├── .gitignore ├── conda.txt ├── images ├── FTSE100.png ├── PyData.png ├── DSC03277.jpg ├── ThisTalk.jpg ├── Wiki2Vec.png └── SkipGramModel.png ├── README.md ├── ftse_100_companies.tsv └── pydata-london-2016-wikipedia-correlation.ipynb /.gitignore: -------------------------------------------------------------------------------- 1 | env/* 2 | -------------------------------------------------------------------------------- /conda.txt: -------------------------------------------------------------------------------- 1 | numpy 2 | scipy 3 | pandas 4 | gensim 5 | jupyter -------------------------------------------------------------------------------- /images/FTSE100.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deliarusu/wikipedia-correlation/HEAD/images/FTSE100.png -------------------------------------------------------------------------------- /images/PyData.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deliarusu/wikipedia-correlation/HEAD/images/PyData.png -------------------------------------------------------------------------------- /images/DSC03277.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deliarusu/wikipedia-correlation/HEAD/images/DSC03277.jpg -------------------------------------------------------------------------------- /images/ThisTalk.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deliarusu/wikipedia-correlation/HEAD/images/ThisTalk.jpg -------------------------------------------------------------------------------- /images/Wiki2Vec.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deliarusu/wikipedia-correlation/HEAD/images/Wiki2Vec.png -------------------------------------------------------------------------------- /images/SkipGramModel.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/deliarusu/wikipedia-correlation/HEAD/images/SkipGramModel.png -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # wikipedia-correlation 2 | 3 | The repository contains the presentation and jupyter notebook for the PyData London 2016 talk: 4 | 5 | **Estimating stock price correlations using Wikipedia** 6 | 7 | http://pydata.org/london2016/schedule/presentation/89/ 8 | -------------------------------------------------------------------------------- /ftse_100_companies.tsv: -------------------------------------------------------------------------------- 1 | Company Ticker Sector Market cap Employees 2 | 3i III Private equity 4.06 266 3 | Aberdeen Asset Management ADN Fund management 3.14 1,800 4 | Admiral Group ADM Insurance 4.91 2,500 5 | Anglo American plc AAL Mining 6.09 100,000 6 | Antofagasta PLC ANTO Mining 4.71 4,005 7 | ARM Holdings ARM Engineering 13.2 2,000 8 | Ashtead Group AHT Equipment rental 4.26 12,810 9 | Associated British Foods ABF Food 25.77 102,000 10 | AstraZeneca AZN Pharmaceuticals 51.23 57,200 11 | Aviva AV. Insurance 17.69 40,800 12 | Babcock International BAB Engineering 4.65 34,000 13 | BAE Systems BA. Military 16.01 107,000 14 | Barclays BARC Banking 27.18 150,000 15 | Barratt Developments BDEV Building 5.86 5,000 16 | Berkeley Group Holdings BKG Building 4.60 2,050 17 | BHP Billiton BLT Mining 41.88 46,370 18 | BP BP Oil and gas 63.13 97,700 19 | British American Tobacco BATS Tobacco 71.4 87,813 20 | British Land BLND Property 7.13 177 21 | BT Group BT.A Telecomms 45.61 89,000 22 | Bunzl BNZL Industrial products 6.38 12,368 23 | Burberry BRBY Fashion 5.65 10,851 24 | Capita CPI Support Services 7.38 46,500 25 | Carnival Corporation & plc CCL Leisure 24.85 86,800 26 | Centrica CNA Energy 10.72 40,000 27 | Coca-Cola HBC AG CCH Consumer 5.1 38,312 28 | Compass Group CPG Food 20.21 471,108 29 | CRH plc CRH Building materials 10.9 76,433 30 | DCC plc DCC Investments 5.03 9,804 31 | Diageo DGE Beverages 46.01 25,000 32 | Direct Line Group DLG Insurance 5.15 13,900 33 | Dixons Carphone DC. Retail 5.16 40,000 34 | EasyJet EZJ Travel 6.17 11,000 35 | Experian EXPN Information 11.1 17,000 36 | Fresnillo plc FRES Mining 6.99 2,449 37 | GKN GKN Manufacturing 4.79 50,000 38 | GlaxoSmithKline GSK Pharmaceuticals 67.38 97,389 39 | Glencore GLEN Mining 16.96 57,656 40 | Hammerson HMSO Property 4.42 277 41 | Hargreaves Lansdown HL Finance 5.87 650 42 | Hikma Pharmaceuticals HIK Manufacturing 3.71 6,000 43 | HSBC HSBA Banking 88.11 267,000 44 | Imperial Brands IMT Tobacco 35.78 38,200 45 | Inmarsat ISAT Telecomms 4.47 1,590 46 | InterContinental Hotels Group IHG Hotels 5.75 345,000 47 | International Consolidated Airlines Group SA IAG Travel 11.01 58,476 48 | Intertek ITRK Product testing 4.67 33,000 49 | Intu Properties INTU Property 3.89 2,180 50 | ITV plc ITV Media 10.15 4,059 51 | Johnson Matthey JMAT Chemicals 4.79 9,700 52 | Kingfisher plc KGF Retail homeware 7.8 80,000 53 | Land Securities LAND Property 8.19 700 54 | Legal & General LGEN Insurance 13.21 9,324 55 | Lloyds Banking Group LLOY Banking 44.11 120,449 56 | London Stock Exchange Group