├── .gitignore
├── LICENSE.md
├── README.md
├── assets
├── aud-sample-vs-1.wav
├── float-abstract.png
├── fps.png
├── sam_altman.webp
├── sam_altman_512x512.jpg
└── sam_altman_result.mp4
├── checkpoints
└── checkpoints_here
├── download_checkpoints.sh
├── environments.sh
├── generate.py
├── models
├── __init__.py
├── float
│ ├── FLOAT.py
│ ├── FMT.py
│ ├── encoder.py
│ ├── generator.py
│ └── styledecoder.py
├── wav2vec2.py
└── wav2vec2_ser.py
├── options
└── base_options.py
└── requirements.txt
/.gitignore:
--------------------------------------------------------------------------------
1 | __pycache__/
2 | .DS_Store
3 |
4 | results/
5 | experiments/
6 | tmp/
7 | *.pth
8 | *.pt
9 | wav2vec2-base-960h/
10 | wav2vec-english-speech-emotion-recognition/
11 | results/
12 |
--------------------------------------------------------------------------------
/LICENSE.md:
--------------------------------------------------------------------------------
1 | # Attribution-NonCommercial 4.0 International
2 |
3 | Creative Commons Corporation (“Creative Commons”) is not a law firm and does not provide legal services or legal advice. Distribution of Creative Commons public licenses does not create a lawyer-client or other relationship. Creative Commons makes its licenses and related information available on an “as-is” basis. Creative Commons gives no warranties regarding its licenses, any material licensed under their terms and conditions, or any related information. Creative Commons disclaims all liability for damages resulting from their use to the fullest extent possible.
4 |
5 | ### Using Creative Commons Public Licenses
6 |
7 | Creative Commons public licenses provide a standard set of terms and conditions that creators and other rights holders may use to share original works of authorship and other material subject to copyright and certain other rights specified in the public license below. The following considerations are for informational purposes only, are not exhaustive, and do not form part of our licenses.
8 |
9 | * __Considerations for licensors:__ Our public licenses are intended for use by those authorized to give the public permission to use material in ways otherwise restricted by copyright and certain other rights. Our licenses are irrevocable. Licensors should read and understand the terms and conditions of the license they choose before applying it. Licensors should also secure all rights necessary before applying our licenses so that the public can reuse the material as expected. Licensors should clearly mark any material not subject to the license. This includes other CC-licensed material, or material used under an exception or limitation to copyright. [More considerations for licensors](http://wiki.creativecommons.org/Considerations_for_licensors_and_licensees#Considerations_for_licensors).
10 |
11 | * __Considerations for the public:__ By using one of our public licenses, a licensor grants the public permission to use the licensed material under specified terms and conditions. If the licensor’s permission is not necessary for any reason–for example, because of any applicable exception or limitation to copyright–then that use is not regulated by the license. Our licenses grant only permissions under copyright and certain other rights that a licensor has authority to grant. Use of the licensed material may still be restricted for other reasons, including because others have copyright or other rights in the material. A licensor may make special requests, such as asking that all changes be marked or described. Although not required by our licenses, you are encouraged to respect those requests where reasonable. [More considerations for the public](http://wiki.creativecommons.org/Considerations_for_licensors_and_licensees#Considerations_for_licensees).
12 |
13 | ## Creative Commons Attribution-NonCommercial 4.0 International Public License
14 |
15 | By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions of this Creative Commons Attribution-NonCommercial 4.0 International Public License ("Public License"). To the extent this Public License may be interpreted as a contract, You are granted the Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor grants You such rights in consideration of benefits the Licensor receives from making the Licensed Material available under these terms and conditions.
16 |
17 | ### Section 1 – Definitions.
18 |
19 | a. __Adapted Material__ means material subject to Copyright and Similar Rights that is derived from or based upon the Licensed Material and in which the Licensed Material is translated, altered, arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed Material is a musical work, performance, or sound recording, Adapted Material is always produced where the Licensed Material is synched in timed relation with a moving image.
20 |
21 | b. __Adapter's License__ means the license You apply to Your Copyright and Similar Rights in Your contributions to Adapted Material in accordance with the terms and conditions of this Public License.
22 |
23 | c. __Copyright and Similar Rights__ means copyright and/or similar rights closely related to copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis Database Rights, without regard to how the rights are labeled or categorized. For purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.
24 |
25 | d. __Effective Technological Measures__ means those measures that, in the absence of proper authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.
26 |
27 | e. __Exceptions and Limitations__ means fair use, fair dealing, and/or any other exception or limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.
28 |
29 | f. __Licensed Material__ means the artistic or literary work, database, or other material to which the Licensor applied this Public License.
30 |
31 | g. __Licensed Rights__ means the rights granted to You subject to the terms and conditions of this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed Material and that the Licensor has authority to license.
32 |
33 | h. __Licensor__ means the individual(s) or entity(ies) granting rights under this Public License.
34 |
35 | i. __NonCommercial__ means not primarily intended for or directed towards commercial advantage or monetary compensation. For purposes of this Public License, the exchange of the Licensed Material for other material subject to Copyright and Similar Rights by digital file-sharing or similar means is NonCommercial provided there is no payment of monetary compensation in connection with the exchange.
36 |
37 | j. __Share__ means to provide material to the public by any means or process that requires permission under the Licensed Rights, such as reproduction, public display, public performance, distribution, dissemination, communication, or importation, and to make material available to the public including in ways that members of the public may access the material from a place and at a time individually chosen by them.
38 |
39 | k. __Sui Generis Database Rights__ means rights other than copyright resulting from Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere in the world.
40 |
41 | l. __You__ means the individual or entity exercising the Licensed Rights under this Public License. Your has a corresponding meaning.
42 |
43 | ### Section 2 – Scope.
44 |
45 | a. ___License grant.___
46 |
47 | 1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed Rights in the Licensed Material to:
48 |
49 | A. reproduce and Share the Licensed Material, in whole or in part, for NonCommercial purposes only; and
50 |
51 | B. produce, reproduce, and Share Adapted Material for NonCommercial purposes only.
52 |
53 | 2. __Exceptions and Limitations.__ For the avoidance of doubt, where Exceptions and Limitations apply to Your use, this Public License does not apply, and You do not need to comply with its terms and conditions.
54 |
55 | 3. __Term.__ The term of this Public License is specified in Section 6(a).
56 |
57 | 4. __Media and formats; technical modifications allowed.__ The Licensor authorizes You to exercise the Licensed Rights in all media and formats whether now known or hereafter created, and to make technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right or authority to forbid You from making technical modifications necessary to exercise the Licensed Rights, including technical modifications necessary to circumvent Effective Technological Measures. For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4) never produces Adapted Material.
58 |
59 | 5. __Downstream recipients.__
60 |
61 | A. __Offer from the Licensor – Licensed Material.__ Every recipient of the Licensed Material automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms and conditions of this Public License.
62 |
63 | B. __No downstream restrictions.__ You may not offer or impose any additional or different terms or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.
64 |
65 | 6. __No endorsement.__ Nothing in this Public License constitutes or may be construed as permission to assert or imply that You are, or that Your use of the Licensed Material is, connected with, or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive attribution as provided in Section 3(a)(1)(A)(i).
66 |
67 | b. ___Other rights.___
68 |
69 | 1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent necessary to allow You to exercise the Licensed Rights, but not otherwise.
70 |
71 | 2. Patent and trademark rights are not licensed under this Public License.
72 |
73 | 3. To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly reserves any right to collect such royalties, including when the Licensed Material is used other than for NonCommercial purposes.
74 |
75 | ### Section 3 – License Conditions.
76 |
77 | Your exercise of the Licensed Rights is expressly made subject to the following conditions.
78 |
79 | a. ___Attribution.___
80 |
81 | 1. If You Share the Licensed Material (including in modified form), You must:
82 |
83 | A. retain the following if it is supplied by the Licensor with the Licensed Material:
84 |
85 | i. identification of the creator(s) of the Licensed Material and any others designated to receive attribution, in any reasonable manner requested by the Licensor (including by pseudonym if designated);
86 |
87 | ii. a copyright notice;
88 |
89 | iii. a notice that refers to this Public License;
90 |
91 | iv. a notice that refers to the disclaimer of warranties;
92 |
93 | v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;
94 |
95 | B. indicate if You modified the Licensed Material and retain an indication of any previous modifications; and
96 |
97 | C. indicate the Licensed Material is licensed under this Public License, and include the text of, or the URI or hyperlink to, this Public License.
98 |
99 | 2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium, means, and context in which You Share the Licensed Material. For example, it may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the required information.
100 |
101 | 3. If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A) to the extent reasonably practicable.
102 |
103 | 4. If You Share Adapted Material You produce, the Adapter's License You apply must not prevent recipients of the Adapted Material from complying with this Public License.
104 |
105 | ### Section 4 – Sui Generis Database Rights.
106 |
107 | Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material:
108 |
109 | a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all or a substantial portion of the contents of the database for NonCommercial purposes only;
110 |
111 | b. if You include all or a substantial portion of the database contents in a database in which You have Sui Generis Database Rights, then the database in which You have Sui Generis Database Rights (but not its individual contents) is Adapted Material; and
112 |
113 | c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the contents of the database.
114 |
115 | For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public License where the Licensed Rights include other Copyright and Similar Rights.
116 |
117 | ### Section 5 – Disclaimer of Warranties and Limitation of Liability.
118 |
119 | a. __Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers the Licensed Material as-is and as-available, and makes no representations or warranties of any kind concerning the Licensed Material, whether express, implied, statutory, or other. This includes, without limitation, warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors, whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in part, this disclaimer may not apply to You.__
120 |
121 | b. __To the extent possible, in no event will the Licensor be liable to You on any legal theory (including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or in part, this limitation may not apply to You.__
122 |
123 | c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver of all liability.
124 |
125 | ### Section 6 – Term and Termination.
126 |
127 | a. This Public License applies for the term of the Copyright and Similar Rights licensed here. However, if You fail to comply with this Public License, then Your rights under this Public License terminate automatically.
128 |
129 | b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:
130 |
131 | 1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your discovery of the violation; or
132 |
133 | 2. upon express reinstatement by the Licensor.
134 |
135 | For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek remedies for Your violations of this Public License.
136 |
137 | c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms or conditions or stop distributing the Licensed Material at any time; however, doing so will not terminate this Public License.
138 |
139 | d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.
140 |
141 | ### Section 7 – Other Terms and Conditions.
142 |
143 | a. The Licensor shall not be bound by any additional or different terms or conditions communicated by You unless expressly agreed.
144 |
145 | b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein are separate from and independent of the terms and conditions of this Public License.
146 |
147 | ### Section 8 – Interpretation.
148 |
149 | a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully be made without permission under this Public License.
150 |
151 | b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be automatically reformed to the minimum extent necessary to make it enforceable. If the provision cannot be reformed, it shall be severed from this Public License without affecting the enforceability of the remaining terms and conditions.
152 |
153 | c. No term or condition of this Public License will be waived and no failure to comply consented to unless expressly agreed to by the Licensor.
154 |
155 | d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal processes of any jurisdiction or authority.
156 |
157 | > Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect to apply one of its public licenses to material it publishes and in those instances will be considered the “Licensor.” Except for the limited purpose of indicating that material is shared under a Creative Commons public license or as otherwise permitted by the Creative Commons policies published at [creativecommons.org/policies](http://creativecommons.org/policies), Creative Commons does not authorize the use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons without its prior written consent including, without limitation, in connection with any unauthorized modifications to any of its public licenses or any other arrangements, understandings, or agreements concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part of the public licenses.
158 | >
159 | > Creative Commons may be contacted at creativecommons.org
160 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # FLOAT: Generative Motion Latent Flow Matching for Audio-driven Talking Portrait
2 | Official Pytorch Implementation of FLOAT; Flow Matching for Audio-driven Talking Portrait Video Generation
3 |
4 | 
5 |
6 | **FLOAT: Generative Motion Latent Flow Matching for Audio-driven Talking Portrait**
7 | [Taekyung Ki](https://taekyungki.github.io), [Dongchan Min](https://kevinmin95.github.io), [Gyeongsu Chae](https://www.aistudios.com/ko)
8 |
9 | Project Page: https://deepbrainai-research.github.io/float/
10 |
11 | **Abstract**: *With the rapid advancement of diffusion-based generative models, portrait image animation has achieved remarkable results. However, it still faces challenges in temporally consistent video generation and fast sampling due to its iterative sampling nature. This paper presents FLOAT, an audio-driven talking portrait video generation method based on flow matching generative model. We shift the generative modeling from the pixel-based latent space to a learned motion latent space, enabling efficient design of temporally consistent motion. To achieve this, we introduce a transformer-based vector field predictor with a simple yet effective frame-wise conditioning mechanism. Additionally, our method supports speech-driven emotion enhancement, enabling a natural incorporation of expressive motions. Extensive experiments demonstrate that our method outperforms state-of-the-art audio-driven talking portrait methods in terms of visual quality, motion fidelity, and efficiency.*
12 |
13 | **TL:DR: FLOAT is a flow matching based audio-driven talking portrait video generation method, which can enhance the speech-driven emotional motion.**
14 |
15 | ## Generation Results
16 |
17 | | Result 1 | Result 2 |
18 | |---------------|---------|
19 | | | |
20 |
21 | | Result 3 | Result 4 |
22 | |--------|-----------|
23 | | | |
24 |
25 |
26 | Our method runs faster than current diffusion-based methods with fewer sampling steps and lower memory cost. For more details, please refer to the paper.
27 |
28 |
29 |
30 |
31 |
32 |
33 | ## Updates
34 | - [2025.02.17] The inference code and checkpoints are released under a **[Non-commercial License](https://creativecommons.org/licenses/by-nc-nd/4.0/)**.
35 | - [2024.12.03] Selected as a [HuggingFace Daily Papers](https://huggingface.co/papers?date=2024-12-03) on December 3, 2024.
36 | - [2024.12.02] The paper is publicly available on [ArXiv](https://arxiv.org/abs/2412.01064).
37 |
38 |
39 | ## Getting Started
40 | ### Requirements
41 | ```.bash
42 | # 1. Create Conda Environment
43 | conda create -n FLOAT python=3.8.5
44 | conda activate FLOAT
45 |
46 | # 2. Install torch and requirements
47 | sh environments.sh
48 |
49 | # or manual installation
50 | pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118
51 | pip install -r requirements.txt
52 | ```
53 | - Test on Linux, A100 GPU, and V100 GPU.
54 |
55 | ### Preparing checkpoints
56 |
57 | 1. Download checkpints automatically
58 |
59 | ```.bash
60 | sh download_checkpoints.sh
61 | ```
62 |
63 | or download checkpoints manually from this [google-drive](https://drive.google.com/file/d/1rvWuM12cyvNvBQNCLmG4Fr2L1rpjQBF0/view?usp=sharing).
