├── _data ├── options.yml └── social.yml ├── .gitignore ├── flow ├── iaf.PNG ├── iaf.png ├── maf.PNG ├── maf.png ├── flow-graphical.PNG ├── flow-graphical.png └── index.md ├── gan ├── gan.png ├── cyclegan_gendisc.png ├── index.md └── index.tex ├── vae ├── klgap.png └── vae.png ├── docs ├── flow │ ├── iaf.PNG │ ├── maf.PNG │ └── flow-graphical.PNG ├── gan │ ├── gan.png │ ├── cyclegan_gendisc.png │ └── index.tex ├── vae │ ├── klgap.png │ └── vae.png ├── fonts │ ├── icomoon.eot │ ├── icomoon.ttf │ ├── icomoon.woff │ ├── et-book │ │ ├── et-book-bold-line-figures │ │ │ ├── et-book-bold-line-figures.eot │ │ │ ├── et-book-bold-line-figures.ttf │ │ │ └── et-book-bold-line-figures.woff │ │ ├── et-book-roman-line-figures │ │ │ ├── et-book-roman-line-figures.eot │ │ │ ├── et-book-roman-line-figures.ttf │ │ │ └── et-book-roman-line-figures.woff │ │ ├── et-book-roman-old-style-figures │ │ │ ├── et-book-roman-old-style-figures.eot │ │ │ ├── et-book-roman-old-style-figures.ttf │ │ │ └── et-book-roman-old-style-figures.woff │ │ ├── et-book-semi-bold-old-style-figures │ │ │ ├── et-book-semi-bold-old-style-figures.eot │ │ │ ├── et-book-semi-bold-old-style-figures.ttf │ │ │ └── et-book-semi-bold-old-style-figures.woff │ │ └── et-book-display-italic-old-style-figures │ │ │ ├── et-book-display-italic-old-style-figures.eot │ │ │ ├── et-book-display-italic-old-style-figures.ttf │ │ │ └── et-book-display-italic-old-style-figures.woff │ ├── et-bembo │ │ ├── et-bembo-bold-line-figures │ │ │ ├── et-bembo-bold-line-figures.eot │ │ │ ├── et-bembo-bold-line-figures.ttf │ │ │ └── et-bembo-bold-line-figures.woff │ │ ├── et-bembo-roman-line-figures │ │ │ ├── et-bembo-roman-line-figures.eot │ │ │ ├── et-bembo-roman-line-figures.ttf │ │ │ └── et-bembo-roman-line-figures.woff │ │ ├── et-bembo-roman-old-style-figures │ │ │ ├── et-bembo-roman-old-style-figures.eot │ │ │ ├── et-bembo-roman-old-style-figures.ttf │ │ │ └── et-bembo-roman-old-style-figures.woff │ │ ├── et-bembo-semi-bold-old-style-figures │ │ │ ├── et-bembo-semi-bold-old-style-figures.eot │ │ │ ├── et-bembo-semi-bold-old-style-figures.ttf │ │ │ └── et-bembo-semi-bold-old-style-figures.woff │ │ └── et-bembo-display-italic-old-style-figures │ │ │ ├── et-bembo-display-italic-old-style-figures.eot │ │ │ ├── et-bembo-display-italic-old-style-figures.ttf │ │ │ └── et-bembo-display-italic-old-style-figures.woff │ └── icomoon.svg ├── autoregressive │ ├── nade.png │ ├── fvsbn.png │ ├── autoregressive.png │ └── index.tex ├── introduction │ ├── learning.png │ ├── learning_1.png │ ├── learning_2.png │ └── index.html ├── Makefile ├── LICENSE ├── index.html └── css │ └── tufte.orginal.css ├── fonts ├── icomoon.eot ├── icomoon.ttf ├── icomoon.woff ├── et-book │ ├── et-book-bold-line-figures │ │ ├── et-book-bold-line-figures.eot │ │ ├── et-book-bold-line-figures.ttf │ │ └── et-book-bold-line-figures.woff │ ├── et-book-roman-line-figures │ │ ├── et-book-roman-line-figures.eot │ │ ├── et-book-roman-line-figures.ttf │ │ └── et-book-roman-line-figures.woff │ ├── et-book-roman-old-style-figures │ │ ├── et-book-roman-old-style-figures.eot │ │ ├── et-book-roman-old-style-figures.ttf │ │ └── et-book-roman-old-style-figures.woff │ ├── et-book-semi-bold-old-style-figures │ │ ├── et-book-semi-bold-old-style-figures.eot │ │ ├── et-book-semi-bold-old-style-figures.ttf │ │ └── et-book-semi-bold-old-style-figures.woff │ └── et-book-display-italic-old-style-figures │ │ ├── et-book-display-italic-old-style-figures.eot │ │ ├── et-book-display-italic-old-style-figures.ttf │ │ └── et-book-display-italic-old-style-figures.woff ├── et-bembo │ ├── et-bembo-bold-line-figures │ │ ├── et-bembo-bold-line-figures.eot │ │ ├── et-bembo-bold-line-figures.ttf │ │ └── et-bembo-bold-line-figures.woff │ ├── et-bembo-roman-line-figures │ │ ├── et-bembo-roman-line-figures.eot │ │ ├── et-bembo-roman-line-figures.ttf │ │ └── et-bembo-roman-line-figures.woff │ ├── et-bembo-roman-old-style-figures │ │ ├── et-bembo-roman-old-style-figures.eot │ │ ├── et-bembo-roman-old-style-figures.ttf │ │ └── et-bembo-roman-old-style-figures.woff │ ├── et-bembo-semi-bold-old-style-figures │ │ ├── et-bembo-semi-bold-old-style-figures.eot │ │ ├── et-bembo-semi-bold-old-style-figures.ttf │ │ └── et-bembo-semi-bold-old-style-figures.woff │ └── et-bembo-display-italic-old-style-figures │ │ ├── et-bembo-display-italic-old-style-figures.eot │ │ ├── et-bembo-display-italic-old-style-figures.ttf │ │ └── et-bembo-display-italic-old-style-figures.woff └── icomoon.svg ├── autoregressive ├── nade.png ├── fvsbn.png ├── autoregressive.png ├── index.tex └── index.md ├── introduction ├── learning.png ├── learning_1.png ├── learning_2.png └── index.md ├── _layouts ├── page.html ├── default.html ├── full-width.html └── post.html ├── _includes ├── print-footer.html ├── header.html ├── footer.html └── head.html ├── Makefile ├── _plugins ├── marginnote.rb ├── sidenote.rb ├── newthought.rb ├── mathjaxtag.rb ├── main_column_img.rb ├── fullwidth.rb └── margin_figure.rb ├── _config.yml ├── _sass ├── _settings.scss ├── _syntax-highlighting.scss └── _fonts.scss ├── LICENSE ├── index.md ├── README.md └── css ├── tufte.css └── tufte.orginal.css /_data/options.yml: -------------------------------------------------------------------------------- 1 | mathjax: true 2 | lato_font_load: true -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | _site 2 | .sass-cache 3 | .DS\_Store 4 | config.codekit 5 | -------------------------------------------------------------------------------- /flow/iaf.PNG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/flow/iaf.PNG -------------------------------------------------------------------------------- /flow/iaf.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/flow/iaf.png -------------------------------------------------------------------------------- /flow/maf.PNG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/flow/maf.PNG -------------------------------------------------------------------------------- /flow/maf.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/flow/maf.png -------------------------------------------------------------------------------- /gan/gan.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/gan/gan.png -------------------------------------------------------------------------------- /vae/klgap.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/vae/klgap.png -------------------------------------------------------------------------------- /vae/vae.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/vae/vae.png -------------------------------------------------------------------------------- /docs/flow/iaf.PNG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/flow/iaf.PNG -------------------------------------------------------------------------------- /docs/flow/maf.PNG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/flow/maf.PNG -------------------------------------------------------------------------------- /docs/gan/gan.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/gan/gan.png -------------------------------------------------------------------------------- /docs/vae/klgap.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/vae/klgap.png -------------------------------------------------------------------------------- /docs/vae/vae.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/vae/vae.png -------------------------------------------------------------------------------- /fonts/icomoon.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/icomoon.eot -------------------------------------------------------------------------------- /fonts/icomoon.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/icomoon.ttf -------------------------------------------------------------------------------- /fonts/icomoon.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/icomoon.woff -------------------------------------------------------------------------------- /autoregressive/nade.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/autoregressive/nade.png -------------------------------------------------------------------------------- /docs/fonts/icomoon.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/icomoon.eot -------------------------------------------------------------------------------- /docs/fonts/icomoon.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/icomoon.ttf -------------------------------------------------------------------------------- /docs/fonts/icomoon.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/icomoon.woff -------------------------------------------------------------------------------- /flow/flow-graphical.PNG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/flow/flow-graphical.PNG -------------------------------------------------------------------------------- /flow/flow-graphical.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/flow/flow-graphical.png -------------------------------------------------------------------------------- /autoregressive/fvsbn.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/autoregressive/fvsbn.png -------------------------------------------------------------------------------- /gan/cyclegan_gendisc.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/gan/cyclegan_gendisc.png -------------------------------------------------------------------------------- /introduction/learning.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/introduction/learning.png -------------------------------------------------------------------------------- /docs/autoregressive/nade.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/autoregressive/nade.png -------------------------------------------------------------------------------- /docs/flow/flow-graphical.PNG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/flow/flow-graphical.PNG -------------------------------------------------------------------------------- /introduction/learning_1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/introduction/learning_1.png -------------------------------------------------------------------------------- /introduction/learning_2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/introduction/learning_2.png -------------------------------------------------------------------------------- /docs/autoregressive/fvsbn.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/autoregressive/fvsbn.png -------------------------------------------------------------------------------- /docs/gan/cyclegan_gendisc.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/gan/cyclegan_gendisc.png -------------------------------------------------------------------------------- /docs/introduction/learning.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/introduction/learning.png -------------------------------------------------------------------------------- /autoregressive/autoregressive.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/autoregressive/autoregressive.png -------------------------------------------------------------------------------- /docs/introduction/learning_1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/introduction/learning_1.png -------------------------------------------------------------------------------- /docs/introduction/learning_2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/introduction/learning_2.png -------------------------------------------------------------------------------- /docs/autoregressive/autoregressive.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/autoregressive/autoregressive.png -------------------------------------------------------------------------------- /_layouts/page.html: -------------------------------------------------------------------------------- 1 | --- 2 | layout: default 3 | --- 4 |
