├── Economic_Visualizations.ipynb
├── Parliamentary-Voting-Working.ipynb
├── Plot-birthdays.ipynb
├── README.md
├── bls-cpi.ipynb
├── gun-violence-by-US-state.ipynb
├── gun_violence_by_country.ipynb
├── health_vs_gdp.ipynb
└── tropical_storm_data.ipynb
/Parliamentary-Voting-Working.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "import pandas as pd"
10 | ]
11 | },
12 | {
13 | "cell_type": "code",
14 | "execution_count": 2,
15 | "metadata": {},
16 | "outputs": [
17 | {
18 | "data": {
19 | "text/html": [
20 | "
\n",
21 | "\n",
34 | "
\n",
35 | " \n",
36 | " \n",
37 | " | \n",
38 | " Vote Number | \n",
39 | " Vote Respecting | \n",
40 | " Subject | \n",
41 | " Votes (Yeas/ Nays / Paired) | \n",
42 | " Vote Result | \n",
43 | " Date | \n",
44 | "
\n",
45 | " \n",
46 | " \n",
47 | " \n",
48 | " 0 | \n",
49 | " No. 1379 | \n",
50 | " House Government Bill | \n",
51 | " Motion respecting Senate amendments to Bill C-... | \n",
52 | " 161 / 58 / 2 | \n",
53 | " Agreed To | \n",
54 | " June 19, 2019 | \n",
55 | "
\n",
56 | " \n",
57 | " 1 | \n",
58 | " No. 1378 | \n",
59 | " House Government Bill | \n",
60 | " Motion for closure | \n",
61 | " 149 / 67 / 2 | \n",
62 | " Agreed To | \n",
63 | " June 19, 2019 | \n",
64 | "
\n",
65 | " \n",
66 | " 2 | \n",
67 | " No. 1374 | \n",
68 | " House Government Bill | \n",
69 | " Motion respecting Senate amendments to Bill C-... | \n",
70 | " 190 / 86 / 2 | \n",
71 | " Agreed To | \n",
72 | " June 18, 2019 | \n",
73 | "
\n",
74 | " \n",
75 | " 3 | \n",
76 | " No. 1373 | \n",
77 | " House Government Bill | \n",
78 | " Motion for closure | \n",
79 | " 157 / 113 / 2 | \n",
80 | " Agreed To | \n",
81 | " June 18, 2019 | \n",
82 | "
\n",
83 | " \n",
84 | " 4 | \n",
85 | " No. 1372 | \n",
86 | " House Government Bill | \n",
87 | " 3rd reading and adoption of Bill C-102, An Act... | \n",
88 | " 167 / 123 / 2 | \n",
89 | " Agreed To | \n",
90 | " June 18, 2019 | \n",
91 | "
\n",
92 | " \n",
93 | "
\n",
94 | "
"
95 | ],
96 | "text/plain": [
97 | " Vote Number Vote Respecting \\\n",
98 | "0 No. 1379 House Government Bill \n",
99 | "1 No. 1378 House Government Bill \n",
100 | "2 No. 1374 House Government Bill \n",
101 | "3 No. 1373 House Government Bill \n",
102 | "4 No. 1372 House Government Bill \n",
103 | "\n",
104 | " Subject \\\n",
105 | "0 Motion respecting Senate amendments to Bill C-... \n",
106 | "1 Motion for closure \n",
107 | "2 Motion respecting Senate amendments to Bill C-... \n",
108 | "3 Motion for closure \n",
109 | "4 3rd reading and adoption of Bill C-102, An Act... \n",
110 | "\n",
111 | " Votes (Yeas/ Nays / Paired) Vote Result Date \n",
112 | "0 161 / 58 / 2 Agreed To June 19, 2019 \n",
113 | "1 149 / 67 / 2 Agreed To June 19, 2019 \n",
114 | "2 190 / 86 / 2 Agreed To June 18, 2019 \n",
115 | "3 157 / 113 / 2 Agreed To June 18, 2019 \n",
116 | "4 167 / 123 / 2 Agreed To June 18, 2019 "
117 | ]
118 | },
119 | "execution_count": 2,
120 | "metadata": {},
121 | "output_type": "execute_result"
122 | }
123 | ],
124 | "source": [
125 | "# TypeId=3 in URL returns only government bills, TypeId=4 returns only private members bills\n",
126 | "dfs_vote_list = pd.read_html('https://www.ourcommons.ca/Members/en/votes?parlSession=42-1&billDocumentTypeId=3',header=0)\n",
127 | "vote_list = dfs_vote_list[0]\n",
128 | "vote_list.head()"
129 | ]
130 | },
131 | {
132 | "cell_type": "code",
133 | "execution_count": 3,
134 | "metadata": {},
135 | "outputs": [],
136 | "source": [
137 | "# [initialize global variables:]\n",
138 | "total_votes = 0\n",
139 | "partyLineVotesConservative = 0 \n",
140 | "non_partyLineVotesConservative = 0\n",
141 | "partyLineVotesLiberal = 0 \n",
142 | "non_partyLineVotesLiberal = 0\n",
143 | "partyLineVotesNDP = 0 \n",
144 | "non_partyLineVotesNDP = 0\n",
145 | "partyLineVotesBloc = 0 \n",
146 | "non_partyLineVotesBloc = 0"
147 | ]
148 | },
149 | {
150 | "cell_type": "code",
151 | "execution_count": 4,
152 | "metadata": {},
153 | "outputs": [],
154 | "source": [
155 | "# Functions for categorizing and tabulating votes by party:\n",
156 | "def liberal_votes():\n",
157 | " global partyLineVotesLiberal \n",
158 | " global non_partyLineVotesLiberal\n",
159 | " \n",
160 | " df_party = df[df['Party'].str.contains('Liberal')]\n",
161 | " vote_output_yea = df_party['Vote'].str.contains('Yea')\n",
162 | " total_votes_yea = vote_output_yea.sum()\n",
163 | " vote_output_nay = df_party['Vote'].str.contains('Nay')\n",
164 | " total_votes_nay = vote_output_nay.sum()\n",
165 | " if total_votes_yea>0 and total_votes_nay>0:\n",
166 | " non_partyLineVotesLiberal += 1\n",
167 | " else:\n",
168 | " partyLineVotesLiberal += 1\n",
169 | " \n",
170 | "def conservative_votes():\n",
171 | " global partyLineVotesConservative \n",
172 | " global non_partyLineVotesConservative\n",
173 | " \n",
174 | " df_party = df[df['Party'].str.contains('Conservative')]\n",
175 | " vote_output_yea = df_party['Vote'].str.contains('Yea')\n",
176 | " total_votes_yea = vote_output_yea.sum()\n",
177 | " vote_output_nay = df_party['Vote'].str.contains('Nay')\n",
178 | " total_votes_nay = vote_output_nay.sum()\n",
179 | " if total_votes_yea>0 and total_votes_nay>0:\n",
180 | " non_partyLineVotesConservative += 1\n",
181 | " else:\n",
182 | " partyLineVotesConservative += 1\n",
183 | " \n",
184 | "def ndp_votes():\n",
185 | " global partyLineVotesNDP \n",
186 | " global non_partyLineVotesNDP\n",
187 | "\n",
188 | " df_party = df[df['Party'].str.contains('NDP')]\n",
189 | " vote_output_yea = df_party['Vote'].str.contains('Yea')\n",
190 | " total_votes_yea = vote_output_yea.sum()\n",
191 | " vote_output_nay = df_party['Vote'].str.contains('Nay')\n",
192 | " total_votes_nay = vote_output_nay.sum()\n",
193 | " if total_votes_yea>0 and total_votes_nay>0:\n",
194 | " non_partyLineVotesNDP += 1\n",
195 | " else:\n",
196 | " partyLineVotesNDP += 1\n",
197 | " \n",
198 | "def bloc_votes():\n",
199 | " global partyLineVotesBloc \n",
200 | " global non_partyLineVotesBloc\n",
201 | "\n",
202 | " df_party = df[df['Party'].str.contains('Bloc')]\n",
203 | " vote_output_yea = df_party['Vote'].str.contains('Yea')\n",
204 | " total_votes_yea = vote_output_yea.sum()\n",
205 | " vote_output_nay = df_party['Vote'].str.contains('Nay')\n",
206 | " total_votes_nay = vote_output_nay.sum()\n",
207 | " if total_votes_yea>0 and total_votes_nay>0:\n",
208 | " non_partyLineVotesBloc += 1\n",
209 | " else:\n",
210 | " partyLineVotesBloc += 1"
211 | ]
212 | },
213 | {
214 | "cell_type": "code",
215 | "execution_count": 5,
216 | "metadata": {},
217 | "outputs": [
218 | {
219 | "data": {
220 | "text/html": [
221 | "\n",
222 | "\n",
235 | "
\n",
236 | " \n",
237 | " \n",
238 | " | \n",
239 | " Vote | \n",
240 | "
\n",
241 | " \n",
242 | " \n",
243 | " \n",
244 | " 0 | \n",
245 | " https://www.ourcommons.ca/Members/en/votes/42/... | \n",
246 | "
\n",
247 | " \n",
248 | " 1 | \n",
249 | " https://www.ourcommons.ca/Members/en/votes/42/... | \n",
250 | "
\n",
251 | " \n",
252 | " 2 | \n",
253 | " https://www.ourcommons.ca/Members/en/votes/42/... | \n",
254 | "
\n",
255 | " \n",
256 | " 3 | \n",
257 | " https://www.ourcommons.ca/Members/en/votes/42/... | \n",
258 | "
\n",
259 | " \n",
260 | " 4 | \n",
261 | " https://www.ourcommons.ca/Members/en/votes/42/... | \n",
262 | "
\n",
263 | " \n",
264 | "
\n",
265 | "
"
266 | ],
267 | "text/plain": [
268 | " Vote\n",
269 | "0 https://www.ourcommons.ca/Members/en/votes/42/...\n",
270 | "1 https://www.ourcommons.ca/Members/en/votes/42/...\n",
271 | "2 https://www.ourcommons.ca/Members/en/votes/42/...\n",
272 | "3 https://www.ourcommons.ca/Members/en/votes/42/...\n",
273 | "4 https://www.ourcommons.ca/Members/en/votes/42/..."
274 | ]
275 | },
276 | "execution_count": 5,
277 | "metadata": {},
278 | "output_type": "execute_result"
279 | }
280 | ],
281 | "source": [
282 | "# Build URL list from master Votes page:\n",
283 | "dfs_vote_list = pd.read_html('https://www.ourcommons.ca/Members/en/votes?parlSession=42-1&billDocumentTypeId=3',header=0)\n",
284 | "vote_list = dfs_vote_list[0]\n",
285 | "vote_list.columns = ['Number','Type','Subject','Votes','Result','Date']\n",
286 | "vote_list['Number'] = vote_list['Number'].str.extract('(\\d+)', expand=False)\n",
287 | "base_url = \"https://www.ourcommons.ca/Members/en/votes/42/1/\"\n",
288 | "url_data = pd.DataFrame(columns=[\"Vote\"])\n",
289 | "Vote = []\n",
290 | "for name in vote_list['Number']:\n",
291 | " newUrl = base_url + name\n",
292 | " Vote.append(newUrl)\n",
293 | "url_data[\"Vote\"] = Vote\n",
294 | "url_data.head()"
295 | ]
296 | },
297 | {
298 | "cell_type": "code",
299 | "execution_count": null,
300 | "metadata": {},
301 | "outputs": [],
302 | "source": [
303 | "# Run this only once!\n",
304 | "url_data.to_csv(r'url-text-42-1-government', \n",
305 | " header=None, index=None, sep=' ', mode='a')"
306 | ]
307 | },
308 | {
309 | "cell_type": "code",
310 | "execution_count": null,
311 | "metadata": {},
312 | "outputs": [],
313 | "source": [
314 | "# Read URLs\n",
315 | "URLS = open(\"url-text-42-1-government\",\"r\")\n",
316 | "for url in URLS:\n",
317 | " # Read next HTML page in set:\n",
318 | " dfs = pd.read_html(url,header=0)\n",
319 | " df = dfs[0]\n",
320 | " df.rename(columns={'Member Voted':'Vote'}, inplace=True)\n",
321 | " df.rename(columns={'Political Affiliation':'Party'}, inplace=True)\n",
322 | " # Ignore unanimous votes:\n",
323 | " vote_output_nay = df[df['Vote'].str.contains('Nay', na=False)]\n",
324 | " total_votes_nay = vote_output_nay['Vote'].str.contains('Nay', na=False)\n",
325 | " filtered_votes = total_votes_nay.sum()\n",
326 | " if filtered_votes==0:\n",
327 | " continue\n",
328 | " # Call functions to tabulate votes:\n",
329 | " else:\n",
330 | " liberal_votes()\n",
331 | " conservative_votes()\n",
332 | " ndp_votes()\n",
333 | " bloc_votes()\n",
334 | "\n",
335 | " total_votes += 1\n",
336 | "\n",
337 | "\n",
338 | "print(\"We counted\", total_votes, \"votes in total.\")\n",
339 | "\n",
340 | "print(\"Conservative members voted the party line\", partyLineVotesConservative, \n",
341 | " \"times, and split their vote\", non_partyLineVotesConservative, \"times.\")\n",
342 | "\n",
343 | "print(\"Liberal members voted the party line\", partyLineVotesLiberal, \n",
344 | " \"times, and split their vote\", non_partyLineVotesLiberal, \"times.\")\n",
345 | "\n",
346 | "print(\"NDP members voted the party line\", partyLineVotesNDP, \n",
347 | " \"times, and split their vote\", non_partyLineVotesNDP, \"times.\")\n",
348 | " \n",
349 | "print(\"Bloc members voted the party line\", partyLineVotesBloc, \n",
350 | " \"times, and split their vote\", non_partyLineVotesBloc, \"times.\")"
351 | ]
352 | },
353 | {
354 | "cell_type": "code",
355 | "execution_count": null,
356 | "metadata": {},
357 | "outputs": [],
358 | "source": [
359 | "data = {'Party': ['Conservative', 'Liberal', 'NDP', 'Bloc'],\n",
360 | "'Party-line votes': [408, 402, 417, 423],\n",
361 | "'Non-party-line votes': [16, 22, 7, 1]}\n",
362 | "dfdata = pd.DataFrame (data, columns = ['Party', 'Party-line votes', 'Non-party-line votes'])\n",
363 | "\n",
364 | "print(df_output_42_1_government)"
365 | ]
366 | },
367 | {
368 | "cell_type": "code",
369 | "execution_count": null,
370 | "metadata": {},
371 | "outputs": [],
372 | "source": [
373 | "dfdata['percentage']= dfdata['Non-party-line votes']/dfdata['Party-line votes'].sum()\n",
374 | "dfdata\n",
375 | "#dfdata = df_output_42_1_government['Party-line votes',+,'non-party-line votes',/,'Party-line votes']\n",
376 | "\n",
377 | "#df_output_42_1_government.plot(kind='bar')"
378 | ]
379 | }
380 | ],
381 | "metadata": {
382 | "kernelspec": {
383 | "display_name": "Python 3",
384 | "language": "python",
385 | "name": "python3"
386 | },
387 | "language_info": {
388 | "codemirror_mode": {
389 | "name": "ipython",
390 | "version": 3
391 | },
392 | "file_extension": ".py",
393 | "mimetype": "text/x-python",
394 | "name": "python",
395 | "nbconvert_exporter": "python",
396 | "pygments_lexer": "ipython3",
397 | "version": "3.7.6"
398 | }
399 | },
400 | "nbformat": 4,
401 | "nbformat_minor": 4
402 | }
403 |
--------------------------------------------------------------------------------
/Plot-birthdays.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 141,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "import pandas as pd\n",
10 | "import requests\n",
11 | "import json\n",
12 | "import matplotlib.pyplot as plt\n",
13 | "import numpy as np"
14 | ]
15 | },
16 | {
17 | "cell_type": "code",
18 | "execution_count": 157,
19 | "metadata": {
20 | "scrolled": false
21 | },
22 | "outputs": [
23 | {
24 | "data": {
25 | "text/plain": [
26 | ""
27 | ]
28 | },
29 | "execution_count": 157,
30 | "metadata": {},
31 | "output_type": "execute_result"
32 | },
33 | {
34 | "data": {
35 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAARgklEQVR4nO3df4wcd3nH8feDTYrxgZ0QsjJ21DPCMtC4MXhFQyOhu5hULkHYfwAKSqNL6/b+gTRtXRXTSm3/6A8jGn5IRa0sQn1V0xyRSWQrETSW8TWqRCJ8AeGASU1TE+wYmx+O4ULUYPr0jxuXy/nOu7e3P/LdvF+StTPfndl5nr27j+fmZnYiM5EkledlvS5AktQaA1ySCmWAS1KhDHBJKpQBLkmFWtrNjV155ZU5ODjYzU227Nlnn2X58uW9LqMj7K1c/dyfvc1vcnLyB5n52tnjDQM8ItYDn5sx9Hrgz4F/rsYHgePA+zPz7KVea3BwkMOHDzdfdQ9NTEwwNDTU6zI6wt7K1c/92dv8IuI7c403PISSmU9k5sbM3AhsAn4K3A/sBA5m5jrgYDUvSeqShR4D3wz8V2Z+B9gKjFXjY8C2dhYmSbq0hQb4zcA91XQtM08BVI9XtbMwSdKlRbOX0kfEZcDTwK9k5umIeCYzV854/mxmXj7HeqPAKECtVts0Pj7enso7bGpqioGBgV6X0RH2Vq5+7s/e5jc8PDyZmfWLnsjMpv4xfcjkoRnzTwCrqulVwBONXmPTpk1ZikOHDvW6hI6xt3L1c3/2Nj/gcM6RqQs5hPIBfnH4BGA/MFJNjwD7FvifiiRpEZoK8Ih4JXAjcN+M4V3AjRFxrHpuV/vLkyTNp6kLeTLzp8BrZo39kOmzUiRJPeCl9JJUqK5eSr8Ygzsf7Or2dmw4z207H+T4rpu6ul1JapZ74JJUKANckgplgEtSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYUywCWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhDHBJKlRTAR4RKyNib0R8KyKORsTbI+KKiDgQEceqx8s7Xawk6Rea3QP/FPDFzHwjcC1wFNgJHMzMdcDBal6S1CUNAzwiXg28A7gLIDOfz8xngK3AWLXYGLCtU0VKki4WmXnpBSI2AruBbzK99z0J3AGczMyVM5Y7m5kXHUaJiFFgFKBWq20aHx9vqdAjJ8+1tF6rasvg9HOwYfWKrm63G6amphgYGOh1GR3Rz71Bf/dnb/MbHh6ezMz67PFmArwOPAJcn5mPRsSngB8DtzcT4DPV6/U8fPhwSw0M7nywpfVatWPDee48spTju27q6na7YWJigqGhoV6X0RH93Bv0d3/2Nr+ImDPAmzkGfgI4kZmPVvN7gbcCpyNiVfXiq4AzLVcnSVqwhgGemd8DvhsR66uhzUwfTtkPjFRjI8C+jlQoSZrT0iaXux24OyIuA54Efpvp8L83IrYDTwHv60yJkqS5NBXgmfk14KLjL0zvjUuSesArMSWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVCgDXJIK1dRd6SPiOPAT4OfA+cysR8QVwOeAQeA48P7MPNuZMiVJsy1kD3w4MzdmZr2a3wkczMx1wMFqXpLUJYs5hLIVGKumx4Btiy9HktSsZgM8gYciYjIiRquxWmaeAqger+pEgZKkuUVmNl4o4nWZ+XREXAUcAG4H9mfmyhnLnM3My+dYdxQYBajVapvGx8dbKvTIyXMtrdeq2jI4/RxsWL2iq9vthqmpKQYGBnpdRkf0c2/Q3/3Z2/yGh4cnZxy+/n9NBfgLVoj4S2AK+D1gKDNPRcQqYCIz119q3Xq9nocPH17Q9i4Y3PlgS+u1aseG89x5ZCnHd93U1e12w8TEBENDQ70uoyP6uTfo7/7sbX4RMWeANzyEEhHLI+JVF6aB3wAeB/YDI9ViI8C+lquTJC1YM6cR1oD7I+LC8v+amV+MiK8A90bEduAp4H2dK1OSFq/bv8lfsGfL8o68bsMAz8wngWvnGP8hsLkTRUmSGvNKTEkqlAEuSYUywCWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoZq5I49eYnp11xKgL+9BKnWKe+CSVCgDXJIKZYBLUqEMcEkqlAEuSYVqOsAjYklEfDUiHqjm10bEoxFxLCI+FxGXda5MSdJsC9kDvwM4OmP+o8AnMnMdcBbY3s7CJEmX1lSAR8Qa4CbgM9V8ADcAe6tFxoBtnShQkjS3yMzGC0XsBf4WeBXwx8BtwCOZ+Ybq+auBL2TmNXOsOwqMAtRqtU3j4+MtFXrk5LmW1mtVbRmcfg42rF7R1e12w9TUFAMDA/M+3+33eqbFvt+NeitdP/fXjd569b29dsWSRfU2PDw8mZn12eMNr8SMiHcDZzJzMiKGLgzPseic/xNk5m5gN0C9Xs+hoaG5Fmvoti5fHbhjw3nuPLKU47cMdXW73TAxMcGlvg7dfq9nWuz73ai30vVzf93orVff23u2LO9Ib81cSn898J6IeBfwCuDVwCeBlRGxNDPPA2uAp9tenSRpXg2PgWfmRzJzTWYOAjcDX8rMW4BDwHurxUaAfR2rUpJ0kcWcB/5h4I8i4tvAa4C72lOSJKkZC/o0wsycACaq6SeBt7W/JElSM7wSU5IKZYBLUqEMcEkqlHfkacC700h6sXIPXJIKZYBLUqEMcEkqlAEuSYUywCWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgrV8I48EfEK4GHgl6rl92bmX0TEWmAcuAJ4DLg1M5/vZLEvNZ26G9CODee5rYd3GpLUHs3sgf8PcENmXgtsBLZExHXAR4FPZOY64CywvXNlSpJmaxjgOW2qmn159S+BG4C91fgYsK0jFUqS5hSZ2XihiCXAJPAG4NPAx4BHMvMN1fNXA1/IzGvmWHcUGAWo1WqbxsfHWyr0yMlzLa3XqtoyOP1cVzfZNS/m3jasXrGo9aemphgYGGhTNS8+/dxfN3rrdo5csHbFkkX1Njw8PJmZ9dnjTd2VPjN/DmyMiJXA/cCb5lpsnnV3A7sB6vV6Dg0NNVvzC3T7mO2ODee580hTb09xXsy9Hb9laFHrT0xM0Or3WAn6ub9u9Narv/3s2bK8I70t6CyUzHwGmACuA1ZGxIUUWAM83d7SJEmX0sxZKK8FfpaZz0TEMuCdTP8B8xDwXqbPRBkB9nWyUKmTOnXGTzOO77qpZ9vulbneb8+OWrhmfo9eBYxVx8FfBtybmQ9ExDeB8Yj4K+CrwF0drFOSNEvDAM/MrwNvmWP8SeBtnShKktSYV2JKUqEMcEkqlAEuSYUywCWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQV6sV5WxbpJWQhn0Xezs/Mfil+Dnm/cQ9ckgplgEtSoQxwSSqUAS5JhTLAJalQnoWiF5XF3h3eO5vrpcQ9cEkqlAEuSYVqGOARcXVEHIqIoxHxjYi4oxq/IiIORMSx6vHyzpcrSbqgmT3w88COzHwTcB3wwYh4M7ATOJiZ64CD1bwkqUsaBnhmnsrMx6rpnwBHgdXAVmCsWmwM2NapIiVJF4vMbH7hiEHgYeAa4KnMXDnjubOZedFhlIgYBUYBarXapvHx8ZYKPXLyXEvrtaq2DE4/19VNdo29laud/W1YvaI9L9SCuX6e+/lrt3bFEgYGBlpef3h4eDIz67PHmw7wiBgA/h3468y8LyKeaSbAZ6rX63n48OEFlj5tsaeXLdSODee580h/nmVpb+VqZ3+9/DCruX6e+/lrt2fLcoaGhlpePyLmDPCmzkKJiJcDnwfuzsz7quHTEbGqen4VcKbl6iRJC9bMWSgB3AUczcyPz3hqPzBSTY8A+9pfniRpPs38vnI9cCtwJCK+Vo39KbALuDcitgNPAe/rTImSpLk0DPDM/A8g5nl6c3vLkSQ1yysxJalQBrgkFcoAl6RC9edJl5Ia6va1FWo/98AlqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYUywCWpUA0DPCI+GxFnIuLxGWNXRMSBiDhWPV7e2TIlSbM1swe+B9gya2wncDAz1wEHq3lJUhc1DPDMfBj40azhrcBYNT0GbGtzXZKkBiIzGy8UMQg8kJnXVPPPZObKGc+fzcw5D6NExCgwClCr1TaNj4+3VOiRk+daWq9VtWVw+rmubrJr7K1c/dxfP/e2dsUSBgYGWl5/eHh4MjPrs8c7flf6zNwN7Aao1+s5NDTU0uvc1uU7aO/YcJ47j3T87ekJeytXP/fXz73t2bKcVrPvUlo9C+V0RKwCqB7PtK8kSVIzWg3w/cBINT0C7GtPOZKkZjVzGuE9wJeB9RFxIiK2A7uAGyPiGHBjNS9J6qKGB5wy8wPzPLW5zbVIkhbAKzElqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYUywCWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhFhXgEbElIp6IiG9HxM52FSVJaqzlAI+IJcCngd8E3gx8ICLe3K7CJEmXtpg98LcB387MJzPzeWAc2NqesiRJjURmtrZixHuBLZn5u9X8rcCvZeaHZi03CoxWs+uBJ1ovt6uuBH7Q6yI6xN7K1c/92dv8fjkzXzt7cOkiXjDmGLvof4PM3A3sXsR2eiIiDmdmvdd1dIK9lauf+7O3hVvMIZQTwNUz5tcATy+uHElSsxYT4F8B1kXE2oi4DLgZ2N+esiRJjbR8CCUzz0fEh4B/A5YAn83Mb7Stst4r7rDPAthbufq5P3tboJb/iClJ6i2vxJSkQhngklQoA3yGiLg6Ig5FxNGI+EZE3NHrmtotIpZExFcj4oFe19JuEbEyIvZGxLeqr+Hbe11Tu0TEH1bfk49HxD0R8Ype17QYEfHZiDgTEY/PGLsiIg5ExLHq8fJe1tiqeXr7WPV9+fWIuD8iVrZjWwb4C50HdmTmm4DrgA/24ccD3AEc7XURHfIp4IuZ+UbgWvqkz4hYDfw+UM/Ma5g+aeDm3la1aHuALbPGdgIHM3MdcLCaL9EeLu7tAHBNZv4q8J/AR9qxIQN8hsw8lZmPVdM/YToAVve2qvaJiDXATcBnel1Lu0XEq4F3AHcBZObzmflMb6tqq6XAsohYCrySwq+5yMyHgR/NGt4KjFXTY8C2rhbVJnP1lpkPZeb5avYRpq+bWTQDfB4RMQi8BXi0t5W01SeBPwH+t9eFdMDrge8D/1QdIvpMRCzvdVHtkJkngb8DngJOAecy86HeVtURtcw8BdM7U8BVPa6nU34H+EI7XsgAn0NEDACfB/4gM3/c63raISLeDZzJzMle19IhS4G3Av+QmW8BnqXcX8FfoDoWvBVYC7wOWB4Rv9XbqtSKiPgzpg/V3t2O1zPAZ4mIlzMd3ndn5n29rqeNrgfeExHHmf7kyBsi4l96W1JbnQBOZOaF35j2Mh3o/eCdwH9n5vcz82fAfcCv97imTjgdEasAqsczPa6nrSJiBHg3cEu26QIcA3yGiAimj6EezcyP97qedsrMj2TmmswcZPoPYF/KzL7Zi8vM7wHfjYj11dBm4Js9LKmdngKui4hXVt+jm+mTP9DOsh8YqaZHgH09rKWtImIL8GHgPZn503a9rgH+QtcDtzK9d/q16t+7el2UmnY7cHdEfB3YCPxNj+tpi+q3ir3AY8ARpn9ui77sPCLuAb4MrI+IExGxHdgF3BgRx4Abq/nizNPb3wOvAg5UufKPbdmWl9JLUpncA5ekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVD/B6eJhGWF/319AAAAAElFTkSuQmCC\n",
36 | "text/plain": [
37 | ""
38 | ]
39 | },
40 | "metadata": {
41 | "needs_background": "light"
42 | },
43 | "output_type": "display_data"
44 | }
45 | ],
46 | "source": [
47 | "df3 = pd.DataFrame(columns=['months'])\n",
48 | "# num_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 28, 29, 30]\n",
49 | "for team_id in range(1, 11, 1):\n",
50 | " url = 'https://statsapi.web.nhl.com/api/v1/teams/{}/roster'.format(team_id)\n",
51 | " r = requests.get(url)\n",
52 | " roster_data = r.json()\n",
53 | " df = pd.json_normalize(roster_data['roster'])\n",
54 | " for index, row in df.iterrows():\n",
55 | " newrow = row['person.id']\n",
56 | " url = 'https://statsapi.web.nhl.com/api/v1/people/{}'.format(newrow)\n",
57 | " #print(url)\n",
58 | " newerdata = requests.get(url)\n",
59 | " player_stats = newerdata.json()\n",
60 | " birthday = (player_stats['people'][0]['birthDate'])\n",
61 | " newmonth = int(birthday.split('-')[1])\n",
62 | " df3 = df3.append({'months': newmonth}, ignore_index=True)\n",
63 | " #plt.plot(newmonth)\n",
64 | "#df1.plot(kind=\"bar\")\n",
65 | "df3.months.hist()"
66 | ]
67 | },
68 | {
69 | "cell_type": "code",
70 | "execution_count": 179,
71 | "metadata": {},
72 | "outputs": [
73 | {
74 | "data": {
75 | "text/plain": [
76 | ""
77 | ]
78 | },
79 | "execution_count": 179,
80 | "metadata": {},
81 | "output_type": "execute_result"
82 | },
83 | {
84 | "data": {
85 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAASnklEQVR4nO3df5BddXnH8ffToDZmbcCCd2Kg3TATaSXRaO5QW6fMXdE2ohV1qoWhNBHa6Ixa22amBu1Upo4dphptO7TaKDQ40iwOP5QBtGaoK3VGWjdI2SCigJEm0ER+BQMZ7MLTP+7JeFk27N7f2W/fr5mdPfd7fnyfZ+/mk7Nn77kbmYkkqSw/N+wCJEm9Z7hLUoEMd0kqkOEuSQUy3CWpQMcMuwCA448/PkdHR4ddxrw8/vjjLFmyZNhl9E3J/dnbwlVyf930tnPnzgcz84TZ1h0V4T46Osrk5OSwy5iXiYkJGo3GsMvom5L7s7eFq+T+uuktIn50pHVelpGkAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIdFXeodmt08w0Dm2vT6mk2VPPtvvhNA5tXktrhmbskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQHOGe0RcFhH7I2JXy9iVEXFb9bE7Im6rxkcj4lDLus/0s3hJ0uzmc4fqNuAS4POHBzLz9w4vR8QW4EDL9vdk5ppeFShJat+c4Z6ZN0fE6GzrIiKAdwKv621ZkqRuRGbOvVEz3K/PzFUzxk8HPpmZ9Zbt7gC+DzwG/EVm/vsRjrkR2AhQq9XWjo+Pd9oDU3sPzL1Rj9QWw75DzeXVy5cObN5BOXjwICMjI8Muoy/sbeEqub9uehsbG9t5OH9n6vaNw84Btrc8fgD4pcx8KCLWAl+KiFMz87GZO2bmVmArQL1ez0aj0XERGwb8xmFbpppftt3nNgY276BMTEzQzXNxNLO3havk/vrVW8evlomIY4C3A1ceHsvMJzPzoWp5J3AP8LJui5Qktaebl0K+HvheZu45PBARJ0TEomr5ZGAlcG93JUqS2jWfl0JuB74FnBIReyLigmrV2TzzkgzA6cDtEfFfwFXAezLz4V4WLEma23xeLXPOEcY3zDJ2NXB192VJkrrhHaqSVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgebzB7Ivi4j9EbGrZeyiiNgbEbdVH2e2rLswIu6OiLsi4rf7Vbgk6cjmc+a+DVg3y/inMnNN9XEjQES8HDgbOLXa5x8jYlGvipUkzc+c4Z6ZNwMPz/N4ZwHjmflkZv4QuBs4rYv6JEkdiMyce6OIUeD6zFxVPb4I2AA8BkwCmzLzkYi4BLglM79QbXcp8JXMvGqWY24ENgLUarW14+PjHTcxtfdAx/u2q7YY9h1qLq9evnRg8w7KwYMHGRkZGXYZfWFvC1fJ/XXT29jY2M7MrM+27pgO6/k08FEgq89bgPOBmGXbWf/3yMytwFaAer2ejUajw1Jgw+YbOt63XZtWT7Nlqvll231uY2DzDsrExATdPBdHM3tbuErur1+9dfRqmczcl5lPZebTwGf52aWXPcBJLZueCNzfXYmSpHZ1FO4Rsazl4duAw6+kuQ44OyJeEBErgJXAf3ZXoiSpXXNelomI7UADOD4i9gAfARoRsYbmJZfdwLsBMvOOiPgi8F1gGnhvZj7Vn9IlSUcyZ7hn5jmzDF/6HNt/DPhYN0VJkrrjHaqSVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgo0n7+hehnwZmB/Zq6qxj4O/A7wU+Ae4F2Z+WhEjAJ3AndVu9+Sme/pQ92S1DOjm28Y2tzb1i3py3Hnc+a+DVg3Y2wHsCozXwF8H7iwZd09mbmm+jDYJWkI5gz3zLwZeHjG2Ncyc7p6eAtwYh9qkyR1qBfX3M8HvtLyeEVEfCcivhERv9mD40uS2hSZOfdGzWvp1x++5t4y/mGgDrw9MzMiXgCMZOZDEbEW+BJwamY+NssxNwIbAWq12trx8fGOm5jae6DjfdtVWwz7DjWXVy9fOrB5B+XgwYOMjIwMu4y+sLeFq9/9DTJDZlqxdFHHvY2Nje3MzPps6+b8heqRRMR6mr9oPSOr/yEy80ngyWp5Z0TcA7wMmJy5f2ZuBbYC1Ov1bDQanZbChgH+MmTT6mm2TDW/bLvPbQxs3kGZmJigm+fiaGZvC1e/+xtkhsy0bd2SvvTW0WWZiFgHfBB4S2Y+0TJ+QkQsqpZPBlYC9/aiUEnS/M3npZDbgQZwfETsAT5C89UxLwB2RAT87CWPpwN/FRHTwFPAezLz4VkPLEnqmznDPTPPmWX40iNsezVwdbdFSZK64x2qklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAHf8lJv3/NDqkv1iz++I3DWVeaaHyzF2SCmS4S1KBDHdJKpDhLkkFmle4R8RlEbE/Ina1jL04InZExA+qz8dV4xERfx8Rd0fE7RHx6n4VL0ma3XzP3LcB62aMbQZuysyVwE3VY4A3Aiurj43Ap7svU5LUjnmFe2beDDw8Y/gs4PJq+XLgrS3jn8+mW4BjI2JZL4qVJM1PZOb8NowYBa7PzFXV40cz89iW9Y9k5nERcT1wcWZ+sxq/CfhgZk7OON5Gmmf21Gq1tePj4x03MbX3QMf7tqu2GPYdai6vXr50YPMOysGDBxkZGTni+kF+rVv14ms9V28LWcm9Qf/7G9b3NcCKpYs67m1sbGxnZtZnW9ePm5hilrFn/Q+SmVuBrQD1ej0bjUbHE24Y4I01m1ZPs2Wq+WXbfW5jYPMOysTEBM/1XAzya92qF1/ruXpbyEruDfrf37C+rwG2rVvSl966ebXMvsOXW6rP+6vxPcBJLdudCNzfxTySpDZ1E+7XAeur5fXAl1vG/6B61cxrgAOZ+UAX80iS2jSvyzIRsR1oAMdHxB7gI8DFwBcj4gLgPuAd1eY3AmcCdwNPAO/qcc2SpDnMK9wz85wjrDpjlm0TeG83RUmSuuMdqpJUIN/ytwu+/a2ko5Vn7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCeRPTAtTPm6c2rZ4e6tufSuoNz9wlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBer4JqaIOAW4smXoZOAvgWOBPwJ+XI1/KDNv7LhCSVLbOg73zLwLWAMQEYuAvcC1wLuAT2XmJ3pSoSSpbb16+4EzgHsy80cR0aNDSkcH/1auFqLIzO4PEnEZcGtmXhIRFwEbgMeASWBTZj4yyz4bgY0AtVpt7fj4eMfzT+090PG+7aothn2HBjbdwB2t/a1evrTrYxw8eJCRkZG29xvk91erdnrutLeFot/9Des5BlixdFHHvY2Nje3MzPps67oO94h4PnA/cGpm7ouIGvAgkMBHgWWZef5zHaNer+fk5GTHNQzyzGrT6mm2TJX7fmtHa3+9OIudmJig0Wi0vd9COHPvtLeFot/9Des5Bti2bknHvUXEEcO9F6+WeSPNs/Z9AJm5LzOfysyngc8Cp/VgDklSG3oR7ucA2w8/iIhlLeveBuzqwRySpDZ09fN3RLwQeAPw7pbhv4mINTQvy+yesU6SNABdhXtmPgH84oyx87qqSJLUNe9QlaQCGe6SVCDDXZIKZLhLUoGOvrtVJAHt3VizafU0G3p4I45vfbDweeYuSQUy3CWpQIa7JBXIa+5aEHrxxk69vi6t3jvS8+xz1z7P3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVqOu3H4iI3cBPgKeA6cysR8SLgSuBUZp/JPudmflIt3NJkuanV2fuY5m5JjPr1ePNwE2ZuRK4qXosSRqQfl2WOQu4vFq+HHhrn+aRJM0iMrO7A0T8EHgESOCfMnNrRDyamce2bPNIZh43Y7+NwEaAWq22dnx8vOMapvYe6HjfdtUWw75DA5tu4Eruz94WrpL7W7F0ESMjIx3tOzY2trPliskz9CLcX5qZ90fES4AdwPuB6+YK91b1ej0nJyc7rqEXbwc7X5tWT7Nlqtx3Si65P3tbuErub9u6JTQajY72jYgjhnvXl2Uy8/7q837gWuA0YF9ELKsmXwbs73YeSdL8dRXuEbEkIl50eBn4LWAXcB2wvtpsPfDlbuaRJLWn259zasC1EXH4WP+SmV+NiG8DX4yIC4D7gHd0OY8kqQ1dhXtm3gu8cpbxh4Azujm2JKlz3qEqSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFajjcI+IkyLi6xFxZ0TcEREfqMYvioi9EXFb9XFm78qVJM1HN38gexrYlJm3RsSLgJ0RsaNa96nM/ET35UmSOtFxuGfmA8AD1fJPIuJOYHmvCpMkdS4ys/uDRIwCNwOrgD8DNgCPAZM0z+4fmWWfjcBGgFqttnZ8fLzj+af2Huh433bVFsO+QwObbuBK7s/eFq6S+1uxdBEjIyMd7Ts2NrYzM+uzres63CNiBPgG8LHMvCYiasCDQAIfBZZl5vnPdYx6vZ6Tk5Md1zC6+YaO923XptXTbJnq5mrW0a3k/uxt4Sq5v23rltBoNDraNyKOGO5dvVomIp4HXA1ckZnXAGTmvsx8KjOfBj4LnNbNHJKk9nXzapkALgXuzMxPtowva9nsbcCuzsuTJHWim59zXgucB0xFxG3V2IeAcyJiDc3LMruBd3dVoSSpbd28WuabQMyy6sbOy5Ek9YJ3qEpSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkF6lu4R8S6iLgrIu6OiM39mkeS9Gx9CfeIWAT8A/BG4OXAORHx8n7MJUl6tn6duZ8G3J2Z92bmT4Fx4Kw+zSVJmiEys/cHjfhdYF1m/mH1+Dzg1zLzfS3bbAQ2Vg9PAe7qeSH9cTzw4LCL6KOS+7O3havk/rrp7Zcz84TZVhzTeT3PKWYZe8b/Ipm5Fdjap/n7JiImM7M+7Dr6peT+7G3hKrm/fvXWr8sye4CTWh6fCNzfp7kkSTP0K9y/DayMiBUR8XzgbOC6Ps0lSZqhL5dlMnM6It4H/CuwCLgsM+/ox1xDsOAuJbWp5P7sbeEqub++9NaXX6hKkobLO1QlqUCGuyQVyHCfp4g4KSK+HhF3RsQdEfGBYdfUaxGxKCK+ExHXD7uWXoqIYyPiqoj4XvX8/fqwa+qliPjT6ntyV0Rsj4ifH3ZNnYqIyyJif0Tsahl7cUTsiIgfVJ+PG2aN3ThCfx+vvjdvj4hrI+LYXsxluM/fNLApM38VeA3w3gLfUuEDwJ3DLqIP/g74amb+CvBKCuoxIpYDfwzUM3MVzRcwnD3cqrqyDVg3Y2wzcFNmrgRuqh4vVNt4dn87gFWZ+Qrg+8CFvZjIcJ+nzHwgM2+tln9CMyCWD7eq3omIE4E3AZ8bdi29FBG/AJwOXAqQmT/NzEeHW1XPHQMsjohjgBeygO8pycybgYdnDJ8FXF4tXw68daBF9dBs/WXm1zJzunp4C837grpmuHcgIkaBVwH/MdxKeupvgT8Hnh52IT12MvBj4J+rS06fi4glwy6qVzJzL/AJ4D7gAeBAZn5tuFX1XC0zH4DmSRbwkiHX00/nA1/pxYEM9zZFxAhwNfAnmfnYsOvphYh4M7A/M3cOu5Y+OAZ4NfDpzHwV8DgL+8f6Z6iuP58FrABeCiyJiN8fblXqRER8mObl3yt6cTzDvQ0R8TyawX5FZl4z7Hp66LXAWyJiN8138HxdRHxhuCX1zB5gT2Ye/inrKpphX4rXAz/MzB9n5v8C1wC/MeSaem1fRCwDqD7vH3I9PRcR64E3A+dmj24+MtznKSKC5nXbOzPzk8Oup5cy88LMPDEzR2n+Mu7fMrOIs7/M/B/gvyPilGroDOC7Qyyp1+4DXhMRL6y+R8+goF8YV64D1lfL64EvD7GWnouIdcAHgbdk5hO9Oq7hPn+vBc6jeVZ7W/Vx5rCL0ry8H7giIm4H1gB/PeR6eqb6ieQq4FZgiua/6QV7q35EbAe+BZwSEXsi4gLgYuANEfED4A3V4wXpCP1dArwI2FHlymd6MpdvPyBJ5fHMXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAv0fUaquhAmxMJ4AAAAASUVORK5CYII=\n",
86 | "text/plain": [
87 | ""
88 | ]
89 | },
90 | "metadata": {
91 | "needs_background": "light"
92 | },
93 | "output_type": "display_data"
94 | }
95 | ],
96 | "source": [
97 | "for team_id in range(13, 20, 1):\n",
98 | " url = 'https://statsapi.web.nhl.com/api/v1/teams/{}/roster'.format(team_id)\n",
99 | " r = requests.get(url)\n",
100 | " roster_data = r.json()\n",
101 | " df = pd.json_normalize(roster_data['roster'])\n",
102 | " for index, row in df.iterrows():\n",
103 | " newrow = row['person.id']\n",
104 | " url = 'https://statsapi.web.nhl.com/api/v1/people/{}'.format(newrow)\n",
105 | " #print(url)\n",
106 | " newerdata = requests.get(url)\n",
107 | " player_stats = newerdata.json()\n",
108 | " birthday = (player_stats['people'][0]['birthDate'])\n",
109 | " newmonth = int(birthday.split('-')[1])\n",
110 | " df3 = df3.append({'months': newmonth}, ignore_index=True)\n",
111 | " #plt.plot(newmonth)\n",
112 | "#df1.plot(kind=\"bar\")\n",
113 | "df3.months.hist()"
114 | ]
115 | },
116 | {
117 | "cell_type": "code",
118 | "execution_count": 180,
119 | "metadata": {},
120 | "outputs": [
121 | {
122 | "data": {
123 | "text/plain": [
124 | ""
125 | ]
126 | },
127 | "execution_count": 180,
128 | "metadata": {},
129 | "output_type": "execute_result"
130 | },
131 | {
132 | "data": {
133 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAO4ElEQVR4nO3df6zd9V3H8efbdirrnbSk44a1jReTBofUMbiZ6BJzrzgtsKyYiIEgKxta/2CTmSZS9I+RmJkmytRliqmDtcuQK2EsNIxNmrobskR0LRIKq0iz1dpS201YoUCcZW//uN/G23Lbe+75cb/ct89HcnO+38/5nu/n/b69fd3v/Z7zPScyE0lSLT/SdgGSpP4z3CWpIMNdkgoy3CWpIMNdkgpa3HYBAMuXL8+RkZG2y+jIq6++ypIlS9ouYyAq9wa1+7O3hauX/nbv3v29zHznTPe9JcJ9ZGSEXbt2tV1GRyYnJxkbG2u7jIGo3BvU7s/eFq5e+ouIfz/TfZ6WkaSCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SC3hJXqPZiZNNX5nW+jWtOcHMz5/7N18zr3JLUKY/cJakgw12SCjLcJakgw12SCjLcJakgw12SCjLcJakgw12SCjLcJakgw12SCpo13CNiVUR8PSL2RsSzEXFbM35eROyIiOeb22XNeETEZyJiX0Q8HRGXDboJSdKpOjlyPwFszMx3A1cAt0bExcAmYGdmrgZ2NusAVwGrm68NwN19r1qSdFazhntmHs7MJ5vlV4C9wApgHbCt2WwbcG2zvA74Qk55AlgaERf0vXJJ0hlFZna+ccQI8DhwCXAgM5dOu++lzFwWEY8AmzPzG834TuD2zNx12r42MHVkz/Dw8OUTExNdNbDn0LGuHtet4XPgyOtTy2tWnDuvcw/a8ePHGRoaaruMgancn70tXL30Nz4+vjszR2e6r+O3/I2IIeBLwCcy8+WIOOOmM4y96TdIZm4BtgCMjo7m2NhYp6Wc4uYW3vL3rj1T37b9N47N69yDNjk5Sbf/DgtB5f7sbeEaVH8dvVomIt7GVLDfl5kPNcNHTp5uaW6PNuMHgVXTHr4SeKE/5UqSOtHJq2UCuAfYm5mfnnbXdmB9s7weeHja+IebV81cARzLzMN9rFmSNItOTsu8H7gJ2BMRTzVjfwBsBh6IiFuAA8B1zX2PAlcD+4DXgI/0tWJJ0qxmDffmidEznWC/cobtE7i1x7okST3wClVJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKmjWcI+IeyPiaEQ8M23szog4FBFPNV9XT7vvjojYFxHPRcSvDqpwSdKZdXLkvhVYO8P4n2Xmpc3XowARcTFwPfAzzWP+KiIW9atYSVJnZg33zHwceLHD/a0DJjLzvzPzO8A+4H091CdJ6kJk5uwbRYwAj2TmJc36ncDNwMvALmBjZr4UEZ8FnsjMLzbb3QN8NTMfnGGfG4ANAMPDw5dPTEx01cCeQ8e6ely3hs+BI69PLa9Zce68zj1ox48fZ2hoqO0yBqZyf/a2cPXS3/j4+O7MHJ3pvsVd1nM38EdANrd3AR8FYoZtZ/ztkZlbgC0Ao6OjOTY21lUhN2/6SleP69bGNSe4a8/Ut23/jWPzOvegTU5O0u2/w0JQuT97W7gG1V9Xr5bJzCOZ+UZm/hD4G/7v1MtBYNW0TVcCL/RWoiRprroK94i4YNrqrwEnX0mzHbg+In4sIi4EVgP/3FuJkqS5mvW0TETcD4wByyPiIPBJYCwiLmXqlMt+4HcAMvPZiHgA+BZwArg1M98YTOmSpDOZNdwz84YZhu85y/afAj7VS1GSpN54haokFWS4S1JBhrskFWS4S1JBhrskFWS4S1JB3b79gCSVMTLPb2My3da1SwayX4/cJakgw12SCjLcJakgw12SCjLcJakgw12SCjLcJakgw12SCjLcJakgw12SCjLcJakgw12SCjLcJakgw12SCjLcJakg389dc9LW+17v33xNK/NKC5VH7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQUZ7pJUkOEuSQXNGu4RcW9EHI2IZ6aNnRcROyLi+eZ2WTMeEfGZiNgXEU9HxGWDLF6SNLNOjty3AmtPG9sE7MzM1cDOZh3gKmB187UBuLs/ZUqS5mLWcM/Mx4EXTxteB2xrlrcB104b/0JOeQJYGhEX9KtYSVJnIjNn3yhiBHgkMy9p1r+fmUun3f9SZi6LiEeAzZn5jWZ8J3B7Zu6aYZ8bmDq6Z3h4+PKJiYmuGthz6FhXj+vW8Dlw5PV5nfJN1qw4dyD7PX78OENDQ2fdZr6/3yf1o+dO+luo7K03bf1cA1x47qKu+xsfH9+dmaMz3dfvD8iOGcZm/O2RmVuALQCjo6M5NjbW1YQ3z/MHNm9cc4K79rT7ueL7bxwbyH4nJyeZ7d9hvr/fJ/Wj5076W6jsrTdt/VwDbF27ZCD9dftqmSMnT7c0t0eb8YPAqmnbrQRe6L48SVI3ug337cD6Znk98PC08Q83r5q5AjiWmYd7rFGSNEeznl+IiPuBMWB5RBwEPglsBh6IiFuAA8B1zeaPAlcD+4DXgI8MoGZJ0ixmDffMvOEMd105w7YJ3NprUZKk3niFqiQV1O7LPtSVkQE9s79xzYlWXzUgqX88cpekgjxyl2YxqL+UZrN/8zWtzKsaPHKXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyA/rkPSWMdMHo/jxj93xyF2SCvLIXXqLmsvH+/Xz6NaP96vBI3dJKshwl6SCDHdJKshwl6SCfEJVC8Jcnlw8E19Sp/9PPHKXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyIuYJJ2iHxeMqX0euUtSQYa7JBXU02mZiNgPvAK8AZzIzNGIOA/4O2AE2A/8Rma+1FuZkqS56MeR+3hmXpqZo836JmBnZq4GdjbrkqR5NIjTMuuAbc3yNuDaAcwhSTqLXsM9gcciYndEbGjGhjPzMEBze36Pc0iS5igys/sHR7wrM1+IiPOBHcDHge2ZuXTaNi9l5rIZHrsB2AAwPDx8+cTERFc17Dl0rKvHdWv4HDjy+rxOOW8q9wa1+7O3hevCcxcxNDTU1WPHx8d3Tzslfoqewv2UHUXcCRwHfhsYy8zDEXEBMJmZF53tsaOjo7lr166u5p3v1+RuXHOCu/bUvDygcm9Quz97W7i2rl3C2NhYV4+NiDOGe9enZSJiSUS84+Qy8CvAM8B2YH2z2Xrg4W7nkCR1p5dfh8PAlyPi5H7+NjO/FhHfBB6IiFuAA8B1vZcpSZqLrsM9M78NvGeG8f8CruylKElSb7xCVZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqaCBhXtErI2I5yJiX0RsGtQ8kqQ3G0i4R8Qi4C+Bq4CLgRsi4uJBzCVJerNBHbm/D9iXmd/OzB8AE8C6Ac0lSTpNZGb/dxrx68DazPytZv0m4Ocy82PTttkAbGhWLwKe63shg7Ec+F7bRQxI5d6gdn/2tnD10t9PZuY7Z7pjcff1nFXMMHbKb5HM3AJsGdD8AxMRuzJztO06BqFyb1C7P3tbuAbV36BOyxwEVk1bXwm8MKC5JEmnGVS4fxNYHREXRsSPAtcD2wc0lyTpNAM5LZOZJyLiY8DfA4uAezPz2UHM1YIFdyppDir3BrX7s7eFayD9DeQJVUlSu7xCVZIKMtwlqSDDvUMRsSoivh4ReyPi2Yi4re2a+i0iFkXEv0TEI23X0k8RsTQiHoyIf23+/X6+7Zr6KSJ+r/mZfCYi7o+IH2+7pm5FxL0RcTQinpk2dl5E7IiI55vbZW3W2Isz9Pcnzc/m0xHx5YhY2o+5DPfOnQA2Zua7gSuAWwu+pcJtwN62ixiAvwC+lpk/DbyHQj1GxArgd4HRzLyEqRcwXN9uVT3ZCqw9bWwTsDMzVwM7m/WFaitv7m8HcElm/izwb8Ad/ZjIcO9QZh7OzCeb5VeYCogV7VbVPxGxErgG+FzbtfRTRPwE8IvAPQCZ+YPM/H67VfXdYuCciFgMvJ0FfE1JZj4OvHja8DpgW7O8Dbh2Xovqo5n6y8zHMvNEs/oEU9cF9cxw70JEjADvBf6p3Ur66s+B3wd+2HYhffZTwHeBzzennD4XEUvaLqpfMvMQ8KfAAeAwcCwzH2u3qr4bzszDMHWQBZzfcj2D9FHgq/3YkeE+RxExBHwJ+ERmvtx2Pf0QER8Ejmbm7rZrGYDFwGXA3Zn5XuBVFvaf9adozj+vAy4E3gUsiYjfbLcqdSMi/pCp07/39WN/hvscRMTbmAr2+zLzobbr6aP3Ax+KiP1MvYPnL0XEF9stqW8OAgcz8+RfWQ8yFfZV/DLwncz8bmb+D/AQ8Ast19RvRyLiAoDm9mjL9fRdRKwHPgjcmH26+Mhw71BEBFPnbfdm5qfbrqefMvOOzFyZmSNMPRn3D5lZ4ugvM/8T+I+IuKgZuhL4Vosl9dsB4IqIeHvzM3olhZ4wbmwH1jfL64GHW6yl7yJiLXA78KHMfK1f+zXcO/d+4Camjmqfar6ubrsodeTjwH0R8TRwKfDHLdfTN81fJA8CTwJ7mPo/vWAv14+I+4F/BC6KiIMRcQuwGfhARDwPfKBZX5DO0N9ngXcAO5pc+eu+zOXbD0hSPR65S1JBhrskFWS4S1JBhrskFWS4S1JBhrskFWS4S1JB/wvohfWX3nQimQAAAABJRU5ErkJggg==\n",