64 |
65 | 2. The checkpoints should be organized as follows:
66 | ```.bash
67 | ./checkpints
68 | |-- checkpoints_here
69 | |-- float.pth # main model
70 | |-- wav2vec2-base-960h/ # audio encoder
71 | | |-- .gitattributes
72 | | |-- config.json
73 | | |-- feature_extractor_config.json
74 | | |-- model.safetensors
75 | | |-- preprocessor_config.json
76 | | |-- pytorch_model.bin
77 | | |-- README.md
78 | | |-- special_tokens_map.json
79 | | |-- tf_model.h5
80 | | |-- tokenizer_config.json
81 | | '-- vocab.json
82 | '-- wav2vec-english-speech-emotion-recognition/ # emotion encoder
83 | |-- .gitattributes
84 | |-- config.json
85 | |-- preprocessor_config.json
86 | |-- pytorch_model.bin
87 | |-- README.md
88 | '-- training_args.bin
89 | ```
90 | - W2V based models could be found in the links: [wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) and [wav2vec-english-speech-emotion-recognition](https://huggingface.co/r-f/wav2vec-english-speech-emotion-recognition).
91 |
92 |
93 | ### Generating Talking Portait Video from Single Image and Audio
94 | 1. Pre-process;❗ **Important** ❗ for better quality. Please read this.
95 | - FLOAT is trained on the frontal head pose distributions. Non-frontal image may lead to suboptimal results.
96 | - The performance of taking portrait methods often depends on their training preprocess strategies, e.g., the field-of-view. The inference code includes an automatic face-cropping function, which may involve black **padding** regions. You can manually disable the cropping process in `generate.py`, however it may lead to suboptimal performance.
97 | - If your audio contains heavy background music, please use [ClearVoice](https://github.com/modelscope/ClearerVoice-Studio) to extract the vocals for better performance.
98 |
99 |
100 | 1. Generating video 1 (Emotion from Audio)
101 |
102 | You can generate a video with an emotion from audio without specifying `--emo`. You can adjust the intensity of the emotion using `--e_cfg_scale` (default 1). For more emotion intensive video, try large value from 5 to 10 for `--e_cfg_scale`.
103 | ```.bash
104 | CUDA_VISIBLE_DEVICES=0 python generate.py
105 | --ref_path path/to/reference/image \
106 | --aud_path path/to/audio \
107 | --seed 15 \
108 | --a_cfg_scale 2 \
109 | --e_cfg_scale 1 \
110 | --ckpt_path ./checkpoints/float.pth
111 | --no_crop # [optional] skip cropping
112 | ```
113 |
114 | 2. Generate video 2 (Redirecting Emotion)
115 | You can generate a video of other emotion by specifying `--emo`. It supports seven basic emotions: ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']. You can adjust the intensity of the emotion using `--e_cfg_scale` (default 1). For more emotion intensive video, try large value from 5 to 10 for `--e_cfg_scale`.
116 | ```.bash
117 | CUDA_VISIBLE_DEVICES=0 python generate.py\
118 | --ref_path path/to/reference/image \
119 | --aud_path path/to/audio \
120 | --emo 'happy' \ # Seven emotions ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']
121 | --seed 15 \
122 | --a_cfg_scale 2 \
123 | --e_cfg_scale 1 \
124 | --ckpt_path ./checkpoints/float.pth \
125 | --no_crop # [optional] skip cropping
126 | ```
127 |
128 |
129 |
130 |
131 | 3. Running example and results
132 | ```.bash
133 | CUDA_VISIBLE_DEVICES=0 python generate.py \
134 | --ref_path assets/sam_altman.webp \
135 | --aud_path assets/aud-sample-vs-1.wav \
136 | --seed 15 \
137 | --a_cfg_scale 2 \
138 | --e_cfg_scale 1 \
139 | --ckpt_path ./checkpoints/float.pth
140 | ```
141 |
142 |
143 | | Before Crop | After Crop | Result |
144 | |---------------|---------|--------|
145 | |  |  | |
146 |
147 |
148 |
149 | ## ❗License❗
150 | This work is licensed under a [Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License](https://creativecommons.org/licenses/by-nc-nd/4.0/). You may not use this work for commercial purposes and may use it only for research purposes. **For any commercial inquiries or collaboration opportunities**, please contact daniel@deepbrain.io.
151 |
152 |
153 | ## Development
154 | This repository is a research demonstration implementation and is provided as a one-time code drop. For any research-related inquiries, please contact the first author [Taekyung Ki](https://github.com/TaekyungKi). This work was done during the first author's South Korean Alternative Military Service at DeepBrain AI. This repository includes only the inference code; the training code will not be released.
155 |
156 | ## Citation
157 | ```bibtex
158 | @article{ki2024float,
159 | title={FLOAT: Generative Motion Latent Flow Matching for Audio-driven Talking Portrait},
160 | author={Ki, Taekyung and Min, Dongchan and Chae, Gyeongsu},
161 | journal={arXiv preprint arXiv:2412.01064},
162 | year={2024}
163 | }
164 | ```
165 |
166 | ## Related Works
167 | - [StyleLipSync: Style-based Personalized Lip-sync Video Generation](https://arxiv.org/abs/2305.00521)
168 | - [StyleTalker: One-shot Style-based Audo-driven Talking Head Video Generation](https://arxiv.org/abs/2208.10922)
169 | - [Export3D: Learning to Generate Conditional Tri-plane for 3D-aware Expression Controllable Portrait Animation](https://arxiv.org/abs/2404.00636)
170 |
171 | ## Acknowledgements
172 |
173 | The source images and audio are collected from the internet and other baselines, such as SadTalker, EMO, VASA-1, Hallo, LivePortrait, Loopy, and others. We appreciate their valuable contributions to this field. We employ Wav2Vec2.0-based speech emotion recognizer by [Rob Field](https://huggingface.co/r-f/wav2vec-english-speech-emotion-recognition). We appreciate this good work.
174 |
--------------------------------------------------------------------------------
/assets/aud-sample-vs-1.wav:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/deepbrainai-research/float/98bdbcab20ea1f4a31d9dc5fd13ea6f0e1b961c8/assets/aud-sample-vs-1.wav
--------------------------------------------------------------------------------
/assets/float-abstract.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/deepbrainai-research/float/98bdbcab20ea1f4a31d9dc5fd13ea6f0e1b961c8/assets/float-abstract.png
--------------------------------------------------------------------------------
/assets/fps.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/deepbrainai-research/float/98bdbcab20ea1f4a31d9dc5fd13ea6f0e1b961c8/assets/fps.png
--------------------------------------------------------------------------------
/assets/sam_altman.webp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/deepbrainai-research/float/98bdbcab20ea1f4a31d9dc5fd13ea6f0e1b961c8/assets/sam_altman.webp
--------------------------------------------------------------------------------
/assets/sam_altman_512x512.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/deepbrainai-research/float/98bdbcab20ea1f4a31d9dc5fd13ea6f0e1b961c8/assets/sam_altman_512x512.jpg
--------------------------------------------------------------------------------
/assets/sam_altman_result.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/deepbrainai-research/float/98bdbcab20ea1f4a31d9dc5fd13ea6f0e1b961c8/assets/sam_altman_result.mp4
--------------------------------------------------------------------------------
/checkpoints/checkpoints_here:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/deepbrainai-research/float/98bdbcab20ea1f4a31d9dc5fd13ea6f0e1b961c8/checkpoints/checkpoints_here
--------------------------------------------------------------------------------
/download_checkpoints.sh:
--------------------------------------------------------------------------------
1 | pip install gdown
2 |
3 | gdown --id 1rvWuM12cyvNvBQNCLmG4Fr2L1rpjQBF0
4 |
5 | mv float.pth checkpoints/
6 |
--------------------------------------------------------------------------------
/environments.sh:
--------------------------------------------------------------------------------
1 | pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118
2 |
3 | pip install -r requirements.txt
4 |
--------------------------------------------------------------------------------
/generate.py:
--------------------------------------------------------------------------------
1 | """
2 | Inference Stage 2
3 | """
4 |
5 | import os, torch, random, cv2, torchvision, subprocess, librosa, datetime, tempfile, face_alignment
6 | import numpy as np
7 | import albumentations as A
8 | import albumentations.pytorch.transforms as A_pytorch
9 |
10 | from tqdm import tqdm
11 | from pathlib import Path
12 | from transformers import Wav2Vec2FeatureExtractor
13 |
14 | from models.float.FLOAT import FLOAT
15 | from options.base_options import BaseOptions
16 |
17 |
18 | class DataProcessor:
19 | def __init__(self, opt):
20 | self.opt = opt
21 | self.fps = opt.fps
22 | self.sampling_rate = opt.sampling_rate
23 | self.input_size = opt.input_size
24 |
25 | self.fa = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=False)
26 |
27 | # wav2vec2 audio preprocessor
28 | self.wav2vec_preprocessor = Wav2Vec2FeatureExtractor.from_pretrained(opt.wav2vec_model_path, local_files_only=True)
29 |
30 | # image transform
31 | self.transform = A.Compose([
32 | A.Resize(height=opt.input_size, width=opt.input_size, interpolation=cv2.INTER_AREA),
33 | A.Normalize(mean=(0.5,0.5,0.5), std=(0.5,0.5,0.5)),
34 | A_pytorch.ToTensorV2(),
35 | ])
36 |
37 | @torch.no_grad()
38 | def process_img(self, img:np.ndarray) -> np.ndarray:
39 | mult = 360. / img.shape[0]
40 |
41 | resized_img = cv2.resize(img, dsize=(0, 0), fx = mult, fy = mult, interpolation=cv2.INTER_AREA if mult < 1. else cv2.INTER_CUBIC)
42 | bboxes = self.fa.face_detector.detect_from_image(resized_img)
43 | bboxes = [(int(x1 / mult), int(y1 / mult), int(x2 / mult), int(y2 / mult), score) for (x1, y1, x2, y2, score) in bboxes if score > 0.95]
44 | bboxes = bboxes[0] # Just use first bbox
45 |
46 | bsy = int((bboxes[3] - bboxes[1]) / 2)
47 | bsx = int((bboxes[2] - bboxes[0]) / 2)
48 | my = int((bboxes[1] + bboxes[3]) / 2)
49 | mx = int((bboxes[0] + bboxes[2]) / 2)
50 |
51 | bs = int(max(bsy, bsx) * 1.6)
52 | img = cv2.copyMakeBorder(img, bs, bs, bs, bs, cv2.BORDER_CONSTANT, value=0)
53 | my, mx = my + bs, mx + bs # BBox center y, bbox center x
54 |
55 | crop_img = img[my - bs:my + bs,mx - bs:mx + bs]
56 | crop_img = cv2.resize(crop_img, dsize = (self.input_size, self.input_size), interpolation = cv2.INTER_AREA if mult < 1. else cv2.INTER_CUBIC)
57 | return crop_img
58 |
59 | def default_img_loader(self, path) -> np.ndarray:
60 | img = cv2.imread(path)
61 | return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
62 |
63 | def default_aud_loader(self, path: str) -> torch.Tensor:
64 | speech_array, sampling_rate = librosa.load(path, sr = self.sampling_rate)
65 | return self.wav2vec_preprocessor(speech_array, sampling_rate = sampling_rate, return_tensors = 'pt').input_values[0]
66 |
67 |
68 | def preprocess(self, ref_path:str, audio_path:str, no_crop:bool) -> dict:
69 | s = self.default_img_loader(ref_path)
70 | if not no_crop:
71 | s = self.process_img(s)
72 | s = self.transform(image=s)['image'].unsqueeze(0)
73 | a = self.default_aud_loader(audio_path).unsqueeze(0)
74 | return {'s': s, 'a': a, 'p': None, 'e': None}
75 |
76 |
77 | class InferenceAgent:
78 | def __init__(self, opt):
79 | torch.cuda.empty_cache()
80 | self.opt = opt
81 | self.rank = opt.rank
82 |
83 | # Load Model
84 | self.load_model()
85 | self.load_weight(opt.ckpt_path, rank=self.rank)
86 | self.G.to(self.rank)
87 | self.G.eval()
88 |
89 | # Load Data Processor
90 | self.data_processor = DataProcessor(opt)
91 |
92 | def load_model(self) -> None:
93 | self.G = FLOAT(self.opt)
94 |
95 | def load_weight(self, checkpoint_path: str, rank: int) -> None:
96 | state_dict = torch.load(checkpoint_path, map_location='cpu', weights_only=True)
97 | with torch.no_grad():
98 | for model_name, model_param in self.G.named_parameters():
99 | if model_name in state_dict:
100 | model_param.copy_(state_dict[model_name].to(rank))
101 | elif "wav2vec2" in model_name: pass
102 | else:
103 | print(f"! Warning; {model_name} not found in state_dict.")
104 |
105 | del state_dict
106 |
107 | def save_video(self, vid_target_recon: torch.Tensor, video_path: str, audio_path: str) -> str:
108 | with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video:
109 | temp_filename = temp_video.name
110 | vid = vid_target_recon.permute(0, 2, 3, 1)
111 | vid = vid.detach().clamp(-1, 1).cpu()
112 | vid = ((vid + 1) / 2 * 255).type('torch.ByteTensor')
113 | torchvision.io.write_video(temp_filename, vid, fps=self.opt.fps)
114 | if audio_path is not None:
115 | with open(os.devnull, 'wb') as f:
116 | command = "ffmpeg -i {} -i {} -c:v copy -c:a aac {} -y".format(temp_filename, audio_path, video_path)
117 | subprocess.call(command, shell=True, stdout=f, stderr=f)
118 | if os.path.exists(video_path):
119 | os.remove(temp_filename)
120 | else:
121 | os.rename(temp_filename, video_path)
122 | return video_path
123 |
124 | @torch.no_grad()
125 | def run_inference(
126 | self,
127 | res_video_path: str,
128 | ref_path: str,
129 | audio_path: str,
130 | a_cfg_scale: float = 2.0,
131 | r_cfg_scale: float = 1.0,
132 | e_cfg_scale: float = 1.0,
133 | emo: str = 'S2E',
134 | nfe: int = 10,
135 | no_crop: bool = False,
136 | seed: int = 25,
137 | verbose: bool = False
138 | ) -> str:
139 |
140 | data = self.data_processor.preprocess(ref_path, audio_path, no_crop = no_crop)
141 | if verbose: print(f"> [Done] Preprocess.")