{{ page.date | date: "%B %-d, %Y" }}
6 | 7 | 8 | {{ content }} 9 | -------------------------------------------------------------------------------- /fonts/et-book/et-book-bold-line-figures/et-book-bold-line-figures.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-book/et-book-bold-line-figures/et-book-bold-line-figures.eot -------------------------------------------------------------------------------- /fonts/et-book/et-book-bold-line-figures/et-book-bold-line-figures.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-book/et-book-bold-line-figures/et-book-bold-line-figures.ttf -------------------------------------------------------------------------------- /fonts/et-book/et-book-bold-line-figures/et-book-bold-line-figures.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-book/et-book-bold-line-figures/et-book-bold-line-figures.woff -------------------------------------------------------------------------------- /_includes/print-footer.html: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /fonts/et-bembo/et-bembo-bold-line-figures/et-bembo-bold-line-figures.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-bembo/et-bembo-bold-line-figures/et-bembo-bold-line-figures.eot -------------------------------------------------------------------------------- /fonts/et-bembo/et-bembo-bold-line-figures/et-bembo-bold-line-figures.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-bembo/et-bembo-bold-line-figures/et-bembo-bold-line-figures.ttf -------------------------------------------------------------------------------- /fonts/et-bembo/et-bembo-bold-line-figures/et-bembo-bold-line-figures.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-bembo/et-bembo-bold-line-figures/et-bembo-bold-line-figures.woff -------------------------------------------------------------------------------- /fonts/et-book/et-book-roman-line-figures/et-book-roman-line-figures.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-book/et-book-roman-line-figures/et-book-roman-line-figures.eot -------------------------------------------------------------------------------- /fonts/et-book/et-book-roman-line-figures/et-book-roman-line-figures.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-book/et-book-roman-line-figures/et-book-roman-line-figures.ttf -------------------------------------------------------------------------------- /fonts/et-book/et-book-roman-line-figures/et-book-roman-line-figures.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-book/et-book-roman-line-figures/et-book-roman-line-figures.woff -------------------------------------------------------------------------------- /docs/fonts/et-book/et-book-bold-line-figures/et-book-bold-line-figures.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-book/et-book-bold-line-figures/et-book-bold-line-figures.eot -------------------------------------------------------------------------------- /docs/fonts/et-book/et-book-bold-line-figures/et-book-bold-line-figures.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-book/et-book-bold-line-figures/et-book-bold-line-figures.ttf -------------------------------------------------------------------------------- /docs/fonts/et-book/et-book-bold-line-figures/et-book-bold-line-figures.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-book/et-book-bold-line-figures/et-book-bold-line-figures.woff -------------------------------------------------------------------------------- /fonts/et-bembo/et-bembo-roman-line-figures/et-bembo-roman-line-figures.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-bembo/et-bembo-roman-line-figures/et-bembo-roman-line-figures.eot -------------------------------------------------------------------------------- /fonts/et-bembo/et-bembo-roman-line-figures/et-bembo-roman-line-figures.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-bembo/et-bembo-roman-line-figures/et-bembo-roman-line-figures.ttf -------------------------------------------------------------------------------- /fonts/et-bembo/et-bembo-roman-line-figures/et-bembo-roman-line-figures.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-bembo/et-bembo-roman-line-figures/et-bembo-roman-line-figures.woff -------------------------------------------------------------------------------- /docs/fonts/et-bembo/et-bembo-bold-line-figures/et-bembo-bold-line-figures.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-bembo/et-bembo-bold-line-figures/et-bembo-bold-line-figures.eot -------------------------------------------------------------------------------- /docs/fonts/et-bembo/et-bembo-bold-line-figures/et-bembo-bold-line-figures.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-bembo/et-bembo-bold-line-figures/et-bembo-bold-line-figures.ttf -------------------------------------------------------------------------------- /docs/fonts/et-bembo/et-bembo-bold-line-figures/et-bembo-bold-line-figures.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-bembo/et-bembo-bold-line-figures/et-bembo-bold-line-figures.woff -------------------------------------------------------------------------------- /docs/fonts/et-book/et-book-roman-line-figures/et-book-roman-line-figures.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-book/et-book-roman-line-figures/et-book-roman-line-figures.eot -------------------------------------------------------------------------------- /docs/fonts/et-book/et-book-roman-line-figures/et-book-roman-line-figures.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-book/et-book-roman-line-figures/et-book-roman-line-figures.ttf -------------------------------------------------------------------------------- /docs/fonts/et-book/et-book-roman-line-figures/et-book-roman-line-figures.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-book/et-book-roman-line-figures/et-book-roman-line-figures.woff -------------------------------------------------------------------------------- /docs/fonts/et-bembo/et-bembo-roman-line-figures/et-bembo-roman-line-figures.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-bembo/et-bembo-roman-line-figures/et-bembo-roman-line-figures.eot -------------------------------------------------------------------------------- /docs/fonts/et-bembo/et-bembo-roman-line-figures/et-bembo-roman-line-figures.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-bembo/et-bembo-roman-line-figures/et-bembo-roman-line-figures.ttf -------------------------------------------------------------------------------- /docs/fonts/et-bembo/et-bembo-roman-line-figures/et-bembo-roman-line-figures.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-bembo/et-bembo-roman-line-figures/et-bembo-roman-line-figures.woff -------------------------------------------------------------------------------- /fonts/et-book/et-book-roman-old-style-figures/et-book-roman-old-style-figures.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-book/et-book-roman-old-style-figures/et-book-roman-old-style-figures.eot -------------------------------------------------------------------------------- /fonts/et-book/et-book-roman-old-style-figures/et-book-roman-old-style-figures.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-book/et-book-roman-old-style-figures/et-book-roman-old-style-figures.ttf -------------------------------------------------------------------------------- /fonts/et-book/et-book-roman-old-style-figures/et-book-roman-old-style-figures.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-book/et-book-roman-old-style-figures/et-book-roman-old-style-figures.woff -------------------------------------------------------------------------------- /fonts/et-bembo/et-bembo-roman-old-style-figures/et-bembo-roman-old-style-figures.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-bembo/et-bembo-roman-old-style-figures/et-bembo-roman-old-style-figures.eot -------------------------------------------------------------------------------- /fonts/et-bembo/et-bembo-roman-old-style-figures/et-bembo-roman-old-style-figures.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-bembo/et-bembo-roman-old-style-figures/et-bembo-roman-old-style-figures.ttf -------------------------------------------------------------------------------- /fonts/et-bembo/et-bembo-roman-old-style-figures/et-bembo-roman-old-style-figures.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-bembo/et-bembo-roman-old-style-figures/et-bembo-roman-old-style-figures.woff -------------------------------------------------------------------------------- /docs/fonts/et-book/et-book-roman-old-style-figures/et-book-roman-old-style-figures.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-book/et-book-roman-old-style-figures/et-book-roman-old-style-figures.eot -------------------------------------------------------------------------------- /docs/fonts/et-book/et-book-roman-old-style-figures/et-book-roman-old-style-figures.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-book/et-book-roman-old-style-figures/et-book-roman-old-style-figures.ttf -------------------------------------------------------------------------------- /docs/fonts/et-book/et-book-roman-old-style-figures/et-book-roman-old-style-figures.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-book/et-book-roman-old-style-figures/et-book-roman-old-style-figures.woff -------------------------------------------------------------------------------- /docs/fonts/et-bembo/et-bembo-roman-old-style-figures/et-bembo-roman-old-style-figures.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-bembo/et-bembo-roman-old-style-figures/et-bembo-roman-old-style-figures.eot -------------------------------------------------------------------------------- /docs/fonts/et-bembo/et-bembo-roman-old-style-figures/et-bembo-roman-old-style-figures.