├── MANIFEST.in ├── __init__.py ├── core ├── __init__.py ├── example_residuals.py ├── utils.py └── ode.py ├── llg ├── __init__.py ├── llg.py ├── mallinson.py ├── energy.py └── test.py ├── algebra ├── __init__.py ├── sym-bdf3.py └── two_predictor.py ├── .gitignore ├── setup.py ├── pre-commit ├── README.md └── LICENSE.txt /MANIFEST.in: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /core/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /llg/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /algebra/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | .ropeproject 2 | .pep8diff 3 | experiments/ 4 | core/build 5 | -------------------------------------------------------------------------------- /setup.py: -------------------------------------------------------------------------------- 1 | from distutils.core import setup 2 | 3 | setup( 4 | name='SimpleLLG', 5 | version='0.1.0', 6 | author='D.Shepherd' 7 | author_email='davidshepherd7@gmail.com' 8 | packages=['simplellg'] 9 | scripts=[] 10 | url='' 11 | license='LICENSE.txt', 12 | description='A simple LLG solver ... ' 13 | long_description=open('README.txt').read(), 14 | install_requires=[ 15 | "SciPy >= 0.10.1" 16 | ], 17 | ) 18 | -------------------------------------------------------------------------------- /pre-commit: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | 3 | set -o errexit 4 | set -o nounset 5 | 6 | # # To install just do: 7 | # cd .git/hooks/ 8 | # ln -s ../../pre-commit 9 | 10 | 11 | # Use autopep8 to clean up whitespace etc. (also store and print a diff of 12 | # what it changed) 13 | autopep8 . -d -r --aggressive --ignore=E702 --ignore=E226 \ 14 | --exclude=example_residuals.py > .pep8diff 15 | cat .pep8diff 16 | patch <.pep8diff -p1 17 | 18 | echo -e "\n\n\n" 19 | 20 | # Run self tests 21 | nosetests --all-modules --processes=8 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | Python LLG ODE solver for experimenting with timesteppers 2 | ======================================================== 3 | 4 | **Note**: This code is essentially **unmaintained**, it was written for experiments as part of my PhD and I have since moved on to other things. Here's an explaination I wrote (elsewhere) of when you might want to use this code and what the alternatives are: 5 | 6 | > The LLG equation is usually a PDE but it can be simplified to an ODE when all of the fields making up H_eff are constant in space. Physically this happens when you have a small (relative to the exchange length) ellipsoid of material. There's a bit more explanation about it [my thesis](https://www.escholar.manchester.ac.uk/uk-ac-man-scw:266267) in section 7.4.1. The code in this repository only deals with the ODE case. This is a useful test case if you are interested in experimenting with time integration methods, e.g. [the adaptive implicit midpoint rule that I was experimenting with](https://link.springer.com/article/10.1007/s10915-019-00965-8). It is potentially useful for some *very simple* physical problems. 7 | 8 | > For most physical problems you will need code that also models variations in space. The most widely used software for this is [OOMMF](http://math.nist.gov/oommf/) which uses finite differences for the spatial part. There's also [nmag](http://nmag.soton.ac.uk/nmag/) which uses finite element methods instead. Finite element methods allow you to accurately model more complex shapes (i.e. shapes that aren't cubeoids), but the underlying maths can be more difficult to understand. I used [oomph-lib](http://oomph-lib.maths.man.ac.uk/doc/html/index.html) together with [some extensions for micromagnetics](https://github.com/davidshepherd7/oomph-lib-micromagnetics), however the micromagnetics extensions are experimental and unmaintained so you probably only want to use this if you are directly following up on my research. 9 | 10 | 11 | Setup 12 | -------- 13 | 14 | Required python modules: scipy, matplotlib, sympy. 15 | 16 | Clone into a directory named simpleode with the command: 17 | 18 | git clone https://github.com/davidshepherd7/Landau-Lifshitz-Gilbert-ODE-model.git simpleode 19 | 20 | Note that the name of the directory *must* be simpleode for the import statements to work. Next add the directory *containing* the simpleode directory to your python path with: 21 | 22 | export PYTHONPATH="$PYTHONPATH:[path/to/simpleode/../]" 23 | 24 | you probably want to put this in your shell rc file so that it is set permenantly. 25 | 26 | Apologies for the convoluted setup, I wrote this code when I was fairly new to python and I didn't follow proper packaging practices. 27 | 28 | Testing 29 | --------- 30 | 31 | Run self tests with 32 | 33 | nosetests --all-modules 34 | 35 | in the simplellg directory (this requires the nose package: 36 | 37 | sudo apt-get install python-nose 38 | 39 | on Debian based systems). 40 | -------------------------------------------------------------------------------- /llg/llg.py: -------------------------------------------------------------------------------- 1 | """Various residuals for the LLG equation 2 | """ 3 | 4 | from __future__ import division 5 | from __future__ import absolute_import 6 | 7 | from math import sin, cos, tan, log, atan2, acos, pi, sqrt 8 | import scipy as sp 9 | 10 | import simpleode.core.utils as utils 11 | import simpleode.core.ode as ode 12 | 13 | 14 | # def absmod2pi(a): 15 | # return abs(a % (2 * pi)) 16 | 17 | 18 | # def llg_spherical_residual(magnetic_parameters, t, m_sph, dmdt_sph): 19 | # """ Calculate the residual for a guess at dmdt. 20 | # """ 21 | # Extract the parameters 22 | # alpha = magnetic_parameters.alpha 23 | # gamma = magnetic_parameters.gamma 24 | # Ms = magnetic_parameters.Ms 25 | # H, hazi, hpol = utils.cart2sph(magnetic_parameters.Hvec) 26 | 27 | # Ensure that the angles are in the correct range 28 | # ??ds improve 29 | # _, mazi, mpol = utils.cart2sph(utils.sph2cart([Ms, m_sph[0], m_sph[1]])) 30 | 31 | # dmazidt = dmdt_sph[0] 32 | # dmpoldt = dmdt_sph[1] 33 | 34 | # Calculate fields: 35 | # no exchange, no Hms for now 36 | # anisotropy: 37 | # dEdmazi = 0 38 | # dEdmpol = -k1 * 2 * sin(pol) * cos(pol) 39 | 40 | # if hazi < 0. or hazi > 2*pi or mazi < 0. or mazi > 2*pi: 41 | # raise ValueError 42 | 43 | # Zeeman: ??ds minus sign? 44 | # if (mazi - hazi) == 0: 45 | # dEdmazi = 0. 46 | # else: 47 | # dEdmazi = - Ms * H * sin(absmod2pi(mazi - hazi)) * sp.sign(mazi - hazi) 48 | 49 | # if (mpol - hpol) == 0: 50 | # dEdmpol = 0. 51 | # else: 52 | # dEdmpol = - Ms * H * sin(abs(mpol - hpol)) * sp.sign(mpol - hpol) 53 | 54 | # print abs(mazi - hazi), abs(mpol - hpol) 55 | 56 | # From Nonlinear Magnetization Dynamics in Nanosystems By Isaak 57 | # D. Mayergoyz, Giorgio Bertotti, Claudio Serpico pg. 39 with theta = 58 | # polar angle, phi = azimuthal angle. 59 | # residual = sp.empty((2)) 60 | # residual[0] = dmpoldt + (alpha * sin(mpol) * dmazidt) \ 61 | # + (gamma/Ms) * (1.0/sin(mpol)) * dEdmazi 62 | # residual[1] = (sin(mpol) * dmazidt) \ 63 | # - (gamma/Ms) * dEdmpol - (alpha * dmpoldt) 64 | 65 | # return residual 66 | 67 | 68 | def heff(magnetic_parameters, t, m_cart): 69 | Hk_vec = magnetic_parameters.Hk_vec(m_cart) 70 | # - ((1.0/3)*sp.array(m_cart)) 71 | h_eff = magnetic_parameters.Hvec(t) + Hk_vec 72 | 73 | return h_eff 74 | 75 | 76 | def llg_cartesian_residual(magnetic_parameters, t, m_cart, dmdt_cart): 77 | 78 | # Extract the parameters 79 | alpha = magnetic_parameters.alpha 80 | gamma = magnetic_parameters.gamma 81 | Ms = magnetic_parameters.Ms 82 | h_eff = heff(magnetic_parameters, t, m_cart) 83 | 84 | residual = ((alpha/Ms) * sp.cross(m_cart, dmdt_cart) 85 | - gamma * sp.cross(m_cart, h_eff) 86 | - dmdt_cart) 87 | return residual 88 | 89 | 90 | def llg_cartesian_dfdm(magnetic_parameters, t, m_cart, dmdt_cart): 91 | 92 | # Extract the parameters 93 | alpha = magnetic_parameters.alpha 94 | gamma = magnetic_parameters.gamma 95 | Ms = magnetic_parameters.Ms 96 | 97 | h_eff = heff(magnetic_parameters, t, m_cart) 98 | 99 | dfdm = - gamma * utils.skew(h_eff) + (alpha/Ms) * utils.skew(dmdt_cart) 100 | 101 | return dfdm 102 | 103 | 104 | def ll_dmdt(magnetic_parameters, t, m): 105 | alpha = magnetic_parameters.alpha 106 | h_eff = heff(magnetic_parameters, t, m) 107 | 108 | return ( 109 | -1/(1 + alpha**2) * (sp.cross(m, h_eff) 110 | + alpha*sp.cross(m, sp.cross(m, h_eff))) 111 | ) 112 | 113 | 114 | def ll_residual(magnetic_parameters, t, m, dmdt): 115 | return dmdt - ll_dmdt(magnetic_parameters, t, m) 116 | 117 | 118 | def simple_llg_residual(t, m, dmdt): 119 | mp = utils.MagParameters() 120 | return llg_cartesian_residual(mp, t, m, dmdt) 121 | 122 | 123 | def simple_llg_initial(*_): 124 | return utils.sph2cart([1.0, 0.0, sp.pi/18]) 125 | 126 | 127 | def linear_H(t): 128 | return sp.array([0, 0, -0.5*t]) 129 | 130 | 131 | def ramping_field_llg_residual(t, m, dmdt): 132 | mp = utils.MagParameters() 133 | mp.Hvec = linear_H 134 | mp.alpha = 0.1 135 | return llg_cartesian_residual(mp, t, m, dmdt) 136 | 137 | 138 | def ramping_field_llg_initial(*_): 139 | return utils.sph2cart([1.0, 0.0, sp.pi/18]) 140 | 141 | 142 | # def llg_constrained_cartesian_residual(magnetic_parameters, t, m_cart, 143 | # dmdt_cart): 144 | 145 | # base_residual = llg_cartesian_residual(magnetic_parameters, t, m_cart[:-1], 146 | # dmdt_cart[:-1]) 147 | 148 | # pass 149 | -------------------------------------------------------------------------------- /llg/mallinson.py: -------------------------------------------------------------------------------- 1 | """Calculate exact solutions for the zero dimensional LLG as given by 2 | [Mallinson2000] 3 | """ 4 | 5 | from __future__ import division 6 | from __future__ import absolute_import 7 | 8 | from math import sin, cos, tan, log, atan2, acos, pi, sqrt 9 | import scipy as sp 10 | import matplotlib.pyplot as plt 11 | import functools as ft 12 | 13 | import simpleode.core.utils as utils 14 | 15 | 16 | def calculate_switching_time(magnetic_parameters, p_start, p_now): 17 | """Calculate the time taken to switch from polar angle p_start to p_now 18 | with the magnetic parameters given. 19 | """ 20 | 21 | # Should never quite get to pi/2 22 | # if p_now >= pi/2: 23 | # return sp.inf 24 | 25 | # Cache some things to simplify the expressions later 26 | H = magnetic_parameters.H(None) 27 | Hk = magnetic_parameters.Hk() 28 | alpha = magnetic_parameters.alpha 29 | gamma = magnetic_parameters.gamma 30 | 31 | # Calculate the various parts of the expression 32 | prefactor = ((alpha**2 + 1)/(gamma * alpha)) \ 33 | * (1.0 / (H**2 - Hk**2)) 34 | 35 | a = H * log(tan(p_now/2) / tan(p_start/2)) 36 | b = Hk * log((H - Hk*cos(p_start)) / 37 | (H - Hk*cos(p_now))) 38 | c = Hk * log(sin(p_now) / sin(p_start)) 39 | 40 | # Put everything together 41 | return prefactor * (a + b + c) 42 | 43 | 44 | def calculate_azimuthal(magnetic_parameters, p_start, p_now): 45 | """Calculate the azimuthal angle corresponding to switching from 46 | p_start to p_now with the magnetic parameters given. 47 | """ 48 | def azi_into_range(azi): 49 | a = azi % (2*pi) 50 | if a < 0: 51 | a += 2*pi 52 | return a 53 | 54 | alpha = magnetic_parameters.alpha 55 | 56 | no_range_azi = (-1/alpha) * log(tan(p_now/2) / tan(p_start/2)) 57 | return azi_into_range(no_range_azi) 58 | 59 | 60 | def generate_dynamics(magnetic_parameters, 61 | start_angle=pi/18, 62 | end_angle=17*pi/18, 63 | steps=1000): 64 | """Generate a list of polar angles then return a list of corresponding 65 | m directions (in spherical polar coordinates) and switching times. 66 | """ 67 | mag_params = magnetic_parameters 68 | 69 | # Construct a set of solution positions 70 | pols = sp.linspace(start_angle, end_angle, steps) 71 | azis = [calculate_azimuthal(mag_params, start_angle, p) for p in pols] 72 | sphs = [utils.SphPoint(1.0, azi, pol) for azi, pol in zip(azis, pols)] 73 | 74 | # Calculate switching times for these positions 75 | times = [calculate_switching_time(mag_params, start_angle, p) 76 | for p in pols] 77 | 78 | return (sphs, times) 79 | 80 | 81 | def plot_dynamics(magnetic_parameters, 82 | start_angle=pi/18, 83 | end_angle=17*pi/18, 84 | steps=1000): 85 | """Plot exact positions given start/finish angles and magnetic 86 | parameters. 87 | """ 88 | 89 | sphs, times = generate_dynamics(magnetic_parameters, start_angle, 90 | end_angle, steps) 91 | 92 | sphstitle = "Path of m for " + str(magnetic_parameters) \ 93 | + "\n (starting point is marked)." 94 | utils.plot_sph_points(sphs, title=sphstitle) 95 | 96 | timestitle = "Polar angle vs time for " + str(magnetic_parameters) 97 | utils.plot_polar_vs_time(sphs, times, title=timestitle) 98 | 99 | plt.show() 100 | 101 | 102 | def calculate_equivalent_dynamics(magnetic_parameters, polars): 103 | """Given a list of polar angles (and some magnetic parameters) 104 | calculate what the corresponding azimuthal angles and switching times 105 | (from the first angle) should be. 106 | """ 107 | start_angle = polars[0] 108 | 109 | f_times = ft.partial(calculate_switching_time, magnetic_parameters, 110 | start_angle) 111 | exact_times = [f_times(p) for p in polars] 112 | 113 | f_azi = ft.partial(calculate_azimuthal, magnetic_parameters, start_angle) 114 | exact_azis = [f_azi(p) for p in polars] 115 | 116 | return exact_times, exact_azis 117 | 118 | 119 | def plot_vs_exact(magnetic_parameters, ts, ms): 120 | 121 | # Extract lists of the polar coordinates 122 | m_as_sph_points = map(utils.array2sph, ms) 123 | pols = [m.pol for m in m_as_sph_points] 124 | azis = [m.azi for m in m_as_sph_points] 125 | 126 | # Calculate the corresponding exact dynamics 127 | exact_times, exact_azis = \ 128 | calculate_equivalent_dynamics(magnetic_parameters, pols) 129 | 130 | # Plot 131 | plt.figure() 132 | plt.plot(ts, pols, '--', 133 | exact_times, pols) 134 | 135 | plt.figure() 136 | plt.plot(pols, azis, '--', 137 | pols, exact_azis) 138 | 139 | plt.show() 140 | -------------------------------------------------------------------------------- /core/example_residuals.py: -------------------------------------------------------------------------------- 1 | # Some pairs of residuals and exact solutions for testing with: 2 | 3 | from scipy import exp, tanh, sin, cos 4 | import scipy as sp 5 | import sympy 6 | 7 | from functools import partial as par 8 | 9 | def exp_residual(t, y, dydt): return y - dydt 10 | def exp_dydt(t, y): return y 11 | def exp_exact(t): return exp(t) 12 | def exp_dfdy(t, y): return 1 13 | 14 | def exp3_residual(t, y, dydt): return 3*y - dydt 15 | def exp3_dydt(t, y): return 3 * y 16 | def exp3_exact(t): return exp(3*t) 17 | 18 | # Not sure this works.. 19 | def exp_of_minus_t_residual(t, y, dydt): return exp_of_minus_t_dydt(t,y) - dydt 20 | def exp_of_minus_t_exact(t): return exp(-t) 21 | def exp_of_minus_t_dydt(t, y): return -y 22 | 23 | 24 | def poly_residual(t, y, dydt): return 4*t**3 + 2*t - dydt 25 | def poly_exact(t): return t**4 + t**2 26 | def poly_dydt(t, y): return poly_residual(t, y, 0) 27 | def poly_dfdy(t, y): return 0 28 | 29 | # Useful because 2nd order integrators should be exact (and adaptive ones 30 | # should recognise this and rapidly increase dt). 31 | def square_residual(t, y, dydt): return 2*t - dydt 32 | def square_dydt(t, y): return square_residual(t, y, 0) 33 | def square_exact(t): return t**2 34 | def square_dfdy(t, y): return 0 35 | 36 | 37 | def exp_of_poly_residual(t, y, dydt): return exp_of_poly_dydt(t, y) - dydt 38 | def exp_of_poly_dydt(t, y): return y*(1 - 3*t**2) 39 | def exp_of_poly_exact(t): return exp(t - t**3) 40 | 41 | 42 | def tanh_residual(t, y, dydt, alpha=1.0, step_time=1.0): 43 | return (alpha * (1 - (tanh(alpha*(t - step_time)))**2))/2 - dydt 44 | def tanh_exact(t, alpha=1.0, step_time=1.0): 45 | return (tanh(alpha*(t - step_time)) + 1)/2 46 | 47 | def tanh_simple_residual(t, y, dydt, alpha=1.0, step_time=1.0): 48 | return (alpha * (1 - (tanh(alpha*(t - step_time)))**2)) - dydt 49 | def tanh_simple_exact(t, alpha=1.0, step_time=1.0): 50 | return tanh(alpha*(t - step_time)) 51 | 52 | # Stiff example 53 | def van_der_pol_residual(t, y, dydt, mu=10): 54 | return dydt - van_der_pol_dydt(t, y, mu) 55 | def van_der_pol_dydt(t, y, mu=10): 56 | return sp.array([y[1], mu * (1 - y[0]**2)*y[1] - y[0]]) 57 | # No exact solution for van der pol afaik 58 | 59 | # The classical example of a stiff ODE 60 | def stiff_damped_example_residual(t, y, dydt): 61 | return dydt - stiff_damped_example_dydt(t, y) 62 | def stiff_damped_example_dydt(t, y): 63 | return sp.dot(sp.array([[-1, 1], [1, -1000]]), y) 64 | 65 | # From G&S pg 258 66 | def stiff_example_residual(t, y, dydt): 67 | return dydt - stiff_damped_example_dydt(t, y) 68 | def stiff_example_dydt(t, y): 69 | return sp.dot(sp.array([[-1, 1], [1, -1000]]), y) 70 | def stiff_example_exact(t): 71 | l1 = 1000.0010001 72 | l2 = 0.998999 73 | return sp.array([(-l2/(l1 - l2))*sp.exp(-l1*t) + (l1/(l1 - l2))*sp.exp(-l2*t), 74 | (l2*(l1 - 1))*sp.exp(-l1*t)/(l1 - l2) + l1*(1 - l2)*sp.exp(-l2*t)/(l1 - l2) 75 | ]) 76 | 77 | 78 | def midpoint_method_killer_problem(y0, g_string, l): 79 | """Generate a problem which should work badly in midpoint method. 80 | Essentially these problems consist of two parts: a "main" solution 81 | as given by g and (added to it) a damped exponential solution which 82 | decays starting from y0 - g(0) to zero in a time frame determined by 83 | l. 84 | 85 | g_string is any function specified as a string to be fed into sympy. 86 | 87 | y0 is an initial value, not equal to g(0). 88 | 89 | l (lambda ) is the coefficient of "badness". 90 | 91 | Derivation in notes 23/9/13. 92 | """ 93 | sym_t, sym_y = sympy.symbols('t y') 94 | 95 | g = sympy.sympify(g_string) 96 | 97 | dgdt = sympy.diff(g, sym_t, 1) 98 | g0 = g.subs(sym_t, 0).evalf() 99 | exact_symb = (y0 - g0)*sympy.exp(-l*sym_t) + g 100 | 101 | # Don't just diff exact, or we don't get the y dependence in there! 102 | dydt_symb = -l*sym_y + l*g + sympy.diff(g, sym_t, 1) 103 | F = sympy.diff(dydt_symb, sym_y, 1) 104 | 105 | exact_f = sympy.lambdify(sym_t, exact_symb) 106 | dydt_f = sympy.lambdify((sym_t, sym_y), dydt_symb) 107 | 108 | def residual(t, y, dydt): 109 | return dydt - dydt_f(t, y) 110 | 111 | return residual, dydt_f, exact_f, (exact_symb, F) 112 | 113 | trig_midpoint_killer_problem = par(midpoint_method_killer_problem, 5, 114 | "sin(t) + cos(t)") 115 | 116 | poly_midpoint_killer_problem = par(midpoint_method_killer_problem, 5, "t**2") 117 | 118 | 119 | # ODE example for paper? 120 | def damped_oscillation_residual(omega, beta, t, y, dydt): 121 | return dydt - damped_oscillation_dydt(omega, beta, t, y) 122 | def damped_oscillation_dydt(omega, beta, t, y): 123 | return beta*sp.exp(-beta*t)*sp.sin(omega*t) - omega*sp.exp(-beta*t)*sp.cos(omega*t) 124 | def damped_oscillation_exact(omega, beta, t): 125 | return sp.exp(-beta*t) * sp.sin(omega*t) 126 | 127 | def damped_oscillation_dddydt(omega, beta, t): 128 | """See notes 16/8/2013.""" 129 | a = sp.exp(- beta*t) * sp.sin(omega * t) # y in notes 130 | b = sp.exp(-beta * t) * sp.cos(omega * t) # k in notes 131 | return - beta**3 * a - omega**3 * b + omega*beta**2 * b + 3*beta*omega**2 * a 132 | 133 | def damped_oscillation_ddydt(omega, beta, t): 134 | """See notes 19/8/2013.""" 135 | a = sp.exp(- beta*t) * sp.sin(omega * t) 136 | b = sp.exp(-beta * t) * sp.cos(omega * t) 137 | return (beta**2 - omega**2)*a - 2*omega*beta*b 138 | 139 | 140 | def constant_dydt(t, y): 141 | return 0 142 | def constant_residual(t, y, dydt): 143 | return dydt - constant_dydt(t, y) 144 | def constant_exact(t): 145 | return 1 146 | def constant_dfdy(t, y): 147 | return 0 148 | -------------------------------------------------------------------------------- /llg/energy.py: -------------------------------------------------------------------------------- 1 | """Calculate energies for a single magnetisation vector in a field. 2 | """ 3 | 4 | from __future__ import division 5 | from __future__ import absolute_import 6 | 7 | import operator as op 8 | from math import sin, cos, tan, log, atan2, acos, pi, sqrt 9 | import scipy as sp 10 | import itertools as it 11 | 12 | import simpleode.core.utils as utils 13 | import simpleode.llg.llg as llg 14 | from simpleode.llg.llg import heff 15 | 16 | 17 | def llg_state_energy(sph, mag_params, t=None): 18 | """Assuming unit volume, spatially constant, spherical particle. 19 | 20 | Energies taken from [Coey2010]. 21 | 22 | Ignore stress and magnetostriction. 23 | 24 | t can be None if applied field is not time dependant. 25 | """ 26 | return exchange_energy(sph, mag_params) \ 27 | + magnetostatic_energy(sph, mag_params) \ 28 | + magnetocrystalline_anisotropy_energy(sph, mag_params) \ 29 | + zeeman_energy(sph, mag_params, t) 30 | 31 | 32 | def exchange_energy(sph, mag_params): 33 | """Always zero because 0D/spatially constant.""" 34 | return 0.0 35 | 36 | 37 | # ??ds generalise! 38 | def magnetostatic_energy(sph, mag_params): 39 | """ For a small, spherical particle: 40 | Ems = - 0.5 mu0 (M.Hms) = 0.5/3 * Ms**2 41 | """ 42 | Ms = mag_params.Ms 43 | mu0 = mag_params.mu0 44 | return (0.5/3) * mu0 * Ms**2 45 | 46 | 47 | def magnetocrystalline_anisotropy_energy(sph, mag_params): 48 | """ Eca = K1 (m.e)^2""" 49 | K1 = mag_params.K1 50 | m_cart = utils.sph2cart(sph) 51 | return K1 * (1 - sp.dot(m_cart, mag_params.easy_axis)**2) 52 | 53 | 54 | def zeeman_energy(sph, mag_params, t=None): 55 | """ Ez = - mu0 * (M.Happ(t)), t can be None if the field is not time 56 | dependant. 57 | """ 58 | Ms = mag_params.Ms 59 | Happ = mag_params.Hvec(t) 60 | mu0 = mag_params.mu0 61 | 62 | m = utils.sph2cart(sph) 63 | return -1 * mu0 * Ms * sp.dot(m, Happ) 64 | 65 | 66 | def recompute_alpha(sph_start, sph_end, t_start, t_end, mag_params): 67 | """ 68 | From a change in energy we can calculate what the effective damping 69 | was. For more details see [Albuquerque2001, 70 | http://dx.doi.org/10.1063/1.1355322]. 71 | 72 | alpha' = - (1/(M**2)) *( dE/dt / spaceintegral( (dm/dt**2 ))) 73 | 74 | No space integral is needed because we are working with 0D LLG. 75 | """ 76 | 77 | Ms = mag_params.Ms 78 | dt = t_end - t_start 79 | 80 | # Estimate dEnergy / dTime 81 | dEdt = (llg_state_energy(sph_end, mag_params, t_end) 82 | - llg_state_energy(sph_start, mag_params, t_start) 83 | )/dt 84 | 85 | # Estimate dMagnetisation / dTime then take sum of squares 86 | dmdt = [(m2 - m1)/dt for m1, m2 in 87 | zip(utils.sph2cart(sph_start), utils.sph2cart(sph_end))] 88 | dmdt_sq = sp.dot(dmdt, dmdt) 89 | 90 | # dE should be negative so the result should be positive. 91 | return - (1/(Ms**2)) * (dEdt / dmdt_sq) 92 | 93 | 94 | def low_accuracy_recompute_alpha_varying_fields( 95 | sph_start, sph_end, t_start, t_end, mag_params): 96 | """ 97 | Compute effective damping from change in magnetisation and change in 98 | applied field. 99 | 100 | From Nonlinear magnetization dynamics in nanosystems eqn (2.15). 101 | 102 | See notes 30/7/13. 103 | 104 | Derivatives are estimated using BDF1 finite differences. 105 | """ 106 | 107 | # Only for normalised problems! 108 | assert(mag_params.Ms == 1) 109 | 110 | # Get some values 111 | dt = t_end - t_start 112 | m_cart_end = utils.sph2cart(sph_end) 113 | h_eff_end = heff(mag_params, t_end, m_cart_end) 114 | mxh = sp.cross(m_cart_end, h_eff_end) 115 | 116 | # Finite difference derivatives 117 | dhadt = (mag_params.Hvec(t_start) - mag_params.Hvec(t_end))/dt 118 | 119 | assert(all(dhadt == 0)) # no field for now 120 | 121 | dedt = (llg_state_energy(sph_end, mag_params, t_end) 122 | - llg_state_energy(sph_start, mag_params, t_start) 123 | )/dt 124 | 125 | sigma = sp.dot(mxh, mxh) / (dedt + sp.dot(m_cart_end, dhadt)) 126 | 127 | possible_alphas = sp.roots([1, sigma, 1]) 128 | 129 | a = (-sigma + sqrt(sigma**2 - 4))/2 130 | b = (-sigma - sqrt(sigma**2 - 4))/2 131 | 132 | possible_alphas2 = [a, b] 133 | utils.assert_list_almost_equal(possible_alphas, possible_alphas2) 134 | 135 | print(sigma, possible_alphas) 136 | 137 | def real_and_positive(x): 138 | return sp.isreal(x) and x > 0 139 | 140 | alphas = filter(real_and_positive, possible_alphas) 141 | assert(len(alphas) == 1) 142 | return sp.real(alphas[0]) 143 | 144 | 145 | def recompute_alpha_varying_fields( 146 | sph_start, sph_end, t_start, t_end, mag_params): 147 | """ 148 | Compute effective damping from change in magnetisation and change in 149 | applied field. 150 | 151 | See notes 30/7/13 pg 5. 152 | 153 | Derivatives are estimated using BDF1 finite differences. 154 | """ 155 | 156 | # Only for normalised problems! 