142 |
143 | # inference
144 | d_hat = self.G.inference(
145 | data = data,
146 | a_cfg_scale = a_cfg_scale,
147 | r_cfg_scale = r_cfg_scale,
148 | e_cfg_scale = e_cfg_scale,
149 | emo = emo,
150 | nfe = nfe,
151 | seed = seed
152 | )['d_hat']
153 |
154 | res_video_path = self.save_video(d_hat, res_video_path, audio_path)
155 | if verbose: print(f"> [Done] result saved at {res_video_path}")
156 | return res_video_path
157 |
158 |
159 | class InferenceOptions(BaseOptions):
160 | def __init__(self):
161 | super().__init__()
162 |
163 | def initialize(self, parser):
164 | super().initialize(parser)
165 | parser.add_argument("--ref_path",
166 | default=None, type=str,help='ref')
167 | parser.add_argument('--aud_path',
168 | default=None, type=str, help='audio')
169 | parser.add_argument('--emo',
170 | default=None, type=str, help='emotion', choices=['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise'])
171 | parser.add_argument('--no_crop',
172 | action = 'store_true', help = 'not using crop')
173 | parser.add_argument('--res_video_path',
174 | default=None, type=str, help='res video path')
175 | parser.add_argument('--ckpt_path',
176 | default="/home/nvadmin/workspace/taek/float-pytorch/checkpoints/float.pth", type=str, help='checkpoint path')
177 | parser.add_argument('--res_dir',
178 | default="./results", type=str, help='result dir')
179 | return parser
180 |
181 |
182 | if __name__ == '__main__':
183 | opt = InferenceOptions().parse()
184 | opt.rank, opt.ngpus = 0,1
185 | agent = InferenceAgent(opt)
186 | os.makedirs(opt.res_dir, exist_ok = True)
187 |
188 | # -------------- input -------------
189 | ref_path = opt.ref_path
190 | aud_path = opt.aud_path
191 | # ----------------------------------
192 |
193 | if opt.res_video_path is None:
194 | video_name = os.path.splitext(os.path.basename(ref_path))[0]
195 | audio_name = os.path.splitext(os.path.basename(aud_path))[0]
196 | call_time = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
197 | res_video_path = os.path.join(opt.res_dir, "%s-%s-%s-nfe%s-seed%s-acfg%s-ecfg%s-%s.mp4" \
198 | % (call_time, video_name, audio_name, opt.nfe, opt.seed, opt.a_cfg_scale, opt.e_cfg_scale, opt.emo))
199 | else:
200 | res_video_path = opt.res_video_path
201 |
202 | agent.run_inference(
203 | res_video_path,
204 | ref_path,
205 | aud_path,
206 | a_cfg_scale = opt.a_cfg_scale,
207 | r_cfg_scale = opt.r_cfg_scale,
208 | e_cfg_scale = opt.e_cfg_scale,
209 | emo = opt.emo,
210 | nfe = opt.nfe,
211 | no_crop = opt.no_crop,
212 | seed = opt.seed
213 | )
214 |
215 |
--------------------------------------------------------------------------------
/models/__init__.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | from transformers import Wav2Vec2Config, Wav2Vec2Model
5 | from transformers.modeling_outputs import BaseModelOutput
6 |
7 |
8 | from torch import Tensor
9 | from typing import Type, Any, Callable, Union, List, Optional
10 |
11 |
12 | class BaseModel(torch.nn.Module):
13 | def __init__(self):
14 | super().__init__()
15 |
16 | def print_architecture(self, verbose=False):
17 | name = type(self).__name__
18 | result = '-------------------%s---------------------\n' % name
19 | total_num_params = 0
20 | for i, (name, child) in enumerate(self.named_children()):
21 | if 'loss' in name:
22 | continue
23 | num_params = sum([p.numel() for p in child.parameters()])
24 | total_num_params += num_params
25 | if verbose:
26 | result += "%s: %3.3fM\n" % (name, (num_params / 1e6))
27 | for i, (name, grandchild) in enumerate(child.named_children()):
28 | num_params = sum([p.numel() for p in grandchild.parameters()])
29 | if verbose:
30 | result += "\t%s: %3.3fM\n" % (name, (num_params / 1e6))
31 | result += '[Network %s] Total number of parameters : %.3f M\n' % (name, total_num_params / 1e6)
32 | result += '-----------------------------------------------\n'
33 | print(result)
34 |
35 | def set_requires_grad(self, requires_grad):
36 | for param in self.parameters():
37 | param.requires_grad = requires_grad
38 |
39 | def get_parameters_for_train(self):
40 | return self.parameters()
41 |
42 | def forward(self):
43 | raise NotImplementedError()
44 |
45 |
46 |
47 | # def linear_interpolation(features, seq_len):
48 | # features = features.transpose(1, 2)
49 | # output_features = F.interpolate(features, size=seq_len, align_corners=True, mode='linear')
50 | # return output_features.transpose(1, 2)
51 |
52 |
53 | # class Wav2Vec2Model(Wav2Vec2Model):
54 | # def __init__(self, config: Wav2Vec2Config):
55 | # super().__init__(config)
56 |
57 | # def forward(
58 | # self,
59 | # input_values,
60 | # seq_len,
61 | # attention_mask=None,
62 | # mask_time_indices=None,
63 | # output_attentions=None,
64 | # output_hidden_states=None,
65 | # return_dict=None,
66 | # ):
67 | # self.config.output_attentions = True
68 |
69 | # output_hidden_states = (
70 | # output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
71 | # )
72 | # return_dict = return_dict if return_dict is not None else self.config.use_return_dict
73 |
74 | # extract_features = self.feature_extractor(input_values)
75 | # extract_features = extract_features.transpose(1, 2)
76 | # extract_features = linear_interpolation(extract_features, seq_len=seq_len)
77 |
78 | # if attention_mask is not None:
79 | # # compute reduced attention_mask corresponding to feature vectors
80 | # attention_mask = self._get_feature_vector_attention_mask(
81 | # extract_features.shape[1], attention_mask, add_adapter=False
82 | # )
83 |
84 | # hidden_states, extract_features = self.feature_projection(extract_features)
85 | # hidden_states = self._mask_hidden_states(
86 | # hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
87 | # )
88 |
89 | # encoder_outputs = self.encoder(
90 | # hidden_states,
91 | # attention_mask=attention_mask,
92 | # output_attentions=output_attentions,
93 | # output_hidden_states=output_hidden_states,
94 | # return_dict=return_dict,
95 | # )
96 |
97 | # hidden_states = encoder_outputs[0]
98 |
99 | # if self.adapter is not None:
100 | # hidden_states = self.adapter(hidden_states)
101 |
102 | # if not return_dict:
103 | # return (hidden_states, ) + encoder_outputs[1:]
104 | # return BaseModelOutput(
105 | # last_hidden_state=hidden_states,
106 | # hidden_states=encoder_outputs.hidden_states,
107 | # attentions=encoder_outputs.attentions,
108 | # )
109 |
110 |
111 | # def feature_extract(
112 | # self,
113 | # input_values,
114 | # seq_len,
115 | # ):
116 | # extract_features = self.feature_extractor(input_values)
117 | # extract_features = extract_features.transpose(1, 2)
118 | # extract_features = linear_interpolation(extract_features, seq_len=seq_len)
119 |
120 | # return extract_features
121 |
122 | # def encode(
123 | # self,
124 | # extract_features,
125 | # attention_mask=None,
126 | # mask_time_indices=None,
127 | # output_attentions=None,
128 | # output_hidden_states=None,
129 | # return_dict=None,
130 | # ):
131 | # self.config.output_attentions = True
132 |
133 | # output_hidden_states = (
134 | # output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
135 | # )
136 | # return_dict = return_dict if return_dict is not None else self.config.use_return_dict
137 |
138 | # if attention_mask is not None:
139 | # # compute reduced attention_mask corresponding to feature vectors
140 | # attention_mask = self._get_feature_vector_attention_mask(
141 | # extract_features.shape[1], attention_mask, add_adapter=False
142 | # )
143 |
144 |
145 | # hidden_states, extract_features = self.feature_projection(extract_features)
146 | # hidden_states = self._mask_hidden_states(
147 | # hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
148 | # )
149 |
150 | # encoder_outputs = self.encoder(
151 | # hidden_states,
152 | # attention_mask=attention_mask,
153 | # output_attentions=output_attentions,
154 | # output_hidden_states=output_hidden_states,
155 | # return_dict=return_dict,
156 | # )
157 |
158 | # hidden_states = encoder_outputs[0]
159 |
160 | # if self.adapter is not None:
161 | # hidden_states = self.adapter(hidden_states)
162 |
163 | # if not return_dict:
164 | # return (hidden_states, ) + encoder_outputs[1:]
165 | # return BaseModelOutput(
166 | # last_hidden_state=hidden_states,
167 | # hidden_states=encoder_outputs.hidden_states,
168 | # attentions=encoder_outputs.attentions,
169 | # )
170 |
171 |
172 |
173 |
174 |
175 | def conv3x3(in_planes, out_planes, stride=1):
176 | return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
177 |
178 | def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
179 | return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
180 |
181 |
182 | class SELayer(nn.Module):
183 | def __init__(self, channel, reduction=16):
184 | super(SELayer, self).__init__()
185 | self.avg_pool = nn.AdaptiveAvgPool2d(1)
186 | self.fc = nn.Sequential(
187 | nn.Linear(channel, channel // reduction, bias=False),
188 | nn.ReLU(inplace=True),
189 | nn.Linear(channel // reduction, channel, bias=False),
190 | nn.Sigmoid()
191 | )
192 |
193 | def forward(self, x):
194 | b, c, _, _ = x.size()
195 | y = self.avg_pool(x).view(b, c)
196 | y = self.fc(y).view(b, c, 1, 1)
197 | return x * y.expand_as(x)
198 |
199 |
200 | class SEBasicBlock(nn.Module):
201 | expansion = 1
202 |
203 | def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
204 | base_width=64, dilation=1, norm_layer=None,
205 | *, reduction=16):
206 | super(SEBasicBlock, self).__init__()
207 | if norm_layer is None:
208 | norm_layer = nn.BatchNorm2d
209 | self.conv1 = conv3x3(inplanes, planes, stride)
210 | self.bn1 = norm_layer(planes)
211 | self.relu = nn.ReLU(inplace=True)
212 | self.conv2 = conv3x3(planes, planes, 1)
213 | self.bn2 = norm_layer(planes)
214 | self.se = SELayer(planes, reduction)
215 | self.downsample = downsample
216 | self.stride = stride
217 |
218 | def forward(self, x):
219 | residual = x
220 | out = self.conv1(x)
221 | out = self.bn1(out)
222 | out = self.relu(out)
223 |
224 | out = self.conv2(out)
225 | out = self.bn2(out)
226 | out = self.se(out)
227 |
228 | if self.downsample is not None:
229 | residual = self.downsample(x)
230 |
231 | out += residual
232 | out = self.relu(out)
233 |
234 | return out
235 |
236 |
237 | class SEBottleneck(nn.Module):
238 | expansion = 4
239 |
240 | def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
241 | base_width=64, dilation=1, norm_layer=None,
242 | *, reduction=16):
243 | super(SEBottleneck, self).__init__()
244 | if norm_layer is None:
245 | norm_layer= nn.BatchNorm2d
246 | self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
247 | self.bn1 = norm_layer(planes)
248 | self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
249 | self.bn2 = norm_layer(planes)
250 | self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
251 | self.bn3 = norm_layer(planes * 4)
252 | self.relu = nn.ReLU(inplace=True)
253 | self.se = SELayer(planes * 4, reduction)
254 | self.downsample = downsample
255 | self.stride = stride
256 |
257 | def forward(self, x):
258 | residual = x
259 |
260 | out = self.conv1(x)
261 | out = self.bn1(out)
262 | out = self.relu(out)
263 |
264 | out = self.conv2(out)
265 | out = self.bn2(out)
266 | out = self.relu(out)
267 |
268 | out = self.conv3(out)
269 | out = self.bn3(out)
270 | out = self.se(out)
271 |
272 | if self.downsample is not None:
273 | residual = self.downsample(x)
274 |
275 | out += residual
276 | out = self.relu(out)
277 |
278 | return out
279 |
280 |
281 | class ResNet(nn.Module):
282 | def __init__(
283 | self,
284 | block: Type[Union[SEBasicBlock, SEBottleneck]],
285 | layers: List[int],
286 | num_classes: int = 1000,
287 | zero_init_residual: bool = False,
288 | groups: int = 1,
289 | width_per_group: int = 64,
290 | replace_stride_with_dilation: Optional[List[bool]] = None,
291 | norm_layer: Optional[Callable[..., nn.Module]] = None,
292 | ) -> None:
293 | super().__init__()
294 | if norm_layer is None:
295 | norm_layer = nn.BatchNorm2d
296 | self._norm_layer = norm_layer
297 |
298 | self.inplanes = 64
299 | self.dilation = 1
300 | if replace_stride_with_dilation is None:
301 | # each element in the tuple indicates if we should replace
302 | # the 2x2 stride with a dilated convolution instead
303 | replace_stride_with_dilation = [False, False, False]
304 | if len(replace_stride_with_dilation) != 3:
305 | raise ValueError(
306 | "replace_stride_with_dilation should be None "
307 | f"or a 3-element tuple, got {replace_stride_with_dilation}"
308 | )
309 | self.groups = groups
310 | self.base_width = width_per_group
311 |
312 | self.stem = nn.Sequential(
313 | nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False),
314 | norm_layer(self.inplanes),
315 | nn.ReLU(inplace=True),
316 | nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
317 | )
318 |
319 | self.layer1 = self._make_layer(block, 64, layers[0])
320 | self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
321 | self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
322 | self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
323 |
324 | self.fc = nn.Sequential(
325 | nn.AdaptiveAvgPool2d((1, 1)),
326 | nn.Flatten(),
327 | nn.Linear(512 * block.expansion, num_classes)
328 | )
329 |
330 | for m in self.modules():
331 | if isinstance(m, nn.Conv2d):
332 | nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
333 | elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
334 | nn.init.constant_(m.weight, 1)
335 | nn.init.constant_(m.bias, 0)
336 |
337 | # Zero-initialize the last BN in each residual branch,
338 | # so that the residual branch starts with zeros, and each residual block behaves like an identity.
