQQ5vFmZFXS\nLDFkscOKs81qVKRu8eLF2LJlC3p6egDADdhlMBgMYDiQlzQ1niFar0qlxwotG0XwVm2SBEJ5FWpc\nQr/hso0inIdSC4YkiVUgLXqPVy/ZqKurC319fQAKhHvt2rVVOxaDwYg3hoFsZI55ATxSjnbTDVGk\njiQbVCobmaUVytu59xiVjmnobCPNBm9JxqvmIq0/ouaVdIJbviQWqWzWQBV2GQzGyEX8yQuhwi5A\nc4nTNq8iwdGRIJK0Qiku5pUEys/IAUpyQVSSWFSyka4WDK23E9GrErHdlRfyC1vsULF+byYVoZCd\nPtuMQN6rWKSOwWAwqIj9k4jqeaFVPQ3hVYioO7VuHClgNWQwbmTZRjXI2gpbyI3kVaphDZtG8U55\nl9zIshGDUU/YHK8bK8SfvKTMHgygtMlX6p2JSjby/l61n0aVbeT9fcWyUYjqsVFt8Lq5GjkNvFIP\nDikuyEteFTeSt+lmVLIhgzF8wPd0HBF/8pI2V9gFvN4QQpE6wtt5lBKFMmCT0tuHkJHj/X3FBeiS\nUc1jlih8vZ0q6O3j/Y7WmJMg91CkxQrvx6iyjfzHi8Y7yWAwGPVE/MlLyhwXAFA3nYjfqiscQypA\nF1Y2qlg2oW/eldZC8a0/soDlqIKxI7qPiOn0lWZSkWTDkD2ZGAwGo16IP3mhZhuFkY0iIzhmLw9l\nM9GNc6oHe22TH89MOkjExDmPlWbb1Es2ItlNITgRtZmocP3UTCKWjRgMxnDCsCIvkT28Iypkl4go\nI8U0LkwwbqXSQhiPQZQbpTLmJ2keQ7WJQqhcaUVDglLuPOYYLJI9llpapLY+qAahYjAYjHoh/uSF\nLBuF2yxMYyjzVFrNllxcrZZriyhrK2x8hYoseWu46M535KSrUoIbInZIdx5TvpinyuYKM4bBYDDq\nidiTlzSRvNC8ExHHxRA6WFM3CoqUE1W2UU2ydkLIeBZock+j2B21l6PSuCj/8aKRuxgMBqOeiD15\nSSUTtDfGMBs8gXToM3vCZJtUJpt4v6uJbBRC7qgFmQLCeXEqrfNCOVaKME9kBCesbES6/rr7P/aP\nDAbDBy4aHU8MiyeRE/dCa5ZXqbRiTvENtzHRasFobYpIgmhU2cjUDLDRYnVox6JX2NWdR2oNF3cu\nSmVo9rwwGIwGx/AgLylzyX7KW3zkRcoiko2SCXXApm9chWNqKr9ERKaAcJlkNb3+FcYXUezxjqs4\nYD3EeWQwGIx6YniQlzShAFkYuSOibKOopBWTbELZdBqNmISp86LzFnjniCrbpqZ1XioMsvXPVbvr\nz2AwGPXEMCEvBdlIL1NE0zE6KrmD+iZsWea33TCNICkyRcXN+0I0+KNVxdXfpqHmahC7SfcI4V4D\naDE2YY6nz5Jj8sJgMOqP4UFeHNmowjdPkrs/VLG7ymQjZy4jeamhp4dloxB2VyobEbw8ji267txU\nm8JmwDEYwwk2d2aMFYYJeSkG7EYl5VQoG0UlLTlzkWUjysZUgziMqIiCY2rcZKNw8VXRyEaRxMWE\nbNnAYDAY9ULVyMvRo0exaNEivPXWW76///M//zNuueUWLF++HMuXL8fbb79d8bEmjm3BmJaUr+aL\niDDkpXLZiCDjEDI7nLnMslHR3U+RqSqUKaIigSkSeSlsysZso2TR81ADuyOXDUnH0v8zTSUs45jS\n8SgZebRmkfXG1q1b0dvbCwB444038OUvfxmrV6/G66+/XmfLGAxGtZGqxqTZbBZr1qxBS0tL4Ltd\nu3Zhw4YNuPjiiyM73v9104X4ZCZXsUxDexs2p6+SZCOC1OHMRZWNapltUqn8FqVsRvE8hPLOVFoL\nJioZL4RsRDmPxuOR7u3GcNbu27cPu3fvRiaTAQD87Gc/wznnnINDhw6hq6urztYxGIxqoypPom98\n4xv41Kc+hUmTJgW+27VrF77//e/jjjvuwA9+8INIjpdKJtA6Kq0dQ3l4pwjekNKGUv3GfM5c1GyT\nqKrQNops5IwzbsyWZSyeVst4njDXQ3cfOU03zdff7J1ziQkhnqtestGOHTuwbNkyAIX4gzVr1qCn\npwfLly/H/v37fWOnTZuGu+66y/28d+9e3HnnnViyZAkef/zxqtnIYDAaA5F7XjZt2oQJEybgmmuu\nwfe+973A9zfffDP+4i/+Aq2trbj33nvx1FNP4frrr4/ajADaRjcBgJbkXH7eROx/rx+zp3Yox8zq\nasecGeNx8fRxyjHnjB+NeedPxFWXTlGOaUoncO1lU3CB5lgAcP3cD7ip4Cpcfck5mNrZqq0Fc8WF\nkzA4lMPEsUFvmINLZ03AH4+exvQp7coxs8/twKUzJ+CibvX6z+1sxdxZEzDv/InKMW2j0rhyzmRc\nfp56DAAsmteFjjFN2jHXXDYFZ4by2jF/ctFkpJIJtGvmuvz8iThwZABTJ7Uqx1w0bRwunTlBe49M\nP6cNl82agMvOm6AcM76tBVdcOAnXXv4Brd0fmt+FKRNGa8dcd9kUnB7MasdcOWcy2kenMao5qRwz\nf/ZEHD15Vnu8OZr7vhI8/PDD+PnPf44xY8YAADZv3oxMJoO+vj7s2LED69atw3e+8x089NBD2Ldv\nH9asWYP29tJ9OnHiRLS0tGDs2LEceMlgjABYdsT/0u+88053E33ttdcwY8YMfPe738WECYUHeX9/\nP1pbC5vDv/7rv+LEiRO45557jPMePnyqIrsyQzm8d/wMztVsTFGjs7OtYrtrjTjaDLDdtURnZ1vk\nc/72t7/FBRdcgPvuuw99fX1Yv349LrvsMvzZn/0ZAOC6667D008/Hfjdfffdhw0bNmDnzp149NFH\nYds2vvjFL2Ls2LHGY8btvAPxvF+Axrb7zGAW9/7D07hs1gT8j9vnun9vZJt1iLPdYRA5efFi2bJl\n+Lu/+zvMmDEDQIG43HLLLfjVr36FlpYWrFy5EkuXLsV1111XLRMYDEZMcODAAaxatQp9fX3o7e3F\njTfeiIULFwIAPvzhD2Pz5s1GeZDBYIwMVCVg14HjgfnFL36BM2fO4Pbbb8ff/u3fYtmyZWhubsZV\nV13FxIXBYATQ2tqKgYEB93M+n2fiwmAwXFSVvPz4xz8GANfzAgAf/ehH8dGPfrSah2UwGDHH/Pnz\n8cQTT2DJkiXYvn07Zs+eXW+TGAxGA6Gq5IXBYDDKweLFi7Flyxb09PQAANatW1dnixgMRiOhqjEv\nDAaDwWAwGFGDRWQGg8FgMBixApMXBoPBYDAYsUJDx7zYto2vfOUr2LNnD5qamvC1r30NU6dOrbdZ\nSuzYsQPf/OY38eijj2Lfvn34whe+gEQigfPPPx9r1qypt3kBZLNZ3H///Thw4ACGhoZw991347zz\nzmt4u/P5PHp7e/HWW28hkUhg7dq1aGpqani7gULPr49//OP40Y9+hGQyGQubb7vtNrc207nnnou7\n7747FnbLELdnChCv5wo/U+qDEflcsRsYv/nNb+wvfOELtm3b9vbt2+177rmnzhap8U//9E/2Lbfc\nYn/yk5+0bdu27777bvvFF1+0bdu2v/zlL9u//e1v62meFI899pj99a9/3bZt2z5x4oS9aNGiWNj9\n29/+1r7//vtt27bt559/3r7nnntiYffQ0JB977332jfeeKP95ptvxsLmwcFB+9Zbb/X9LQ52qxCn\nZ4ptx++5ws+U2mOkPlcaWjbatm2bW6Rq7ty52LlzZ50tUqO7uxsbN250P+/atQtXXHEFgEJ10Oee\ne65epilx0003YeXKlQCAXC6HZDKJV199teHt/tM//VM88MADAIB33nkHY8eOjYXd3p5ftm3HwubX\nXnsNp0+fxooVK/DpT38aO3bsiIXdKsTpmQLE77nCz5TaY6Q+VxqavPT396OtrVQyOJVKIZ/X97Cp\nFxYvXoxkstQ3xvYkcY0ZMwanTjVeueZRo0Zh9OjR6O/vx8qVK/E3f/M3sbAbKDQa/MIXvoCvfvWr\nuOWWWxrebm/PL8dW773ciDYDQEtLC1asWIFHHnkEX/nKV/DZz3624c+1DnF6pgDxe67wM6W2GMnP\nlYaOeYlzlU2vnQMDA74mco2EgwcP4q//+q9x55134uabb8bf//3fu981st0AsH79ehw9ehRLly7F\n4OCg+/dGtHvTpk2wLAtbtmzBnj178PnPfx7Hjx93v29EmwFg+vTp6O7udv+7o6MDr776qvt9o9qt\nQpyfKUA8niv8TKkdRvJzpaH/1c6fPx9PPfUUAMSuyubFF1+MF198EQDw9NNPY8GCBXW2KIgjR45g\nxYoV+NznPodbb70VAHDRRRc1vN0///nP8YMf/AAA0NzcjEQigUsuuQQvvPACgMa0+1/+5V/w6KOP\n4tFHH8WFF16IDRs2YOHChQ1/rh977DGsX78eAHDo0CH09/fjmmuuaehzrUOcnylA4z9X+JlSW4zk\n50pDe17iXGXz85//PL70pS9haGgIs2bNwpIlS+ptUgDf//73cfLkSXznO9/Bxo0bYVkWvvjFL+Kr\nX/1qQ9v9kY98BKtXr8add96JbDaL3t5ezJw5E729vQ1tt4g43CNLly7F6tWrcccddyCRSGD9+vXo\n6OiI3bl2EOdnCtD49ww/U+qPRr9HgGieK1xhl8FgMBgMRqzQ0LIRg8FgMBgMhggmLwwGg8FgMGIF\nJi8MBoPBYDBiBSYvDAaDwWAwYgUmLwwGg8FgMGIFJi8MBoPBYDBihYau88JoLKxevRqPP/44LMuC\nmGFvWRamTJkCy7Jw++234+67766TlQwGg8EY7uA6Lwwy+vv73ZLZ77zzDj7xiU/gu9/9Li699FIA\npdLlo0aNQktLS93sZDAYDMbwBnteGGS0traitbUVAHD27FnYto329nZMmDChzpYxGAwGYySBY14Y\nkeLDH/4wvve97wEAvv3tb2PFihX41re+hauvvhrz58/H2rVrcfDgQfzVX/0VLr/8ctx444145pln\n3N9nMhmsX78e1157LRYsWIBly5Zhx44d9VoOg8FgMBoQTF4YVcXzzz+P/fv34yc/+Qm+9KUv4Sc/\n+Qk+8YlP4GMf+xg2bdqEGTNmYPXq1e74++67D9u2bcM//uM/YtOmTbjyyiuxfPly7N27t46rYDAY\nDEYjgckLo6qwLAsPPPAAuru7ceutt2LcuHG49tprcfPNN2PmzJm44447cPToURw/fhx79+7Fr3/9\na6xfvx7z589Hd3c37r33XixYsAA//OEP670UBoPBYDQIOOaFUVV0dnaiubnZ/Txq1ChMnTrV/ewE\n9mYyGezevRsAcPvtt/uymYaGhjA0NFQjixkMBoPR6GDywqgq0ul04G9OVpJsrGVZ+OlPf+ojPADQ\n1NRUFfsYDAaDET+wbMRoGJx//vkAgMOHD2Pq1Knu/374wx9i8+bNdbaOwWAwGI0CJi+MusORiKZN\nm4abbroJX/7yl/H0009j//79+Id/+Af89Kc/xaxZs+psJYPBYDAaBSwbMcqGZVnSv8n+bvqNg699\n7Wt48MEHcf/996O/vx8zZ87Et7/9bVx55ZXRGM1gMBiM2IMr7DIYDAaDwYgVWDZiMBgMBoMRKzB5\nYTAYDAaDESsweWEwGAwGgxErMHlhMBgMBoMRKzB5YTAYDAaDESsweWEwGAwGgxErMHlhMBgMBoMR\nKzB5YTAYDAaDESsweWEwGAwGgxEr/P9YOwWgh8V8jAAAAABJRU5ErkJggg==\n",
325 | "text/plain": [
326 | ""
327 | ]
328 | },
329 | "metadata": {},
330 | "output_type": "display_data"
331 | }
332 | ],
333 | "source": [
334 | "model = functools.partial(adaptive_expectations, inverse_demand, quantity_supply)\n",
335 | "interactive_time_series_plot = ipywidgets.interact(cobweb.time_series_plot,\n",
336 | " F=ipywidgets.fixed(model),\n",
337 | " X0=cobweb.initial_expected_price_slider,\n",
338 | " T=cobweb.T_int_slider,\n",
339 | " a=cobweb.a_float_slider,\n",
340 | " b=cobweb.b_float_slider,\n",
341 | " w=cobweb.w_float_slider,\n",
342 | " gamma=cobweb.gamma_float_slider,\n",
343 | " p_bar=cobweb.p_bar_float_slider)"
344 | ]
345 | },
346 | {
347 | "cell_type": "markdown",
348 | "metadata": {},
349 | "source": [
350 | " Forecast errors
\n",
351 | "\n",
352 | "How do we measure forecast error? What does the distribution of forecast errors look like for different parameters? Could an agent learn to avoid chaos? Specifically, suppose an agent learned to tune the value of $w$ in order to minimize its mean forecast error. Would this eliminate chaotic dynamics?"