134 | "text/plain": [
135 | ""
136 | ]
137 | },
138 | "metadata": {
139 | "needs_background": "light"
140 | },
141 | "output_type": "display_data"
142 | }
143 | ],
144 | "source": [
145 | "for team_id in range(22, 25, 1):\n",
146 | " url = 'https://statsapi.web.nhl.com/api/v1/teams/{}/roster'.format(team_id)\n",
147 | " r = requests.get(url)\n",
148 | " roster_data = r.json()\n",
149 | " df = pd.json_normalize(roster_data['roster'])\n",
150 | " for index, row in df.iterrows():\n",
151 | " newrow = row['person.id']\n",
152 | " url = 'https://statsapi.web.nhl.com/api/v1/people/{}'.format(newrow)\n",
153 | " #print(url)\n",
154 | " newerdata = requests.get(url)\n",
155 | " player_stats = newerdata.json()\n",
156 | " birthday = (player_stats['people'][0]['birthDate'])\n",
157 | " newmonth = int(birthday.split('-')[1])\n",
158 | " df3 = df3.append({'months': newmonth}, ignore_index=True)\n",
159 | " #plt.plot(newmonth)\n",
160 | "#df1.plot(kind=\"bar\")\n",
161 | "df3.months.hist()"
162 | ]
163 | },
164 | {
165 | "cell_type": "code",
166 | "execution_count": 181,
167 | "metadata": {},
168 | "outputs": [
169 | {
170 | "data": {
171 | "text/plain": [
172 | ""
173 | ]
174 | },
175 | "execution_count": 181,
176 | "metadata": {},
177 | "output_type": "execute_result"
178 | },
179 | {
180 | "data": {
181 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAO3ElEQVR4nO3df6xf9V3H8efbdirrnbSk203XEi8mDQ6pY3CD6BJzrzgtsKyYiIEgKxum/sEmM02k6B9bYmaaaKcuU7QO1i5DroRBaIDNNXU3hER0LRIKq0gzau0P201KoUCcZW//uKfZbbnlfu/3x/3yfe/5SG6+53zOr/f79vZ1zz33e86NzESSVMuP9bsASVL3Ge6SVJDhLkkFGe6SVJDhLkkFLex3AQBLly7NkZGRfpfRkldffZVFixb1u4yeqNwb1O7P3gZXJ/3t2rXre5n57pmWvS3CfWRkhJ07d/a7jJZMTk4yNjbW7zJ6onJvULs/extcnfQXEf95tmVelpGkggx3SSrIcJekggx3SSrIcJekggx3SSrIcJekggx3SSrIcJekgt4Wd6h2YmTDI/N6vPWrTnJzc8x9G6+Z12NLUqs8c5ekggx3SSrIcJekggx3SSrIcJekggx3SSrIcJekggx3SSrIcJekggx3SSrIcJekggx3SSrIcJekggx3SSrIcJekggx3SSrIcJekggx3SSrIcJekgmYN94g4PyK+GRF7IuLZiLitGT8vIrZHxPPN65JmPCLi8xGxNyKejohLe92EJOl0rZy5nwTWZ+b7gCuAWyPiImADsCMzVwI7mnmAq4CVzcc64M6uVy1JekuzhntmHs7MJ5vpV4A9wHJgDbC1WW0rcG0zvQb4ck55AlgcEcu6Xrkk6awiM1tfOWIEeAy4GNifmYunLTuWmUsi4mFgY2Y+3ozvAG7PzJ1n7GsdU2f2DA8PXzYxMdFWA7sPHm9ru3YNnwNHXp+aXrX83Hk9dq+dOHGCoaGhfpfRM5X7s7fB1Ul/4+PjuzJzdKZlC1vdSUQMAV8FPpWZL0fEWVedYexN30EyczOwGWB0dDTHxsZaLeU0N294pK3t2rV+1Uk27Z76tO27cWxej91rk5OTtPvvMAgq92dvg6tX/bX0bpmIeAdTwX5PZj7QDB85dbmleT3ajB8Azp+2+QrgUHfKlSS1opV3ywRwF7AnMz83bdE2YG0zvRZ4aNr4R5t3zVwBHM/Mw12sWZI0i1Yuy3wQuAnYHRFPNWN/CGwE7ouIW4D9wHXNskeBq4G9wGvAx7pasSRpVrOGe/OL0bNdYL9yhvUTuLXDuiRJHfAOVUkqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqaNZwj4i7I+JoRDwzbewzEXEwIp5qPq6etuyOiNgbEc9FxK/3qnBJ0tm1cua+BVg9w/ifZ+YlzcejABFxEXA98HPNNn8dEQu6VawkqTWzhntmPga82OL+1gATmfm/mfkCsBe4vIP6JEltiMycfaWIEeDhzLy4mf8McDPwMrATWJ+ZxyLiC8ATmfmVZr27gK9l5v0z7HMdsA5geHj4somJibYa2H3weFvbtWv4HDjy+tT0quXnzuuxe+3EiRMMDQ31u4yeqdyfvQ2uTvobHx/flZmjMy1b2GY9dwJ/DGTzugn4OBAzrDvjd4/M3AxsBhgdHc2xsbG2Crl5wyNtbdeu9atOsmn31Kdt341j83rsXpucnKTdf4dBULk/extcveqvrXfLZOaRzHwjM38A/B0/vPRyADh/2qorgEOdlShJmqu2wj0ilk2b/Q3g1DtptgHXR8RPRMQFwErgXzsrUZI0V7NelomIe4ExYGlEHAA+DYxFxCVMXXLZB/wuQGY+GxH3Ad8GTgK3ZuYbvSldknQ2s4Z7Zt4ww/Bdb7H+Z4HPdlKUJM2nkXn+3d10W1Yv6sl+vUNVkgoy3CWpIMNdkgoy3CWpIMNdkgoy3CWpIMNdkgoy3CWpIMNdkgoy3CWpIMNdkgoy3CWpIMNdkgoy3CWpIMNdkgpq92+o6kdUv557vW/jNX05rjSoPHOXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyEf+dsDH30p6u/LMXZIKMtwlqSDDXZIKMtwlqSDDXZIKMtwlqaBZwz0i7o6IoxHxzLSx8yJie0Q837wuacYjIj4fEXsj4umIuLSXxUuSZtbKmfsWYPUZYxuAHZm5EtjRzANcBaxsPtYBd3anTEnSXMwa7pn5GPDiGcNrgK3N9Fbg2mnjX84pTwCLI2JZt4qVJLUmMnP2lSJGgIcz8+Jm/qXMXDxt+bHMXBIRDwMbM/PxZnwHcHtm7pxhn+uYOrtneHj4somJibYa2H3weFvbtWv4HDjy+rwe8k1WLT+3J/s9ceIEQ0NDb7nOfH++T+lGz630N6jsrTP9+roGuODcBW33Nz4+viszR2da1u3HD8QMYzN+98jMzcBmgNHR0RwbG2vrgDfP8yMA1q86yabdfX5qw+5Xe7Lb9aveYNPjs+27P73vu3Gs431MTk7S7tfZ2529dWa+c2S6LasX9aS/dv+nHomIZZl5uLnscrQZPwCcP229FcChTgqU+s1nCGkQtftWyG3A2mZ6LfDQtPGPNu+auQI4npmHO6xRkjRHs565R8S9wBiwNCIOAJ8GNgL3RcQtwH7gumb1R4Grgb3Aa8DHelCzJGkWs4Z7Zt5wlkVXzrBuArd2WpQkqTPeoSpJBRnuklSQ4S5JBRnuklSQ4S5JBRnuklSQ4S5JBRnuklSQ4S5JBRnuklSQ4S5JBRnuklSQ4S5JBfX5TwpJ0g/N9IdR1q862de/lDSoPHOXpIIMd0kqyMsy0tvUXP52azcvXfi3W2vwzF2SCjLcJakgw12SCvKauwbCXK4/n41vqdOPEs/cJakgw12SCjLcJakgw12SCjLcJakgw12SCjLcJakg3+cu6TTduKdA/eeZuyQVZLhLUkGGuyQVZLhLUkGGuyQVZLhLUkGGuyQVZLhLUkEd3cQUEfuAV4A3gJOZORoR5wH/AIwA+4DfysxjnZUpSZqLbpy5j2fmJZk52sxvAHZk5kpgRzMvSZpHvbgsswbY2kxvBa7twTEkSW8hMrP9jSNeAI4BCfxtZm6OiJcyc/G0dY5l5pIZtl0HrAMYHh6+bGJioq0adh883tZ27Ro+B468Pq+HnDeVe4Pa/dnb4Lrg3AUMDQ21te34+PiuaVdNTtNpuL83Mw9FxHuA7cAngW2thPt0o6OjuXPnzrZqmO+HHK1fdZJNu2s+b61yb1C7P3sbXFtWL2JsbKytbSPirOHe0WWZzDzUvB4FHgQuB45ExLLmwMuAo50cQ5I0d22He0Qsioh3nZoGfg14BtgGrG1WWws81GmRkqS56eRnnWHgwYg4tZ+/z8yvR8S3gPsi4hZgP3Bd52VKkuai7XDPzO8A759h/H+AKzspSpLUGe9QlaSCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCDHdJKshwl6SCehbuEbE6Ip6LiL0RsaFXx5EkvVlPwj0iFgB/BVwFXATcEBEX9eJYkqQ369WZ++XA3sz8TmZ+H5gA1vToWJKkM0Rmdn+nEb8JrM7M32nmbwJ+ITM/MW2ddcC6ZvZC4LmuF9IbS4Hv9buIHqncG9Tuz94GVyf9/XRmvnumBQvbr+ctxQxjp30XyczNwOYeHb9nImJnZo72u45eqNwb1O7P3gZXr/rr1WWZA8D50+ZXAId6dCxJ0hl6Fe7fAlZGxAUR8ePA9cC2Hh1LknSGnlyWycyTEfEJ4B+BBcDdmflsL47VBwN3KWkOKvcGtfuzt8HVk/568gtVSVJ/eYeqJBVkuEtSQYZ7iyLi/Ij4ZkTsiYhnI+K2ftfUbRGxICL+LSIe7nct3RQRiyPi/oj49+bf7xf7XVM3RcTvN1+Tz0TEvRHxk/2uqV0RcXdEHI2IZ6aNnRcR2yPi+eZ1ST9r7MRZ+vvT5mvz6Yh4MCIWd+NYhnvrTgLrM/N9wBXArQUfqXAbsKffRfTAXwJfz8yfBd5PoR4jYjnwe8BoZl7M1BsYru9vVR3ZAqw+Y2wDsCMzVwI7mvlBtYU397cduDgzfx74D+CObhzIcG9RZh7OzCeb6VeYCojl/a2qeyJiBXAN8MV+19JNEfFTwC8DdwFk5vcz86X+VtV1C4FzImIh8E4G+J6SzHwMePGM4TXA1mZ6K3DtvBbVRTP1l5nfyMyTzewTTN0X1DHDvQ0RMQJ8APiX/lbSVX8B/AHwg34X0mU/A3wX+FJzyemLEbGo30V1S2YeBP4M2A8cBo5n5jf6W1XXDWfmYZg6yQLe0+d6eunjwNe6sSPDfY4iYgj4KvCpzHy53/V0Q0R8GDiambv6XUsPLAQuBe7MzA8ArzLYP9afprn+vAa4AHgvsCgifru/VakdEfFHTF3+vacb+zPc5yAi3sFUsN+TmQ/0u54u+iDwkYjYx9QTPH8lIr7S35K65gBwIDNP/ZR1P1NhX8WvAi9k5ncz8/+AB4Bf6nNN3XYkIpYBNK9H+1xP10XEWuDDwI3ZpZuPDPcWRUQwdd12T2Z+rt/1dFNm3pGZKzJzhKlfxv1TZpY4+8vM/wb+KyIubIauBL7dx5K6bT9wRUS8s/kavZJCvzBubAPWNtNrgYf6WEvXRcRq4HbgI5n5Wrf2a7i37oPATUyd1T7VfFzd76LUkk8C90TE08AlwJ/0uZ6uaX4iuR94EtjN1P/pgb1dPyLuBf4ZuDAiDkTELcBG4EMR8TzwoWZ+IJ2lvy8A7wK2N7nyN105lo8fkKR6PHOXpIIMd0kqyHCXpIIMd0kqyHCXpIIMd0kqyHCXpIL+H3ig/H3ifXw+AAAAAElFTkSuQmCC\n",
182 | "text/plain": [
183 | ""
184 | ]
185 | },
186 | "metadata": {
187 | "needs_background": "light"
188 | },
189 | "output_type": "display_data"
190 | }
191 | ],
192 | "source": [
193 | "for team_id in range(28, 30, 1):\n",
194 | " url = 'https://statsapi.web.nhl.com/api/v1/teams/{}/roster'.format(team_id)\n",
195 | " r = requests.get(url)\n",
196 | " roster_data = r.json()\n",
197 | " df = pd.json_normalize(roster_data['roster'])\n",
198 | " for index, row in df.iterrows():\n",
199 | " newrow = row['person.id']\n",
200 | " url = 'https://statsapi.web.nhl.com/api/v1/people/{}'.format(newrow)\n",
201 | " #print(url)\n",
202 | " newerdata = requests.get(url)\n",
203 | " player_stats = newerdata.json()\n",
204 | " birthday = (player_stats['people'][0]['birthDate'])\n",
205 | " newmonth = int(birthday.split('-')[1])\n",
206 | " df3 = df3.append({'months': newmonth}, ignore_index=True)\n",
207 | " #plt.plot(newmonth)\n",
208 | "#df1.plot(kind=\"bar\")\n",
209 | "df3.months.hist()"
210 | ]
211 | },
212 | {
213 | "cell_type": "code",
214 | "execution_count": 184,
215 | "metadata": {},
216 | "outputs": [],
217 | "source": [
218 | "df3.to_csv('player_data.csv') "
219 | ]
220 | },
221 | {
222 | "cell_type": "code",
223 | "execution_count": 177,
224 | "metadata": {},
225 | "outputs": [
226 | {
227 | "ename": "KeyError",
228 | "evalue": "'roster'",
229 | "output_type": "error",
230 | "traceback": [
231 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
232 | "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
233 | "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrequests\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0murl\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mroster_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjson\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mdf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjson_normalize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mroster_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'roster'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mindex\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrow\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0miterrows\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0mnewrow\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrow\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'person.id'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
234 | "\u001b[0;31mKeyError\u001b[0m: 'roster'"
235 | ]
236 | }
237 | ],
238 | "source": [
239 | "df4 = pd.DataFrame(columns=['months'])\n",
240 | "\n",
241 | "read_for = open('data/teams.txt')\n",
242 | "for txt_line in read_for:\n",
243 | " url = txt_line\n",
244 | " r = requests.get(url)\n",
245 | " roster_data = r.json()\n",
246 | " df = pd.json_normalize(roster_data['roster'])\n",
247 | " for index, row in df.iterrows():\n",
248 | " newrow = row['person.id']\n",
249 | " url = 'https://statsapi.web.nhl.com/api/v1/people/{}'.format(newrow)\n",
250 | " #print(url)\n",
251 | " newerdata = requests.get(url)\n",
252 | " player_stats = newerdata.json()\n",
253 | " birthday = (player_stats['people'][0]['birthDate'])\n",
254 | " newmonth = int(birthday.split('-')[1])\n",
255 | " df3 = df3.append({'months': newmonth}, ignore_index=True)\n",
256 | " #plt.plot(newmonth)\n",
257 | "#df1.plot(kind=\"bar\")\n",
258 | "df4.months.hist()"
259 | ]
260 | },
261 | {
262 | "cell_type": "code",
263 | "execution_count": 120,
264 | "metadata": {},
265 | "outputs": [
266 | {
267 | "name": "stdout",
268 | "output_type": "stream",
269 | "text": [
270 | "5\n",
271 | "11\n",
272 | "9\n",
273 | "3\n",
274 | "5\n",
275 | "3\n",
276 | "3\n",
277 | "1\n",
278 | "8\n",
279 | "11\n",
280 | "2\n",
281 | "4\n",
282 | "7\n",
283 | "2\n",
284 | "4\n",
285 | "12\n",
286 | "1\n",
287 | "10\n",
288 | "7\n",
289 | "7\n",
290 | "8\n",
291 | "1\n",
292 | "9\n",
293 | "3\n",
294 | "6\n",
295 | "11\n",
296 | "9\n",
297 | "3\n",
298 | "8\n",
299 | "8\n",
300 | "1\n",
301 | "7\n",
302 | "10\n",
303 | "3\n",
304 | "3\n",
305 | "11\n"
306 | ]
307 | }
308 | ],
309 | "source": [
310 | "\n",
311 | "url = 'https://statsapi.web.nhl.com/api/v1/teams/28/roster'.format(team_id)\n",
312 | "r = requests.get(url)\n",
313 | "roster_data = r.json()\n",
314 | "df = pd.json_normalize(roster_data['roster'])\n",
315 | "for index, row in df.iterrows():\n",
316 | " newrow = row['person.id']\n",
317 | " url = 'https://statsapi.web.nhl.com/api/v1/people/{}'.format(newrow)\n",
318 | " newerdata = requests.get(url)\n",
319 | " player_stats = newerdata.json()\n",
320 | " birthday = (player_stats['people'][0]['birthDate'])\n",
321 | " newmonth = int(birthday.split('-')[1])\n",
322 | " print(newmonth)"
323 | ]
324 | },
325 | {
326 | "cell_type": "markdown",
327 | "metadata": {},
328 | "source": [
329 | "r = requests.get(url)\n",
330 | "player_data = r.json()\n",
331 | "df = pd.json_normalize(player_data['roster'])"
332 | ]
333 | }
334 | ],
335 | "metadata": {
336 | "kernelspec": {
337 | "display_name": "Python 3",
338 | "language": "python",
339 | "name": "python3"
340 | },
341 | "language_info": {
342 | "codemirror_mode": {
343 | "name": "ipython",
344 | "version": 3
345 | },
346 | "file_extension": ".py",
347 | "mimetype": "text/x-python",
348 | "name": "python",
349 | "nbconvert_exporter": "python",
350 | "pygments_lexer": "ipython3",
351 | "version": "3.7.6"
352 | }
353 | },
354 | "nbformat": 4,
355 | "nbformat_minor": 4
356 | }
357 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Teach Yourself Data Analytics in 30 Days
2 |
3 | The contents of this repo are meant to support you as you work through the chapters that make up [the free online curriculum in my Data Project](https://stories.thedataproject.net/).
4 |
5 | The Jupyter Notebooks might not always deliver exactly the same results shown on the website - or in the [book version](https://www.amazon.com/dp/1777721008). That might be because your local Python version isn't completely compatible with the one I used.
6 |
7 | But whatever the cause, it's a good thing, because it'll force you to understand exactly what the code is doing and how it interacts with its host environment.
8 |
9 | Good luck!
10 |
--------------------------------------------------------------------------------
/tropical_storm_data.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 2,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "import pandas as pd\n",
10 | "import matplotlib as plt\n",
11 | "import numpy as np"
12 | ]
13 | },
14 | {
15 | "cell_type": "code",
16 | "execution_count": 3,
17 | "metadata": {},
18 | "outputs": [],
19 | "source": [
20 | "df = pd.read_csv('all-us-tropical-storms-noaa.csv')"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": null,
26 | "metadata": {},
27 | "outputs": [],
28 | "source": [
29 | "df.head()"
30 | ]
31 | },
32 | {
33 | "cell_type": "code",
34 | "execution_count": 4,
35 | "metadata": {},
36 | "outputs": [],
37 | "source": [
38 | "df = df[(df.Date.str.contains(\"None\")) == False]"
39 | ]
40 | },
41 | {
42 | "cell_type": "code",
43 | "execution_count": 5,
44 | "metadata": {},
45 | "outputs": [],
46 | "source": [
47 | "df['Date'] = df.Date.str.replace('\\$', '')\n",
48 | "df['Date'] = df.Date.str.replace('\\*', '')\n",
49 | "df['Date'] = df.Date.str.replace('\\#', '')\n",
50 | "df['Date'] = df.Date.str.replace('\\%', '')\n",
51 | "df['Date'] = df.Date.str.replace('\\&', '')"
52 | ]
53 | },
54 | {
55 | "cell_type": "code",
56 | "execution_count": 7,
57 | "metadata": {},
58 | "outputs": [],
59 | "source": [
60 | "df.columns =['Storm#', 'Date', 'Time', 'Lat', 'Lon', \n",
61 | " 'MaxWinds', 'LandfallState', 'StormName'] "