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-bembo/et-bembo-roman-old-style-figures/et-bembo-roman-old-style-figures.ttf -------------------------------------------------------------------------------- /docs/fonts/et-bembo/et-bembo-roman-old-style-figures/et-bembo-roman-old-style-figures.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-bembo/et-bembo-roman-old-style-figures/et-bembo-roman-old-style-figures.woff -------------------------------------------------------------------------------- /fonts/et-book/et-book-semi-bold-old-style-figures/et-book-semi-bold-old-style-figures.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-book/et-book-semi-bold-old-style-figures/et-book-semi-bold-old-style-figures.eot -------------------------------------------------------------------------------- /fonts/et-book/et-book-semi-bold-old-style-figures/et-book-semi-bold-old-style-figures.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-book/et-book-semi-bold-old-style-figures/et-book-semi-bold-old-style-figures.ttf -------------------------------------------------------------------------------- /fonts/et-book/et-book-semi-bold-old-style-figures/et-book-semi-bold-old-style-figures.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-book/et-book-semi-bold-old-style-figures/et-book-semi-bold-old-style-figures.woff -------------------------------------------------------------------------------- /fonts/et-bembo/et-bembo-semi-bold-old-style-figures/et-bembo-semi-bold-old-style-figures.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-bembo/et-bembo-semi-bold-old-style-figures/et-bembo-semi-bold-old-style-figures.eot -------------------------------------------------------------------------------- /fonts/et-bembo/et-bembo-semi-bold-old-style-figures/et-bembo-semi-bold-old-style-figures.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-bembo/et-bembo-semi-bold-old-style-figures/et-bembo-semi-bold-old-style-figures.ttf -------------------------------------------------------------------------------- /fonts/et-bembo/et-bembo-semi-bold-old-style-figures/et-bembo-semi-bold-old-style-figures.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-bembo/et-bembo-semi-bold-old-style-figures/et-bembo-semi-bold-old-style-figures.woff -------------------------------------------------------------------------------- /docs/fonts/et-book/et-book-semi-bold-old-style-figures/et-book-semi-bold-old-style-figures.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-book/et-book-semi-bold-old-style-figures/et-book-semi-bold-old-style-figures.eot -------------------------------------------------------------------------------- /docs/fonts/et-book/et-book-semi-bold-old-style-figures/et-book-semi-bold-old-style-figures.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-book/et-book-semi-bold-old-style-figures/et-book-semi-bold-old-style-figures.ttf -------------------------------------------------------------------------------- /docs/fonts/et-book/et-book-semi-bold-old-style-figures/et-book-semi-bold-old-style-figures.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-book/et-book-semi-bold-old-style-figures/et-book-semi-bold-old-style-figures.woff -------------------------------------------------------------------------------- /docs/fonts/et-bembo/et-bembo-semi-bold-old-style-figures/et-bembo-semi-bold-old-style-figures.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-bembo/et-bembo-semi-bold-old-style-figures/et-bembo-semi-bold-old-style-figures.eot -------------------------------------------------------------------------------- /docs/fonts/et-bembo/et-bembo-semi-bold-old-style-figures/et-bembo-semi-bold-old-style-figures.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-bembo/et-bembo-semi-bold-old-style-figures/et-bembo-semi-bold-old-style-figures.ttf -------------------------------------------------------------------------------- /docs/fonts/et-bembo/et-bembo-semi-bold-old-style-figures/et-bembo-semi-bold-old-style-figures.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-bembo/et-bembo-semi-bold-old-style-figures/et-bembo-semi-bold-old-style-figures.woff -------------------------------------------------------------------------------- /fonts/et-book/et-book-display-italic-old-style-figures/et-book-display-italic-old-style-figures.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-book/et-book-display-italic-old-style-figures/et-book-display-italic-old-style-figures.eot -------------------------------------------------------------------------------- /fonts/et-book/et-book-display-italic-old-style-figures/et-book-display-italic-old-style-figures.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-book/et-book-display-italic-old-style-figures/et-book-display-italic-old-style-figures.ttf -------------------------------------------------------------------------------- /fonts/et-book/et-book-display-italic-old-style-figures/et-book-display-italic-old-style-figures.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-book/et-book-display-italic-old-style-figures/et-book-display-italic-old-style-figures.woff -------------------------------------------------------------------------------- /fonts/et-bembo/et-bembo-display-italic-old-style-figures/et-bembo-display-italic-old-style-figures.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-bembo/et-bembo-display-italic-old-style-figures/et-bembo-display-italic-old-style-figures.eot -------------------------------------------------------------------------------- /fonts/et-bembo/et-bembo-display-italic-old-style-figures/et-bembo-display-italic-old-style-figures.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-bembo/et-bembo-display-italic-old-style-figures/et-bembo-display-italic-old-style-figures.ttf -------------------------------------------------------------------------------- /fonts/et-bembo/et-bembo-display-italic-old-style-figures/et-bembo-display-italic-old-style-figures.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/fonts/et-bembo/et-bembo-display-italic-old-style-figures/et-bembo-display-italic-old-style-figures.woff -------------------------------------------------------------------------------- /docs/fonts/et-book/et-book-display-italic-old-style-figures/et-book-display-italic-old-style-figures.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-book/et-book-display-italic-old-style-figures/et-book-display-italic-old-style-figures.eot -------------------------------------------------------------------------------- /docs/fonts/et-book/et-book-display-italic-old-style-figures/et-book-display-italic-old-style-figures.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-book/et-book-display-italic-old-style-figures/et-book-display-italic-old-style-figures.ttf -------------------------------------------------------------------------------- /docs/fonts/et-book/et-book-display-italic-old-style-figures/et-book-display-italic-old-style-figures.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-book/et-book-display-italic-old-style-figures/et-book-display-italic-old-style-figures.woff -------------------------------------------------------------------------------- /docs/fonts/et-bembo/et-bembo-display-italic-old-style-figures/et-bembo-display-italic-old-style-figures.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-bembo/et-bembo-display-italic-old-style-figures/et-bembo-display-italic-old-style-figures.eot -------------------------------------------------------------------------------- /docs/fonts/et-bembo/et-bembo-display-italic-old-style-figures/et-bembo-display-italic-old-style-figures.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-bembo/et-bembo-display-italic-old-style-figures/et-bembo-display-italic-old-style-figures.ttf -------------------------------------------------------------------------------- /docs/fonts/et-bembo/et-bembo-display-italic-old-style-figures/et-bembo-display-italic-old-style-figures.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deepgenerativemodels/notes/HEAD/docs/fonts/et-bembo/et-bembo-display-italic-old-style-figures/et-bembo-display-italic-old-style-figures.woff -------------------------------------------------------------------------------- /_layouts/default.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | {% include head.html %} 4 | 5 | {% include header.html %} 6 |{{ page.date | date: "%B %-d, %Y" }}
6 | 7 | 8 | 32 | 33 | 34 | {{ content }} 35 | 36 | -------------------------------------------------------------------------------- /_plugins/main_column_img.rb: -------------------------------------------------------------------------------- 1 | ## Liquid tag 'maincolumn-figure' used to add image data that fits within the 2 | ## main column area of the layout 3 | ## Usage {% maincolumn 'path/to/image' 'This is the caption' %} 4 | # 5 | module Jekyll 6 | class RenderMainColumnTag < Liquid::Tag 7 | 8 | require "shellwords" 9 | 10 | def initialize(tag_name, text, tokens) 11 | super 12 | @text = text.shellsplit 13 | end 14 | 15 | def render(context) 16 | baseurl = context.registers[:site].config['baseurl'] 17 | if @text[0].start_with?('http://', 'https://','//') 18 | "These notes form a concise introductory course on deep generative models. 81 | They are based on Stanford CS236, taught by Stefano Ermon and Aditya Grover, and have been written by Aditya Grover, with the help of many students and course staff. 82 | The notes are still under construction! 83 | Since these notes are brand new, you will find several typos. If you do, please let us know, or submit a pull request with your fixes to our Github repository. 84 | You too may help make these notes better by submitting your improvements to us via Github.
85 | 86 |
38 |
39 |
40 |
41 |
43 |
44 |
45 | For instance, we might be given access to a dataset of dog images $$\mathcal{D}$$ and
46 | our goal is to learn the parameters of a generative model $$\theta$$ within a model family $$\mathcal{M}$$ such that
47 | the model distribution $$p_\theta$$ is close to the data distribution over dogs
48 | $$p_{\mathrm{data}}$$. Mathematically, we can specify our goal as the
49 | following optimization problem: $$$$\begin{equation}
50 | \min_{\theta\in \mathcal{M}}d(p_{\mathrm{data}}, p_{\theta})
51 | \label{eq:learning_gm}
52 | \tag{1}
53 | \end{equation}$$$$where $$p_{\mathrm{data}}$$ is accessed via the dataset
54 | $$\mathcal{D}$$ and $$d(\cdot)$$ is a notion of distance between probability distributions.
55 |
56 | As we navigate through this course, it is interesting to take note of
57 | the difficulty of the problem at hand. A typical image from a modern
58 | phone camera has a resolution of approximately $$700 \times 1400$$ pixels.