LSE Finance 8.06 4,692 57 | Marks & Spencer MKS Retailer 7.01 81,223 58 | Merlin Entertainments MERL Leisure 4.42 28,000 59 | Mondi MNDI Manufacturing 6.37 26,000 60 | National Grid plc NG Energy 36.14 27,000 61 | Next plc NXT Retail clothing 6.9 58,706 62 | Old Mutual OML Insurance 8.45 54,368 63 | Pearson PLC PSON Education 6.52 37,000 64 | Persimmon plc PSN Building 6.34 2,450 65 | Provident Financial PFG Finance 4.74 3,110 66 | Prudential plc PRU Finance 31.63 25,414 67 | Randgold Resources RRS Mining 5.89 6,954 68 | Reckitt Benckiser RB Consumer goods 46.32 32,000 69 | RELX Group REL Publishing 25.54 28,500 70 | Rexam REX Packaging 25.54 19,000 71 | Rio Tinto Group RIO Mining 34.84 67,930 72 | Rolls-Royce Holdings RR. Manufacturing 11.8 55,500 73 | Royal Bank of Scotland Group RBS Banking 28.6 150,000 74 | Royal Dutch Shell RDSA Oil and gas 160.12 90,000 75 | Royal Mail RMG Delivery 4.41 150,000 76 | RSA Insurance Group RSA Insurance 4.16 21,000 77 | SABMiller SAB Beverages 67.32 70,000 78 | Sage Group SGE IT 6.26 12,300 79 | Sainsbury's SBRY Supermarket 5.02 150,000 80 | Schroders SDR Fund management 6.63 3,012 81 | Severn Trent SVT Water 5.04 8,051 82 | Shire plc SHP Pharmaceuticals 22.52 4,200 83 | Sky plc SKY Media 17.5 22,800 84 | Smith & Nephew SN. Medical 10.27 11,000 85 | Smiths Group SMIN Engineering 3.84 23,550 86 | Sports Direct SPD Retail 2.4 17,210 87 | SSE plc SSE Energy 14.03 19,965 88 | St. James's Place plc STJ Finance 4.68 1,230 89 | Standard Chartered STAN Banking 13.52 86,865 90 | Standard Life SL Fund management 6.63 10,500 91 | Taylor Wimpey TW. Building 5.99 3,860 92 | Tesco TSCO Supermarket 14.92 519,671 93 | Travis Perkins TPK Retailer 4.46 24,000 94 | TUI Group TUI Leisure 76,000 95 | Unilever ULVR Consumer goods 90.42 171,000 96 | United Utilities UU Water 6.36 5,096 97 | Vodafone Group VOD Telecomms 56.55 86,373 98 | Whitbread WTB Retail hospitality 7.09 86,800 99 | Wolseley plc WOS Building materials 9.20 44,000 100 | Worldpay WPG Payment services 5.9 4,500 101 | WPP plc WPP Media 19.01 162,000 -------------------------------------------------------------------------------- /pydata-london-2016-wikipedia-correlation.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "slideshow": { 7 | "slide_type": "slide" 8 | } 9 | }, 10 | "source": [ 11 | "# Estimating Stock Price Correlations using Wikipedia \n", 12 | "\n", 13 | "
\n", 14 | "
\n", 15 | "\n", 16 | "## Delia Rusu\n", 17 | "\n", 18 | "
\n", 19 | "
\n", 20 | "\n", 21 | "" 22 | ] 23 | }, 24 | { 25 | "cell_type": "markdown", 26 | "metadata": { 27 | "slideshow": { 28 | "slide_type": "slide" 29 | } 30 | }, 31 | "source": [ 32 | "# About Me\n", 33 | "\n", 34 | "" 35 | ] 36 | }, 37 | { 38 | "cell_type": "markdown", 39 | "metadata": { 40 | "slideshow": { 41 | "slide_type": "slide" 42 | } 43 | }, 44 | "source": [ 45 | "\n", 46 | "# Delia Rusu\n", 47 | "\n", 48 | "\n", 49 | "- Chief Data Scientist @ Knowsis\n", 50 | "\n", 51 | "- PhD, Natural Language Processing and Machine Learning\n", 52 | "\n", 53 | "- Interests: unstructured data & finance" 54 | ] 55 | }, 56 | { 57 | "cell_type": "markdown", 58 | "metadata": { 59 | "slideshow": { 60 | "slide_type": "slide" 61 | } 62 | }, 63 | "source": [ 64 | "# This Talk\n", 65 | "\n", 66 | "" 67 | ] 68 | }, 69 | { 70 | "cell_type": "markdown", 71 | "metadata": { 72 | "slideshow": { 73 | "slide_type": "slide" 74 | } 75 | }, 76 | "source": [ 77 | "# Financial Data\n", 78 | "\n", 79 | "" 80 | ] 81 | }, 82 | { 83 | "cell_type": "markdown", 84 | "metadata": { 85 | "slideshow": { 86 | "slide_type": "slide" 87 | } 88 | }, 89 | "source": [ 90 | "# Sources of Unstructured Data\n", 91 | "\n", 92 | "- Annual reports\n", 93 | "\n", 94 | "- Broker research\n", 95 | "\n", 96 | "- Conference call transcripts\n", 97 | "\n", 98 | "- Investor relations presentations\n", 99 | "\n", 100 | "- News and press releases\n", 101 | "\n", 102 | "- In-house content" 103 | ] 104 | }, 105 | { 106 | "cell_type": "markdown", 107 | "metadata": { 108 | "slideshow": { 109 | "slide_type": "slide" 110 | } 111 | }, 112 | "source": [ 113 | "# What about unconventional datasets?" 114 | ] 115 | }, 116 | { 117 | "cell_type": "markdown", 118 | "metadata": { 119 | "slideshow": { 120 | "slide_type": "slide" 121 | } 122 | }, 123 | "source": [ 124 | "# Wikipedia\n", 125 | "\n", 126 | "- 10 edits per second\n", 127 | "\n", 128 | "- the English Wikipedia \n", 129 | " - currently has over 5M articles\n", 130 | " - average of 800 new articles per day " 131 | ] 132 | }, 133 | { 134 | "cell_type": "markdown", 135 | "metadata": { 136 | "slideshow": { 137 | "slide_type": "subslide" 138 | } 139 | }, 140 | "source": [ 141 | "# Structured Views of Wikipedia\n", 142 | "\n", 143 | "- Wikipedia article -> vectorized representation of the context\n", 144 | "\n", 145 | "- Wikipedia as a graph" 146 | ] 147 | }, 148 | { 149 | "cell_type": "markdown", 