62 | ]
63 | },
64 | {
65 | "cell_type": "code",
66 | "execution_count": 8,
67 | "metadata": {},
68 | "outputs": [
69 | {
70 | "data": {
71 | "text/plain": [
72 | "Storm# object\n",
73 | "Date object\n",
74 | "Time object\n",
75 | "Lat object\n",
76 | "Lon object\n",
77 | "MaxWinds float64\n",
78 | "LandfallState object\n",
79 | "StormName object\n",
80 | "dtype: object"
81 | ]
82 | },
83 | "execution_count": 8,
84 | "metadata": {},
85 | "output_type": "execute_result"
86 | }
87 | ],
88 | "source": [
89 | "df.dtypes"
90 | ]
91 | },
92 | {
93 | "cell_type": "code",
94 | "execution_count": 9,
95 | "metadata": {},
96 | "outputs": [
97 | {
98 | "data": {
99 | "text/html": [
100 | "\n",
101 | "\n",
114 | "
\n",
115 | " \n",
116 | " \n",
117 | " | \n",
118 | " Storm# | \n",
119 | " Date | \n",
120 | " Time | \n",
121 | " Lat | \n",
122 | " Lon | \n",
123 | " MaxWinds | \n",
124 | " LandfallState | \n",
125 | " StormName | \n",
126 | "
\n",
127 | " \n",
128 | " \n",
129 | " \n",
130 | " 1 | \n",
131 | " 6 | \n",
132 | " 10/19/1851 | \n",
133 | " 1500Z | \n",
134 | " 41.1N | \n",
135 | " 71.7W | \n",
136 | " 50.0 | \n",
137 | " NY | \n",
138 | " NaN | \n",
139 | "
\n",
140 | " \n",
141 | " 6 | \n",
142 | " 3 | \n",
143 | " 8/19/1856 | \n",
144 | " 1100Z | \n",
145 | " 34.8 | \n",
146 | " 76.4 | \n",
147 | " 50.0 | \n",
148 | " NC | \n",
149 | " NaN | \n",
150 | "
\n",
151 | " \n",
152 | " 7 | \n",
153 | " 4 | \n",
154 | " 9/30/1857 | \n",
155 | " 1000Z | \n",
156 | " 25.8 | \n",
157 | " 97 | \n",
158 | " 50.0 | \n",
159 | " TX | \n",
160 | " NaN | \n",
161 | "
\n",
162 | " \n",
163 | " 8 | \n",
164 | " 3 | \n",
165 | " 9/14/1858 | \n",
166 | " 1500Z | \n",
167 | " 27.6 | \n",
168 | " 82.7 | \n",
169 | " 60.0 | \n",
170 | " FL | \n",
171 | " NaN | \n",
172 | "
\n",
173 | " \n",
174 | " 9 | \n",
175 | " 3 | \n",
176 | " 9/16/1858 | \n",
177 | " 0300Z | \n",
178 | " 35.2 | \n",
179 | " 75.2 | \n",
180 | " 50.0 | \n",
181 | " NC | \n",
182 | " NaN | \n",
183 | "
\n",
184 | " \n",
185 | "
\n",
186 | "
"
187 | ],
188 | "text/plain": [
189 | " Storm# Date Time Lat Lon MaxWinds LandfallState StormName\n",
190 | "1 6 10/19/1851 1500Z 41.1N 71.7W 50.0 NY NaN\n",
191 | "6 3 8/19/1856 1100Z 34.8 76.4 50.0 NC NaN\n",
192 | "7 4 9/30/1857 1000Z 25.8 97 50.0 TX NaN\n",
193 | "8 3 9/14/1858 1500Z 27.6 82.7 60.0 FL NaN\n",
194 | "9 3 9/16/1858 0300Z 35.2 75.2 50.0 NC NaN"
195 | ]
196 | },
197 | "execution_count": 9,
198 | "metadata": {},
199 | "output_type": "execute_result"
200 | }
201 | ],
202 | "source": [
203 | "df.head()"
204 | ]
205 | },
206 | {
207 | "cell_type": "code",
208 | "execution_count": 10,
209 | "metadata": {},
210 | "outputs": [],
211 | "source": [
212 | "df.Date = pd.to_datetime(df.Date)"
213 | ]
214 | },
215 | {
216 | "cell_type": "code",
217 | "execution_count": 11,
218 | "metadata": {},
219 | "outputs": [],
220 | "source": [
221 | "df1 = df[['Date','MaxWinds']]"
222 | ]
223 | },
224 | {
225 | "cell_type": "code",
226 | "execution_count": 12,
227 | "metadata": {},
228 | "outputs": [
229 | {
230 | "data": {
231 | "text/plain": [
232 | ""
233 | ]
234 | },
235 | "execution_count": 12,
236 | "metadata": {},
237 | "output_type": "execute_result"
238 | },
239 | {
240 | "data": {
241 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAU10lEQVR4nO3df5Dcd33f8ecbCwfHB/oR4CpkU5nBEIwPO+jGISFN73AJxsrEzgCdBCWRwR11OgnjpCJFJO0MTNupgTgknWQ61WBSMaU5wIGxiwuJqvjwpMEGHTaWjUL8A43xj0oFZMN5XIjIu3/s56pldXe7t/vdvf2Y52Pm5r773e93v6/7fPf70u53fygyE0lSfZ613gEkSf2xwCWpUha4JFXKApekSlngklSpDaPc2POf//zcvn37KDcJwFNPPcW555478u2uxDzdjVsm86xu3PLA+GUaJM/CwsI3MvMFZ1yRmSP72bFjR66H2267bV22uxLzdDdumcyzunHLkzl+mQbJAxzOZTrVUyiSVCkLXJIqZYFLUqUscEmqlAUuSZWywCWpUha4JFXKApekSlngklSpkX6UXmuzfd+tI9nO3qlTXNO2rWPX7xzJdiUNxkfgklQpC1ySKmWBS1KlLHBJqpQFLkmVssAlqVIWuCRVygKXpEr1VOARsSkiboqIv4mIoxHxUxGxJSIORsT95ffmYYeVJJ3W6yPwPwQ+m5k/DlwCHAX2AYcy80LgULksSRqRrgUeEc8Dfha4ESAzv5eZTwBXAQfKYgeAq4cVUpJ0pl4egb8E+D/An0TEXRHxoYg4F5jMzMcByu8XDjGnJKlDtP7H+lUWiJgG7gBem5l3RsQfAt8G3pGZm9qWO5mZZ5wHj4g9wB6AycnJHXNzc03m78ni4iITExMj3+5Kes1z5NEnR5AGJs+B40+fvjy1beNItruaWvfZqJinu3HLNEie2dnZhcyc7pzfS4H/A+COzNxeLv8jWue7XwrMZObjEbEVmM/Ml692W9PT03n48OG+/oBBzM/PMzMzM/LtrqTXPKP8NsIbjpz+Yspx+DbCWvfZqJinu3HLNEieiFi2wLueQsnM/w18PSKWyvly4CvALcDuMm83cHNfySRJfen1+8DfAXw0Is4GHgLeRqv8Px4R1wIPA28ZTkRJ0nJ6KvDMvBs44+E7rUfjkqR14CcxJalSFrgkVcoCl6RKWeCSVCkLXJIqZYFLUqUscEmqlAUuSZWywCWpUha4JFXKApekSlngklQpC1ySKmWBS1KlLHBJqpQFLkmVssAlqVIWuCRVygKXpEpZ4JJUKQtckiplgUtSpSxwSaqUBS5JldrQy0IRcQz4DvB94FRmTkfEFuBjwHbgGPBPM/PkcGJKz1zb99265nX2Tp3imj7Wa3fs+p0DrV+jfsa6CcMa67U8Ap/NzEszc7pc3gccyswLgUPlsiRpRAY5hXIVcKBMHwCuHjyOJKlXkZndF4r4GnASSOA/Z+b+iHgiMze1LXMyMzcvs+4eYA/A5OTkjrm5ucbC92pxcZGJiYmRb3clveY58uiTI0gDk+fA8adPX57atnEk211NrfusH/3s58591o8m9/O47S9YPtOojqlOU9s2DjRGs7OzC21nP/6/Xgv8RZn5WES8EDgIvAO4pZcCbzc9PZ2HDx9ee/oBzc/PMzMzM/LtrqTXPKM6X7d36hQ3HDn9csg4nButdZ/1o99z4O37rB9N7udx21+wfKb1PAc+yBhFxLIF3tMplMx8rPw+AXwKuAw4HhFby41vBU70lUyS1JeuBR4R50bEc5emgZ8D7gVuAXaXxXYDNw8rpCTpTL08B5sEPhURS8v/t8z8bER8Efh4RFwLPAy8ZXgxJUmduhZ4Zj4EXLLM/G8Clw8jlCSpOz+JKUmVssAlqVIWuCRVygKXpEoN9kkA6Rmi2wc8mvjyKKlpPgKXpEpZ4JJUKQtckiplgUtSpSxwSaqUBS5JlbLAJalSFrgkVcoCl6RKWeCSVCkLXJIqZYFLUqUscEmqlAUuSZWywCWpUha4JFXKApekSlngklSpngs8Is6KiLsi4tPl8gURcWdE3B8RH4uIs4cXU5LUaS2PwK8DjrZdfh/wwcy8EDgJXNtkMEnS6noq8Ig4D9gJfKhcDuB1wE1lkQPA1cMIKElaXmRm94UibgL+A/Bc4J3ANcAdmfnScv35wGcy8+Jl1t0D7AGYnJzcMTc311j4Xi0uLjIxMTHy7a6k1zxHHn1yBGlg8hw4/vTpy1PbNo5ku6sZ9T7rNtadY7TemsjT5H4et2MMls80qmOq09S2jQON0ezs7EJmTnfO39BtxYj4eeBEZi5ExMzS7GUWXfZfgszcD+wHmJ6ezpmZmeUWG6r5+XnWY7sr6TXPNftuHX4YYO/UKW44cvqucGzXzEi2u5pR77NuY905RuutiTxN7udxO8Zg+UyjOqY6Hds1M5Qx6uUe8FrgFyLiSuA5wPOAPwA2RcSGzDwFnAc81mgySdKqup4Dz8x3Z+Z5mbkd+CXgLzNzF3Ab8Oay2G7g5qGllCSdYZD3gb8L+JcR8QDwY8CNzUSSJPViTSfRMnMemC/TDwGXNR9JktQLP4kpSZWywCWpUha4JFXKApekSlngklQpC1ySKmWBS1KlxufLHST90Ng+gu8k2Tt1at2++2RUfAQuSZWywCWpUha4JFXKc+BdDONc3Q/DuTlJw+cjcEmqlAUuSZWywCWpUha4JFXKApekSvkuFI2VpXf9+E4dqTsfgUtSpSxwSaqUBS5JlbLAJalSFrgkVcoCl6RKdS3wiHhORHwhIr4cEfdFxHvL/Asi4s6IuD8iPhYRZw8/riRpSS+PwL8LvC4zLwEuBa6IiNcA7wM+mJkXAieBa4cXU5LUqWuBZ8tiufjs8pPA64CbyvwDwNVDSShJWlZkZveFIs4CFoCXAn8MfAC4IzNfWq4/H/hMZl68zLp7gD0Ak5OTO+bm5ppL36PFxUUmJib6WvfIo082nAYmz4HjTzd+s33rzDO1beO6ZVka73Efo/XWRJ4m9/Naj7FhHFedxmmfTW3bOFAPzc7OLmTmdOf8nj5Kn5nfBy6NiE3Ap4BXLLfYCuvuB/YDTE9P58zMTK+ZGzM/P0+/2x3Gx7n3Tp3ihiPj8y0GnXmO7ZpZtyzXtH2UfpzHaL01kafJ/bzWY2wUX5MwTvvs2K6ZgXpoJWt6F0pmPgHMA68BNkXE0uicBzzWaDJJ0qp6eRfKC8ojbyLiHOCfAEeB24A3l8V2AzcPK6Qk6Uy9PL/YChwo58GfBXw8Mz8dEV8B5iLi3wF3ATcOMackqUPXAs/Me4CfWGb+Q8BlwwglSepuPM7wa6xs93u4pSr4UXpJqpQFLkmVssAlqVIWuCRVygKXpEpZ4JJUKQtckiplgUtSpSxwSaqUBS5JlbLAJalSFrgkVcoCl6RKWeCSVCkLXJIqZYFLUqUscEmqlAUuSZWywCWpUha4JFXKApekSlngklSprgUeEedHxG0RcTQi7ouI68r8LRFxMCLuL783Dz+uJGlJL4/ATwF7M/MVwGuAX4+Ii4B9wKHMvBA4VC5Lkkaka4Fn5uOZ+aUy/R3gKLANuAo4UBY7AFw9rJCSpDNFZva+cMR24HbgYuDhzNzUdt3JzDzjNEpE7AH2AExOTu6Ym5sbMPLaLS4uMjEx0de6Rx59suE0MHkOHH+68Zvt27jlgfHL9EzMM7VtYzNhWPsxNozjqtM47bOpbRsH6qHZ2dmFzJzunN9zgUfEBPA54N9n5icj4oleCrzd9PR0Hj58eI3RBzc/P8/MzExf627fd2uzYYC9U6e44ciGxm+3X+OWB8Yv0zMxz7HrdzaUZu3H2DCOq07jtM+OXb9zoB6KiGULvKd3oUTEs4E/Az6amZ8ss49HxNZy/VbgRF/JJEl96eVdKAHcCBzNzN9vu+oWYHeZ3g3c3Hw8SdJKenl+8VrgV4EjEXF3mfc7wPXAxyPiWuBh4C3DiShJWk7XAs/MvwJihasvbzaOJKlXfhJTkiplgUtSpSxwSaqUBS5JlRqPd7n3YJA3/u+dOsU1I/jggCSNko/AJalSFrgkVcoCl6RKWeCSVCkLXJIqZYFLUqUscEmqlAUuSZWywCWpUha4JFXKApekSlngklQpC1ySKmWBS1KlLHBJqpQFLkmVssAlqVIWuCRVqmuBR8SHI+JERNzbNm9LRByMiPvL783DjSlJ6tTLI/D/AlzRMW8fcCgzLwQOlcuSpBHqWuCZeTvwrY7ZVwEHyvQB4OqGc0mSuojM7L5QxHbg05l5cbn8RGZuarv+ZGYuexolIvYAewAmJyd3zM3N9RX0yKNP9rUewOQ5cPzpvldvnHm6G7dMz8Q8U9s2NhMGWFxcZGJiouflBzmeezVO+2xq28Y1j1G72dnZhcyc7py/YeBkXWTmfmA/wPT0dM7MzPR1O9fsu7XvDHunTnHDkaH/qT0zT3fjlumZmOfYrplmwgDz8/Os5dge5Hju1Tjts2O7ZtY8Rr3o910oxyNiK0D5faK5SJKkXvRb4LcAu8v0buDmZuJIknrVy9sI/xT4PPDyiHgkIq4FrgdeHxH3A68vlyVJI9T1BFFm/vIKV13ecBZJ0hr4SUxJqpQFLkmVssAlqVIWuCRVygKXpEpZ4JJUKQtckiplgUtSpSxwSaqUBS5JlbLAJalSFrgkVcoCl6RKWeCSVCkLXJIqZYFLUqUscEmqlAUuSZWywCWpUha4JFXKApekSlngklQpC1ySKmWBS1KlBirwiLgiIr4aEQ9ExL6mQkmSuuu7wCPiLOCPgTcCFwG/HBEXNRVMkrS6QR6BXwY8kJkPZeb3gDngqmZiSZK6iczsb8WINwNXZOY/K5d/FfjJzPyNjuX2AHvKxZcDX+0/bt+eD3xjHba7EvN0N26ZzLO6ccsD45dpkDz/MDNf0DlzwwBhYpl5Z/xrkJn7gf0DbGdgEXE4M6fXM0M783Q3bpnMs7pxywPjl2kYeQY5hfIIcH7b5fOAxwaLI0nq1SAF/kXgwoi4ICLOBn4JuKWZWJKkbvo+hZKZpyLiN4A/B84CPpyZ9zWWrFnregpnGebpbtwymWd145YHxi9T43n6fhFTkrS+/CSmJFXKApekSlVZ4BHx4Yg4ERH3ts27NCLuiIi7I+JwRFzWdt1MmX9fRHyubX5jXwWwlkwRsTEi/ntEfLlkelvbOrsj4v7ys7vhPJdExOcj4kjZ/vParnt3GYevRsQb2uY3MkZryRMRr4+IhTJ/ISJe17bOjjL/gYj4jxGx3NtZG83Tdv2LI2IxIt7ZNm/Y96HV9tmrynX3leufU+aPfIwi4tkRcaDMPxoR725bp6n70PkRcVu5/fsi4royf0tEHCzHzMGI2FzmR/n7H4iIeyLi1W23NfBx1keeXSXHPRHx1xFxycBjlJnV/QA/C7wauLdt3l8AbyzTVwLzZXoT8BXgxeXyC8vvs4AHgZcAZwNfBi4aUabfAd5Xpl8AfKtk2AI8VH5vLtObG8zzReAfl+m3A/+2TF9U/v4fAS4o43JWk2O0xjw/AbyoTF8MPNq2zheAn6L1OYTPLI3vMPO0Xf9nwCeAd47wPrTSGG0A7gEuKZd/DDhrvcYIeCswV6Z/FDgGbG/4PrQVeHWZfi7wt+W++35gX5m/j9PH1pXl7w/gNcCdZX4jx1kfeX56aTu0voJkKU/fY1TlI/DMvJ1W6f3AbGDp0clGTr8n/a3AJzPz4bLuiTK/0a8CWGOmBJ5bHhlNlPVOAW8ADmbmtzLzJHAQuKLBPC8Hbi/TB4E3lemraB18383MrwEP0BqfxsZoLXky867MXBqr+4DnRMSPRMRW4HmZ+fls3fM/Alw97DwAEXE1rQO9/Z1Wo7gPrZTp54B7MvPLZd1vZub313GMEjg3IjYA5wDfA75Ns/ehxzPzS2X6O8BRYFu5vQNlsQOc/nuvAj6SLXcAm8r4NHKcrTVPZv512R7AHbQ+OwMDjFGVBb6C3wQ+EBFfB34PWHoK9zJgc0TMl6fjv1bmbwO+3rb+I2XeKDL9EfAKWoV+BLguM/9+BJnuBX6hTL+F0x/EWmm765Wn3ZuAuzLzu2Xbj4w6T0ScC7wLeG/H8qO4D600Ri8DMiL+PCK+FBH/qi3TyMcIuAl4CngceBj4vcz8FkMao4jYTuuZ2p3AZGY+Dq1SBV5YFhvZ/brHPO2upfXsYLWcXT2TCvxfAL+VmecDvwXcWOZvAHYAO2n9y/tvIuJl9PhVAEPK9AbgbuBFwKXAH5VzicPO9Hbg1yNigdZTvu+V+Sttd73ytEJFvBJ4H/DPu+Qcdp73Ah/MzMWO5UdxH1op0wbgZ4Bd5fcvRsTlI8i0Up7LgO/Tuk9fAOyNiJcMI09ETNA6nfWbmfnt1RZdYduNZlpDnqXlZ2kV+Lu65OxqkO9CGTe7gevK9CeAD5XpR4BvZOZTwFMRcTtwCaP5KoCVMr0NuL48xX0gIr4G/HjJNNORab6pMJn5N7SeelP+EdtZrlptLIY2RqvkISLOAz4F/FpmPtiW87y2mxhVnp8E3hwR76f1msrfR8T/BRYY8n2oyz77XGZ+o1z3P2idr/6vrM8YvRX4bGb+HXAiIv4XME3rkWVjYxQRz6ZVlh/NzE+W2ccjYmtmPl5OkSydJl3pft3YcbbGPETEq2j1wBsz85tdcnbXz4sJ4/BD6wWS9hdXjgIzZfpyYKFMvwI4ROsfqx+l9RTw4nL5IVqPFpZeOHjliDL9J+A9ZXoSeJTWN5VtAb5G64WVzWV6S4N5ll7AfRatc6NvL5dfyQ++iPkQrRdWGh2jNeTZVLb1pmVu44u0XpBaeoHuymHn6VjnPZx+EXMU96GVxmgz8KVyn94A/E9g53qNEa1Hk39StnkurTcOvKrJMSq3/RHgDzrmf4AffNHw/WV6Jz/4IuYXyvxGjrM+8ryY1utLP92xfN9j1PcdbT1/gD+lda7t72j963UtraeRC+WPvxPY0bb8b5c71L20nuYszb+S1ivHDwK/O6pMtJ5m/gWt89/3Ar/SdjtvLzv5AeBtDee5rvy9fwtcT/kkbln+d8s4fJW2dy00NUZryQP8a1rnU+9u+1kqjukyZg/Sei0hhp2nY733UAp8RPeh1fbZr9B6UfVeSkms1xjRejH+EyXPV4DfHsJ96GdonVq4p+1+cSWtd+AcAu4vv7eU5YPWfzrzIK1jbbrJ46yPPB8CTrYte3jQMfKj9JJUqWfSi5iS9EPFApekSlngklQpC1ySKmWBS1KlLHBJqpQFLkmV+n8lrkXhVIfV2AAAAABJRU5ErkJggg==\n",
242 | "text/plain": [
243 | ""
244 | ]
245 | },
246 | "metadata": {
247 | "needs_background": "light"
248 | },
249 | "output_type": "display_data"
250 | }
251 | ],
252 | "source": [
253 | "df1['Date'].hist()"
254 | ]
255 | },
256 | {
257 | "cell_type": "code",
258 | "execution_count": 13,
259 | "metadata": {},
260 | "outputs": [
261 | {
262 | "name": "stdout",
263 | "output_type": "stream",
264 | "text": [
265 | "(362, 2)\n"
266 | ]
267 | }
268 | ],
269 | "source": [
270 | "print(df1.shape)"
271 | ]
272 | },
273 | {
274 | "cell_type": "code",
275 | "execution_count": 15,
276 | "metadata": {},
277 | "outputs": [
278 | {
279 | "data": {
280 | "text/html": [
281 | "\n",
282 | "\n",
295 | "
\n",
296 | " \n",
297 | " \n",
298 | " | \n",
299 | " Date | \n",
300 | " MaxWinds | \n",
301 | "
\n",
302 | " \n",
303 | " \n",
304 | " \n",
305 | " 1 | \n",
306 | " 1851-10-19 | \n",
307 | " 50.0 | \n",
308 | "
\n",
309 | " \n",
310 | " 6 | \n",
311 | " 1856-08-19 | \n",
312 | " 50.0 | \n",
313 | "
\n",
314 | " \n",
315 | " 7 | \n",
316 | " 1857-09-30 | \n",
317 | " 50.0 | \n",
318 | "
\n",
319 | " \n",
320 | " 8 | \n",
321 | " 1858-09-14 | \n",
322 | " 60.0 | \n",
323 | "
\n",
324 | " \n",
325 | " 9 | \n",
326 | " 1858-09-16 | \n",
327 | " 50.0 | \n",
328 | "
\n",
329 | " \n",
330 | " ... | \n",
331 | " ... | \n",
332 | " ... | \n",
333 | "
\n",
334 | " \n",
335 | " 391 | \n",
336 | " 2017-09-27 | \n",
337 | " 45.0 | \n",
338 | "
\n",
339 | " \n",
340 | " 392 | \n",
341 | " 2018-05-28 | \n",
342 | " 40.0 | \n",
343 | "
\n",
344 | " \n",
345 | " 393 | \n",
346 | " 2018-09-03 | \n",
347 | " 45.0 | \n",
348 | "
\n",
349 | " \n",
350 | " 394 | \n",
351 | " 2018-09-03 | \n",
352 | " 45.0 | \n",
353 | "
\n",
354 | " \n",
355 | " 395 | \n",
356 | " 2019-09-17 | \n",
357 | " 40.0 | \n",
358 | "
\n",
359 | " \n",
360 | "
\n",
361 | "
362 rows × 2 columns
\n",
362 | "
"
363 | ],
364 | "text/plain": [
365 | " Date MaxWinds\n",
366 | "1 1851-10-19 50.0\n",
367 | "6 1856-08-19 50.0\n",
368 | "7 1857-09-30 50.0\n",
369 | "8 1858-09-14 60.0\n",
370 | "9 1858-09-16 50.0\n",
371 | ".. ... ...\n",
372 | "391 2017-09-27 45.0\n",
373 | "392 2018-05-28 40.0\n",
374 | "393 2018-09-03 45.0\n",
375 | "394 2018-09-03 45.0\n",
376 | "395 2019-09-17 40.0\n",
377 | "\n",
378 | "[362 rows x 2 columns]"
379 | ]
380 | },
381 | "execution_count": 15,
382 | "metadata": {},
383 | "output_type": "execute_result"
384 | }
385 | ],
386 | "source": [
387 | "df1"
388 | ]
389 | },
390 | {
391 | "cell_type": "code",
392 | "execution_count": 16,
393 | "metadata": {},
394 | "outputs": [],
395 | "source": [
396 | "df_30 = df1[df1['MaxWinds'].between(30, 39)]\n",
397 | "df_40 = df1[df1['MaxWinds'].between(40, 49)]\n",
398 | "df_50 = df1[df1['MaxWinds'].between(50, 59)]\n",
399 | "df_60 = df1[df1['MaxWinds'].between(60, 79)]"
400 | ]
401 | },
402 | {
403 | "cell_type": "code",
404 | "execution_count": 24,
405 | "metadata": {},
406 | "outputs": [
407 | {
408 | "name": "stdout",
409 | "output_type": "stream",
410 | "text": [
411 | "The number of storms between 30 and 39: 51\n",
412 | "The number of storms between 40 and 49: 113\n",
413 | "The number of storms between 50 and 59: 142\n",
414 | "The number of storms between 60 and 79: 56\n"
415 | ]
416 | }
417 | ],
418 | "source": [
419 | "st1 = len(df_30.index)\n",
420 | "print('The number of storms between 30 and 39: ', st1)\n",
421 | "st2 = len(df_40.index)\n",
422 | "print('The number of storms between 40 and 49: ', st2)\n",
423 | "st3 = len(df_50.index)\n",
424 | "print('The number of storms between 50 and 59: ', st3)\n",
425 | "st4 = len(df_60.index)\n",
426 | "print('The number of storms between 60 and 79: ', st4)"
427 | ]
428 | },
429 | {
430 | "cell_type": "code",
431 | "execution_count": 26,
432 | "metadata": {},
433 | "outputs": [
434 | {
435 | "data": {
436 | "text/plain": [
437 | "40.0 71\n",
438 | "45.0 42\n",
439 | "Name: MaxWinds, dtype: int64"
440 | ]
441 | },
442 | "execution_count": 26,
443 | "metadata": {},
444 | "output_type": "execute_result"
445 | }
446 | ],
447 | "source": [
448 | "df_40['MaxWinds'].value_counts()"
449 | ]
450 | },
451 | {
452 | "cell_type": "code",
453 | "execution_count": 23,
454 | "metadata": {},
455 | "outputs": [
456 | {
457 | "data": {
458 | "text/plain": [
459 | ""
460 | ]
461 | },
462 | "execution_count": 23,
463 | "metadata": {},
464 | "output_type": "execute_result"
465 | },
466 | {
467 | "data": {