59 | Each pixel has three channels: R(ed), G(reen) and B(lue) and each
60 | channel can take a value between 0 to 255. Hence, the number of possible
61 | images is given by $$256^{700 \times 1400 \times 3}\approx 10 ^{800000}$$.
62 | In contrast, ImageNet, one of the largest publicly available datasets,
63 | consists of only about 15 million images. Hence, learning a generative
64 | model with such a limited dataset is a highly underdetermined problem.
65 |
66 | Fortunately, the real world is highly structured and automatically
67 | discovering the underlying structure is key to learning generative
68 | models. For example, we can hope to learn some basic artifacts about
69 | dogs even with just a few images: two eyes, two ears, fur etc. Instead
70 | of incorporating this prior knowledge explicitly, we will hope the model
71 | learns the underlying structure directly from data. There is no free
72 | lunch however, and indeed successful learning of generative models will
73 | involve instantiating the optimization problem in
74 | $$(\ref{eq:learning_gm})$$ in a suitable way. In this course, we will be
75 | primarily interested in the following questions:
76 |
77 | * What is the representation for the model family $$\mathcal{M}$$?
78 | * What is the objective function $$d(\cdot)$$?
79 | * What is the optimization procedure for minimizing $$d(\cdot)$$?
80 |
81 | In the next few set of lectures, we will take a deeper dive into certain
82 | families of generative models. For each model family, we will note how
83 | the representation is closely tied with the choice of learning objective
84 | and the optimization procedure.
85 |
86 | Inference
87 | ---------
88 |
89 | For a discriminative model such as logistic regression, the fundamental
90 | inference task is to predict a label for any given datapoint. Generative
91 | models, on the other hand, learn a joint distribution over the entire
92 | data.[^2]
93 |
94 | While the range of applications to which generative models have been
95 | used continue to grow, we can identify three fundamental inference
96 | queries for evaluating a generative model.:
97 |
98 | 1. *Density estimation:* Given a datapoint $$\mathbf{x}$$, what is the
99 | probability assigned by the model, i.e., $$p_\theta(\mathbf{x})$$?
100 |
101 | 2. *Sampling:* How can we *generate* novel data from the model
102 | distribution, i.e.,
103 | $$\mathbf{x}_{\mathrm{new}} \sim p_\theta(\mathbf{x})$$?
104 |
105 | 3. *Unsupervised representation learning:* How can we learn meaningful
106 | feature representations for a datapoint $$\mathbf{x}$$?
107 |
108 | Going back to our example of learning a generative model over dog
109 | images, we can intuitively expect a good generative model to work as
110 | follows. For density estimation, we expect $$p_\theta(\mathbf{x})$$ to be
111 | high for dog images and low otherwise. Alluding to the name *generative
112 | model*, sampling involves generating novel images of dogs beyond the
113 | ones we observe in our dataset. Finally, representation learning can
114 | help discover high-level structure in the data such as the breed of
115 | dogs.
116 |
117 | In light of the above inference tasks, we note two caveats. First,
118 | quantitative evaluation of generative models on these tasks is itself
119 | non-trivial (in particular, sampling and representation learning) and an
120 | area of active research. Some quantitative metrics exist, but these
121 | metrics often fail to reflect desirable qualitative attributes in the
122 | generated samples and the learned representations. Secondly, not all
123 | model families permit efficient and accurate inference on all these
124 | tasks. Indeed, the trade-offs in the inference capabilities of the
125 | current generative models have led to the development of very diverse approaches as
126 | we shall see in this course.
127 |
128 |
129 | ## Footnotes
130 |
131 | [^1]: As we shall see later, functions that do not satisfy all
132 | properties of a distance metric are also used in practice, e.g., KL
133 | divergence.
134 |
135 | [^2]: Technically, a probabilistic discriminative model is also a
136 | generative model of the labels conditioned on the data. However, the
137 | usage of the term generative models is typically reserved for high
138 | dimensional data.
139 |
--------------------------------------------------------------------------------
/flow/index.md:
--------------------------------------------------------------------------------
1 | ---
2 | layout: post
3 | title: Normalizing Flow Models
4 | ---
5 |
6 | We continue our study over another type of likelihood based generative models. As before, we assume we are given access to a dataset $$\mathcal{D}$$ of $$n$$-dimensional datapoints $$\mathbf{x}$$. So far we have learned two types of likelihood based generative models:
7 |
8 | 1. Autoregressive Models: $$p_\theta(\mathbf{x}) = \prod_{i=1}^{N} p_\theta(x_i \vert \mathbf{x}_{
2 |
3 |
--------------------------------------------------------------------------------
/docs/fonts/icomoon.svg:
--------------------------------------------------------------------------------
1 |
2 |
3 |
--------------------------------------------------------------------------------
/docs/css/tufte.orginal.css:
--------------------------------------------------------------------------------
1 | /*****************************************************************************
2 | /*
3 | /* Tufte Jekyll blog theme
4 | /* Based on Tufte CSS by Dave Liepmann ( https://github.com/edwardtufte/tufte-
5 | /*
6 | /* The README.md will show you how to set up your site along with other goodie
7 | /*****************************************************************************/
8 |
9 | // Imports to create final
10 |
11 | @import "../_sass/fonts";
12 | @import "../_sass/settings";
13 | @import "../_sass/syntax-highlighting";
14 |
15 | /* Tufte CSS styles */
16 | html { font-size: 15px; }
17 |
18 | body { width: 87.5%;
19 | margin-left: auto;
20 | margin-right: auto;
21 | padding-left: 12.5%;
22 | font-family: et-book, Palatino, "Palatino Linotype", "Palatino LT STD", "Book Antiqua", Georgia, serif;
23 | background-color: #fffff8;
24 | color: #111;
25 | max-width: 1400px;
26 | counter-reset: sidenote-counter; }
27 |
28 | h1 { font-weight: 400;
29 | margin-top: 4rem;
30 | margin-bottom: 1.5rem;
31 | font-size: 3.2rem;
32 | line-height: 1; }
33 |
34 | h2 { font-style: italic;
35 | font-weight: 400;
36 | margin-top: 2.1rem;
37 | margin-bottom: 0;
38 | font-size: 2.2rem;
39 | line-height: 1; }
40 |
41 | h3 { font-style: italic;
42 | font-weight: 400;
43 | font-size: 1.7rem;
44 | margin-top: 2rem;
45 | margin-bottom: 0;
46 | line-height: 1; }
47 |
48 | p.subtitle { font-style: italic;
49 | margin-top: 1rem;
50 | margin-bottom: 1rem;
51 | font-size: 1.8rem;
52 | display: block;
53 | line-height: 1; }
54 |
55 | .numeral { font-family: et-book-roman-old-style; }
56 |
57 | .danger { color: red; }
58 |