157 | assert(mag_params.Ms == 1) 158 | 159 | # Get some values 160 | dt = t_end - t_start 161 | m_cart_end = utils.sph2cart(sph_end) 162 | h_eff_end = heff(mag_params, t_end, m_cart_end) 163 | mxh = sp.cross(m_cart_end, h_eff_end) 164 | 165 | # Finite difference derivatives 166 | dhadt = (mag_params.Hvec(t_start) - mag_params.Hvec(t_end))/dt 167 | dedt = (llg_state_energy(sph_end, mag_params, t_end) 168 | - llg_state_energy(sph_start, mag_params, t_start) 169 | )/dt 170 | dmdt = (sp.array(utils.sph2cart(sph_start)) 171 | - sp.array(m_cart_end))/dt 172 | 173 | utils.assert_almost_equal(dedt, sp.dot(m_cart_end, dhadt) 174 | + sp.dot(dmdt, h_eff_end), 1e-2) 175 | 176 | # print(sp.dot(m_cart_end, dhadt), dedt) 177 | 178 | # Calculate alpha itself using the forumla derived in notes 179 | alpha = ((dedt - sp.dot(m_cart_end, dhadt)) 180 | / (sp.dot(h_eff_end, sp.cross(m_cart_end, dmdt)))) 181 | 182 | return alpha 183 | 184 | 185 | def recompute_alpha_varying_fields_at_midpoint(sph_start, sph_end, 186 | t_start, t_end, mag_params): 187 | """ 188 | Compute effective damping from change in magnetisation and change in 189 | applied field. 190 | 191 | See notes 30/7/13 pg 5. 192 | 193 | Derivatives are estimated using midpoint method finite differences, all 194 | values are computed at the midpoint (m = (m_n + m_n-1)/2, similarly for 195 | t). 196 | """ 197 | 198 | # Only for normalised problems! 199 | assert(mag_params.Ms == 1) 200 | 201 | # Get some values 202 | dt = t_end - t_start 203 | t = (t_end + t_start)/2 204 | m = (sp.array(utils.sph2cart(sph_end)) 205 | + sp.array(utils.sph2cart(sph_start)))/2 206 | 207 | h_eff = heff(mag_params, t, m) 208 | mxh = sp.cross(m, h_eff) 209 | 210 | # Finite difference derivatives 211 | dhadt = (mag_params.Hvec(t_end) - mag_params.Hvec(t_start))/dt 212 | dedt = (llg_state_energy(sph_end, mag_params, t_end) 213 | - llg_state_energy(sph_start, mag_params, t_start) 214 | )/dt 215 | dmdt = (sp.array(utils.sph2cart(sph_end)) 216 | - sp.array(utils.sph2cart(sph_start)))/dt 217 | 218 | # utils.assert_almost_equal(dedt, sp.dot(m_cart_end, dhadt) 219 | # + sp.dot(dmdt, h_eff_end), 1e-2) 220 | 221 | # print(sp.dot(m_cart_end, dhadt), dedt) 222 | 223 | # Calculate alpha itself using the forumla derived in notes 224 | alpha = -((dedt + sp.dot(m, dhadt)) 225 | / (sp.dot(h_eff, sp.cross(m, dmdt)))) 226 | 227 | return alpha 228 | 229 | 230 | def recompute_alpha_list(m_sph_list, t_list, mag_params, 231 | alpha_func=recompute_alpha): 232 | """Compute a list of effective dampings, one for each step in the input 233 | lists. 234 | """ 235 | alpha_list = it.imap(alpha_func, m_sph_list, m_sph_list[1:], 236 | t_list, t_list[1:], it.repeat(mag_params)) 237 | return alpha_list 238 | -------------------------------------------------------------------------------- /llg/test.py: -------------------------------------------------------------------------------- 1 | from __future__ import division 2 | from __future__ import absolute_import 3 | 4 | 5 | import functools as ft 6 | import matplotlib.pyplot as plt 7 | import unittest 8 | import operator as op 9 | import scipy as sp 10 | import itertools as it 11 | 12 | from math import sin, cos, tan, log, atan2, acos, pi, sqrt 13 | 14 | import simpleode.core.utils as utils 15 | import simpleode.core.ode as ode 16 | import simpleode.llg.mallinson as mlsn 17 | import simpleode.llg.energy as energy 18 | import simpleode.llg.llg as llg 19 | 20 | 21 | # We have to split out these tests into their own file because otherwise we 22 | # get circular dependencies. 23 | 24 | 25 | # Mallinson 26 | # ============================================================ 27 | 28 | class MallinsonSolverCheckerBase(): 29 | 30 | """Base class to define the test functions but not actually run them. 31 | """ 32 | 33 | def base_init(self, magParameters=None, steps=1000, 34 | p_start=pi/18): 35 | 36 | if magParameters is None: 37 | self.mag_params = utils.MagParameters() 38 | else: 39 | self.mag_params = magParameters 40 | 41 | (self.sphs, self.times) = mlsn.generate_dynamics( 42 | self.mag_params, steps=steps) 43 | 44 | def f(sph): 45 | energy.llg_state_energy(sph, self.mag_params) 46 | self.energys = map(f, self.sphs) 47 | 48 | # Monotonically increasing time 49 | def test_increasing_time(self): 50 | print(self.mag_params.Hvec) 51 | for a, b in zip(self.times, self.times[1:]): 52 | assert(b > a) 53 | 54 | # Azimuthal is in correct range 55 | def test_azimuthal_in_range(self): 56 | for sph in self.sphs: 57 | utils.assert_azi_in_range(sph) 58 | 59 | # Monotonically decreasing azimuthal angle except for jumps at 2*pi. 60 | def test_increasing_azimuthal(self): 61 | for a, b in zip(self.sphs, self.sphs[1:]): 62 | assert(a.azi > b.azi or 63 | (a.azi - 2*pi <= 0.0 and b.azi >= 0.0)) 64 | 65 | def test_damping_self_consistency(self): 66 | a2s = energy.recompute_alpha_list(self.sphs, self.times, 67 | self.mag_params) 68 | 69 | # Check that we get the same values with the varying fields version 70 | a3s = energy.recompute_alpha_list(self.sphs, self.times, 71 | self.mag_params, 72 | energy.recompute_alpha_varying_fields) 73 | utils.assert_list_almost_equal(a2s, a3s, (1.1/len(self.times))) 74 | # one of the examples doesn't quite pass with tol=1.0/len, so use 75 | # 1.1 76 | 77 | # Use 1/length as error estimate because it's proportional to dt 78 | # and so proportional to the expected error 79 | def check_alpha_ok(a2): 80 | return abs(a2 - self.mag_params.alpha) < (1.0/len(self.times)) 81 | assert(all(map(check_alpha_ok, a2s))) 82 | 83 | # This is an important test. If this works then it is very likely that 84 | # the Mallinson calculator, the energy calculations and most of the 85 | # utils (so far) are all working. So tag it as "core". 86 | test_damping_self_consistency.core = True 87 | 88 | 89 | # Now run the tests with various intial settings (tests are inherited from 90 | # the base class. 91 | class TestMallinsonDefaults(MallinsonSolverCheckerBase, unittest.TestCase): 92 | 93 | def setUp(self): 94 | self.base_init() # steps=10000) ??ds 95 | 96 | 97 | class TestMallinsonHk(MallinsonSolverCheckerBase, unittest.TestCase): 98 | 99 | def setUp(self): 100 | mag_params = utils.MagParameters() 101 | mag_params.K1 = 0.6 102 | self.base_init(mag_params) 103 | 104 | 105 | class TestMallinsonLowDamping(MallinsonSolverCheckerBase, unittest.TestCase): 106 | 107 | def setUp(self): 108 | mag_params = utils.MagParameters() 109 | mag_params.alpha = 0.1 110 | self.base_init(mag_params) # , steps=10000) ??ds 111 | 112 | 113 | class TestMallinsonStartAngle(MallinsonSolverCheckerBase, 114 | unittest.TestCase): 115 | 116 | def setUp(self): 117 | self.base_init(p_start=pi/2) 118 | 119 | 120 | # llg.py 121 | # ============================================================ 122 | # ??ds replace with substituting the exact solution into the residual and 123 | # checking it is zero? 124 | def test_llg_residuals(): 125 | m0_sph = [0.0, pi/18] 126 | m0_cart = utils.sph2cart(tuple([1.0] + m0_sph)) 127 | # m0_constrained = list(m0_cart) + [None] # ??ds 128 | 129 | residuals = [(llg.llg_cartesian_residual, m0_cart), 130 | (llg.ll_residual, m0_cart), 131 | # (llg_constrained_cartesian_residual, m0_constrained), 132 | ] 133 | 134 | for r, i in residuals: 135 | yield check_residual, r, i 136 | 137 | 138 | def check_residual(residual, initial_m): 139 | mag_params = utils.MagParameters() 140 | tmax = 3.0 141 | f_residual = ft.partial(residual, mag_params) 142 | 143 | # Timestep to a solution + convert to spherical 144 | result_times, m_list = ode.odeint(f_residual, sp.array(initial_m), 145 | tmax, dt=0.01) 146 | m_sph = [utils.array2sph(m) for m in m_list] 147 | result_pols = [m.pol for m in m_sph] 148 | result_azis = [m.azi for m in m_sph] 149 | 150 | # Calculate exact solutions 151 | exact_times, exact_azis = \ 152 | mlsn.calculate_equivalent_dynamics(mag_params, result_pols) 153 | 154 | # Check 155 | utils.assert_list_almost_equal(exact_azis, result_azis, 1e-3) 156 | utils.assert_list_almost_equal(exact_times, result_times, 1e-3) 157 | 158 | 159 | def test_dfdm(): 160 | 161 | ms = [utils.sph2cart([1.0, 0.0, pi/18]), 162 | utils.sph2cart([1.0, 0.0, 0.0001*pi]), 163 | utils.sph2cart([1.0, 0.0, 0.999*pi]), 164 | utils.sph2cart([1.0, 0.3*2*pi, 0.5*pi]), 165 | utils.sph2cart([1.0, 2*pi, pi/18]), 166 | ] 167 | 168 | for m in ms: 169 | yield check_dfdm, m 170 | 171 | 172 | def check_dfdm(m_cart): 173 | """Compare dfdm function with finite differenced dfdm.""" 174 | 175 | # Some parameters 176 | magnetic_parameters = utils.MagParameters() 177 | t = 0.3 178 | 179 | # Use LL to get dmdt: 180 | alpha = magnetic_parameters.alpha 181 | gamma = magnetic_parameters.gamma 182 | Hvec = magnetic_parameters.Hvec(None) 183 | Ms = magnetic_parameters.Ms 184 | 185 | h_eff = Hvec 186 | dmdt_cart = (gamma/(1+alpha**2)) * sp.cross(m_cart, h_eff) \ 187 | - (alpha*gamma/((1+alpha**2)*Ms)) * sp.cross(m_cart, sp.cross( 188 | m_cart, h_eff)) 189 | 190 | # Calculate with function 191 | dfdm_func = llg.llg_cartesian_dfdm( 192 | magnetic_parameters, 193 | t, 194 | m_cart, 195 | dmdt_cart) 196 | 197 | def f(t, m_cart, dmdt_cart): 198 | # f is the residual + dm/dt (see notes 27/2/13) 199 | return llg.llg_cartesian_residual(magnetic_parameters, 200 | t, m_cart, dmdt_cart) + dmdt_cart 201 | # FD it 202 | dfdm_fd = sp.zeros((3, 3)) 203 | r = f(t, m_cart, dmdt_cart) 204 | delta = 1e-8 205 | for i, m in enumerate(m_cart): 206 | m_temp = sp.array(m_cart).copy() # Must force a copy here 207 | m_temp[i] += delta 208 | r_temp = f(t, m_temp, dmdt_cart) 209 | r_diff = (r_temp - r)/delta 210 | 211 | for j, r_diff_j in enumerate(r_diff): 212 | dfdm_fd[i][j] = r_diff_j 213 | 214 | print dfdm_fd 215 | 216 | # Check the max of the difference 217 | utils.assert_almost_zero(sp.amax(dfdm_func - dfdm_fd), 1e-6) 218 | 219 | 220 | # energy.py 221 | # ============================================================ 222 | def test_zeeman(): 223 | """Test zeeman energy for some simple cases. 224 | """ 225 | H_tests = [lambda t: sp.array([0, 0, 10]), 226 | lambda t: sp.array([-sqrt(2)/2, -sqrt(2)/2, 0.0]), 227 | lambda t: sp.array([0, 1, 0]), 228 | lambda t: sp.array([0.01, 0.0, 0.01]), 229 | ] 230 | 231 | m_tests = [(1.0, 0.0, 0.0), 232 | utils.cart2sph((sqrt(2)/2, sqrt(2)/2, 0.0)), 233 | (1, 0, 1), 234 | (0.0, 100.0, 0.0), 235 | ] 236 | 237 | answers = [lambda mP: -1 * mP.mu0 * mP.Ms * mP.H(None), 238 | lambda mP: mP.mu0 * mP.Ms * mP.H(None), 239 | lambda _:0.0, 240 | lambda _:0.0, 241 | ] 242 | 243 | for m, H, ans in zip(m_tests, H_tests, answers): 244 | yield check_zeeman, m, H, ans 245 | 246 | 247 | def check_zeeman(m, H, ans): 248 | """Helper function for test_zeeman.""" 249 | mag_params = utils.MagParameters() 250 | mag_params.Hvec = H 251 | utils.assert_almost_equal(energy.zeeman_energy(m, mag_params), 252 | ans(mag_params)) 253 | 254 | 255 | # See also mallinson.py: test_self_consistency for checks on alpha 256 | # recomputation using Mallinson's exact solution. 257 | 258 | # To test for applied fields we would need to do real time integration, 259 | # which is a bit too large of a dependancy to have in a unit test, so do it 260 | # somewhere else. 261 | -------------------------------------------------------------------------------- /algebra/sym-bdf3.py: -------------------------------------------------------------------------------- 1 | 2 | from __future__ import division 3 | from __future__ import absolute_import 4 | 5 | import sympy 6 | import scipy.misc 7 | import sys 8 | import itertools as it 9 | 10 | from sympy import Rational as sRat 11 | from operator import mul 12 | from functools import partial as par 13 | 14 | import simpleode.core.utils as utils 15 | from functools import reduce 16 | 17 | 18 | # A set of functions for symbolically calculating bdf forumlas. 19 | 20 | 21 | # Define some (global) symbols to use 22 | dts = list(sympy.var('Delta:9', real=True)) 23 | dys = list(sympy.var('Dy:9', real=True)) 24 | ys = list(sympy.var('y:9', real=True)) 25 | 26 | # subs i => step n+1-i (with Delta_{n+1} = t_{n+1} - t_n) 27 | 28 | 29 | def divided_diff(order, ys, dts): 30 | """Caluclate divided differences of the list of values given 31 | in ys at points separated by the values in dts. 32 | 33 | Should work with symbols or numbers, only tested with symbols. 34 | """ 35 | assert(len(ys) == order+1) 36 | assert(len(dts) == order) 37 | 38 | if order > 1: 39 | return ((divided_diff(order-1, ys[:-1], dts[:-1]) 40 | - divided_diff(order-1, ys[1:], dts[1:])) 41 | / 42 | sum(dts)) 43 | else: 44 | return (ys[0] - ys[-1])/(dts[0]) 45 | 46 | 47 | def old_bdf_prefactor(order, implicit): 48 | """Calculate the non-divided difference part of the bdf approximation. 49 | For implicit this is the product term in (5.12) on page 400 of 50 | Hairer1991. For explicit it's more tricky and not given in any book 51 | that I've found, I derived it from expressions on pgs 400, 366 of 52 | Hairer1991. 53 | """ 54 | 55 | def accumulate(iterable): 56 | """Return running totals (from python 3.2), i.e. 57 | 58 | accumulate([1,2,3,4,5]) --> 1 3 6 10 15 59 | """ 60 | it = iter(iterable) 61 | total = next(it) 62 | yield total 63 | for element in it: 64 | total = total + element 65 | yield total 66 | 67 | assert(order >= 0) 68 | 69 | if order == 0: 70 | return 0 71 | elif order == 1: 72 | return 1 73 | else: 74 | if implicit: 75 | # dt0 * (dt0 + dt1) * (dt0 + dt1 + dt2) * ... (dt0 + dt1 + ... + 76 | # dt_{order-1}) 77 | return _product(accumulate(dts[0:order-1])) 78 | else: 79 | # the maths is messy here... Basically the same as above but 80 | # with some different terms 81 | terms = it.chain([dts[0]], accumulate(dts[1:order-1])) 82 | return -1 * _product(terms) 83 | 84 | 85 | def _steps_diff_to_list_of_dts(a, b, missing=None): 86 | """Get t_a - t_b in terms of dts. 87 | 88 | e.g. 89 | a = 0, b = 2: 90 | t_0 - t_2 = t_{n+1} - t_{n-1} = dt_{n+1} + dt_n = dts[0] + dts[1] 91 | 92 | a = 2, b = 0: 93 | t_2 - t_0 = - dts[0] - dts[1] 94 | """ 95 | # if a and b are in the "wrong" order then it's just the negative of 96 | # the sum with them in the "right" order. 97 | if a > b: 98 | return map(lambda x: -1*x, _steps_diff_to_list_of_dts(b, a, missing)) 99 | 100 | return dts[a:b] 101 | 102 | 103 | def _product(l): 104 | """Return the product (i.e. all entrys multiplied together) of a list or iterator. 105 | """ 106 | return reduce(mul, l, 1) 107 | 108 | 109 | def bdf_prefactor(order, derivative_point): 110 | """Calculate the non-divided difference part of the bdf approximation 111 | with the derivative known at any integer point. For implicit BDF the 112 | known derivative is at n+1 (so derivative point = 0), others it is 113 | further back in time (>0). 114 | """ 115 | assert(order >= 0) 116 | assert(derivative_point >= 0) 117 | 118 | if order == 0: 119 | return 0 120 | 121 | terms = 0 122 | 123 | # For each i in the summation (Note that for most i, for low derivative 124 | # point the contribution is zero. It's possible to do fancy algebra to 125 | # speed this up, but it's just not worth it!) 126 | for i in range(0, order): 127 | # Get a list of l values for which to calculate the product terms. 128 | l_list = [l for l in range(0, order) if l != i] 129 | 130 | # Calculate a list of product terms (in terms of dts). 131 | c = map(lambda b: sum(_steps_diff_to_list_of_dts(derivative_point, b)), 132 | l_list) 133 | 134 | # Multiply together and add to total 135 | terms = terms + _product(c) 136 | 137 | return terms 138 | 139 | 140 | def bdf_method(order, derivative_point=0): 141 | """Calculate the bdf approximation for dydt. If implicit approximation 142 | is at t_{n+1}, otherwise it is at t_n. 143 | """ 144 | 145 | # Each term is just the appropriate order prefactor multiplied by a 146 | # divided difference. Basically just a python implementation of 147 | # equation (5.12) on page 400 of Hairer1991. 148 | def single_term(n): 149 | return ( 150 | bdf_prefactor( 151 | n, 152 | derivative_point) * divided_diff(n, 153 | ys[:n+1], 154 | dts[:n]) 155 | ) 156 | 157 | return sum(map(single_term, range(1, order+1))) 158 | 159 | 160 | def main(): 161 | 162 | print sympy.pretty(sympy.collect(bdf_method(2, 0).expand(), ys).simplify()) 163 | 164 | print "code for ibdf2 step:" 165 | print my_bdf_code_gen(2, 0, True) 166 | 167 | # print "\n\n code for eBDF3 step:" 168 | # print my_bdf_code_gen(3, 1, False) 169 | 170 | # print "\n\n code for iBDF3 dydt approximation:" 171 | # print my_bdf_code_gen(3, 0, True) 172 | 173 | print "\n\n code for iBDF3 step:" 174 | print my_bdf_code_gen(3, 0, True) 175 | 176 | # print "\n\n code for iBDF4 dydt approximation:" 177 | # print my_bdf_code_gen(4, 0, True) 178 | 179 | print "\n\n code for eBDF3 step w/ derivative at n-1:" 180 | print my_bdf_code_gen(3, 2, True) 181 | 182 | # print sympy.pretty(sympy.Eq(dys[2], bdf_method(1, 2))) 183 | # print sympy.pretty(sympy.Eq(dys[2], bdf_method(2, 2))) 184 | # print sympy.pretty(sympy.Eq(dys[2], bdf_method(3, 2))) 185 | 186 | 187 | def my_bdf_code_gen(order, derivative_point, solve_for_ynp1): 188 | 189 | dydt_expr = bdf_method(order, derivative_point) 190 | 191 | if solve_for_ynp1: 192 | # Set equal to dydt at derivative-point-th step, then solve for y_{n+1} 193 | bdf_method_solutions = sympy.solve(sympy.Eq(dydt_expr, 194 | dys[derivative_point]), y0) 195 | 196 | # Check there's one solution only 197 | assert(len(bdf_method_solutions) == 1) 198 | 199 | # Convert it to a string 200 | bdf_method_code = str( 201 | bdf_method_solutions[0].expand().collect(ys+dys).simplify()) 202 | 203 | else: 204 | bdf_method_code = str(dydt_expr.expand().collect(ys+dys).simplify()) 205 | 206 | # Replace the sympy variables with variable names consistent with my 207 | # code in ode.py 208 | sympy_to_odepy_code_string_replacements = \ 209 | {'Delta0': 'dtn', 'Delta1': 'dtnm1', 'Delta2': 'dtnm2', 'Delta3': 'dtnm3', 210 | 'Dy0': 'dynp1', 'Dy1': 'dyn', 'Dy2': 'dynm1', 211 | 'y0': 'ynp1', 'y1': 'yn', 'y2': 'ynm1', 'y3': 'ynm2', 'y4': 'ynm3'} 212 | 213 | # This is a rubbish way to do mass replace (many passes through the 214 | # text, any overlapping replaces will cause crazy behaviour) but it's 215 | # good enough for our purposes. 216 | for key, val in sympy_to_odepy_code_string_replacements.iteritems(): 217 | bdf_method_code = bdf_method_code.replace(key, val) 218 | 219 | # Check that none of the replacements contain things that will be 220 | # replaced by other replacement operations. Maybe slow but good to test 221 | # just in case... 222 | for _, replacement in sympy_to_odepy_code_string_replacements.iteritems(): 223 | for key, _ in sympy_to_odepy_code_string_replacements.iteritems(): 224 | assert(replacement not in key) 225 | 226 | return bdf_method_code 227 | 228 | 229 | if __name__ == '__main__': 230 | sys.exit(main()) 231 | 232 | 233 | # Tests 234 | # ============================================================ 235 | 236 | def assert_sym_eq(a, b): 237 | """Compare symbolic expressions. Note that the simplification algorithm 238 | is not completely robust: might give false negatives (but never false 239 | positives). 240 | 241 | Try adding extra simplifications if needed, e.g. add .trigsimplify() to 242 | the end of my_simp. 243 | """ 244 | 245 | def my_simp(expr): 246 | # Can't .expand() ints, so catch the zero case separately. 247 | try: 248 | return expr.expand().simplify() 249 | except AttributeError: 250 | return expr 251 | 252 | print 253 | print sympy.pretty(my_simp(a)) 254 | print "equals" 255 | print sympy.pretty(my_simp(b)) 256 | print 257 | 258 | # Try to simplify the difference to zero 259 | assert (my_simp(a - b) == 0) 260 | 261 | 262 | def check_const_step(order, exact, derivative_point): 263 | 264 | # Derive bdf method 265 | b = bdf_method(order, derivative_point) 266 | 267 | # Set all step sizes to be Delta0 268 | b_const_step = b.subs({k: Delta0 for k in dts}) 269 | 270 | # Compare with exact 271 | assert_sym_eq(exact, b_const_step) 272 | 273 | 274 | def test_const_step_implicit(): 275 | """Check that the implicit methods are correct for fixed step size by 276 | comparison with Hairer et. al. 1991 pg 366. 277 | """ 278 | 279 | exacts = [(y0 - y1)/Delta0, 280 | (sRat(3, 2)*y0 - 2*y1 + sRat(1, 2)*y2)/Delta0, 281 | (sRat(11, 6)*y0 - 3*y1 + sRat(3, 2)*y2 - sRat(1, 3)*y3)/Delta0, 282 | (sRat(25, 12)*y0 - 4*y1 + 3*y2 - sRat(4, 3)*y3 + sRat(1, 4)*y4)/Delta0] 283 | 284 | orders = [1, 2, 3, 4] 285 | 286 | for order, exact in zip(orders, exacts): 287 | yield check_const_step, order, exact, 0 288 | 289 | 290 | def test_const_step_explicit(): 291 | 292 | # Get explicit BDF2 (implicit midpoint)'s dydt approximation G&S pg 715 293 | a = sympy.solve(-y0 + y1 + (1 + Delta0/Delta1)*Delta0*Dy1 294 | - (Delta0/Delta1)**2*(y1 - y2), Dy1) 295 | assert(len(a) == 1) 296 | IMR_bdf_form = a[0].subs({k: Delta0 for k in dts}) 297 | 298 | orders = [1, 2, 3] 299 | exacts = [(y0 - y1)/Delta0, 300 | IMR_bdf_form, 301 | #Hairer pg 364 302 | (sRat(1, 3)*y0 + sRat(1, 2)*y1 - y2 + sRat(1, 6)*y3)/Delta0 303 | ] 304 | 305 | for order, exact in zip(orders, exacts): 306 | yield check_const_step, order, exact, 1 307 | 308 | 309 | def test_variable_step_implicit_bdf2(): 310 | 311 | # From Gresho and Sani pg 715 312 | exact = sympy.solve(-(y0 - y1)/Delta0 + 313 | (Delta0 / (2*Delta0 + Delta1)) * (y1 - y2)/Delta1 + 314 | ((Delta0 + Delta1)/(2*Delta0 + Delta1)) * Dy0, Dy0) 315 | 316 | # Should only be one solution, get it 317 | assert(len(exact) == 1) 318 | exact = exact[0] 319 | 320 | # Get the method using my code 321 | mine = bdf_method(2, 0) 322 | 323 | assert_sym_eq(exact, mine) 324 | 325 | 326 | def test_variable_step_explicit_bdf2(): 327 | 328 | # Also from Gresho and Sani pg 715 329 | exact = sympy.solve(-y0 + y1 + (1 + Delta0/Delta1)*Delta0*Dy1 330 | - (Delta0/Delta1)**2*(y1 - y2), Dy1) 331 | 332 | # Should only be one solution, get it 333 | assert(len(exact) == 1) 334 | exact = exact[0] 335 | 336 | # Get the method using my code 337 | mine = bdf_method(2, 1) 338 | 339 | assert_sym_eq(exact, mine) 340 | 341 | 342 | def test_list_dts(): 343 | 344 | # Check we have a list (not a tuple like before...) 345 | assert list( 346 | _steps_diff_to_list_of_dts(2, 347 | 0)) == _steps_diff_to_list_of_dts(2, 348 | 0) 349 | assert list( 350 | _steps_diff_to_list_of_dts(0, 351 | 2)) == _steps_diff_to_list_of_dts(0, 352 | 2) 353 | 354 | map(assert_sym_eq, _steps_diff_to_list_of_dts(0, 2), [dts[0], dts[1]]) 355 | map(assert_sym_eq, _steps_diff_to_list_of_dts(2, 0), [-dts[0], -dts[1]]) 356 | 357 | assert _steps_diff_to_list_of_dts(2, 2) == [] 358 | 359 | 360 | def test_product(): 361 | assert _product([]) == 1 362 | assert _product(xrange(1, 11)) == scipy.misc.factorial(10, True) 363 | assert _product(xrange(0, 101)) == 0 364 | 365 | 366 | def test_generalised_bdf_prefactor(): 367 | def check(order, implicit): 368 | old = old_bdf_prefactor(order, implicit) 369 | if implicit: 370 | new = bdf_prefactor(order, 0) 371 | else: 372 | new = bdf_prefactor(order, 1) 373 | assert_sym_eq(old, new) 374 | 375 | orders = [0, 1, 2, 3, 4] 376 | for order in orders: 377 | for implicit in [True, False]: 378 | yield check, order, implicit 379 | 380 | def check_new_ones(order, real_value): 381 | calculated = bdf_prefactor(order, 2) 382 | assert_sym_eq(real_value, calculated) 383 | 384 | real_values = [(0, 0), 385 | (1, 1), 386 | (2, (-dts[0] - dts[1]) - dts[1]), 387 | (3, (-dts[0] - dts[1])*-dts[1]), 388 | (4, (-dts[0] - dts[1])*-dts[1]*dts[2]), 389 | ] 390 | for order, real_value in real_values: 391 | yield check_new_ones, order, real_value 392 | -------------------------------------------------------------------------------- /core/utils.py: -------------------------------------------------------------------------------- 1 | 2 | from __future__ import division 3 | from __future__ import absolute_import 4 | 5 | import collections 6 | import scipy as sp 7 | import scipy.linalg 8 | import itertools as it 9 | import operator as op 10 | import functools as ft 11 | import sympy 12 | import math 13 | 14 | from functools import partial as par 15 | from os.path import join as pjoin 16 | from math import sin, cos, tan, log, atan2, acos, pi, sqrt 17 | 18 | 19 | # General 20 | # ============================================================ 21 | 22 | 23 | def unzip(iterable_of_iterables): 24 | """Inverse of zip. E.g. given a list of tuples returns a tuple of 25 | lists. 