468 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9eZwdVZn//3769u19S7qzL4YkkIQkEJIo+yaIOmziiDDqiKMOX/06M67jNoziDO46M47L/ERcEEcRUdy+irKIIMoWEgiQAIEESMjSSbo76fTtvtv5/XHq3HuqbtW9dbv7ZqHP+/XqV99bVffUqe1TT33Oc06JUgqHw+FwTBzqDnUFHA6Hw3FwccLvcDgcEwwn/A6HwzHBcMLvcDgcEwwn/A6HwzHBcMLvcDgcEwwn/OOMiFwnIh8fYxnnisiWcarSYYOIXCMi3zvU9YiDiCREZFBE5h7quowVEfm9iLx5lL897I+ZiCwUkVHlpYvIchG53/q+VUTOGrfKVV8fEZGHRGRxLdfzkhd+7+I1f3kRSVnfR3UxlEMp9U6l1GfGu1wbEblERB4RkX0isltEbjcCdSRcqOOBd4EOi8ikwPT1IqJEZPZYyldK5ZRSbUqp58dW0/FFRE4XkX4RqbOmfTdi2tcAlFLnKaX+twZ1ERG5SkS2eNfTVhEZ9/XUmGuAL9ZyBSJS752T8yotq3THqv8APlXLOr3khd+7eNuUUm3A88CF1rSSk1RE6g9+LeMjIouA7wLvBTqBo4D/D8iPU/mH9fYHeA643HwRkZVAw6GrzkHhAaARON6adjqwIzDtDODuGtfl7ej9/0rv+no5cFeN1zlueMHBacCvDnVdAvwcOE9EptZqBS954a+EFyH/WER+JCL7gbeISJOI/LeIbBeRbSLyHyLS4C1/rhfhfEJE9ojIZhGxxecHInK19f31IrLOi843ich53vR3isgGEdkvIs+IyDtjVvkEYJNS6i6l2a+UulkptVVELgA+DLzZi8DWeOuaLSK/FpG9IvK0iLy9wvZfIyI3etMGvaeLBV501ysiz4vIuVYZ7/D2yX4RedbeHyE0i8hPvGUfEpHlXhkfE5EfB47N/4jIl8qUdQPwVuv7W4HvB8q4yNv/+716/6s1783eMWnzvl8oIi+KSHcwSvOO69dE5HfePrlbRKaJyFe9aHuDiBzvLVsS4dnnhXUOfczbny96677AOz57ReTDYRuslBpBi/8ZXlkzAQX8NDBtPp7wi8ifRORt3ud3isgfReQ/vXo/a85Jb/58EbnH21+/A7rL7P+XA7cqpZ716rZdKfUtq6w/icinveM8ICK3iPWEJiKnish9Xj3WicgZ1rwu0U8t20U/SfybeE80om24//Suv2eA1wSOedzz8TzgQW+fliAiS71yLvW+bxWRD4h+qhzwro9Ga/l3eefTHhH5uYjM8GaZG/Dj3rnz1yIyVUR+4237XhEp3KSVUkPAOuBVZfb92FBKTZg/YAtwbmDaNUAauBB9I2wGPgP8GZgCTAXuBz7pLX8ukEU/HjYCrwSGgIXe/B8AV3ufTwH6gXO8sucAi7x5F6IvTvHKSAHHWevYErENRwMjwJeBs4HWkO35XmDavcBXgSZgJbAbOLPM9l/j1edcoB74IbAZ+Kj3/d3A097vO4AB4Gjv+wzg2Ii6XwNkgEuApFfeJq/M2cAg0OEt2+DV8/iIsrYCZ3m/P9orYxswDy2Es73lXgks87bteK/MC6xyfgxc5x3rHcBrvOn1XjnzrOO6C33jbQL+6O2TNwEJ4HPAbWG/DTkvzDn0L95+eLdX9g+ANuA4YBiYG7Ht/w781Pt8OfAd4LWBaU9Zy/8JeJv3+Z3eMXi7V+9/BF6wln2A4rl9tndMvhdRj7cBe4APAauARGD+n4AXgGOBVnQk+z1v3hzvt6/2js1rvGPT7c3/NfANoAWYDqwB3uHN+wfgce+c6UYLqxrF+fifwFcizquXe3V/bWDefV59uoGngHd6887zjuEK7/z4BnBnmfPhi8DXvOPfgHc9WvO/AXyhZlpYq4IPxz+ihf/OwLTngPOs7+ejo2zQF20aaLHm/wz4mPfZvsC/DXwxZt1+DbzHWseWMsueAvzEu1CG0Rd+i7U937OWPQp9obda074IXFdm+68Bfmt9v8S7mOq875O8E7nNu9D6vWWaKmzjNcCfrO8J72I52ft+G/B33ufXAY+WKctcoFejhfAC4LfeRVcQ/pDffc0+Jt62bAXWA1+3pocJ//9Y898PrLe+nwDsDvttyHlxLlpQE4H9ucpa/hGsG1RgG84Fdnmfvw78Hdr2225N+5a1fFD4N1rzOrx196ADkeC5fRMRwu/N/1vgDuAA3k0gsN5rrO/mhibom953A2XdAbwZmIUOPBoD6zE31rvxBNf7/lf4hT/u+fhdu37WeXW19/+MkHmXW9//A/ia9/l64DOB/ZpD35zCzofPoHVjQUTdPg9cG0c7RvM34a0ejxcC32egxd/wHPpkNOxR+nHMnj8zpNw5wDNhK/Qe6+/3HvP60RFDT5zKKqX+rJS6VCnVg368fyXwsYjFZ6IF6UCZ7QluP8BO63MK6FVK5a3vAG1KqX3A3wDvAXaItpSOKVP9wrqUUjl0lG723fXAW7zPb0FbOZX4PlosriBg8wCIyMkicpdnqQygha+wn5VSfWibZBn6KaocwX0S/N4Wo76G3d72m9+GlR9V3p+BLhFZgj7+9yilBoCd1rRy/v4O67M5j9vQxyHs3I5EKXWDUuocoAt9DnxWRM6xFrHPrefQTxKTgZcBf+NZHf3eNXCSV4eXecvttOZ9HZjmlTMzpFxTn2rOxz6gPWT6u4G7lVJh+zC478wxmhlSjz7815nN57zl7xBt9f5zYH47+gZWE5zwa4KpYNvRJ59hLlqgDN0i0hyY/2JIuS8AC4ITvd/eDHwWmKaU6gJ+j46Eqqu4Ug+gH6GXmUmBRV4EekSkNVBfe3vGNESrUuq3Sqlz0TfMTcA3yyw+x3zwPNtZFPfdz4BVIrIUbV38MMa6n/V+/yr0fghyI1rY5yilOtG2TmE/i8gqdDT5Y+C/K60vDkqpLNqOa7EmTx+Psr3yh4CHgYuByUqpTd6se7xpSxldw+52ws/tOHXKKKVuRFswy6xZc6zPc9H7ZS/62viuUqrL+mtVSn3RmzfkbZuZ16GUOs6qZ7Bcuy5xz8dHgbCbwpXA0SJSTbbPi1iaISLt6Ce5bYRcX0qpfUqp9yul5qGfbj8iImdaiyxBP/XVBCf84fwI+ISI9IjIFOBf0Y/qhjrgahFpEJ3z+1q0kAf5NvBOETlbROpEN7IuQkczDUAvkBPdKHtOyO9LEJEzvQa6qd73JWh//j5vkZ3APBERAKXUZuAh4DMi0igiK9DWwLik3YnIDK9hsgVtExxAP+JG8QoRuVhEkmhveD/woFfXIeAW9P6/Vym1LboYH28DzlFKpULmtQN7lVLDInIS/iygZvRx/YhXxnwRuTLmOivxCLqRPSEi56OzR8aTu9F2073WtD95015QSpWN1MNQSj2DFkNzbp+BtjlDEZG3i8hfiUi7d36fDyxCtxMY3ioii73A41PATZ4ncwNwiYi8yttHTd51MlMp9QK6DeVLItLhlb3Qavy9CXifiMwSkW708TN1quZ8/D3wcvESNywG0E/g54rINTF2Hehz9h0icpzX4PtZ9JPYVu/Jbg/aSjP1vFB0woR468uZenrn5Qrg9pjrrhon/OF8Cn3hrkdfCPejD6RhK/qE2o62J96plHo6WIhS6s/A36MjyQHgD+jIsx99gd6Cjn7egPb449CH9i8fE5FB4DfoC8HYFD9G31T2ioi5AC9DN4DuQN+gPq6U+kPM9VUiAfwzel/sQbc//EOZ5W9B2zh7vXq93ouQDdcDy4ln8wCglNqklFoTMfvdaPthP/Bx9L4yfAF4Rin1LaXUsFevz4lIyVPaKPgn9HHqBy4FfjkOZdr8EZ148Cdr2j3etLGkcV4OnIo+Pv9C+eOwD7gKHaH3oX3rK5VSf7GWuQF9c92OPlfeB6CU2oLeP/+KDoCeBz5IUZPegm4QfsIr+ycUn5r+B90esB4dNNhBV+zzUSn1InqfXRgyrw/9FPk6EflkmX1glr8V+Df0+b0d/RRi9xP6JPBDz7p6PfoGeSe6rededCOzOZavQ7dn2NbfuCJeQ4IjJqLTGK/zHtEc44yIzEffbKcrpQYPdX0co0dE/oS+Vr53qOsSheh04m8ppU461HUB3SkOfTP7W6XUhlqt50jqrON4ieN5/h8AfuhE33EwUEqtRzcqHxZ4NtjqWq/HCb/jsEBEOtENYVvQud0Oh6NGOKvH4XA4JhiucdfhcDgmGEeE1dPT06PmzZt3qKvhcDgcRxRr1qzZrZSaEpx+RAj/vHnzeOihhw51NRwOh+OIQkRC+3M4q8fhcDgmGE74HQ6HY4LhhN/hcDgmGE74HQ6HY4LhhN/hcDgmGDUVftGvT7tZRDaKfjXdySIyWURuE/2Kudsk8LJsh8PhcNSWWkf8X0G/k3Mx+rV3G9Cv27tDKXU0eoS9j9a4Dg6Hw+GwqFkev4h0oN8E9DYApVQaSIvIxehX5oEegvcurPG0DwY7PvMZRjZsPJirdDgcE5jGJYuZ/vGPH+pqFKhlxD8fPc72d0VkrYhc572MYZpSajuA939q2I9F5EoReUhEHurt7a1hNR0Oh2NiUbNB2kRkNfqtUKcqpe4Xka+gX9zwj96rBs1yfUqpsj7/6tWrleu563A4HNUhImuUUiXDPNcy4t8KbFVK3e99vxlYiX6B8gyvUjOAXTWsg8PhcDgC1Ez4lVI7gBe8d8yCfqfsE+hX0F3hTbsC+EWt6uBwOByOUmo9SNs/Av/rvcz4WfRLvuuAm0TkHej3bF5a4zo4HA6Hw6Kmwq+UWkf4a8TOqeV6HQ6HwxGN67nrcDgcEwwn/A6HwzHBcMLvcDgcEwwn/A6HwzHBcMLvcDgcEwwn/A6HwzHBcMLvcDgcEwwn/A6HwzHBcMLvcDgcEwwn/A6HwzHBcMLvcDgcEwwn/A6HwzHBcMLvcDgcEwwn/A6HwzHBcMLvcDgcEwwn/A6HwzHBcMLvcDgcEwwn/A6HwzHBcMLvcDgcEwwn/A6HwzHBcMLvcDgcEwwn/A6HwzHBcMLvcDgcEwwn/A6HwzHBqKnwi8gWEVkvIutE5CFv2tUiss2btk5E/qqWdXA4HA6Hn/qDsI6zlVK7A9P+Uyn1pYOwbofD4XAEOBjC76gRv938W5Z2L2Vux1zf9Pu230dDXQMrp62MXdaGPRvYndrN6bNPr7jsHc/dwdpda3nLsW9heuv0qusdhwOZA/x808950+I3ISKjKqN/uJ/vPv5d0rk0AM31zVx53JU01TcB8Piex/n1M7+mvq6etyx5C9Nap5Ut7xebfsFJM07i+f3Pc+fzdwLQ09zD25e9ncHMIN9e/21GciPUSR2XLbqMgZEBBtIDnDbrtNDysvks33r0W+xL7wud31zfzDuXv5OWZEvo/DU715DL53jFjFeEzh/JjXDto9cyqXESbzn2Lb556VyaHz/5Y/5m8d9QX6dlYH3ven6z+Tck65K8delb6Wnu4VfP/IrV01Yzo20Gdzx3B0d1HsX8rvmFcrYMbOGmp27i1JmncuqsU33r2NS3iZ8+/VPftBNnnMhZc84qfD+QOcB1669jODtcUv8LFlzA0u6lAPxwww95Yf8LodtZX1fPm5e8memt0/n1s7/m+J7jmdMxJ3RZgEd6HyGVTXHSjJMilwF4fPfj7Bnewxmzzwidf9tztzGpcRJ3b72bJd1LeO1Rrw1dTinFdeuvY+/wXpZ0L+GiBReVXe/BoNbCr4Dfi4gCvqmUutab/g8i8lbgIeCDSqm+4A9F5ErgSoC5c+cGZ094lFL8y5/+hcsXX86HX/5h37z/WvNf5FWemy68KXZ5337s22zcuzGW8H/uwc+x48AOprRM4YqlV1Rd9zjc+fydfO6Bz3Hi9BNZOGnhqMq4e9vdfOex79CabCWv8qSyKVZPW80ps04BtJj88plfAlrAy21LKpviqnuv4n0r38cDOx4o3FyHc8OcP/981u9ez7cf+zYt9S0MZYdorm/mqb6neGz3Y9z5xjtDy3yy70m+8cg3aK5vpl78l2JWZUllU6yatqpEUA2fvv/TtNS38IMZPwid/2jvo1z7qL7kLlp4ER0NHYV5D+54kC88+AWO7T6WVdNWAfD9J77PrVtuBWB2+2xef/Tr+fifPs67jn8X71nxHj7x50/w6nmv5hMnf6JQzk+e+gk3PHEDD+98uKSeNz11Ez/a+CPak+2FfXjf9vt8wv/gjge5bv11tNS3kJBEYfpgZpD96f1cc9o1DKYH+ewDn6Ux0UhDXYNvHQrFYGaQnuYe3nrsW7nqT1dxydGX8MmTPxm6TwC++cg32TW0i5svujlyGYBrH72WtbvW8sfL/hgafHzy3k+SyWcYzg1TJ3WRwr91/1b+e+1/A9De0D4hhP9UpdSLIjIVuE1ENgL/A/w7+qbw78CXgbcHf+jdJK4FWL16tapxPY84MvkMmXyGgZGBknkHMgfYun8rw9nhQnRbicHMYCEyroRZ7kDmQPwKV0n/SL9eR3b06+gf1mXc9obb6Bvu4/xbzmf3cNF1zOQyzOuYxwv7XwjdjzZmm9P5NOlcmpVTV/LGRW/kw3d/mKHMUGFf/PSin/K6X7yOdC7NgcwBelO97Entobu5u6TMgWG9zm++6pucMPUE37wn9jzBZb++LPKYDIwMsKlvE4snL46s81BmyLe8LfwjuRGguJ9BH89ZbbPYNritcH6Z6UopDmQOlBzz7Qe2A7A7FXRz9e9mtM7g92/4PQBX//lq7t56d8kyADdecCNHdR5VmH7BLReQzqd9ZX/y5E9y4YILfb/P5XOsuGEFQ5khUtkUOZXjqb1PRe4T0MfS3u4o+kf66RvpY9vgNma3zy6ZP5IbKdQxr/Jk89nC05NvG71zeH7nfJ7b9xxKqVE/xY4XNW3cVUq96P3fBdwCvEIptVMplVNK5YFvAeHPqY6ymIs6TLCGMkNkVZaNezfGLi+VSRUu9EoY0bCFZbwx2zWWdQykB0hIgrZkGz3NPYBfoDL5DMlEko6Gjki7xV4W9M0ik8+QrEvSUq8tmKHsUKGeLckWknVJMvlMYdqTfU9G1g+gs6GzZF6yLulbb5BHeh9Bocoes6Fscd/tG/Fvn/mdPX0oO0RnY6dvO0Efg3Q+TU7lfGUC7DiwA4A9w3vIq7xvXiqbKuwjgI7GDgZGBlCqGMeZ8uzlQG9/Np8FisfMHEObRF2CpkSTPgZeWU/1PUUunwvZI8Vtr3S8gcIyj+1+rGSeUqX7vm+4xLgAiudwT3MPOZUr3CwOJTUTfhFpFZF28xk4D3hMRGZYi10ClO5VR0XMSR4q/N68sBO2XHlxhF8pVTiRgyIwnhSEfwzrMFGuiNCSbKG5vtkn/Ol8mmRdks7GzooRvxEhEwknE8mC9z6UGfIJmBH+VDYFwJN7I4TfW2dHY0fJvErCv3bXWl+9wghG/DamXHv6UGaocBPK5DNkcp7wWze2VCblK8dE/Nl8tuTmMpQZ8rVPdDZ0ks6nGc4N+5YBStoxknXJwvrNU1qY8JvfDmWGCnUbzg3z3P7nQpc125bKpgoBTBRm36zfvb5kXk7lUPiNiLCnHiiew+apr5YBU1xqGfFPA/4kIo8ADwD/Tyl1K/AFL8XzUeBs4P01rMNLlkLEn/Zf0EqpwokWdsKWK89caOUYzg0XTviaCn967BH/vpF9hQgWtHD4Iv6cjtxNJFoOs28Kwh8S8ddJHY2JxmLE7+2fqCcvs87QiD9RXvgf3vlw2fmmXoV1Bc4Tsz329FQ2VbgJ2VZPKpMqlGWXmc6l2Z3azcIu3QYTFL6h7JAvkjfHwnez8cprrm/2/dbsQ4A9qT1AtPA31zf7In6IvtmabYPSpyAbpVShnmEBVNh+jxR+K+KH2l43camZ8CulnlVKHe/9LVVKfdqb/rdKqeVKqeOUUhcppbbXqg4vZaIi/pHcSOGRuxYRvy3EtYxczEVpoubRMJAe8EXTPc09BREBCgLe2dBZIoxBfFaPd8NoTmqxMv5yS30LIkIyoaNVc4wiI/70gH5C8ETeplzEn86lC8e23M16NBF/a7KV+rp6n/APZYvRtF2msXmW9SwD8LWfmGXNPoJw4U9lUjQmGku8cVMH0IJaL/W+m7hNIeK3zpVyNmfhplfmZj+cGyadT1NfV88Te54oebKqSvizAeF/iUf8jhpiTqZ9I/tCPdOpLVN5fv/zFSPZwu8yWvjtssqtN/h5vBkXj39kwBdNl0T8RvhjWD0F4Y+K+K3o1vb466SOzfs2h6YrDowMRIpZQfhDhP3xPY+TzqeZ2jw1fsQfR/i9bTA2i+3xh0X8xuZZ3rMciBHxe8fC9teDyxiSiaRP+Cc3T6ZOwuXKZFKZc6VO6mJF/OVu9ma/rJy6kuHcMM/0P+MvI+S47BneUzINJljE76gt5mTKqqxfjL3pJkc5TtRvUh1NeXHWC6V+73hSsHrG6PHbwtrd1B3auNvZ2Fn2sd8sa/6HevyWn11fV194glo8eTF5lWdT/6aSMoNWlE25iN/YPC+f8fLywp/RjbUt9S0lImciWDPdWITN9c2FG5fP4y8j/Cbit5+mzPp9Hn+Y1RNYxt7+gsef2h1p84Al/F7dFk9eXD7iD7npBTHzTIpq0Da193t7QzttybbKEX+Ti/gdYyQqmjPTV09bjSCxfP7hbNG3r+TzmxuEudhqxXhl9QQ9/n3pfYUUSdvq2Z/ZX7ah1Bb+bD6rrR7PlzaiY74n65KFG8nKqboTXZgQDaQHQv19KO/xr921lnkd85jaUjnib6lvCX2iCfrcxiK0s5LM/rCjaft4GOFf2LWQxkTjqD3+oL8PpR5/WeH3rB5zPq6cupI9w3sihTiO8JunkqXdS+ls7CwJoOz9nqxLljxN2pgnv66mLv3dRfyO0RLl35rpU1umclTnUbEifvtErOTz24+ttYpccvkc+9P7S+o2mjKCVg8UI1O7cRcorDOMQuOu5fEn65I01DUUhNFErslEshBJL+xaSFuyLVz4RwZCM3qAQoeu4PHIqzxrd61l5bSVPnEMw7Q7hD3RBH1uX1aSZ7OEWT32k8COAzvoae6hIdFQInzmKdKO5k0/Avvpo2zEn48f8aeyqcL5aPpEREX9hZtemZROs1+6GrtY1rOsbMSfrEvS3dwdKfzmOLQmWwEX8TvGgN2Q5buQzAWcbCmcsJV8e9uyqSj8VkNVrSKXwczgmDOHjIgHG3eh6EXbHj+UjwDDPH7wR5u2x2/Kak22smjyolDPuZzHn6hLkJBEyRPYs/3Psi+9jxOmnkCyLkle5SNz1o2ohjVeB33usH4IduOur1HfOybbB7czo1VnZweFz7Rp2BG/sZHC2hWCmJtPLp9j7/BeuptKO8AZghF/ReGP0bhbyLhq7GR5z3I29W/y7QP7uJiIP2h1BbfRbOdYEhbGCyf8RyhREb8R8Zb6Fpb3LGfv8N7CI3lkWZa4lrM77GW7m7trFrmEPcFUXUa6eOEaQoU/kSw8FZRr7AsKv8lCsaPNQsRvWT0tyRYWT17Mk31P+jo4KaXKWj2mnODxeHiX9vdXTV1VMdffCE5YuqrdK9dOPfU17nrils1nfdGxEa7tB7YXxmrqafJH/GEds0SkxHaKFH7v5tM/0k9O5eJ5/JkhBKGnuYdZbbMiG3hjefzeudDR0MHynuXkVZ4NezcU5tvHJZmobPW0JFt8bUKHGif8RyiVPH4j/FA5n99n9VTw+G2rJ51Px+7tWw1h2zPaMmxhNR1oTNqh8eqrifhHciPkVK7gwUdF/KaRvLm+mUWTFpHKpnyDjKWyKbL5bGTEb8oJ7t+1u9bS09zD7PbZlYXfS6cs5/GD9vnLRfzgz9gZygyhlGLHgR2FiD8Y8UZ1zOps6PRn9VRo3C3Xa9fQnGxmJDfC/vR+WpI6pTaqgdfucVspq8e045iB4mzbNMzjH8wMhkbzph2jKdFU+H6occJ/hGJyroGSCwn0xXDMpGNI1iUr+vy+R9gqrB6ozWOruSBbk62jzhyyH9UNxi4oRPy5Kqwe74Zotrdg9XjRZiqT8kX8BhPxA76IMax+QeyURsPaXWs5YeoJhf4CUDni72rsYiDtHyrBvsEPpAdCex5HCn92iP6RfoZzwz7h7xvp89lDpjyb4E0oOKxDYdu9OlTqvGWvY8/wnsLnRZMX8dy+50qiaztrrZLV09nYiYjQ3dzNrLZZvgCqxOP3zq0wu8fc3BJ1Cd3ZzEX8jtEylB2iq7GLpkRTZMSfTCRZMnlJdRF/jMZdQZjUNKnwfbwx2zOjdcboI/4QqyeZSNLV2FVs3LWyeqB8Y5/d0AlFcW9ONnMgc8Af8VsdslrqW1jQtYB6qfdZD+XG6THYnZhAN6ZuG9xWyBQql+tv6mo8/mw+67tJByP+gkWYLG3chdKI39iHtscPsDe117ef7A5cQIntVKlxt9JwDabOpo7m8+JJi1EonurzD9jmu+FVyOqxj82ynmX+iD/E4zd1CGKfG6aX8aHGCf8RirlgSi6krBZmMyrnsp5loT0Pg2UZ4kT8LckWWutbC9/HG7M901unj97jjxgOwfZijVff3tDu+00YwUjWjvgHRgbIqVx4xF/fQkOigfld833WQ7lxegx2LjvAul3rADhh2gm+9VSK+MOeaOzf9I/0h3v81jI+GydbFP7pbZ7Hb4TPE+rIiN9qaM7lcwznhss27saxegoRf6oY8ZunrKDP77vhVcjqsYOG5T3L2Ta4zRc02HUNZozZ2De3WqdBx8UJ/xFKVI72UEb7iaaX47KeZaSyKZ4deLZsWYY4EX9LfbGhqhaduIwwTG+dPuqLxDSuGlE3mOyTXD5X8OoTdQnaG9rjCb+J+C2P34iTncdvKESgkxf7I/44Vk/A439418OFNgN7PWHHzE6nNDcX29O2M5MGRgZKPP5sPuu76exO7S4sP5QZKgzXYFs9UBS+SI/fOl8LfUIiIv5sPkvvUC/N9c2RL3S/sF4AACAASURBVKOBovDvTu0uHIPprdPpaOhgY5/f5zf7KphdFCSYams6qT2+53FfOaasuBG/aRM61FQUfhG51Bpl8yoR+ZmIxH+1k6MmFIQ/kKpnInKDaeAt5/NHpalFrjdZTE2rRfSyb2Qfbck22hvax5TV097QTqIu4ZtuIn7j9RoxqzRej92L1f5dS30Lg5nBwmd7HhRvBosmLaI31VsQhjhWT9DjX7trLcdPOb6QUVTO47fTKQtZS3bEn8sUxGpgpLLHb152YvbB9sHtNCWamNSoLb+g8JXz+FPZFOlcOnKANijuw51DO8tG+1C8cQxmBgufTQNvMOI3T76mMTYq0AlmXC2ZvIQ6qSvYpvZ7EpJ1SSY1TUKQkvGKAF/7z5EU8f+rUmq/iJwGvBq4Hv0yFcchpODfhkT89sU2t2Mu7Q3tZX3+aiL+VCbli/hr5fGboQZGmzkUHKfH0NOks0/MhVsQ/grj9QTrYAu/we7ABfgGHzPWg3lJSLUR//70fp7qe6rg79t1CNs/tvBGWT1djV3USZ2vcbepvinU4wf/IGMmldO8UKSQMWWEv0xWD2ibJWoZe9u2D26vLPz2MbA+L5q8iKf6nvLZnOYGbsqM6rQXtHpaki0s7FpYuI6CEX99XT2TmiaVRPxmKAw74q/lUCdxiSP8pnfI+cD/KKV+ATSUWd5xEIjqlRmM+OukjmXdy+JH/DE8/ub65ppG/ANpPY7+WDq8RHWO6mnuYTg3XHgDky385cbriRT+ZKnohN0UFk3W9oyxHvaN7KMx0Vj2DWm2x/9o76PkVb7g79vrCXtKs0W1IPwBq6cx0UhHQ0fB6jEWYXB0ToPJXBnKDvlSOUHf5Nob2mNF/FD6lFGy7d7Nc/uBGMKfLL35gr7ZjuRGeH7f877thuKNKuxmn86lSWVTJefP8p7lPLb7sZKXsJjjEJbLb15gcyRG/NtE5JvAG4HfiEhjzN85akhUr0wTkdss61nG031PRwpoVLZHufUelIh/DOsIjtNjMBe88aiNwFS0eqqJ+ENuCp2NncxonVFo4K3UecuUY9b78K6HSUiC43qOK6lDpYi/MFRCIOK3B6grGV3U6sBl6GjsKAxRsf3Adma0zfDNt4XPfj9BsAxTlzgR/57hPWV77ZptDPts2kLsRnWzr2ybK4hp9A0en2U9yxgYGWDr/q0ljbumzLCB6qBoZx0xHj9a8H8HvEYp1Q9MBv65prVyVMTulTmSGyl4ukPZoZIUuuU9y8mpXGQX9qo9/voW3wBl441t9Yx2HftG9oVbPd4Fb7JSjMBUehlLifAnKkf8Qe/aHrqh3Dg9hXVYwr9211oWT17sW185j99Op2yqb6Ip0eR7orFTWQfSAyU9j8MiftPIOjAyQG+qt9Br1zCleUpB+Oz3E9jEjvitdpLRRvzzO+eTrEv6GniDwh+W2RNlw9kdIoPpnKbMsIHqoLiNR1I65zeVUj9TSj0N4L045W9rWy1HObL5LCO5kUKvTPCPZhkW8QOs7w33+YeyQ4Xsl7jpnAVRrkH0YnKox5I5FCWsBeEf9At/Z6PuURp8b6wheEMME/egxx+MZBdPXsyWfVtIZVNlx+kprCNRHB55fe/6kheymzqEpeoGBaejscNv9QTePhb2PoFMPkNDXUMhajfHfcvAFgCf1QP+8XqihmKwh8coJ/z2i1lG6/EnE0kWdi30NfAWhL8pOuKPSrVd0LWApkSTFn7rOjF1NcLvez9G4KnmSIr4l9pfRCQBrKpNdRxxsIdGDo4zE3bBTWmZwvTW6ZE+/1DW/67VcpgbSzKhR6cc7+jFvPJuLBF/XuUjrZ6oiL+zoZO8yhcydIKM1eMH3akor/Js6ttUldWzYe8GhnPDrJy2smQ+VPb4obTx2h6gbmBkwN/z2GrcTSaKL5wxjfrPDOiXkgSFP2j1hFk4dqBidxor2fZE/Ig/mUgWx04KlLVo8iI27t1YEONg42454Q+eP/V19RzbfWyJ8NsRfyafKXnRDODbh7Ua6qQaIoVfRD4mIvuB40Rkn4js977vAn5x0GroKCG04c4aXjfsQlreszwys8e8sAPiR/xm/eMdvRzIHCCncmPy+A9kDpBX+VBh7WzspF7qix6/FfFDdCeuYFRdzuO3B3CzsRt4Y0X8ntduXqweFfFX8vjBa8Owtq0wTpGxeiI8/mRd8YUzZoRJu2e1jRmx1YxdFJam2ZZsIyGJcbV67DJKbraTF7N3eK+v0x5QSL8Ma9cpl2q7rGcZG/Zs8LWL2R4/UHbMosNlhM5I4VdKfVYp1Q58USnVoZRq9/66lVIfO4h1dAQIS9Uz/m2Y1QNa+LcObqVvuC+0vILwl/H4Mzn9cg77IhvviN8eFXG0EX+5VMk6qWNy8+RixJ/wC39UZk8cj98MwhX2NAAwq20Wbck2ntz7ZNm3bxXW4UX8D+98mLntc0sEsKzwh0X8wQ5cXuPu/vT+wgBn9nrNU4HdMGm3H01rneZbpy18URG/iNDR0BE7nROKDfLlMGUE27eCDbxmXzXWN0Z22it3/izvWU46n+aJPU+U1DWsE1dJxH+YjNBZ0epRSn1MRC4SkS95fxccjIo5ovEJvxeV9I/0F7rZh11IxucPs3uGMvGsHnusf7P+8Y5cTJrlWCL+SjnyPc09pVZPhYg/yuO3G+1MZ7Eoq0dEWDR5EY/0PsJwbjiex+9F/MFo38yHmBF/YycDw6Uev6nDzqGdvp7HCsVwbjg04ged2hnM2DG++e7h3ZEef6EuXsRfL/U+kS9smy38FbJ67O2Mesp6sk/7/HbP3c7GzsL5ZjMwMkBCErQl20rmmevokd5HSuoa7MsA0RH/oW7gjdNz97PAe4EnvL/3etMch4ioHO1yj85Lu5dSJ3Xhwp8dKjRklRX+TGn0Mt6Riy3ao80cqiT8U5qnlIyyWWlM/koev21rRDXugn/oBpNmGUWyLsmu1C76RvpK/H0oWkpRHr+dThlMVzXjFJk62KNkmvoPZYb8Hr+Vxhu0ecAvfFERPxQzqMyw0cHMH7PtoN+AZfv9UUQJf3tDO7PaZhUj/pwl/A3hfTcGRnQ/krB6zWqbxaTGSX6rp0zEb7fHQfGcONSduOI07p4PvEop9R2l1HeA13jTHIcI+2Rqrm+mvq5eN5aVGfukJdnC/M75JT6/UopUJkV7Qzt1Uhcr4jeP07WwesyF2NlgNe5WG/FXGA7BtkzsdE4oE/FXyOP3ZZNERPygrQfzdrE4Vo8hNOIvY/UE0ymDab/Bt49BaT+EoeyQjvjrSyP+YA4/+IWvbMQf0q5Qsm0B37wSdrtTEPtmG4z4Q62eiMQA0E9tJuov1NXbX+3JdhrqGnzDNhyxEb9Hl/W5/NnqqDn2ySQihYa7YEQexO55aMjkM2RV1jdGS8X1GnsjOf5ji9vR+mgzhyqNfGl7xnYHLvu3QSp5/L78+giPH4pDN0B84Z/UOIl5HfMi50dZPfZ5ELSyMvkMDYkGv/AHspJSmZTf6rHSeIM5/KCj84Qk2J3a7csSClKweso8FQTtk0pERfzgH5vfFv5giquhUh8Lk89fqKt3LohI6QtpzFAYXvvPEePxA58F1orI90TkemAN8Jk4hYvIFhFZLyLrROQhb9pkEblNRJ72/k8affUnJmH+7b70vrKDXoH2J/tG+tg2uK1YlnUTaahrKNu4G5aaVrPGXe/CG42dFDUksyEs4jeWRrVWT0NdAwlJ+ASnIaFHNAk7DmZs/nL1Mxgrx7x4JYhZT1Tjrq/ncMDKCr6LAIqiZModyg6FpnNCuNWTqEswuWly5Yg/pLdwkKB9UonCU2jYzdYam78g/N4rN6Mad8sdm6iI39Q36PHb7T9HTMSvlPoRcBLwM+/vZKXUjVWs42yl1Aql1Grv+0eBO5RSRwN3eN8dVRCVo10uSwLCR+oMvrglTsRvX2S1iPib65uLnYZGcXMZSA8UtieMMOGH8gO1RTXuiohPEO15YcfBjM1v1lcOU/8wfx8gIQkEiYz47RuPHfHn8jnyKl9q9QQi/qHMUGTEHyb8oPfti4Mv+sanCdLZ0Mn+jD+TqGTbjfA3xbR6rEb2IPbY/D6P38toCr6sfl+6fMZVOeEPvnQ+eBwOl4i/vvIigL5B7PaWP0ZEjlFK3T3KdV4MnOV9vh64C/jIKMsqy6+e+RUP7HigFkUfUsxbhewc7XW967hu/XW+6UEWTlpIY6KR7zz2He598V4ABtO6w1JzUrcV3L/9fv713n8N/b15UrAjwIGRgcjlR8O6Xet8jZ4t9S2s2bmmqnWs27Wu7IVbTvgf3PFg6Lqe2/ccCUmQU7mS3zUnm337vJzHD1qInup7KrbVE+bvg77pJOuS3PH8HYV+CYYNezYwt2Oub9sArn30Wqa2TNXlJ5K+9xUEPf7dqd3M7ZjrE9VyET9o4Xtk1yOF5cMwT3PP9D/DqmnhfUFH6/GHrdOMzX/jkzcWAgoj/ArFVfde5esp3DvUW/bYTGqaxOy22Ww/sF2/0yEQ8d+3/b7CObRm5xrfeWDq97Onf8a63nW+crsau/jg6g/G2t6xUlH4ReTzwGXA44Dpz66AOMKvgN+LiEIP/XAtMM0b9gGl1HYRmRqx3iuBKwHmzp0btkhFNg9s5r7t943qt4c7p848tXBxnDLrFDb2bWTzvs0cM+kY5nTMCf1Nsi7JxQsu5u5td/v2y7yOeSyatIhTZ57KX7b/pew+W9q9tODvrpq2itufu33c9/FZc84qfD5t1mn87rnfVb2OM2efGTlvQdcCjp50NI11jUxunlyYfvqs0/nVs78KXVdjfSOXz7+ce7fdy7SWaT6hOO9l57Gwa2Hh+/zO+aycupJju48NXf9r5r2GwfRg5I3BcPyU4zlt1mks6V4Sucxps07jib1PlNQ5UZfglJmnFL7PbZ/LkslL2LJvC1v2bWFW2yyWdS+jvq6es2afxeZ9mwupj0dPOpp5HfMYzg1z4owTOX7K8Zy19yzaG9o5fsrxnDj9RI7qPCq0PmfMPoNN/Zvoauoq8cLt7ZrTPodMPsNJM04KXWZK8xROnHEir5jxirL7yHDSjJPoHer1HReDiHDRgou4/fnbGcwMcuL0E2lINLBiygrmtM/hoZ0P+Zbvae7h5dNeXnZ9ly66lN2p3Wzcu5GlPcXBDU6eeTL3brvXdzzOmn1W4XN7Qzsvn/5yXtj/ArtSu3xlTmvx94uoJWI39IUuIPIkcJxSaqTqwkVmKqVe9MT9NuAfgV8qpbqsZfqUUmV9/tWrV6uHHnqo3CIOh8PhCCAiayybvUCcxt1ngcqJtCEopV70/u8CbgFeAewUkRlepWagh4BwOBwOx0Eijsc/BKwTkTuAQtSvlPqncj8SkVagznt7VytwHvBvwC+BK4DPef/duD8Oh8NxEIkj/L/0/mzK+0OaacAtXhpaPfBDpdStIvIgcJOIvAN4Hri0ivo6HA6HY4xECr+IvEopdZtS6vqQeZ+vVLBS6lng+JDpe4Bzqq2ow+FwOMaHch7/10XENzSDiNSJyPcIEXSHw+FwHBmUs3rOA24VkUal1M9EpBn4CbAPuPCg1M7hcDgc406k8CultojIucDvvHTMvwXuV0p94KDVzuFwOBzjTjmP3/QT/zDwfXQe/g/MdKXUw7WvnsPhcDjGm3JWz5etz4+is3TMNAW8slaVcjgcDkftKGf1nH0wK+JwOByOg0Pc8fgdDofD8RLBCb/D4XBMMJzwOxwOxwQj1nj8IjILeJm9/BjG43c4HA7HIaSa8fifAMyrauKOx+9wOByOw4w4Ef/rgEWjGY/f4XA4HIcfNR2P3+FwOByHHzUbj9/hcDgchyejHY/f4XA4HEcoFYU/bDx+h8PhcBy5lBukbT1l3rSllDquJjVyOBwOR00pF/FfcNBq4XA4HI6DRrlB2p47mBVxOBwOx8HBDdngcDgcEwwn/A6HwzHBcMLvcDgcEwyX1eNwOBwTjDhZPe/x/t/g/X8zujevw+FwOI5AKmb1iMipSqlTrVkfFZF7gX+LswIRSQAPAduUUheIyPeAM4EBb5G3KaXWjabyDofD4aieOB5/q4icZr6IyClAaxXreC+wITDtn5VSK7w/J/oOh8NxEIkzVs87gO+ISCfa8x8A3h6ncBGZDZwPfBr4wGgr6aiCFx6Av3wNlNc8M2kevOrfQER/Vwr++AU47lJ4cR08fkv165hzIpzyD/GWTR+AP3wGzv44NETEC4/+BDb8EpIt8OpPQ/Mk+O1HYHBn6bKLXgsr3qQ/r/1f6JgBC15ZnL/3WXj0JjjzI8VtrpY9z8D6n8QvQym467Ow4s0w6WVWGTfDmR8OL+PJ30J2GJZeEr9ez98HOx+DoT5Y9nroXhDvd5tu17857tLSeetvhid+oT93zIRXfxbqYuZ8DO+Du78AZ18FyaZ4v6mGga1w+9UwdQmc/sHS+Zvvhge+Fb+8ugSc9gGYUaF5Mn0AfvNhGNmnvy97vb5WzvmELiOMh78PXXNh/lnx6wNwz5d12e3T4TWf1+u850sw9Vh4+vdw6vtg5orqyoxBnLF61gDHi0gHIEqpgUq/sfgv4MNAe2D6p0XkE8AdwEfDxvoXkSuBKwHmzp1bxSonOI/8CDb8GnqOgVSfFtTT3g8tk/X8A71w12cg2QxP/ga2P6pP2Lgc6NVCcvJ74oniC/frG9GCV8LCc8KXuefL0Os9FC56Lcw8AR78FrTPhKbO4nIDW7WwG+G/67N6O23h3/j/iiLcNSf+dtk8ehP88XOw+u3QNrXy8vu3wx8/r+t6stck9vjP9H5edYW+qIP85euQ6q9O+P/ydX3DyGcgUa+Pa6zffQP2vRgu/Pd8GQa2QWObPldO/D8weX68cp//C/z5q3D0q+Go0+NvR1zW/VDfgCFc+B+5UZ/D3UfHK2/P09DSDed/ufxyLzwA634AiBb6p26FXBqO/xuYurh0+XwObv0YLDi7euH/4xcgn9V/J/8DbH9E79NEg17n5PmHRvhFZBrwGWCmUuq1InIscLJS6tsVfncBsEsptUZEzrJmfQzYATQA1wIfIaS9QCl1rTef1atXR2YXOQKk+vTJ8p77YN2P4OfvguH+ovCn+vT/fAbSgzD/TPibH8Uv/4FvwW8+pKPxMEELkj6g/2ci8gFyGdizCY67DB79sa5rLqPnnffvsPwNxWV/+vew9UH/tu59NlBeWv8f2Dp64R/Y6pXfH0/4zTamrW1M9ev/g7vC91N6UG9rNfQ+qY8bQC4b/3epvuLvbDLDuszTPwBHnQHXX6i3Pa7wm31d7XbEZdPtxc+ZlA5Wguvvepk+1+PwvQtg25rKy5nj/9518P3XQd9m/T1sHwLsfkofz3SVOS+5rH7qm7oUdj2urxGzTwv/I9Y5RuI8030P+B0w0/v+FPC+GL87FbhIRLYANwKvFJEfKKW2K80I8F3gFVXX2hFNqk9bJVD8b8Te/pzLaMGKsl+iMKIQFNwoCqJ4IHz+3s36gpp7UrF+5qRPBN7/09BaLCeb1hdb//P+i8N8NhfvaBh4oViXOKQH/f/t3w7uivjNgfjlg97evc8Uv5t9FAd7n9r0bgCVg+nLoXO2nlbNfjNlVrMdcUn16Zt865TodeTSOjKOy6xVsOMxfcMrx8BWQPQTp11+1D43N5OoczyKjLe8CS7SB0qF/hAKf49S6iYgD6CUylJ8924kSqmPKaVmK6XmAZcDdyql3iIiMwBERNCvdXxstJV3hBBb+NMHSfhDRNGmd6P+P2MFJBoDwh+4qG3hN1GmymnxNxQi/hfi1S+MQsQfV/hDbm4F4Q9ppzDLpge1oMdh77PaDjBULfwhArJjvf4/fTl0zNKfqxL+TLH88ebZu0DlYfml0evIZUqDg3LMWqWDjJ0VJGdgq35Kq28ICH+ECI9W+M3ybdO874Olx7Wa41wFcYT/gIh043XmEpGTKKZijob/9TqHrQd6gGvGUJYjSKjw9/vngyX8bdWV3zkH6urHL+LvfVL/n7JI19cWqbpgxN+mo6R83i8EezcXP9tWz2hQ6iAJv3cjjGuTmBukIW4kmM/B8EC4gGx/FBraoWse1DdqAarmhlnLiH/T7dDYCQvPjV5HLl298ENlu2fgheITkF1+xYg/IriJIh0W8R8c4Y+T1fMB9Bu4Fnj5+1OAN5T/iR+l1F3AXd7nV5Zd2DE2Uv3xIv7syOgi/kS99lXHTfg36sblhlZL+MtYPaC9UJ/wW3UZq9VzYDfkvFyDWlk9ShX3R6ovXjuCuUEa4grC8ACgoiP+6cuKWTydsw8Pq0cp2HQHLDhrfK2ejpnQNj2G8G8tZv5UsnoyKdj5uP5cdcTvnS+FiP8wsnqUUg+jO1ydAvwfYKlS6tGa1MYxNnIZnQ5WEP4u/T9M+If3Aap64Qdt94xnxD/Fy5RonqRvXOWsHlNWpPCPMeK3I95aRfy5dNG2ibuOkog/pvDbT3g2+by2PKYvL06rWvhrZPXsekJnSi08Nzx4sddfTcQvoqP+csJvnvhCI/6Im2c+C5OOemlZPSLSAnwUeJ9S6jFgnpex4zjcGPYcOHOxJJL6UT5M+M3/UQv/5mJfgXKU8/jzOZ0RMWVRsd621VMi/G3Fskz9GzvGWfit341W+JUqH/GH3SAqURLxx4wEjc0XFJC+zXo/+oR/jt7+OMfVLnO8hd9k8yw4p4LwVxnxA8xaqbPIoupsnvg6vYywShG/uYkcdUbRhoxLqNUTjPgPncf/XSANnOx934rz5Q9PzMlsLhbzuazwV+nxgxb+kX0wtKfysuUi/r4t+iLzRfwxrB474p95QrjVMzJQvBFWgxH+pq5RWD1W6qrZhrCIP8wSKkcuq3PQm7qsaVVG/Cqvb7QGu2HX0Dm71EYrW68aCv/UY6Fzlj7mdclxFH7P539xbfh888RXiPgrNO5uW6Mbxk1nuqi05TDMeWDsrFCP/9Bl9SxQSn0ByAAopVLAKLtEOmpKqPB31Sbih3h2TznhLzTsGuHvqpzVY8pK9YHUwYzj9Q3EiJp94Qxsq1y/IANbdQ/iyfNHEfF7F7L5XbJlfCL+vi16u2yRrlb4g7/ZsR4kAVOWFKcVUjpjNvAWrJ5xzOMfGYTn/lLs7CdSGrzY66/G6gEdKEC03WNu/HEbd7et0U8R9rkZF7NsU4c+Vw4nqwdIi0gzxayeBUBJT1vHYcCoIv5aC38Zq8f41j3HFOuaGYKR/fp7ScRvrB5P+Ju6oHuhTtEzF6wdIY3G7jEZHS2TR2/1mN/1HKOfPDKp8OXtZcth9tN0a6iB2FZPGeGfssg/1EK1ufy1iPi33KOPp8nmgTLCP4qIv7lL9/Td9nD4/ILwx7B6hvbqa2DWKr8NGRdzHjS0FlOVD5fGXeCTwK3AHBH5X/QwCx+uSW0cY6Mg/JYlUAurp2uujrbHHPFv1I/JTR3FugIc8KLkyIh/sJi2GrwJ5dI6cwNGl8tvGvaixCaMKOE3TzLBqL9aq8cI/7SlxWmjivgtEdmx3v8EAUWxiy38XnnV9EeoxKbbdfQ79+TitLIRf5XCD1qotz4U3pZhnvgK7WRlrJ4XHy6WN6qI3zsPkrbwHyYRv1LqNuD1wNuAHwGrvfRMx+FGNRG/8qyR0UT89Q1aJMZD+E3DrqkrFIWyktUTJfyds3Vfg1FF/KMRfu8CDvYxMNtWIvzVRvxP6v1tht2AsVk9B3bD/hdLhb+lG+qbqrB6rDqMx7ANSsHTt+mG0vrG4vSyEX+VVg9ooT6wC/aFWIHmic+MQ1XO6tn2MCC68+ForZ5Eg76eGtoOL+H3OBM4BzgbqMFoTI5xIdUHiH9gM3PRKFXszGMzGuGH+CmdUcKfz0PvU8Wo2NQVig2ilaye5knQPkOLVUH4M3pMl46Z1Qt/ZlgLQuccXfbwgL9BtNI2gr9xtBDx7wxfPm4DsrlBVkotDCNM+MMadkGLXTUpnbYojYfds/dZ6H/Ob/NAMc03bP2jjfgh3Oe3UzmhvNWzbY0+Lk0d/nMzLnY/moZWz+M/TKweEfkG8C50T9vHgP8jIl+vSW0cYyPVp0XfHjq2eZLOM04Phme5jMbqgSqEP8LjH3gesqkI4a/C6qmr0znUpveuiQJNamI1mAjQRPyoeJlB9sVuZxwVIv6g8Hv7onNOZcEspLwujjduTJAwq8cI/7TlpctXJfyWKI2H8Js0zqDwR7W3jNbqmb5MZwpVLfzW9irlNex6NxH73IyL3XP+IFs9cXrungksU0qZxt3r0TcBx+GGPVyDwc6DDosexhLxp/p0A5dtQQSJiviDGT12XQsRf+Cirm/UmSh2xG/qYls9iQadIvfcX6rbJjujQ7yYKNVXfvvAf7Gbm1Ki0RvuWqKtns7ZxeGoo+h/Xo/gOGVRvHFjgkRF/B2zoLW7dPnO2brXbBzGO+LfdDtMXgCTj/JPb+4qtiPUB25+o7F66hv1006wgdd+4jNEWT0DL+ghymet1N9H6/HbEf/+HSHCX5s8mjhWz5OAPWD7HMD13D0cqST85uKs9zI5pK74uVqMt963OXqZbFqfyPVN+r/dAGgaLKccU1rXQsQfuKhFdIQ0sk9H4gXhP0rXI58vpvh1ztYRfByrxmALf9g4R1GkDxT3o31TSiS1bx5l9XTMrCyY9g0yzrgxQVJ9xbrZwh+0eQydc7QAxWmsNcfWrGcsZIZh8z2l0T4Uj4XdjqDU6K0e0JH6i2v954f9xGeIesoyTwuFiH+sVk9bqdVT33xIs3q6gQ0icpeI3AU8AUwRkV+KyC9rUivH6Igr/KaLeEPb6N9SVWhULSP8wWFnM9ZF0fukzr6x69vY7kX0g/pRPKxuDa36pSLgj/izw7qbvxGDztm6AXv/jvjbZIS/Y1b5HqNB0gf8vS/t49A2LTyrJ9kCrT2V2xHslNfRWj3meOcyOrV091NlhH82oHTjbyWy6WLZYxX+5/+srb9ywh9m9SJaIwAAIABJREFUW40m4gct2OlBvS8MwRx+iH7K2rZGP9VN9TKtRm312B5/wOppaD2kVs8narJmx/iT6tN+t02Y1dM2TTeijdbmAf1KR6S8z2+PRdL/vP5u6hPM6IFiZ52h3dGRXENrMevEFn7QdSkIv5Wa2Dkr3jYNvKDrWt9YvfB3zS1uoz1QXtvU8Ii/oRWaPQtpeCDaTup9UjdgN3f5y4kTCZqhIybP18c7l4Zd1hj8Ydi5/JPmlS8/l9ZPNANbxy78m+7QQjrv1NJ5ocIf0ckvLnYD71SvE1uo8Ec8ZW17WA/kZqyn+ib9BF2t1WPO0yjhr8XIp8RL5/yjUuqP6IbdycCgmeZNdxwuxI74veh0LMKfbNKRcVzht78r5R+cLay+UZFcQ2vxAjXLmu7ye5/1Wz1QXS6/3bAXV/jzeS/itwbaqhjxG+GPsQ77Blmt1TOyX4u8Od65dHRGj6GaXP5c2rtJVjG8RRSbboeXnRJ+TtZC+LsX6nGe7AZe+4nPEPaUlctqm8jcPKBoQ47F6skO+zv7NbQd/HROEfm1iCzzPs9AC//bgRtEJM4buBwHk3zeH2ka7BE6zYVjxgYZi/CD9tbLCr8Zdnaq//u+bfpzMOKH8I4zNg1txTGCzLIds/TydsQ/mheL2MLfFDKyaRjZFKD8Nzef8HsRv91ZyGRzVBL+4A2yWqsnaO3lMlr4zRj8YXTM1P/j3DDNTbaaPg9h9L+gb3BhNg/Uxuqpq9PDN/iE33riM4Sl0O5+Uqft2sIPxZTMuAStHvC3Y9TQ6ikX8R/ljcYJ8HfAbUqpC4ET0TcAx+HEiDfuelD4k826kcgIf1Nn8d2lo03lNFRK6SxE/NP93wsNu+Ui/jJWT3DZuoS2JQoRf4POrW7qjC/8heF4TVf9eh0RVhI0s03t1jam+oo33LZpOjPDTgs12RyVhH9gq24XKUT8VWb1lAh/unQM/iDJZh0YxI34Ew1jF/5nvCyiqoR/jBE/aOHe+Xgxyg6mcgbLN+sMNuwa7DfExSGYzgn+bWxoLR1cb5woJ/z2mXUO8BsApdR+vNcwOg4jwnrtGsyFaWebwDhE/PN1StvwvvD5YcPOQngqp11XKG/1BJc1ddm72Z/iV00u/9BeHb3bF34cCyP4VDO0R0eDttUDfrsnrtUT3E/VWj1Bay87UjoGfxhxc/nNTXaswr/pduiYHf4ECPoGLInaCH8+W7S/qhH+ps7Sl9JXI/zGIrStHigVfnu940g54X9BRP5RRC4BVqLH68EbsG2Uz1eOmlFR+PuLA5uZk3k8hB+iUzqjPP7ejdDSE55HXk3Eb/dQNk8f2ZHib6vpjBQcjtfUJW7E3zxZi9O+QPuDEV27YTa28AeejOx9ks9UHjc/GPHvfpqSMfjDiC383k22miGsS8rIwLN/1KNxRmWYiZTehMdq9YC/gTf4xGcIs3pMx61gfavx+I1FGLR6lBVTm5vBQRb+dwBL0WP0XKaUMubTSegx+h2HE1VF/OMs/FF2T8mr5bzvUQ27pq5Q3uMH/T7WhJWUNnm+ly6qAsIfs3E3LKOjGuFvbNN1CzY8FyJ+W/gH9bLmxlVO+FunFDN+gvukkt0TFH5jUVQU/pgvZBkPq2frg7pfRpTNYwiuYzwi/o4Zui1o25rwJ75g+bk0pIdg5xOlNg9U5/HbI3Pa/20ajfCPfy5/ZDqnUmoXeqiG4PQ/AH8Y95o4xobpaBQq/F3Fhs/OOZbVM1aP30sdjRT+EKtHKS1oyyJe2xzX6rFHILXrYv+2c7ZuLBvZr/sIlCM4HK+pS6Ux/c2F3tAWnnFUiPhDrJ5Evb6BlbN67BtkXeByzQV6sgYpCL/XmL9tTekY/GF0zvaG+AhJFvCt37J6TH8Ee7iQOGy6Xddp/pnllysR/oi3tFXLrJV6v4Q98QXLz2Vgx6M6UypU+NsgXaZfi4193kC48B8iq8dxJHEoIv6GVt1wW43wD+7UIjHqiL/Vv5zB9lsLEb9JTYzxQpaBF3QudotlP1UT8Zsx1YPC3zxJd0YLs3oguh2hkNFj+d4i1WX2pPp0R7GCf7y3dAz+MOKOy2+snkLP2lG88WzT7TDnRL9tF0ZkxD9G13nWKn3+Gp+/RPgD7SrmqWnmytKyqvH4SyL+kCDsEFk9jiOJsLH4Dc2TdKPjeAs/FBtVw0gPajGtb9T/04OWbx3RkFcx4m/zL2fonFuMiG2rB+L51aZhz/Zt7ZFNowgKf3bYXz8Rfy5/LquXsbcjTPj379CZWsEbZDWZPSa91/5NJZsHqhT+huo6u9kM7oLtjxTftlWOWlg9UIzcN3iDEJR4/IEb7bY1epn2aaVlVePxx7F6ChH/+Fs9TvhfKqT6dH52mGA2T9InrcoHsnrGaPVA+ZTOsC7p5TJ6TF2h+og/Ue8Niobf6oF4Pn9YRkfzJP1Yb94IFkbhAm7z70+7fnbv3Uzggo8S/qgbZDWZPcEbPcQU/piduGyrx6yvGp65U/+v5O9D7ayeGSsAgWf+UPrEFyw/lym+ajEM4/HHeVn9IbZ6Ij1+Efkq3usWw1BK/dO418YxesJ67RqCL2YxUe24RPxHwbrtfpE3hAr/Rp0FYuyfkrp6TyzVCj8Ub0Lmt23TtX8cN+I/OmQcePCyoTrCf1e4gFuLdZOEv02hbVqxDsFIr3lS+I0p6gZZrdVj3+jB//rGKFp69PAJlW6YQaunWuHfdLtuvI5Tp2A7wnhZPU0d+ubauxEmvaw0U8cuf/92/eS8OqIbU0OrDhSyI5XttOB5kAwT/kNj9TwErAGa0OmcT3t/K4DYPQpEJCEia0Xk1973o0TkfhF5WkR+LCJjvGU7AH+noSBB4R9vqwfC7R6TvQLF0QdNg2VU6t5orR67Lmb7EvXxXsiSHYHBHaWP+XEELX2gOMqpLeb29tkRv/2EYJaNivibJxV7WRuqsnq8c0JEtzNAvIi/rk6Pb1RuvymlU0pHG/Hnc3p8ngXnRHcmswm2I4yX1QNFuyf4xBcs3/QYD2vYhepG6AwKf1gj/aGwepRS1yulrgeOBs5WSn1VKfVVdGeuFVWs472APej454H/VEodDfSh00YdY6WaiH+8rR4It3uiIv4ofx+8Rj4ZfcQP/ptGnJx0M9pnmNUDulE0CtP7UiS6bm3T9MBz+Zz/CcEsm+rTHXpsom6QVVk9e/3WWcfsyu8WMFTab3YevVnHUJn9FGT7Ol2/ODYPlK5jvKweKFo3lYQf9E1+RoT8VTNCZzAACFtXskX/P5hWj8VMoB0wR7XNm1YREZkNnA98GviAiAjwSuBN3iLXA1cD/xO/ygeRZ++Ce79yqGsRj52PV+7ybj6b8UDGy+oBuPPfYU2ge8e2NXo8FLOurQ/pnO0ofx/0Y3xT5xiF3/pt52zY+Bu44ZLodZqex1HC//tPQNtXw3/b+2RpZkaJ8E/V7Svfvzjc6lF5+M55fnvoxYfh+MtL15do0FaSyultmlHGJjnQ63+CihPtGzrnwGM/i95vZhiBREMxI+eBb8LTv4tX/r4XAYEFZ8db3mzHz9+l95MZbnusVg9YEf+c0nmmfLPPpywu5tcHMcf0Z39f+drqf97/G9BPZbm0l6QgxTGDDpHwfw5YKyImd/9MtFjH4b+AD6NvHKDH9u9XSmW971uB0DFzReRK4EqAuXPnhi1Se3LZ8g17hxNTl8DS14XP6zkajnmNjlYmH6XHgV/219UJQRRNnbDyCtj1ROm+6jkGlr5ef17211r0Eo1wzKvLl3nye6J9355jYPml4Xnfc0/S65m1ujht2Rug77nyx1FEWw7mJmWYPB8W/ZUW0Kjfd8zULwcHvV0vPqzrZzP/LHjZaTqbpy4B88+Gacuseafqi9tex4zjw/s6rLwCUPD072FksPx2zX4FHO3t61dcCbNXRy8bZOnrdU/fcuXPPQXmna4ttVV/p4eDiHu9NLbDSf9Xn4txmHmC3m9pb5sbWmHR+dAeKwYtz7TlsOIt+lgH6ZwNx79JH4/Hfgor3lS6jGHWKn0uZFKV90PzJF2u/SKkU/5Bv4zm2Iv1QIZNnfoYjseTeQBRMVqgRWQ6enA2gPuVUhXfbiEiFwB/pZT6vyJyFvAh9GBvf1FKLfSWmQP8RilVVoFWr16tHnrooYr1dDgcDkcREVmjlCq548eJ+AESQK+3/DEicoxS6u4KvzkVuEhE/grdQNyBfgLoEpF6L+qfDcR41Y/D4XA4xouKwi8inwcuAx6nOCqnAsoKv1LqY8DHvDLOAj6klHqziPwEeANwI3AF8IvRVt7hcDgc1RMn4n8dsEgpNV6ve/8IcKOIXAOsBb49mkIymQxbt25leHh4nKp15NDU1MTs2bNJJt0gqQ6Ho3riCP+z6GGYRy38Sqm7gLu8z88CrxhtWYatW7fS3t7OvHnzkNG+MPwIRCnFnj172Lp1K0cddVTlHzgcDkeAOMI/BKwTkTuwxP9Q99wdHh6ecKIPICJ0d3fT29t7qKvicDiOUOII/y+9v8OOiSb6hom63Q6HY3yoKPxe712Hw+FwvEQoN0jbTUqpN4rIekIGa1NKxRhZyeFwOByHG+Ui/vd6/y84GBU50rn66qtpa2vjggsu4PLLL0dEuPnmm1mwYIFvueHhYc444wxGRkbIZrO84Q1v4FOf+hQAmzdv5vLLL2fv3r2sXLmSG264gYYGN4adw+EYX8oNi3eZiLwc2KaUei74d7AqeKTx85//nIsvvpi1a9eWiD5AY2Mjd955J4888gjr1q3j1ltv5b777gPgIx/5CO9///t5+umnmTRpEt/+9qgyXR0Oh6Ms5SL+2cBXgMUi8ijwZ+Be9JALVQzDV3s+9avHeeLFfeNa5rEzO/jkhUvLLvPpT3+a73//+8yZM4cpU6awZMkSvvGNb5BIJLj77rv5wx9KX00sIrS16bE3MpkMmUwGEUEpxZ133skPf/hDAK644gquvvpq3v3ud4/rdjkcDke5l61/CMAbL381cArwduBbItKvlDr24FTx8GTNmjXceOONrF27lmw2y8qVK1m1ahXvete7aGtr40Mf+lDkb3O5HKtWrWLTpk285z3v4cQTT2T37t10dXVRX68PyezZs9m2Lca7Yh0Oh6NK4qRzNqPH2en0/l4E1teyUtVSKTKvBffccw+XXHIJLS16zOyLLroo9m8TiQTr1q2jv7+fSy65hMcee4xp00rf4enSNh0ORy2I9PhF5FoRuRf4MXAy2uq5VCm1Win1dwergoczYxXmrq4uzjrrLG699VZ6enro7+8nm9UjVm/dupWZM8dhyFmHw+EIUK5xdy7QCOwAtqHHzu8/GJU6EjjjjDO45ZZbSKVS7N+/n1/96lexftfb20t/v96NqVSK22+/ncWLFyMinH322dx8880AXH/99Vx88cU1q7/D4Zi4lPP4X+O9MWsp2t//ILBMRPaiG3g/eZDqeFiycuVKLrvsMlasWMHLXvYyTj/99Fi/2759O1dccQW5XI58Ps8b3/hGLrhAZ8x+/vOf5/LLL+eqq67ihBNO4B3vcG+ldDgc40/cF7HMRo+vfwo6r79bKRXxZu/xJ+xFLBs2bGDJkiUHqwqHHRN9+x0OR2WqfhGLiPwTWuhPBTJ4qZzAdzjMGncdDofDEZ9yWT3zgJuB9yulth+c6rx02LNnD+ecc07J9DvuuIPu7u5DUCOHw+HQlPP4P3AwK/JSo7u7m3Xr1h3qajgcDkcJ5bJ6HA6Hw/ESxAm/w+FwTDCc8DscDscEwwm/w+FwTDCc8I8TV199NV/60pfYuHEjK1as4IQTTuCZZ56JXD6Xy3HCCScUOm+BHo//xBNP5Oijj+ayyy4jnU4fjKo7HI4JhhP+cabSePyGr3zlKyUdsNx4/A6H42AQZ3TOw5/f/v/tnX2YlWWdxz/fYGBiFFmHF4kBBpICkhwFyTLHRGCp7VpjY4tL2rS8glxTvMq2MbY26zIGc0239apMM1e3TaVUoBdxFaJcFZQ3MSKNSFEEG0DeFBj57R/3fZjTcObtzJznOcz5fa7rXHOe+3m5v+d35vye+7mf+/nedfBKFz9Tdso4+GB9q5vk48cPwYDt5z//OfPmzePGG28EcD9+x3ESo3sk/hTojB//VVddxfXXX8/evXuPljU0NLgfv+M4iVCwxC+pHFhBcPjsCSw0s3+T9CPgPOC1uOklZta5J53aaJkXgnz9+JcsWcLAgQMZP348y5cvP1qeyzPJ/fgdxykEhWzxHwQmmdk+SWXAbyX9Mq77opktLGDdiZBPYn7sscdYtGgRv/jFL3jjjTfYs2cPn/jEJ7jrrruO+vH37NnT/fgdxykYBUv8Fpqw++JiWXy1bQV6nFBbW8sll1xCXV0djY2NLF68mDlz5rS53/z585k/fz4Ay5cv54YbbuDuu+8GOOrHP3PmzHb58f/x1X1cfd+6zn8Yx3ES4+MThjJz4rBUNRS0j19SD+Bp4FTgFjN7UtJlwHWSvgo8AtSZ2cEc+84GZgMMG5ZukHKRrx9/a3TUj7+HxAm9/TaN4xwv/O7lPdz71IupJ/52+fF3uhKpH3A/cAXQQJjVqxdwK/BHM/t6a/u7H/+xlPrnd5zjkWt+tp6lz27n6a9MSaS+lvz4ExnHb2a7geXANDPbZoGDwB3AxCQ0OI7jpE11ZQUN+w+x543Dqeoo5KieAcBhM9st6a3AZGCBpMFmti1O6/gRYEOhNKSJ+/E7jtOc4ZUVALzQcIDThpyUmo5CdhAPBu6M/fxvAe41syWSHo0nBQFrgc8WUENquB+/4zjNqe4fhn9vadjfPRO/ma0HzshRPqlQdTqO4xQzw04Oif/PDQdS1eFePY7jOAnRp1dPBvXtzZa/7E9Vhyd+x3GcBBleWeEtfsdxnFKiurIPWxq8xd8t6Igff3V1NePGjaOmpoYJE5qG2O7cuZMpU6YwatQopkyZwq5du5KS7zhOQgyvrGDH3oMcONSYmoZu8djngpUL+P3O33fpMUefPJovTfxSh/fL+PFfe+21rW63bNky+vfv/1dl9fX1XHDBBdTV1VFfX099fT0LFizosAbHcYqX6jik888NBxgzuG8qGrzF3wmuu+463vnOdzJ58mQ2bdrEgQMHuOmmm7jttts4//zzO3y8Bx98kIsvvhgIfvwPPPBAV0t2HCdlhldmRvak193TLVr8+bTMO0tn/PglMXXqVCQxZ84cZs+eDcD27dsZPHgwAIMHD2bHjh2JfBbHcZIjk/i3pHiDt1sk/jTI148fgjXz2972Nnbs2MGUKVMYPXo0tbW1hZLqOE4RcWJ5Gf1P6JVqi9+7ejpBvhOlZHz2Bw4cyPTp01m5ciUAgwYNYtu2bQBs27aNgQMHdo1Qx3GKiuGVFWz5S3otfk/8eVJbW8v999/P66+/zt69e1m8eHG79tu/f//RKRf379/P0qVLOe2004Bw1XDnnXcCtMuP33Gc45PhlX28j/94JF8//u3btzN9+nQAGhsbueiii5g2bRoAdXV1fOxjH+P2229n2LBh3HfffQXT7zhOelRXVvCz1S/xxuE3KS/rkXj9nvg7wbx585g3b16H9hk5ciTr1uWeNauyspJHHnmkK6Q5jlPEZG7wvrjzAKMGnZh4/d7V4ziOkzCZsfxpjezxFn+BcD9+x3FaoukhrnT6+T3xFwj343ccpyVO6lNGvz5lqXn2eFeP4zhOCqTp0umJ33EcJwXSdOn0xO84jpMCwysreGnX6xxqPJJ43Z74HcdxUqC6sg9HDLbuSr67xxN/F9ERP/7du3czY8YMRo8ezZgxY3j88ccB9+N3nFJieJY9c9J0i1E9r3zzmxzc2LV+/L3HjOaUL3+5w/u1x49/7ty5TJs2jYULF3Lo0CEOHAhfvPvxO07pUH3UpTP5fn5v8XeCfPz49+zZw4oVK7j00ksB6NWrF/369QPcj99xSomTK3pxYu+e3uLPl3xa5p0lXz/+zZs3M2DAAD71qU+xbt06xo8fz80330xFRYX78TtOCSGJ4f3TGdnjLf48yfbj79u3b7v9+BsbG1m9ejWXXXYZa9asoaKigvr6+gKrdRynGAn2zN0o8Usql7RS0jpJz0q6NpaPkPSkpOck3SOpV6E0FJp8/PirqqqoqqriPe95DwAzZsxg9erVgPvxO06pUV3Zh627Xufwm8kO6Sxki/8gMMnMTgdqgGmSzgYWAN82s1HALuDSAmooGPn68Z9yyikMHTqUTZs2AcG7Z+zYsYD78TtOqTG8soLGI8bLu19PtN6C9fGbmQH74mJZfBkwCbgolt8JfA34bqF0FIp8/fgBvvOd7zBr1iwOHTrEyJEjueOOOwD343ecUiPbpTMzvDMJCnpzV1IP4GngVOAW4I/AbjNrjJtsBYa0sO9sYDbAsGHDCikzb/Lx4weoqanhqaeeOqbc/fgdp7QY0b+CqWMHUdEr2clYCpr4zexNoEZSP+B+YEyuzVrY91bgVoAJEybk3MZxHOd4ZsCJvbn1kxMSrzeR4ZxmtlvScuBsoJ+knrHVXwW8nISGpHE/fsdxipWCJX5JA4DDMem/FZhMuLG7DJgB/AS4GHgw3zrMLK+RNUlQSD/+cPvEcRwnPwo5qmcwsEzSemAV8LCZLQG+BHxe0vNAJXB7PgcvLy+noaGh5JKgmdHQ0EB5eXnaUhzHOU4p5Kie9cAZOco3AxM7e/yqqiq2bt3Kq6++2tlDHXeUl5dTVVWVtgzHcY5TjlvLhrKyMkaMGJG2DMdxnOMOt2xwHMcpMTzxO47jlBie+B3HcUoMHQ+jYiS9Cvw5j137A3/pYjldhWvrOMWqC1xbPhSrLihebR3VNdzMBjQvPC4Sf75IesrMkn8srh24to5TrLrAteVDseqC4tXWVbq8q8dxHKfE8MTvOI5TYnT3xH9r2gJawbV1nGLVBa4tH4pVFxSvti7R1a37+B3HcZxj6e4tfsdxHKcZnvgdx3FKjG6b+CVNk7RJ0vOS6opAzxZJz0haK+mpWHaypIfjxPMPS/qbBHT8UNIOSRuyynLqUOA/YgzXSzozBW1fk/RSjNtaSR/KWndN1LZJ0t8WUNdQScskbZT0rKS5sTz1uLWirRjiVi5ppaR1Udu1sXyEpCdj3O6R1CuW947Lz8f11Qnr+pGkP2XFrCaWJ/076CFpjaQlcbnr42Vm3e4F9CBM8zgS6AWsA8amrGkL0L9Z2fVAXXxfByxIQEctcCawoS0dwIeAXwIiTKLzZAravgZcnWPbsfF77Q2MiN93jwLpGgycGd+fCPwh1p963FrRVgxxE3BCfF8GPBnjcS8wM5Z/D7gsvv9n4Hvx/UzgnoR1/QiYkWP7pH8Hnwd+DCyJy10er+7a4p8IPG9mm83sEGHSlwtT1pSLCwkTzhP/fqTQFZrZCmBnO3VcCPyXBZ4gzJ42OGFtLXEh8BMzO2hmfwKepwvsvlvQtc3MVsf3e4GNhLmiU49bK9paIsm4mZnti4tl8WXAJGBhLG8et0w8FwIXSF0/01Iruloise9TUhXwd8BtcVkUIF7dNfEPAV7MWm5xUvcEMWCppKcVJpIHGGRm2yD8gIGBKWlrSUexxPFz8RL7h1ndYaloi5fTZxBaiUUVt2baoAjiFrst1gI7gIcJVxi7LUy92rz+o9ri+tcIkzUVXJeZZWJ2XYzZtyX1bq4rh+au5ibgX4AjcbmSAsSruyb+XGe9tMetnmNmZwIfBC6XVJuynvZQDHH8LvB2oAbYBvx7LE9cm6QTgJ8CV5nZntY2zVGWtLaiiJuZvWlmNYT5tScCY1qpPzFtzXVJOg24BhgNnAWcTJgtMDFdkj4M7DCzp7OLW6k7b13dNfFvBYZmLac+qbuZvRz/7gDuJ/wItmcuGePfHSnJa0lH6nE0s+3xR3oE+AFN3RKJapNURkis/21mP4vFRRG3XNqKJW4ZzGw3sJzQR95PUmYSqOz6j2qL60+i/V1/ndU1LXabmZkdBO4g+ZidA/y9pC2E7ulJhCuALo9Xd038q4BR8W54L8KNj0VpiZFUIenEzHtgKrAharo4btapiec7SUs6FgGfjKMazgZey3RtJEWzvtTphLhltM2MIxtGAKOAlQXSIMLc0BvN7MasVanHrSVtRRK3AZL6xfdvBSYT7kEsA2bEzZrHLRPPGcCjFu9cJqDr91kncRH60bNjVvDv08yuMbMqM6sm5KxHzWwWhYhXIe9Op/ki3In/A6FPcV7KWkYSRlKsA57N6CH0xz0CPBf/npyAlv8hXPofJrQYLm1JB+FS8pYYw2eACSlouyvWvT7+ow/O2n5e1LYJ+GABdb2fcAm9HlgbXx8qhri1oq0Y4vZuYE3UsAH4atbvYSXhxvJ9QO9YXh6Xn4/rRyas69EYsw3A3TSN/En0dxDr/ABNo3q6PF5u2eA4jlNidNeuHsdxHKcFPPE7juOUGJ74HcdxSgxP/I7jOCWGJ37HcZwSwxO/cwySKrMcCl/RX7s8/l8B6vuApNfi8ddL+l9JrdpXSKpRluNkWkiqlbRaUqOkGc3WXa/g/rgxujsqli9XcMbMxHRgW8fqYs37cpTldPmM61pyIR0t6XFJByVd3ex4cyVtiMe6qlCfxckPT/zOMZhZg5nVWHik/XvAtzPLZva+AlX7m3j8dxMewLu8je1rCOPV0+YF4BKCm+JRJL2P8CTmu4HTCDYA52VtMisrpjtaO1ZCNAJfMLMxhKdrL5c0Nq6rAx4xs1GE5xUyNuc7gSuBG7IPFO0PPkN48vV04MOSRhX+IzjtxRO/0yEyrcXYSv+1pHsl/UFSvaRZCj7nz0h6e9xugKSfSloVX+e0cXwR7IV3xeUKBZOxVQoe5RfGp7G/Dnw8tpg/HuvsF5+ubJD0ybj/XZImK5hyfSseZ72kOVl1fjGrPOPNXh1bvz+Irdal8SnPv8LMtpjZeppMtY6uIjxg04tggVwGbG/ts7dyrOYxekDB7O/sZI3IAAADzklEQVRZNRn+IWmfpOsUfOafkDQolo+ILfNVkr7RQt2tuXzmdCE1sx1mtorwwF02Y4AnzOyABfOwXxOeHnaKBE/8Tmc4HZgLjAP+CXiHmU0kWMpeEbe5mXDFcBbw0bguF+cquCW+QHiE/oexfB7hUfSzgPOBbxGS6FcJ/uM1ZnYP8Bihhf0uYDNwbtz/bOAJwlPAr8XjnAV8JibEqQTbgomEq4jxajLQGwXcYmbvAnZH/e3CzB4nPGq/Lb4eMrONWZvcEU9aX8l0AXWAT5vZeGACcKWkjCNjBSHhng6sILS6IXwH342f/ZW2Dq5jXT476iK7AahV6DLsQ7gyG9rGPk6CeOJ3OsOq2FI8SHicfWksfwaoju8nA/8Zk/oioK+ib1EzMl09QwkGWdfH8qlAXdx/OaEVPSzX/oSJXGoJzpTjJA0BdlrwXp9K8FtZS0holYTEPjW+1gCrCe6MmW6JP5nZ2vj+6azP1CaSTiW0fKsILedJWSeUWWY2jnByOpdw0uwIV0paRzihDc3SewhYkkPvOQQ7DAhWDq3pbq8DaYvEE9wCgg3zrwhWJY2t7uQkiid+pzMczHp/JGv5CJBxE3wL8N6s/uwhsSuhNRYREjgEn5SPZu0/rFnLOcMKmhLpcuBVgnHVb7KOc0XWcUaY2dJYPj+r/FQzuz3H53sz6zO1h+mE1ve+eOL5JeHqAzN7Kf7dS+jPb/dEKJI+QDiZvje27NcQToYAh63Jg6W53ja9WZTbgRTycJE1s9vN7EwzqyXcC3iurX2c5PDE7xSapcDnMguK85i2wfsJVxAADwFXZI2IOSOW7yXcCwDAzF4E+gOjzGwz8FvgapoS/0PAZTG5IekdCk6pDwGfji1dJA1RGyOK2skLwHmSesY6zwM2xuX+sa4y4MM0uUC2h5OAXWZ2QNJo4smkDR4juD0CzMq1QYxvLgdSyMNFVk0jlYYB/0DTFYdTBHjidwrNlcCEeOP0d8BnW9ju3NjnvY7Q9fGFWP4NQp/+eoVJ2DM3J5cBYzM3d2PZkwRHVggJfwjhBADh3sLvgNXxON8HesZW/4+BxyU9Q5jCLldXVE4knSVpK/CPwPclPRtXLaTJzXEdsM7MFhNu9D4kKeOm+RLBL7+1Y2XzK6Bn3P8bhO6etphLGKWzinDiyMU5hLhP0rETtNcDUyQ9B0yJy0g6Jer9PPCvkrZK6hv3+Wn8vhcDl5vZrnbodBLC3Tkdx3FKDG/xO47jlBie+B3HcUoMT/yO4zglhid+x3GcEsMTv+M4Tonhid9xHKfE8MTvOI5TYvw/ohWwGRWrF48AAAAASUVORK5CYII=\n",
469 | "text/plain": [
470 | ""
471 | ]
472 | },
473 | "metadata": {
474 | "needs_background": "light"
475 | },
476 | "output_type": "display_data"
477 | }
478 | ],
479 | "source": [
480 | "import matplotlib.pyplot as plt\n",
481 | "fig = plt.figure()\n",
482 | "ax = plt.subplot(111)\n",
483 | "df_30['MaxWinds'].plot(ax=ax, label='df_30')\n",
484 | "df_40['MaxWinds'].plot(ax=ax, label='df_40')\n",
485 | "df_50['MaxWinds'].plot(ax=ax, label='df_50')\n",
486 | "df_60['MaxWinds'].plot(ax=ax, label='df_60')\n",
487 | "ax.set_ylabel('Wind Speed In Knots')\n",
488 | "ax.set_xlabel('Time Between 1851 and 2019')\n",
489 | "plt.title('Tropical Storms by Maximum Wind Speeds (knots)')\n",
490 | "ax.legend()"
491 | ]
492 | },
493 | {
494 | "cell_type": "code",
495 | "execution_count": 35,
496 | "metadata": {},
497 | "outputs": [
498 | {
499 | "data": {
500 | "text/plain": [
501 | ""
502 | ]
503 | },
504 | "execution_count": 35,
505 | "metadata": {},
506 | "output_type": "execute_result"
507 | },
508 | {
509 | "data": {
510 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAD4CAYAAAAjKGdbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAPl0lEQVR4nO3df4zkd13H8eebHj/aLvSHhQ1cwYVESEqParvhd3AXVKBHAANGpCClmPMP0WoO5QgaIIZY0KoY/adBDATCJhRM1FOwKkujQGG3QK/HUWjLCVdqKz9s2aZSDt/+Md9Lp8fOzHfm9rsz7+vzkWxu5jPf78xrP/Od181+v/MjMhNJUi0PmXYASdL4LG9JKsjylqSCLG9JKsjylqSCdnRxpeecc04uLCx0cdWduueeezj99NOnHWMiZt9+VXOD2adlWPb19fVvZ+aj215XJ+W9sLDA2tpaF1fdqdXVVZaWlqYdYyJm335Vc4PZp2VY9oj4z3Guy90mklSQ5S1JBVneklSQ5S1JBVneklSQ5S1JBVneklSQ5S1JBVneklRQJ++wlKQTtbBv/6bje3cd5dIBlx1z+IrdXUSaKT7zlqSCLG9JKsjylqSCLG9JKsjylqSCLG9JKsjylqSCLG9JKsjylqSCLG9JKsjylqSCLG9JKsjylqSCLG9JKsjylqSCLG9JKsjylqSCLG9JKsjylqSCWpV3RPxORByMiBsj4sMR8Yiug0mSBhtZ3hGxE/gtYDEzzwdOAV7VdTBJ0mBtd5vsAE6NiB3AacC3uoskSRolMnP0QhGXA+8E7gX+OTMv2WSZPcAegPn5+YtWVla2OGr3NjY2mJubm3aMiZh9+1XNDTWyH7jtrk3H50+FO+4dvu6unWd0kOjEDZv35eXl9cxcbHtdI8s7Is4CPgr8MvA/wEeAqzPzg4PWWVxczLW1tbYZZsbq6ipLS0vTjjERs2+/qrmhRvaFffs3Hd+76yhXHtgxdN3DV+zuItIJGzbvETFWebfZbfJzwNcz878z84fAx4Bnt70BSdLWa1Pe3wCeGRGnRUQALwAOdRtLkjTMyPLOzOuAq4HrgQPNOld1nEuSNMTwHUeNzHwb8LaOs0iSWvIdlpJUkOUtSQVZ3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUUKvyjogzI+LqiPhKRByKiGd1HUySNNiOlsu9B/h4Zr4yIh4GnNZhJknSCCPLOyIeBTwPuBQgM+8D7us2liRpmMjM4QtE/DRwFfBl4AJgHbg8M+85brk9wB6A+fn5i1ZWVjoJ3KWNjQ3m5uamHWMiZt9+VXNDjewHbrtr0/H5U+GOe4evu2vnGR0kOnHD5n15eXk9MxfbXleb8l4EPgs8JzOvi4j3AHdn5h8MWmdxcTHX1tbaZpgZq6urLC0tTTvGRMy+/armhhrZF/bt33R8766jXHlg+E6Dw1fs7iLSCRs27xExVnm3OWB5BDiSmdc1568GLmx7A5KkrTeyvDPzv4BvRsRTmqEX0NuFIkmakravNvlN4EPNK01uBV7fXSRJ0iityjszvwi03hcjSeqW77CUpIIsb0kqyPKWpIIsb0kqyPKWpIIsb0kqyPKWpIIsb0kqyPKWpIIsb0kqyPKWpIIsb0kqyPKWpIIsb0kqyPKWpIIsb0kqyPKWpILafg3aSW9h33727jrKpQO+sXqYWf2m6pPVoG8Vb8P7SicLn3lLUkGWtyQVZHlLUkGWtyQVZHlLUkGWtyQVZHlLUkGWtyQVZHlLUkGWtyQVZHlLUkGWtyQVZHlLUkGWtyQVZHlLUkGWtyQVZHlLUkGWtyQVZHlLUkGtyzsiTomIL0TEP3QZSJI02jjPvC8HDnUVRJLUXqvyjohzgd3Ae7uNI0lqIzJz9EIRVwN/BDwSeFNmvmSTZfYAewDm5+cvWllZ2eKo3Tpw213Mnwp33Dv+urt2nrH1gca0sbHB3NzctGNMZNzsB267a+Lb2sr76sE059Mw6H6e9HHaVpeP52Hzvry8vJ6Zi22va8eoBSLiJcCdmbkeEUuDlsvMq4CrABYXF3NpaeCiM+nSffvZu+soVx4YOSU/5vAlS1sfaEyrq6tUm/Njxs1+6b79E9/WVt5XD6Y5n4ZB9/Okj9O2unw8b+W8t9lt8hzgpRFxGFgBnh8RH9ySW5ckTWRkeWfmWzLz3MxcAF4F/FtmvqbzZJKkgXydtyQVNNaOo8xcBVY7SSJJas1n3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUkOUtSQVZ3pJUUHdfwTwFCyfwreIaz4nO9eErdm9RkvFs5Tayd9fR1t9kP63fd5qqPh5PJPd23s8+85akgixvSSrI8pakgixvSSrI8pakgixvSSrI8pakgixvSSrI8pakgixvSSrI8pakgixvSSrI8pakgixvSSrI8pakgixvSSrI8pakgixvSSrI8pakgkaWd0Q8PiI+GRGHIuJgRFy+HcEkSYO1+QLio8DezLw+Ih4JrEfENZn55Y6zSZIGGPnMOzNvz8zrm9PfBw4BO7sOJkkaLDKz/cIRC8C1wPmZefdxl+0B9gDMz89ftLKyMlGgA7fdNdF6W2H+VLjj3u2/3V07zzjh69jY2GBubm6sdaY51/2/87jZp5m73zjby1bcx1tpku1lXF3dT9N6nLYx6n4eNu/Ly8vrmbnY9rZal3dEzAGfAt6ZmR8btuzi4mKura21zfAAC/v2T7TeVti76yhXHmizJ2lrHb5i9wlfx+rqKktLS2OtM8257v+dx80+zdz9xtletuI+3kqTbC/j6up+mtbjtI1R9/OweY+Iscq71atNIuKhwEeBD40qbklS99q82iSAvwYOZeafdh9JkjRKm2fezwFeCzw/Ir7Y/FzccS5J0hAjdxxl5r8DsQ1ZJEkt+Q5LSSrI8pakgixvSSrI8pakgixvSSrI8pakgixvSSrI8pakgixvSSrI8pakgixvSSrI8pakgixvSSrI8pakgixvSSrI8pakgixvSSpoNr+C+UFmK75le++uo1w6I9+q3kb/71wt+yRO9D6etW+f1/T5zFuSCrK8Jakgy1uSCrK8Jakgy1uSCrK8Jakgy1uSCrK8Jakgy1uSCrK8Jakgy1uSCrK8Jakgy1uSCrK8Jakgy1uSCrK8Jakgy1uSCrK8Jakgy1uSCmpV3hHxooi4KSJujoh9XYeSJA03srwj4hTgr4AXA+cBvxIR53UdTJI0WJtn3k8Hbs7MWzPzPmAFeFm3sSRJw0RmDl8g4pXAizLz15rzrwWekZlvPG65PcCe5uxTgJu2Pm7nzgG+Pe0QEzL79quaG8w+LcOy/2RmPrrtFe1osUxsMvZjjZ+ZVwFXtb3hWRQRa5m5OO0ckzD79quaG8w+LVuZvc1ukyPA4/vOnwt8aytuXJI0mTbl/XngpyLiiRHxMOBVwN91G0uSNMzI3SaZeTQi3gh8AjgFeF9mHuw82XRU3u1j9u1XNTeYfVq2LPvIA5aSpNnjOywlqSDLW5IKOunLOyLeFxF3RsSNfWMXRMRnIuJARPx9RDyq77K3NB8DcFNEvLBvfFs/ImCc3BHx8xGx3oyvR8Tz+9a5qBm/OSL+IiI2e+nn1LL3Xf6EiNiIiDf1jW37xzJMsL08rbnsYHP5I5rxmZ73iHhoRLy/GT8UEW/pW2e7t/XHR8QnmxwHI+LyZvzsiLgmIr7W/HtWMx7NnN4cETdExIV91/W6ZvmvRcTrZjD7JU3mGyLi0xFxQd91jTfvmXlS/wDPAy4Ebuwb+zzws83py4A/bE6fB3wJeDjwROAWegdpT2lOPwl4WLPMeTOU+2eAxzWnzwdu61vnc8Cz6L1e/5+AF8/SnPdd/lHgI8CbmvPbPucTzPsO4Abggub8TwCnVJh34NXASnP6NOAwsDClbf2xwIXN6UcCX20ei+8G9jXj+4B3NacvbuY0gGcC1zXjZwO3Nv+e1Zw+a8ayP/tYJnofOXIs+9jzftI/887Ma4HvHjf8FODa5vQ1wCua0y+jt0H/IDO/DtxM7+MBtv0jAsbJnZlfyMxjr70/CDwiIh4eEY8FHpWZn8neFvIB4OVd5h43O0BEvJzeA63/VUxT+ViGMbP/AnBDZn6pWfc7mfmjIvOewOkRsQM4FbgPuJvpbOu3Z+b1zenvA4eAnc3tvr9Z7P3cP4cvAz6QPZ8Fzmzm/IXANZn53cz8XvP7vmiWsmfmp5tsAJ+l974ZmGDeT/ryHuBG4KXN6V/i/jch7QS+2bfckWZs0Ph2G5S73yuAL2TmD+hlPNJ32bRyw4DsEXE68GbgHcctPytzDoPn/clARsQnIuL6iPi9Znzm5x24GrgHuB34BvAnmfldpjzvEbFA7y/J64D5zLwdeiUJPKZZbCYfpy2z93sDvb8gYILsD9byvgz4jYhYp/enzn3N+KCPAmj1EQHbYFBuACLiqcC7gF8/NrTJdUzrtaGDsr8D+LPM3Dhu+QrZdwDPBS5p/v3FiHgBNbI/HfgR8Dh6uwj3RsSTmGL2iJijt/vstzPz7mGLbjI21cfpGNmPLb9Mr7zffGxok8WGZm/z2SYnncz8Cr0/eYmIJwO7m4uGfRTA1D8iYEhuIuJc4G+BX83MW5rhI9z/ZxlM8aMNhmR/BvDKiHg3cCbwfxHxv8A6MzDnMHJ7+VRmfru57B/p7XP+ILM/768GPp6ZPwTujIj/ABbpPfvb9nmPiIfSK78PZebHmuE7IuKxmXl7s1vkzmZ80OP0CLB03Phql7lh7OxExNOA99I7DvKdZnj8jyHpcmf+rPzQOxDTfxDnMc2/D6G3P/Ky5vxTeeABy1vpHUjY0Zx+IvcfTHjqDOU+s8n0ik2u4/P0DuocO3B28SzN+XHrvJ37D1hOZc7HnPezgOvpHfDbAfwLsLvCvNN7xvc3Tb7TgS8DT5vGvDcZPgD8+XHjf8wDD/q9uzm9mwcesPxcM3428PXmfjmrOX32jGV/Ar1jac8+bvmx573zjWnaP8CH6e3X+yG9/93eAFxO76jwV4EraN5p2iz/VnpHfW+i7xUC9I5wf7W57K2zlBv4fXr7L7/Y93PsQbtIb7/nLcBf9v+us5D9uPXeTlPe05jzCbeX19A70HrjsQdohXkH5ui9uucgveL+3Slu68+lt4vghr7t92J6r975V+Brzb9nN8sHvS+IuQU4ACz2Xddl9MrxZuD1M5j9vcD3+pZdm3TefXu8JBX0YD1gKUmlWd6SVJDlLUkFWd6SVJDlLUkFWd6SVJDlLUkF/T/BS4+bEdO7BgAAAABJRU5ErkJggg==\n",
511 | "text/plain": [
512 | ""
513 | ]
514 | },
515 | "metadata": {
516 | "needs_background": "light"
517 | },
518 | "output_type": "display_data"
519 | }
520 | ],
521 | "source": [
522 | "df_30['Date'].hist(bins=20)"
523 | ]
524 | },
525 | {
526 | "cell_type": "code",
527 | "execution_count": 37,
528 | "metadata": {},
529 | "outputs": [
530 | {
531 | "data": {
532 | "text/plain": [
533 | ""
534 | ]
535 | },
536 | "execution_count": 37,
537 | "metadata": {},
538 | "output_type": "execute_result"
539 | },
540 | {
541 | "data": {
542 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAASW0lEQVR4nO3dfYxldX3H8ffXXR9gB5el6BQX7GqiVGTEuhOfa2egVmSN2GhTFZUHm22a2q5mtWKtUdOY4gNtbWyabFCL0TgJSFNrW3VLGUmroDuA7C4rssBGd6UgouAQKq5++8c9s3sZ78zch3PvnJ99v5LJnHvOued+5nfnfObec++dE5mJJKk8j1rtAJKk/ljgklQoC1ySCmWBS1KhLHBJKtTaUd7YiSeemJs2bTpy+cEHH2TdunWjjNC1JmeDZudrcjZodr4mZ4Nm52tyNhgs39zc3L2Z+YRfWJCZI/vavHlztrvmmmuyqZqcLbPZ+ZqcLbPZ+ZqcLbPZ+ZqcLXOwfMCu7NCpHkKRpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhVqxwCPiExFxT0TsaZt3QkTsjIjbqu8bhhtTkrRYN4/A/xE4e9G8i4GrM/NpwNXVZUnSCK1Y4Jl5LXDfotnnApdX05cDr6o5lyRpBZFdnNAhIjYBX8jM06vLP8rM49uW/zAzOx5GiYitwFaA8fHxzTMzM0eWzc/PMzY2Nkj+oWlyNmh2viZng2bna3I2aHa+1ci2+9D9Xa03sXH9QPmmp6fnMnNy8fyh/y+UzNwB7ACYnJzMqampI8tmZ2dpv9wkTc4Gzc7X5GzQ7HxNzgbNzrca2S64+F+7Wu/AeVNDydfvu1DujoiTAKrv99QXSZLUjX4L/PPA+dX0+cA/1xNHktStbt5G+Fnga8CpEXEwIt4MXAK8NCJuA15aXZYkjdCKx8Az83VLLDqr5iySpB74SUxJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVKihn1JNkppiU7enQLtky5CT1MNH4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklSogQo8It4WEXsjYk9EfDYiHldXMEnS8vou8IjYCPwpMJmZpwNrgNfWFUyStLxBD6GsBY6JiLXAscD3Bo8kSepGZGb/V47YBnwAeAj4cmae12GdrcBWgPHx8c0zMzNHls3PzzM2Ntb37Q9Tk7NBs/M1ORs0L9/uQ/cfmR4/Bu5+qPN6ExvXjyjR0po2du26ydY+1svpdqx72d4gYzc9PT2XmZOL5/dd4BGxAfgc8PvAj4ArgCsz89NLXWdycjJ37dp15PLs7CxTU1N93f6wNTkbNDtfk7NB8/K1nyl9+8RhLt29tuN6TThTetPGrl032eo+K30v2xtk7CKiY4EPcgjlt4E7M/P7mflT4CrghQNsT5LUg0EK/DvA8yPi2IgI4CxgXz2xJEkr6bvAM/N64ErgBmB3ta0dNeWSJK2g88G2LmXme4H31pRFktQDP4kpSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoQb6f+BS03U6Z+H2icNcsGh+E843KfXKR+CSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEINVOARcXxEXBkR34qIfRHxgrqCSZKWN+gZeT4KfDEzXxMRjwGOrSGTJKkLfRd4RDweeAlwAUBmPgw8XE8sSdJKBjmE8lTg+8AnI+LGiLgsItbVlEuStILIzP6uGDEJXAe8KDOvj4iPAg9k5nsWrbcV2AowPj6+eWZm5siy+fl5xsbG+s0+VE3ItvvQ/UsuGz8G7n6oNT2xcf3A22vX7faWMoqx6/Zn6aR97Ho16Nh00v6zLJdtGLfdqybsF0vpJlvd+0Av2xtk7Kanp+cyc3Lx/EEK/FeB6zJzU3X5N4GLM3PJ03tPTk7mrl27jlyenZ1lamqqr9sftiZk63RG9QXbJw5z6e7WEbBuz6i+3PbaDXqG9lGMXbc/SyftY9erYZy9vv1nWS7bMG67V03YL5bSTba694FetjfI2EVExwLv+xBKZv4P8N2IOLWadRZwS7/bkyT1ZtB3ofwJ8JnqHSh3ABcOHkmS1I2BCjwzbwJ+4WG9JGn4/CSmJBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhRr0hA5qM8hpvkq8XWnYRnUawFL5CFySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKNXCBR8SaiLgxIr5QRyBJUnfqeAS+DdhXw3YkST0YqMAj4mRgC3BZPXEkSd2KzOz/yhFXAn8FHAe8PTNf0WGdrcBWgPHx8c0zMzNHls3PzzM2Ntb37Q9i96H7l10+fgzc/RBMbFxf2zbrtJBvGHr5mTsZxf06yFgPc+zadTuO7T/LctkGvV/qMOp9ttv7eWLj+q6y9bK9btSdbynT09NzmTm5eH7fZ6WPiFcA92TmXERMLbVeZu4AdgBMTk7m1NTRVWdnZ2m/PEoXrHC26+0Th7l091oOnDdV2zbrtJBvGHr5mTsZxf06yFgPc+zadTuO7T/LctkGvV/qMOp9ttv7+cB5U11l62V73ag7X68GOYTyIuCVEXEAmAHOjIhP15JKkrSivgs8M9+VmSdn5ibgtcB/ZuYbaksmSVqW7wOXpELVciAwM2eB2Tq2JUnqjo/AJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKtTwTwxYuE0jPM9lU3T7Mx+4ZEvt2/xl8v/xZ/5lUcp95yNwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1Kh+i7wiDglIq6JiH0RsTcittUZTJK0vEHOyHMY2J6ZN0TEccBcROzMzFtqyiZJWkbfj8Az867MvKGa/jGwD9hYVzBJ0vIiMwffSMQm4Frg9Mx8YNGyrcBWgPHx8c0zMzNHls3PzzM2NtbVbew+dP/AOXsxfgzc/dBIb7InTcg3sXF9x/md7tdR33/LacLYLaWObEvdL3XoZZ+tQy+/N02+Xyc2rh9o7Kanp+cyc3Lx/IELPCLGgK8AH8jMq5Zbd3JyMnft2nXk8uzsLFNTU13dzqhPMrp94jCX7m7uOZ+bkG+pkxp3ul+bdJLYJozdUurI1svJpnvVyz5bh15+b5p8vx64ZMtAYxcRHQt8oHehRMSjgc8Bn1mpvCVJ9RrkXSgBfBzYl5l/XV8kSVI3BnkE/iLgjcCZEXFT9XVOTbkkSSvo+4BRZv4XEDVmkST1wE9iSlKhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVKhmnkBORVjqfIXbJw5zQYPOgSn9svIRuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBVqoAKPiLMj4taI2B8RF9cVSpK0sr4LPCLWAH8PvBw4DXhdRJxWVzBJ0vIGeQT+XGB/Zt6RmQ8DM8C59cSSJK0kMrO/K0a8Bjg7M/+guvxG4HmZ+ZZF620FtlYXTwVubVt8InBvXwGGr8nZoNn5mpwNmp2vydmg2fmanA0Gy/drmfmExTMHOSt9dJj3C38NMnMHsKPjBiJ2ZebkABmGpsnZoNn5mpwNmp2vydmg2fmanA2Gk2+QQygHgVPaLp8MfG+wOJKkbg1S4N8AnhYRT4mIxwCvBT5fTyxJ0kr6PoSSmYcj4i3Al4A1wCcyc2+Pm+l4aKUhmpwNmp2vydmg2fmanA2ana/J2WAI+fp+EVOStLr8JKYkFcoCl6RC1VrgEfGJiLgnIva0zXt2RFwXETdFxK6IeG7bsqlq/t6I+Erb/KF8RL+XfBGxPiL+JSK+WeW7sO0650fEbdXX+UPMdkZEfC0idldZHt+27F3V+NwaES9rmz/KseuYLyJeGhFz1fy5iDiz7Tqbq/n7I+LvIqLT21GHlq1t+ZMjYj4i3t42b9XHrlr2rGrZ3mr546r5qzp2EfHoiLi8mr8vIt7Vdp1hjd0pEXFNdXt7I2JbNf+EiNhZ7YM7I2JDNT+qsdkfETdHxHPatlXrfttHtvOqTDdHxFcj4oy2bfU3fplZ2xfwEuA5wJ62eV8GXl5NnwPMVtPHA7cAT64uP7H6vga4HXgq8Bjgm8Bpq5Dvz4EPVtNPAO6r8pwA3FF931BNbxhStm8Av1VNXwT8ZTV9WjUujwWeUo3XmlUYu6Xy/QbwpGr6dOBQ23W+DryA1ucI/n1h7EeVrW3554ArgLev0u/dUmO3FrgZOKO6/CvAmiaMHfB6YKaaPhY4AGwa8tidBDynmj4O+Hb1+/8h4OJq/sUc3VfPqcYmgOcD11fza99v+8j2woXbpPUvSBay9T1+tT4Cz8xraRXdI2YDC48u1nP0veKvB67KzO9U172nmj+0j+j3mC+B46pHOWPV9Q4DLwN2ZuZ9mflDYCdw9pCynQpcW03vBF5dTZ9La0f6SWbeCeynNW6jHruO+TLzxsxcGMe9wOMi4rERcRLw+Mz8WrZ+cz8FvGqU2QAi4lW0duD2d001YuyA3wFuzsxvVtf9QWb+rCFjl8C6iFgLHAM8DDzAcMfursy8oZr+MbAP2Fht//Jqtcs5OhbnAp/KluuA46uxq32/7TVbZn61um2A62h9dgYGGL9RHAN/K/DhiPgu8BFg4WnX04ENETFbPc1+UzV/I/DdtusfrOaNOt/HgGfQKvTdwLbM/PmI8+0BXllN/x5HPzi1VIZRj91S+dq9GrgxM39SZTk4onwds0XEOuCdwPsXrd+UsXs6kBHxpYi4ISL+rC3fqo4dcCXwIHAX8B3gI5l5HyMau4jYROvZ3fXAeGbeBa0iBZ5YrbYq+0aX2dq9mdYzheUyr2gUBf5HwNsy8xTgbcDHq/lrgc3AFlp/Hd8TEU+ny4/ojyDfy4CbgCcBzwY+Vh0LHGW+i4A/jog5Wk/RHq7mL5Vh1GO3VD4AIuKZwAeBP1yYNcJ8S2V7P/A3mTm/aP2mjN1a4MXAedX3342Is0acb6lszwV+RmufeAqwPSKeOopsETFG67DXWzPzgeVWXSLL0DL2kG1h/WlaBf7OhVn9Zhvkf6F063xgWzV9BXBZNX0QuDczHwQejIhrgTMY/Uf0l8p3IXBJ9XR1f0TcCfx6lW9qUb7ZYQTLzG/RekpN9cdtS7VouTEa2dgtk4+IOBn4J+BNmXl7NfsgR582DjXfMtmeB7wmIj5E63WYn0fE/wJzNGPsDgJfycx7q2X/RusY9adZ/bF7PfDFzPwpcE9E/DcwSevR49DGLiIeTasgP5OZV1Wz746IkzLzruoQycIh2KX2jaHstz1mIyKeRatjXp6ZP1gh88rqeKFh0YH9TTzyBZF9wFQ1fRYwV00/A7ia1h+RY2k9bTu9unwHrb/wCwf0n7kK+f4BeF81PQ4covXfxE4A7qT1QsiGavqEIWVbeGH3UbSOeV5UXX4mj3wR8w5aL4SMeuyWynd8dduv7rCNb9B6cWnhhbhzRplt0XXex9EXMZsydhuAG6p9Yi3wH8CWJowdrUeMn6xufx2tNyE8a5hjV93Wp4C/XTT/wzzyhcIPVdNbeOSLmF+v5te+3/aR7cm0Xq964aL1+x6/Wn4524J8ltbxsZ/S+qvyZlpPA+eqUNcDm9vWf0f1S7CH1tOPhfnn0HpF93bg3auRj9bTxC/TOv69B3hD23Yuqu6I/cCFQ8y2rRqHbwOXUH1ytlr/3dX43ErbuxFGPHYd8wF/QetY6U1tXwulMFmN5+20XmeIUWZbdL33URV4U8auWv8NtF5g3UO18zdh7Gi9mH9Fle0W4B0jGLsX0zqccHPb79I5tN6dczVwW/X9hGr9oHWimdtp7buTw9pv+8h2GfDDtnV3DTp+fpRekgrlJzElqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSrU/wHhVVxbDNCWGQAAAABJRU5ErkJggg==\n",