59 | article { position: relative;
60 | padding: 5rem 0rem; }
61 |
62 | section { padding-top: 1rem;
63 | padding-bottom: 1rem; }
64 |
65 | p, ol, ul { font-size: 1.4rem; }
66 |
67 | p { line-height: 2rem;
68 | margin-top: 1.4rem;
69 | margin-bottom: 1.4rem;
70 | padding-right: 0;
71 | vertical-align: baseline; }
72 |
73 | /* Chapter Epigraphs */
74 | div.epigraph { margin: 5em 0; }
75 |
76 | div.epigraph > blockquote { margin-top: 3em;
77 | margin-bottom: 3em; }
78 |
79 | div.epigraph > blockquote, div.epigraph > blockquote > p { font-style: italic; }
80 |
81 | div.epigraph > blockquote > footer { font-style: normal; }
82 |
83 | div.epigraph > blockquote > footer > cite { font-style: italic; }
84 |
85 | /* end chapter epigraphs styles */
86 |
87 | blockquote { font-size: 1.4rem; }
88 |
89 | blockquote p { width: 50%; }
90 |
91 | blockquote footer { width: 50%;
92 | font-size: 1.1rem;
93 | text-align: right; }
94 |
95 | ol, ul { width: 45%;
96 | -webkit-padding-start: 5%;
97 | -webkit-padding-end: 5%; }
98 |
99 | li { padding: 0.5rem 0; }
100 |
101 | figure { padding: 0;
102 | border: 0;
103 | font-size: 100%;
104 | font: inherit;
105 | vertical-align: baseline;
106 | max-width: 55%;
107 | -webkit-margin-start: 0;
108 | -webkit-margin-end: 0;
109 | margin: 0 0 3em 0; }
110 |
111 | figcaption { float: right;
112 | clear: right;
113 | margin-right: -48%;
114 | margin-top: 0;
115 | margin-bottom: 0;
116 | font-size: 1.1rem;
117 | line-height: 1.6;
118 | vertical-align: baseline;
119 | position: relative;
120 | max-width: 40%; }
121 |
122 | figure.fullwidth figcaption { margin-right: 24%; }
123 |
124 | /* Links: replicate underline that clears descenders */
125 | a:link, a:visited { color: inherit; }
126 |
127 | a:link { text-decoration: none;
128 | background: -webkit-linear-gradient(#fffff8, #fffff8), -webkit-linear-gradient(#fffff8, #fffff8), -webkit-linear-gradient(#333, #333);
129 | background: linear-gradient(#fffff8, #fffff8), linear-gradient(#fffff8, #fffff8), linear-gradient(#333, #333);
130 | -webkit-background-size: 0.05em 1px, 0.05em 1px, 1px 1px;
131 | -moz-background-size: 0.05em 1px, 0.05em 1px, 1px 1px;
132 | background-size: 0.05em 1px, 0.05em 1px, 1px 1px;
133 | background-repeat: no-repeat, no-repeat, repeat-x;
134 | text-shadow: 0.03em 0 #fffff8, -0.03em 0 #fffff8, 0 0.03em #fffff8, 0 -0.03em #fffff8, 0.06em 0 #fffff8, -0.06em 0 #fffff8, 0.09em 0 #fffff8, -0.09em 0 #fffff8, 0.12em 0 #fffff8, -0.12em 0 #fffff8, 0.15em 0 #fffff8, -0.15em 0 #fffff8;
135 | background-position: 0% 93%, 100% 93%, 0% 93%; }
136 |
137 | @media screen and (-webkit-min-device-pixel-ratio: 0) { a:link { background-position-y: 87%, 87%, 87%; } }
138 |
139 | a:link::selection { text-shadow: 0.03em 0 #b4d5fe, -0.03em 0 #b4d5fe, 0 0.03em #b4d5fe, 0 -0.03em #b4d5fe, 0.06em 0 #b4d5fe, -0.06em 0 #b4d5fe, 0.09em 0 #b4d5fe, -0.09em 0 #b4d5fe, 0.12em 0 #b4d5fe, -0.12em 0 #b4d5fe, 0.15em 0 #b4d5fe, -0.15em 0 #b4d5fe;
140 | background: #b4d5fe; }
141 |
142 | a:link::-moz-selection { text-shadow: 0.03em 0 #b4d5fe, -0.03em 0 #b4d5fe, 0 0.03em #b4d5fe, 0 -0.03em #b4d5fe, 0.06em 0 #b4d5fe, -0.06em 0 #b4d5fe, 0.09em 0 #b4d5fe, -0.09em 0 #b4d5fe, 0.12em 0 #b4d5fe, -0.12em 0 #b4d5fe, 0.15em 0 #b4d5fe, -0.15em 0 #b4d5fe;
143 | background: #b4d5fe; }
144 |
145 | /* Sidenotes, margin notes, figures, captions */
146 | img { max-width: 100%; }
147 |
148 | .sidenote, .marginnote { float: right;
149 | clear: right;
150 | margin-right: -60%;
151 | width: 50%;
152 | margin-top: 0;
153 | margin-bottom: 0;
154 | font-size: 1.1rem;
155 | line-height: 1.3;
156 | vertical-align: baseline;
157 | position: relative; }
158 |
159 | .table-caption { float:right;
160 | clear:right;
161 | margin-right: -60%;
162 | width: 50%;
163 | margin-top: 0;
164 | margin-bottom: 0;
165 | font-size: 1.0rem;
166 | line-height: 1.6; }
167 |
168 | .sidenote-number { counter-increment: sidenote-counter; }
169 |
170 | .sidenote-number:after, .sidenote:before { content: counter(sidenote-counter) " ";
171 | font-family: et-book-roman-old-style;
172 | position: relative;
173 | vertical-align: baseline; }
174 |
175 | .sidenote-number:after { content: counter(sidenote-counter);
176 | font-size: 1rem;
177 | top: -0.5rem;
178 | left: 0.1rem; }
179 |
180 | .sidenote:before { content: counter(sidenote-counter) " ";
181 | top: -0.5rem; }
182 |
183 | p, footer, table, div.table-wrapper-small, div.supertable-wrapper > p, div.booktabs-wrapper { width: 55%; }
184 |
185 | div.fullwidth, table.fullwidth { width: 100%; }
186 |
187 | div.table-wrapper { overflow-x: auto;
188 | font-family: "Trebuchet MS", "Gill Sans", "Gill Sans MT", sans-serif; }
189 |
190 | @media screen and (max-width: 760px) { p, footer { width: 90%; }
191 | pre.code { width: 87.5%; }
192 | ul { width: 85%; }
193 | figure { max-width: 90%; }
194 | figcaption, figure.fullwidth figcaption { margin-right: 0%;
195 | max-width: none; }
196 | blockquote p, blockquote footer { width: 90%; }}
197 |
198 | .sans { font-family: "Gill Sans", "Gill Sans MT", Calibri, sans-serif;
199 | letter-spacing: .03em; }
200 |
201 | .code { font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace;
202 | font-size: 1.125rem;
203 | line-height: 1.6; }
204 |
205 | h1 .code, h2 .code, h3 .code { font-size: 0.80em; }
206 |
207 | .marginnote .code, .sidenote .code { font-size: 1rem; }
208 |
209 | pre.code { width: 52.5%;
210 | padding-left: 2.5%;
211 | overflow-x: auto; }
212 |
213 | .fullwidth { max-width: 90%;
214 | clear:both; }
215 |
216 | span.newthought { font-variant: small-caps;
217 | font-size: 1.2em; }
218 |
219 | input.margin-toggle { display: none; }
220 |
221 | label.sidenote-number { display: inline; }
222 |
223 | label.margin-toggle:not(.sidenote-number) { display: none; }
224 |
225 | @media (max-width: 760px) { label.margin-toggle:not(.sidenote-number) { display: inline; }
226 | .sidenote, .marginnote { display: none; }
227 | .margin-toggle:checked + .sidenote,
228 | .margin-toggle:checked + .marginnote { display: block;
229 | float: left;
230 | left: 1rem;
231 | clear: both;
232 | width: 95%;
233 | margin: 1rem 2.5%;
234 | vertical-align: baseline;
235 | position: relative; }
236 | label { cursor: pointer; }
237 | pre.code { width: 90%;
238 | padding: 0; }
239 | .table-caption { display: block;
240 | float: right;
241 | clear: both;
242 | width: 98%;
243 | margin-top: 1rem;
244 | margin-bottom: 0.5rem;
245 | margin-left: 1%;
246 | margin-right: 1%;
247 | vertical-align: baseline;
248 | position: relative; }
249 | div.table-wrapper, table, table.booktabs { width: 85%; }
250 | div.table-wrapper { border-right: 1px solid #efefef; }
251 | img { width: 100%; } }
252 |
--------------------------------------------------------------------------------
/css/tufte.css:
--------------------------------------------------------------------------------
1 | ---
2 | # this ensures Jekyll reads the file to be transformed into CSS later
3 | # only Main files contain this front matter, not partials.