150 | "metadata": { 151 | "slideshow": { 152 | "slide_type": "subslide" 153 | } 154 | }, 155 | "source": [ 156 | "# Word2Vec\n", 157 | "\n", 158 | "- Word2Vec model (Mikolov et al. 2013)\n", 159 | " - distributional hypothesis: words in similar contexts have similar meanings\n", 160 | " - shallow, 2-layer neural network\n", 161 | " - training objective - learn word vector representations which can predict nearby words (in context)\n", 162 | " \n", 163 | "" 164 | ] 165 | }, 166 | { 167 | "cell_type": "markdown", 168 | "metadata": { 169 | "slideshow": { 170 | "slide_type": "subslide" 171 | } 172 | }, 173 | "source": [ 174 | "# Word & Article Vectors\n", 175 | "\n", 176 | "- generate context vectors for:\n", 177 | " - words which appear in Wikipedia articles\n", 178 | " - Wikipedia articles themselves (topics)\n", 179 | " \n", 180 | "- model: wiki2vec\n", 181 | " - https://github.com/idio/wiki2vec" 182 | ] 183 | }, 184 | { 185 | "cell_type": "markdown", 186 | "metadata": { 187 | "slideshow": { 188 | "slide_type": "fragment" 189 | } 190 | }, 191 | "source": [ 192 | "**Unilever** is an Anglo-Dutch **multinational consumer goods company**" 193 | ] 194 | }, 195 | { 196 | "cell_type": "markdown", 197 | "metadata": { 198 | "slideshow": { 199 | "slide_type": "fragment" 200 | } 201 | }, 202 | "source": [ 203 | "**Unilever_ID** is an Anglo-Dutch **multinational_consumer_goods_company_ID**" 204 | ] 205 | }, 206 | { 207 | "cell_type": "markdown", 208 | "metadata": { 209 | "slideshow": { 210 | "slide_type": "subslide" 211 | } 212 | }, 213 | "source": [ 214 | "# Wikipedia Graph\n", 215 | "\n", 216 | "- Types of nodes:\n", 217 | " - articles, categories\n", 218 | " \n", 219 | "- Types of directed edges:\n", 220 | " - hyperlinks from article to article\n", 221 | " - infobox links from article to article \n", 222 | " - links from article to category\n", 223 | " - links from category to category" 224 | ] 225 | }, 226 | { 227 | "cell_type": "markdown", 228 | "metadata": { 229 | "slideshow": { 230 | "slide_type": "subslide" 231 | } 232 | }, 233 | "source": [ 234 | "# Graph-Based Similarity\n", 235 | "\n", 236 | "- using the distance between nodes in the graph\n", 237 | " - in this case, $$Similarity(v_1,v_2) = 1 - Distance(v_1, v_2)$$\n", 238 | " \n", 239 | "- using random walks on graphs\n", 240 | " - Personalized PageRank (Haveliwala, 2002) is a variation of PageRank (Brin and Page, 1998)\n", 241 | " - the user query defines how important the vertex is, such that PageRank will prefer vertexes in the vicinity of the query vertex." 242 | ] 243 | }, 244 | { 245 | "cell_type": "markdown", 246 | "metadata": { 247 | "slideshow": { 248 | "slide_type": "slide" 249 | } 250 | }, 251 | "source": [ 252 | "# FTSE 100 Index Analysis" 253 | ] 254 | }, 255 | { 256 | "cell_type": "code", 257 | "execution_count": 2, 258 | "metadata": { 259 | "collapsed": false, 260 | "slideshow": { 261 | "slide_type": "fragment" 262 | } 263 | }, 264 | "outputs": [ 265 | { 266 | "data": { 267 | "text/html": [ 268 | "
\n", 269 | "\n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | " \n", 303 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | "
CompanyTickerSectorMarket capEmployees
03iIIIPrivate equity4.06266
1Aberdeen Asset ManagementADNFund management3.141,800
2Admiral GroupADMInsurance4.912,500
3Anglo American plcAALMining6.09100,000
4Antofagasta PLCANTOMining4.714,005
\n", 323 | "
" 324 | ], 325 | "text/plain": [ 326 | " Company Ticker Sector Market cap Employees\n", 327 | "0 3i III Private equity 4.06 266\n", 328 | "1 Aberdeen Asset Management ADN Fund management 3.14 1,800\n", 329 | "2 Admiral Group ADM Insurance 4.91 2,500\n", 330 | "3 Anglo American plc AAL Mining 6.09 100,000\n", 331 | "4 Antofagasta PLC ANTO Mining 4.71 4,005" 332 | ] 333 | }, 334 | "execution_count": 2, 335 | "metadata": {}, 336 | "output_type": "execute_result" 337 | } 338 | ], 339 | "source": [ 340 | "import pandas as pd\n", 341 | "\n", 342 | "df_ftse_100_companies = pd.read_csv(\"ftse_100_companies.tsv\", sep='\\t')\n", 343 | "df_ftse_100_companies.head()" 344 | ] 345 | }, 346 | { 347 | "cell_type": "markdown", 348 | "metadata": { 349 | "slideshow": { 350 | "slide_type": "subslide" 351 | } 352 | }, 353 | "source": [ 354 | "# Wikipedia Similarity\n", 355 | "\n", 356 | "- using gensim's Word2Vec for model building and similarity computation\n", 357 | "\n", 358 | "- obtain pairwise similarity" 359 | ] 360 | }, 361 | { 362 | "cell_type": "code", 363 | "execution_count": 3, 364 | "metadata": { 365 | "collapsed": false, 366 | "slideshow": { 367 | "slide_type": "fragment" 368 | } 369 | }, 370 | "outputs": [ 371 | { 372 | "data": { 373 | "text/html": [ 374 | "
\n", 375 | "\n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | "
Company1Company2W2V Similarity
03iAberdeen_Asset_ManagementNaN
13iAdmiral_GroupNaN
23iAnglo_American_plc0.399286