543 | "text/plain": [
544 | ""
545 | ]
546 | },
547 | "metadata": {
548 | "needs_background": "light"
549 | },
550 | "output_type": "display_data"
551 | }
552 | ],
553 | "source": [
554 | "df_40['Date'].hist(bins=30)"
555 | ]
556 | },
557 | {
558 | "cell_type": "code",
559 | "execution_count": 39,
560 | "metadata": {},
561 | "outputs": [
562 | {
563 | "data": {
564 | "text/plain": [
565 | ""
566 | ]
567 | },
568 | "execution_count": 39,
569 | "metadata": {},
570 | "output_type": "execute_result"
571 | },
572 | {
573 | "data": {
574 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAATd0lEQVR4nO3dfYxldX3H8fdX1gdgcIGiE1ywq4lSkQXLTnyOzkityBqx1aYqKk/Ntk1tV7Nal1qjpjFFLW1tbNoQpWI0TAJiaqUqW8pIWgHdQWQXVuQxukihiIJDqbj67R/3TLhM987ce865d+5veb+SyZx77jn3fOf7u+cz955zHyIzkSSV6wmrXYAkqRmDXJIKZ5BLUuEMckkqnEEuSYVbM8qNHXHEEbl+/fpRbhKAhx56iIMPPnjk212ONa1s3OoBa+rXuNU0bvXAYDXNz8/fl5lP67lAZo7sZ+PGjbkarrzyylXZ7nKsaWXjVk+mNfVr3Goat3oyB6sJ2JHLZKuHViSpcAa5JBXOIJekwhnkklQ4g1ySCmeQS1LhDHJJKpxBLkmFM8glqXAjfYu+Rmf9tssGXmfrhr2cse0y7jx30xAqUi91xqrb4rgN6vE4zk16Pc798hG5JBXOIJekwhnkklQ4g1ySCmeQS1LhDHJJKpxBLkmFM8glqXAGuSQVziCXpMIZ5JJUuBWDPCIuiIh7I2JX17yPR8R3I+KGiPhiRBw63DIlSb3084j8M8DJS+ZtB47LzOOB7wHntFyXJKlPKwZ5Zl4F3L9k3uWZube6eA1w1BBqkyT1oY1j5GcBX2nhdiRJNURmrrxQxHrgy5l53JL57wemgN/OHjcUEZuBzQCTk5MbZ2dnG5Y8uIWFBSYmJka+3eX0U9POux4YUTUdkwfCPQ/DhnVrR7rdXkodt0E1HefFcRvUMMd53MZusZ4mvW67X4P0aGZmZj4zp3pdXzvII+J04A+AkzLzf/opZmpqKnfs2NHPoq2am5tjenp65NtdTj81Nf3CgUFt3bCX83auGZsP0C913AbVxhdLnLdz8O+IGeY4j9vYLdYzTl8sMUiPImLZIK/1DUERcTLwPuCV/Ya4JGk4+nn54UXA1cAxEbEnIs4GPgkcAmyPiOsj4h+HXKckqYcVH5Fn5lv2MfvTQ6hFklSD7+yUpMIZ5JJUOINckgpnkEtS4QxySSqcQS5JhTPIJalwBrkkFc4gl6TCGeSSVDiDXJIKZ5BLUuEMckkqnEEuSYUzyCWpcAa5JBXOIJekwhnkklQ4g1ySCmeQS1LhDHJJKpxBLkmFM8glqXArBnlEXBAR90bErq55h0fE9oi4pfp92HDLlCT10s8j8s8AJy+Ztw24IjOfA1xRXZYkrYIVgzwzrwLuXzL7VODCavpC4A0t1yVJ6lPdY+STmXk3QPX76e2VJEkaRGTmygtFrAe+nJnHVZd/kpmHdl3/48zc53HyiNgMbAaYnJzcODs720LZg1lYWGBiYmLk211OPzXtvOuBEVXTMXkg3PMwbFi3dqTb7aXUcRtU03FeHLdBDXOcx23sFutp0uu2+zVIj2ZmZuYzc6rX9Wtq1nBPRByZmXdHxJHAvb0WzMzzgfMBpqamcnp6uuYm65ubm2M1trucfmo6Y9tloymmsnXDXs7buYY7T5se6XZ7KXXcBtV0nBfHbVDDHOdxG7vFepr0uu1+tdmjuodWvgScXk2fDvxzK9VIkgbWz8sPLwKuBo6JiD0RcTZwLvDqiLgFeHV1WZK0ClZ8PpaZb+lx1Ukt1yJJqsF3dkpS4QxySSqcQS5JhTPIJalwBrkkFc4gl6TCGeSSVDiDXJIKZ5BLUuEMckkqXN1PP3xcWd/kE9PO3dRiJVqO46THKx+RS1LhDHJJKpxBLkmFM8glqXAGuSQVziCXpMIZ5JJUOINckgpnkEtS4QxySSqcQS5JhTPIJalwjYI8It4dETdGxK6IuCgintJWYZKk/tQO8ohYB/wJMJWZxwEHAG9uqzBJUn+aHlpZAxwYEWuAg4AfNi9JkjSIyMz6K0dsAT4CPAxcnpmn7WOZzcBmgMnJyY2zs7O1t1fXwsICExMTtdffedcDLVbTMXkg3PNw6zfbyGJNG9atXe1SgMHHrck49fs396ppGPeRftW9Lw1znJvuc8up0+s29re2+zVIj2ZmZuYzc6rX9bWDPCIOA74A/C7wE+Bi4JLM/FyvdaampnLHjh21ttfE3Nwc09PTtddv8oUFvWzdsJfzdo7X93os1jQuX7Iw6LiN4osletU0jPtIv+rel4Y5zk33ueXU6XUb+1vb/RqkRxGxbJA3ObTyG8Admfnfmflz4FLgpQ1uT5JUQ5Mg/z7w4og4KCICOAnY3U5ZkqR+1Q7yzLwWuAS4DthZ3db5LdUlSepTo4NGmflB4IMt1SJJqsF3dkpS4QxySSqcQS5JhTPIJalwBrkkFc4gl6TCGeSSVDiDXJIKZ5BLUuEMckkq3Hh9jqrGQtOPZG3ycZ/d2966YS9nrOLHw0rdVnO/WImPyCWpcAa5JBXOIJekwhnkklQ4g1ySCmeQS1LhDHJJKpxBLkmFM8glqXAGuSQVziCXpMIZ5JJUuEZBHhGHRsQlEfHdiNgdES9pqzBJUn+afvrhJ4CvZuabIuJJwEEt1CRJGkDtII+IpwKvAM4AyMxHgEfaKUuS1K/IzHorRrwAOB+4CTgBmAe2ZOZDS5bbDGwGmJyc3Dg7O9uo4DoWFhaYmJiovf7Oux5osZqOyQPhnodbv9lG2qppw7q1tdft7vX+3KM21a2pyTitpOk+t5w6++M4jNvSfg/So5mZmfnMnOp1fZMgnwKuAV6WmddGxCeABzPzA73WmZqayh07dtTaXhNzc3NMT0/XXr/pB8rvy9YNezlv53h9r0dbNbX5xRL7a4/aVLemYX7RQdN9bjl19sdxGLel/R6kRxGxbJA3Odm5B9iTmddWly8BTmxwe5KkGmoHeWb+F/CDiDimmnUSncMskqQRavpc44+Bz1evWLkdOLN5SZKkQTQK8sy8Huh53EaSNHy+s1OSCmeQS1LhDHJJKpxBLkmFM8glqXAGuSQVziCXpMIZ5JJUOINckgpnkEtS4QxySSqcQS5JhTPIJalwBrkkFc4gl6TCGeSSVDiDXJIKZ5BLUuEMckkqnEEuSYUzyCWpcAa5JBXOIJekwjUO8og4ICK+HRFfbqMgSdJg2nhEvgXY3cLtSJJqaBTkEXEUsAn4VDvlSJIGFZlZf+WIS4C/BA4B3pOZr9vHMpuBzQCTk5MbZ2dna21r510P1K5z8kC45+Haqw/F/lzThnVra6/bPc77c4/aVLemJuO0koWFBSYmJoZy23WyYBzGbWm/B+nRzMzMfGZO9bp+Td2iIuJ1wL2ZOR8R072Wy8zzgfMBpqamcnq656LLOmPbZbXWA9i6YS/n7az9pw7F/lzTnadN1163e5z35x61qW5NTcZpJXNzc9Td11dSJwvGYdyW9rvNHjU5tPIy4PURcScwC7wqIj7XSlWSpL7VDvLMPCczj8rM9cCbgX/PzLe1VpkkqS++jlySCtfKQaPMnAPm2rgtSdJgfEQuSYUzyCWpcAa5JBXOIJekwhnkklQ4g1ySCmeQS1LhDHJJKpxBLkmFM8glqXAGuSQVziCXpMIZ5JJUOINckgpnkEtS4QxySSqcQS5JhTPIJalwBrkkFc4gl6TCGeSSVDiDXJIKZ5BLUuFqB3lEHB0RV0bE7oi4MSK2tFmYJKk/axqsuxfYmpnXRcQhwHxEbM/Mm1qqTZLUh9qPyDPz7sy8rpr+KbAbWNdWYZKk/kRmNr+RiPXAVcBxmfngkus2A5sBJicnN87Oztbaxs67Hqhd3+SBcM/DtVcfiv25pg3r1tZet3uc9+cetaluTU3GaSULCwtMTEwM5bbrZME4jNvSfg/So5mZmfnMnOp1feMgj4gJ4OvARzLz0uWWnZqayh07dtTazvptl9VaD2Drhr2ct7PJUaT27c813Xnuptrrdo/z/tyjNtWtqck4rWRubo7p6emh3HadLBiHcVva70F6FBHLBnmjV61ExBOBLwCfXynEJUnD0eRVKwF8GtidmX/dXkmSpEE0eUT+MuDtwKsi4vrq55SW6pIk9an2QaPM/A8gWqxFklSD7+yUpMIZ5JJUOINckgpnkEtS4QxySSqcQS5JhTPIJalwBrkkFc4gl6TCGeSSVLjx+jxO7ReafOSwpMH5iFySCmeQS1LhDHJJKpxBLkmFM8glqXAGuSQVziCXpMIZ5JJUOINckgpnkEtS4QxySSqcQS5JhWsU5BFxckTcHBG3RsS2toqSJPWvdpBHxAHA3wOvBY4F3hIRx7ZVmCSpP00ekb8QuDUzb8/MR4BZ4NR2ypIk9Ssys96KEW8CTs7M36suvx14UWa+c8lym4HN1cVjgJvrl1vbEcB9q7Dd5VjTysatHrCmfo1bTeNWDwxW069m5tN6XdnkiyViH/P+33+FzDwfOL/BdhqLiB2ZObWaNSxlTSsbt3rAmvo1bjWNWz3Qbk1NDq3sAY7uunwU8MNm5UiSBtUkyL8FPCcinhURTwLeDHypnbIkSf2qfWglM/dGxDuBrwEHABdk5o2tVdauVT2004M1rWzc6gFr6te41TRu9UCLNdU+2SlJGg++s1OSCmeQS1Lhig3yiLggIu6NiF1d814QEddExPURsSMiXth13XQ1/8aI+HrX/NY+ZmCQmiJibUT8S0R8p6rpzK51To+IW6qf01uu54SIuDoidlbbf2rXdedUfbg5Il7TNX/YPdpnTRHx6oiYr+bPR8SrutbZWM2/NSL+LiL29XLY1mvquv6ZEbEQEe/pmtdKn2qM2/HVdTdW1z+lmr8qPYqIJ0bEhdX83RFxTtc6bfXo6Ii4srr9GyNiSzX/8IjYXu072yPisGp+VD24NSJuiIgTu26rrf1t0JpOq2q5ISK+EREn1O5TZhb5A7wCOBHY1TXvcuC11fQpwFw1fShwE/DM6vLTq98HALcBzwaeBHwHOHZENf0Z8NFq+mnA/VUNhwO3V78Pq6YPa7GebwGvrKbPAv6imj62+vufDDyr6ssBI+pRr5p+HXhGNX0ccFfXOt8EXkLn/QxfWezxsGvquv4LwMXAe9q+Lw3YozXADcAJ1eVfAQ5YzR4BbwVmq+mDgDuB9S336EjgxGr6EOB71X34Y8C2av42Ht3HTql6EMCLgWur+W3ub4PW9NLFbdH5qJPFmgbuU7GPyDPzKjrh95jZwOIjlbU8+rr2twKXZub3q3Xvrea3+jEDA9aUwCHVo6SJar29wGuA7Zl5f2b+GNgOnNxiPccAV1XT24E3VtOn0tn5fpaZdwC30unPKHq0z5oy89uZudivG4GnRMSTI+JI4KmZeXV27vmfBd4wipoAIuINdHb47ldptdanAev5TeCGzPxOte6PMvMXq9yjBA6OiDXAgcAjwIO026O7M/O6avqnwG5gXXV7F1aLXcijf/OpwGez4xrg0KpHbe5vA9WUmd+otglwDZ334kCNPhUb5D28C/h4RPwA+Ctg8Sndc4HDImKueor+jmr+OuAHXevvqeaNoqZPAs+jE+w7gS2Z+csR1LQLeH01/Ts8+qauXtsdRY961dTtjcC3M/Nn1fb3rEZNEXEw8D7gw0uWX61xey6QEfG1iLguIv60q55V6RFwCfAQcDfwfeCvMvN+htSjiFhP59nbtcBkZt4NnWAFnl4tNtL7d581dTubzjOG5WrtaX8L8j8E3p2ZRwPvBj5dzV8DbAQ20fkP/IGIeC59fszAkGp6DXA98AzgBcAnq2OMw67pLOCPImKeztO/R6r5vbY7ih71qqlTWMTzgY8Cv784axVr+jDwN5m5sGT51Rq3NcDLgdOq378VESeNoJ7lanoh8As69+1nAVsj4tnDqCkiJugc5npXZj643KI9tr2aNS0uP0MnyN+3OGvQmpp81so4Oh3YUk1fDHyqmt4D3JeZDwEPRcRVwAmM5mMGetV0JnBu9bT31oi4A/i1qqbpJTXNtVVMZn6XztNxqn9mm6qrluvFUHu0TE1ExFHAF4F3ZOZtXbUe1XUTo6zpRcCbIuJjdM69/DIi/heYZ4h9WmHcvp6Z91XX/SudY9mfY/V69Fbgq5n5c+DeiPhPYIrOo8zWehQRT6QTmJ/PzEur2fdExJGZeXd16GTxMGqv+3er+9uANRERx9PJhNdm5o9WqLW3Ogf1x+WHzgmU7pMvu4HpavokYL6afh5wBZ1/XAfReUp4XHX5djqPGhZPKjx/RDX9A/ChanoSuIvOp6EdDtxB58TLYdX04S3Ws3ii9wl0jpueVV1+Po892Xk7nZMuo+hRr5oOrbb3xn3cxrfonLRaPJF3yihqWrLOh3j0ZGerfRqgR4cB11X36zXAvwGbVrNHdB5Z/lO13YPpvNDg+DZ7VN32Z4G/XTL/4zz2xOLHqulNPPZk5zer+a3tbzVqeiadc1EvXbL8wH2qPair/QNcROcY3M/p/Ac7m85Ty/nqD78W2Ni1/HurO9QuOk95FuefQufs8m3A+0dVE52nnZfTOT6+C3hb1+2cVQ3wrcCZLdezpfp7vwecS/Xu3mr591d9uJmuVziMoEf7rAn4czrHWq/v+lkMj6mqb7fROd8Qo6hpyXofogryNvtUY9zeRufE6y6qkFjNHtE5eX9xVdNNwHuH0KOX0znccEPXfeMUOq/auQK4pfp9eLV80PkinNvo7HNTQ9jfBq3pU8CPu5bdUbdPvkVfkgq3v53slKTHHYNckgpnkEtS4QxySSqcQS5JhTPIJalwBrkkFe7/AK4u+ZS/7+mBAAAAAElFTkSuQmCC\n",
575 | "text/plain": [
576 | ""
577 | ]
578 | },
579 | "metadata": {
580 | "needs_background": "light"
581 | },
582 | "output_type": "display_data"
583 | }
584 | ],
585 | "source": [
586 | "df_50['Date'].hist(bins=20)"
587 | ]
588 | },
589 | {
590 | "cell_type": "code",
591 | "execution_count": 41,
592 | "metadata": {},
593 | "outputs": [
594 | {
595 | "data": {
596 | "text/plain": [
597 | ""
598 | ]
599 | },
600 | "execution_count": 41,
601 | "metadata": {},
602 | "output_type": "execute_result"
603 | },
604 | {
605 | "data": {
606 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAASkUlEQVR4nO3df4zkdX3H8efbO9DjFg8QnOCBPUwrFTxBboI1NnYXqp6cURtt4m8Fm22aatCc1rPWRNM0PX/QX9E0JUrBaN1UCkkL9Qe1rMRG0F0E9uBE+XHVO+gRigWXUvH03T/mu95wzNzOfGe/s59cno9kc9/9zne+39d+vvN97cz3O3MbmYkkqVxPWe0AkqTDs6glqXAWtSQVzqKWpMJZ1JJUuLVNrPTEE0/MTZs2jbSORx99lPXr169MoAaYbzTmq6/kbGC+uubn5x/MzJN63piZK/61ZcuWHNX1118/8jqaZL7RmK++krNlmq8uYC77dKqnPiSpcBa1JBXOopakwlnUklQ4i1qSCmdRS1Lhli3qiDg9Im7p+nokIt4zjnCSpAE+8JKZdwJnA0TEGmAfcHXDuSRJlWFPfZwP3J2Z/9lEGEnSk0UO8YcDIuIy4ObM/FSP26aBaYBWq7VlZmamVqCFfQ8D0FoH+x8b7r6bN26otc06FhcXmZiYGNv2hmW+0ZScr+RsYL66pqam5jOz3eu2gYs6Io4G7gPOzMz9h1u23W7n3Nzc0EEBNu24FoDtmw9wycJw/xXJnp3bam2zjtnZWSYnJ8e2vWGZbzQl5ys5G5ivrojoW9TDnPp4JZ1n04ctaUnSyhqmqN8IfLGpIJKk3gYq6og4BngZcFWzcSRJhxroJHBm/i/wjIazSJJ68JOJklQ4i1qSCmdRS1LhLGpJKpxFLUmFs6glqXAWtSQVzqKWpMJZ1JJUOItakgpnUUtS4SxqSSqcRS1JhbOoJalwFrUkFc6ilqTCWdSSVDiLWpIKZ1FLUuEsakkq3KB/hfy4iLgyIr4XEbsj4sVNB5MkdQz0V8iBvwa+kpmvj4ijgWMazCRJ6rJsUUfE04GXAu8AyMzHgcebjSVJWhKZefgFIs4GLgXuAM4C5oGLM/PRQ5abBqYBWq3WlpmZmVqBFvY9DEBrHex/bLj7bt64odY261hcXGRiYmJs2xuW+UZTcr6Ss4H56pqamprPzHav2wYp6jZwI/CSzLwpIv4aeCQzP9zvPu12O+fm5mqF3bTjWgC2bz7AJQuDnpnp2LNzW61t1jE7O8vk5OTYtjcs842m5HwlZwPz1RURfYt6kIuJe4G9mXlT9f2VwDkrFU6SdHjLFnVm/hfwo4g4vZp1Pp3TIJKkMRj03MK7gS9U7/i4B7iwuUiSpG4DFXVm3gL0PHciSWqWn0yUpMJZ1JJUOItakgpnUUtS4SxqSSqcRS1JhbOoJalwFrUkFc6ilqTCWdSSVDiLWpIKZ1FLUuEsakkqnEUtSYWzqCWpcBa1JBXOopakwlnUklQ4i1qSCmdRS1LhLGpJKtxAf4U8IvYAPwF+DhzITP8iuSSNyUBFXZnKzAcbSyJJ6slTH5JUuMjM5ReKuBf4MZDA32XmpT2WmQamAVqt1paZmZlagRb2PQxAax3sf2y4+27euKHWNru3O6jufKNst862u/Xb9uLiIhMTE7XX2zTz1VdyNjBfXVNTU/P9TisPWtTPysz7IuKZwHXAuzPzhn7Lt9vtnJubqxV2045rAdi++QCXLAxzZgb27NxWa5vd2x1Ud75Rtltn2936bXt2dpbJycna622a+eorORuYr66I6FvUA536yMz7qn8fAK4Gzl25eJKkw1m2qCNifUQcuzQNvBzY1XQwSVLHIOcWWsDVEbG0/D9k5lcaTSVJ+qVlizoz7wHOGkMWSVIPvj1PkgpnUUtS4SxqSSqcRS1JhbOoJalwFrUkFc6ilqTCWdSSVDiLWpIKZ1FLUuEsakkqnEUtSYWzqCWpcBa1JBXOopakwlnUklQ4i1qSCmdRS1LhLGpJKpxFLUmFG7ioI2JNRHw3Iq5pMpAk6YmGeUZ9MbC7qSCSpN4GKuqIOAXYBnym2TiSpENFZi6/UMSVwJ8DxwLvy8xX9VhmGpgGaLVaW2ZmZmoFWtj3MACtdbD/sVqrGIsjId/mjRvGE6aHxcVFJiYmVm37yykt39JxAcM/9sa9n0sYu+7xOlSTx+4oYz01NTWfme1et61d7s4R8Srggcycj4jJfstl5qXApQDtdjsnJ/sueljv2HEtANs3H+CShWXjrZojId+eN0+OJ0wPs7Oz1H2MjENp+ZaOCxj+sTfu/VzC2HWP16GaPHabGutBTn28BHh1ROwBZoDzIuLzjaSRJD3JskWdmR/MzFMycxPwBuDfM/MtjSeTJAG+j1qSijfUiZrMnAVmG0kiSerJZ9SSVDiLWpIKZ1FLUuEsakkqnEUtSYWzqCWpcBa1JBXOopakwlnUklQ4i1qSCmdRS1LhLGpJKpxFLUmFs6glqXAWtSQVzqKWpMJZ1JJUOItakgpnUUtS4SxqSSqcRS1JhVu2qCPiaRHx7Yi4NSJuj4iPjiOYJKlj7QDL/BQ4LzMXI+Io4JsR8eXMvLHhbJIkBijqzExgsfr2qOormwwlSTooOj28zEIRa4B54FeBT2fmB3osMw1MA7RarS0zMzO1Ai3sexiA1jrY/1itVYzFkZBv88YNtde/tJ/qOm3DGiYmJsa+7UF/5sXFxdr5mtD9Mw/72BtlP9exUmM36mOsnyaP3VHGempqaj4z271uG6iof7lwxHHA1cC7M3NXv+Xa7XbOzc0NHRRg045rAdi++QCXLAxyZmZ1HAn59uzcVnv9S/uprsu3rmdycnLs2x70Z56dna2drwndP/Owj71R9nMdKzV2oz7G+mny2B1lrCOib1EP9a6PzPwfYBbYWjuNJGkog7zr46TqmTQRsQ74beB7TQeTJHUM8vz/ZOCK6jz1U4B/zMxrmo0lSVoyyLs+bgNeOIYskqQe/GSiJBXOopakwlnUklQ4i1qSCmdRS1LhLGpJKpxFLUmFs6glqXAWtSQVzqKWpMJZ1JJUOItakgpnUUtS4SxqSSqcRS1JhbOoJalwFrUkFc6ilqTCWdSSVDiLWpIKt2xRR8SpEXF9ROyOiNsj4uJxBJMkdSz7V8iBA8D2zLw5Io4F5iPiusy8o+FskiQGeEadmfdn5s3V9E+A3cDGpoNJkjqGOkcdEZuAFwI3NRFGkvRkkZmDLRgxAXwD+LPMvKrH7dPANECr1doyMzNTK9DCvocBaK2D/Y/VWsVYHAn5Nm/cUHv9S/uprtM2rGFiYmJVtj2IkvfvsNlG2c91LC4u1t633Zraz03u21HGempqaj4z271uG6ioI+Io4Brgq5n5F8st3263c25ubuigAJt2XAvA9s0HuGRhkFPoq+NIyLdn57ba61/aT3VdvnU9k5OTq7LtQZS8f4fNNsp+rmN2drb2vu3W1H5uct+OMtYR0beoB3nXRwCfBXYPUtKSpJU1yDnqlwBvBc6LiFuqrwsaziVJqiz7/D8zvwnEGLJIknrwk4mSVDiLWpIKZ1FLUuEsakkqnEUtSYWzqCWpcBa1JBXOopakwlnUklQ4i1qSCmdRS1LhLGpJKpxFLUmFs6glqXAWtSQVzqKWpMJZ1JJUOItakgpnUUtS4SxqSSqcRS1JhVu2qCPisoh4ICJ2jSOQJOmJBnlGfTmwteEckqQ+li3qzLwBeGgMWSRJPURmLr9QxCbgmsx8/mGWmQamAVqt1paZmZlagRb2PQxAax3sf6zWKsbiSMi3eeOG2utf2k91nbZhDRMTE6uy7UGUvH+HzTbKfq5jcXGx9r7t1tR+bnLfjjLWU1NT85nZ7nXbihV1t3a7nXNzc8Nk/KVNO64FYPvmA1yysLbWOsbhSMi3Z+e22utf2k91Xb51PZOTk6uy7UGUvH+HzTbKfq5jdna29r7t1tR+bnLfjjLWEdG3qH3XhyQVzqKWpMIN8va8LwLfAk6PiL0R8c7mY0mSlix7oiYz3ziOIJKk3jz1IUmFs6glqXAWtSQVzqKWpMJZ1JJUOItakgpnUUtS4SxqSSqcRS1JhbOoJalwFrUkFc6ilqTCWdSSVDiLWpIKZ1FLUuEsakkqnEUtSYWzqCWpcBa1JBXOopakwlnUklS4gYo6IrZGxJ0RcVdE7Gg6lCTpoGWLOiLWAJ8GXgmcAbwxIs5oOpgkqWOQZ9TnAndl5j2Z+TgwA7ym2ViSpCWRmYdfIOL1wNbM/L3q+7cCL8rMdx2y3DQwXX17OnDniNlOBB4ccR1NMt9ozFdfydnAfHX9Smae1OuGtQPcOXrMe1K7Z+alwKVDBuu/0Yi5zGyv1PpWmvlGY776Ss4G5mvCIKc+9gKndn1/CnBfM3EkSYcapKi/A/xaRJwWEUcDbwD+udlYkqQly576yMwDEfEu4KvAGuCyzLy98WQreBqlIeYbjfnqKzkbmG/FLXsxUZK0uvxkoiQVzqKWpMKNtagj4rKIeCAidnXNOzsiboyIWyJiLiLO7bptspp/e0R8o2t+Ix9pHyZfRGyIiH+JiFurfBd23eftEfGD6uvtDWY7KyK+FRELVZand932wWp87oyIV3TNH+fY9cwXES+LiPlq/nxEnNd1ny3V/Lsi4m8iotfbQxvN13X7syNiMSLe1zVv1cevuu0F1W23V7c/rZq/6uMXEUdFxBXV/N0R8cGu+6z4+EXEqRFxfbWt2yPi4mr+CRFxXXUcXhcRx1fzoxqbuyLitog4p2tdK37srojMHNsX8FLgHGBX17yvAa+spi8AZqvp44A7gGdX3z+z+ncNcDfwHOBo4FbgjFXI98fAx6rpk4CHqjwnAPdU/x5fTR/fULbvAL9VTV8E/Gk1fUY1Lk8FTqvGa80qjF2/fC8EnlVNPx/Y13WfbwMvpvP+/S8vjf0483Xd/k/Al4D3rdJjr9/4rQVuA86qvn8GsKaU8QPeBMxU08cAe4BNTY0fcDJwTjV9LPD96hj4OLCjmr+Dg8frBdXYBPAbwE3V/EaO3ZX4Gusz6sy8gU6hPWE2sPRMYQMH36P9JuCqzPxhdd8HqvmNfaR9yHwJHFs9Y5mo7ncAeAVwXWY+lJk/Bq4DtjaU7XTghmr6OuB11fRr6BwoP83Me4G76IzbuMeuZ77M/G5mLo3j7cDTIuKpEXEy8PTM/FZ2jpzPAa8ddz6AiHgtnQO1+x1ORYwf8HLgtsy8tbrvf2fmzwsavwTWR8RaYB3wOPAIDY1fZt6fmTdX0z8BdgMbq3VfUS12BQfH4jXA57LjRuC4auwaOXZXQgnnqN8DfCIifgR8Elh6mfRc4PiImK1eHr+tmr8R+FHX/fdW88ad71PA8+gU9wJwcWb+Ysz5dgGvrqZ/l4MfTOqXYdxj1y9ft9cB383Mn1ZZ9q52vohYD3wA+Oghy5cyfs8FMiK+GhE3R8QfdeVb9fEDrgQeBe4Hfgh8MjMfYgzjFxGb6LxiuwloZeb90Clz4JnVYqUcHwMroaj/AHhvZp4KvBf4bDV/LbAF2EbnN92HI+K5DPiR9jHkewVwC/As4GzgU9U5unHmuwj4w4iYp/OS7/Fqfr8M4x67fvkAiIgzgY8Bv780q5B8HwX+MjMXD1m+lHxrgd8E3lz9+zsRcX5B+c4Ffk7n2DgN2B4Rz2k6X0RM0Dld9Z7MfORwi/bJMe7xG9gg/9dH094OXFxNfwn4TDW9F3gwMx8FHo2IG4CzGP9H2vvluxDYWb3EvCsi7gV+vco3eUi+2SaCZeb36LwMpvoltq266XBjNLaxO0w+IuIU4GrgbZl5dzV7b5VptfO9CHh9RHyczrWSX0TE/wHzlDF+e4FvZOaD1W3/Suf88ecpY/zeBHwlM38GPBAR/wG06TxbbWT8IuIoOiX9hcy8qpq9PyJOzsz7q1MbS6dP+x0fYzt2hzbuk+J0Lip0X5DYDUxW0+cD89X084Cv0/llcgydl1nPr76/h85v6qULEmeuQr6/BT5STbeAfXT+V64TgHvpXIw4vpo+oaFsSxdYn0LnfORF1fdn8sSLiffQuZAz7rHrl++4atuv67GO79C5wLN0MeyCcec75D4f4eDFxFLG73jg5uq4WAv8G7CtlPGjc9ro76sM6+m8KeAFTY1ftZ3PAX91yPxP8MSLiR+vprfxxIuJ367mN3bsjvwzjnVj8EU6561+Rue31zvpvHSbr3baTcCWruXfX+3kXXRezizNv4DOld27gQ+tRj46L+u+Ruf89C7gLV3ruYjOBby7gAsbzHZxNQ7fB3ZSfdK0Wv5D1fjcSdeV/zGPXc98wJ/QOYd5S9fX0kHfrsbzbjrXAWLc+Q6530eoirqU8auWfwudC527qAqolPGjc3H9S1W+O4D3Nzl+1TGadN4Js/R4uoDOu2G+Dvyg+veEavmg88dQ7qZz/LabPHZX4suPkEtS4Uq4mChJOgyLWpIKZ1FLUuEsakkqnEUtSYWzqCWpcBa1JBXu/wE+ab7+5CqIcgAAAABJRU5ErkJggg==\n",
607 | "text/plain": [
608 | ""
609 | ]
610 | },
611 | "metadata": {
612 | "needs_background": "light"
613 | },
614 | "output_type": "display_data"
615 | }
616 | ],
617 | "source": [
618 | "df_60['Date'].hist(bins=20)"
619 | ]
620 | }
621 | ],
622 | "metadata": {
623 | "kernelspec": {
624 | "display_name": "Python 3",
625 | "language": "python",
626 | "name": "python3"
627 | },
628 | "language_info": {
629 | "codemirror_mode": {
630 | "name": "ipython",
631 | "version": 3
632 | },
633 | "file_extension": ".py",
634 | "mimetype": "text/x-python",
635 | "name": "python",
636 | "nbconvert_exporter": "python",
637 | "pygments_lexer": "ipython3",
638 | "version": "3.7.6"
639 | }
640 | },
641 | "nbformat": 4,
642 | "nbformat_minor": 4
643 | }
644 |
--------------------------------------------------------------------------------