339 | # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
340 | if zero_init_residual:
341 | for m in self.modules():
342 | if isinstance(m, SEBottleneck):
343 | nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type]
344 | elif isinstance(m, SEBasicBlock):
345 | nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]
346 |
347 | def _make_layer(
348 | self,
349 | block: Type[Union[SEBasicBlock, SEBottleneck]],
350 | planes: int,
351 | blocks: int,
352 | stride: int = 1,
353 | dilate: bool = False,
354 | ) -> nn.Sequential:
355 | norm_layer = self._norm_layer
356 | downsample = None
357 | previous_dilation = self.dilation
358 | if dilate:
359 | self.dilation *= stride
360 | stride = 1
361 | if stride != 1 or self.inplanes != planes * block.expansion:
362 | downsample = nn.Sequential(
363 | conv1x1(self.inplanes, planes * block.expansion, stride),
364 | norm_layer(planes * block.expansion),
365 | )
366 |
367 | layers = []
368 | layers.append(
369 | block(
370 | self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
371 | )
372 | )
373 | self.inplanes = planes * block.expansion
374 | for _ in range(1, blocks):
375 | layers.append(
376 | block(
377 | self.inplanes,
378 | planes,
379 | groups=self.groups,
380 | base_width=self.base_width,
381 | dilation=self.dilation,
382 | norm_layer=norm_layer,
383 | )
384 | )
385 |
386 | return nn.Sequential(*layers)
387 |
388 | def _forward_impl(self, x: Tensor) -> Tensor:
389 | x = self.stem(x)
390 |
391 | x = self.layer1(x)
392 | x = self.layer2(x)
393 | x = self.layer3(x)
394 | x = self.layer4(x)
395 |
396 | x = self.fc(x)
397 | return x
398 |
399 | def forward(self, x: Tensor) -> Tensor:
400 | return self._forward_impl(x)
401 |
402 |
403 |
404 |
405 | def se_resnet18(num_classes=1000, norm_layer=None):
406 | """Constructs a ResNet-18 model.
407 | Args:
408 | pretrained (bool): If True, returns a model pre-trained on ImageNet
409 | """
410 | model = ResNet(SEBasicBlock, [2, 2, 2, 2], num_classes=num_classes, norm_layer=norm_layer)
411 | return model
412 |
413 |
414 | def se_resnet34(num_classes=1000, norm_layer=None):
415 | """Constructs a ResNet-34 model.
416 | Args:
417 | pretrained (bool): If True, returns a model pre-trained on ImageNet
418 | """
419 | model = ResNet(SEBasicBlock, [3, 4, 6, 3], num_classes=num_classes, norm_layer=norm_layer)
420 | return model
421 |
422 |
423 | def se_resnet50(num_classes=1000, pretrained=False):
424 | """Constructs a ResNet-50 model.
425 | Args:
426 | pretrained (bool): If True, returns a model pre-trained on ImageNet
427 | """
428 | model = ResNet(SEBottleneck, [3, 4, 6, 3], num_classes=num_classes)
429 | return model
430 |
431 |
432 | def se_resnet101(num_classes=1000):
433 | """Constructs a ResNet-101 model.
434 | Args:
435 | pretrained (bool): If True, returns a model pre-trained on ImageNet
436 | """
437 | model = ResNet(SEBottleneck, [3, 4, 23, 3], num_classes=num_classes)
438 | return model
439 |
440 |
441 | def se_resnet152(num_classes=1000):
442 | """Constructs a ResNet-152 model.
443 | Args:
444 | pretrained (bool): If True, returns a model pre-trained on ImageNet
445 | """
446 | model = ResNet(SEBottleneck, [3, 8, 36, 3], num_classes=num_classes)
447 | return model
--------------------------------------------------------------------------------
/models/float/FLOAT.py:
--------------------------------------------------------------------------------
1 | import torch, math
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 |
5 | from torchdiffeq import odeint
6 | from transformers import Wav2Vec2Config
7 | from transformers.modeling_outputs import BaseModelOutput
8 |
9 | from models.wav2vec2 import Wav2VecModel
10 | from models.wav2vec2_ser import Wav2Vec2ForSpeechClassification
11 |
12 | from models import BaseModel
13 | from models.float.generator import Generator
14 | from models.float.FMT import FlowMatchingTransformer
15 |
16 | ######## Main Phase 2 model ########
17 | class FLOAT(BaseModel):
18 | def __init__(self, opt):
19 | super().__init__()
20 | self.opt = opt
21 |
22 | self.num_frames_for_clip = int(self.opt.wav2vec_sec * self.opt.fps)
23 | self.num_prev_frames = int(self.opt.num_prev_frames)
24 |
25 | # motion latent auto-encoder
26 | self.motion_autoencoder = Generator(size = opt.input_size, style_dim = opt.dim_w, motion_dim = opt.dim_m)
27 | self.motion_autoencoder.requires_grad_(False)
28 |
29 | # condition encoders
30 | self.audio_encoder = AudioEncoder(opt)
31 | self.emotion_encoder = Audio2Emotion(opt)
32 |
33 | # FMT; Flow Matching Transformer
34 | self.fmt = FlowMatchingTransformer(opt)
35 |
36 | # ODE options
37 | self.odeint_kwargs = {
38 | 'atol': self.opt.ode_atol,
39 | 'rtol': self.opt.ode_rtol,
40 | 'method': self.opt.torchdiffeq_ode_method
41 | }
42 |
43 | ######## Motion Encoder - Decoder ########
44 | @torch.no_grad()
45 | def encode_image_into_latent(self, x: torch.Tensor) -> list:
46 | x_r, _, x_r_feats = self.motion_autoencoder.enc(x, input_target=None)
47 | x_r_lambda = self.motion_autoencoder.enc.fc(x_r)
48 | return x_r, x_r_lambda, x_r_feats
49 |
50 | @torch.no_grad()
51 | def encode_identity_into_motion(self, x_r: torch.Tensor) -> torch.Tensor:
52 | x_r_lambda = self.motion_autoencoder.enc.fc(x_r)
53 | r_x = self.motion_autoencoder.dec.direction(x_r_lambda)
54 | return r_x
55 |
56 | @torch.no_grad()
57 | def decode_latent_into_image(self, s_r: torch.Tensor , s_r_feats: list, r_d: torch.Tensor) -> dict:
58 | T = r_d.shape[1]
59 | d_hat = []
60 | for t in range(T):
61 | s_r_d_t = s_r + r_d[:, t]
62 | img_t, _ = self.motion_autoencoder.dec(s_r_d_t, alpha = None, feats = s_r_feats)
63 | d_hat.append(img_t)
64 | d_hat = torch.stack(d_hat, dim=1).squeeze()
65 | return {'d_hat': d_hat}
66 |
67 |
68 | ######## Motion Sampling and Inference ########
69 | @torch.no_grad()
70 | def sample(
71 | self,
72 | data: dict,
73 | a_cfg_scale: float = 1.0,
74 | r_cfg_scale: float = 1.0,
75 | e_cfg_scale: float = 1.0,
76 | emo: str = None,
77 | nfe: int = 10,
78 | seed: int = None
79 | ) -> torch.Tensor:
80 |
81 | r_s, a = data['r_s'], data['a']
82 | B = a.shape[0]
83 |
84 | # make time
85 | time = torch.linspace(0, 1, self.opt.nfe, device=self.opt.rank)
86 |
87 | # encoding audio first with whole audio
88 | a = a.to(self.opt.rank)
89 | T = math.ceil(a.shape[-1] * self.opt.fps / self.opt.sampling_rate)
90 | wa = self.audio_encoder.inference(a, seq_len=T)
91 |
92 | # encoding emotion first
93 | emo_idx = self.emotion_encoder.label2id.get(str(emo).lower(), None)
94 | if emo_idx is None:
95 | we = self.emotion_encoder.predict_emotion(a).unsqueeze(1)
96 | else:
97 | we = F.one_hot(torch.tensor(emo_idx, device = a.device), num_classes = self.opt.dim_e).unsqueeze(0).unsqueeze(0)
98 |
99 | sample = []
100 | # sampleing chunk by chunk
101 | for t in range(0, int(math.ceil(T / self.num_frames_for_clip))):
102 | if self.opt.fix_noise_seed:
103 | seed = self.opt.seed if seed is None else seed
104 | g = torch.Generator(self.opt.rank)
105 | g.manual_seed(seed)
106 | x0 = torch.randn(B, self.num_frames_for_clip, self.opt.dim_w, device = self.opt.rank, generator = g)
107 | else:
108 | x0 = torch.randn(B, self.num_frames_for_clip, self.opt.dim_w, device = self.opt.rank)
109 |
110 | if t == 0: # should define the previous
111 | prev_x_t = torch.zeros(B, self.num_prev_frames, self.opt.dim_w).to(self.opt.rank)
112 | prev_wa_t = torch.zeros(B, self.num_prev_frames, self.opt.dim_w).to(self.opt.rank)
113 | else:
114 | prev_x_t = sample_t[:, -self.num_prev_frames:]
115 | prev_wa_t = wa_t[:, -self.num_prev_frames:]
116 |
117 | wa_t = wa[:, t * self.num_frames_for_clip: (t+1)*self.num_frames_for_clip]
118 |
119 | if wa_t.shape[1] < self.num_frames_for_clip: # padding by replicate
120 | wa_t = F.pad(wa_t, (0, 0, 0, self.num_frames_for_clip - wa_t.shape[1]), mode='replicate')
121 |
122 | def sample_chunk(tt, zt):
123 | out = self.fmt.forward_with_cfv(
124 | t = tt.unsqueeze(0),
125 | x = zt,
126 | wa = wa_t,
127 | wr = r_s,
128 | we = we,
129 | prev_x = prev_x_t,
130 | prev_wa = prev_wa_t,
131 | a_cfg_scale = a_cfg_scale,
132 | r_cfg_scale = r_cfg_scale,
133 | e_cfg_scale = e_cfg_scale
134 | )
135 |
136 | out_current = out[:, self.num_prev_frames:]
137 | return out_current
138 |
139 | # solve ODE
140 | trajectory_t = odeint(sample_chunk, x0, time, **self.odeint_kwargs)
141 | sample_t = trajectory_t[-1]
142 | sample.append(sample_t)
143 | sample = torch.cat(sample, dim=1)[:, :T]
144 | return sample
145 |
146 | @torch.no_grad()
147 | def inference(
148 | self,
149 | data: dict,
150 | a_cfg_scale = None,
151 | r_cfg_scale = None,
152 | e_cfg_scale = None,
153 | emo = None,
154 | nfe = 10,
155 | seed = None,
156 | ) -> dict:
157 |
158 | s, a = data['s'], data['a']
159 | s_r, r_s_lambda, s_r_feats = self.encode_image_into_latent(s.to(self.opt.rank))
160 | if 's_r' in data:
161 | r_s = self.encode_identity_into_motion(s_r)
162 | else:
163 | r_s = self.motion_autoencoder.dec.direction(r_s_lambda)
164 | data['r_s'] = r_s
165 |
166 | # set conditions
167 | if a_cfg_scale is None: a_cfg_scale = self.opt.a_cfg_scale
168 | if r_cfg_scale is None: r_cfg_scale = self.opt.r_cfg_scale
169 | if e_cfg_scale is None: e_cfg_scale = self.opt.e_cfg_scale
170 |
171 | sample = self.sample(data, a_cfg_scale = a_cfg_scale, r_cfg_scale = r_cfg_scale, e_cfg_scale = e_cfg_scale, emo = emo, nfe = nfe, seed = seed)
172 | data_out = self.decode_latent_into_image(s_r = s_r, s_r_feats = s_r_feats, r_d = sample)
173 | return data_out
174 |
175 |
176 |
177 |
178 | ################ Condition Encoders ################
179 | class AudioEncoder(BaseModel):
180 | def __init__(self, opt):
181 | super().__init__()
182 | self.opt = opt
183 | self.only_last_features = opt.only_last_features
184 |
185 | self.num_frames_for_clip = int(opt.wav2vec_sec * self.opt.fps)
186 | self.num_prev_frames = int(opt.num_prev_frames)
187 |
188 | self.wav2vec2 = Wav2VecModel.from_pretrained(opt.wav2vec_model_path, local_files_only = True)
189 | self.wav2vec2.feature_extractor._freeze_parameters()
190 |
191 | for name, param in self.wav2vec2.named_parameters():
192 | param.requires_grad = False
193 |
194 | audio_input_dim = 768 if opt.only_last_features else 12 * 768
195 |
196 | self.audio_projection = nn.Sequential(
197 | nn.Linear(audio_input_dim, opt.dim_w),
198 | nn.LayerNorm(opt.dim_w),
199 | nn.SiLU()
200 | )
201 |
202 | def get_wav2vec2_feature(self, a: torch.Tensor, seq_len:int) -> torch.Tensor:
203 | a = self.wav2vec2(a, seq_len=seq_len, output_hidden_states = not self.only_last_features)
204 | if self.only_last_features:
205 | a = a.last_hidden_state
206 | else:
207 | a = torch.stack(a.hidden_states[1:], dim=1).permute(0, 2, 1, 3)
208 | a = a.reshape(a.shape[0], a.shape[1], -1)
209 | return a
210 |
211 | def forward(self, a:torch.Tensor, prev_a:torch.Tensor = None) -> torch.Tensor:
212 | if prev_a is not None:
213 | a = torch.cat([prev_a, a], dim = 1)
214 | if a.shape[1] % int( (self.num_frames_for_clip + self.num_prev_frames) * self.opt.sampling_rate / self.opt.fps) != 0:
215 | a = F.pad(a, (0, int((self.num_frames_for_clip + self.num_prev_frames) * self.opt.sampling_rate / self.opt.fps) - a.shape[1]), mode='replicate')
216 | a = self.get_wav2vec2_feature(a, seq_len = self.num_frames_for_clip + self.num_prev_frames)
217 | else:
218 | if a.shape[1] % int( self.num_frames_for_clip * self.opt.sampling_rate / self.opt.fps) != 0:
219 | a = F.pad(a, (0, int(self.num_frames_for_clip * self.opt.sampling_rate / self.opt.fps) - a.shape[1]), mode = 'replicate')
220 | a = self.get_wav2vec2_feature(a, seq_len = self.num_frames_for_clip)
221 |
222 | return self.audio_projection(a) # frame by frame
223 |
224 | @torch.no_grad()
225 | def inference(self, a: torch.Tensor, seq_len:int) -> torch.Tensor:
226 | if a.shape[1] % int(seq_len * self.opt.sampling_rate / self.opt.fps) != 0:
227 | a = F.pad(a, (0, int(seq_len * self.opt.sampling_rate / self.opt.fps) - a.shape[1]), mode = 'replicate')
228 | a = self.get_wav2vec2_feature(a, seq_len=seq_len)
229 | return self.audio_projection(a)
230 |
231 |
232 |
233 | class Audio2Emotion(nn.Module):
234 | def __init__(self, opt):
235 | super().__init__()
236 | self.wav2vec2_for_emotion = Wav2Vec2ForSpeechClassification.from_pretrained(opt.audio2emotion_path, local_files_only=True)
237 | self.wav2vec2_for_emotion.eval()
238 |
239 | # seven labels
240 | self.id2label = {0: "angry", 1: "disgust", 2: "fear", 3: "happy",
241 | 4: "neutral", 5: "sad", 6: "surprise"}
242 |
243 | self.label2id = {v: k for k, v in self.id2label.items()}
244 |
245 | @torch.no_grad()
246 | def predict_emotion(self, a: torch.Tensor, prev_a: torch.Tensor = None) -> torch.Tensor:
247 | if prev_a is not None:
248 | a = torch.cat([prev_a, a], dim=1)
249 | logits = self.wav2vec2_for_emotion.forward(a).logits
250 | return F.softmax(logits, dim=1) # scores
251 |
252 | #######################################################
--------------------------------------------------------------------------------
/models/float/FMT.py:
--------------------------------------------------------------------------------
1 | import os, math, torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 |
5 | from torchdiffeq import odeint
6 | from models import BaseModel
7 |
8 | from timm.layers import use_fused_attn
9 | from timm.models.vision_transformer import Mlp
10 |
11 |
12 | def enc_dec_mask(T, S, frame_width = 1, expansion = 2):
13 | mask = torch.ones(T, S)
14 | for i in range(T):
15 | mask[i, max(0, (i - expansion) * frame_width):(i + expansion + 1) * frame_width] = 0
16 | return mask == 1
17 |
18 |
19 | def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None):
20 | """
21 | Sinusoidal position encoding table.