26 | 27 | To understand why: think about what * does to a list and what zip then 28 | does with this list. 29 | 30 | See http://www.shocksolution.com/2011/07/python-lists-to-tuples-and-tuples-to-lists/""" 31 | return zip(*iterable_of_iterables) 32 | 33 | 34 | def _apply_to_list_and_print_args(function, list_of_args): 35 | """Does what it says. Should really be a lambda function but 36 | multiprocessing requires named functions 37 | """ 38 | print list_of_args 39 | return function(*list_of_args) 40 | 41 | 42 | def parallel_parameter_sweep(function, parameter_lists, serial_mode=False): 43 | """Run function with all combinations of parameters in parallel using 44 | all available cores. 45 | 46 | parameter_lists should be a list of lists of parameters, 47 | """ 48 | 49 | import multiprocessing 50 | 51 | # Generate a complete set of combinations of parameters 52 | parameter_sets = it.product(*parameter_lists) 53 | 54 | # multiprocessing doesn't include a "starmap", requires all functions 55 | # to take a single argument. Use a function wrapper to fix this. Also 56 | # print the list of args while we're in there. 57 | wrapped_function = par(_apply_to_list_and_print_args, function) 58 | 59 | # For debugging we often need to run in serial (to get useful stack 60 | # traces). 61 | if serial_mode: 62 | results_iterator = it.imap(wrapped_function, parameter_sets) 63 | # Force evaluation (to be exactly the same as in parallel) 64 | results_iterator = list(results_iterator) 65 | 66 | else: 67 | # Run in all parameter sets in parallel 68 | pool = multiprocessing.Pool() 69 | results_iterator = pool.imap_unordered( 70 | wrapped_function, parameter_sets) 71 | pool.close() 72 | 73 | # wait for everything to finish 74 | pool.join() 75 | 76 | return results_iterator 77 | 78 | 79 | def partial_lists(l, min_list_length=1): 80 | """Given a list l return a list of "partial lists" (probably not the 81 | right term...). 82 | 83 | Optionally specify a minimum list length. 84 | 85 | ie. 86 | 87 | l = [0, 1, 2, 3] 88 | 89 | partial_lists(l) = [[0], [0, 1], [0, 1, 2], [0, 1, 2, 3]] 90 | """ 91 | all_lists = [l[:i] for i in range(0, len(l)+1)] 92 | return filter(lambda x: len(x) >= min_list_length, all_lists) 93 | 94 | 95 | def myfigsave( 96 | figure, name, texpath="/home/david/Dropbox/phd/reports/ongoing-writeup/images"): 97 | """Fix up layout and save a pdf of an image into my latex folder. 98 | """ 99 | 100 | # Fix layout 101 | figure.tight_layout(pad=0.3) 102 | 103 | # Save a pdf into my tex image dir 104 | figpath = pjoin(texpath, name) 105 | figure.savefig(figpath, dpi=300, orientation='portrait', 106 | transparent=False) 107 | 108 | print "Saved to", figpath 109 | return 110 | 111 | 112 | def memoize(f): 113 | """ Memoization decorator for a function taking multiple arguments. 114 | 115 | From http://code.activestate.com/recipes/578231-probably-the-fastest-memoization-decorator-in-the-/ 116 | (in the comments) 117 | """ 118 | class memodict(dict): 119 | 120 | def __init__(self, f): 121 | self.f = f 122 | 123 | def __call__(self, *args): 124 | return self[args] 125 | 126 | def __missing__(self, key): 127 | ret = self[key] = self.f(*key) 128 | return ret 129 | return memodict(f) 130 | 131 | 132 | def latex_escape(s): 133 | """Escape all characters that latex will cry about. 134 | """ 135 | s = s.replace(r'{', r'\{') 136 | s = s.replace(r'}', r'\}') 137 | s = s.replace(r'&', r'\&') 138 | s = s.replace(r'%', r'\%') 139 | s = s.replace(r'$', r'\$') 140 | s = s.replace(r'#', r'\#') 141 | s = s.replace(r'_', r'\_') 142 | s = s.replace(r'^', r'\^{}') 143 | 144 | # Can't handle backslashes... ? 145 | 146 | return s 147 | 148 | 149 | # Testing helpers 150 | # ============================================================ 151 | 152 | 153 | def almost_equal(a, b, tol=1e-9): 154 | return abs(a - b) < tol 155 | 156 | 157 | def abs_list_diff(list_a, list_b): 158 | return [abs(a - b) for a, b in zip(list_a, list_b)] 159 | 160 | 161 | def list_almost_zero(list_x, tol=1e-9): 162 | return max(list_x) < tol 163 | 164 | 165 | def list_almost_equal(list_a, list_b, tol=1e-9): 166 | return list_almost_zero(abs_list_diff(list_a, list_b), tol) 167 | 168 | 169 | def same_order_of_magnitude(a, b, fp_zero): 170 | if abs(a) < fp_zero or abs(b) < fp_zero: 171 | return abs(a) < fp_zero and abs(b) < fp_zero 172 | else: 173 | return (abs(sp.log10(abs(a)) - sp.log10(abs(b))) < 1) 174 | 175 | 176 | def same_sign(a, b, fp_zero): 177 | """Check if two floats (or probably fine for other numbers) have the 178 | same sign. Throw an error on NaN values. Treat small floats as zero and 179 | treat zero as not having a sign. 180 | """ 181 | if (a == sp.NaN) or (b == sp.NaN): 182 | raise ValueError("NaN(s) passed to sign comparison functions") 183 | elif (abs(a) < fp_zero) and (abs(b) < fp_zero): 184 | return True 185 | else: 186 | return math.copysign(1, a) == math.copysign(1, b) 187 | 188 | 189 | # Some useful asserts. We explicitly use the assert command in each 190 | # (instead of defining the asserts in terms of the bool-returning functions 191 | # above) to get useful output from nose -d. 192 | def assert_almost_equal(a, b, tol=1e-9): 193 | assert(abs(a - b) < tol) 194 | 195 | 196 | def assert_almost_zero(a, tol=1e-9): 197 | assert(abs(a) < tol) 198 | 199 | 200 | def assert_list_almost_equal(list_a, list_b, tol=1e-9): 201 | assert(len(list(list_a)) == len(list(list_b))) 202 | for a, b in zip(list_a, list_b): 203 | assert(abs(a - b) < tol) 204 | 205 | 206 | def assert_list_almost_zero(values, tol=1e-9): 207 | for x in values: 208 | assert abs(x) < tol 209 | 210 | 211 | def assert_sym_eq(a, b): 212 | """Compare symbolic expressions. Note that the simplification algorithm 213 | is not completely robust: might give false negatives (but never false 214 | positives). 215 | 216 | Try adding extra simplifications if needed, e.g. add .trigsimplify() to 217 | the end of my_simp. 218 | """ 219 | 220 | def my_simp(expr): 221 | # Can't .expand() ints, so catch the zero case separately. 222 | try: 223 | return expr.expand().simplify() 224 | except AttributeError: 225 | return expr 226 | 227 | print 228 | print sympy.pretty(my_simp(a)) 229 | print "equals" 230 | print sympy.pretty(my_simp(b)) 231 | print 232 | 233 | # Try to simplify the difference to zero 234 | assert (my_simp(a - b) == 0) 235 | 236 | 237 | def assert_same_sign(a, b, fp_zero=1e-9): 238 | if (a == sp.NaN) or (b == sp.NaN): 239 | raise ValueError("NaN(s) passed to sign comparison functions") 240 | elif (abs(a) < fp_zero) and (abs(b) < fp_zero): 241 | assert True 242 | else: 243 | assert math.copysign(1, a) == math.copysign(1, b) 244 | 245 | 246 | def assert_same_order_of_magnitude(a, b, fp_zero=1e-14): 247 | """Check that log10(abs(.)) are nearby for a and b. If a or b is below 248 | fp_zero then the other is checked in the same way for closeness to 249 | fp_zero (after checking that it is not also below fp_zero, for safety 250 | with log10). 251 | """ 252 | if abs(a) < fp_zero: 253 | assert abs(b) < fp_zero or ( 254 | sp.log10(abs(b)) - sp.log10(abs(fp_zero)) < 1) 255 | if abs(b) < fp_zero: 256 | assert abs(a) < fp_zero or ( 257 | sp.log10(abs(a)) - sp.log10(abs(fp_zero)) < 1) 258 | else: 259 | assert (abs(sp.log10(abs(a)) - sp.log10(abs(b))) < 1) 260 | 261 | 262 | # Spherical polar coordinates asserts 263 | def assert_azi_in_range(sph): 264 | assert(sph.azi > 0 or almost_equal(sph.azi, 0.0)) 265 | assert(sph.azi < 2*pi or almost_equal(sph.azi, 2*pi)) 266 | 267 | 268 | def assert_polar_in_range(sph): 269 | assert(sph.pol >= 0 and sph.pol <= pi) 270 | 271 | 272 | # Convert symbolic expressions to useful python functions 273 | # ============================================================ 274 | 275 | def symb2deriv(exact_symb, order): 276 | t, y, Dy = sympy.symbols('t y Dy') 277 | deriv_symb = sympy.diff(exact_symb, t, order).subs(exact_symb, y) 278 | deriv = sympy.lambdify((t, y), deriv_symb) 279 | return deriv 280 | 281 | 282 | def symb2residual(exact_symb): 283 | t, y, Dy = sympy.symbols('t y Dy') 284 | dydt_symb = sympy.diff(exact_symb, t, 1).subs(exact_symb, y) 285 | residual_symb = Dy - dydt_symb 286 | residual = sympy.lambdify((t, y, Dy), residual_symb) 287 | return residual 288 | 289 | 290 | def symb2jacobian(exact_symb): 291 | t, y, Dy = sympy.symbols('t y Dy') 292 | dydt_symb = sympy.diff(exact_symb, t, 1).subs(exact_symb, y) 293 | jacobian_symb = sympy.diff(dydt_symb, y, 1).subs(exact_symb, y) 294 | jacobian = sympy.lambdify((t, y), jacobian_symb) 295 | return jacobian 296 | 297 | 298 | def symb2functions(exact_symb): 299 | t, y, Dy = sympy.symbols('t y Dy') 300 | exact = sympy.lambdify(t, exact_symb) 301 | residual = symb2residual(exact_symb) 302 | dys = [None]+map(par(symb2deriv, exact_symb), range(1, 10)) 303 | jacobian = symb2jacobian(exact_symb) 304 | return exact, residual, dys, jacobian 305 | 306 | 307 | # Coordinate systems 308 | # ============================================================ 309 | 310 | # Some data structures 311 | SphPoint = collections.namedtuple('SphPoint', ['r', 'azi', 'pol']) 312 | CartPoint = collections.namedtuple('CartPoint', ['x', 'y', 'z']) 313 | 314 | 315 | def cart2sph(cartesian_point): 316 | """ 317 | Convert a 3D cartesian tuple into spherical polars. 318 | 319 | In the form (r,azi, pol) = (r, theta, phi) (following convention from 320 | mathworld). 321 | 322 | In Mallinson's notation this is (r, phi, theta). 323 | """ 324 | x, y, z = cartesian_point 325 | 326 | r = sp.linalg.norm(cartesian_point, 2) 327 | 328 | # Get azimuthal then shift from [-pi,pi] to [0,2pi] 329 | azi = atan2(y, x) 330 | if azi < 0: 331 | azi += 2*pi 332 | 333 | # Dodge the problem at central singular point... 334 | if r < 1e-9: 335 | polar = 0 336 | else: 337 | polar = acos(z/r) 338 | 339 | return SphPoint(r, azi, polar) 340 | 341 | 342 | def sph2cart(spherical_point): 343 | """ 344 | Convert a 3D spherical polar coordinate tuple into cartesian 345 | coordinates. See cart2sph(...) for spherical coordinate scheme.""" 346 | 347 | r, azi, pol = spherical_point 348 | 349 | x = r * cos(azi) * sin(pol) 350 | y = r * sin(azi) * sin(pol) 351 | z = r * cos(pol) 352 | 353 | return CartPoint(x, y, z) 354 | 355 | 356 | def array2sph(point_as_array): 357 | """ Convert from an array representation to a SphPoint. 358 | """ 359 | 360 | assert point_as_array.ndim == 1 361 | 362 | # Hopefully 2 dims => spherical coords 363 | if point_as_array.shape[0] == 2: 364 | azi = point_as_array[0] 365 | pol = point_as_array[1] 366 | return SphPoint(1.0, azi, pol) 367 | 368 | # Presumably in cartesian... 369 | elif point_as_array.shape[0] == 3: 370 | return cart2sph(SphPoint(point_as_array[0], 371 | point_as_array[1], 372 | point_as_array[2])) 373 | 374 | else: 375 | raise IndexError 376 | 377 | 378 | def plot_sph_points(sphs, title='Path of m'): 379 | carts = map(sph2cart, sphs) 380 | 381 | fig = plt.figure() 382 | ax = fig.add_subplot(111, projection='3d') 383 | 384 | # Plot the path 385 | xs, ys, zs = unzip(carts) 386 | ax.plot(xs, ys, zs) 387 | 388 | # Draw on the starting point 389 | start_point = carts[0] 390 | ax.scatter(start_point.x, start_point.y, start_point.z) 391 | 392 | # Draw on z-axis 393 | ax.plot([0, 0], [0, 0], [-1, 1], '--') 394 | 395 | plt.title(title) 396 | 397 | # Axes 398 | ax.set_zlim(-1, 1) 399 | ax.set_xlim(-1, 1) 400 | ax.set_ylim(-1, 1) 401 | 402 | return fig 403 | 404 | 405 | def plot_polar_vs_time(sphs, times, title='Polar angle vs time'): 406 | 407 | fig = plt.figure() 408 | ax = fig.add_subplot(111) 409 | 410 | rs, azis, pols = unzip(sphs) 411 | ax.plot(times, pols) 412 | 413 | plt.xlabel('time/ arb. units') 414 | plt.ylabel('polar angle/ radians') 415 | plt.title(title) 416 | 417 | return fig 418 | 419 | 420 | class MagParameters(): 421 | 422 | def Hvec(self, t): 423 | return sp.array([0, 0, -2]) 424 | 425 | gamma = 1.0 426 | K1 = 0.0 427 | Ms = 1.0 428 | mu0 = 1.0 429 | easy_axis = sp.array([0, 0, 1]) 430 | 431 | def __init__(self, alpha=1.0): 432 | self.alpha = alpha 433 | 434 | def dimensional_H(self, t): 435 | return sp.linalg.norm(self.Hvec(t), ord=2) 436 | 437 | def H(self, t): 438 | return sp.linalg.norm(self.Hvec(t)/self.Ms, ord=2) 439 | 440 | def dimensional_Hk(self): 441 | """Ansiotropy field strength.""" 442 | # ??ds if m is always unit vector then this is right, if not we 443 | # need extra factor of Ms on bottom... 444 | return (2 * self.K1) / (self.mu0 * self.Ms) 445 | 446 | def Hk(self): 447 | """Ansiotropy field strength.""" 448 | # ??ds if m is always unit vector then this is right, if not we 449 | # need extra factor of Ms on bottom... 450 | return self.dimensional_Hk() / self.Ms 451 | 452 | def dimensional_Hk_vec(self, m_cart): 453 | """Uniaxial anisotropy field. Magnetisation should be in normalised 454 | cartesian form.""" 455 | return ( 456 | self.dimensional_Hk() * sp.dot( 457 | m_cart, self.easy_axis) * self.easy_axis 458 | ) 459 | 460 | def Hk_vec(self, m_cart): 461 | """Normalised uniaxial anisotropy field. Magnetisation should be in 462 | normalised cartesian form.""" 463 | return self.dimensional_Hk_vec(m_cart) / self.Ms 464 | 465 | def __repr__(self): 466 | """Return a string representation of the parameters. 467 | """ 468 | return "alpha = " + str(self.alpha) \ 469 | + ", gamma = " + str(self.gamma) + ",\n" \ 470 | + "H(0) = " + str(self.Hvec(0)) \ 471 | + ", K1 = " + str(self.K1) \ 472 | + ", Ms = " + str(self.Ms) 473 | 474 | 475 | # Smaller helper functions 476 | # ============================================================ 477 | 478 | 479 | def relative_error(exact, estimate): 480 | return abs(exact - estimate) / exact 481 | 482 | 483 | def dts_from_ts(ts): 484 | return list(map(op.sub, ts[1:], ts[:-1])) 485 | 486 | ts2dts = dts_from_ts 487 | 488 | 489 | def dts2ts(base, dts): 490 | ts = [base] 491 | for dt in dts: 492 | ts.append(ts[-1] + dt) 493 | 494 | return ts 495 | 496 | 497 | def ts2dtn(ts): 498 | return ts[-1] - ts[-2] 499 | 500 | 501 | def ts2dtnm1(ts): 502 | return ts[-2] - ts[-3] 503 | 504 | 505 | # Matrices 506 | # ============================================================ 507 | 508 | def skew(vector_with_length_3): 509 | v = vector_with_length_3 510 | 511 | if len(v) != 3: 512 | raise TypeError("skew is only defined for vectors of length 3") 513 | 514 | return sp.array([[0, -v[2], v[1]], 515 | [v[2], 0, -v[0]], 516 | [-v[1], v[0], 0]]) 517 | 518 | # Test this file's code 519 | # ============================================================ 520 | 521 | import unittest 522 | from random import random 523 | import nose.tools as nt 524 | 525 | 526 | class TestCoordinateConversion(unittest.TestCase): 527 | 528 | # Pick some coordinate lists to try out 529 | def setUp(self): 530 | def carttuple(x): 531 | return (x*random(), x*random(), x*random()) 532 | self.carts = map(carttuple, sp.linspace(0, 2, 20)) 533 | self.sphs = map(cart2sph, self.carts) 534 | 535 | # Check that applying both operations gives back the same thing 536 | def check_cart_sph_composition(self, cart, sph): 537 | assert_list_almost_equal(cart, sph2cart(sph)) 538 | 539 | def test_composition_is_identity(self): 540 | for (cart, sph) in zip(self.carts, self.sphs): 541 | self.check_cart_sph_composition(cart, sph) 542 | 543 | # Check that the azimuthal angle is in the correct range 544 | def test_azi_range(self): 545 | for sph in self.sphs: 546 | assert_azi_in_range(sph) 547 | 548 | def test_azimuthal_edge_cases(self): 549 | assert_almost_equal(cart2sph((-1, -1, 0)).azi, 5*pi/4) 550 | 551 | # Check that the polar angle is in the correct range 552 | def test_polar_range(self): 553 | for sph in self.sphs: 554 | assert_polar_in_range(sph) 555 | 556 | 557 | def example_f(x, y): 558 | return cos(x) + sin(y) 559 | 560 | 561 | def test_parallel_sweep(): 562 | """Check that a parallel run gives the same results as a non-parallel 563 | run for a simple function. 564 | """ 565 | xs = sp.linspace(-pi, +pi, 30) 566 | ys = sp.linspace(-pi, +pi, 30) 567 | 568 | parallel_result = list(parallel_parameter_sweep(example_f, [xs, ys])) 569 | serial_result = list(parallel_parameter_sweep(example_f, [xs, ys], True)) 570 | exact_result = list(it.starmap(example_f, it.product(xs, ys))) 571 | 572 | # Use sets for the comparison because the parallel computation destroys 573 | # any ordering we had before (and sets order their elements). 574 | assert_list_almost_equal(set(parallel_result), set(exact_result)) 575 | assert_list_almost_equal(set(serial_result), set(exact_result)) 576 | 577 | 578 | def test_skew_size_check(): 579 | xs = [sp.linspace(0.0, 1.0, 4), 1.0, sp.identity(3)] 580 | for x in xs: 581 | nt.assert_raises(TypeError, skew, [x]) 582 | 583 | 584 | def test_skew(): 585 | xs = [sp.linspace(0.0, 1.0, 3), sp.zeros((3, 1)), [1, 2, 3], ] 586 | a = sp.rand(3) 587 | 588 | for x in xs: 589 | # Anything crossed with itself is zero: 590 | skew_mat = skew(x) 591 | assert_list_almost_zero(sp.dot(skew_mat, sp.array(x))) 592 | 593 | # a x b = - b x a 594 | assert_list_almost_zero(sp.dot(skew_mat, a) + sp.dot(a, skew_mat)) 595 | 596 | 597 | def test_dts2ts(): 598 | """Check that ts2dts and dts2ts are the inverse of each other (except for 599 | the requirement for a "base" value in dts2ts). 600 | """ 601 | t = sympy.symbols('t') 602 | dts = sympy.symbols('Delta9:0', Real=True) 603 | 604 | results = ts2dts(dts2ts(t, dts)) 605 | 606 | for a, b in zip(results, dts): 607 | assert_sym_eq(a, b) 608 | -------------------------------------------------------------------------------- /LICENSE.txt: -------------------------------------------------------------------------------- 1 | GNU GENERAL PUBLIC LICENSE 2 | Version 3, 29 June 2007 3 | 4 | Copyright (C) 2007 Free Software Foundation, Inc. 5 | Everyone is permitted to copy and distribute verbatim copies 6 | of this license document, but changing it is not allowed. 7 | 8 | Preamble 9 | 10 | The GNU General Public License is a free, copyleft license for 11 | software and other kinds of works. 12 | 13 | The licenses for most software and other practical works are designed 14 | to take away your freedom to share and change the works. By contrast, 15 | the GNU General Public License is intended to guarantee your freedom to 16 | share and change all versions of a program--to make sure it remains free 17 | software for all its users. We, the Free Software Foundation, use the 18 | GNU General Public License for most of our software; it applies also to 19 | any other work released this way by its authors. You can apply it to 20 | your programs, too. 21 | 22 | When we speak of free software, we are referring to freedom, not 23 | price. Our General Public Licenses are designed to make sure that you 24 | have the freedom to distribute copies of free software (and charge for 25 | them if you wish), that you receive source code or can get it if you 26 | want it, that you can change the software or use pieces of it in new 27 | free programs, and that you know you can do these things. 28 | 29 | To protect your rights, we need to prevent others from denying you 30 | these rights or asking you to surrender the rights. Therefore, you have 31 | certain responsibilities if you distribute copies of the software, or if 32 | you modify it: responsibilities to respect the freedom of others. 33 | 34 | For example, if you distribute copies of such a program, whether 35 | gratis or for a fee, you must pass on to the recipients the same 36 | freedoms that you received. You must make sure that they, too, receive 37 | or can get the source code. And you must show them these terms so they 38 | know their rights. 39 | 40 | Developers that use the GNU GPL protect your rights with two steps: 41 | (1) assert copyright on the software, and (2) offer you this License 42 | giving you legal permission to copy, distribute and/or modify it. 43 | 44 | For the developers' and authors' protection, the GPL clearly explains 45 | that there is no warranty for this free software. For both users' and 46 | authors' sake, the GPL requires that modified versions be marked as 47 | changed, so that their problems will not be attributed erroneously to 48 | authors of previous versions. 49 | 50 | Some devices are designed to deny users access to install or run 51 | modified versions of the software inside them, although the manufacturer 52 | can do so. This is fundamentally incompatible with the aim of 53 | protecting users' freedom to change the software. The systematic 54 | pattern of such abuse occurs in the area of products for individuals to 55 | use, which is precisely where it is most unacceptable. Therefore, we 56 | have designed this version of the GPL to prohibit the practice for those 57 | products. If such problems arise substantially in other domains, we 58 | stand ready to extend this provision to those domains in future versions 59 | of the GPL, as needed to protect the freedom of users. 60 | 61 | Finally, every program is threatened constantly by software patents. 62 | States should not allow patents to restrict development and use of 63 | software on general-purpose computers, but in those that do, we wish to 64 | avoid the special danger that patents applied to a free program could 65 | make it effectively proprietary. To prevent this, the GPL assures that 66 | patents cannot be used to render the program non-free. 67 | 68 | The precise terms and conditions for copying, distribution and 69 | modification follow. 70 | 71 | TERMS AND CONDITIONS 72 | 73 | 0. Definitions. 74 | 75 | "This License" refers to version 3 of the GNU General Public License. 76 | 77 | "Copyright" also means copyright-like laws that apply to other kinds of 78 | works, such as semiconductor masks. 79 | 80 | "The Program" refers to any copyrightable work licensed under this 81 | License. Each licensee is addressed as "you". "Licensees" and 82 | "recipients" may be individuals or organizations. 83 | 84 | To "modify" a work means to copy from or adapt all or part of the work 85 | in a fashion requiring copyright permission, other than the making of an 86 | exact copy. The resulting work is called a "modified version" of the 87 | earlier work or a work "based on" the earlier work. 88 | 89 | A "covered work" means either the unmodified Program or a work based 90 | on the Program. 91 | 92 | To "propagate" a work means to do anything with it that, without 93 | permission, would make you directly or secondarily liable for 94 | infringement under applicable copyright law, except executing it on a 95 | computer or modifying a private copy. Propagation includes copying, 96 | distribution (with or without modification), making available to the 97 | public, and in some countries other activities as well. 98 | 99 | To "convey" a work means any kind of propagation that enables other 100 | parties to make or receive copies. Mere interaction with a user through 101 | a computer network, with no transfer of a copy, is not conveying. 102 | 103 | An interactive user interface displays "Appropriate Legal Notices" 104 | to the extent that it includes a convenient and prominently visible 105 | feature that (1) displays an appropriate copyright notice, and (2) 106 | tells the user that there is no warranty for the work (except to the 107 | extent that warranties are provided), that licensees may convey the 108 | work under this License, and how to view a copy of this License. If 109 | the interface presents a list of user commands or options, such as a 110 | menu, a prominent item in the list meets this criterion. 111 | 112 | 1. Source Code. 113 | 114 | The "source code" for a work means the preferred form of the work 115 | for making modifications to it. "Object code" means any non-source 116 | form of a work. 117 | 118 | A "Standard Interface" means an interface that either is an official 119 | standard defined by a recognized standards body, or, in the case of 120 | interfaces specified for a particular programming language, one that 121 | is widely used among developers working in that language. 