33iAntofagasta_PLCNaN
43iARM_Holdings0.267260
\n", 417 | "
" 418 | ], 419 | "text/plain": [ 420 | " Company1 Company2 W2V Similarity\n", 421 | "0 3i Aberdeen_Asset_Management NaN\n", 422 | "1 3i Admiral_Group NaN\n", 423 | "2 3i Anglo_American_plc 0.399286\n", 424 | "3 3i Antofagasta_PLC NaN\n", 425 | "4 3i ARM_Holdings 0.267260" 426 | ] 427 | }, 428 | "execution_count": 3, 429 | "metadata": {}, 430 | "output_type": "execute_result" 431 | } 432 | ], 433 | "source": [ 434 | "df_similarities = pd.read_csv('ftse_100_company_pairs_similarities_w2v.csv')\n", 435 | "df_similarities.head()" 436 | ] 437 | }, 438 | { 439 | "cell_type": "markdown", 440 | "metadata": { 441 | "slideshow": { 442 | "slide_type": "subslide" 443 | } 444 | }, 445 | "source": [ 446 | "# Pricing Data " 447 | ] 448 | }, 449 | { 450 | "cell_type": "code", 451 | "execution_count": 30, 452 | "metadata": { 453 | "collapsed": false, 454 | "slideshow": { 455 | "slide_type": "fragment" 456 | } 457 | }, 458 | "outputs": [ 459 | { 460 | "data": { 461 | "text/html": [ 462 | "
\n", 463 | "\n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 487 | " \n", 488 | " \n", 489 | " \n", 490 | " \n", 491 | " \n", 492 | " \n", 493 | " \n", 494 | " \n", 495 | " \n", 496 | " \n", 497 | " \n", 498 | " \n", 499 | " \n", 500 | " \n", 501 | " \n", 502 | " \n", 503 | " \n", 504 | " \n", 505 | " \n", 506 | " \n", 507 | " \n", 508 | " \n", 509 | " \n", 510 | " \n", 511 | " \n", 512 | " \n", 513 | " \n", 514 | " \n", 515 | " \n", 516 | " \n", 517 | " \n", 518 | " \n", 519 | " \n", 520 | " \n", 521 | " \n", 522 | " \n", 523 | " \n", 524 | " \n", 525 | " \n", 526 | " \n", 527 | " \n", 528 | " \n", 529 | " \n", 530 | " \n", 531 | "
OpenHighLowCloseVolumeAdj Close
Date
2013-01-012909.52909.502909.502909.502441.043
2013-01-022930.02969.302923.002969.023947002490.963
2013-01-032969.52982.502952.502980.017631002500.192
2013-01-042992.53005.002975.213000.020411002516.972
2013-01-072998.53004.992976.002985.011852002504.387
\n", 532 | "
" 533 | ], 534 | "text/plain": [ 535 | " Open High Low Close Volume Adj Close\n", 536 | "Date \n", 537 | "2013-01-01 2909.5 2909.50 2909.50 2909.5 0 2441.043\n", 538 | "2013-01-02 2930.0 2969.30 2923.00 2969.0 2394700 2490.963\n", 539 | "2013-01-03 2969.5 2982.50 2952.50 2980.0 1763100 2500.192\n", 540 | "2013-01-04 2992.5 3005.00 2975.21 3000.0 2041100 2516.972\n", 541 | "2013-01-07 2998.5 3004.99 2976.00 2985.0 1185200 2504.387" 542 | ] 543 | }, 544 | "execution_count": 30, 545 | "metadata": {}, 546 | "output_type": "execute_result" 547 | } 548 | ], 549 | "source": [ 550 | "from pandas_datareader import data\n", 551 | "df_company_pricing = data.YahooDailyReader(symbols='AZN.L', start='2013-1-1').read()\n", 552 | "df_company_pricing.head()" 553 | ] 554 | }, 555 | { 556 | "cell_type": "markdown", 557 | "metadata": { 558 | "slideshow": { 559 | "slide_type": "subslide" 560 | } 561 | }, 562 | "source": [ 563 | "# Correlating Daily Returns\n", 564 | "\n", 565 | "- Obtain daily returns for each FTSE 100 company\n", 566 | "\n", 567 | "- Calculate the correlation for each possible pair" 568 | ] 569 | }, 570 | { 571 | "cell_type": "code", 572 | "execution_count": 18, 573 | "metadata": { 574 | "collapsed": false, 575 | "slideshow": { 576 | "slide_type": "fragment" 577 | } 578 | }, 579 | "outputs": [ 580 | { 581 | "data": { 582 | "text/html": [ 583 | "
\n", 584 | "\n", 585 | " \n", 586 | " \n", 587 | " \n", 588 | " \n", 589 | " \n", 590 | " \n", 591 | " \n", 592 | " \n", 593 | " \n", 594 | " \n", 595 | " \n", 596 | " \n", 597 | " \n", 598 | " \n", 599 | " \n", 600 | " \n", 601 | " \n", 602 | " \n", 603 | " \n", 604 | " \n", 605 | " \n", 606 | " \n", 607 | " \n", 608 | " \n", 609 | " \n", 610 | " \n", 611 | " \n", 612 | " \n", 613 | " \n", 614 | " \n", 615 | " \n", 616 | " \n", 617 | " \n", 618 | " \n", 619 | " \n", 620 | " \n", 621 | " \n", 622 | " \n", 623 | " \n", 624 | " \n", 625 | "
Company1Company2Correlation
03iAberdeen_Asset_Management0.047557
13iAdmiral_Group0.067823
23iAnglo_American_plc0.091343
33iAntofagasta0.057116
43iARM_Holdings0.077546
\n", 626 | "
" 627 | ], 628 | "text/plain": [ 629 | " Company1 Company2 Correlation\n", 630 | "0 3i Aberdeen_Asset_Management 0.047557\n", 631 | "1 3i Admiral_Group 0.067823\n", 632 | "2 3i Anglo_American_plc 0.091343\n", 633 | "3 3i Antofagasta 0.057116\n", 634 | "4 3i ARM_Holdings 0.077546" 635 | ] 636 | }, 637 | "execution_count": 18, 638 | "metadata": {}, 639 | "output_type": "execute_result" 640 | } 641 | ], 642 | "source": [ 643 | "df_correlations = pd.read_csv('ftse_100_company_pairs_correlations.csv')\n", 644 | "df_correlations.head()" 645 | ] 646 | }, 647 | { 648 | "cell_type": "markdown", 649 | "metadata": { 650 | "slideshow": { 651 | "slide_type": "subslide" 652 | } 653 | }, 654 | "source": [ 655 | "# Does the Wikipedia Similarity Explain Correlation of Returns?" 