22 | Args:
23 | n_position (int): the length of the input sequence
24 | d_hid (int): the dimension of the hidden state
25 | """
26 | def cal_angle(position, hid_idx):
27 | return position / (10000 ** (2 * (hid_idx // 2) / d_hid))
28 |
29 | def get_posi_angle_vec(position):
30 | return [cal_angle(position, hid_j) for hid_j in range(d_hid)]
31 |
32 | sinusoid_table = torch.Tensor([get_posi_angle_vec(pos_i) for pos_i in range(n_position)])
33 | sinusoid_table[:, 0::2] = torch.sin(sinusoid_table[:, 0::2]) # dim 2i
34 | sinusoid_table[:, 1::2] = torch.cos(sinusoid_table[:, 1::2]) # dim 2i+1
35 | if padding_idx is not None: sinusoid_table[padding_idx] = 0.
36 | return sinusoid_table
37 |
38 |
39 | class Attention(nn.Module):
40 | def __init__(
41 | self,
42 | dim: int,
43 | num_heads: int = 8,
44 | qkv_bias: bool = False,
45 | qk_norm: bool = False,
46 | attn_drop: float = 0.,
47 | proj_drop: float = 0.,
48 | norm_layer: nn.Module = nn.LayerNorm,
49 | ) -> None:
50 |
51 | super().__init__()
52 | assert dim % num_heads == 0, 'dim should be divisible by num_heads'
53 | self.num_heads = num_heads
54 | self.head_dim = dim // num_heads
55 | self.scale = self.head_dim ** -0.5
56 | self.fused_attn = use_fused_attn()
57 |
58 | self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
59 | self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
60 | self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
61 | self.attn_drop = nn.Dropout(attn_drop)
62 | self.proj = nn.Linear(dim, dim)
63 | self.proj_drop = nn.Dropout(proj_drop)
64 |
65 | def forward(self, x: torch.Tensor, mask: torch.Tensor = None) -> torch.Tensor:
66 | B, N, C = x.shape
67 | qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
68 | q, k, v = qkv.unbind(0)
69 | q, k = self.q_norm(q), self.k_norm(k)
70 |
71 | if self.fused_attn:
72 | x = F.scaled_dot_product_attention(
73 | q, k, v,
74 | attn_mask = ~mask,
75 | dropout_p=self.attn_drop.p if self.training else 0.,
76 | )
77 | else:
78 | q = q * self.scale
79 | attn = q @ k.transpose(-2, -1)
80 | attn = attn.softmax(dim=-1)
81 | attn = self.attn_drop(attn)
82 | x = attn @ v
83 |
84 | x = x.transpose(1, 2).reshape(B, N, C)
85 | x = self.proj(x)
86 | x = self.proj_drop(x)
87 | return x
88 |
89 | class TimestepEmbedder(nn.Module):
90 | """
91 | Embeds scalar timesteps into vector representations.
92 | """
93 | def __init__(self, hidden_size, frequency_embedding_size = 256):
94 | super().__init__()
95 | self.mlp = nn.Sequential(
96 | nn.Linear(frequency_embedding_size, hidden_size, bias=True),
97 | nn.SiLU(),
98 | nn.Linear(hidden_size, hidden_size, bias=True),
99 | )
100 | self.frequency_embedding_size = frequency_embedding_size
101 |
102 | @staticmethod
103 | def timestep_embedding(t: torch.Tensor, dim: int, max_period: int = 10000) -> torch.Tensor:
104 | """
105 | Create sinusoidal timestep embeddings.
106 | :param t: a 1-D Tensor of N indices, one per batch element.
107 | These may be fractional.
108 | :param dim: the dimension of the output.
109 | :param max_period: controls the minimum frequency of the embeddings.
110 | :return: an (N, D) Tensor of positional embeddings.
111 | """
112 | # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
113 | half = dim // 2
114 | freqs = torch.exp(
115 | -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
116 | ).to(device=t.device)
117 | args = t[:, None].float() * freqs[None]
118 | embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
119 | if dim % 2:
120 | embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
121 | return embedding
122 |
123 | def forward(self, t: torch.Tensor) -> torch.Tensor:
124 | t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
125 | t_emb = self.mlp(t_freq)
126 | return t_emb
127 |
128 | class SequenceEmbed(nn.Module):
129 | def __init__(
130 | self,
131 | dim_w,
132 | dim_h,
133 | norm_layer=None,
134 | bias=True,
135 | ):
136 | super().__init__()
137 |
138 | self.proj = nn.Linear(dim_w, dim_h, bias=bias)
139 | self.norm = norm_layer(dim_h) if norm_layer else nn.Identity()
140 |
141 | def forward(self, x: torch.Tensor) -> torch.Tensor:
142 | return self.norm(self.proj(x))
143 |
144 |
145 | class FMTBlock(nn.Module):
146 | """
147 | A FMT block inspried by DiT Block
148 | """
149 | def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs) -> None:
150 | super().__init__()
151 | self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
152 | self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs)
153 | self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
154 | mlp_hidden_dim = int(hidden_size * mlp_ratio)
155 | approx_gelu = lambda: nn.GELU(approximate="tanh")
156 | self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
157 | self.adaLN_modulation = nn.Sequential(
158 | nn.SiLU(),
159 | nn.Linear(hidden_size, 6 * hidden_size, bias=True)
160 | )
161 |
162 | def framewise_modulate(self, x, shift, scale) -> torch.Tensor:
163 | return x * (1 + scale) + shift
164 |
165 | def forward(self, x, c, mask=None) -> torch.Tensor:
166 | assert mask is not None
167 | shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=-1)
168 | x = x + gate_msa * self.attn(self.framewise_modulate(self.norm1(x), shift_msa, scale_msa), mask = mask)
169 | x = x + gate_mlp * self.mlp(self.framewise_modulate(self.norm2(x), shift_mlp, scale_mlp))
170 | return x
171 |
172 | class Decoder(nn.Module):
173 | """
174 | The final decoder of FlowMatchingTransformer.
175 | """
176 | def __init__(self, hidden_size, dim_w):
177 | super().__init__()
178 | self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
179 | self.adaLN_modulation = nn.Sequential(
180 | nn.SiLU(),
181 | nn.Linear(hidden_size, 2 * hidden_size, bias=True)
182 | )
183 | self.linear = nn.Linear(hidden_size, dim_w, bias=True)
184 |
185 | def framewise_modulate(self, x, shift, scale) -> torch.Tensor:
186 | return x * (1 + scale) + shift
187 |
188 | def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
189 | shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
190 | x = self.framewise_modulate(self.norm_final(x), shift, scale)
191 | return self.linear(x)
192 |
193 |
194 | class FlowMatchingTransformer(BaseModel):
195 | """
196 | Flow Matching Transformer (FMT)
197 | """
198 | def __init__(self, opt) -> None:
199 | super().__init__()
200 | self.opt = opt
201 |
202 | self.num_frames_for_clip = int(self.opt.wav2vec_sec * self.opt.fps)
203 | self.num_prev_frames = int(opt.num_prev_frames)
204 | self.num_total_frames = self.num_prev_frames + self.num_frames_for_clip
205 |
206 | self.hidden_size = opt.dim_h
207 | self.mlp_ratio = opt.mlp_ratio
208 | self.fmt_depth = opt.fmt_depth
209 | self.num_heads = opt.num_heads
210 |
211 | self.x_embedder = SequenceEmbed(opt.dim_w, self.hidden_size)
212 |
213 | # video time position encoding
214 | self.pos_embed = nn.Parameter(torch.zeros(1, self.num_total_frames, self.hidden_size), requires_grad=False)
215 |
216 | # flow trajectory time encoding
217 | self.t_embedder = TimestepEmbedder(self.hidden_size)
218 | self.c_embedder = nn.Linear(opt.dim_w + opt.dim_a + opt.dim_e, self.hidden_size)
219 |
220 | # define FMT blocks
221 | self.blocks = nn.ModuleList([FMTBlock(self.hidden_size, self.num_heads, mlp_ratio=self.mlp_ratio) for _ in range(self.fmt_depth)])
222 | self.decoder = Decoder(self.hidden_size, self.opt.dim_w)
223 | self.initialize_weights()
224 |
225 | # define alignment mask
226 | alignment_mask = enc_dec_mask(self.num_total_frames, self.num_total_frames, 1, expansion=opt.attention_window).to(opt.rank)
227 | self.register_buffer('alignment_mask', alignment_mask)
228 |
229 |
230 | def initialize_weights(self) -> None:
231 | def _basic_init(module):
232 | if isinstance(module, nn.Linear):
233 | torch.nn.init.xavier_uniform_(module.weight)
234 | if module.bias is not None:
235 | nn.init.constant_(module.bias, 0)
236 |
237 | self.apply(_basic_init)
238 |
239 | pos_embed = get_sinusoid_encoding_table(self.num_total_frames, self.hidden_size)
240 | self.pos_embed.data.copy_(pos_embed.unsqueeze(0))
241 |
242 | w = self.x_embedder.proj.weight.data
243 | nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
244 | nn.init.constant_(self.x_embedder.proj.bias, 0)
245 |
246 | # Initialize timestep embedding MLP:
247 | nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
248 | nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
249 |
250 | # Zero-out adaLN modulation layers in FMT blocks:
251 | for block in self.blocks:
252 | nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
253 | nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
254 |
255 | # Zero-out output layers:
256 | nn.init.constant_(self.decoder.adaLN_modulation[-1].weight, 0)
257 | nn.init.constant_(self.decoder.adaLN_modulation[-1].bias, 0)
258 | nn.init.constant_(self.decoder.linear.weight, 0)
259 | nn.init.constant_(self.decoder.linear.bias, 0)
260 |
261 | def sequence_embedder(self, sequence, dropout_prob, train=False) -> torch.Tensor:
262 | if train:
263 | batch_id_for_drop = torch.where(torch.rand(sequence.shape[0], device=sequence.device) < dropout_prob)
264 | sequence[batch_id_for_drop] = 0
265 | return sequence
266 |
267 |
268 | def forward(self, t, x, wa, wr, we, prev_x = None, prev_wa = None, train = True, **kwargs) -> torch.Tensor:
269 | """
270 | Forward pass of ConditionalFlowMatchingTransformer.