4 | nav_exclude: true
5 | ---
6 | /*****************************************************************************
7 | /*
8 | /* Tufte Jekyll blog theme
9 | /* Based on Tufte CSS by Dave Liepmann ( https://github.com/edwardtufte/tufte-
10 | /*
11 | /* The README.md will show you how to set up your site along with other goodie
12 | /*****************************************************************************/
13 |
14 | // Imports to create final
15 |
16 | @import "../_sass/fonts";
17 | @import "../_sass/settings";
18 | @import "../_sass/syntax-highlighting";
19 |
20 | /* Tufte CSS styles */
21 | html { font-size: 15px; }
22 |
23 | body { width: 87.5%;
24 | margin-left: auto;
25 | margin-right: auto;
26 | padding-left: 12.5%;
27 | font-family: et-book, Palatino, "Palatino Linotype", "Palatino LT STD", "Book Antiqua", Georgia, serif;
28 | background-color: #fffff8;
29 | color: #111;
30 | max-width: 1400px;
31 | counter-reset: sidenote-counter; }
32 |
33 | h1 { font-weight: 400;
34 | margin-top: 4rem;
35 | margin-bottom: 1.5rem;
36 | font-size: 3.2rem;
37 | line-height: 1; }
38 |
39 | h2 { font-style: italic;
40 | font-weight: 400;
41 | margin-top: 2.1rem;
42 | margin-bottom: 0;
43 | font-size: 2.2rem;
44 | line-height: 1; }
45 |
46 | h3 { font-style: italic;
47 | font-weight: 400;
48 | font-size: 1.7rem;
49 | margin-top: 2rem;
50 | margin-bottom: 0;
51 | line-height: 1; }
52 |
53 | p.subtitle { font-style: italic;
54 | margin-top: 1rem;
55 | margin-bottom: 1rem;
56 | font-size: 1.8rem;
57 | display: block;
58 | line-height: 1; }
59 |
60 | .numeral { font-family: et-book-roman-old-style; }
61 |
62 | .danger { color: red; }
63 |
64 | article { position: relative;
65 | padding: 5rem 0rem; }
66 |
67 | section { padding-top: 1rem;
68 | padding-bottom: 1rem; }
69 |
70 | p, ol, ul { font-size: 1.4rem; }
71 |
72 | p { line-height: 2rem;
73 | margin-top: 1.4rem;
74 | margin-bottom: 1.4rem;
75 | padding-right: 0;
76 | vertical-align: baseline; }
77 |
78 | /* Chapter Epigraphs */
79 | div.epigraph { margin: 5em 0; }
80 |
81 | div.epigraph > blockquote { margin-top: 3em;
82 | margin-bottom: 3em; }
83 |
84 | div.epigraph > blockquote, div.epigraph > blockquote > p { font-style: italic; }
85 |
86 | div.epigraph > blockquote > footer { font-style: normal; }
87 |
88 | div.epigraph > blockquote > footer > cite { font-style: italic; }
89 |
90 | /* end chapter epigraphs styles */
91 |
92 | blockquote { font-size: 1.4rem; }
93 |
94 | blockquote p { width: 50%; }
95 |
96 | blockquote footer { width: 50%;
97 | font-size: 1.1rem;
98 | text-align: right; }
99 |
100 | ol, ul { width: 45%;
101 | -webkit-padding-start: 5%;
102 | -webkit-padding-end: 5%; }
103 |
104 | li { padding: 0.5rem 0; }
105 |
106 | figure { padding: 0;
107 | border: 0;
108 | font-size: 100%;
109 | font: inherit;
110 | vertical-align: baseline;
111 | max-width: 55%;
112 | -webkit-margin-start: 0;
113 | -webkit-margin-end: 0;
114 | margin: 0 0 3em 0; }
115 |
116 | figcaption { float: right;
117 | clear: right;
118 | margin-right: -48%;
119 | margin-top: 0;
120 | margin-bottom: 0;
121 | font-size: 1.1rem;
122 | line-height: 1.6;
123 | vertical-align: baseline;
124 | position: relative;
125 | max-width: 40%; }
126 |
127 | figure.fullwidth figcaption { margin-right: 24%; }
128 |
129 | /* Links: replicate underline that clears descenders */
130 | a:link, a:visited { color: inherit; }
131 |
132 | a:link { text-decoration: none;
133 | background: -webkit-linear-gradient(#fffff8, #fffff8), -webkit-linear-gradient(#fffff8, #fffff8), -webkit-linear-gradient(#333, #333);
134 | background: linear-gradient(#fffff8, #fffff8), linear-gradient(#fffff8, #fffff8), linear-gradient(#333, #333);
135 | -webkit-background-size: 0.05em 1px, 0.05em 1px, 1px 1px;
136 | -moz-background-size: 0.05em 1px, 0.05em 1px, 1px 1px;
137 | background-size: 0.05em 1px, 0.05em 1px, 1px 1px;
138 | background-repeat: no-repeat, no-repeat, repeat-x;
139 | text-shadow: 0.03em 0 #fffff8, -0.03em 0 #fffff8, 0 0.03em #fffff8, 0 -0.03em #fffff8, 0.06em 0 #fffff8, -0.06em 0 #fffff8, 0.09em 0 #fffff8, -0.09em 0 #fffff8, 0.12em 0 #fffff8, -0.12em 0 #fffff8, 0.15em 0 #fffff8, -0.15em 0 #fffff8;
140 | background-position: 0% 93%, 100% 93%, 0% 93%; }
141 |
142 | @media screen and (-webkit-min-device-pixel-ratio: 0) { a:link { background-position-y: 87%, 87%, 87%; } }
143 |
144 | a:link::selection { text-shadow: 0.03em 0 #b4d5fe, -0.03em 0 #b4d5fe, 0 0.03em #b4d5fe, 0 -0.03em #b4d5fe, 0.06em 0 #b4d5fe, -0.06em 0 #b4d5fe, 0.09em 0 #b4d5fe, -0.09em 0 #b4d5fe, 0.12em 0 #b4d5fe, -0.12em 0 #b4d5fe, 0.15em 0 #b4d5fe, -0.15em 0 #b4d5fe;
145 | background: #b4d5fe; }
146 |
147 | a:link::-moz-selection { text-shadow: 0.03em 0 #b4d5fe, -0.03em 0 #b4d5fe, 0 0.03em #b4d5fe, 0 -0.03em #b4d5fe, 0.06em 0 #b4d5fe, -0.06em 0 #b4d5fe, 0.09em 0 #b4d5fe, -0.09em 0 #b4d5fe, 0.12em 0 #b4d5fe, -0.12em 0 #b4d5fe, 0.15em 0 #b4d5fe, -0.15em 0 #b4d5fe;
148 | background: #b4d5fe; }
149 |
150 | /* Sidenotes, margin notes, figures, captions */
151 | img { max-width: 100%; }
152 |
153 | .sidenote, .marginnote { float: right;
154 | clear: right;
155 | margin-right: -60%;
156 | width: 50%;
157 | margin-top: 0;
158 | margin-bottom: 0;
159 | font-size: 1.1rem;
160 | line-height: 1.3;
161 | vertical-align: baseline;
162 | position: relative; }
163 |
164 | .table-caption { float:right;
165 | clear:right;
166 | margin-right: -60%;
167 | width: 50%;
168 | margin-top: 0;
169 | margin-bottom: 0;
170 | font-size: 1.0rem;
171 | line-height: 1.6; }
172 |
173 | .sidenote-number { counter-increment: sidenote-counter; }
174 |
175 | .sidenote-number:after, .sidenote:before { content: counter(sidenote-counter) " ";
176 | font-family: et-book-roman-old-style;
177 | position: relative;
178 | vertical-align: baseline; }
179 |
180 | .sidenote-number:after { content: counter(sidenote-counter);
181 | font-size: 1rem;
182 | top: -0.5rem;
183 | left: 0.1rem; }
184 |
185 | .sidenote:before { content: counter(sidenote-counter) " ";
186 | top: -0.5rem; }
187 |
188 | p, footer, table, div.table-wrapper-small, div.supertable-wrapper > p, div.booktabs-wrapper { width: 55%; }
189 |
190 | div.fullwidth, table.fullwidth { width: 100%; }
191 |
192 | div.table-wrapper { overflow-x: auto;
193 | font-family: "Trebuchet MS", "Gill Sans", "Gill Sans MT", sans-serif; }
194 |
195 | @media screen and (max-width: 760px) { p, footer { width: 90%; }
196 | pre.code { width: 87.5%; }
197 | ul { width: 85%; }
198 | figure { max-width: 90%; }
199 | figcaption, figure.fullwidth figcaption { margin-right: 0%;
200 | max-width: none; }
201 | blockquote p, blockquote footer { width: 90%; }}
202 |
203 | .sans { font-family: "Gill Sans", "Gill Sans MT", Calibri, sans-serif;
204 | letter-spacing: .03em; }
205 |
206 | .code { font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace;
207 | font-size: 1.125rem;
208 | line-height: 1.6; }
209 |
210 | h1 .code, h2 .code, h3 .code { font-size: 0.80em; }
211 |
212 | .marginnote .code, .sidenote .code { font-size: 1rem; }
213 |
214 | pre.code { width: 52.5%;
215 | padding-left: 2.5%;
216 | overflow-x: auto; }
217 |
218 | .fullwidth { max-width: 90%;
219 | clear:both; }
220 |
221 | span.newthought { font-variant: small-caps;
222 | font-size: 1.2em; }
223 |
224 | input.margin-toggle { display: none; }
225 |
226 | label.sidenote-number { display: inline; }
227 |
228 | label.margin-toggle:not(.sidenote-number) { display: none; }
229 |
230 | @media (max-width: 760px) { label.margin-toggle:not(.sidenote-number) { display: inline; }
231 | .sidenote, .marginnote { display: none; }
232 | .margin-toggle:checked + .sidenote,
233 | .margin-toggle:checked + .marginnote { display: block;
234 | float: left;
235 | left: 1rem;
236 | clear: both;
237 | width: 95%;
238 | margin: 1rem 2.5%;
239 | vertical-align: baseline;
240 | position: relative; }
241 | label { cursor: pointer; }
242 | pre.code { width: 90%;
243 | padding: 0; }
244 | .table-caption { display: block;
245 | float: right;
246 | clear: both;
247 | width: 98%;
248 | margin-top: 1rem;
249 | margin-bottom: 0.5rem;
250 | margin-left: 1%;
251 | margin-right: 1%;
252 | vertical-align: baseline;
253 | position: relative; }
254 | div.table-wrapper, table, table.booktabs { width: 85%; }
255 | div.table-wrapper { border-right: 1px solid #efefef; }
256 | img { width: 100%; } }
257 |
--------------------------------------------------------------------------------
/css/tufte.orginal.css:
--------------------------------------------------------------------------------
1 | ---
2 | # this ensures Jekyll reads the file to be transformed into CSS later
3 | # only Main files contain this front matter, not partials.