656 | ] 657 | }, 658 | { 659 | "cell_type": "code", 660 | "execution_count": 26, 661 | "metadata": { 662 | "collapsed": false, 663 | "slideshow": { 664 | "slide_type": "subslide" 665 | } 666 | }, 667 | "outputs": [ 668 | { 669 | "data": { 670 | "text/plain": [ 671 | "" 672 | ] 673 | }, 674 | "metadata": {}, 675 | "output_type": "display_data" 676 | }, 677 | { 678 | "data": { 679 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAFdCAYAAACgiL63AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXt0XPV57/3Ze+6jGUm2ZVuSL5JMMDZgDAZjG2IgGAcn\nXFpOSvDbELrediXNWidOW9o/zuo6TSANxy1NOOcEL87bpm1yktI4JzkNCeZu4djEdxzL+AIGW/eb\nrevcZ/b1/WPP3prRzSNZI8vy77MWC89tz2+PpO88+/k9z/eRTNM0EQgEAsG0IF/pBQgEAsG1hBBd\ngUAgmEaE6AoEAsE0IkRXIBAIphEhugKBQDCNCNEVCASCaaSoomuaJt/61rfYunUrTz31FG1tbXmP\nv/LKKzz66KM8+eST/OIXvyjmUgQCgWBGUFTR3b17N4qisHPnTv7yL/+S7du3O48NDAzw/e9/n5df\nfpmf/OQnvPrqq3R2dhZzOQKBQHDFKaroHjt2jI0bNwKwevVqTp065TzW1tbGypUrCYfDSJLEqlWr\naGhoKOZyBAKB4IpTVNGNx+OEw2HnttvtxjAMAGprazl37hz9/f2kUikOHjxIKpWa8HtomkZ7ezua\npk3ZugUCgaBYuIt58FAoRCKRcG4bhoEsWzpfWlrKf/kv/4Vt27ZRXl7OTTfdxJw5c8Y93osvvsiO\nHTtGfay+vp7FixdP3eIFAoGgCBQ10l2zZg179+4FoKGhgeXLlzuP6brO6dOnefnll/nv//2/09TU\nxJo1a8Y93rZt2zh79mzef/X19cU8BYFAIJhSihrpbt68mf3797N161YAtm/fzq5du0ilUjz++OMA\nPPbYY/h8Pv74j/+Y8vLyYi5HIBAIrjjS1e4y1t7ezqZNm0R6QSAQXBWI5giBQCCYRoToCgQCwTQi\nRFcgEAimESG6AoFAMI0I0RUIBIJpRIiuQCAQTCNCdAUCgWAaKWpzhEAgEEwEwzCpP9pKc3eU2spS\nNq1diixLV3pZU4oQXYFAMGOoP9rK6weaADjT2AfA5nU1V3JJU45ILwgEghlDc3d03NuzASG6AoFg\nxlBbWTru7dmASC8IBIIZw6a1SwHycrqzDSG6AoFgxiDL0qzL4Q5HpBcEAoFgGhGiKxAIBNOIEF2B\nQCCYRoToCgQCwTQiRFcgEAimESG6AoFAMI0I0RUIBIJpRIiuQCAQTCNCdAUCgWAaEaIrEAgE04gQ\nXYFAIJhGhOgKBALBNFJU0TVNk29961ts3bqVp556ira2trzHf/3rX/Of/tN/4vHHH+enP/1pMZci\nEAgEM4Kiuozt3r0bRVHYuXMnJ06cYPv27bz00kvO488//zxvvPEGfr+fhx56iIcffphwOFzMJQkE\nAsEVpaiie+zYMTZu3AjA6tWrOXXqVN7jK1asIBKJIEnWDCT7/wKBQDBbKaroxuPxvMjV7XZjGAay\nbGU1rr/+er7whS8QDAbZvHkzoVComMsRCASCK05RRTcUCpFIJJzbuYJ79uxZfvOb3/Duu+8SDAb5\nq7/6K9566y0efPDBMY/34osvsmPHjmIuWSAQCIpKUTfS1qxZw969ewFoaGhg+fLlzmPhcJhAIIDX\n60WSJObOnUs0Ov4Qum3btnH27Nm8/+rr64t5CgKBQDClFDXS3bx5M/v372fr1q0AbN++nV27dpFK\npXj88cf54he/yB/+4R/i9XpZunQpjz32WDGXIxAIBFccyTRN80ov4nJob29n06ZN1NfXs3jx4iu9\nHIFAIBgX0RwhEAgE04gQXYFAIJhGhOgKBALBNCJEVyAQCKYRIboCgUAwjRS1ZEwgEAimAsMwqT/a\nSnN3lNrKUjatXYosX522AUJ0BQLBjKf+aCuvH2gC4ExjHwCb19VcySVNGpFeEAgEM57m7ui4t68m\nhOgKBIIZT21l6bi3ryZEekEgEMx4Nq1dCpCX071aEaIrEAhmPLIsXbU53OGI9IJAIBBMI0J0BQKB\nYBoRoisQCATTiBBdgUAgmEbERppAMEFmU3eUYPoRoisQTJDZ1B0lmH5EekEgmCCzqTtKMP0I0RUI\nJshku6MMw+Sdwy384FcneedwC4ZxVU/KEkwSkV4QCCbIZLujRFpCAEJ0BYIJM9nuKJGWEIBILwgE\n08ZsMm0RTB4R6QoE08RsMm0RTB4hugLBNDGbTFsEk6eoomuaJs888wxnz57F6/Xy3HPPsWTJEgB6\ne3v5i7/4CyRJwjRNPvroI/7qr/6KJ554ophLEggEgitKUUV39+7dKIrCzp07OXHiBNu3b+ell14C\noKKigp/85CcANDQ08D/+x//gi1/8YjGXIxAIBFecoorusWPH2LhxIwCrV6/m1KlToz7vb//2b3nh\nhReQJNFKKRAIZjdFrV6Ix+OEw2HnttvtxjCMvOe8++67LF++nJoakesSCASzn6JGuqFQiEQi4dw2\nDANZztf5X//61/zRH/1RQcd78cUX2bFjx5SuUXDtIIxqBDOBoka6a9asYe/evYCVt12+fPmI55w6\ndYrbbrutoONt27aNs2fP5v1XX18/pWsWzF7sjrAzjX28fqCJ+qOtV3pJgmuQoka6mzdvZv/+/Wzd\nuhWA7du3s2vXLlKpFI8//jj9/f156QeBoJiIjjDBTKCooitJEs8++2zefXV1dc6/586dyy9/+cti\nLkEgcKitLHU8D+zbAsF0I5ojBNcMoiPs6mU25eOF6AquGURH2NXLbHJoE4Y3AoFgxjOb8vFCdAUC\nwYxnNjm0ifSCQCCY8cymfLwQXYFAMOOZTfl4IboCwRQwm3bXBcVFiK5AMAXMpt11QXERG2kCwRQw\nm3bXBcVFiK5AMAVMdHddjGO/dhHpBYFgCpjo7rpIR1y7CNEVCKaAie6uX23pCLFROHUI0RUIrgBX\nm/mOiMynDiG6AsEV4Gor9r/aIvOZjBBdgaCIjHVZfqWL/SeaLrjaIvOZjBBdgaCIzNTL8omu62qL\nzGcyQnQFgiIyUy/LJ7quKx2ZzzTS6QwDkRhVCysm/FohuoJZzZXedZ/Ky/KpPBeRLpgcmqbR0x8l\no8Jkf42E6ApmNVf68n4qL8un8lxEumBimKZJT98gibSO1+fH4wVdTU/qWEJ0BbOaK315P5WX5VN5\nLiJdUDgDg1Ei8Qxurx+vz3PZxxNtwIJZzWwyv55N53I1EIsnaOnoIZ4Bjy+AJE1NWkpEuoJZzWy6\njJ4N53Klc+yFkEyl6R+MY+DG7Q1M+fGF6ApmJcP/uP/kkZtn3B/3RJkNKYGJ5qWnU6QVRaF3IIai\nS3g8flxFeRchuoJZypXeQBOMzkTz0tPxc9R1nd7+CCnFxOP14Sly0lXkdAWzkiu9gSYYnYnmpYv5\nczRNk96+Qdq6BtDw4vH6puzY41HUSNc0TZ555hnOnj2L1+vlueeeY8mSJc7jH3zwAX//938PQEVF\nBf/wD/+A1+st5pIE1wiTrUO9GnKOVzMTzUsXq544tyLB45veC/6ivtvu3btRFIWdO3dy4sQJtm/f\nzksvveQ8/s1vfpMXX3yRJUuW8Itf/ILOzk5qa2uLuSTBNcJkN51EWqK4TDQvPdWbh9FYnIFoCtnt\nw+Ob+k2yQiiq6B47doyNGzcCsHr1ak6dOuU81tTURHl5OT/84Q/55JNPuO+++4TgCqaMyW46TWda\nQkTVl2aqNg+TqTR9A3F008WRD/vp6ImzaH6IDauqJ/yZd/TEefdoG3+4uW5Saymq6MbjccLh8NCb\nud0YhoEsywwMDNDQ0MC3vvUtlixZwp/+6Z9y8803s27dumIuSSAYl+lsj71UVC1E+fLJZKyKBNWw\nKhIOnuhg7+/aATjXNgjA3asXFXSsps4Ibxxo5oNzvQAzU3RDoRCJRMK5bQsuQHl5OUuXLqWuzlr4\nxo0bOXXq1Lii++KLL7Jjx45iLllwjTOdtbCXiqpFqmPy6LpOT1+EtJqtSMjWf3X0xPOeN/z2cEzT\n5MPmft462MLZ1oEpWVtRRXfNmjXs2bOHLVu20NDQwPLly53HlixZQjKZpK2tjSVLlnDs2DH+4A/+\nYNzjbdu2jW3btuXd197ezqZNm4qyfsG1x3TWwg6PqmsWhnnncIsj+E1d114FxuVG96Zp0tcfIZbS\nHI+EXBbNDzkRrn171HWYJic+7uHNg820dMfyHrth6Rwe3DD535Giiu7mzZvZv38/W7duBWD79u3s\n2rWLVCrF448/znPPPcfTTz8NwG233ca9995bzOUIBDOK4VG1aZIX2dZcg22/lxPdD0aiDMZsj4TR\npW3DqmqAvJxuLrpucPTMBd481Ex3XzLvsVs+VcGWDbUsW1RmPXcmGt5IksSzzz6bd5+dTgBYt24d\nP//5z4u5BIHginGpqG14VP2DX53Me30w4Obzd9Vd1W2/E2UyG5mJRJK+wQS4vJesSJBladQcrqLq\nHPigk7cPt9IfHRJTWZK448aFPLi+ZsyoeKKIjjSBoEhMNGobnm6oqyq75nK4E9nIVBSFnv4YmilP\n2iMhldbYe7yd+qOtxJKqc7/bJXPXLVVsXlfD/PKpLS0ToisQjMHl5hcnGrXNBkOby6WQz2B42+5k\nRCyaUHj3/TZ+87s20hndud/ndXHPrYt44M6llIWK06EmRFcgGIPLrR6YaPnZbDC0uVzG+wxM06Rv\nIEIsoeL1B0ZskhVCfyTNO0da+O2JTlTNcO4v8bu5f+1S7rt9MSX+y/fMHQ8hugJBDrnRbWtXDBOw\nY9uJVg+IyHXqiETjDESTuL0BvP6Jy1Z3X4K3DrVw+HQ3hmE695eHfTywdimfvrUav3d65FCIrkCQ\nQ250G4lnSCs6sizh87ioWWg1+hSadhCR6+Vjd5Ihe/D4ghN+fUt3lDcPNtNwtgcz5/75cwI8uL6G\ndTdV4XFPr++XEF3BVUsxOraGR7OabuJ1jmn9XzQtFB9VVentj5LJettOBNM0+aRtkDcPNnOmqT/v\nscULQmzZUMuaGxZcse4+IbqCq5ZiiF9uHlbRDMJBD6UlVvKw5YIlyFPpzyBaffMxDIOevkGSGcNq\nbphAEGqaJifP9/HmwWYaOyJ5j123uIwt62u5+bp5UzZ2Z7II0RVctRTDnCY3D5tIqnnHtDfCptKf\nQUTNFqZpMhCJEYln8PoCTMTaVjcMjn14kbcOtYxo671p2Ty2rK/h+qVzpnjFk0eIruCqpRjmNLl5\n2NGiUJjaDTJhtj60Seby+PFOwG5R1QwOneri7UMt9AymnPsl4LYVC9iyvpalleGxD3CZGIZx6SeN\nghBdwVXLcPH7zO1L8rwLLvdSfayNsKncIJtOV7OZRiKRpC+SANk7oU2ytKLx3vEOdh9tJRJXnPtd\nssT6m6v47PoaFs6d+KZbIei6jqEplAQ8LFg4uehZiK7gqmW4+L1zuGXSl+pXKre6ae1STNPkvRMd\nYEqYprWW2ZzXTacz9A3GrU4yT+GRbTylsuf9NvYcayOZ1pz7PW6ZjdmGhrmlE9t0KxQlk8HrhvIS\nH6Xh+Zd1LCG6glnDWJfqhQjq7iOt/Gz3WTKqziGPC9OEB+5cWrAQT1a0ZVlCkiTi2RbUNw42IUmz\nM6+rqiq9AzEyKhPqJBuIpak/0sZ7DR1k1KHusaDPzX23L+YzdywhHJz6MV+GYaCrGYJ+NwsWluLx\nTE3ThBBdwaxhrEv1Qjar3mvocC5V0xmd9xo6kCQKjpwvZ0Nstud1R1QkFKiPPQNJ3j7cwsGTXWj6\nUJVtaYmX++9Ygs8j0zOY4oNPeiY1AWIs7Ki2NOijdEHFlFc7CNEVFJ3punQfa4OrIFGTzLybJib7\njnfQM5jC53ERLvGOK4aTFU7DMEkk1aH3CXpmTV7XNE36B6NEE8qEKhLaL8Z461AL7394ATPnxzKv\nzM9n19WwYVUVR890T3oCxGjkRrXzF4SLOiBXiK6g6Ix26f7Z9VN/+TzWBlchm1UbVy+isydBRtXx\neVzMK/VzqrGPdEZ3DFHGE8PJbojZX0Y+j4uMqrOqquKqahce6ws1Eo0xGEtPqCLhfPsgbx5s4eT5\n3rz7qytKeHB9DXfcuBBXdvLMRCdAjEWxo9rREKIrKDqjXboXQ3THYqwIOFcwahaW8sQDy2m5EMtO\nbYgQDlo5vIyqUz2/ZFwxnGwZWXN3FAmcBoySoOeq2kQbnlZJp9Ksvn4uuLwF2S2apsmZpn7ePNjM\nJzkTHQBqq0rZsqGWW66vQB4mhoVOgBgNuwJhqnO1hSJEV1B8hl26j7hdIMOjqs/cvoQ9x9om5YFg\nGCbf/9lx3v/oAj6Pi9ONfTx0Vx1f+b1VALx9qJnDp7qdyHfj6kXjiuFky8iu9pIxO42iqQqqonC2\nfZA1N136Mt8wTI5/fJG3DrbQeiF/HM6K2rlsWV/DDTVzxow8LzUBYjSUTAaPy6Q85L/sCoTLQYiu\noOgMv3TfOMncW/3RVl7b30gsqbL3d+28c6QFRdWRJKngzStbuPcd7+Bsaz+6bjrpg/w87PA/9uJE\nn9PlRFasvPrieQGOnUogyTIub4ClleXjPl/XDQ6f7uatQy1c6M8fh3Pr8vk8uL6GuuqyS77vWBMg\nRr6fjqkrBP2eKxLVjoYQXUFRsW30queXgCk59ZSTobk7SiypOqmK8x0RykM+59K8kM0r+3K4ZzDl\n+Km6JImMqudFmS0Xos5x7dvFYLqcyKa63diuSLihpoz7133qkhGnoursP9HJ20daGIhmnPtlSWJt\ndhxO9RSNwwFQMmm8bmlK6mqnGiG6gstmvCiq/mgrbxxsdp4rSUw6wqqtLHV2rAFn8yn38UthC7PP\n4yKd0ZBlCa/HxR0rFuZFmZO97J+pBjZTVZY2vCLB5x+/aiCZVtn7uw7efX/kOJy7V1ex+c4aKqZo\nHE5+VFs2I6La0RCiKxiTQgVkvChqKmtQN61dyunGPicPGw56qa0qpSRbZlXIpbktpuGgl1RGw+d1\nsfpT8/n647fmndtkL/tnqoHNVOSOI9E4g7FUQRUJ0USG+qNt7D3enjcOx+91ce+axdx/x5IpG4ej\nZNL4PDJzQz5CoUunJq40BYluNBrl1VdfZXBwEDOncO7rX/960RYmuPIUKiDjCetUbhTJssQ3nrht\nzM20+qOtjjiO9ZyahWE+t6GO9xo6iCUVwkEPLd1R9hxryzs3WZbYtHaoI63+aGtBG3f2uZtALKGw\na38jwKQi3qmMmi8nd5zrkXCpioS+SIq3D7dy4IP8cTihgIf71y7hvjWLCU7BOBw7qi3xe6ismoPL\n5brsY04XBYnun/3ZnxEOh7n++uuvuBelYPooNEodTVhtwWjqilJTWYrfJ9PYEeXV3zZyurHPiSxH\nc/EaS2hGE6HRvhggv5PsdGMfLdm1n2ns4/N31bG0Kkw8NWSWMtq5DT/28OPAyC8h+7OIJRQn92wf\nY7QvrEulZqYqap5M7jiZStM/GEc3XZf0SOjsjfP2oRaOnL6AkROYzQn72Lyuhk+vrsbruXxhvNqi\n2tEoSHR7e3v54Q9/WOy1CGYYhUapo0VRuYIBlilJY4clWJ09CcDyOrWfc/p8L6cb++iLpDnfMYgk\ngd/rzmukGE2ECvliaOqK5NV52usc69xsIdy1v5F4UiVc4kUa4zhjfRZ2hGvX+o71hTVdqZmJoCgK\nvQMxlOzUhvFEorkrOw7n4568+xfODfLg+hruvKkSt+vyxuHomoZpqFdlVDsaBYnuypUr+eijj1ix\nYkWx1yOYQRR6STpaFDVcIDqyQmvT1BWhJDh0mRlLqrz/0QUU1SCtaLhkiYxi5DVSjCZCY4ln7n11\nVWVW5UNCIaPqJJIqn7l9yZjnVn+0ldcONNEzkCKZ1khlNAI+Nz6vi4yiOyI8XqqkNOhzTGxy1zU8\nsm3qyp9wMJWpmYmmJ3Rdp6cvQlq1RpuPNbXBNE3Otgzw5qEWPmrOH4fjccuUlXh54M4l3HXLpWtn\nxyOTThHwuSgL+wiFxi9Fu5ooSHQ/+eQTHnvsMebNm4fP58M0TSRJor6+ftzXmabJM888w9mzZ/F6\nvTz33HMsWbLEefxHP/oRv/jFL5g7dy4A3/72t6mtrZ382QimlMspZxouGIvmlziRLlhCmPscu4ZX\nUa08oHOFmtNIMZoIjffFkJvT3fHzBmcDrrkrwrvvtzFWpswRaEVHkiCZsWwEQwE3GSAc8HLPbYtG\n/RKyI1d71eESL/fcuth57vCW6FXXzRvxudlcbg1voekJXTd45d3TNHZFqamuGLPsyzBNTp7r5c2D\nzTR15n8Bloe8eNwyfq8LSZLo6k2MeoxLkRfVVs+96qPa0ShIdHfs2DGpg+/evRtFUdi5cycnTpxg\n+/btvPTSS87jp0+f5vnnn+fGG2+c1PEFM5fhgnHvbYt56f+eoKkrQl1VWV61wPDROKqm43HLhINe\nNq5elJMfjlBTWUow4KGuaihyyxWSsaK7kqCH+TmlSe81dDg53eGCZJemSZKES5KQZavULZ7SrBI1\nyRw1ajQMyyTHjurDQQ9LFpbmbcgd/+hiXkt0XyTD5++qG1VYL7eG91LpCdM0GYzEeP1AI/tP9iJJ\nEs3dVklebhmYbhi8/+FF3jrYTOcwMV113Twe3FDLhb5EXjnfRNpyYSiqLS/1U1Iye6La0ShIdKur\nq/npT3/KoUOH0DSN9evX8+STT17ydceOHWPjxo0ArF69mlOnTuU9fvr0af7xH/+Rnp4e7rvvPr76\n1a9O4hQEM5HRBOPP/581I543fDROU1eUZEolGHBTV1XGZ25fkteuGw56eOjuZZe0WDRNk0Mnu9h3\nvIN5ZX7OtvTTF80QDnoIl3jzImgT2He8Iy8yPnW+l4OnugBrIoFhmI5YdvYkqD/aOmIN9UdbOd8x\nSFqxImNV00mm1LyIszeSQjcMx7gFySy4i26iVQzjpSfs8i/Z7eNiRM/bILfNY1RN58AHXbxzuIXe\nSNp5XJLgjpVWQ8PiBdY4nGXZLrKJtOXqmgamRtDvnrVR7WgUJLrPP/88LS0tfOELX8A0Tf7jP/6D\n9vZ2/vqv/3rc18XjccLhoRlFbrcbwzCQs79wDz30EF/60pcIhUL85//8n9m7dy/33nvvZZyOYKZR\nqGCMNZvMTgvkun2NtaFkR5o9gykMw0RRDWLJAVRNxzQtsYgmDOaV+cGEaMIqGYslVWIJhXhKcUTq\npmUVnGrsc9IePo+LaFIZ1+axuTuKJFkibZpWfjMYcOc9NxTwEE+peLPHLKQlerJVDKOlJ5KpNH0D\ncUzJ7ZR/DTePWTAnwNuHW9h9pJVoYqjCw+0aGoezYE7+OJxC23IhJ6otC1ASnN1R7WgUJLr79+/n\nlVdeccTyvvvu45FHHrnk60KhEInE0OVIruAC/NEf/RGhkHUZcu+993LmzJlxRffFF1+cdKpDMDUU\nKqKOx0FDO509CcIl3hGCMdaxcqPVzt4Emm5imibyKO26udQfbaWzN046o6PpRrb7zeXkh12yjCRB\nZ2/C6YIKl3gJl3iJJUaWj+W2AYeCHnxel1N/29od5Z3DLXnnX1tZit/rJqNYeelw0EtdlRUB2ude\nWuLllk/Nn1BDx2SrGHK/yDIZhe6efqciIRc7Km3qjBCJK/xqXxOpzNA4HJ/HxcZbF7HpziXMCU9u\nHE5eXe01FNWORkGiq+s6mqY5xr66rhf0oa1Zs4Y9e/awZcsWGhoaWL58ufNYPB7n4Ycf5o033sDv\n93Po0CH+4A/+YNzjbdu2jW3btuXd197ezqZNmwo5DcEUUGjUtftICz/b/TGD8QyGYZJMq7hcMvuO\nd4wQ1+HHskUlllRRNcOJUl0uaUS7bi7N3VGnRCuWVACJcNBDf1TPe57P43LsFJdWllJbWcpr+xuJ\n5lQ33Fg3N+/SfOPqRUiSxL7j7VzsT9LYEaGzJ4Fpmnx2fS1gzzuz8sVIJhtXLxp1Y2+iTQ6XU8Wg\naRq9/dFxKxIiiQydvQmOnLngbGQCBP1uPnP7Ej5zxxJCgck1NNh+tXND/qu2rnaqKUh0H3nkEZ56\n6ikeeughAF577TXn3+OxefNm9u/fz9atWwHYvn07u3btIpVK8fjjj/P000/z5S9/GZ/Px4YNG7jn\nnnsu41QE00GhUdd7JywPXcMw0XSTRFrD63bR2Rt38qHN3VEnckwrGr/8zTknp2uaJhlVx5X1RpBl\nibqqMr7xxG1jCpYtTqUlXmsCQ1UZwYCHZEqldzCFJMO8Uj/N3bG81wxvL27ujrKidi412ZKuuqoy\n7r9jKW63zL6GdkeYMorCeyc6HNGVZYn771jCmaY+mroinGnq5741S9h7vP2yusomU8VQyIicC/3W\nOJxDJ7vQjaEcd1nIy6a1S7nn1kX4fRN3CjAMA03JUBK4Mn61M52CPtGvfe1rrFy5kkOHDmGaJl/7\n2te47777Lvk6SZJ49tln8+6rq6tz/v3oo4/y6KOPTmzFgitKwVGXaQmLS5bQs9Nty0KWGNpCXVtZ\nyqGTXUTiCrphkExrZE51ES6xPBUUzUBRDQI+t1V6ddv4nrafuX0Jpxv7aOwcxO91E/S786ocDMNk\n95EWeiMp+iMZ5pUFnNTD8OqG/Sc6iacUZEnKbxM2h72/KeWlST5pHaCxIwJIdFxM0Nkbd9phc6P5\niWyOTaSKoZAROW0XYrx5sJnfnb2YNw6nojzAZ9ctZcOqKjzuiV/+X4kpDFcj44ru6dOnuemmmzh6\n9CjBYJD777/feezo0aOsXbu26AsUzCwKjbo23rqIzt44GVXH6zHx+9xOjtQW6k1rl7KvoZ2MqqOo\nVo43o+qQUPjgXB9gWrWxqs6qAiK8PcfaaOmOkkhpdPYk6Yuk+TBbvL95XY2VzjjYzMX+JMm0xmA8\nQyylIEkjv0yGG63bXxS552XnOnPTJK0XYhiGiSsroB09CRbMCYw4TjGMcS5lSHOubZA3DjZzOvc8\nsWw3t6yv5faVC4aqKgrEztUGfCKqLZRxRfenP/0p3/nOd/j+978/4jFJkvjxj39ctIUJZiaXirqG\nIrgIq66rIBiwBy2azigcWzxlWXIMzhVVRzdMpzRLlsEwrEvd+eWBgsbY2IJm2z3apVt2S25TV4RY\nQiGZ1jBNEWhRAAAgAElEQVRMk2RaI5ZQaO6O8ieP3Owcw/aO+D/1HzviWrPQ+qJ44M6lSFL+l86/\nvDpUCunzuEimhzahFs0vyTN+sY+9r6E9bxjl5bT4jmdIY5ompxv7ePNgC+fa88fh1FWX8rkNtdz8\nqZHjcC5FJp3C73Vd1R4IV4pxRfc73/kOAH/zN3+TtwkG0NDQULxVCa5a7A00W6yeeGD5JeahWX/s\nHrecLbUykeVsWkI3HAEtZPPIjlYtr1yrTKw/miaWVNn5zllWXVdBRrW6zMhuztnVEMO/TN4+1Dzs\n6FbkO9qXTm6UPH9OwPH5rasq42uP3cL/98sPnNzwZ25fYlVZ9CQKHno5Ful0hr7BOKoh4RlmSGMY\nJr87azU0tF3MH9p4Y91cHlxfy/Kl5RNKAWiqioR+zdXVTjXjiu6xY8cwDIP/+l//K88995xj66hp\nGs888wxvvfXWtCxSMLMYLx9pb6BBdghlzkbTaNgTGkpLvEQTCrGkimFY7+HzuqitKqWiLEBTV2RE\nidZw7Ai6qStCMqXxwbkeUhkNwzCIxBX6IinuWLGQox92Y5rW1IKxqiFaLsSGTY4Y2nwbbVYbjF6d\n8M7hFlq6o3m54ebuqNWgQXboZUVoQi2+mqbR0x8lrZh4fT5yzbs03eDwqW7eOtTMxYGUc78E3HrD\nfLasr6WmqnCBN00TVckQ8MqUlwcoCU6N4fi1zLiie+DAAY4cOcLFixf5n//zfw69yO3miSeeKPri\nBDOD4SJjmvDGwTHykaNsNI3HcP8Fu+QrrWiUlfjAhCNnupEkOOztxjRNHrizZlTRHx6F/s0/7iea\nGDKdQWKEH+9YIl5bWcrprEVjRtX5pHWAf3rlA+qqysY//2GMZ9Jji7q9QXipzbXhFQm5m2QZRee3\nJzrYfaSVgVjOOBxZ4s4bK9myoYbKeSXj/ixy0VQVTI2SgIfqirl59fWCy2Nc0bVrYl955RV+//d/\nf1oWJJh5DN/0CQXy649yhWW0jabxyN2Ys/0XbJnJqDoftw3mu46d6ECSpII2oZyBmIqOYZqYBo7R\n+aXyw7llZIZhcr49Ym3MNfWPe/7DGS7eYzmcjZhOfL7XOS/TNOkbiBBLqiMqEhJpld8ca+fd99tI\npIa+YDxumU+vruaBO5cyr6yw6NQ0TZRMmqDPJaLaIlJQydgtt9zCd77zHZLJJKZpYhgG7e3tvPzy\ny8Ven2AGMEJUhvkWJJIqP/jVSWorS7n/jiUjNprGY3j77+4jrbzX0EEknsnLNzqlTaZUcK3wA3fW\nWA0N2a64eFodYSg+VnSZa5LTM5hCynbD2edvmiaxpOoIqZEtixvOiBrgrsiIKRVgpSFGa3cejESJ\nxDPZioShP9dIfGgcTkbJGYfjc3FfdhxOaYnPOceDJzvzfBFy16qpKpKpURL0Ul0xT0S1RaYg0f2L\nv/gLNm3axLFjx3jsscfYt28f119/fbHXJpghDC+nsruznOi0K4IkSY4ReW6L60QaAWRZyrp5KUiS\nRCSu4PVYG2yO69iti5AkRtQKjyWedhNGrrdtrkiPV7o1fGPOl02ebly9iDNN/XnNFKMZ4NjnFAy4\nh4ZoJhnhoWuvyX4fgHgiQcijE02ZeRUJPYMp3jncwoEPutD0oaqIcNDDprVLufe2xQT8+X/WB092\nOg5gtsfCXbdUW1Gt382cOQGCgcm19womTkGiaxgG3/jGN9A0jRtvvJGtW7c6XWaCq5tCivTHqs3N\nm66QNY55/6MLzC8PTLj2dPi0hlA2t1sS8LCsuizPdezd99usS/ycVttCxNMmV6Rz129/kdgMNVtE\nmFfm57rFZSyrLmfT2qW0XIg5zRTDXcqGf4bJlJa3uZhMDZWU5a7pdGMfmpohEktRNqcU2RNAkqyo\ns6MnzluHWnj/TP44nLmlfjavW8rdt1TjdsmjRrS2axiArmu0dvWy6fZKEdVeIQoS3UAggKIo1NbW\ncvr0ae644w4ymcylXyiY8RRSpD9amdQ7h1t4/UAT8aTqCIqdx7UZftk/msDba7BTACYQzR6vtMTL\n5++qczq4dh9pYdv39nChP4nbJWX9AKxUwHgpB9sTYd/xdvpjafYdb+d0Yx/NXZG89ZeWePNKt+xm\nC5csoWoGy6rLRxXyWEIZ4VKW+3kFAx7KQl7n8wmO4mPw6Vsq6R8Y5MgZA2QPPq+bfcfb6Y2k6OpN\ncOKT3rznV84L8uD6Wu68cSGu7Dic/Sc6RkS0d69eRHVFCR81diNJEm63i9XLFzNvjqitvVIUJLqP\nPvooX/va1/jud7/LE088wXvvvcfChQuLvTbBNDBZByv7eXbpUyjoYVVVRd7raxaW8s7hlnGrHsAa\n3NgzmCKd0SktsQQqFPTw+bvq8oT5Z7s/pmcwhWmCqoGqWeN8HrhzKYmkmtdskCuedtqiozdOfzRD\n+8U4siQxt9RPaWho/Z+/q47P3L7EWXNrd9SZkjL8s8mN/luzkyZsmrqieeddW1nKh02544OGIu1z\n7X3MC7m4feUiPn37dXQOaKTUATKKTiSp0nqwJe9zr6kMs2VDLauXzx/R0JAb0QK0dg+y4cZ53L+m\nkvKQj9aL8UlNoBBMLQWJ7pNPPsnv//7vEwqF+MlPfsLJkyf59Kc/Xey1CaaB3Iht+KbYeDlZ+3W2\nW5ctkPmlZSav7W8illTZ+7t2wkEvGUVD0Qx8HhdN2Vww4OQzFc1gfnnAiXBtmrujQxtZWXTdpC+S\nYveRVicnmlF1VlVVjBCW5u6oY8ADoJsmg/EMZSGrRvhzGyxPkGf/5aBjRWkLaWmJF9M0R3w29vrs\nqN8mmVLzrh4+t6F2xHSIdw4388q7ZzCQcHt84PKz4ZZqdN3kQn8KJaeLDWD50nK2bKhlZe3cMRsa\nFs0