271 |
272 | t: (B,) tensor of diffusion timesteps [0, 1]
273 | x: (B, L, 512) : tensor of sequence of motion latent
274 |
275 | wa: (B, L, 512) / tensor sequence of wa latent
276 | wp: (B, L, 6) / tensor sequence of wp latent
277 | wr: (B, 512) / tensor of reference motion latent (i.e., r -> s)
278 | we: (B, 1, 7) / tensor of emotion latent
279 |
280 | prev_x: (B, L', 512) / previous x for auto-regressive generation
281 | prev_wa: (B, L', 512) / previous audio for auto-regressive generation
282 | """
283 |
284 | # time encoding
285 | t = self.t_embedder(t).unsqueeze(1) # (N, D)
286 |
287 | # condition encoding
288 | wa = self.sequence_embedder(wa, dropout_prob = self.opt.audio_dropout_prob, train=train)
289 | wr = self.sequence_embedder(wr.unsqueeze(1), dropout_prob = self.opt.ref_dropout_prob, train=train)
290 | we = self.sequence_embedder(we, dropout_prob = self.opt.emotion_dropout_prob, train=train)
291 |
292 | # previous condition encoding
293 | if prev_x is not None:
294 | prev_x = self.sequence_embedder(prev_x, dropout_prob=0.5, train=train)
295 | prev_wa = self.sequence_embedder(prev_wa, dropout_prob=0.5, train=train)
296 |
297 | x = torch.cat([prev_x, x], dim=1)
298 | wa = torch.cat([prev_wa, wa], dim=1)
299 |
300 | x = self.x_embedder(x)
301 | x = x + self.pos_embed # (N, L + L', D), where T = opt.wav2vec_sec * opt.fps, D = dim_w
302 |
303 | wr = wr.repeat(1, wa.shape[1], 1)
304 | we = we.repeat(1, wa.shape[1], 1)
305 |
306 | c = torch.cat([wr, wa, we], dim=-1)
307 | c = self.c_embedder(c)
308 | c = t + c
309 |
310 | # forwarding FMT Blocks
311 | for block in self.blocks:
312 | x = block(x, c, self.alignment_mask) # (N, T, D)
313 | return self.decoder(x, c)
314 |
315 | @torch.no_grad()
316 | def forward_with_cfv(self, t, x, wa, wr, we, prev_x, prev_wa, a_cfg_scale=1.0, r_cfg_scale=1.0, e_cfg_scale=1.0, **kwargs) -> torch.Tensor:
317 | if a_cfg_scale != 1.0 or r_cfg_scale != 1.0 or e_cfg_scale != 1.0:
318 | null_wa = torch.zeros_like(wa)
319 | null_we = torch.zeros_like(we)
320 | null_wr = torch.zeros_like(wr)
321 |
322 | audio_cat = torch.cat([null_wa, wa, wa], dim=0) # concat along batch
323 | ref_cat = torch.cat([wr, wr, wr], dim=0) # concat along batch
324 | emotion_cat = torch.cat([null_we, we, null_we], dim=0) # concat along batch
325 | x = torch.cat([x, x, x], dim=0) # concat along batch
326 |
327 | prev_x_cat = torch.cat([prev_x, prev_x, prev_x], dim=0)
328 | prev_wa_cat = torch.cat([prev_wa, prev_wa, prev_wa], dim=0)
329 |
330 | model_output = self.forward(t, x, audio_cat, ref_cat, emotion_cat, prev_x_cat, prev_wa_cat, train=False)
331 | uncond, all_cond, audio_uncond_emotion = torch.chunk(model_output, chunks=3, dim=0)
332 |
333 | # Classifier-free vector field (cfv) incremental manner
334 | return uncond + a_cfg_scale * (audio_uncond_emotion - uncond) + e_cfg_scale * (all_cond - audio_uncond_emotion)
335 | else:
336 | return self.forward(t, x, wa, wr, we, prev_x, prev_wa, train = False)
337 |
338 |
--------------------------------------------------------------------------------
/models/float/encoder.py:
--------------------------------------------------------------------------------
1 | import math, torch
2 | import numpy as np
3 |
4 | from torch import nn
5 | from torch.nn import functional as F
6 |
7 |
8 | def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
9 | return F.leaky_relu(input + bias, negative_slope) * scale
10 |
11 |
12 | def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
13 | _, minor, in_h, in_w = input.shape
14 | kernel_h, kernel_w = kernel.shape
15 |
16 | out = input.view(-1, minor, in_h, 1, in_w, 1)
17 | out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0])
18 | out = out.view(-1, minor, in_h * up_y, in_w * up_x)
19 |
20 | out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
21 | out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0),
22 | max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0), ]
23 |
24 | out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
25 | w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
26 | out = F.conv2d(out, w)
27 | out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
28 | in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, )
29 | return out[:, :, ::down_y, ::down_x]
30 |
31 |
32 | def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
33 | return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
34 |
35 |
36 | def make_kernel(k):
37 | k = torch.tensor(k, dtype=torch.float32)
38 | if k.ndim == 1:
39 | k = k[None, :] * k[:, None]
40 | k /= k.sum()
41 | return k
42 |
43 |
44 | class FusedLeakyReLU(nn.Module):
45 | def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
46 | super().__init__()
47 | self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1))
48 | self.negative_slope = negative_slope
49 | self.scale = scale
50 |
51 | def forward(self, input):
52 | out = fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
53 | return out
54 |
55 |
56 | class Blur(nn.Module):
57 | def __init__(self, kernel, pad, upsample_factor=1):
58 | super().__init__()
59 |
60 | kernel = make_kernel(kernel)
61 |
62 | if upsample_factor > 1:
63 | kernel = kernel * (upsample_factor ** 2)
64 |
65 | self.register_buffer('kernel', kernel)
66 |
67 | self.pad = pad
68 |
69 | def forward(self, input):
70 | return upfirdn2d(input, self.kernel, pad=self.pad)
71 |
72 |
73 | class ScaledLeakyReLU(nn.Module):
74 | def __init__(self, negative_slope=0.2):
75 | super().__init__()
76 |
77 | self.negative_slope = negative_slope
78 |
79 | def forward(self, input):
80 | return F.leaky_relu(input, negative_slope=self.negative_slope)
81 |
82 |
83 | class EqualConv2d(nn.Module):
84 | def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True):
85 | super().__init__()
86 |
87 | self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size))
88 | self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
89 |
90 | self.stride = stride
91 | self.padding = padding
92 |
93 | if bias:
94 | self.bias = nn.Parameter(torch.zeros(out_channel))
95 | else:
96 | self.bias = None
97 |
98 | def forward(self, input):
99 |
100 | return F.conv2d(input, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding)
101 |
102 | def __repr__(self):
103 | return (
104 | f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
105 | f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
106 | )
107 |
108 |
109 | class EqualLinear(nn.Module):
110 | def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None):
111 | super().__init__()
112 |
113 | self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
114 |
115 | if bias:
116 | self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
117 | else:
118 | self.bias = None
119 |
120 | self.activation = activation
121 |
122 | self.scale = (1 / math.sqrt(in_dim)) * lr_mul
123 | self.lr_mul = lr_mul
124 |
125 | def forward(self, input):
126 |
127 | if self.activation:
128 | out = F.linear(input, self.weight * self.scale)
129 | out = fused_leaky_relu(out, self.bias * self.lr_mul)
130 | else:
131 | out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul)
132 |
133 | return out
134 |
135 | def __repr__(self):
136 | return (f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})')
137 |
138 |
139 | class ConvLayer(nn.Sequential):
140 | def __init__(
141 | self,
142 | in_channel,
143 | out_channel,
144 | kernel_size,
145 | downsample=False,
146 | blur_kernel=[1, 3, 3, 1],
147 | bias=True,
148 | activate=True,
149 | ):
150 | layers = []
151 |
152 | if downsample:
153 | factor = 2
154 | p = (len(blur_kernel) - factor) + (kernel_size - 1)
155 | pad0 = (p + 1) // 2
156 | pad1 = p // 2
157 |
158 | layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
159 |
160 | stride = 2
161 | self.padding = 0
162 |
163 | else:
164 | stride = 1
165 | self.padding = kernel_size // 2
166 |
167 | layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=self.padding, stride=stride,
168 | bias=bias and not activate))
169 |
170 | if activate:
171 | if bias:
172 | layers.append(FusedLeakyReLU(out_channel))
173 | else:
174 | layers.append(ScaledLeakyReLU(0.2))
175 |
176 | super().__init__(*layers)
177 |
178 |
179 | class ResBlock(nn.Module):
180 | def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
181 | super().__init__()
182 |
183 | self.conv1 = ConvLayer(in_channel, in_channel, 3)
184 | self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
185 |
186 | self.skip = ConvLayer(in_channel, out_channel, 1, downsample=True, activate=False, bias=False)
187 |
188 | def forward(self, input):
189 | out = self.conv1(input)
190 | out = self.conv2(out)
191 |
192 | skip = self.skip(input)
193 | out = (out + skip) / math.sqrt(2)
194 |
195 | return out
196 |
197 |
198 | class EncoderApp(nn.Module):
199 | def __init__(self, size, w_dim=512):
200 | super(EncoderApp, self).__init__()
201 |
202 | channels = {
203 | 4: 512,
204 | 8: 512,
205 | 16: 512,
206 | 32: 512,
207 | 64: 256,
208 | 128: 128,
209 | 256: 64,
210 | 512: 32,
211 | 1024: 16
212 | }
213 |
214 | self.w_dim = w_dim
215 | log_size = int(math.log(size, 2))
216 |
217 | self.convs = nn.ModuleList()
218 | self.convs.append(ConvLayer(3, channels[size], 1))
219 |
220 | in_channel = channels[size]
221 | for i in range(log_size, 2, -1):
222 | out_channel = channels[2 ** (i - 1)]
223 | self.convs.append(ResBlock(in_channel, out_channel))
224 | in_channel = out_channel
225 |
226 | self.convs.append(EqualConv2d(in_channel, self.w_dim, 4, padding=0, bias=False))
227 |
228 | def forward(self, x):
229 |
230 | res = []
231 | h = x
232 | for conv in self.convs:
233 | h = conv(h)
234 | res.append(h)
235 |
236 | return res[-1].squeeze(-1).squeeze(-1), res[::-1][2:]
237 |
238 |
239 | class Encoder(nn.Module):
240 | def __init__(self, size, dim=512, dim_motion=20):
241 | super(Encoder, self).__init__()
242 |
243 | # appearance netmork
244 | self.net_app = EncoderApp(size, dim)
245 |
246 | # motion network
247 | fc = [EqualLinear(dim, dim)]
248 | for i in range(3):
249 | fc.append(EqualLinear(dim, dim))
250 |
251 | fc.append(EqualLinear(dim, dim_motion))
252 | self.fc = nn.Sequential(*fc)
253 |
254 | def enc_app(self, x):
255 |
256 | h_source = self.net_app(x)
257 |
258 | return h_source
259 |
260 | def enc_motion(self, x):
261 |
262 | h, _ = self.net_app(x)
263 | h_motion = self.fc(h)
264 |
265 | return h_motion
266 |
267 | def forward(self, input_source, input_target, h_start=None):
268 |
269 | if input_target is not None:
270 |
271 | h_source, feats = self.net_app(input_source)
272 | h_target, _ = self.net_app(input_target)
273 |
274 | h_motion_target = self.fc(h_target)
275 |
276 | if h_start is not None:
277 | h_motion_source = self.fc(h_source)
278 | h_motion = [h_motion_target, h_motion_source, h_start]
279 | else:
280 | h_motion = [h_motion_target]
281 |
282 | return h_source, h_motion, feats
283 | else:
284 | h_source, feats = self.net_app(input_source)
285 |
286 | return h_source, None, feats
287 |
--------------------------------------------------------------------------------
/models/float/generator.py:
--------------------------------------------------------------------------------
1 | from torch import nn
2 | from .encoder import Encoder
3 | from .styledecoder import Synthesis
4 |
5 | from models import BaseModel
6 |
7 | class Generator(BaseModel):
8 | def __init__(self, size, style_dim=512, motion_dim=20, channel_multiplier=1, blur_kernel=[1, 3, 3, 1]):
9 | super().__init__()
10 |
11 | self.enc = Encoder(size, style_dim, motion_dim)
12 | self.dec = Synthesis(size, style_dim, motion_dim, blur_kernel, channel_multiplier)
13 |
14 | def get_direction(self):
15 | return self.dec.direction(None)
16 |
17 | def synthesis(self, wa, alpha, feat):
18 | img, flow = self.dec(wa, alpha, feat)
19 | return img
20 |
21 | def forward(self, img_source, img_drive, h_start=None):
22 | wa, alpha, feats = self.enc(img_source, img_drive, h_start)
23 | img_recon, flow = self.dec(wa, alpha, feats)
24 | return {'d_hat': img_recon, 'flow': flow}
25 |
--------------------------------------------------------------------------------
/models/float/styledecoder.py:
--------------------------------------------------------------------------------
1 | import math, torch
2 | import numpy as np
3 |
4 | from torch import nn
5 | from torch.nn import functional as F
6 |
7 |
8 | def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
9 | return F.leaky_relu(input + bias, negative_slope) * scale
10 |
11 |
12 | def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
13 | _, minor, in_h, in_w = input.shape
14 | kernel_h, kernel_w = kernel.shape
15 |
16 | out = input.view(-1, minor, in_h, 1, in_w, 1)
17 | out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0])
18 | out = out.view(-1, minor, in_h * up_y, in_w * up_x)
19 |
20 | out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
21 | out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0),
22 | max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0), ]
23 |
24 | out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
25 | w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
26 | out = F.conv2d(out, w)
27 | out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
28 | in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, )
29 | return out[:, :, ::down_y, ::down_x]
30 |
31 |
32 | def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
33 | return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
34 |
35 |
36 | def make_kernel(k):
37 | k = torch.tensor(k, dtype=torch.float32)
38 | if k.ndim == 1:
39 | k = k[None, :] * k[:, None]
40 | k /= k.sum()
41 | return k
42 |
43 |
44 | class FusedLeakyReLU(nn.Module):
45 | def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
46 | super().__init__()
47 | self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1))
48 | self.negative_slope = negative_slope
49 | self.scale = scale
50 |
51 | def forward(self, input):
52 | return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
53 |
54 |
55 | class PixelNorm(nn.Module):
56 | def __init__(self):
57 | super().__init__()
58 |
59 | def forward(self, input):
60 | return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
61 |
62 |
63 | class MotionPixelNorm(nn.Module):
64 | def __init__(self):
65 | super().__init__()
66 |
67 | def forward(self, input):
68 | return input * torch.rsqrt(torch.mean(input ** 2, dim=2, keepdim=True) + 1e-8)
69 |
70 | class Upsample(nn.Module):
71 | def __init__(self, kernel, factor=2):
72 | super().__init__()
73 |
74 | self.factor = factor
75 | kernel = make_kernel(kernel) * (factor ** 2)
76 | self.register_buffer('kernel', kernel)
77 |
78 | p = kernel.shape[0] - factor
79 |
80 | pad0 = (p + 1) // 2 + factor - 1
81 | pad1 = p // 2
82 |
83 | self.pad = (pad0, pad1)
84 |
85 | def forward(self, input):
86 | return upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad)
87 |
88 |
89 | class Downsample(nn.Module):
90 | def __init__(self, kernel, factor=2):
91 | super().__init__()
92 |
93 | self.factor = factor
94 | kernel = make_kernel(kernel)
95 | self.register_buffer('kernel', kernel)
96 |
97 | p = kernel.shape[0] - factor
98 |
99 | pad0 = (p + 1) // 2
100 | pad1 = p // 2
101 |
102 | self.pad = (pad0, pad1)
103 |
104 | def forward(self, input):
105 | return upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad)
106 |
107 |
108 | class Blur(nn.Module):
109 | def __init__(self, kernel, pad, upsample_factor=1):
110 | super().__init__()
111 |
112 | kernel = make_kernel(kernel)
113 |
114 | if upsample_factor > 1:
115 | kernel = kernel * (upsample_factor ** 2)
116 |
117 | self.register_buffer('kernel', kernel)
118 |
119 | self.pad = pad
120 |
121 | def forward(self, input):
122 | return upfirdn2d(input, self.kernel, pad=self.pad)
123 |
124 |
125 | class EqualConv2d(nn.Module):
126 | def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True):
127 | super().__init__()