122 | 123 | The "System Libraries" of an executable work include anything, other 124 | than the work as a whole, that (a) is included in the normal form of 125 | packaging a Major Component, but which is not part of that Major 126 | Component, and (b) serves only to enable use of the work with that 127 | Major Component, or to implement a Standard Interface for which an 128 | implementation is available to the public in source code form. A 129 | "Major Component", in this context, means a major essential component 130 | (kernel, window system, and so on) of the specific operating system 131 | (if any) on which the executable work runs, or a compiler used to 132 | produce the work, or an object code interpreter used to run it. 133 | 134 | The "Corresponding Source" for a work in object code form means all 135 | the source code needed to generate, install, and (for an executable 136 | work) run the object code and to modify the work, including scripts to 137 | control those activities. However, it does not include the work's 138 | System Libraries, or general-purpose tools or generally available free 139 | programs which are used unmodified in performing those activities but 140 | which are not part of the work. For example, Corresponding Source 141 | includes interface definition files associated with source files for 142 | the work, and the source code for shared libraries and dynamically 143 | linked subprograms that the work is specifically designed to require, 144 | such as by intimate data communication or control flow between those 145 | subprograms and other parts of the work. 146 | 147 | The Corresponding Source need not include anything that users 148 | can regenerate automatically from other parts of the Corresponding 149 | Source. 150 | 151 | The Corresponding Source for a work in source code form is that 152 | same work. 153 | 154 | 2. Basic Permissions. 155 | 156 | All rights granted under this License are granted for the term of 157 | copyright on the Program, and are irrevocable provided the stated 158 | conditions are met. This License explicitly affirms your unlimited 159 | permission to run the unmodified Program. The output from running a 160 | covered work is covered by this License only if the output, given its 161 | content, constitutes a covered work. This License acknowledges your 162 | rights of fair use or other equivalent, as provided by copyright law. 163 | 164 | You may make, run and propagate covered works that you do not 165 | convey, without conditions so long as your license otherwise remains 166 | in force. You may convey covered works to others for the sole purpose 167 | of having them make modifications exclusively for you, or provide you 168 | with facilities for running those works, provided that you comply with 169 | the terms of this License in conveying all material for which you do 170 | not control copyright. Those thus making or running the covered works 171 | for you must do so exclusively on your behalf, under your direction 172 | and control, on terms that prohibit them from making any copies of 173 | your copyrighted material outside their relationship with you. 174 | 175 | Conveying under any other circumstances is permitted solely under 176 | the conditions stated below. Sublicensing is not allowed; section 10 177 | makes it unnecessary. 178 | 179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law. 180 | 181 | No covered work shall be deemed part of an effective technological 182 | measure under any applicable law fulfilling obligations under article 183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or 184 | similar laws prohibiting or restricting circumvention of such 185 | measures. 186 | 187 | When you convey a covered work, you waive any legal power to forbid 188 | circumvention of technological measures to the extent such circumvention 189 | is effected by exercising rights under this License with respect to 190 | the covered work, and you disclaim any intention to limit operation or 191 | modification of the work as a means of enforcing, against the work's 192 | users, your or third parties' legal rights to forbid circumvention of 193 | technological measures. 194 | 195 | 4. Conveying Verbatim Copies. 196 | 197 | You may convey verbatim copies of the Program's source code as you 198 | receive it, in any medium, provided that you conspicuously and 199 | appropriately publish on each copy an appropriate copyright notice; 200 | keep intact all notices stating that this License and any 201 | non-permissive terms added in accord with section 7 apply to the code; 202 | keep intact all notices of the absence of any warranty; and give all 203 | recipients a copy of this License along with the Program. 204 | 205 | You may charge any price or no price for each copy that you convey, 206 | and you may offer support or warranty protection for a fee. 207 | 208 | 5. Conveying Modified Source Versions. 209 | 210 | You may convey a work based on the Program, or the modifications to 211 | produce it from the Program, in the form of source code under the 212 | terms of section 4, provided that you also meet all of these conditions: 213 | 214 | a) The work must carry prominent notices stating that you modified 215 | it, and giving a relevant date. 216 | 217 | b) The work must carry prominent notices stating that it is 218 | released under this License and any conditions added under section 219 | 7. This requirement modifies the requirement in section 4 to 220 | "keep intact all notices". 221 | 222 | c) You must license the entire work, as a whole, under this 223 | License to anyone who comes into possession of a copy. This 224 | License will therefore apply, along with any applicable section 7 225 | additional terms, to the whole of the work, and all its parts, 226 | regardless of how they are packaged. This License gives no 227 | permission to license the work in any other way, but it does not 228 | invalidate such permission if you have separately received it. 229 | 230 | d) If the work has interactive user interfaces, each must display 231 | Appropriate Legal Notices; however, if the Program has interactive 232 | interfaces that do not display Appropriate Legal Notices, your 233 | work need not make them do so. 234 | 235 | A compilation of a covered work with other separate and independent 236 | works, which are not by their nature extensions of the covered work, 237 | and which are not combined with it such as to form a larger program, 238 | in or on a volume of a storage or distribution medium, is called an 239 | "aggregate" if the compilation and its resulting copyright are not 240 | used to limit the access or legal rights of the compilation's users 241 | beyond what the individual works permit. Inclusion of a covered work 242 | in an aggregate does not cause this License to apply to the other 243 | parts of the aggregate. 244 | 245 | 6. Conveying Non-Source Forms. 246 | 247 | You may convey a covered work in object code form under the terms 248 | of sections 4 and 5, provided that you also convey the 249 | machine-readable Corresponding Source under the terms of this License, 250 | in one of these ways: 251 | 252 | a) Convey the object code in, or embodied in, a physical product 253 | (including a physical distribution medium), accompanied by the 254 | Corresponding Source fixed on a durable physical medium 255 | customarily used for software interchange. 256 | 257 | b) Convey the object code in, or embodied in, a physical product 258 | (including a physical distribution medium), accompanied by a 259 | written offer, valid for at least three years and valid for as 260 | long as you offer spare parts or customer support for that product 261 | model, to give anyone who possesses the object code either (1) a 262 | copy of the Corresponding Source for all the software in the 263 | product that is covered by this License, on a durable physical 264 | medium customarily used for software interchange, for a price no 265 | more than your reasonable cost of physically performing this 266 | conveying of source, or (2) access to copy the 267 | Corresponding Source from a network server at no charge. 268 | 269 | c) Convey individual copies of the object code with a copy of the 270 | written offer to provide the Corresponding Source. This 271 | alternative is allowed only occasionally and noncommercially, and 272 | only if you received the object code with such an offer, in accord 273 | with subsection 6b. 274 | 275 | d) Convey the object code by offering access from a designated 276 | place (gratis or for a charge), and offer equivalent access to the 277 | Corresponding Source in the same way through the same place at no 278 | further charge. You need not require recipients to copy the 279 | Corresponding Source along with the object code. If the place to 280 | copy the object code is a network server, the Corresponding Source 281 | may be on a different server (operated by you or a third party) 282 | that supports equivalent copying facilities, provided you maintain 283 | clear directions next to the object code saying where to find the 284 | Corresponding Source. Regardless of what server hosts the 285 | Corresponding Source, you remain obligated to ensure that it is 286 | available for as long as needed to satisfy these requirements. 287 | 288 | e) Convey the object code using peer-to-peer transmission, provided 289 | you inform other peers where the object code and Corresponding 290 | Source of the work are being offered to the general public at no 291 | charge under subsection 6d. 292 | 293 | A separable portion of the object code, whose source code is excluded 294 | from the Corresponding Source as a System Library, need not be 295 | included in conveying the object code work. 296 | 297 | A "User Product" is either (1) a "consumer product", which means any 298 | tangible personal property which is normally used for personal, family, 299 | or household purposes, or (2) anything designed or sold for incorporation 300 | into a dwelling. In determining whether a product is a consumer product, 301 | doubtful cases shall be resolved in favor of coverage. For a particular 302 | product received by a particular user, "normally used" refers to a 303 | typical or common use of that class of product, regardless of the status 304 | of the particular user or of the way in which the particular user 305 | actually uses, or expects or is expected to use, the product. A product 306 | is a consumer product regardless of whether the product has substantial 307 | commercial, industrial or non-consumer uses, unless such uses represent 308 | the only significant mode of use of the product. 309 | 310 | "Installation Information" for a User Product means any methods, 311 | procedures, authorization keys, or other information required to install 312 | and execute modified versions of a covered work in that User Product from 313 | a modified version of its Corresponding Source. The information must 314 | suffice to ensure that the continued functioning of the modified object 315 | code is in no case prevented or interfered with solely because 316 | modification has been made. 317 | 318 | If you convey an object code work under this section in, or with, or 319 | specifically for use in, a User Product, and the conveying occurs as 320 | part of a transaction in which the right of possession and use of the 321 | User Product is transferred to the recipient in perpetuity or for a 322 | fixed term (regardless of how the transaction is characterized), the 323 | Corresponding Source conveyed under this section must be accompanied 324 | by the Installation Information. But this requirement does not apply 325 | if neither you nor any third party retains the ability to install 326 | modified object code on the User Product (for example, the work has 327 | been installed in ROM). 328 | 329 | The requirement to provide Installation Information does not include a 330 | requirement to continue to provide support service, warranty, or updates 331 | for a work that has been modified or installed by the recipient, or for 332 | the User Product in which it has been modified or installed. Access to a 333 | network may be denied when the modification itself materially and 334 | adversely affects the operation of the network or violates the rules and 335 | protocols for communication across the network. 336 | 337 | Corresponding Source conveyed, and Installation Information provided, 338 | in accord with this section must be in a format that is publicly 339 | documented (and with an implementation available to the public in 340 | source code form), and must require no special password or key for 341 | unpacking, reading or copying. 342 | 343 | 7. Additional Terms. 344 | 345 | "Additional permissions" are terms that supplement the terms of this 346 | License by making exceptions from one or more of its conditions. 347 | Additional permissions that are applicable to the entire Program shall 348 | be treated as though they were included in this License, to the extent 349 | that they are valid under applicable law. If additional permissions 350 | apply only to part of the Program, that part may be used separately 351 | under those permissions, but the entire Program remains governed by 352 | this License without regard to the additional permissions. 353 | 354 | When you convey a copy of a covered work, you may at your option 355 | remove any additional permissions from that copy, or from any part of 356 | it. (Additional permissions may be written to require their own 357 | removal in certain cases when you modify the work.) You may place 358 | additional permissions on material, added by you to a covered work, 359 | for which you have or can give appropriate copyright permission. 360 | 361 | Notwithstanding any other provision of this License, for material you 362 | add to a covered work, you may (if authorized by the copyright holders of 363 | that material) supplement the terms of this License with terms: 364 | 365 | a) Disclaiming warranty or limiting liability differently from the 366 | terms of sections 15 and 16 of this License; or 367 | 368 | b) Requiring preservation of specified reasonable legal notices or 369 | author attributions in that material or in the Appropriate Legal 370 | Notices displayed by works containing it; or 371 | 372 | c) Prohibiting misrepresentation of the origin of that material, or 373 | requiring that modified versions of such material be marked in 374 | reasonable ways as different from the original version; or 375 | 376 | d) Limiting the use for publicity purposes of names of licensors or 377 | authors of the material; or 378 | 379 | e) Declining to grant rights under trademark law for use of some 380 | trade names, trademarks, or service marks; or 381 | 382 | f) Requiring indemnification of licensors and authors of that 383 | material by anyone who conveys the material (or modified versions of 384 | it) with contractual assumptions of liability to the recipient, for 385 | any liability that these contractual assumptions directly impose on 386 | those licensors and authors. 387 | 388 | All other non-permissive additional terms are considered "further 389 | restrictions" within the meaning of section 10. If the Program as you 390 | received it, or any part of it, contains a notice stating that it is 391 | governed by this License along with a term that is a further 392 | restriction, you may remove that term. If a license document contains 393 | a further restriction but permits relicensing or conveying under this 394 | License, you may add to a covered work material governed by the terms 395 | of that license document, provided that the further restriction does 396 | not survive such relicensing or conveying. 397 | 398 | If you add terms to a covered work in accord with this section, you 399 | must place, in the relevant source files, a statement of the 400 | additional terms that apply to those files, or a notice indicating 401 | where to find the applicable terms. 402 | 403 | Additional terms, permissive or non-permissive, may be stated in the 404 | form of a separately written license, or stated as exceptions; 405 | the above requirements apply either way. 406 | 407 | 8. Termination. 408 | 409 | You may not propagate or modify a covered work except as expressly 410 | provided under this License. Any attempt otherwise to propagate or 411 | modify it is void, and will automatically terminate your rights under 412 | this License (including any patent licenses granted under the third 413 | paragraph of section 11). 414 | 415 | However, if you cease all violation of this License, then your 416 | license from a particular copyright holder is reinstated (a) 417 | provisionally, unless and until the copyright holder explicitly and 418 | finally terminates your license, and (b) permanently, if the copyright 419 | holder fails to notify you of the violation by some reasonable means 420 | prior to 60 days after the cessation. 421 | 422 | Moreover, your license from a particular copyright holder is 423 | reinstated permanently if the copyright holder notifies you of the 424 | violation by some reasonable means, this is the first time you have 425 | received notice of violation of this License (for any work) from that 426 | copyright holder, and you cure the violation prior to 30 days after 427 | your receipt of the notice. 428 | 429 | Termination of your rights under this section does not terminate the 430 | licenses of parties who have received copies or rights from you under 431 | this License. If your rights have been terminated and not permanently 432 | reinstated, you do not qualify to receive new licenses for the same 433 | material under section 10. 434 | 435 | 9. Acceptance Not Required for Having Copies. 436 | 437 | You are not required to accept this License in order to receive or 438 | run a copy of the Program. Ancillary propagation of a covered work 439 | occurring solely as a consequence of using peer-to-peer transmission 440 | to receive a copy likewise does not require acceptance. However, 441 | nothing other than this License grants you permission to propagate or 442 | modify any covered work. These actions infringe copyright if you do 443 | not accept this License. Therefore, by modifying or propagating a 444 | covered work, you indicate your acceptance of this License to do so. 445 | 446 | 10. Automatic Licensing of Downstream Recipients. 447 | 448 | Each time you convey a covered work, the recipient automatically 449 | receives a license from the original licensors, to run, modify and 450 | propagate that work, subject to this License. You are not responsible 451 | for enforcing compliance by third parties with this License. 452 | 453 | An "entity transaction" is a transaction transferring control of an 454 | organization, or substantially all assets of one, or subdividing an 455 | organization, or merging organizations. If propagation of a covered 456 | work results from an entity transaction, each party to that 457 | transaction who receives a copy of the work also receives whatever 458 | licenses to the work the party's predecessor in interest had or could 459 | give under the previous paragraph, plus a right to possession of the 460 | Corresponding Source of the work from the predecessor in interest, if 461 | the predecessor has it or can get it with reasonable efforts. 462 | 463 | You may not impose any further restrictions on the exercise of the 464 | rights granted or affirmed under this License. For example, you may 465 | not impose a license fee, royalty, or other charge for exercise of 466 | rights granted under this License, and you may not initiate litigation 467 | (including a cross-claim or counterclaim in a lawsuit) alleging that 468 | any patent claim is infringed by making, using, selling, offering for 469 | sale, or importing the Program or any portion of it. 470 | 471 | 11. Patents. 472 | 473 | A "contributor" is a copyright holder who authorizes use under this 474 | License of the Program or a work on which the Program is based. The 475 | work thus licensed is called the contributor's "contributor version". 476 | 477 | A contributor's "essential patent claims" are all patent claims 478 | owned or controlled by the contributor, whether already acquired or 479 | hereafter acquired, that would be infringed by some manner, permitted 480 | by this License, of making, using, or selling its contributor version, 481 | but do not include claims that would be infringed only as a 482 | consequence of further modification of the contributor version. For 483 | purposes of this definition, "control" includes the right to grant 484 | patent sublicenses in a manner consistent with the requirements of 485 | this License. 486 | 487 | Each contributor grants you a non-exclusive, worldwide, royalty-free 488 | patent license under the contributor's essential patent claims, to 489 | make, use, sell, offer for sale, import and otherwise run, modify and 490 | propagate the contents of its contributor version. 491 | 492 | In the following three paragraphs, a "patent license" is any express 493 | agreement or commitment, however denominated, not to enforce a patent 494 | (such as an express permission to practice a patent or covenant not to 495 | sue for patent infringement). To "grant" such a patent license to a 496 | party means to make such an agreement or commitment not to enforce a 497 | patent against the party. 498 | 499 | If you convey a covered work, knowingly relying on a patent license, 500 | and the Corresponding Source of the work is not available for anyone 501 | to copy, free of charge and under the terms of this License, through a 502 | publicly available network server or other readily accessible means, 503 | then you must either (1) cause the Corresponding Source to be so 504 | available, or (2) arrange to deprive yourself of the benefit of the 505 | patent license for this particular work, or (3) arrange, in a manner 506 | consistent with the requirements of this License, to extend the patent 507 | license to downstream recipients. "Knowingly relying" means you have 508 | actual knowledge that, but for the patent license, your conveying the 509 | covered work in a country, or your recipient's use of the covered work 510 | in a country, would infringe one or more identifiable patents in that 511 | country that you have reason to believe are valid. 512 | 513 | If, pursuant to or in connection with a single transaction or 514 | arrangement, you convey, or propagate by procuring conveyance of, a 515 | covered work, and grant a patent license to some of the parties 516 | receiving the covered work authorizing them to use, propagate, modify 517 | or convey a specific copy of the covered work, then the patent license 518 | you grant is automatically extended to all recipients of the covered 519 | work and works based on it. 520 | 521 | A patent license is "discriminatory" if it does not include within 522 | the scope of its coverage, prohibits the exercise of, or is 523 | conditioned on the non-exercise of one or more of the rights that are 524 | specifically granted under this License. You may not convey a covered 525 | work if you are a party to an arrangement with a third party that is 526 | in the business of distributing software, under which you make payment 527 | to the third party based on the extent of your activity of conveying 528 | the work, and under which the third party grants, to any of the 529 | parties who would receive the covered work from you, a discriminatory 530 | patent license (a) in connection with copies of the covered work 531 | conveyed by you (or copies made from those copies), or (b) primarily 532 | for and in connection with specific products or compilations that 533 | contain the covered work, unless you entered into that arrangement, 534 | or that patent license was granted, prior to 28 March 2007. 535 | 536 | Nothing in this License shall be construed as excluding or limiting 537 | any implied license or other defenses to infringement that may 538 | otherwise be available to you under applicable patent law. 539 | 540 | 12. No Surrender of Others' Freedom. 541 | 542 | If conditions are imposed on you (whether by court order, agreement or 543 | otherwise) that contradict the conditions of this License, they do not 544 | excuse you from the conditions of this License. If you cannot convey a 545 | covered work so as to satisfy simultaneously your obligations under this 546 | License and any other pertinent obligations, then as a consequence you may 547 | not convey it at all. For example, if you agree to terms that obligate you 548 | to collect a royalty for further conveying from those to whom you convey 549 | the Program, the only way you could satisfy both those terms and this 550 | License would be to refrain entirely from conveying the Program. 551 | 552 | 13. Use with the GNU Affero General Public License. 