4 | nav_exclude: true
5 | ---
6 | /*****************************************************************************
7 | /*
8 | /* Tufte Jekyll blog theme
9 | /* Based on Tufte CSS by Dave Liepmann ( https://github.com/edwardtufte/tufte-
10 | /*
11 | /* The README.md will show you how to set up your site along with other goodie
12 | /*****************************************************************************/
13 |
14 | // Imports to create final
15 |
16 | @import "../_sass/fonts";
17 | @import "../_sass/settings";
18 | @import "../_sass/syntax-highlighting";
19 |
20 | /* Tufte CSS styles */
21 | html { font-size: 15px; }
22 |
23 | body { width: 87.5%;
24 | margin-left: auto;
25 | margin-right: auto;
26 | padding-left: 12.5%;
27 | font-family: et-book, Palatino, "Palatino Linotype", "Palatino LT STD", "Book Antiqua", Georgia, serif;
28 | background-color: #fffff8;
29 | color: #111;
30 | max-width: 1400px;
31 | counter-reset: sidenote-counter; }
32 |
33 | h1 { font-weight: 400;
34 | margin-top: 4rem;
35 | margin-bottom: 1.5rem;
36 | font-size: 3.2rem;
37 | line-height: 1; }
38 |
39 | h2 { font-style: italic;
40 | font-weight: 400;
41 | margin-top: 2.1rem;
42 | margin-bottom: 0;
43 | font-size: 2.2rem;
44 | line-height: 1; }
45 |
46 | h3 { font-style: italic;
47 | font-weight: 400;
48 | font-size: 1.7rem;
49 | margin-top: 2rem;
50 | margin-bottom: 0;
51 | line-height: 1; }
52 |
53 | p.subtitle { font-style: italic;
54 | margin-top: 1rem;
55 | margin-bottom: 1rem;
56 | font-size: 1.8rem;
57 | display: block;
58 | line-height: 1; }
59 |
60 | .numeral { font-family: et-book-roman-old-style; }
61 |
62 | .danger { color: red; }
63 |
64 | article { position: relative;
65 | padding: 5rem 0rem; }
66 |
67 | section { padding-top: 1rem;
68 | padding-bottom: 1rem; }
69 |
70 | p, ol, ul { font-size: 1.4rem; }
71 |
72 | p { line-height: 2rem;
73 | margin-top: 1.4rem;
74 | margin-bottom: 1.4rem;
75 | padding-right: 0;
76 | vertical-align: baseline; }
77 |
78 | /* Chapter Epigraphs */
79 | div.epigraph { margin: 5em 0; }
80 |
81 | div.epigraph > blockquote { margin-top: 3em;
82 | margin-bottom: 3em; }
83 |
84 | div.epigraph > blockquote, div.epigraph > blockquote > p { font-style: italic; }
85 |
86 | div.epigraph > blockquote > footer { font-style: normal; }
87 |
88 | div.epigraph > blockquote > footer > cite { font-style: italic; }
89 |
90 | /* end chapter epigraphs styles */
91 |
92 | blockquote { font-size: 1.4rem; }
93 |
94 | blockquote p { width: 50%; }
95 |
96 | blockquote footer { width: 50%;
97 | font-size: 1.1rem;
98 | text-align: right; }
99 |
100 | ol, ul { width: 45%;
101 | -webkit-padding-start: 5%;
102 | -webkit-padding-end: 5%; }
103 |
104 | li { padding: 0.5rem 0; }
105 |
106 | figure { padding: 0;
107 | border: 0;
108 | font-size: 100%;
109 | font: inherit;
110 | vertical-align: baseline;
111 | max-width: 55%;
112 | -webkit-margin-start: 0;
113 | -webkit-margin-end: 0;
114 | margin: 0 0 3em 0; }
115 |
116 | figcaption { float: right;
117 | clear: right;
118 | margin-right: -48%;
119 | margin-top: 0;
120 | margin-bottom: 0;
121 | font-size: 1.1rem;
122 | line-height: 1.6;
123 | vertical-align: baseline;
124 | position: relative;
125 | max-width: 40%; }
126 |
127 | figure.fullwidth figcaption { margin-right: 24%; }
128 |
129 | /* Links: replicate underline that clears descenders */
130 | a:link, a:visited { color: inherit; }
131 |
132 | a:link { text-decoration: none;
133 | background: -webkit-linear-gradient(#fffff8, #fffff8), -webkit-linear-gradient(#fffff8, #fffff8), -webkit-linear-gradient(#333, #333);
134 | background: linear-gradient(#fffff8, #fffff8), linear-gradient(#fffff8, #fffff8), linear-gradient(#333, #333);
135 | -webkit-background-size: 0.05em 1px, 0.05em 1px, 1px 1px;
136 | -moz-background-size: 0.05em 1px, 0.05em 1px, 1px 1px;
137 | background-size: 0.05em 1px, 0.05em 1px, 1px 1px;
138 | background-repeat: no-repeat, no-repeat, repeat-x;
139 | text-shadow: 0.03em 0 #fffff8, -0.03em 0 #fffff8, 0 0.03em #fffff8, 0 -0.03em #fffff8, 0.06em 0 #fffff8, -0.06em 0 #fffff8, 0.09em 0 #fffff8, -0.09em 0 #fffff8, 0.12em 0 #fffff8, -0.12em 0 #fffff8, 0.15em 0 #fffff8, -0.15em 0 #fffff8;
140 | background-position: 0% 93%, 100% 93%, 0% 93%; }
141 |
142 | @media screen and (-webkit-min-device-pixel-ratio: 0) { a:link { background-position-y: 87%, 87%, 87%; } }
143 |
144 | a:link::selection { text-shadow: 0.03em 0 #b4d5fe, -0.03em 0 #b4d5fe, 0 0.03em #b4d5fe, 0 -0.03em #b4d5fe, 0.06em 0 #b4d5fe, -0.06em 0 #b4d5fe, 0.09em 0 #b4d5fe, -0.09em 0 #b4d5fe, 0.12em 0 #b4d5fe, -0.12em 0 #b4d5fe, 0.15em 0 #b4d5fe, -0.15em 0 #b4d5fe;
145 | background: #b4d5fe; }
146 |
147 | a:link::-moz-selection { text-shadow: 0.03em 0 #b4d5fe, -0.03em 0 #b4d5fe, 0 0.03em #b4d5fe, 0 -0.03em #b4d5fe, 0.06em 0 #b4d5fe, -0.06em 0 #b4d5fe, 0.09em 0 #b4d5fe, -0.09em 0 #b4d5fe, 0.12em 0 #b4d5fe, -0.12em 0 #b4d5fe, 0.15em 0 #b4d5fe, -0.15em 0 #b4d5fe;
148 | background: #b4d5fe; }
149 |
150 | /* Sidenotes, margin notes, figures, captions */
151 | img { max-width: 100%; }
152 |
153 | .sidenote, .marginnote { float: right;
154 | clear: right;
155 | margin-right: -60%;
156 | width: 50%;
157 | margin-top: 0;
158 | margin-bottom: 0;
159 | font-size: 1.1rem;
160 | line-height: 1.3;
161 | vertical-align: baseline;
162 | position: relative; }
163 |
164 | .table-caption { float:right;
165 | clear:right;
166 | margin-right: -60%;
167 | width: 50%;
168 | margin-top: 0;
169 | margin-bottom: 0;
170 | font-size: 1.0rem;
171 | line-height: 1.6; }
172 |
173 | .sidenote-number { counter-increment: sidenote-counter; }
174 |
175 | .sidenote-number:after, .sidenote:before { content: counter(sidenote-counter) " ";
176 | font-family: et-book-roman-old-style;
177 | position: relative;
178 | vertical-align: baseline; }
179 |
180 | .sidenote-number:after { content: counter(sidenote-counter);
181 | font-size: 1rem;
182 | top: -0.5rem;
183 | left: 0.1rem; }
184 |
185 | .sidenote:before { content: counter(sidenote-counter) " ";
186 | top: -0.5rem; }
187 |
188 | p, footer, table, div.table-wrapper-small, div.supertable-wrapper > p, div.booktabs-wrapper { width: 55%; }
189 |
190 | div.fullwidth, table.fullwidth { width: 100%; }
191 |
192 | div.table-wrapper { overflow-x: auto;
193 | font-family: "Trebuchet MS", "Gill Sans", "Gill Sans MT", sans-serif; }
194 |
195 | @media screen and (max-width: 760px) { p, footer { width: 90%; }
196 | pre.code { width: 87.5%; }
197 | ul { width: 85%; }
198 | figure { max-width: 90%; }
199 | figcaption, figure.fullwidth figcaption { margin-right: 0%;
200 | max-width: none; }
201 | blockquote p, blockquote footer { width: 90%; }}
202 |
203 | .sans { font-family: "Gill Sans", "Gill Sans MT", Calibri, sans-serif;
204 | letter-spacing: .03em; }
205 |
206 | .code { font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace;
207 | font-size: 1.125rem;
208 | line-height: 1.6; }
209 |
210 | h1 .code, h2 .code, h3 .code { font-size: 0.80em; }
211 |
212 | .marginnote .code, .sidenote .code { font-size: 1rem; }
213 |
214 | pre.code { width: 52.5%;
215 | padding-left: 2.5%;
216 | overflow-x: auto; }
217 |
218 | .fullwidth { max-width: 90%;
219 | clear:both; }
220 |
221 | span.newthought { font-variant: small-caps;
222 | font-size: 1.2em; }
223 |
224 | input.margin-toggle { display: none; }
225 |
226 | label.sidenote-number { display: inline; }
227 |
228 | label.margin-toggle:not(.sidenote-number) { display: none; }
229 |
230 | @media (max-width: 760px) { label.margin-toggle:not(.sidenote-number) { display: inline; }
231 | .sidenote, .marginnote { display: none; }
232 | .margin-toggle:checked + .sidenote,
233 | .margin-toggle:checked + .marginnote { display: block;
234 | float: left;
235 | left: 1rem;
236 | clear: both;
237 | width: 95%;
238 | margin: 1rem 2.5%;
239 | vertical-align: baseline;
240 | position: relative; }
241 | label { cursor: pointer; }
242 | pre.code { width: 90%;
243 | padding: 0; }
244 | .table-caption { display: block;
245 | float: right;
246 | clear: both;
247 | width: 98%;
248 | margin-top: 1rem;
249 | margin-bottom: 0.5rem;
250 | margin-left: 1%;
251 | margin-right: 1%;
252 | vertical-align: baseline;
253 | position: relative; }
254 | div.table-wrapper, table, table.booktabs { width: 85%; }
255 | div.table-wrapper { border-right: 1px solid #efefef; }
256 | img { width: 100%; } }
257 |
--------------------------------------------------------------------------------
/gan/index.md:
--------------------------------------------------------------------------------
1 | ---
2 | layout: post
3 | title: Generative Adversarial Networks
4 | ---
5 |
6 | We now move onto another family of generative models called generative adversarial networks (GANs). GANs are unique from all the other model families that we have seen so far, such as autoregressive models, VAEs, and normalizing flow models, because we do not train them using maximum likelihood.