128 |
129 | self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size))
130 | self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
131 |
132 | self.stride = stride
133 | self.padding = padding
134 |
135 | if bias:
136 | self.bias = nn.Parameter(torch.zeros(out_channel))
137 | else:
138 | self.bias = None
139 |
140 | def forward(self, input):
141 |
142 | return F.conv2d(input, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding, )
143 |
144 | def __repr__(self):
145 | return (
146 | f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
147 | f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
148 | )
149 |
150 |
151 | class EqualLinear(nn.Module):
152 | def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None):
153 | super().__init__()
154 |
155 | self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
156 |
157 | if bias:
158 | self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
159 | else:
160 | self.bias = None
161 |
162 | self.activation = activation
163 |
164 | self.scale = (1 / math.sqrt(in_dim)) * lr_mul
165 | self.lr_mul = lr_mul
166 |
167 | def forward(self, input):
168 |
169 | if self.activation:
170 | out = F.linear(input, self.weight * self.scale)
171 | out = fused_leaky_relu(out, self.bias * self.lr_mul)
172 | else:
173 | out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul)
174 |
175 | return out
176 |
177 | def __repr__(self):
178 | return (f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})')
179 |
180 |
181 | class ScaledLeakyReLU(nn.Module):
182 | def __init__(self, negative_slope=0.2):
183 | super().__init__()
184 |
185 | self.negative_slope = negative_slope
186 |
187 | def forward(self, input):
188 | return F.leaky_relu(input, negative_slope=self.negative_slope)
189 |
190 |
191 | class ModulatedConv2d(nn.Module):
192 | def __init__(self, in_channel, out_channel, kernel_size, style_dim, demodulate=True, upsample=False,
193 | downsample=False, blur_kernel=[1, 3, 3, 1], ):
194 | super().__init__()
195 |
196 | self.eps = 1e-8
197 | self.kernel_size = kernel_size
198 | self.in_channel = in_channel
199 | self.out_channel = out_channel
200 | self.upsample = upsample
201 | self.downsample = downsample
202 |
203 | if upsample:
204 | factor = 2
205 | p = (len(blur_kernel) - factor) - (kernel_size - 1)
206 | pad0 = (p + 1) // 2 + factor - 1
207 | pad1 = p // 2 + 1
208 |
209 | self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor)
210 |
211 | if downsample:
212 | factor = 2
213 | p = (len(blur_kernel) - factor) + (kernel_size - 1)
214 | pad0 = (p + 1) // 2
215 | pad1 = p // 2
216 |
217 | self.blur = Blur(blur_kernel, pad=(pad0, pad1))
218 |
219 | fan_in = in_channel * kernel_size ** 2
220 | self.scale = 1 / math.sqrt(fan_in)
221 | self.padding = kernel_size // 2
222 |
223 | self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel, kernel_size, kernel_size))
224 |
225 | self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
226 | self.demodulate = demodulate
227 |
228 | def __repr__(self):
229 | return (
230 | f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, '
231 | f'upsample={self.upsample}, downsample={self.downsample})'
232 | )
233 |
234 | def forward(self, input, style):
235 | batch, in_channel, height, width = input.shape
236 |
237 | style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
238 | weight = self.scale * self.weight * style
239 |
240 | if self.demodulate:
241 | demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
242 | weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
243 |
244 | weight = weight.view(batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size)
245 |
246 | if self.upsample:
247 | input = input.view(1, batch * in_channel, height, width)
248 | weight = weight.view(batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size)
249 | weight = weight.transpose(1, 2).reshape(batch * in_channel, self.out_channel, self.kernel_size,
250 | self.kernel_size)
251 | out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch)
252 | _, _, height, width = out.shape
253 | out = out.view(batch, self.out_channel, height, width)
254 | out = self.blur(out)
255 | elif self.downsample:
256 | input = self.blur(input)
257 | _, _, height, width = input.shape
258 | input = input.view(1, batch * in_channel, height, width)
259 | out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
260 | _, _, height, width = out.shape
261 | out = out.view(batch, self.out_channel, height, width)
262 | else:
263 | input = input.view(1, batch * in_channel, height, width)
264 | out = F.conv2d(input, weight, padding=self.padding, groups=batch)
265 | _, _, height, width = out.shape
266 | out = out.view(batch, self.out_channel, height, width)
267 |
268 | return out
269 |
270 |
271 | class NoiseInjection(nn.Module):
272 | def __init__(self):
273 | super().__init__()
274 |
275 | self.weight = nn.Parameter(torch.zeros(1))
276 |
277 | def forward(self, image, noise=None):
278 |
279 | if noise is None:
280 | return image
281 | else:
282 | return image + self.weight * noise
283 |
284 |
285 | class ConstantInput(nn.Module):
286 | def __init__(self, channel, size=4):
287 | super().__init__()
288 |
289 | self.input = nn.Parameter(torch.randn(1, channel, size, size))
290 |
291 | def forward(self, input):
292 | batch = input.shape[0]
293 | out = self.input.repeat(batch, 1, 1, 1)
294 |
295 | return out
296 |
297 |
298 | class StyledConv(nn.Module):
299 | def __init__(self, in_channel, out_channel, kernel_size, style_dim, upsample=False, blur_kernel=[1, 3, 3, 1],
300 | demodulate=True):
301 | super().__init__()
302 |
303 | self.conv = ModulatedConv2d(
304 | in_channel,
305 | out_channel,
306 | kernel_size,
307 | style_dim,
308 | upsample=upsample,
309 | blur_kernel=blur_kernel,
310 | demodulate=demodulate,
311 | )
312 |
313 | self.noise = NoiseInjection()
314 | self.activate = FusedLeakyReLU(out_channel)
315 |
316 | def forward(self, input, style, noise=None):
317 | out = self.conv(input, style)
318 | out = self.noise(out, noise=noise)
319 | out = self.activate(out)
320 |
321 | return out
322 |
323 |
324 | class ConvLayer(nn.Sequential):
325 | def __init__(
326 | self,
327 | in_channel,
328 | out_channel,
329 | kernel_size,
330 | downsample=False,
331 | blur_kernel=[1, 3, 3, 1],
332 | bias=True,
333 | activate=True,
334 | ):
335 | layers = []
336 |
337 | if downsample:
338 | factor = 2
339 | p = (len(blur_kernel) - factor) + (kernel_size - 1)
340 | pad0 = (p + 1) // 2
341 | pad1 = p // 2
342 |
343 | layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
344 |
345 | stride = 2
346 | self.padding = 0
347 |
348 | else:
349 | stride = 1
350 | self.padding = kernel_size // 2
351 |
352 | layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=self.padding, stride=stride,
353 | bias=bias and not activate))
354 |
355 | if activate:
356 | if bias:
357 | layers.append(FusedLeakyReLU(out_channel))
358 | else:
359 | layers.append(ScaledLeakyReLU(0.2))
360 |
361 | super().__init__(*layers)
362 |
363 |
364 | class ToRGB(nn.Module):
365 | def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
366 | super().__init__()
367 |
368 | if upsample:
369 | self.upsample = Upsample(blur_kernel)
370 |
371 | self.conv = ConvLayer(in_channel, 3, 1)
372 | self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
373 |
374 | def forward(self, input, skip=None):
375 | out = self.conv(input)
376 | out = out + self.bias
377 |
378 | if skip is not None:
379 | skip = self.upsample(skip)
380 | out = out + skip
381 |
382 | return out
383 |
384 |
385 | class ToFlow(nn.Module):
386 | def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
387 | super().__init__()
388 |
389 | if upsample:
390 | self.upsample = Upsample(blur_kernel)
391 |
392 | self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False)
393 | self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
394 |
395 | def forward(self, input, style, feat, skip=None):
396 | out = self.conv(input, style)
397 | out = out + self.bias
398 |
399 | # warping
400 | xs = np.linspace(-1, 1, input.size(2))
401 | xs = np.meshgrid(xs, xs)
402 | xs = np.stack(xs, 2)
403 |
404 | xs = torch.tensor(xs, requires_grad=False).float().unsqueeze(0).repeat(input.size(0), 1, 1, 1).cuda()
405 |
406 | if skip is not None:
407 | skip = self.upsample(skip)
408 | out = out + skip
409 |
410 | sampler = torch.tanh(out[:, 0:2, :, :])
411 | mask = torch.sigmoid(out[:, 2:3, :, :])
412 | flow = sampler.permute(0, 2, 3, 1) + xs # B x h x w 2
413 | feat_warp = F.grid_sample(feat, flow, align_corners=False) * mask
414 |
415 | return feat_warp, feat_warp + input * (1.0 - mask), out, flow
416 |
417 |
418 | class Direction(nn.Module):
419 | def __init__(self, motion_dim):
420 | super(Direction, self).__init__()
421 |
422 | self.weight = nn.Parameter(torch.randn(512, motion_dim))
423 |
424 | def forward(self, input):
425 | weight = self.weight + 1e-8
426 | Q, R = torch.linalg.qr(weight) # get eignvector, orthogonal [n1, n2, n3, n4]
427 |
428 | if input is None:
429 | return Q
430 | else:
431 | input_diag = torch.diag_embed(input) # alpha, diagonal matrix
432 | out = torch.matmul(input_diag, Q.T)
433 | out = torch.sum(out, dim=1)
434 | return out
435 |
436 |
437 | class Synthesis(nn.Module):
438 | def __init__(self, size, style_dim, motion_dim, blur_kernel=[1, 3, 3, 1], channel_multiplier=1):
439 | super(Synthesis, self).__init__()
440 |
441 | self.size = size
442 | self.style_dim = style_dim
443 | self.motion_dim = motion_dim
444 |
445 | self.direction = Direction(motion_dim)
446 |
447 | self.channels = {
448 | 4: 512,
449 | 8: 512,
450 | 16: 512,
451 | 32: 512,
452 | 64: 256 * channel_multiplier,
453 | 128: 128 * channel_multiplier,
454 | 256: 64 * channel_multiplier,
455 | 512: 32 * channel_multiplier,
456 | 1024: 16 * channel_multiplier,
457 | }
458 |
459 | self.input = ConstantInput(self.channels[4])
460 | self.conv1 = StyledConv(self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel)
461 | self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False)
462 |
463 | self.log_size = int(math.log(size, 2))
464 | self.num_layers = (self.log_size - 2) * 2 + 1
465 |
466 | self.convs = nn.ModuleList()
467 | self.upsamples = nn.ModuleList()
468 | self.to_rgbs = nn.ModuleList()
469 | self.to_flows = nn.ModuleList()
470 |
471 | in_channel = self.channels[4]
472 |
473 | for i in range(3, self.log_size + 1):
474 | out_channel = self.channels[2 ** i]
475 |
476 | self.convs.append(StyledConv(in_channel, out_channel, 3, style_dim, upsample=True,
477 | blur_kernel=blur_kernel))
478 | self.convs.append(StyledConv(out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel))
479 | self.to_rgbs.append(ToRGB(out_channel, style_dim))
480 |
481 | self.to_flows.append(ToFlow(out_channel, style_dim))
482 |
483 | in_channel = out_channel
484 |
485 | self.n_latent = self.log_size * 2 - 2
486 |
487 | def forward(self, wa, alpha, feats):
488 | bs = wa.shape[0]
489 |
490 | if alpha is not None:
491 | if len(alpha) > 1:
492 | directions_target = self.direction(alpha[0]) # target
493 | directions_source = self.direction(alpha[1]) # source
494 | directions_start = self.direction(alpha[2]) # start
495 | latent = wa + (directions_target - directions_start) + directions_source
496 | else:
497 | directions = self.direction(alpha[0])
498 | latent = wa + directions # wa + directions
499 | else:
500 | latent = wa
501 |
502 | inject_index = self.n_latent
503 | latent = latent.unsqueeze(1).repeat(1, inject_index, 1)
504 |
505 | out = self.input(latent)
506 | out = self.conv1(out, latent[:, 0])
507 |
508 | i = 1
509 | for conv1, conv2, to_rgb, to_flow, feat in zip(self.convs[::2], self.convs[1::2], self.to_rgbs,
510 | self.to_flows, feats):
511 | out = conv1(out, latent[:, i])
512 | out = conv2(out, latent[:, i + 1])
513 | if out.size(2) == 8:
514 | out_warp, out, skip_flow, _ = to_flow(out, latent[:, i + 2], feat)
515 | skip = to_rgb(out_warp)
516 | elif out.size(2) == 64:
517 | out_warp, out, skip_flow, flow = to_flow(out, latent[:, i + 2], feat, skip_flow)
518 | skip = to_rgb(out_warp, skip)
519 | else:
520 | out_warp, out, skip_flow, _ = to_flow(out, latent[:, i + 2], feat, skip_flow)
521 | skip = to_rgb(out_warp, skip)
522 | i += 2
523 |
524 | img = skip
525 |
526 | return img, flow
527 |
528 | def synthesis(self, wa, feats):
529 | bs = wa.shape[0]
530 |
531 | if alpha is not None:
532 | if len(alpha) > 1:
533 | directions_target = self.direction(alpha[0]) # target
534 | directions_source = self.direction(alpha[1]) # source
535 | directions_start = self.direction(alpha[2]) # start
536 | latent = wa + (directions_target - directions_start) + directions_source
537 | else:
538 | directions = self.direction(alpha[0])
539 | latent = wa + directions # wa + directions
540 | else:
541 | latent = wa
542 |
543 | inject_index = self.n_latent
544 | latent = latent.unsqueeze(1).repeat(1, inject_index, 1)
545 |
546 | out = self.input(latent)
547 | out = self.conv1(out, latent[:, 0])
548 |
549 | i = 1
550 | for conv1, conv2, to_rgb, to_flow, feat in zip(self.convs[::2], self.convs[1::2], self.to_rgbs,
551 | self.to_flows, feats):
552 | out = conv1(out, latent[:, i])
553 | out = conv2(out, latent[:, i + 1])
554 | if out.size(2) == 8:
555 | out_warp, out, skip_flow, _ = to_flow(out, latent[:, i + 2], feat)
556 | skip = to_rgb(out_warp)
557 | elif out.size(2) == 64:
558 | out_warp, out, skip_flow, flow = to_flow(out, latent[:, i + 2], feat, skip_flow)
559 | skip = to_rgb(out_warp, skip)
560 | else:
561 | out_warp, out, skip_flow, _ = to_flow(out, latent[:, i + 2], feat, skip_flow)
562 | skip = to_rgb(out_warp, skip)
563 | i += 2
564 |
565 | img = skip
566 |
567 | return img, flow
--------------------------------------------------------------------------------
/models/wav2vec2.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn.functional as F
3 | from transformers import Wav2Vec2Model
4 | from transformers.modeling_outputs import BaseModelOutput
5 |
6 |
7 | class Wav2VecModel(Wav2Vec2Model):
8 | """
9 | Wav2VecModel is a custom model class that extends the Wav2Vec2Model class from the transformers library.
10 | It inherits all the functionality of the Wav2Vec2Model and adds additional methods for feature extraction and encoding.
11 | ...
12 |
13 | Attributes:
14 | base_model (Wav2Vec2Model): The base Wav2Vec2Model object.
15 |
16 | Methods:
17 | forward(input_values, seq_len, attention_mask=None, mask_time_indices=None
18 | , output_attentions=None, output_hidden_states=None, return_dict=None):
19 | Forward pass of the Wav2VecModel.
20 | It takes input_values, seq_len, and other optional parameters as input and returns the output of the base model.
21 |
22 | feature_extract(input_values, seq_len):
23 | Extracts features from the input_values using the base model.
24 |
25 | encode(extract_features, attention_mask=None, mask_time_indices=None, output_attentions=None, output_hidden_states=None, return_dict=None):
26 | Encodes the extracted features using the base model and returns the encoded features.
27 | """
28 | def forward(
29 | self,
30 | input_values,
31 | seq_len,
32 | attention_mask=None,
33 | mask_time_indices=None,
34 | output_attentions=None,
35 | output_hidden_states=None,
36 | return_dict=None,
37 | ):
38 | """
39 | Forward pass of the Wav2Vec model.
40 |
41 | Args:
42 | self: The instance of the model.
43 | input_values: The input values (waveform) to the model.
44 | seq_len: The sequence length of the input values.
45 | attention_mask: Attention mask to be used for the model.
46 | mask_time_indices: Mask indices to be used for the model.
47 | output_attentions: If set to True, returns attentions.
48 | output_hidden_states: If set to True, returns hidden states.
49 | return_dict: If set to True, returns a BaseModelOutput instead of a tuple.
50 |
51 | Returns:
52 | The output of the Wav2Vec model.