553 | 554 | Notwithstanding any other provision of this License, you have 555 | permission to link or combine any covered work with a work licensed 556 | under version 3 of the GNU Affero General Public License into a single 557 | combined work, and to convey the resulting work. The terms of this 558 | License will continue to apply to the part which is the covered work, 559 | but the special requirements of the GNU Affero General Public License, 560 | section 13, concerning interaction through a network will apply to the 561 | combination as such. 562 | 563 | 14. Revised Versions of this License. 564 | 565 | The Free Software Foundation may publish revised and/or new versions of 566 | the GNU General Public License from time to time. Such new versions will 567 | be similar in spirit to the present version, but may differ in detail to 568 | address new problems or concerns. 569 | 570 | Each version is given a distinguishing version number. If the 571 | Program specifies that a certain numbered version of the GNU General 572 | Public License "or any later version" applies to it, you have the 573 | option of following the terms and conditions either of that numbered 574 | version or of any later version published by the Free Software 575 | Foundation. If the Program does not specify a version number of the 576 | GNU General Public License, you may choose any version ever published 577 | by the Free Software Foundation. 578 | 579 | If the Program specifies that a proxy can decide which future 580 | versions of the GNU General Public License can be used, that proxy's 581 | public statement of acceptance of a version permanently authorizes you 582 | to choose that version for the Program. 583 | 584 | Later license versions may give you additional or different 585 | permissions. However, no additional obligations are imposed on any 586 | author or copyright holder as a result of your choosing to follow a 587 | later version. 588 | 589 | 15. Disclaimer of Warranty. 590 | 591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY 592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT 593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY 594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM 597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF 598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 599 | 600 | 16. Limitation of Liability. 601 | 602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING 603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS 604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY 605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE 606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF 607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD 608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), 609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF 610 | SUCH DAMAGES. 611 | 612 | 17. Interpretation of Sections 15 and 16. 613 | 614 | If the disclaimer of warranty and limitation of liability provided 615 | above cannot be given local legal effect according to their terms, 616 | reviewing courts shall apply local law that most closely approximates 617 | an absolute waiver of all civil liability in connection with the 618 | Program, unless a warranty or assumption of liability accompanies a 619 | copy of the Program in return for a fee. 620 | 621 | END OF TERMS AND CONDITIONS 622 | 623 | How to Apply These Terms to Your New Programs 624 | 625 | If you develop a new program, and you want it to be of the greatest 626 | possible use to the public, the best way to achieve this is to make it 627 | free software which everyone can redistribute and change under these terms. 628 | 629 | To do so, attach the following notices to the program. It is safest 630 | to attach them to the start of each source file to most effectively 631 | state the exclusion of warranty; and each file should have at least 632 | the "copyright" line and a pointer to where the full notice is found. 633 | 634 | 635 | Copyright (C) 636 | 637 | This program is free software: you can redistribute it and/or modify 638 | it under the terms of the GNU General Public License as published by 639 | the Free Software Foundation, either version 3 of the License, or 640 | (at your option) any later version. 641 | 642 | This program is distributed in the hope that it will be useful, 643 | but WITHOUT ANY WARRANTY; without even the implied warranty of 644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 645 | GNU General Public License for more details. 646 | 647 | You should have received a copy of the GNU General Public License 648 | along with this program. If not, see . 649 | 650 | Also add information on how to contact you by electronic and paper mail. 651 | 652 | If the program does terminal interaction, make it output a short 653 | notice like this when it starts in an interactive mode: 654 | 655 | Copyright (C) 656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. 657 | This is free software, and you are welcome to redistribute it 658 | under certain conditions; type `show c' for details. 659 | 660 | The hypothetical commands `show w' and `show c' should show the appropriate 661 | parts of the General Public License. Of course, your program's commands 662 | might be different; for a GUI interface, you would use an "about box". 663 | 664 | You should also get your employer (if you work as a programmer) or school, 665 | if any, to sign a "copyright disclaimer" for the program, if necessary. 666 | For more information on this, and how to apply and follow the GNU GPL, see 667 | . 668 | 669 | The GNU General Public License does not permit incorporating your program 670 | into proprietary programs. If your program is a subroutine library, you 671 | may consider it more useful to permit linking proprietary applications with 672 | the library. If this is what you want to do, use the GNU Lesser General 673 | Public License instead of this License. But first, please read 674 | . 675 | -------------------------------------------------------------------------------- /core/ode.py: -------------------------------------------------------------------------------- 1 | from __future__ import division 2 | from __future__ import absolute_import 3 | 4 | import scipy as sp 5 | import scipy.integrate 6 | import scipy.linalg 7 | import scipy.optimize 8 | import functools as ft 9 | import itertools as it 10 | import copy 11 | import sys 12 | import random 13 | import sympy 14 | 15 | from math import sin, cos, tan, log, atan2, acos, pi, sqrt, exp 16 | from scipy.interpolate import krogh_interpolate 17 | from scipy.linalg import norm 18 | from functools import partial as par 19 | 20 | 21 | import simpleode.core.utils as utils 22 | 23 | 24 | # PARAMETERS 25 | MAX_ALLOWED_DT_SCALING_FACTOR = 3.0 26 | MIN_ALLOWED_DT_SCALING_FACTOR = 0.75 27 | TIMESTEP_FAILURE_DT_SCALING_FACTOR = 0.5 28 | 29 | MIN_ALLOWED_TIMESTEP = 1e-8 30 | MAX_ALLOWED_TIMESTEP = 1e8 31 | 32 | 33 | # Data storage notes 34 | # ============================================================ 35 | # Y values and time values are stored in lists throughout (for easy 36 | # appending). 37 | # The final value in each of these lists (accessed with [-1]) is the most 38 | # recent. 39 | # Almost always the most recent value in the list is the current 40 | # guess/result for y_np1/t_np1 (i.e. y_{n+1}, t_{n+1}, i.e. the value being 41 | # calculated), the previous is y_n, etc. 42 | # Denote values of y/t at timestep using eg. y_np1 for y at step n+1. Use 43 | # 'h' for 0.5, 'm' for minus, 'p' for plus (since we can't include .,-,+ in 44 | # variable names). 45 | # 46 | # 47 | # Random notes: 48 | # ============================================================ 49 | # Try to always use fractions rather than floating point values because 50 | # this allows us to use the same functions in sympy for algebraic 51 | # computations without loss of accuracy. 52 | 53 | 54 | class FailedTimestepError(Exception): 55 | 56 | def __init__(self, new_dt): 57 | self.new_dt = new_dt 58 | 59 | def __str__(self): 60 | return "Exception: timestep failed, next timestep should be "\ 61 | + repr(self.new_dt) 62 | 63 | 64 | class ConvergenceFailure(Exception): 65 | pass 66 | 67 | 68 | def _timestep_scheme_factory(method): 69 | """Construct the functions for the named method. Input is either a 70 | string with the name of the method or a dict with the name and a list 71 | of parameters. 72 | 73 | Returns a triple of functions for: 74 | * a time residual 75 | * a timestep adaptor 76 | * intialisation actions 77 | """ 78 | 79 | _method_dict = {} 80 | 81 | # If it's a dict then get the label attribute, otherwise assume it's a 82 | # string... 83 | if isinstance(method, dict): 84 | _method_dict = method 85 | else: 86 | _method_dict = {'label': method} 87 | 88 | label = _method_dict.get('label').lower() 89 | 90 | if label == 'bdf2': 91 | return bdf2_residual, None, par(higher_order_start, 2) 92 | 93 | elif label == 'bdf3': 94 | return bdf3_residual, None, par(higher_order_start, 3) 95 | 96 | elif label == 'bdf2 mp': 97 | adaptor = par(general_time_adaptor, 98 | lte_calculator=bdf2_mp_lte_estimate, 99 | method_order=2) 100 | return (bdf2_residual, adaptor, par(higher_order_start, 3)) 101 | 102 | elif label == 'bdf2 ebdf3': 103 | dydt_func = _method_dict.get('dydt_func', None) 104 | lte_est = par(ebdf3_lte_estimate, dydt_func=dydt_func) 105 | adaptor = par(general_time_adaptor, 106 | lte_calculator=lte_est, 107 | method_order=2) 108 | return (bdf2_residual, adaptor, par(higher_order_start, 4)) 109 | 110 | elif label == 'bdf1': 111 | return bdf1_residual, None, None 112 | 113 | elif label == 'imr': 114 | return imr_residual, None, None 115 | 116 | elif label == 'imr ebdf3': 117 | dydt_func = _method_dict.get('dydt_func', None) 118 | lte_est = par(ebdf3_lte_estimate, dydt_func=dydt_func) 119 | adaptor = par(general_time_adaptor, 120 | lte_calculator=lte_est, 121 | method_order=2) 122 | return imr_residual, adaptor, par(higher_order_start, 5) 123 | 124 | elif label == 'imr w18': 125 | import simpleode.algebra.two_predictor as tp 126 | p1_points = _method_dict['p1_points'] 127 | p1_pred = _method_dict['p1_pred'] 128 | 129 | p2_points = _method_dict['p2_points'] 130 | p2_pred = _method_dict['p2_pred'] 131 | 132 | symbolic = _method_dict['symbolic'] 133 | 134 | lte_est = tp.generate_predictor_pair_lte_est( 135 | *tp.generate_predictor_pair_scheme(p1_points, p1_pred, 136 | p2_points, p2_pred, 137 | symbolic=symbolic)) 138 | 139 | adaptor = par(general_time_adaptor, 140 | lte_calculator=lte_est, 141 | method_order=2) 142 | 143 | # ??ds don't actually need this many history values to start but it 144 | # makes things easier so use this many for now. 145 | return imr_residual, adaptor, par(higher_order_start, 12) 146 | 147 | elif label == 'trapezoid' or label == 'tr': 148 | # TR is actually self starting but due to technicalities with 149 | # getting derivatives of y from implicit formulas we need an extra 150 | # starting point. 151 | return TrapezoidRuleResidual(), None, par(higher_order_start, 2) 152 | 153 | elif label == 'tr ab': 154 | 155 | dydt_func = _method_dict.get('dydt_func') 156 | 157 | adaptor = par(general_time_adaptor, 158 | lte_calculator=tr_ab_lte_estimate, 159 | dydt_func=dydt_func, 160 | method_order=2) 161 | 162 | return TrapezoidRuleResidual(), adaptor, par(higher_order_start, 2) 163 | 164 | else: 165 | message = "Method '"+label+"' not recognised." 166 | raise ValueError(message) 167 | 168 | 169 | def higher_order_start(n_start, func, ts, ys, dt=1e-6): 170 | """ Run a few steps of imr with a very small timestep. 171 | Useful for generating extra initial data for multi-step methods. 172 | """ 173 | while len(ys) < n_start: 174 | ts, ys = _odeint(func, ts, ys, dt, ts[-1] + dt, 175 | imr_residual) 176 | return ts, ys 177 | 178 | 179 | def odeint(func, y0, tmax, dt, method='bdf2', target_error=None, **kwargs): 180 | """ 181 | Integrate the residual "func" with initial value "y0" to time 182 | "tmax". If non-adaptive (target_error=None) then all steps have size 183 | "dt", otherwise "dt" is used for the first step and later steps are 184 | automatically decided using the adaptive scheme. 185 | 186 | newton_tol : specify Newton tolerance (used for minimisation of residual). 187 | 188 | actions_after_timestep : function to modify t_np1 and y_np1 after 189 | calculation (takes ts, ys as input args, returns modified t_np1, y_np1). 190 | 191 | Actually just a user friendly wrapper for _odeint. Given a method name 192 | (or dict of time integration method parameters) construct the required 193 | functions using _timestep_scheme_factory(..), set up data storage and 194 | integrate the ODE using _odeint. 195 | 196 | Any other arguments are just passed down to _odeint, which passes extra 197 | args down to the newton solver. 198 | """ 199 | 200 | # Select the method and adaptor 201 | time_residual, time_adaptor, initialisation_actions = \ 202 | _timestep_scheme_factory(method) 203 | 204 | # Check adaptivity arguments for consistency. 205 | # if target_error is None and time_adaptor is not None: 206 | # raise ValueError("Adaptive time stepping requires a target_error") 207 | # if target_error is not None and time_adaptor is None: 208 | # raise ValueError("Adaptive time stepping requires an adaptive method") 209 | 210 | ts = [0.0] # List of times (floats) 211 | ys = [sp.array(y0, ndmin=1)] # List of y vectors (ndarrays) 212 | 213 | # Now call the actual function to do the work 214 | return _odeint(func, ts, ys, dt, tmax, time_residual, 215 | target_error, time_adaptor, initialisation_actions, 216 | **kwargs) 217 | 218 | 219 | def _odeint(func, tsin, ysin, dt, tmax, time_residual, 220 | target_error=None, time_adaptor=None, 221 | initialisation_actions=None, actions_after_timestep=None, 222 | newton_failure_reduce_step=False, jacobian_func=None, 223 | vary_step=False, 224 | **kwargs): 225 | """Underlying function for odeint. 226 | """ 227 | 228 | # Make sure we only operator on a copy of (tsin, ysin) not the lists 229 | # themselves! (possibility for subtle bugs otherwise) 230 | ts = copy.copy(tsin) 231 | ys = copy.copy(ysin) 232 | 233 | if initialisation_actions is not None: 234 | ts, ys = initialisation_actions(func, ts, ys) 235 | 236 | if vary_step: 237 | assert time_adaptor is None 238 | step_randomiser = create_random_time_adaptor(dt, 0.9, 1.1) 239 | 240 | # Main timestepping loop 241 | # ============================================================ 242 | while ts[-1] < tmax: 243 | 244 | t_np1 = ts[-1] + dt 245 | 246 | # Fill in the residual for calculating dydt and the previous time 247 | # and y values ready for the Newton solver. Don't use a lambda 248 | # function because it confuses the profiler. 249 | def residual(y_np1): 250 | return time_residual(func, ts+[t_np1], ys+[y_np1]) 251 | 252 | if jacobian_func is not None: 253 | J_f_of_y = lambda y: jacobian_func(t_np1, y) 254 | else: 255 | J_f_of_y = None 256 | 257 | # Try to solve the system, using the previous y as an initial 258 | # guess. If it fails reduce dt and try again. 259 | try: 260 | y_np1 = newton(residual, ys[-1], jacobian_func=J_f_of_y, **kwargs) 261 | 262 | except sp.optimize.nonlin.NoConvergence: 263 | 264 | # If we are doing adaptive stepping (or overide allowing the 265 | # step to be reduced) then reduce the step and try again. 266 | if (time_adaptor is not None) or newton_failure_reduce_step: 267 | dt = scale_timestep(dt, None, None, None, 268 | scaling_function=failed_timestep_scaling) 269 | sys.stderr.write("Failed to converge, reducing time step.\n") 270 | continue 271 | 272 | # Otherwise don't do anything (re-raise the exception). 273 | else: 274 | raise 275 | 276 | # Execute any post-step actions requested (e.g. renormalisation, 277 | # simplified mid-point method update). 278 | if actions_after_timestep is not None: 279 | new_t_np1, new_y_np1 = actions_after_timestep( 280 | ts+[t_np1], ys+[y_np1]) 281 | # Note: we store the results in new variables so that we can 282 | # easily discard this step if it fails. 283 | else: 284 | new_t_np1, new_y_np1 = t_np1, y_np1 285 | 286 | # Calculate the next value of dt if needed 287 | if time_adaptor is not None: 288 | try: 289 | dt = time_adaptor(ts+[new_t_np1], ys+[new_y_np1], target_error) 290 | 291 | # If the scaling factor is too small then don't store this 292 | # timestep, instead repeat it with the new step size. 293 | except FailedTimestepError as exception_data: 294 | sys.stderr.write('Rejected time step\n') 295 | dt = exception_data.new_dt 296 | continue 297 | 298 | elif vary_step: 299 | dt = step_randomiser() 300 | 301 | # Update results storage (don't do this earlier in case the time 302 | # step fails). 303 | ys.append(new_y_np1) 304 | ts.append(new_t_np1) 305 | 306 | return ts, ys 307 | 308 | 309 | def higher_order_explicit_start(n_start, func, ts, ys): 310 | starting_dt = 1e-6 311 | while len(ys) < n_start: 312 | ts, ys = _odeint_explicit(func, ts, ys, starting_dt, 313 | ts[-1] + starting_dt, 314 | emr_step) 315 | 316 | return ts, ys 317 | 318 | 319 | def odeint_explicit(func, y0, dt, tmax, method='ab2', time_adaptor=None, 320 | target_error=None, **kwargs): 321 | """Fairly naive implementation of constant step explicit time stepping 322 | for linear odes. 323 | """ 324 | # Set up starting values 325 | ts = [0.0] 326 | ys = [sp.array([y0], ndmin=1)] 327 | 328 | if method == 'ab2': 329 | def wrapped_ab2(ts, ys, func): 330 | return ab2_step(ts[-1] - ts[-2], ys[-2], func(ts[-2], ys[-2]), 331 | ts[-2] - ts[-3], func(ts[-3], ys[-3])) 332 | 333 | stepper = wrapped_ab2 334 | n_start = 2 335 | 336 | elif method == "ebdf2": 337 | def wrapped_ebdf2(ts, ys, func): 338 | return ebdf2_step(ts[-1] - ts[-2], ts[-2], func(ts[-2], ys[-2]), 339 | ts[-2] - ts[-3], ys[-3]) 340 | stepper = wrapped_ebdf2 341 | n_start = 2 342 | 343 | elif method == "ebdf3": 344 | def wrapped_ebdf3(ts, ys, func): 345 | return ebdf3_step(ts[-1] - ts[-2], ys[-2], func(ts[-2], ys[-2]), 346 | ts[-2] - ts[-3], ys[-3], 347 | ts[-3] - ts[-4], ys[-4]) 348 | stepper = wrapped_ebdf3 349 | n_start = 3 350 | 351 | else: 352 | raise NotImplementedError("method "+method+" not implement (yet?)") 353 | 354 | # Generate enough values to start the main method (using emr) 355 | ts, ys = higher_order_explicit_start(n_start, func, ts, ys) 356 | 357 | # Call the real stepping function 358 | return _odeint_explicit(func, ts, ys, dt, tmax, stepper, time_adaptor) 359 | 360 | 361 | def _odeint_explicit(func, ts, ys, dt, tmax, 362 | stepper, target_error=None, time_adaptor=None): 363 | 364 | while ts[-1] < tmax: 365 | 366 | # Step (note: to be similar to implicit code pass dummy value of 367 | # ynp1 into stepper) 368 | t_np1 = ts[-1] + dt 369 | y_np1 = stepper(ts+[t_np1], ys+[None], func) 370 | 371 | # Calculate the next value of dt if needed 372 | if time_adaptor is not None: 373 | try: 374 | dt = time_adaptor(ts+[t_np1], ys+[y_np1], target_error) 375 | 376 | # If the scaling factor is too small then don't store this 377 | # timestep, instead repeat it with the new step size. 378 | except FailedTimestepError as exception_data: 379 | sys.stderr.write('Rejected time step\n') 380 | dt = exception_data.new_dt 381 | continue 382 | 383 | # Store values 384 | ys.append(y_np1) 385 | ts.append(t_np1) 386 | 387 | return ts, ys 388 | 389 | 390 | # Newton solver and helpers 391 | # ============================================================ 392 | def newton(residual, x0, jacobian_func=None, newton_tol=1e-8, 393 | solve_function=None, 394 | jacobian_fd_eps=1e-10, max_iter=20): 395 | """Find the minimum of the residual function using Newton's method. 396 | 397 | Optionally specify a Jacobian calculation function, a tolerance and/or 398 | a function to solve the linear system J.dx = r. 399 | 400 | If no Jacobian_Func is given the Jacobian is finite differenced. 401 | If no solve function is given then sp.linalg.solve is used. 402 | 403 | Norm for measuring residual is max(abs(..)). 404 | """ 405 | if jacobian_func is None: 406 | jacobian_func = par( 407 | finite_diff_jacobian, 408 | residual, 409 | eps=jacobian_fd_eps) 410 | 411 | if solve_function is None: 412 | solve_function = sp.linalg.solve 413 | 414 | # Wrap the solve function to deal with non-matrix cases (i.e. when we 415 | # only have one degree of freedom and the "Jacobian" is just a number). 416 | def wrapped_solve(A, b): 417 | if len(b) == 1: 418 | return b/A[0][0] 419 | else: 420 | try: 421 | return solve_function(A, b) 422 | except scipy.linalg.LinAlgError: 423 | print "\n", A, b, "\n" 424 | raise 425 | 426 | # Call the real Newton solve function 427 | return _newton(residual, x0, jacobian_func, newton_tol, 428 | wrapped_solve, max_iter) 429 | 430 | 431 | def _newton(residual, x0, jacobian_func, newton_tol, solve_function, max_iter): 432 | """Core function of newton(...).""" 433 | 434 | if max_iter <= 0: 435 | raise sp.optimize.nonlin.NoConvergence 436 | 437 | r = residual(x0) 438 | 439 | # If max entry is below newton_tol then return 440 | if sp.amax(abs(r)) < newton_tol: 441 | return x0 442 | 443 | # Otherwise reduce residual using Newtons method + recurse 444 | else: 445 | J = jacobian_func(x0) 446 | dx = solve_function(J, r) 447 | return _newton(residual, x0 - dx, jacobian_func, newton_tol, 448 | solve_function, max_iter - 1) 449 | 450 | 451 | def finite_diff_jacobian(residual, x, eps): 452 | """Calculate the matrix of derivatives of the residual w.r.t. input 453 | values by finite differencing. 454 | """ 455 | n = len(x) 456 | J = sp.empty((n, n)) 457 | 458 | # For each entry in x 459 | for i in range(0, n): 460 | xtemp = x.copy() # Force a copy so that we don't modify x 461 | xtemp[i] += eps 462 | J[:, i] = (residual(xtemp) - residual(x))/eps 463 | 464 | return J 465 | 466 | 467 | # Interpolation helpers 468 | # ============================================================ 469 | def my_interpolate(ts, ys, n_interp, use_y_np1_in_interp=False): 470 | # Find the start and end of the slice of ts, ys that we want to use for 471 | # interpolation. 472 | start = -n_interp if use_y_np1_in_interp else -n_interp - 1 473 | end = None if use_y_np1_in_interp else -1 474 | 475 | # Nasty things could go wrong if you try to start adapting with not 476 | # enough points because [-a:-b] notation lets us go past the ends of 477 | # the list without throwing an error! Check it! 478 | assert len(ts[start:end]) == n_interp 479 | 480 | # Actually interpolate the values 481 | t_nph = (ts[-1] + ts[-2])/2 482 | t_nmh = (ts[-2] + ts[-3])/2 483 | interps = krogh_interpolate( 484 | ts[start:end], ys[start:end], [t_nmh, ts[-2], t_nph], der=[0, 1, 2]) 485 | 486 | # Unpack (can't get "proper" unpacking to work) 487 | dy_nmh = interps[1][0] 488 | dy_n = interps[1][1] 489 | y_nph = interps[0][2] 490 | dy_nph = interps[1][2] 491 | ddy_nph = interps[2][2] 492 | 493 | return dy_nmh, y_nph, dy_nph, ddy_nph, dy_n 494 | 495 | 496 | def imr_approximation_fake_interpolation(ts, ys): 497 | # Just use imr approximation for "interpolation"! 498 | 499 | dt_n = (ts[-1] + ts[-2])/2 500 | dt_nm1 = (ts[-2] + ts[-3])/2 501 | 502 | # Use imr average approximations 503 | y_nph = (ys[-1] + ys[-2])/2 504 | dy_nph = (ys[-1] - ys[-2])/dt_n 505 | dy_nmh = (ys[-2] - ys[-3])/dt_nm1 506 | 507 | # Finite diff it 508 | ddy_nph = (dy_nph - dy_nmh) / (dt_n/2 + dt_nm1/2) 509 | 510 | return dy_nmh, y_nph, dy_nph, ddy_nph, None 511 | 512 | 513 | # Timestepper residual calculation functions 514 | # ============================================================ 515 | 516 | def ab2_step(dt_n, y_n, dy_n, dt_nm1, dy_nm1): 517 | """Take a single step of the Adams-Bashforth 2 method. 518 | """ 519 | dtr = dt_n / dt_nm1 520 | y_np1 = y_n + (dt_n/2)*((2 + dtr)*dy_n - dtr*dy_nm1) 521 | return y_np1 522 | 523 | 524 | def ebdf2_step(dt_n, y_n, dy_n, dt_nm1, y_nm1): 525 | """Take a single step of the explicit midpoint rule. 526 | From G&S pg. 715 and Prinja's thesis pg.45. 527 | """ 528 | dtr = dt_n / dt_nm1 529 | y_np1 = (1 - dtr**2)*y_n + (1 + dtr)*dt_n*dy_n + (dtr**2)*(y_nm1) 530 | return y_np1 531 | 532 | 533 | def emr_step(ts, ys, func): 534 | dtn = ts[-1] - ts[-2] 535 | 536 | tn = ts[-2] 537 | yn = ys[-2] 538 | 539 | tnph = ts[-1] + dtn/2 540 | ynph = yn + (dtn/2)*func(tn, yn) 541 | 542 | ynp1 = yn + dtn * func(tnph, ynph) 543 | 544 | return ynp1 545 | 546 | 547 | def ibdf2_step(dtn, yn, dynp1, dtnm1, ynm1): 548 | """Take an implicit (normal) bdf2 step, must provide the derivative or 549 | some approximation to it. For solves use residuals instead. 550 | 551 | Generated by sym-bdf3.py 552 | """ 553 | 554 | return ( 555 | (-dtn**2*ynm1 + dtn*dtnm1*dynp1*(dtn + dtnm1) + yn * 556 | (dtn**2 + 2*dtn*dtnm1 + dtnm1**2))/(dtnm1*(2*dtn + dtnm1)) 557 | ) 558 | 559 | 560 | def ibdf3_step(dynp1, dtn, yn, dtnm1, ynm1, dtnm2, ynm2): 561 | return ( 562 | ( 563 | dtn**2*dtnm1*ynm2*( 564 | dtn**2 + 2*dtn*dtnm1 + dtnm1**2) - dtn**2*ynm1*( 565 | dtn**2*dtnm1 + dtn**2*dtnm2 + 2*dtn*dtnm1**2 + 4*dtn*dtnm1*dtnm2 + 2*dtn*dtnm2**2 + dtnm1**3 + 3*dtnm1**2*dtnm2 + 3*dtnm1*dtnm2**2 + dtnm2**3) + dtn*dtnm1*dtnm2*dynp1*( 566 | dtn**2*dtnm1 + dtn**2*dtnm2 + 2*dtn*dtnm1**2 + 3*dtn*dtnm1*dtnm2 + dtn*dtnm2**2 + dtnm1**3 + 2*dtnm1**2*dtnm2 + dtnm1*dtnm2**2) + dtnm2*yn*( 567 | dtn**4 + 4*dtn**3*dtnm1 + 2*dtn**3*dtnm2 + 6*dtn**2*dtnm1**2 + 6*dtn**2*dtnm1*dtnm2 + dtn**2*dtnm2**2 + 4*dtn*dtnm1**3 + 6*dtn*dtnm1**2*dtnm2 + 2*dtn*dtnm1*dtnm2**2 + dtnm1**4 + 2*dtnm1**3*dtnm2 + dtnm1**2*dtnm2**2))/( 568 | dtnm1*dtnm2*( 569 | 3*dtn**2*dtnm1 + 3*dtn**2*dtnm2 + 4*dtn*dtnm1**2 + 6*dtn*dtnm1*dtnm2 + 2*dtn*dtnm2**2 + dtnm1**3 + 2*dtnm1**2*dtnm2 + dtnm1*dtnm2**2)) 570 | ) 571 | 572 | 573 | def ebdf3_step_wrapper(ts, ys, dyn): 574 | """Get required values from ts, ys vectors and call ebdf3_step. 575 | """ 576 | 577 | dtn = ts[-1] - ts[-2] 578 | dtnm1 = ts[-2] - ts[-3] 579 | dtnm2 = ts[-3] - ts[-4] 580 | 581 | yn = ys[-2] 582 | ynm1 = ys[-3] 583 | ynm2 = ys[-4] 584 | 585 | return ebdf3_step(dtn, yn, dyn, dtnm1, ynm1, dtnm2, ynm2) 586 | 587 | 588 | def ebdf3_step(dtn, yn, dyn, dtnm1, ynm1, dtnm2, ynm2): 589 | """Calculate one step of "explicitBDF3", i.e. the third order analogue 590 | of explicit midpoint rule. 591 | 592 | Code is generated using sym-bdf3.py. 593 | """ 594 | return ( 595 | -( 596 | dyn*( 597 | -dtn**3*dtnm1**2*dtnm2 - dtn**3*dtnm1*dtnm2**2 - 2*dtn**2*dtnm1**3*dtnm2 - 3*dtn**2*dtnm1**2*dtnm2**2 - dtn**2*dtnm1*dtnm2**3 - dtn*dtnm1**4*dtnm2 - 2*dtn*dtnm1**3*dtnm2**2 - dtn*dtnm1**2*dtnm2**3) + yn*( 598 | 2*dtn**3*dtnm1*dtnm2 + dtn**3*dtnm2**2 + 3*dtn**2*dtnm1**2*dtnm2 + 3*dtn**2*dtnm1*dtnm2**2 + dtn**2*dtnm2**3 - dtnm1**4*dtnm2 - 2*dtnm1**3*dtnm2**2 - dtnm1**2*dtnm2**3) + ynm1*( 599 | -dtn**3*dtnm1**2 - 2*dtn**3*dtnm1*dtnm2 - dtn**3*dtnm2**2 - dtn**2*dtnm1**3 - 3*dtn**2*dtnm1**2*dtnm2 - 3*dtn**2*dtnm1*dtnm2**2 - dtn**2*dtnm2**3) + ynm2*( 600 | dtn**3*dtnm1**2 + dtn**2*dtnm1**3))/( 601 | dtnm1**4*dtnm2 + 2*dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) 602 | ) 603 | 604 | 605 | def ebdf3_dynm1_step(ts, ys, dynm1): 606 | dtn = ts[-1] - ts[-2] 607 | dtnm1 = ts[-2] - ts[-3] 608 | dtnm2 = ts[-3] - ts[-4] 609 | 610 | yn = ys[-2] 611 | ynm1 = ys[-3] 612 | ynm2 = ys[-4] 613 | 614 | return ( 615 | dynm1*( 616 | -dtn**3*dtnm1**2*dtnm2/( 617 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) - dtn**3*dtnm1*dtnm2**2/( 618 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) - 2*dtn**2*dtnm1**3*dtnm2/( 619 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) - 3*dtn**2*dtnm1**2*dtnm2**2/( 620 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) - dtn**2*dtnm1*dtnm2**3/( 621 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) - dtn*dtnm1**4*dtnm2/( 622 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) - 2*dtn*dtnm1**3*dtnm2**2/( 623 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) - dtn*dtnm1**2*dtnm2**3/( 624 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3)) + yn*( 625 | dtn**3*dtnm2**2/( 626 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) + 3*dtn**2*dtnm1*dtnm2**2/( 627 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) + dtn**2*dtnm2**3/( 628 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) + 3*dtn*dtnm1**2*dtnm2**2/( 629 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) + 2*dtn*dtnm1*dtnm2**3/( 630 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) + dtnm1**3*dtnm2**2/( 631 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) + dtnm1**2*dtnm2**3/( 632 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3)) + ynm1*( 633 | dtn**3*dtnm1**2/( 634 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) - dtn**3*dtnm2**2/( 635 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) + 2*dtn**2*dtnm1**3/( 636 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) - 3*dtn**2*dtnm1*dtnm2**2/( 637 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) - dtn**2*dtnm2**3/( 638 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) + dtn*dtnm1**4/( 639 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) - 3*dtn*dtnm1**2*dtnm2**2/( 640 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) - 2*dtn*dtnm1*dtnm2**3/( 641 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3)) + ynm2*( 642 | -dtn**3*dtnm1**2/( 643 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) - 2*dtn**2*dtnm1**3/( 644 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3) - dtn*dtnm1**4/( 645 | dtnm1**3*dtnm2**2 + dtnm1**2*dtnm2**3)) 646 | ) 647 | 648 | 649 | def imr_residual(base_residual, ts, ys): 650 | y_nph = (ys[-1] + ys[-2])/2 651 | t_nph = (ts[-1] + ts[-2])/2 652 | dydt_nph = imr_dydt(ts, ys) 653 | return base_residual(t_nph, y_nph, dydt_nph) 654 | 655 | 656 | def imr_dydt(ts, ys): 657 | """Get dy/dt at the midpoint as used by imr. 658 | """ 659 | dypnh_dt = (ys[-1] - ys[-2])/(ts[-1] - ts[-2]) 660 | return dypnh_dt 661 | 662 | 663 | def interpolate_dyn(ts, ys): 664 | #??ds probably not accurate enough 665 | 666 | order = 3 667 | ts = ts[-1*order-1:] 668 | ys = ys[-1*order-1:] 669 | 670 | ynp1_list = ys[1:] 671 | yn_list = ys[:-1] 672 | dts = utils.ts2dts(ts) 673 | 674 | # double check steps match 675 | imr_ts = map(lambda tn, tnp1: (tn + tnp1)/2, ts[1:], ts[:-1]) 676 | imr_dys = map(lambda dt, ynp1, yn: (ynp1 - yn)/dt, 677 | dts, ynp1_list, yn_list) 678 | 679 | dyn = (sp.interpolate.barycentric_interpolate 680 | (imr_ts, imr_dys, ts[-2])) 681 | 682 | return dyn 683 | 684 | 685 | def bdf1_residual(base_residual, ts, ys): 686 | dt_n = ts[-1] - ts[-2] 687 | y_n = ys[-2] 688 | y_np1 = ys[-1] 689 | 690 | dydt = (y_np1 - y_n) / dt_n 691 | return base_residual(ts[-1], y_np1, dydt) 692 | 693 | 694 | def bdf_residual(base_residual, ts, ys, dydt_func): 695 | """ Calculate residual at latest time and y-value with a bdf 696 | approximation for the y derivative. 697 | """ 698 | return base_residual(ts[-1], ys[-1], dydt_func(ts, ys)) 699 | 700 | 701 | def bdf2_dydt(ts, ys): 702 | """Get dy/dt at time ts[-1] (allowing for varying dt). 703 | Gresho & Sani, pg. 715""" 704 | dt_n = ts[-1] - ts[-2] 705 | dt_nm1 = ts[-2] - ts[-3] 706 | 707 | y_np1 = ys[-1] 708 | y_n = ys[-2] 709 | y_nm1 = ys[-3] 710 | 711 | # Copied from oomph-lib (algebraic rearrangement of G&S forumla). 712 | dydt = (((1/dt_n) + (1/(dt_n + dt_nm1))) * y_np1 713 | - ((dt_n + dt_nm1)/(dt_n * dt_nm1)) * y_n 714 | + (dt_n / ((dt_n + dt_nm1) * dt_nm1)) * y_nm1) 715 | 716 | return dydt 717 | 718 | 719 | def bdf3_dydt(ts, ys): 720 | """Get dydt at time ts[-1] to O(dt^3). 721 | 722 | Code is generated using sym-bdf3.py. 723 | """ 724 | 725 | dtn = ts[-1] - ts[-2] 726 | dtnm1 = ts[-2] - ts[-3] 727 | dtnm2 = ts[-3] - ts[-4] 728 | 729 | ynp1 = ys[-1] 730 | yn = ys[-2] 731 | ynm1 = ys[-3] 732 | ynm2 = ys[-4] 733 | 734 | return ( 735 | dtn*(dtn + dtnm1)*(-(-(ynm1 - ynm2)/dtnm2 + (yn - ynm1)/dtnm1)/(dtnm1 + dtnm2) + (-(yn - ynm1)/dtnm1 + (ynp1 - yn)/dtn)/(dtn + dtnm1)) / 736 | (dtn + dtnm1 + dtnm2) + dtn*(-(yn - ynm1)/dtnm1 + (ynp1 - yn)/dtn) / 737 | (dtn + dtnm1) + (ynp1 - yn)/dtn 738 | ) 739 | 740 | 741 | def bdf4_dydt(ts, ys): 742 | """Get dydt at time ts[-1] using bdf4 approximation. 743 | 744 | Code is generated using sym-bdf3.py. 745 | """ 746 | 747 | dtn = ts[-1] - ts[-2] 748 | dtnm1 = ts[-2] - ts[-3] 749 | dtnm2 = ts[-3] - ts[-4] 750 | dtnm3 = ts[-4] - ts[-5] 751 | 752 | ynp1 = ys[-1] 753 | yn = ys[-2] 754 | ynm1 = ys[-3] 755 | ynm2 = ys[-4] 756 | ynm3 = ys[-5] 757 | 758 | return ( 759 | dtn*(dtn + dtnm1)*(-(-(ynm1 - ynm2)/dtnm2 + (yn - ynm1)/dtnm1)/(dtnm1 + dtnm2) + (-(yn - ynm1)/dtnm1 + (ynp1 - yn)/dtn)/(dtn + dtnm1))/(dtn + dtnm1 + dtnm2) + dtn*(dtn + dtnm1)*((-(-(ynm1 - ynm2)/dtnm2 + (yn - ynm1)/dtnm1)/(dtnm1 + dtnm2) + (-(yn - ynm1)/dtnm1 + (ynp1 - yn)/dtn)/(dtn + dtnm1)) / 760 | (dtn + dtnm1 + dtnm2) - (-(-(ynm2 - ynm3)/dtnm3 + (ynm1 - ynm2)/dtnm2)/(dtnm2 + dtnm3) + (-(ynm1 - ynm2)/dtnm2 + (yn - ynm1)/dtnm1)/(dtnm1 + dtnm2))/(dtnm1 + dtnm2 + dtnm3))*(dtn + dtnm1 + dtnm2)/(dtn + dtnm1 + dtnm2 + dtnm3) + dtn*(-(yn - ynm1)/dtnm1 + (ynp1 - yn)/dtn)/(dtn + dtnm1) + (ynp1 - yn)/dtn 761 | ) 762 | 763 | 764 | bdf2_residual = par(bdf_residual, dydt_func=bdf2_dydt) 765 | bdf3_residual = par(bdf_residual, dydt_func=bdf3_dydt) 766 | bdf4_residual = par(bdf_residual, dydt_func=bdf4_dydt) 767 | 768 | 769 | # Assumption: we never actually undo a timestep (otherwise dys will become 770 | # out of sync with ys). 771 | class TrapezoidRuleResidual(object): 772 | 773 | """A class to calculate trapezoid rule residuals. 774 | 775 | We need a class because we need to store the past data. Other residual 776 | calculations do not. 777 | """ 778 | 779 | def __init__(self): 780 | self.dys = [] 781 | 782 | def calculate_new_dy_if_needed(self, ts, ys): 783 | """If dy_n/dt has not been calculated on this step then calculate 784 | it from previous values of y and dydt by inverting the trapezoid 785 | rule. 786 | """ 787 | if len(self.dys) < len(ys) - 1: 788 | dt_nm1 = ts[-2] - ts[-3] 789 | dy_n = (2.0 / dt_nm1) * (ys[-2] - ys[-3]) - self.dys[-1] 790 | self.dys.append(dy_n) 791 | 792 | def _get_initial_dy(self, base_residual, ts, ys): 793 | """Calculate a step with imr to get dydt at y_n. 794 | """ 795 | 796 | # We want to ignore the most recent two steps (the one being solved 797 | # for "now" outside this function and the one we are computing the 798 | # derivative at). We also want to ensure nothing is modified in the 799 | # solutions list: 800 | temp_ts = copy.deepcopy(ts[:-2]) 801 | temp_ys = copy.deepcopy(ys[:-2]) 802 | 803 | # Timestep should be double the timestep used for the previous 804 | # step, so that the imr is at y_n. 805 | dt_n = 2*(ts[-2] - ts[-3]) 806 | 807 | # Calculate time step 808 | temp_ts, temp_ys = _odeint(base_residual, temp_ts, temp_ys, dt_n, 809 | temp_ts[-1] + dt_n, imr_residual) 810 | 811 | # Check that we got the right times: the midpoint should be at 812 | # the step before the most recent time. 813 | utils.assert_almost_equal((temp_ts[-1] + temp_ts[-2])/2, ts[-2]) 814 | 815 | # Now invert imr to get the derivative 816 | dy_nph = (temp_ys[-1] - temp_ys[-2])/dt_n 817 | 818 | # Fill in dummys (as many as we have y values) followed by the 819 | # derivative we just calculated. 820 | self.dys = [float('nan')] * (len(ys)-1) 821 | self.dys[-1] = dy_nph 822 | 823 | def __call__(self, base_residual, ts, ys): 824 | if len(self.dys) == 0: 825 | self._get_initial_dy(base_residual, ts, ys) 826 | 827 | dt_n = ts[-1] - ts[-2] 828 | t_np1 = ts[-1] 829 | y_n = ys[-2] 830 | y_np1 = ys[-1] 831 | 832 | self.calculate_new_dy_if_needed(ts, ys) 833 | dy_n = self.dys[-1] 834 | 835 | dy_np1 = (2.0/dt_n) * (y_np1 - y_n) - dy_n 836 | return base_residual(t_np1, y_np1, dy_np1) 837 | 838 | # Adaptive timestepping functions 839 | # ============================================================ 840 | 841 | 842 | def default_dt_scaling(target_error, error_estimate, timestepper_order): 843 | """Standard way of rescaling the time step to attain the target error. 844 | Taken from Gresho and Sani (various places). 845 | """ 846 | try: 847 | power = (1.0/(1.0 + timestepper_order)) 848 | scaling_factor = (target_error/error_estimate)**power 849 | 850 | except ZeroDivisionError: 851 | scaling_factor = MAX_ALLOWED_DT_SCALING_FACTOR 852 | 853 | return scaling_factor 854 | 855 | 856 | def failed_timestep_scaling(*_): 857 | """Return scaling factor for a failed time step, ignores all input 858 | arguments. 859 | """ 860 | return TIMESTEP_FAILURE_DT_SCALING_FACTOR 861 | 862 | 863 | def create_random_time_adaptor(base_dt, 864 | min_scaling=TIMESTEP_FAILURE_DT_SCALING_FACTOR, 865 | max_scaling=MAX_ALLOWED_DT_SCALING_FACTOR): 866 | """Create time adaptor which randomly changes the time step to some 867 | multiple of base_dt. Scaling factor is within the allowed range. For 868 | testing purposes. 869 | """ 870 | def random_time_adaptor(*_): 871 | return base_dt * random.uniform(min_scaling, max_scaling) 872 | return random_time_adaptor 873 | 874 | 875 | def scale_timestep(dt, target_error, error_norm, order, 876 | scaling_function=default_dt_scaling): 877 | """Scale dt by a scaling factor. Mostly this function is needed to 878 | check that the scaling factor and new time step are within the 879 | allowable bounds. 880 | """ 881 | 882 | # Calculate the scaling factor and the candidate for next step size. 883 | scaling_factor = scaling_function(target_error, error_norm, order) 884 | new_dt = scaling_factor * dt 885 | 886 | # If the error is too bad (i.e. scaling factor too small) reject the 887 | # step, unless we are already dealing with a rejected step; 888 | if scaling_factor < MIN_ALLOWED_DT_SCALING_FACTOR \ 889 | and not scaling_function is failed_timestep_scaling: 890 | raise FailedTimestepError(new_dt) 891 | 892 | # or if the scaling factor is really large just use the max scaling. 893 | elif scaling_factor > MAX_ALLOWED_DT_SCALING_FACTOR: 894 | scaling_factor = MAX_ALLOWED_DT_SCALING_FACTOR 895 | 896 | # If the timestep would get too big then return the max time step; 897 | if new_dt > MAX_ALLOWED_TIMESTEP: 898 | return MAX_ALLOWED_TIMESTEP 899 | 900 | # or if the timestep would become too small then fail; 901 | elif new_dt < MIN_ALLOWED_TIMESTEP: 902 | error = "Tried to reduce dt to " + str(new_dt) +\ 903 | " which is less than the minimum of " + str(MIN_ALLOWED_TIMESTEP) 904 | raise ConvergenceFailure(error) 905 | 906 | # otherwise scale the timestep normally. 907 | else: 908 | return new_dt 909 | 910 | 911 | def general_time_adaptor(ts, ys, target_error, method_order, lte_calculator, 912 | **kwargs): 913 | """General base function for time adaptivity function. 914 | 915 | Partially evaluate with a method order and an lte_calculator to create 916 | a complete time adaptor function. 917 | 918 | Other args are passed down to the lte calculator. 919 | """ 920 | 921 | # Get the local truncation error estimator 922 | lte_est = lte_calculator(ts, ys, **kwargs) 923 | 924 | # Get the 2-norm 925 | error_norm = sp.linalg.norm(sp.array(lte_est, ndmin=1), 2) 926 | 927 | # Return the scaled timestep (with lots of checks). 928 | return scale_timestep(ts[-1] - ts[-2], target_error, error_norm, 929 | method_order) 930 | 931 | 932 | def bdf2_mp_prinja_lte_estimate(ts, ys): 933 | """Estimate LTE using combination of bdf2 and explicit midpoint. From 934 | Prinja's thesis. 935 | """ 936 | 937 | # Get local values (makes maths more readable) 938 | dt_n = ts[-1] - ts[-2] 939 | dt_nm1 = ts[-2] - ts[-3] 940 | dtr = dt_n / dt_nm1 941 | dtrinv = 1.0 / dtr 942 | 943 | y_np1 = ys[-1] 944 | y_n = ys[-2] 945 | y_nm1 = ys[-3] 946 | 947 | # Invert bdf2 to get derivative 948 | dy_n = bdf2_dydt(ts[:-1], ys[:-1]) 949 | 950 | # Calculate predictor value (variable dt explicit mid point rule) 951 | y_np1_EMR = ebdf2_step(dt_n, y_n, dy_n, dt_nm1, y_nm1) 952 | 953 | error_weight = (dt_nm1 + dt_n) / (3*dt_n + 2*dt_nm1) 954 | 955 | # Calculate truncation error -- oomph-lib 956 | error = (y_np1 - y_np1_EMR) * error_weight 957 | 958 | return error 959 | 960 | 961 | def bdf2_mp_gs_lte_estimate(ts, ys): 962 | """Estimate LTE using combination of bdf2 and explicit midpoint. From 963 | oomph-lib and G&S. 964 | """ 965 | 966 | # Get local values (makes maths more readable) 967 | dt_n = ts[-1] - ts[-2] 968 | dt_nm1 = ts[-2] - ts[-3] 969 | dtr = dt_n / dt_nm1 970 | dtrinv = 1.0 / dtr 971 | 972 | y_np1 = ys[-1] 973 | y_n = ys[-2] 974 | y_nm1 = ys[-3] 975 | 976 | # Invert bdf2 to get predictor data (using the exact same function as 977 | # was used in the residual calculation). 978 | dy_n = bdf2_dydt(ts[:-1], ys[:-1]) 979 | 980 | # Calculate predictor value (variable dt explicit mid point rule) 981 | y_np1_EMR = ebdf2_step(dt_n, y_n, dy_n, dt_nm1, y_nm1) 982 | 983 | error_weight = ((1.0 + dtrinv)**2) / \ 984 | (1.0 + 3.0*dtrinv + 4.0 * dtrinv**2 985 | + 2.0 * dtrinv**3) 986 | 987 | # Calculate truncation error -- oomph-lib 988 | error = (y_np1 - y_np1_EMR) * error_weight 989 | 990 | return error 991 | 992 | 993 | # ??Ds use prinja's 994 | bdf2_mp_lte_estimate = bdf2_mp_prinja_lte_estimate 995 | 996 | 997 | def tr_ab_lte_estimate(ts, ys, dydt_func): 998 | dt_n = ts[-1] - ts[-2] 999 | dt_nm1 = ts[-2] - ts[-3] 1000 | dtrinv = dt_nm1 / dt_n 1001 | 1002 | y_np1 = ys[-1] 1003 | y_n = ys[-2] 1004 | y_nm1 = ys[-3] 1005 | 1006 | dy_n = dydt_func(ts[-2], y_n) 1007 | dy_nm1 = dydt_func(ts[-3], y_nm1) 1008 | 1009 | # Predict with AB2 1010 | y_np1_AB2 = ab2_step(dt_n, y_n, dy_n, dt_nm1, dy_nm1) 1011 | 1012 | # Estimate LTE 1013 | lte_est = (y_np1 - y_np1_AB2) / (3*(1 + dtrinv)) 1014 | return lte_est 1015 | 1016 | 1017 | def ebdf3_lte_estimate(ts, ys, dydt_func=None): 1018 | """Estimate lte for any second order integration method by comparing 1019 | with the third order explicit bdf method. 1020 | """ 1021 | 1022 | # Use BDF approximation to dyn if no function given 1023 | if dydt_func is None: 1024 | # dyn = bdf3_dydt(ts[:-1], ys[:-1]) 1025 | dyn = interpolate_dyn(ts, ys) 1026 | else: 1027 | dyn = dydt_func(ts[-2], ys[-2]) 1028 | 1029 | y_np1_EBDF3 = ebdf3_step_wrapper(ts, ys, dyn) 1030 | 1031 | return ys[-1] - y_np1_EBDF3 1032 | 1033 | 1034 | def get_ltes_from_data(maints, mainys, lte_est): 1035 | 1036 | ltes = [] 1037 | 1038 | for ts, ys in zip(utils.partial_lists(maints, 6), 1039 | utils.partial_lists(mainys, 6)): 1040 | 1041 | this_lte = lte_est(ts, ys) 1042 | 1043 | ltes.append(this_lte) 1044 | 1045 | return ltes 1046 | 1047 | 1048 | # Testing 1049 | # ============================================================ 1050 | import matplotlib.pyplot as plt 1051 | from simpleode.core.example_residuals import * 1052 | 1053 | 1054 | def check_problem(method, residual, exact, tol=1e-4, tmax=2.0): 1055 | """Helper function to run odeint with a specified method for a problem 1056 | and check that the solution matches. 1057 | """ 1058 | 1059 | ts, ys = odeint(residual, [exact(0.0)], tmax, dt=1e-6, 1060 | method=method, target_error=tol) 1061 | 1062 | # Total error should be bounded by roughly n_steps * LTE 1063 | overall_tol = len(ys) * tol * 10 1064 | utils.assert_list_almost_equal(ys, map(exact, ts), overall_tol) 1065 | 1066 | return ts, ys 1067 | 1068 | 1069 | def test_bad_timestep_handling(): 1070 | """ Check that rejecting timesteps works. 1071 | """ 1072 | tmax = 0.4 1073 | tol = 1e-4 1074 | 1075 | def list_cummulative_sums(values, start): 1076 | temp = [start] 1077 | for v in values: 1078 | temp.append(temp[-1] + v) 1079 | return temp 1080 | 1081 | dts = [1e-6, 1e-6, 1e-6, (1. - 0.01)*tmax] 1082 | initial_ts = list_cummulative_sums(dts[:-1], 0.) 1083 | initial_ys = [sp.array(exp3_exact(t), ndmin=1) for t in initial_ts] 1084 | 1085 | adaptor = par(general_time_adaptor, lte_calculator=bdf2_mp_lte_estimate, 1086 | method_order=2) 1087 | 1088 | ts, ys = _odeint(exp3_residual, initial_ts, initial_ys, dts[-1], tmax, 1089 | bdf2_residual, tol, adaptor) 1090 | 1091 | # plt.plot(ts,ys) 1092 | # plt.plot(ts[1:], utils.ts2dts(ts)) 1093 | # plt.plot(ts, map(exp3_exact, ts)) 1094 | # plt.show() 1095 | 1096 | overall_tol = len(ys) * tol * 2 # 2 is a fudge factor... 1097 | utils.assert_list_almost_equal(ys, map(exp3_exact, ts), overall_tol) 1098 | 1099 | 1100 | def test_ab2(): 1101 | 1102 | def check_explicit_stepper(stepper, exact_symb): 1103 | 1104 | exact, residual, dys, J = utils.symb2functions(exact_symb) 1105 | 1106 | base_dt = 1e-3 1107 | ts, ys = odeint_explicit(dys[1], exact(0.0), base_dt, 1.0, stepper, 1108 | time_adaptor=create_random_time_adaptor(base_dt)) 1109 | 1110 | exact_ys = map(exact, ts) 1111 | utils.assert_list_almost_equal(ys, exact_ys, 1e-4) 1112 | 1113 | t = sympy.symbols('t') 1114 | functions = [2*t**2, 1115 | sympy.exp(t), 1116 | 3*sympy.exp(-t) 1117 | ] 1118 | 1119 | steppers = ['ab2', 1120 | # 'ebdf2', 1121 | # 'ebdf3' 1122 | ] 1123 | 1124 | for func in functions: 1125 | for stepper in steppers: 1126 | yield check_explicit_stepper, stepper, func 1127 | 1128 | 1129 | def test_dydt_calcs(): 1130 | 1131 | def check_dydt_calcs(dydt_calculator, order, dt, dydt_exact, y_exact): 1132 | """Check that derivative approximations are roughly as accurate as 1133 | expected for a few functions. 1134 | """ 1135 | 1136 | ts = sp.arange(0, 0.5, dt) 1137 | exact_ys = map(y_exact, ts) 1138 | exact_dys = map(dydt_exact, ts, exact_ys) 1139 | 1140 | est_dys = map(dydt_calculator, utils.partial_lists(ts, 5), 1141 | utils.partial_lists(exact_ys, 5)) 1142 | 1143 | utils.assert_list_almost_equal(est_dys, exact_dys[4:], 10*(dt**order)) 1144 | 1145 | fs = [(poly_dydt, poly_exact), 1146 | (exp_dydt, exp_exact), 1147 | (exp_of_poly_dydt, exp_of_poly_exact), 1148 | ] 1149 | 1150 | dydt_calculators = [(bdf2_dydt, 2), 1151 | (bdf3_dydt, 3), 1152 | (imr_dydt, 1), 1153 | ] 1154 | dts = [0.1, 0.01, 0.001] 1155 | 1156 | for dt in dts: 1157 | for dydt_exact, y_exact in fs: 1158 | for dydt_calculator, order in dydt_calculators: 1159 | yield check_dydt_calcs, dydt_calculator, order, dt, dydt_exact, y_exact 1160 | 1161 | 1162 | def test_exp_timesteppers(): 1163 | 1164 | # Auxilary checking function 1165 | def check_exp_timestepper(method, tol): 1166 | def residual(t, y, dydt): 1167 | return y - dydt 1168 | tmax = 1.0 1169 | dt = 0.001 1170 | ts, ys = odeint(exp_residual, [exp(0.0)], tmax, dt=dt, 1171 | method=method) 1172 | 1173 | # plt.plot(ts,ys) 1174 | # plt.plot(ts, map(exp,ts), '--r') 1175 | # plt.show() 1176 | utils.assert_almost_equal(ys[-1], exp(tmax), tol) 1177 | 1178 | # List of test parameters 1179 | methods = [('bdf2', 1e-5), 1180 | ('bdf1', 1e-2), # First order method... 1181 | ('imr', 1e-5), 1182 | ('trapezoid', 1e-5), 1183 | ] 1184 | 1185 | # Generate tests 1186 | for meth, tol in methods: 1187 | yield check_exp_timestepper, meth, tol 1188 | 1189 | 1190 | def test_vector_timesteppers(): 1191 | 1192 | # Auxilary checking function 1193 | def check_vector_timestepper(method, tol): 1194 | def residual(t, y, dydt): 1195 | return sp.array([-1.0 * sin(t), y[1]]) - dydt 1196 | tmax = 1.0 1197 | ts, ys = odeint(residual, [cos(0.0), exp(0.0)], tmax, dt=0.001, 1198 | method=method) 1199 | 1200 | utils.assert_almost_equal(ys[-1][0], cos(tmax), tol[0]) 1201 | utils.assert_almost_equal(ys[-1][1], exp(tmax), tol[1]) 1202 | 1203 | # List of test parameters 1204 | methods = [('bdf2', [1e-4, 1e-4]), 1205 | ('bdf1', [1e-2, 1e-2]), # First order methods suck... 1206 | ('imr', [1e-4, 1e-4]), 1207 | ('trapezoid', [1e-4, 1e-4]), 1208 | ] 1209 | 1210 | # Generate tests 1211 | for meth, tol in methods: 1212 | yield check_vector_timestepper, meth, tol 1213 | 1214 | 1215 | def test_adaptive_dt(): 1216 | 1217 | methods = [('bdf2 mp', 1e-4), 1218 | # ('imr fe ab', 1e-4), 1219 | # ('imr ab', 1e-4), 1220 | ('imr ebdf3', 1e-5), # test with and without explicit f 1221 | ({'label': 'imr ebdf3'}, 1e-5), 1222 | ({'label': 'tr ab'}, 1e-4), 1223 | ] 1224 | 1225 | functions = [(exp_residual, exp, exp_dydt), 1226 | # (exp_of_minus_t_residual, exp_of_minus_t_exact, exp_of_minus_t_dydt), 1227 | (poly_residual, poly_exact, poly_dydt), 1228 | (exp_of_poly_residual, exp_of_poly_exact, exp_of_poly_dydt) 1229 | ] 1230 | 1231 | for meth, tol in methods: 1232 | for residual, exact, dydt in functions: 1233 | 1234 | # If we can, then put the dydt function name into the dict, 1235 | # most methods shouldn't need this. 1236 | try: 1237 | meth['dydt_func'] = dydt 1238 | except TypeError: 1239 | pass 1240 | 1241 | yield check_problem, meth, residual, exact, tol 1242 | 1243 | 1244 | def test_sharp_dt_change(): 1245 | 1246 | # Parameters, don't fiddle with these too much or it might miss the 1247 | # step altogether... 1248 | alpha = 20 1249 | step_time = 0.4 1250 | tmax = 2.5 1251 | tol = 1e-4 1252 | 1253 | # Set up functions 1254 | residual = par(tanh_residual, alpha=alpha, step_time=step_time) 1255 | exact = par(tanh_exact, alpha=alpha, step_time=step_time) 1256 | 1257 | # Run it 1258 | return check_problem('bdf2 mp', residual, exact, tol=tol) 1259 | 1260 | 1261 | # def test_with_stiff_problem(): 1262 | # """Check that imr fe ab works well for stiff problem (i.e. has a 1263 | # non-insane number of time steps). 