353 | ]
354 | },
355 | {
356 | "cell_type": "code",
357 | "execution_count": 32,
358 | "metadata": {
359 | "collapsed": false
360 | },
361 | "outputs": [
362 | {
363 | "ename": "NameError",
364 | "evalue": "name 'observed_price' is not defined",
365 | "output_type": "error",
366 | "traceback": [
367 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
368 | "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
369 | "\u001b[0;32m/Users/drpugh/Teaching/sfi-complexity-mooc/notebooks/cobweb.py\u001b[0m in \u001b[0;36mforecast_error_plot\u001b[0;34m(D_inverse, S, F, X0, T, **params)\u001b[0m\n\u001b[1;32m 132\u001b[0m \u001b[0;34m\"\"\"Plot forecast errors.\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 133\u001b[0m \u001b[0mtrajectory\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_simulate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mF\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mT\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mparams\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 134\u001b[0;31m \u001b[0merrors\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_forecast_error\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mD_inverse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mS\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrajectory\u001b[0m \u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mparams\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 135\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0max\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubplots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
370 | "\u001b[0;32m/Users/drpugh/Teaching/sfi-complexity-mooc/notebooks/cobweb.py\u001b[0m in \u001b[0;36m_forecast_error\u001b[0;34m(D_inverse, S, expected_price, **params)\u001b[0m\n\u001b[1;32m 56\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_forecast_error\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mD_inverse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mS\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexpected_price\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mparams\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;34m\"\"\"Difference between observed price and expected price.\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 58\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mobserved_price\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mD_inverse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mS\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexpected_price\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mparams\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mexpected_price\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 59\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
371 | "\u001b[0;31mNameError\u001b[0m: name 'observed_price' is not defined"
372 | ]
373 | }
374 | ],
375 | "source": [
376 | "interactive_forecast_error_plot = ipywidgets.interact(cobweb.forecast_error_plot,\n",
377 | " D_inverse=ipywidgets.fixed(inverse_demand),\n",
378 | " S=ipywidgets.fixed(quantity_supply),\n",
379 | " F=ipywidgets.fixed(model),\n",
380 | " X0=cobweb.initial_expected_price_slider,\n",
381 | " T=cobweb.T_int_slider,\n",
382 | " a=cobweb.a_float_slider,\n",
383 | " b=cobweb.b_float_slider,\n",
384 | " w=cobweb.w_float_slider,\n",
385 | " gamma=cobweb.gamma_float_slider,\n",
386 | " p_bar=cobweb.p_bar_float_slider)"
387 | ]
388 | },
389 | {
390 | "cell_type": "markdown",
391 | "metadata": {
392 | "collapsed": true
393 | },
394 | "source": [
395 | " Other things of possible interest?
\n",
396 | "\n",
397 | "Impulse response functions?\n",
398 | "Compare constrast model predictions for rational expectations, naive expectations, adaptive expectations. Depending on what Cars might have in mind, we could also add other expectation formation rules from his more recent work and have students analyze those..."
399 | ]
400 | },
401 | {
402 | "cell_type": "code",
403 | "execution_count": null,
404 | "metadata": {
405 | "collapsed": true
406 | },
407 | "outputs": [],
408 | "source": []
409 | }
410 | ],
411 | "metadata": {
412 | "kernelspec": {
413 | "display_name": "Python 3",
414 | "language": "python",
415 | "name": "python3"
416 | },
417 | "language_info": {
418 | "codemirror_mode": {
419 | "name": "ipython",
420 | "version": 3
421 | },
422 | "file_extension": ".py",
423 | "mimetype": "text/x-python",
424 | "name": "python",
425 | "nbconvert_exporter": "python",
426 | "pygments_lexer": "ipython3",
427 | "version": "3.4.4"
428 | }
429 | },
430 | "nbformat": 4,
431 | "nbformat_minor": 0
432 | }
433 |
--------------------------------------------------------------------------------