7 |
8 |
9 | Likelihood-free learning
10 | ==============
11 |
12 | Why not? In fact, it is not so clear that better likelihood numbers necessarily correspond to higher sample quality. We know that the *optimal generative model* will give us the best sample quality and highest test log-likelihood. However, models with high test log-likelihoods can still yield poor samples, and vice versa. To see why, consider pathological cases in which our model is comprised almost entirely of noise, or our model simply memorizes the training set. Therefore, we turn to *likelihood-free training* with the hope that optimizing a different objective will allow us to disentangle our desiderata of obtaining high likelihoods as well as high-quality samples.
13 |
14 | Recall that maximum likelihood required us to evaluate the likelihood of the data under our model $$p_\theta$$. A natural way to set up a likelihood-free objective is to consider the *two-sample test*, a statistical test that determines whether or not a finite set of samples from two distributions are from the same distribution *using only samples from $$P$$ and $$Q$$*. Concretely, given $$S_1 = \{\mathbf{x} \sim P\}$$ and $$S_2 = \{\mathbf{x} \sim Q\}$$, we compute a test statistic $$T$$ according to the difference in $$S_1$$ and $$S_2$$ that, when less than a threshold $$\alpha$$, accepts the null hypothesis that $$P = Q$$.
15 |
16 | Analogously, we have in our generative modeling setup access to our training set $$S_1 = \mathcal{D} = \{\mathbf{x} \sim p_{\textrm{data}} \}$$ and $$S_2 = \{\mathbf{x} \sim p_{\theta} \}$$. The key idea is to train the model to minimize a *two-sample test objective* between $$S_1$$ and $$S_2$$. But this objective becomes extremely difficult to work with in high dimensions, so we choose to optimize a surrogate objective that instead *maximizes some distance* between $$S_1$$ and $$S_2$$.
17 |
18 | GAN Objective
19 | ==============
20 |
21 | We thus arrive at the generative adversarial network formulation. There are two components in a GAN: (1) a generator and (2) a discriminator. The generator $$G_\theta$$ is a directed latent variable model that deterministically generates samples $$\mathbf{x}$$ from $$\mathbf{z}$$, and the discriminator $$D_\phi$$ is a function whose job is to distinguish samples from the real dataset and the generator. The image below is a graphical model of $$G_\theta$$ and $$D_\phi$$. $$\mathbf{x}$$ denotes samples (either from data or generator), $$\mathbf{z}$$ denotes our noise vector, and $$\mathbf{y}$$ denotes the discriminator's prediction about $$\mathbf{x}$$.
22 |
23 | 

Intelligent agents are constantly generating, acquiring, and processing 81 | data. This data could be in the form of images that we capture on our 82 | phones, text messages we share with our friends, graphs that model 83 | interactions on social media, videos that record important events, 84 | etc. Natural agents excel at discovering patterns, extracting 85 | knowledge, and performing complex reasoning based on the data they observe. How 86 | can we build artificial learning systems to do the same?
87 | 88 |In this course, we will study generative models that view the world under the lens of probability. 89 | In such a worldview, we can think of any kind of 90 | observed data, say , as a finite set of samples from an 91 | underlying distribution, say . At its very core, the 92 | goal of any generative model is then to approximate this data 93 | distribution given access to the dataset . The hope is that 94 | if we are able to learn a good generative model, we can use the 95 | learned model for downstream inference.
96 | 97 |We will be primarily interested in parametric approximations to the data 100 | distribution, which summarize all the information about the dataset in 101 | a finite set of parameters. In contrast with non-parametric models, 102 | parametric models scale more efficiently with large datasets but are 103 | limited in the family of distributions they can represent.
104 | 105 |In the parametric setting, we can think of the task of learning a 106 | generative model as picking the parameters within a family of model 107 | distributions that minimizes some notion of distance1 between the 108 | model distribution and the data distribution.
109 | 110 |
113 |
For instance, we might be given access to a dataset of dog images and 117 | our goal is to learn the paraemeters of a generative model within a model family such that 118 | the model distribution is close to the data distribution over dogs 119 | . Mathematically, we can specify our goal as the 120 | following optimization problem: \begin{equation} 121 | \min_{\theta\in \mathcal{M}}d(p_{\mathrm{data}}, p_{\theta}) 122 | \label{eq:learning_gm} 123 | \tag{1} 124 | \end{equation}where is accessed via the dataset 125 | and is a notion of distance between probability distributions.
126 | 127 |As we navigate through this course, it is interesting to take note of 128 | the difficulty of the problem at hand. A typical image from a modern 129 | phone camera has a resolution of approximately pixels. 130 | Each pixel has three channels: R(ed), G(reen) and B(lue) and each 131 | channel can take a value between 0 to 255. Hence, the number of possible 132 | images is given by . 133 | In contrast, Imagenet, one of the largest publicly available datasets, 134 | consists of only about 15 million images. Hence, learning a generative 135 | model with such a limited dataset is a highly underdetermined problem.
136 | 137 |Fortunately, the real world is highly structured and automatically 138 | discovering the underlying structure is key to learning generative 139 | models. For example, we can hope to learn some basic artifacts about 140 | dogs even with just a few images: two eyes, two ears, fur etc. Instead 141 | of incorporating this prior knowledge explicitly, we will hope the model 142 | learns the underlying structure directly from data. There is no free 143 | lunch however, and indeed successful learning of generative models will 144 | involve instantiating the optimization problem in 145 | in a suitable way. In this course, we will be 146 | primarily interested in the following questions:
147 | 148 |In the next few set of lectures, we will take a deeper dive into certain 155 | families of generative models. For each model family, we will note how 156 | the representation is closely tied with the choice of learning objective 157 | and the optimization procedure.
158 | 159 |For a discriminative model such as logistic regression, the fundamental 162 | inference task is to predict a label for any given datapoint. Generative 163 | models, on the other hand, learn a joint distribution over the entire 164 | data.2
165 | 166 |While the range of applications to which generative models have been 167 | used continue to grow, we can identify three fundamental inference 168 | queries for evaluating a generative model.:
169 | 170 |Density estimation: Given a datapoint , what is the 173 | probability assigned by the model, i.e., ?
174 |Sampling: How can we generate novel data from the model 177 | distribution, i.e., 178 | ?
179 |Unsupervised representation learning: How can we learn meaningful 182 | feature representations for a datapoint ?
183 |Going back to our example of learning a generative model over dog 187 | images, we can intuitively expect a good generative model to work as 188 | follows. For density estimation, we expect to be 189 | high for dog images and low otherwise. Alluding to the name generative 190 | model, sampling involves generating novel images of dogs beyond the 191 | ones we observe in our dataset. Finally, representation learning can 192 | help discover high-level structure in the data such as the breed of 193 | dogs.
194 | 195 |In light of the above inference tasks, we note two caveats. First, 196 | quantitative evaluation of generative models on these tasks is itself 197 | non-trivial (in particular, sampling and representation learning) and an 198 | area of active research. Some quantitative metrics exist, but these 199 | metrics often fail to reflect desirable qualitative attributes in the 200 | generated samples and the learned representations. Secondly, not all 201 | model families permit efficient and accurate inference on all these 202 | tasks. Indeed, the trade-offs in the inference capabilities of the 203 | current generative models have led to the development of very diverse approaches as 204 | we shall see in this course.
205 | 206 |As we shall see later, functions that do not satisfy all 212 | properties of a distance metric are also used in practice, e.g., KL 213 | divergence. ↩
214 |Technically, a probabilistic discriminative model is also a 217 | generative model of the labels conditioned on the data. However, the 218 | usage of the term generative models is typically reserved for high 219 | dimensional data. ↩
220 |
25 |
50 |
75 |