1264 | # """ 1265 | # Slow test! 1266 | 1267 | # mu = 1000 1268 | # residual = par(van_der_pol_residual, mu=mu) 1269 | 1270 | # ts, ys = odeint(residual, [2.0, 0], 1000.0, dt=1e-6, 1271 | # method='imr ab', target_error=1e-3) 1272 | 1273 | # print len(ts) 1274 | # plt.plot(ts, [y[0] for y in ys]) 1275 | # plt.plot(ts[1:], utils.ts2dts(ts)) 1276 | # plt.show() 1277 | 1278 | # n_steps = len(ts) 1279 | # assert n_steps < 5000 1280 | 1281 | def test_newton(): 1282 | def check_newton(residual, exact): 1283 | solution = newton(residual, sp.array([1.0]*len(exact))) 1284 | utils.assert_list_almost_equal(solution, exact) 1285 | 1286 | tests = [(lambda x: sp.array([x**2 - 2]), sp.array([sp.sqrt(2)])), 1287 | (lambda x: sp.array([x[0]**2 - 2, x[1] - x[0] - 1]), 1288 | sp.array([sp.sqrt(2), sp.sqrt(2) + 1])), 1289 | ] 1290 | 1291 | for res, exact in tests: 1292 | check_newton(res, exact) 1293 | 1294 | 1295 | def test_symbolic_compare_step_time_residual(): 1296 | 1297 | # Define the symbols we need 1298 | St = sympy.symbols('t') 1299 | Sdts = sympy.symbols('Delta0:9') 1300 | Sys = sympy.symbols('y0:9') 1301 | Sdys = sympy.symbols('dy0:9') 1302 | 1303 | # Generate the stuff needed to run the residual 1304 | def fake_eqn_residual(ts, ys, dy): 1305 | return Sdys[0] - dy 1306 | fake_ts = utils.dts2ts(St, Sdts[::-1]) 1307 | fake_ys = Sys[::-1] 1308 | 1309 | # Check bdf2 1310 | step_result_bdf2 = ibdf2_step(Sdts[0], Sys[1], Sdys[0], Sdts[1], Sys[2]) 1311 | res_result_bdf2 = bdf2_residual(fake_eqn_residual, fake_ts, fake_ys) 1312 | res_bdf2_step = sympy.solve(res_result_bdf2, Sys[0]) 1313 | 1314 | assert len(res_bdf2_step) == 1 1315 | utils.assert_sym_eq(res_bdf2_step[0], step_result_bdf2) 1316 | 1317 | 1318 | # Check bdf3 -- ??ds too complex.. 1319 | # step_result_bdf3 = ibdf3_step(Sdts[0], Sys[1], Sdys[0], Sdts[1], Sys[2], 1320 | # Sdts[2], Sys[3]) 1321 | # res_bdf3_result_bdf3 = bdf3_residual(fake_eqn_residual, fake_ts, fake_ys) 1322 | # res_bdf3_step = sympy.solve(res_bdf3_result_bdf3, Sys[0]) 1323 | 1324 | # assert len(res_bdf3_step) == 1 1325 | # utils.assert_sym_eq(res_bdf3_step[0], step_result_bdf3) 1326 | 1327 | 1328 | def test_get_ltes_from_data(): 1329 | 1330 | # Generate results 1331 | dt = 0.01 1332 | ys, ts = odeint(exp_residual, [exp(0.0)], tmax=0.5, dt=dt, 1333 | method="bdf2") 1334 | 1335 | # Generate ltes 1336 | ltes = get_ltes_from_data(ts, ys, bdf2_mp_lte_estimate) 1337 | 1338 | # Just check that the length is right and that they are the right 1339 | # order of magnitude to be ltes. 1340 | assert len(ltes) == len(ys) - 5 1341 | for lte in ltes: 1342 | utils.assert_same_order_of_magnitude(lte, dt**3) 1343 | 1344 | # 1345 | -------------------------------------------------------------------------------- /algebra/two_predictor.py: -------------------------------------------------------------------------------- 1 | 2 | from __future__ import division 3 | from __future__ import absolute_import 4 | 5 | import sympy 6 | import scipy.misc 7 | import sys 8 | import itertools as it 9 | import math 10 | import collections 11 | 12 | from sympy import Rational as sRat 13 | from sympy.simplify.cse_main import cse 14 | 15 | 16 | from pprint import pprint as pp 17 | from operator import mul 18 | from functools import partial as par 19 | # import sympy.simplify.simplify as simpl 20 | 21 | import simpleode.core.utils as utils 22 | import simpleode.core.ode as ode 23 | 24 | 25 | # Error calculations 26 | # ============================================================ 27 | def imr_lte(dtn, dddynph, Fddynph): 28 | """From my derivations 29 | """ 30 | return dtn**3*dddynph/24 + dtn*imr_f_approximation_error(dtn, Fddynph) 31 | 32 | 33 | def bdf2_lte(dtn, dtnm1, dddyn): 34 | """Gresho and Sani pg.715, sign inverted 35 | """ 36 | return -((dtn + dtnm1)**2/(dtn*(2*dtn + dtnm1))) * dtn**3 * dddyn/6 37 | 38 | 39 | def bdf3_lte(*_): 40 | """Gresho and Sani pg.715, sign inverted 41 | """ 42 | return 0 # No error to O(dtn**4) (third order) 43 | 44 | 45 | def ebdf2_lte(dtn, dtnm1, dddyn): 46 | """Gresho and Sani pg.715, sign inverted, dtn/dtnm1 corrected as in Prinja 47 | """ 48 | return (1 + dtnm1/dtn) * dtn**3 * dddyn / 6 49 | 50 | 51 | def ebdf3_lte(*_): 52 | return 0 # no error to O(dtn**4) (third order) 53 | 54 | 55 | def ab2_lte(dtn, dtnm1, dddyn): 56 | return ((2 + 3*(dtnm1/dtn)) * dtn**3 * dddyn)/12 57 | 58 | 59 | def tr_lte(dtn, dddyn): 60 | return -dtn**3 * dddyn/12 61 | 62 | 63 | def imr_f_approximation_error(dtn, Fddynph): 64 | """My derivations: 65 | y'_imr = y'(t_{n+1/2}) + dtn**2 * Fddynph/8 + O(dtn**3) 66 | 67 | => y'(t_{n+1/2}) - y'_imr = -dtn**2 * Fddynph/8 + O(dtn**3) 68 | 69 | """ 70 | return -dtn**2*Fddynph/8 71 | 72 | 73 | # Helper functions 74 | # ============================================================ 75 | def constify_step(expr): 76 | return expr.subs([(Sdts[1], Sdts[0]), 77 | (Sdts[2], Sdts[0]), (Sdts[3], Sdts[0]), 78 | (Sdts[4], Sdts[0])]) 79 | 80 | 81 | def cse_print(expr): 82 | cses, simple_expr = cse(expr) 83 | print 84 | print sympy.pretty(simple_expr) 85 | pp(cses) 86 | print 87 | 88 | 89 | def system2matrix(system, variables): 90 | """Create a matrix from a system of equations (assuming it's linear!). 91 | """ 92 | A = sympy.Matrix([[None]*len(system)]*len(variables)) 93 | for i, eqn in enumerate(system): 94 | for j, var in enumerate(variables): 95 | # Create a dict where all vars except this one are zero, this 96 | # one is one. 97 | subs_dict = dict([(v, 1 if v == var else 0) for v in variables]) 98 | A[i, j] = eqn.subs(subs_dict) 99 | 100 | return A 101 | 102 | 103 | def is_rational(x): 104 | try: 105 | # If it's a sympy object this is all we need 106 | return x.is_rational 107 | except AttributeError: 108 | # Otherwise assume only integers are rational (not other way to 109 | # represent rational numbers afaik). 110 | return is_integer(x) 111 | 112 | 113 | def is_integer(x): 114 | """Check if x is an integer by comparing it with floor(x). This should work 115 | well with floats, sympy rationals etc. 116 | """ 117 | return math.floor(x) == x 118 | 119 | 120 | def is_half_integer(x): 121 | return x == (math.floor(x) + float(sRat(1, 2))) 122 | 123 | 124 | def rational_as_mixed(x): 125 | """Convert a rational number to (integer_part, remainder_as_fraction) 126 | """ 127 | assert is_rational(x) # Don't want to accidentally end up with floats 128 | # in here as very long rationals! 129 | x_int = int(x) 130 | return x_int, sRat(x - x_int) 131 | 132 | 133 | def sum_dts(a, b): 134 | """Get t_a - t_b in terms of dts. 135 | 136 | e.g. 137 | a = 0, b = 2: 138 | t_0 - t_2 = t_{n+1} - t_{n-1} = dt_{n+1} + dt_n = Sdts[0] + Sdts[1] 139 | 140 | a = 2, b = 0: 141 | t_2 - t_0 = - Sdts[0] - Sdts[1] 142 | """ 143 | 144 | # Doesn't work for negative a, b 145 | assert a >= 0 and b >= 0 146 | 147 | # if a and b are in the "wrong" order then it's just the negative of 148 | # the sum with them in the "right" order. 149 | if a > b: 150 | return -1 * sum_dts(b, a) 151 | 152 | # Deal with non-integer a 153 | a_int, a_frac = rational_as_mixed(a) 154 | if a_frac != 0: 155 | result = -a_frac * Sdts[a_int] + sum_dts(a_int, b) 156 | return result 157 | 158 | b_int, b_frac = rational_as_mixed(b) 159 | if b_frac != 0: 160 | return b_frac * Sdts[b_int] + sum_dts(a, b_int) 161 | 162 | return sum(Sdts[a:b]) 163 | 164 | 165 | # Define symbol names 166 | # ============================================================ 167 | Sdts = sympy.symbols('Delta0:9') 168 | Sys = sympy.symbols('y0:9') 169 | Sdys = sympy.symbols('Dy0:9') 170 | St = sympy.symbols('t') 171 | Sdddynph = sympy.symbols("y'''_h") 172 | SFddynph = sympy.symbols("F.y''_h") 173 | y_np1_exact = sympy.symbols('y_0') 174 | y_np1_imr, y_np1_p2, y_np1_p1 = sympy.symbols('y_0_imr y_0_p2 y_0_p1') 175 | 176 | 177 | # Calculate full errors 178 | # ============================================================ 179 | def generate_p_dt_func(symbolic_func): 180 | """Helper function: convert a symbolic function for predictor dt into a 181 | python function f(ts) = predictor_dt. 182 | """ 183 | f = sympy.lambdify(Sdts[:5], symbolic_func) 184 | 185 | def p_dt(ts): 186 | assert len(ts) >= 6 187 | # Get last 5 dts in order: n, nm1, nm2 etc. 188 | dts = utils.ts2dts(ts[-6:])[::-1] 189 | return f(*dts) # plug them into the symbolic function 190 | return p_dt 191 | 192 | 193 | PTInfo = collections.namedtuple('PTInfo', ['time', 'y_est', 'dy_est']) 194 | 195 | 196 | def bdf2_imr_ptinfos(pt): 197 | # assert pt == sRat(1,2) 198 | return [PTInfo(pt.time, None, "imr"), 199 | PTInfo(pt.time + sRat(1, 2) + 1, "corr_val", None), 200 | PTInfo(pt.time + sRat(1, 2) + 2, "corr_val", None)] 201 | 202 | 203 | def bdf3_imr_ptinfos(pt): 204 | # assert pt == sRat(1,2) 205 | return [PTInfo(pt.time, None, "imr"), 206 | PTInfo(pt.time + sRat(1, 2), "corr_val", None), 207 | PTInfo(pt.time + sRat(1, 2) + 1, "corr_val", None), 208 | PTInfo(pt.time + sRat(1, 2) + 2, "corr_val", None)] 209 | 210 | 211 | def t_at_time_point(ts, time_point): 212 | """Get the value of time at a "time point" (i.e. the i in n+1-i). Deal with 213 | non integer points by linear interpolation. 214 | """ 215 | assert time_point >= 0 216 | 217 | if is_integer(time_point): 218 | return ts[-(time_point+1)] 219 | 220 | # Otherwise linearly interpolate 221 | else: 222 | pa = int(math.floor(time_point)) 223 | pb = int(math.ceil(time_point)) 224 | frac = time_point - pa 225 | ta = t_at_time_point(ts, pa) 226 | tb = t_at_time_point(ts, pb) 227 | return ta + frac*(tb - ta) 228 | 229 | 230 | def ptinfo2yerr(pt): 231 | """Construct the sympy expression giving the error of the y approximation 232 | requested. 233 | """ 234 | 235 | # Use (implicit) bdf2 with the derivative at tnp1 given by implicit 236 | # midpoint rule. Only works at half time steps. 237 | if pt.y_est == "bdf2 imr": 238 | _, y_np1_bdf2 = generate_predictor_scheme( 239 | bdf2_imr_ptinfos(pt), "ibdf2") 240 | y_error = -y_np1_bdf2.subs(y_np1_exact, 0) 241 | 242 | # Use (implicit) bdf3 with the derivative at tnp1 given by implicit 243 | # midpoint rule. Only works at half time steps. 244 | elif pt.y_est == "bdf3 imr": 245 | _, y_np1_bdf3 = generate_predictor_scheme( 246 | bdf3_imr_ptinfos(pt), "ibdf3") 247 | y_error = -y_np1_bdf3.subs(y_np1_exact, 0) 248 | 249 | # Just use corrector value at this point, counts as exact for lte. 250 | elif pt.y_est == "corr_val": 251 | y_error = 0 252 | 253 | elif pt.y_est == "exact": 254 | y_error = 0 255 | 256 | # None: don't use this value 257 | elif pt.y_est is None: 258 | y_error = None 259 | 260 | else: 261 | raise ValueError("Unrecognised y_est name " + str(pt.y_est)) 262 | 263 | return y_error 264 | 265 | 266 | def ptinfo2yfunc(pt, y_of_t_func=None): 267 | """Construct a python function to calculate the approximation to y 268 | requested. 269 | """ 270 | 271 | # Use (implicit) bdf2 with the derivative at tnp1 given by implicit 272 | # midpoint rule. Only works at half time steps. 273 | if pt.y_est == "bdf2 imr": 274 | y_func, _ = generate_predictor_scheme(bdf2_imr_ptinfos(pt), "ibdf2") 275 | 276 | # Using (implicit) bdf3 with the derivative at tnp1 given by implicit 277 | # midpoint rule. Only works at half time steps. 278 | elif pt.y_est == "bdf3 imr": 279 | y_func, _ = generate_predictor_scheme(bdf3_imr_ptinfos(pt), "ibdf3") 280 | 281 | # Just use corrector value at this point, counts as exact for lte. 282 | elif pt.y_est == "corr_val": 283 | y_func = lambda ts, ys: ys[-(1+pt.time)] # ??ds 284 | 285 | # Use given exact y function 286 | elif pt.y_est == "exact": 287 | assert y_of_t_func is not None 288 | 289 | def y_func(ts, ys): 290 | return y_of_t_func(t_at_time_point(ts, pt.time)) 291 | 292 | # None: don't use this value 293 | elif pt.y_est is None: 294 | y_func = None 295 | 296 | else: 297 | raise ValueError("Unrecognised y_est name " + str(pt.y_est)) 298 | 299 | return y_func 300 | 301 | 302 | def ptinfo2dyerr(pt): 303 | """Construct the sympy expression giving the error of the dy approximation 304 | requested. 305 | """ 306 | 307 | # Use the dy estimate from implicit midpoint rule (obviously only works 308 | # at the midpoint). 309 | if pt.dy_est == "imr": 310 | if not is_half_integer(pt.time): 311 | raise ValueError("imr dy approximation Only works for half integer " 312 | + "points but given the point " + str(pt.time)) 313 | 314 | # This works even for time points other than nph because in the 315 | # Taylor expansion {Fddy}_nmh = {Fddy}_nph + higher order terms, 316 | # luckily for us these end up in O(dtn**4) in the end. 317 | dy_error = imr_f_approximation_error(Sdts[0], SFddynph) 318 | 319 | # Use the provided f with known values to calculate dydt. 320 | elif pt.dy_est == "exact": 321 | dy_error = 0 322 | 323 | elif pt.dy_est == "fd4": 324 | dy_error = 0 # assuming we use 4th order fd with all points at 325 | # integers 326 | 327 | # ??ds 328 | elif pt.dy_est == "exp test": 329 | dy_error = 0 330 | 331 | # Don't use this value 332 | elif pt.dy_est is None: 333 | dy_error = None 334 | 335 | else: 336 | raise ValueError( 337 | "Unrecognised dy_est name in error construction " + str(pt.dy_est)) 338 | 339 | return dy_error 340 | 341 | 342 | def ptinfo2dyfunc(pt, dydt_func): 343 | """Construct a python function to calculate the approximation to dy 344 | requested. If not using "exact" for dy_est the dydt_func can/should 345 | be None. 346 | """ 347 | 348 | # Use the dy estimate from implicit midpoint rule (obviously only works 349 | # at the midpoint). 350 | if pt.dy_est == "imr": 351 | if not is_half_integer(pt.time): 352 | raise ValueError("imr dy approximation Only works for half integer " 353 | + "points but given the point " + str(pt.time)) 354 | 355 | # Need to drop some of the later time values if time point is 356 | # not the midpoint of 0 and 1 points (i.e. 1/2). Specifically, we 357 | # need: 358 | # 1/2 -> ts[:None] 359 | # 3/2 -> ts[:-1] 360 | # 5/2 -> ts[:-2] 361 | if pt.time == sRat(1, 2): 362 | # dy_func = ode.imr_dydt 363 | def dy_func(ts, ys): 364 | val = ode.imr_dydt(ts, ys) 365 | print "imr f(t) =", val 366 | return val 367 | else: 368 | x = -math.floor(pt.time) 369 | 370 | def dy_func(ts, ys): 371 | val = ode.imr_dydt(ts[:-int(math.floor(pt.time))], 372 | ys[:-int(math.floor(pt.time))]) 373 | print "imr f(t) =", val 374 | return val 375 | 376 | elif pt.dy_est == "fd4": 377 | def dy_func(ts, ys): 378 | coeffs = [-1/12, -2/3, 0, 2/3, -1/12] 379 | ys_used = ys[-6:-1] 380 | 381 | assert len(ys) >= 6 382 | 383 | # ??ds only for constant step! with variable steps we can put 384 | # the 0 at a midpoint to reduce n-prev-steps needed. 385 | 386 | return sp.dot(coeffs, ys_used) 387 | 388 | # ??ds Use real dydt for exp 389 | elif pt.dy_est == "exp test": 390 | def dy_func(ts, ys): 391 | return ys[-(pt.time+1)] 392 | 393 | # Use the provided f with known values to calculate dydt. Only for 394 | # integer time points (i.e. where we already know y etc.) for now. 395 | elif pt.dy_est == "exact": 396 | assert dydt_func is not None 397 | 398 | if is_integer(pt.time): 399 | dy_func = lambda ts, ys: dydt_func(ts[pt.time]) 400 | else: 401 | # Can't get y without additional approximations... 402 | def dy_func(ts, ys): 403 | val = dydt_func(t_at_time_point(ts, pt.time)) 404 | print "f(t) =", val 405 | return val 406 | 407 | # None = "this value at this point should not be used" 408 | elif pt.dy_est is None: 409 | dy_func = None 410 | 411 | else: 412 | raise ValueError( 413 | "Unrecognised dy_est name in function construction " + str(pt.dy_est)) 414 | 415 | return dy_func 416 | 417 | 418 | def generate_predictor_scheme(pt_infos, predictor_name, symbolic=None): 419 | 420 | # Extract symbolic expressions from what we're given. 421 | if symbolic is not None: 422 | try: 423 | symb_exact, symb_F = symbolic 424 | 425 | except TypeError: # not iterable 426 | symb_exact = symbolic 427 | 428 | Sy = sympy.symbols('y', real=True) 429 | symb_dy = sympy.diff(symb_exact, St, 1).subs(symb_exact, Sy) 430 | symb_F = sympy.diff(symb_dy, Sy).subs(Sy, symb_exact) 431 | 432 | dydt_func = sympy.lambdify(St, sympy.diff(symb_exact, St, 1)) 433 | f_y = sympy.lambdify(St, symb_exact) 434 | 435 | else: 436 | dydt_func = None 437 | f_y = None 438 | 439 | # To cancel errors we need the final step to be at t_np1 440 | # assert pt_infos[0].time == 0 441 | n_hist = len(pt_infos) + 5 442 | 443 | # Create symbolic and python functions of (corrector) dts and ts 444 | # respectively that give the appropriate dts for this predictor. 445 | p_dtns = [] 446 | p_dtn_funcs = [] 447 | for pt1, pt2 in zip(pt_infos[:-1], pt_infos[1:]): 448 | p_dtns.append(sum_dts(pt1.time, pt2.time)) 449 | p_dtn_funcs.append(generate_p_dt_func(p_dtns[-1])) 450 | 451 | # For each time point the predictor uses construct symbolic error 452 | # estimates for the requested estimate at that point and python 453 | # functions to calculate the value of the estimate. 454 | y_errors = map(ptinfo2yerr, pt_infos) 455 | y_funcs = map(par(ptinfo2yfunc, y_of_t_func=f_y), pt_infos) 456 | dy_errors = map(ptinfo2dyerr, pt_infos) 457 | dy_funcs = map(par(ptinfo2dyfunc, dydt_func=dydt_func), pt_infos) 458 | 459 | # Construct errors and function for the predictor 460 | # ============================================================ 461 | if predictor_name == "ebdf2" or predictor_name == "wrong step ebdf2": 462 | 463 | if predictor_name == "wrong step ebdf2": 464 | temp_p_dtnm1 = p_dtns[1] + Sdts[0] 465 | else: 466 | temp_p_dtnm1 = p_dtns[1] 467 | 468 | y_np1_p_expr = y_np1_exact - ( 469 | # Natural ebdf2 lte: 470 | ebdf2_lte(p_dtns[0], temp_p_dtnm1, Sdddynph) 471 | # error due to approximation to derivative at tn: 472 | + ode.ebdf2_step(p_dtns[0], 0, dy_errors[1], p_dtns[1], 0) 473 | # error due to approximation to yn 474 | + ode.ebdf2_step(p_dtns[0], y_errors[1], 0, p_dtns[1], 0) 475 | # error due to approximation to ynm1 (typically zero) 476 | + ode.ebdf2_step(p_dtns[0], 0, 0, p_dtns[1], y_errors[2])) 477 | 478 | def predictor_func(ts, ys): 479 | 480 | dtn = p_dtn_funcs[0](ts) 481 | yn = y_funcs[1](ts, ys) 482 | dyn = dy_funcs[1](ts, ys) 483 | 484 | dtnm1 = p_dtn_funcs[1](ts) 485 | ynm1 = y_funcs[2](ts, ys) 486 | return ode.ebdf2_step(dtn, yn, dyn, dtnm1, ynm1) 487 | 488 | elif predictor_name == "ab2": 489 | 490 | y_np1_p_expr = y_np1_exact - ( 491 | # Natural ab2 lte: 492 | ab2_lte(p_dtns[0], p_dtns[1], Sdddynph) 493 | # error due to approximation to derivative at tn 494 | + ode.ab2_step(p_dtns[0], 0, dy_errors[1], p_dtns[1], 0) 495 | # error due to approximation to derivative at tnm1 496 | + ode.ab2_step(p_dtns[0], 0, 0, p_dtns[1], dy_errors[2]) 497 | # error due to approximation to yn 498 | + ode.ab2_step(p_dtns[0], y_errors[1], 0, p_dtns[1], 0)) 499 | 500 | def predictor_func(ts, ys): 501 | 502 | dtn = p_dtn_funcs[0](ts) 503 | yn = y_funcs[1](ts, ys) 504 | dyn = dy_funcs[1](ts, ys) 505 | 506 | dtnm1 = p_dtn_funcs[1](ts) 507 | dynm1 = dy_funcs[2](ts, ys) 508 | 509 | return ode.ab2_step(dtn, yn, dyn, dtnm1, dynm1) 510 | 511 | elif predictor_name == "ibdf2": 512 | 513 | y_np1_p_expr = y_np1_exact - ( 514 | # Natural bdf2 lte: 515 | bdf2_lte(p_dtns[0], p_dtns[1], Sdddynph) 516 | # error due to approximation to derivative at tnp1 517 | + ode.ibdf2_step(p_dtns[0], 0, dy_errors[0], p_dtns[1], 0) 518 | # errors due to approximations to y at tn and tnm1 519 | + ode.ibdf2_step(p_dtns[0], y_errors[1], 0, p_dtns[1], 0) 520 | + ode.ibdf2_step(p_dtns[0], 0, 0, p_dtns[1], y_errors[2])) 521 | 522 | def predictor_func(ts, ys): 523 | 524 | pdts = [f(ts) for f in p_dtn_funcs] 525 | 526 | dynp1 = dy_funcs[0](ts, ys) 527 | yn = y_funcs[1](ts, ys) 528 | ynm1 = y_funcs[2](ts, ys) 529 | 530 | tsin = [t_at_time_point(ts, pt.time) 531 | for pt in reversed(pt_infos[1:])] 532 | ysin = [ys[-(pt.time+1)] for pt in reversed(pt_infos[1:])] 533 | dt = pdts[0] 534 | 535 | return ode.ibdf2_step(pdts[0], yn, dynp1, pdts[1], ynm1) 536 | 537 | elif predictor_name == "ibdf3": 538 | 539 | y_np1_p_expr = y_np1_exact - ( 540 | # Natural bdf2 lte: 541 | bdf3_lte(p_dtns[0], p_dtns[1], Sdddynph) 542 | # error due to approximation to derivative at tnp1 543 | + ode.ibdf3_step( 544 | dy_errors[0], 545 | p_dtns[0], 546 | 0, 547 | p_dtns[1], 548 | 0, 549 | p_dtns[2], 550 | 0) 551 | # errors due to approximations to y at tn, tnm1, tnm2 552 | + ode.ibdf3_step( 553 | 0, 554 | p_dtns[0], 555 | y_errors[1], 556 | p_dtns[1], 557 | 0, 558 | p_dtns[2], 559 | 0) 560 | + ode.ibdf3_step( 561 | 0, 562 | p_dtns[0], 563 | 0, 564 | p_dtns[1], 565 | y_errors[2], 566 | p_dtns[2], 567 | 0) 568 | + ode.ibdf3_step(0, p_dtns[0], 0, p_dtns[1], 0, p_dtns[2], y_errors[3])) 569 | 570 | def predictor_func(ts, ys): 571 | 572 | pdts = [f(ts) for f in p_dtn_funcs] 573 | 574 | dynp1 = dy_funcs[0](ts, ys) 575 | yn = y_funcs[1](ts, ys) 576 | ynm1 = y_funcs[2](ts, ys) 577 | ynm2 = y_funcs[3](ts, ys) 578 | 579 | return ode.ibdf3_step(dynp1, pdts[0], yn, pdts[1], ynm1, 580 | pdts[2], ynm2) 581 | 582 | elif predictor_name == "ebdf3": 583 | y_np1_p_expr = y_np1_exact - ( 584 | # Natural ebdf3 lte error: 585 | ebdf3_lte(p_dtns[0], p_dtns[1], p_dtns[2], Sdddynph) 586 | # error due to approximation to derivative at tn 587 | + ode.ebdf3_step( 588 | p_dtns[0], 589 | 0, 590 | dy_errors[1], 591 | p_dtns[1], 592 | 0, 593 | p_dtns[2], 594 | 0) 595 | # errors due to approximation to y at tn, tnm1, tnm2 596 | + ode.ebdf3_step(p_dtns[0], y_errors[1], 0, 597 | p_dtns[1], 0, p_dtns[2], 0) 598 | + ode.ebdf3_step(p_dtns[0], 0, 0, 599 | p_dtns[1], y_errors[2], p_dtns[2], 0) 600 | + ode.ebdf3_step(p_dtns[0], 0, 0, 601 | p_dtns[1], 0, p_dtns[2], y_errors[3])) 602 | 603 | def predictor_func(ts, ys): 604 | 605 | pdts = [f(ts) for f in p_dtn_funcs] 606 | 607 | dyn = dy_funcs[1](ts, ys) 608 | yn = y_funcs[1](ts, ys) 609 | ynm1 = y_funcs[2](ts, ys) 610 | ynm2 = y_funcs[3](ts, ys) 611 | 612 | return ode.ebdf3_step(pdts[0], yn, dyn, 613 | pdts[1], ynm1, 614 | pdts[2], ynm2) 615 | 616 | elif predictor_name == "use exact dddy": 617 | 618 | symb_dddy = sympy.diff(symb_exact, St, 3) 619 | f_dddy = sympy.lambdify(St, symb_dddy) 620 | 621 | print symb_exact 622 | print "dddy =", symb_dddy 623 | 624 | # "Predictor" is just exactly dddy, error forumlated so that matrix 625 | # turns out right. Calculate at one before last point (same as lte 626 | # "location"). 627 | def predictor_func(ts, ys): 628 | tn = t_at_time_point(ts, pt_infos[1].time) 629 | return f_dddy(tn) 630 | 631 | y_np1_p_expr = Sdddynph 632 | 633 | elif predictor_name == "use exact Fddy": 634 | 635 | symb_ddy = sympy.diff(symb_exact, St, 2) 636 | f_Fddy = sympy.lambdify(St, symb_F * symb_ddy) 637 | 638 | print "Fddy =", symb_F * symb_ddy 639 | 640 | # "Predictor" is just exactly dddy, error forumlated so that matrix 641 | # turns out right. Calculate at one before last point (same as lte 642 | # "location"). 643 | def predictor_func(ts, ys): 644 | tn = t_at_time_point(ts, pt_infos[1].time) 645 | return f_Fddy(tn) 646 | 647 | y_np1_p_expr = SFddynph 648 | 649 | else: 650 | raise ValueError("Unrecognised predictor name " + predictor_name) 651 | 652 | return predictor_func, y_np1_p_expr 653 | 654 | 655 | def generate_predictor_pair_scheme(p1_points, p1_predictor, 656 | p2_points, p2_predictor, 657 | **kwargs): 658 | """Generate two-predictor lte system of equations and predictor step 659 | functions. 