53 | """
54 | self.config.output_attentions = True
55 |
56 | output_hidden_states = (
57 | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
58 | )
59 | return_dict = return_dict if return_dict is not None else self.config.use_return_dict
60 | with torch.no_grad():
61 | extract_features = self.feature_extractor(input_values)
62 | extract_features = extract_features.transpose(1, 2)
63 | extract_features = linear_interpolation(extract_features, seq_len=seq_len)
64 |
65 | if attention_mask is not None:
66 | # compute reduced attention_mask corresponding to feature vectors
67 | attention_mask = self._get_feature_vector_attention_mask(
68 | extract_features.shape[1], attention_mask, add_adapter=False
69 | )
70 |
71 | hidden_states, extract_features = self.feature_projection(extract_features)
72 | hidden_states1 = self._mask_hidden_states(
73 | hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
74 | )
75 |
76 | encoder_outputs = self.encoder(
77 | hidden_states,
78 | attention_mask=attention_mask,
79 | output_attentions=output_attentions,
80 | output_hidden_states=output_hidden_states,
81 | return_dict=return_dict,
82 | )
83 |
84 | hidden_states = encoder_outputs[0]
85 |
86 | if self.adapter is not None:
87 | hidden_states = self.adapter(hidden_states)
88 |
89 | if not return_dict:
90 | return (hidden_states, ) + encoder_outputs[1:]
91 |
92 | return BaseModelOutput(
93 | last_hidden_state=hidden_states,
94 | hidden_states=encoder_outputs.hidden_states,
95 | attentions=encoder_outputs.attentions)
96 |
97 | def feature_extract(
98 | self,
99 | input_values,
100 | seq_len,
101 | ):
102 | """
103 | Extracts features from the input values and returns the extracted features.
104 |
105 | Parameters:
106 | input_values (torch.Tensor): The input values to be processed.
107 | seq_len (torch.Tensor): The sequence lengths of the input values.
108 |
109 | Returns:
110 | extracted_features (torch.Tensor): The extracted features from the input values.
111 | """
112 | extract_features = self.feature_extractor(input_values)
113 | extract_features = extract_features.transpose(1, 2)
114 | extract_features = linear_interpolation(extract_features, seq_len=seq_len)
115 |
116 | return extract_features
117 |
118 | def encode(
119 | self,
120 | extract_features,
121 | attention_mask=None,
122 | mask_time_indices=None,
123 | output_attentions=None,
124 | output_hidden_states=None,
125 | return_dict=None,
126 | ):
127 | """
128 | Encodes the input features into the output space.
129 |
130 | Args:
131 | extract_features (torch.Tensor): The extracted features from the audio signal.
132 | attention_mask (torch.Tensor, optional): Attention mask to be used for padding.
133 | mask_time_indices (torch.Tensor, optional): Masked indices for the time dimension.
134 | output_attentions (bool, optional): If set to True, returns the attention weights.
135 | output_hidden_states (bool, optional): If set to True, returns all hidden states.
136 | return_dict (bool, optional): If set to True, returns a BaseModelOutput instead of the tuple.
137 |
138 | Returns:
139 | The encoded output features.
140 | """
141 | self.config.output_attentions = True
142 |
143 | output_hidden_states = (
144 | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
145 | )
146 | return_dict = return_dict if return_dict is not None else self.config.use_return_dict
147 |
148 | if attention_mask is not None:
149 | # compute reduced attention_mask corresponding to feature vectors
150 | attention_mask = self._get_feature_vector_attention_mask(
151 | extract_features.shape[1], attention_mask, add_adapter=False
152 | )
153 |
154 | hidden_states, extract_features = self.feature_projection(extract_features)
155 | hidden_states = self._mask_hidden_states(
156 | hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
157 | )
158 |
159 | encoder_outputs = self.encoder(
160 | hidden_states,
161 | attention_mask=attention_mask,
162 | output_attentions=output_attentions,
163 | output_hidden_states=output_hidden_states,
164 | return_dict=return_dict,
165 | )
166 |
167 | hidden_states = encoder_outputs[0]
168 |
169 | if self.adapter is not None:
170 | hidden_states = self.adapter(hidden_states)
171 |
172 | if not return_dict:
173 | return (hidden_states, ) + encoder_outputs[1:]
174 | return BaseModelOutput(
175 | last_hidden_state=hidden_states,
176 | hidden_states=encoder_outputs.hidden_states,
177 | attentions=encoder_outputs.attentions,
178 | )
179 |
180 |
181 | def linear_interpolation(features, seq_len):
182 | """
183 | Transpose the features to interpolate linearly.
184 |
185 | Args:
186 | features (torch.Tensor): The extracted features to be interpolated.
187 | seq_len (torch.Tensor): The sequence lengths of the features.
188 |
189 | Returns:
190 | torch.Tensor: The interpolated features.
191 | """
192 | features = features.transpose(1, 2)
193 | output_features = F.interpolate(features, size=seq_len, align_corners=True, mode='linear')
194 | return output_features.transpose(1, 2)
195 |
--------------------------------------------------------------------------------
/models/wav2vec2_ser.py:
--------------------------------------------------------------------------------
1 | import os, torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 |
5 | from dataclasses import dataclass
6 | from typing import Optional, Tuple
7 |
8 | from transformers.file_utils import ModelOutput
9 | from transformers import Wav2Vec2FeatureExtractor
10 | from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel, Wav2Vec2Model
11 |
12 |
13 | @dataclass
14 | class SpeechClassifierOutput(ModelOutput):
15 | loss: Optional[torch.FloatTensor] = None
16 | logits: torch.FloatTensor = None
17 | hidden_states: Optional[Tuple[torch.FloatTensor]] = None
18 | attentions: Optional[Tuple[torch.FloatTensor]] = None
19 |
20 |
21 | class Wav2Vec2ClassificationHead(nn.Module):
22 | """Head for wav2vec classification task."""
23 |
24 | def __init__(self, config):
25 | super().__init__()
26 | self.dense = nn.Linear(config.hidden_size, config.hidden_size)
27 | self.dropout = nn.Dropout(config.final_dropout)
28 | self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
29 |
30 | def forward(self, features, **kwargs):
31 | x = features
32 | x = self.dropout(x)
33 | x = self.dense(x)
34 | x = torch.tanh(x)
35 | x = self.dropout(x)
36 | x = self.out_proj(x)
37 | return x
38 |
39 |
40 | class Wav2Vec2ForSpeechClassification(Wav2Vec2PreTrainedModel):
41 | def __init__(self, config):
42 | super().__init__(config)
43 | self.num_labels = config.num_labels
44 | self.pooling_mode = config.pooling_mode
45 | self.config = config
46 |
47 | self.wav2vec2 = Wav2Vec2Model(config)
48 | self.classifier = Wav2Vec2ClassificationHead(config)
49 |
50 | self.init_weights()
51 |
52 | def freeze_feature_extractor(self):
53 | self.wav2vec2.feature_extractor._freeze_parameters()
54 |
55 | def merged_strategy(
56 | self,
57 | hidden_states,
58 | mode="mean"
59 | ):
60 | if mode == "mean":
61 | outputs = torch.mean(hidden_states, dim=1)
62 | elif mode == "sum":
63 | outputs = torch.sum(hidden_states, dim=1)
64 | elif mode == "max":
65 | outputs = torch.max(hidden_states, dim=1)[0]
66 | else:
67 | raise Exception(
68 | "The pooling method hasn't been defined! Your pooling mode must be one of these ['mean', 'sum', 'max']")
69 |
70 | return outputs
71 |
72 | def forward(
73 | self,
74 | input_values,
75 | attention_mask=None,
76 | output_attentions=None,
77 | output_hidden_states=None,
78 | return_dict=None,
79 | labels=None,
80 | ):
81 | return_dict = return_dict if return_dict is not None else self.config.use_return_dict
82 | outputs = self.wav2vec2(
83 | input_values,
84 | attention_mask=attention_mask,
85 | output_attentions=output_attentions,
86 | output_hidden_states=output_hidden_states,
87 | return_dict=return_dict,
88 | )
89 | hidden_states = outputs[0]
90 | hidden_states = self.merged_strategy(hidden_states, mode=self.pooling_mode)
91 | logits = self.classifier(hidden_states)
92 |
93 | loss = None
94 | if labels is not None:
95 | if self.config.problem_type is None:
96 | if self.num_labels == 1:
97 | self.config.problem_type = "regression"
98 | elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
99 | self.config.problem_type = "single_label_classification"
100 | else:
101 | self.config.problem_type = "multi_label_classification"
102 |
103 | if self.config.problem_type == "regression":
104 | loss_fct = MSELoss()
105 | loss = loss_fct(logits.view(-1, self.num_labels), labels)
106 | elif self.config.problem_type == "single_label_classification":
107 | loss_fct = CrossEntropyLoss()
108 | loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
109 | elif self.config.problem_type == "multi_label_classification":
110 | loss_fct = BCEWithLogitsLoss()
111 | loss = loss_fct(logits, labels)
112 |
113 | if not return_dict:
114 | output = (logits,) + outputs[2:]
115 | return ((loss,) + output) if loss is not None else output
116 |
117 | return SpeechClassifierOutput(
118 | loss=loss,
119 | logits=logits,
120 | hidden_states=outputs.hidden_states,
121 | attentions=outputs.attentions,
122 | )
123 |
124 |
125 |
--------------------------------------------------------------------------------
/options/base_options.py:
--------------------------------------------------------------------------------
1 | import os, argparse, json
2 |
3 | class BaseOptions():
4 | def parse(self):
5 | parser = argparse.ArgumentParser()
6 | self.parser = self.initialize(parser)
7 | self.opt = self.parser.parse_args()
8 | return self.opt
9 |
10 | def initialize(self, parser):
11 | parser.add_argument('--pretrained_dir', type=str, default='./checkpoints')
12 | parser.add_argument('--seed', default=15, type=int)
13 | parser.add_argument('--fix_noise_seed', action='store_true')
14 |
15 | # video
16 | parser.add_argument('--input_size', type=int, default=512, help='input image size')
17 | parser.add_argument('--input_nc', type=int, default=3, help='input image channel')
18 | parser.add_argument('--fps', type=float, default=25.)
19 |
20 | # audio
21 | parser.add_argument('--sampling_rate', type=int, default=16000)
22 | parser.add_argument('--audio_marcing', type=int, default=2, help='number of adjacent frames. For value v, t -> [t-v, ..., t, ..., t+v]')
23 | parser.add_argument('--wav2vec_sec', default=2, type=float, help='window length L (seconds), 50 frames')
24 | parser.add_argument('--wav2vec_model_path', default='./checkpoints/wav2vec2-base-960h')
25 | parser.add_argument('--audio2emotion_path', default='./checkpoints/wav2vec-english-speech-emotion-recognition')
26 | parser.add_argument('--attention_window', default=2, type=int, help='attention window size, e.g., if 1, attend frames of t-1, t, t+1 for frame t')
27 |
28 | parser.add_argument('--only_last_features', action='store_true')
29 | parser.add_argument('--average_emotion', action='store_true', help='averaging emotion or not.')
30 |
31 | # dropout
32 | parser.add_argument('--audio_dropout_prob', default=0.1, type=float)
33 | parser.add_argument('--ref_dropout_prob', default=0.1, type=float)
34 | parser.add_argument('--emotion_dropout_prob', default=0.1, type=float)
35 |
36 | # model Hyper Parameters
37 | parser.add_argument('--style_dim', type=int, default=512, help='w latent dimension')
38 | parser.add_argument('--dim_a', type=int, default=512, help='audio dimension')
39 | parser.add_argument('--dim_w', type=int, default=512, help='face dimension')
40 | parser.add_argument('--dim_h', type=int, default=1024, help='hidden dimension')
41 | parser.add_argument('--dim_m', type=int, default=20, help='dimension of orthogonal basis')
42 | parser.add_argument('--dim_e', type=int, default=7, help='emotion dimension')
43 |
44 | # option for FMT
45 | parser.add_argument('--fmt_depth', default=8, type=int)
46 | parser.add_argument('--num_heads', default=8, type=int)
47 | parser.add_argument('--mlp_ratio', default=4.0, type=float)
48 | parser.add_argument('--no_learned_pe', action='store_true')
49 | parser.add_argument('--num_prev_frames', type=int, default=10)
50 | parser.add_argument('--max_grad_norm', default=1, type=float, help='max grad norm for training transformers')
51 |
52 | parser.add_argument('--ode_atol', default=1e-5, type=float)
53 | parser.add_argument('--ode_rtol', default=1e-5, type=float)
54 | parser.add_argument('--nfe', default=10, type=int,
55 | help='Number of Function Evaluateions (NFEs) for ODE solver')
56 | parser.add_argument('--torchdiffeq_ode_method', default='euler',
57 | help='ODE solver')
58 | parser.add_argument('--a_cfg_scale', default=2.0, type=float,
59 | help='audio classifier-free guidance (vector field) scale')
60 | parser.add_argument('--e_cfg_scale', default=1.0, type=float,
61 | help='emotion classifier-free guidance (vector field) scale')
62 | parser.add_argument('--r_cfg_scale', default=1.0, type=float,
63 | help='reference classifier-free guidance (vector field) scale')
64 |
65 | # option for Diffusion (ablation)
66 | parser.add_argument('--n_diff_steps', type=int, default=500, help='number of diffusion steps')
67 | parser.add_argument('--diff_schedule', type=str, default='cosine', choices=['linear', 'cosine', 'quadratic', 'sigmoid'])
68 | parser.add_argument('--diffusion_mode', type=str, default='sample', choices=['sample', 'noise'])
69 | return parser
70 |
71 |
72 | def print_options(self):
73 | """Print and save options
74 |
75 | It will print both current options and default values(if different).
76 | It will save options into a text file / [checkpoints_dir] / opt.txt
77 | """
78 | message = ''
79 | message += '----------------- Options ---------------\n'
80 | for k, v in sorted(vars(self.opt).items()):
81 | comment = ''
82 | default = self.parser.get_default(k)
83 | if v != default:
84 | comment = '\t[default: %s]' % str(default)
85 | message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
86 | message += '----------------- End -------------------'
87 | print(message)
88 |
89 |
90 | def save_options(opt, save_path):
91 | with open(save_path, 'wt') as f:
92 | json.dump(vars(opt), f, indent=4)
93 |
94 |
95 | def load_options(opt, load_path):
96 | with open(load_path, 'rt') as f:
97 | _update = json.loads(f)
98 | opt.update(_update)
99 | return opt
100 |
101 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | pyyaml
2 | opencv-python
3 | pandas
4 | tqdm
5 | matplotlib
6 | flow-vis
7 | librosa
8 | transformers==4.30.2
9 | albumentations==1.4.15
10 | albucore==0.0.16
11 | torchdiffeq==0.2.5
12 | timm==1.0.9
13 | face_alignment==1.4.1
14 | av==12.0.0
15 |
--------------------------------------------------------------------------------