660 | """ 661 | 662 | # Generate the two schemes 663 | p1_func, y_np1_p1_expr = generate_predictor_scheme(p1_points, p1_predictor, 664 | **kwargs) 665 | p2_func, y_np1_p2_expr = generate_predictor_scheme(p2_points, p2_predictor, 666 | **kwargs) 667 | 668 | # LTE for IMR: just natural lte: 669 | y_np1_imr_expr = y_np1_exact - imr_lte(Sdts[0], Sdddynph, SFddynph) 670 | 671 | # Return error expressions and stepper functions 672 | return (y_np1_p1_expr, y_np1_p2_expr, y_np1_imr_expr), (p1_func, p2_func) 673 | 674 | 675 | def generate_predictor_pair_lte_est(lte_equations, predictor_funcs): 676 | 677 | assert len(lte_equations) == 3, "only for imr: need 3 ltes to solve" 678 | 679 | (p1_func, p2_func) = predictor_funcs 680 | 681 | A = system2matrix(lte_equations, [Sdddynph, SFddynph, y_np1_exact]) 682 | 683 | # Look at some things for the constant step case: 684 | cse_print(constify_step(A)) 685 | print sympy.pretty(constify_step(A).det()) 686 | 687 | x = A.inv() 688 | 689 | cse_print(constify_step(x)) 690 | 691 | # We can get nice expressions by factorising things (row 2 dotted with 692 | # [predictor values] gives us y_np1_exact): 693 | exact_ynp1_symb = sum([y_est * xi.factor() for xi, y_est in 694 | zip(x.row(2), [y_np1_p1, y_np1_p2, y_np1_imr])]) 695 | 696 | exact_ynp1_func = sympy.lambdify((Sdts[0], Sdts[1], Sdts[2], Sdts[3], 697 | y_np1_p1, y_np1_p2, y_np1_imr), 698 | exact_ynp1_symb) 699 | 700 | # Debugging: 701 | dddy_symb = sum([y_est * xi.factor() for xi, y_est in 702 | zip(x.row(0), [y_np1_p1, y_np1_p2, y_np1_imr])]) 703 | Fddy_symb = sum([y_est * xi.factor() for xi, y_est in 704 | zip(x.row(1), [y_np1_p1, y_np1_p2, y_np1_imr])]) 705 | dddy_func = sympy.lambdify((Sdts[0], Sdts[1], Sdts[2], Sdts[3], 706 | y_np1_p1, y_np1_p2, y_np1_imr), 707 | dddy_symb) 708 | Fddy_func = sympy.lambdify((Sdts[0], Sdts[1], Sdts[2], Sdts[3], 709 | y_np1_p1, y_np1_p2, y_np1_imr), 710 | Fddy_symb) 711 | 712 | print sympy.pretty(constify_step(dddy_symb)) 713 | print sympy.pretty(constify_step(Fddy_symb)) 714 | print sympy.pretty(constify_step(exact_ynp1_symb)) 715 | 716 | def lte_est(ts, ys): 717 | 718 | # Compute predicted values 719 | y_np1_p1 = p1_func(ts, ys) 720 | y_np1_p2 = p2_func(ts, ys) 721 | 722 | y_np1_imr = ys[-1] 723 | dtn = ts[-1] - ts[-2] 724 | dtnm1 = ts[-2] - ts[-3] 725 | dtnm2 = ts[-3] - ts[-4] 726 | dtnm3 = ts[-4] - ts[-5] 727 | 728 | # Calculate the exact value (to O(dtn**4)) 729 | y_np1_exact = exact_ynp1_func(dtn, dtnm1, dtnm2, dtnm3, 730 | y_np1_p1, y_np1_p2, y_np1_imr) 731 | 732 | dddy_est = dddy_func( 733 | dtn, 734 | dtnm1, 735 | dtnm2, 736 | dtnm3, 737 | y_np1_p1, 738 | y_np1_p2, 739 | y_np1_imr) 740 | Fddy_est = Fddy_func( 741 | dtn, 742 | dtnm1, 743 | dtnm2, 744 | dtnm3, 745 | y_np1_p1, 746 | y_np1_p2, 747 | y_np1_imr) 748 | # print "%0.16f"%y_np1_imr, "%0.16f"%y_np1_p1, "%0.16f"%y_np1_p2 749 | print 750 | print "abs(y_np1_imr - y_np1_p1) =", abs(y_np1_imr - y_np1_p1) 751 | print "abs(y_np1_p2 - y_np1_imr) =", abs(y_np1_p2 - y_np1_imr) 752 | print "dddy_est =", dddy_est 753 | print "Fddy_est =", Fddy_est 754 | print "y_np1_exact - y_np1_imr =", y_np1_exact - y_np1_imr 755 | print "dtn**3 * (dddy_est/24 - Fddy_est/8) =", dtn**3 * (dddy_est/24 - Fddy_est/8) 756 | 757 | # Compare with IMR value to get truncation error 758 | return y_np1_exact - y_np1_imr 759 | 760 | return lte_est 761 | 762 | 763 | # import simpleode.core.example_residuals as er 764 | # import scipy as sp 765 | # from matplotlib.pyplot import show as pltshow 766 | # from matplotlib.pyplot import subplots 767 | 768 | # def main(): 769 | 770 | # Function to integrate 771 | 772 | # residual = er.exp_residual 773 | # exact = er.exp_exact 774 | 775 | # residual = par(er.damped_oscillation_residual, 1, 0) 776 | # exact = par(er.damped_oscillation_exact, 1, 0) 777 | 778 | # method 779 | # lte_est = generate_predictor_pair((0, sRat(1,2), 2, "ebdf2"), 780 | # (0, sRat(1,2), sRat(3,2), "ab2"), 781 | # "bdf3", 782 | # "midpoint") 783 | # my_adaptor = par(ode.general_time_adaptor, lte_calculator=lte_est, 784 | # method_order=2) 785 | # init_actions = par(ode.higher_order_start, 6) 786 | 787 | # Do it 788 | # ts, ys = ode._odeint(residual, [sp.array(exact(0.0), ndmin=1)], [0.0], 789 | # 1e-4, 5.0, ode.midpoint_residual, 790 | # 1e-6, my_adaptor, init_actions) 791 | 792 | # Plot 793 | 794 | # Get errors + exact solution 795 | # exacts = map(exact, ts) 796 | # errors = [sp.linalg.norm(y - ex, 2) for y, ex in zip(ys, exacts)] 797 | 798 | 799 | # fig, axes = subplots(4, 1, sharex=True) 800 | # dt_axis=axes[1] 801 | # result_axis=axes[0] 802 | # exact_axis=axes[2] 803 | # error_axis=axes[3] 804 | # method_name = "w18 lte est imr" 805 | # if exact_axis is not None: 806 | # exact_axis.plot(ts, exacts, label=method_name) 807 | # exact_axis.set_xlabel('$t$') 808 | # exact_axis.set_ylabel('$y(t)$') 809 | 810 | # if error_axis is not None: 811 | # error_axis.plot(ts, errors, label=method_name) 812 | # error_axis.set_xlabel('$t$') 813 | # error_axis.set_ylabel('$||y(t) - y_n||_2$') 814 | 815 | # if dt_axis is not None: 816 | # dt_axis.plot(ts[1:], utils.ts2dts(ts), 817 | # label=method_name) 818 | # dt_axis.set_xlabel('$t$') 819 | # dt_axis.set_ylabel('$\Delta_n$') 820 | 821 | 822 | # if result_axis is not None: 823 | # result_axis.plot(ts, ys, label=method_name) 824 | # result_axis.set_xlabel('$t$') 825 | # result_axis.set_ylabel('$y_n$') 826 | 827 | # pltshow() 828 | 829 | 830 | # Tests 831 | # ============================================================ 832 | import simpleode.core.example_residuals as er 833 | import scipy as sp 834 | import operator as op 835 | 836 | # def check_dddy_estimates(exact_symb): 837 | # dt = 5e-2 838 | 839 | # Derive the required functions/derivatives: 840 | # exact = sympy.lambdify(sympy.symbols('t'), exact_symb) 841 | 842 | # dy_symb = sympy.diff(exact_symb, sympy.symbols('t'), 1).subs(exact_symb, sympy.symbols('y')) 843 | # residual_symb = sympy.symbols('Dy') - dy_symb 844 | # residual = sympy.lambdify((sympy.symbols('t'), sympy.symbols('y'), sympy.symbols('Dy')), 845 | # residual_symb) 846 | 847 | # dfdy_symb = sympy.diff(dy_symb, sympy.symbols('y')) 848 | # ddy_symb = sympy.diff(exact_symb, sympy.symbols('t'), 2) 849 | # Fdoty = sympy.lambdify((sympy.symbols('t'), sympy.symbols('y')), 850 | # dfdy_symb * ddy_symb) 851 | # exact_dddy_symb = sympy.diff(exact_symb, sympy.symbols('t'), 3) 852 | # exact_dddy = sympy.lambdify(sympy.symbols('t'), exact_dddy_symb) 853 | 854 | # print dfdy_symb, ddy_symb 855 | 856 | 857 | # Solve with imr 858 | # ts, est_ys = ode.odeint(residual, exact(0.0), dt=dt, 859 | # tmax=3.0, method='imr', 860 | # newton_tol=1e-10, jacobian_fd_eps=1e-12) 861 | 862 | # Construct predictors 863 | # p1_steps = (0, sRat(1,2), 3) 864 | # p2_steps = (0, sRat(1,2), 4) 865 | # lte_equations, (p1_func, p2_func) = general_two_predictor(p1_steps, p2_steps) 866 | 867 | # Compare estimates of values with actual values 868 | # n = 5 869 | # for par_ts, par_ys in zip(utils.partial_lists(ts, n), utils.partial_lists(est_ys, n)): 870 | # y_np1_p1 = p1_func(par_ts, par_ys) 871 | # y_np1_p2 = p2_func(par_ts, par_ys) 872 | 873 | # dtn = par_ts[-1] - par_ts[-2] 874 | # dtnm1 = par_ts[-2] - par_ts[-3] 875 | # y_np1_imr = par_ys[-1] 876 | 877 | # dddy_est = t17_dddy_est(dtn, dtnm1, y_np1_p1, y_np1_p2, y_np1_imr) 878 | 879 | # print dtnm1, dtn 880 | # print "%0.16f" % y_np1_imr, "%0.16f" % y_np1_p1, "%0.16f" % y_np1_p2 881 | # print 882 | # print abs(y_np1_imr - y_np1_p2) 883 | # assert abs(y_np1_imr - y_np1_p2) > 1e-8 884 | # assert abs(y_np1_imr - y_np1_p1) > 1e-8 885 | 886 | # Fddy_est = t17_Fddy_est(dtn, dtnm1, y_np1_p1, y_np1_p2, y_np1_imr) 887 | 888 | # dddy = exact_dddy(par_ts[-1]) 889 | # Fddy = Fdoty(par_ts[-1], par_ys[-1]) 890 | 891 | # utils.assert_almost_equal(dddy_est, , min(1e-6, 30* dt**4)) 892 | # utils.assert_almost_equal(Fddy_est, Fddy, min(1e-6, 30* dt**4)) 893 | 894 | 895 | # check we actually did something! 896 | # assert utils.partial_lists(ts, n) != [] 897 | 898 | 899 | # def test_dddy_estimates(): 900 | 901 | # 902 | # t = sympy.symbols('t') 903 | 904 | # equations = [ 905 | # 3*t**3, 906 | # sympy.tanh(t), 907 | # sympy.exp(-t) 908 | # ] 909 | 910 | 911 | # for exact_symb in equations: 912 | # yield check_dddy_estimates, exact_symb 913 | 914 | 915 | def test_sum_dts(): 916 | 917 | # Check a simple fractional case 918 | utils.assert_sym_eq(sum_dts(sRat(1, 2), 1), Sdts[0]/2) 919 | 920 | # Check two numbers the same gives zero always 921 | utils.assert_sym_eq(sum_dts(1, 1), 0) 922 | utils.assert_sym_eq(sum_dts(0, 0), 0) 923 | utils.assert_sym_eq(sum_dts(sRat(1, 2), sRat(1, 2)), 0) 924 | 925 | def check_sum_dts(a, b): 926 | 927 | # Check we can swap the sign 928 | utils.assert_sym_eq(sum_dts(a, b), -sum_dts(b, a)) 929 | 930 | # Starting half a step earlier 931 | utils.assert_sym_eq(sum_dts(a, b + sRat(1, 2)), 932 | sRat(1, 2)*Sdts[int(b)] + sum_dts(a, b)) 933 | 934 | # Check that we can split it up 935 | utils.assert_sym_eq(sum_dts(a, b), 936 | sum_dts(a, b-1) + sum_dts(b-1, b)) 937 | 938 | # Make sure b>=1 or the last check will fail due to negative b. 939 | cases = [(0, 1), 940 | (5, 8), 941 | (sRat(1, 2), 3), 942 | (sRat(2, 2), 3), 943 | (sRat(3, 2), 3), 944 | (0, sRat(9, 7)), 945 | (sRat(3/4), sRat(9, 7)), 946 | ] 947 | 948 | for a, b in cases: 949 | yield check_sum_dts, a, b 950 | 951 | 952 | def test_ltes(): 953 | 954 | import numpy 955 | numpy.seterr( 956 | all='raise', 957 | divide='raise', 958 | over=None, 959 | under=None, 960 | invalid=None) 961 | 962 | def check_lte(method_residual, lte, exact_symb, base_dt, implicit): 963 | 964 | exact, residual, dys, J = utils.symb2functions(exact_symb) 965 | dddy = dys[3] 966 | Fddy = lambda t, y: J(t, y) * dys[2](t, y) 967 | 968 | newton_tol = 1e-10 969 | 970 | # tmax varies with dt so that we can vary dt over orders of 971 | # magnitude. 972 | tmax = 50*dt 973 | 974 | # Run ode solver 975 | if implicit: 976 | ts, ys = ode._odeint( 977 | residual, [0.0], [sp.array([exact(0.0)], ndmin=1)], 978 | dt, tmax, method_residual, 979 | target_error=None, 980 | time_adaptor=ode.create_random_time_adaptor(base_dt), 981 | initialisation_actions=par(ode.higher_order_start, 3), 982 | newton_tol=newton_tol) 983 | 984 | else: 985 | ts, ys = ode.odeint_explicit( 986 | dys[1], exact(0.0), base_dt, tmax, method_residual, 987 | time_adaptor=ode.create_random_time_adaptor(base_dt)) 988 | 989 | dts = utils.ts2dts(ts) 990 | 991 | # Check it's accurate-ish 992 | exact_ys = map(exact, ts) 993 | errors = map(op.sub, exact_ys, ys) 994 | utils.assert_list_almost_zero(errors, 1e-3) 995 | 996 | # Calculate ltes by two methods. Note that we need to drop a few 997 | # values because exact calculation (may) need a few dts. Could be 998 | # dodgy: exact dddys might not correspond to dddy in experiment if 999 | # done over long time and we've wandered away from the solution. 1000 | exact_dddys = map(dddy, ts, ys) 1001 | exact_Fddys = map(Fddy, ts, ys) 1002 | exact_ltes = map(lte, dts[2:], dts[1:-1], dts[:-2], 1003 | exact_dddys[3:], exact_Fddys[3:]) 1004 | error_diff_ltes = map(op.sub, errors[1:], errors[:-1])[2:] 1005 | 1006 | # Print for debugging when something goes wrong 1007 | print exact_ltes 1008 | print error_diff_ltes 1009 | 1010 | # Probably the best test is that they give the same order of 1011 | # magnitude and the same sign... Can't test much more than that 1012 | # because we have no idea what the constant in front of the dt**4 1013 | # term is. Effective zero (noise level) is either dt**4 or newton 1014 | # tol, whichever is larger. 1015 | z = 50 * max(dt**4, newton_tol) 1016 | map(par(utils.assert_same_sign, fp_zero=z), 1017 | exact_ltes, error_diff_ltes) 1018 | map(par(utils.assert_same_order_of_magnitude, fp_zero=z), 1019 | exact_ltes, error_diff_ltes) 1020 | 1021 | # For checking imr in more detail on J!=0 cases 1022 | # if method_residual is ode.imr_residual: 1023 | # if J(1,2) != 0: 1024 | # assert False 1025 | 1026 | t = sympy.symbols('t') 1027 | functions = [2*t**2, 1028 | t**3 + 3*t**4, 1029 | sympy.exp(t), 1030 | 3*sympy.exp(-t), 1031 | sympy.sin(t), 1032 | sympy.sin(t)**2 + sympy.cos(t)**2 1033 | ] 1034 | 1035 | methods = [ 1036 | (ode.imr_residual, True, 1037 | lambda dtn, _, _1, dddyn, Fddy: imr_lte(dtn, dddyn, Fddy) 1038 | ), 1039 | 1040 | (ode.bdf2_residual, True, 1041 | lambda dtn, dtnm1, _, dddyn, _1: bdf2_lte(dtn, dtnm1, dddyn) 1042 | ), 1043 | 1044 | (ode.bdf3_residual, True, 1045 | lambda dtn, dtnm1, dtnm2, dddyn, _: bdf3_lte(dtn, dtnm1, dtnm2, dddyn) 1046 | ), 1047 | 1048 | ('ab2', False, 1049 | lambda dtn, dtnm1, _, dddyn, _1: ab2_lte(dtn, dtnm1, dddyn) 1050 | ), 1051 | 1052 | # ('ebdf2', False, 1053 | # lambda dtn, dtnm1, _, dddyn, _1: ebdf2_lte(dtn, dtnm1, dddyn) 1054 | # ), 1055 | 1056 | # ('ebdf3', False, 1057 | # lambda *_: ebdf3_lte() 1058 | # ), 1059 | 1060 | ] 1061 | 1062 | # Seems to work from 1e-2 down until newton method stops converging due 1063 | # to FD'ed Jacobian. Just do a middling value so that we can wobble the 1064 | # step size around lots without problems. 1065 | dts = [1e-3] 1066 | 1067 | for exact_symb in functions: 1068 | for method_residual, implicit, lte in methods: 1069 | for dt in dts: 1070 | yield check_lte, method_residual, lte, exact_symb, dt, implicit 1071 | 1072 | 1073 | # ??ds test generated predictor calculation functions as well! 1074 | 1075 | def test_imr_predictor_equivalence(): 1076 | # Check the we generate imr's lte if we plug in the right times and 1077 | # approximations to ebdf2 (~explicit midpoint rule). 1078 | ynp1_imr = y_np1_exact - imr_lte(Sdts[0], Sdddynph, SFddynph) 1079 | 1080 | _, ynp1_p1 = generate_predictor_scheme([PTInfo(0, None, None), 1081 | PTInfo( 1082 | sRat(1, 2), "bdf2 imr", "imr"), 1083 | PTInfo(1, "corr_val", None)], 1084 | "ebdf2") 1085 | utils.assert_sym_eq(ynp1_imr, ynp1_p1) 1086 | 1087 | # Should be exactly the same with ebdf to calculate the y-est at the 1088 | # midpoint (because the midpoint value is ignored). 1089 | _, ynp1_p2 = generate_predictor_scheme([PTInfo(0, None, None), 1090 | PTInfo( 1091 | sRat(1, 2), "bdf3 imr", "imr"), 1092 | PTInfo(1, "corr_val", None)], 1093 | "ebdf2") 1094 | utils.assert_sym_eq(ynp1_imr, ynp1_p2) 1095 | 1096 | 1097 | def test_tr_ab2_scheme_generation(): 1098 | """Make sure tr-ab can be derived using same methodology as I'm using 1099 | (also checks lte expressions). 1100 | """ 1101 | 1102 | dddy = sympy.symbols("y'''") 1103 | y_np1_tr = sympy.symbols("y_{n+1}_tr") 1104 | 1105 | ab_pred, ynp1_ab2_expr = generate_predictor_scheme([PTInfo(0, None, None), 1106 | PTInfo( 1107 | 1, 1108 | "corr_val", 1109 | "exp test"), 1110 | PTInfo( 1111 | 2, "corr_val", "exp test")], 1112 | "ab2", 1113 | symbolic=sympy.exp(St)) 1114 | 1115 | # ??ds hacky, have to change the symbol to represent where y''' is being 1116 | # evaluated by hand! 1117 | ynp1_ab2_expr = ynp1_ab2_expr.subs(Sdddynph, dddy) 1118 | 1119 | # Check that it gives the same result as we know from the lte 1120 | utils.assert_sym_eq(y_np1_exact - ab2_lte(Sdts[0], Sdts[1], dddy), 1121 | ynp1_ab2_expr) 1122 | 1123 | # Now do the solve etc. 1124 | y_np1_tr_expr = y_np1_exact - tr_lte(Sdts[0], dddy) 1125 | A = system2matrix([ynp1_ab2_expr, y_np1_tr_expr], [dddy, y_np1_exact]) 1126 | x = A.inv() 1127 | 1128 | exact_ynp1_symb = sum([y_est * xi.factor() for xi, y_est in 1129 | zip(x.row(1), [y_np1_p1, y_np1_tr])]) 1130 | 1131 | exact_ynp1_f = sympy.lambdify( 1132 | (y_np1_p1, 1133 | y_np1_tr, 1134 | Sdts[0], 1135 | Sdts[1]), 1136 | exact_ynp1_symb) 1137 | 1138 | utils.assert_sym_eq(exact_ynp1_symb - y_np1_tr, 1139 | (y_np1_p1 - y_np1_tr)/(3*(1 + Sdts[1]/Sdts[0]))) 1140 | 1141 | # Construct an lte estimator from this estimate 1142 | def lte_est(ts, ys): 1143 | ynp1_p = ab_pred(ts, ys) 1144 | 1145 | dtn = ts[-1] - ts[-2] 1146 | dtnm1 = ts[-2] - ts[-3] 1147 | 1148 | ynp1_exact = exact_ynp1_f(ynp1_p, ys[-1], dtn, dtnm1) 1149 | return ynp1_exact - ys[-1] 1150 | 1151 | # Solve exp using tr 1152 | t0 = 0.0 1153 | dt = 1e-2 1154 | ts, ys = ode.odeint(er.exp_residual, er.exp_exact(t0), 1155 | tmax=2.0, dt=dt, method='tr') 1156 | 1157 | # Get error estimates using standard tr ab and the one we just 1158 | # constructed here, then compare. 1159 | this_ltes = ode.get_ltes_from_data(ts, ys, lte_est) 1160 | 1161 | tr_ab_lte = par(ode.tr_ab_lte_estimate, dydt_func=lambda t, y: y) 1162 | standard_ltes = ode.get_ltes_from_data(ts, ys, tr_ab_lte) 1163 | 1164 | # Should be the same (actually the sign is different, but this doesn't 1165 | # matter in lte). 1166 | utils.assert_list_almost_equal( 1167 | this_ltes, map(lambda a: a*-1, standard_ltes), 1e-8) 1168 | 1169 | 1170 | def test_bdf2_ebdf2_scheme_generation(): 1171 | """Make sure adaptive bdf2 can be derived using same methodology as I'm 1172 | using (also checks lte expressions). 1173 | """ 1174 | 1175 | dddy = sympy.symbols("y'''") 1176 | y_np1_bdf2 = sympy.symbols("y_{n+1}_bdf2") 1177 | 1178 | y_np1_ebdf2_expr = y_np1_exact - ebdf2_lte(Sdts[0], Sdts[1], dddy) 1179 | y_np1_bdf2_expr = y_np1_exact - bdf2_lte(Sdts[0], Sdts[1], dddy) 1180 | 1181 | A = system2matrix([y_np1_ebdf2_expr, y_np1_bdf2_expr], [dddy, y_np1_exact]) 1182 | x = A.inv() 1183 | 1184 | exact_ynp1_symb = sum([y_est * xi.factor() for xi, y_est in 1185 | zip(x.row(1), [y_np1_p1, y_np1_bdf2])]) 1186 | 1187 | answer = -(Sdts[1] + Sdts[0])*( 1188 | y_np1_bdf2 - y_np1_p1)/(3*Sdts[0] + 2*Sdts[1]) 1189 | 1190 | utils.assert_sym_eq(exact_ynp1_symb - y_np1_bdf2, 1191 | answer) 1192 | 1193 | 1194 | def test_generate_predictor_dt_func(): 1195 | 1196 | symbs = [Sdts[0], Sdts[1], Sdts[2], Sdts[0] + Sdts[1], 1197 | Sdts[0]/2 + Sdts[1]/2] 1198 | 1199 | t = sympy.symbols('t') 1200 | 1201 | fake_ts = utils.dts2ts(t, Sdts[::-1]) 1202 | 1203 | for symb in symbs: 1204 | print fake_ts 1205 | yield utils.assert_sym_eq, symb, generate_p_dt_func(symb)(fake_ts) 1206 | 1207 | 1208 | def test_is_integer(): 1209 | tests = [(0, True), 1210 | (0.0, True), 1211 | (0.1, False), 1212 | (1, True), 1213 | (1.0, True), 1214 | (1.1, False), 1215 | (-1.0, True), 1216 | (-1, True), 1217 | (-1.1, False), 1218 | (sp.nan, False), 1219 | # (sp.inf, False), # Returns True, not really what I want but 1220 | # not easily fixable for all possible infs 1221 | # (afaik) 1222 | (1 + 1e-15, False), 1223 | (1 - 1e-15, False), 1224 | ] 1225 | 1226 | for t, result in tests: 1227 | assert is_integer(t) == result 1228 | 1229 | 1230 | def test_is_half_integer(): 1231 | 1232 | tests = [(0, False), 1233 | (1239012424481273, False), 1234 | (sRat(1, 2), True), 1235 | (1.5, True), 1236 | (sRat(5, 2), True), 1237 | (2.0 + sRat(1, 2), True), 1238 | (1.5 + 1e-15, False), # 1e-16 fails (gives true) 1239 | (1.51, False), 1240 | ] 1241 | 1242 | for t, result in tests: 1243 | assert is_half_integer(t) == result 1244 | 1245 | 1246 | def test_t_at_time_point(): 1247 | tests = [0, 1, sRat(1, 2), sRat(3, 2), 1 + sRat(1, 2), sRat(4, 5), ] 1248 | ts = range(11) 1249 | for pt in tests: 1250 | utils.assert_almost_equal(t_at_time_point(ts, pt), 10 - pt) 1251 | 1252 | # def test_symbolic_predictor_func_comparison(): 1253 | 1254 | 1255 | # base = sRat(1,2) 1256 | # p2, _ = generate_predictor_scheme([PTInfo(base, None, "imr"), 1257 | # PTInfo(base + sRat(1,2) + 1, "corr_val", None), 1258 | # PTInfo(base + sRat(1,2) + 2, "corr_val", None)], 1259 | # "ibdf2") 1260 | # p3, _ = generate_predictor_scheme([PTInfo(base, None, "imr"), 1261 | # PTInfo(base + sRat(1,2) + 1, "corr_val", None), 1262 | # PTInfo(base + sRat(1,2) + 2, "corr_val", None), 1263 | # PTInfo(base + sRat(1,2) + 3, "corr_val", None)], 1264 | # "ibdf3") 1265 | # t = sympy.symbols('t') 1266 | # fake_ts = utils.dts2ts(t, Sdts[::-1]) 1267 | # fake_ys = sym_ys[::-1] 1268 | # sym_p2 = p2(fake_ts, fake_ys) 1269 | # sym_p3 = p3(fake_ts, fake_ys) 1270 | # print sympy.pretty(sym_p2.simplify()) 1271 | # print sympy.pretty(constify_step(sym_p2).simplify()) 1272 | # print sympy.pretty(sym_p3.simplify()) 1273 | # print sympy.pretty(constify_step(sym_p3).simplify()) 1274 | # assert False 1275 | # 1276 | # def test_predictor_error_numerical(): 1277 | # def check_predictor_error_numerical(exact_symb, pts_info, 1278 | # predictor_name): 1279 | # Generate forumlae 1280 | # f_exact, residual, f_dys, f_jacobian = utils.symb2functions(exact_symb) 1281 | # f_dddy = f_dys[3] 1282 | # f_ddy = f_dys[2] 1283 | # Get derivative in terms of t only (needed to get exact dydt at 1284 | # non-integer points since we don't know y there). 1285 | # dydt = sympy.diff(exact_symb, St, 1) 1286 | # Generate some midpoint method steps 1287 | # dt = 0.01 1288 | # ts, ys = ode.odeint(residual, f_exact(0.0), dt=dt, tmax=0.5, 1289 | # method="imr", newton_tol=1e-10, 1290 | # jacobian_fd_eps=1e-12) 1291 | # Generate the predictor function + error estimate 1292 | # pfunc, ynp1_p_expr = generate_predictor_scheme(pts_info, predictor_name, 1293 | # dydt) 1294 | # perr = -1*ynp1_p_expr.subs(y_np1_exact, 0) 1295 | # Get values at predictor points 1296 | # py_np1 = pfunc(ts, ys) 1297 | # pts = [t_at_time_point(ts, pt.time) for pt in reversed(pts_info)] 1298 | # pys = map(f_exact, pts[:-1]) +[py_np1] 1299 | # exact_np1_p = f_exact(pts[-1]) 1300 | # Compare predicted value with exact value 1301 | # error_n = f_exact(ts[-2]) - ys[-2] 1302 | # error_np1_p = exact_np1_p - py_np1 1303 | # error_change = error_np1_p - error_n 1304 | # print "e_n =", error_n, "e_np1 =", error_np1_p, "e diff =", error_change 1305 | # exact_ys = map(lambda t: sp.array([f_exact(t)], ndmin=1), ts) 1306 | # pfromexact = pfunc(ts, exact_ys) 1307 | # print "pfromexact =", pfromexact, "error_np1 =", exact_np1_p - 1308 | # pfromexact 1309 | # Get last few dts in reverse order (like Sdts order) 1310 | # dts = utils.ts2dts(ts[-10:])[::-1] 1311 | # Compute lte 1312 | # tnph = ts[-2] + (ts[-1] + ts[-2])/2 1313 | # ynph = f_exact(tnph) 1314 | # f_lte = sympy.lambdify([Sdddynph, SFddynph]+list(Sdts), perr) 1315 | # dddynph = f_dddy(tnph, ynph) 1316 | # Fddynph = f_jacobian(tnph, ynph) * f_ddy(tnph, ynph) 1317 | # lte_estimate = f_lte(dddynph, Fddynph, *dts) 1318 | # print "dddynph =", dddynph, "Fddynph =", Fddynph 1319 | # print error_change, "~", lte_estimate, "??" 1320 | # assert False 1321 | # The test function itself: 1322 | # St = sympy.symbols('t') 1323 | # exacts = [ 1324 | # sympy.exp(2*St), 1325 | # sympy.sin(St), 1326 | # ] 1327 | # predictors = [ 1328 | # Simple: 1329 | # ([PTInfo(sRat(1,2), None, "imr"), 1330 | # PTInfo(2, "corr_val", None), 1331 | # PTInfo(3, "corr_val", None)], 1332 | # "ibdf2"), 1333 | # ([PTInfo(0, None, None), 1334 | # PTInfo(sRat(1,2), "bdf3 imr", "imr"), 1335 | # PTInfo(2, "corr_val", None)], 1336 | # "wrong step ebdf2"), 1337 | # ([PTInfo(sRat(1,2), None, "imr"), 1338 | # PTInfo(1, "corr_val", None), 1339 | # PTInfo(2, "corr_val", None)], 1340 | # "ibdf2"), 1341 | # ([PTInfo(sRat(1,2), None, "exact"), 1342 | # PTInfo(2, "corr_val", None), 1343 | # PTInfo(3, "corr_val", None), 1344 | # PTInfo(4, "corr_val", None)], 1345 | # "ibdf3"), 1346 | # ([PTInfo(sRat(1,2), None, "imr"), 1347 | # PTInfo(1, "corr_val", None), 1348 | # PTInfo(2, "corr_val", None), 1349 | # PTInfo(3, "corr_val", None)], 1350 | # "ibdf3"), 1351 | # Two level (bdfx to get ynph): 1352 | # bdf3: 1353 | # ([PTInfo(0, None, None), 1354 | # PTInfo(sRat(1,2), "bdf3 imr", "imr"), 1355 | # PTInfo(sRat(3,2), None, "imr")], 1356 | # "ab2"), 1357 | # ([PTInfo(0, None, None), 1358 | # PTInfo(sRat(1,2), "bdf3 imr", "imr"), 1359 | # PTInfo(2, "corr_val", None)], 1360 | # "ebdf2"), 1361 | # bdf2: 1362 | # ([PTInfo(0, None, None), 1363 | # PTInfo(sRat(1,2), "bdf2 imr", "imr"), 1364 | # PTInfo(sRat(3,2), None, "imr")], 1365 | # "ab2"), 1366 | # ([PTInfo(0, None, None), 1367 | # PTInfo(sRat(1,2), "bdf2 imr", "imr"), 1368 | # PTInfo(2, "corr_val", None)], 1369 | # "ebdf2"), 1370 | # ] 1371 | # for exact in exacts: 1372 | # for pts, pname in predictors: 1373 | # yield check_predictor_error_numerical, exact, pts, pname 1374 | def test_exact_predictors(): 1375 | 1376 | def check_exact_predictors(exact, predictor): 1377 | p1_func, y_np1_p1_expr = \ 1378 | generate_predictor_scheme(*predictor, symbolic=exact) 1379 | 1380 | # LTE for IMR: just natural lte: 1381 | y_np1_imr_expr = y_np1_exact - imr_lte(Sdts[0], Sdddynph, SFddynph) 1382 | 1383 | # Generate another predictor 1384 | p2_func, y_np1_p2_expr = \ 1385 | generate_predictor_scheme([PTInfo(sRat(1, 2), None, "imr"), 1386 | PTInfo(2, "corr_val", None), 1387 | PTInfo(3, "corr_val", None)], "ibdf2") 1388 | 1389 | A = system2matrix([y_np1_p1_expr, y_np1_p2_expr, y_np1_imr_expr], 1390 | [Sdddynph, SFddynph, y_np1_exact]) 1391 | 1392 | # Solve for dddy and Fddy: 1393 | x = A.inv() 1394 | dddy_symb = sum([y_est * xi.factor() for xi, y_est in 1395 | zip(x.row(0), [y_np1_p1, y_np1_p2, y_np1_imr])]) 1396 | Fddy_symb = sum([y_est * xi.factor() for xi, y_est in 1397 | zip(x.row(1), [y_np1_p1, y_np1_p2, y_np1_imr])]) 1398 | 1399 | # Check we got the right matrix and the right formulae 1400 | if predictor[1] == "use exact dddy": 1401 | assert A.row(0) == sympy.Matrix([[1, 0, 0]]).row(0) 1402 | utils.assert_sym_eq(dddy_symb.simplify(), y_np1_p1) 1403 | 1404 | elif predictor[1] == "use exact Fddy": 1405 | assert A.row(0) == sympy.Matrix([[0, 1, 0]]).row(0) 1406 | utils.assert_sym_eq(Fddy_symb.simplify(), y_np1_p1) 1407 | else: 1408 | assert False 1409 | 1410 | exacts = [sympy.exp(St), 1411 | sympy.sin(St), 1412 | ] 1413 | 1414 | exact_predictors = [ 1415 | ([PTInfo(0, None, None), 1416 | PTInfo(sRat(1, 2), None, None)], 1417 | "use exact dddy"), 1418 | 1419 | ([PTInfo(0, None, None), 1420 | PTInfo(sRat(1, 2), None, None)], 1421 | "use exact Fddy"), 1422 | ] 1423 | 1424 | for exact in exacts: 1425 | for p in exact_predictors: 1426 | yield check_exact_predictors, exact, p 1427 | 1428 | 1429 | if __name__ == '__main__': 1430 | sys.exit(test_predictor_error_numerical()) 1431 | --------------------------------------------------------------------------------