P8UnrALpmtTbfsGQxS6orAHhww7XnWztTGVd0x/OuPXv2LF//+tenfEGC6WVEyVZWCMdKNVxq\ndI49j2zX/kZU1SClaAzGMpgmxJOqM5csnlQ51zbIA2trONPY59TnVleEuOe2RXkRZ21lKTULS/F5\nXLhkCU0fymn2RFK8/NaH6IaJz+OiYoyW4drK0rxcKIDPI3PjsnnOF8TrB5qdiBuyXrsBL0urwnnl\nbMM/m+E57+EbZS0XYnzl91YBOOVfJz7uQvb4kbP3vf/hBX69r5FITsQMsOq6Cj53Vy3LFo2fDtBU\nlTtvmIPbVOmJ607uWTDzmLhvm2BWkZuv/cGvTuZFUaOlGnJzwKZpUpudtGvXv+74eQO/PdEJWLO1\nTJM8sZOzVbiSZI9iN0dEgbIs8fahZqed+JDHxRc3Xc8TDyxnX0MH59oGSKZ1TCCTLbGyJzbAyMm7\ndodaOOBhMK4gYXnz3nljpSOGP/jVSWAo4s6oOqXgDKD81g8O0DuGV8LwnPc7h1v4sGloSq69ntzy\nr9pF82jqbiOR0ogmFHQjf/ZYbVUpX/7cShYtGHvWWG63WFlZgIOnovQlTUdwJ2ohKZgexhXd3Eg2\nmUzS2trK8uXLSafTBIPBcV4puBopxLYxV2yGVyuYpsmJcz0omhUpurK5VBnJiXBNwJ3dMfd5XXlR\nYC7D24l/+0Enf/und/PAnTV87e92k0gnneOBVcerGyZej5yXB379QBPRhEIkrlCatZb0eV2s/tR8\nvv74rSPOPRz0YJomfq+bUPbfu4+0TMgrYXjke+fKebR29CC5fbi9AVIZjVhSpXcwTVrJT5mEAm7C\nQS/LFpWOKbj5dbVWt1huimOqXMsExaGgSPfgwYN885vfRNd1du7cyaOPPsp3v/tdkde9iric0rDc\n17d2xZzZYsOrFd470UE8qTqNDJpusnCun2Rad8aZB7wuMppBKOgdseGVxxjtxPVHW+mLpkd5gYXE\nkOeBXQ5mNw8oqs7CuUFuXDZvhNCP1hkXT6q8cbCZkD3MktG9Ekb7bDevqyGRTNE/mCCS0HB5A8SS\nCu++38ZvjrXnj8PxurhuURmDsTTubCXC8Gm6pmmiZtIE/G7Ky/0jusUmuiE62WGXgsunINF94YUX\n+Pd//3e+8pWvsGDBAv7t3/6Np59+WojuVcRkS8OGv96OLC2jcSu1YHdnWZGpiSxZkafbLbNwTgnd\n/Uk03SCV3SiTAL/XIBz0WumHUbq5xmontjfMVNUgN0MrS9b655UFnLXa5WDe7Iwan8c15mbhiDRL\nzrFNA6eN11pLfkfX8M9WUTLcev28rPuXn/5ImneOnOe3JzrzbB5LAh7uv30x992+hIDPPaLGFkBR\nMrhlk1DAS9k4dbUTGekzouVYRMbTSsHNEfPnz3duf+pTnyraggTFodBIaKwIyH5+7myxP3nkZqfG\nNpbdJNN0S0BdskxZyIssy5SWeB0TFtO0UgKDsQwet8zrBxo50zSyi+2BO61I0p43BpbXbm1lKfPL\n/ZhAKqPh88jIkoTLJTvibK81FPSQymhIEixbVMp1i8tJpbURm4W5VRc1C0tJJBVnorAsS3gqhgtd\n/heE/X6apqIqGT5s7ufWFdX0DSZ4+9A5Dp3udqomAMrDPjbfuZRPr16Ezzt0pWBP09V1HV1N4/O7\nmT8/7MwmHI+JjPSpP9pa8IRlwdRTkOhWVlayZ88eJEkiGo3y8ssvU1196bn2gpnDWJHQSAcxkzcO\nNgP5EbH9ejuqbe2KOZtn9qW4iXUZbAKL54ed6PT1A43oen4JlImVE44lFTp7k1TPL+F0Y5/TRlyz\nMMyZpn6auiJ43TI73znLew2dbLx1EQ/dvYz3Gjrp7I0TCriJpzSn6sEW0DONfcSTKopqUBbyZpsb\nyrJj0iXnPHbtb3QaJSRJ4tDJrqy/iGVyHvS76exJ4PO6nA60lgv5ArV4XoBjpxIguXB5LKOYf/rl\nSY6fvZgXjc8vD/DghhrWrqzk/Q+7+dW+c3mdY0omg8dlUh7yEw5NbNzNREb6DG85Hm/CsmDqKUh0\nv/3tb/Pcc8/R1dXF5s2bWbduHd/+9reLvTbBFGK3tOaaacMoDmLB/G4pOwKyIyc7qo2lFOd1NQvD\nHDrZ5Vx+b31gueOhaxgmZ5r6aL0Qx8i5tJYkUDXdmfRr18TaG3OHTnZlvXVNxz1L0QziKYXP31XH\n0qowsWTGMZ1BMp0o2V6rPTHCzsdakWw4e2zFudS3L7NLS7ykFQ1VM9ANE0my1ubzuvJqhG2B0nWd\n3v4IN9SUcd/a63jvRAd9g2leP9Cc9xkuXhDiwfU1rFlhjcPJ7Rz7uKWfj853EyrxsKJ2Plvu+lTR\nc6u1laWOi1lG1cedsCyYegoS3R//+Me88MILxV6LoIjsOdbmtL2+/9EFdvy8gW88cdvIy8phG1i5\nXWU1C0vBxJljFi7xDt2fx9AxbLeupQvDXBxIZlMCLuaU+oklFXTDJJ2x5pW5ZJlQwPqVTCsamq6j\nakOxojc7LNGOyu2hlmCVn9mmM3bUpxsmP379DIPxDD6PiwfX1zprs6ffpjIamm6iqDrhoBdFNbLT\nJSRMw8Q0LTOZVVUVTgSuajp/+cI7mJjcefNSSkM+3j7cSs/gkGk4WHXApSVe7r1tEYqq83/f/YRF\n80O0X4yj6xqmrpLM6JxNqiyYE6StpwOPx1v03OpoqQixiTZ9FCS6e/bs4c///M/FdM+rmObuaM5m\nlxXd1R9tHekglnXxyk032JHboZNdpDIaimrklU41d1vTH+xx6q8daMQwdN491k5HT4ISv5ug38PC\nuVaZ4efvsrq/Xj/QRCSeIZ2x/HLdLuv3yzRNFNXIE1yAWNIq+4onFPYebyeRUtENA49bxmSke9eH\nTX2kMhqmCSlD48OmPkLZKRVgjfJJpjXcLgmPx8VALI2qWxt9EuD1Ws0WD929jE1rrdlov9x9mv+7\n9xyJjPWsxq6P88aXA9mx8TLzywOYQP3RNuJpFY9L4sPz3SxdGMbtAo8/REJN4R/Hr6IYTCQVIZh6\nChLd8vJytmzZwk033YTPN+SgvH379qItTDC11FaWOpe0gGNJaA9kbOqKkkypNHdb6Yc/eeRmZFni\nB7866eQ/B+MZZEmitMSDohlUzy9xOtDsjSclexn+L6+eIZ0tE4smFKrmBVl7U+WITZ5d+xuRJMnq\nSJMkQn4P/bE0qpZfvwpWyZfXLfPB+V5iCRVV07H0ziAaV0imVN453OI0Qxz90DIgt4OFpq4Ij3z6\nOqceN5a0voCsKgrT6gYzwTBBwnrdw3cvY/O6GqexofFCiozuRjd0IF9sgz6389nYJFIq8UQaTbXe\nyz2nlAXzy1l3S01eeVruz6mYiFKxK09BovvYY48Vex2CCTCZP5zhZtrhrKOWHfXYxfUmcPhUN/sa\n2rnn1sVODtT2LTCyYjS/PMA9ty520hY+j8u5jA8HPfRGcuZzSZBIa6PWxtprImldxleUB7IilJ0e\nmYPX46K5K+qUnUmShIRVYVAW8tIXyeQ1Q+iGYYmyaeVn/V53/qV1VZmzgWab5ST1rO+uCW6XRCKZ\noKWjh4wuc/BkD0fOXMwzDQe4bnEZTz64gsbOCB09caorrBrb1u4BunsiGCqkZCvKV3STuqqycU3U\ni0kxRr8LJkZBovvqq6/yr//6rxM+uGmaPPPMM5w9exav18tzzz3HkiVLRjzvm9/8JuXl5Tz99NMT\nfo9rjYnWWOb+Ud9YN5cb6+bRciF/TIztKxtLKKQyGsm0xkAsTWNHhLUrK6muKCGj6ng9XtIZjbSi\ns+o6ayDjD187jSRJziW7veEkSxIGprNRtmh+yYj1xBMKJ8/3oag6iqpz87J5BAMefB4XcZQR5+Jx\ny9lBk5YYS1iX8uUhn/X+2YkWVj7YcC77JQlCAQ+fWlw+YlKFvZZEUqWpc5CuPgNFNfDIGpJh8MbB\nVt4/O8D59kESOaPVJQnKQz7uW7PYySNXzQ8NNTH4XMy5p5Z9Dd28dqDJqfO9Y8XCEb4S0xltTtZV\nTjB1FCS6mUyGrq4uqqqqJnTw3bt3oygKO3fu5MSJE2zfvp2XXnop7zk7d+7k448/5s4775zQsa9V\nJlpjOTyy+fxddXkRZ64v7kAsg57dPDI0E9PUeP+jC9yxYiHxlEo0oTglWPZk29yccLjEy6rKUvqi\nKcpDXuIpDUXTWTgnyHf+9O4R6+noiaNqBq5swX9fNO2MxZFlGcMwQMrGvCYkMxoyUOJ3oxsmJX43\nq69f4JjuGIbB/6n/hFRGz8uzSpKE3+simdZGNEXYJWZNXVHqqssJeCXauwcxJA/xtEE0naGrf8g7\nOuBzc9/t1jiccHCoflZTVWR0q9Nu7lz2HGunubuDmoWlfH5DLS0XYs77XslocyJNFILiUJDo9vf3\nc//99zNv3jx8Pp/jMVpfXz/u644dO8bGjRsBWL16NadOncp7/Pjx45w8eZKtW7fS2Ng4yVO4tpho\njeWlIptcX9xYUgFtKEI0TbKm224+f1cdr/62kVRGI61YEV9TV5Q/fvimnFK0UlbWzuX1g03IsmxF\nt5JEOODlf79xZlQHLkvkDSQJ+iNp4ikVn8dl5YZNGS2bIpBlyWqCyDZeBP0unsgpTQN4+5DlPStJ\nQ/UTkgRuWULTDA6c7LLONejBNOGz62scAbQbG267oZqMJnOufTBvnbIscev1FXxpy0pKsibkuYYz\nc+YEnZE3w30Qhn/RTTbanIp87ESaKATFoSDR/ed//udJHTwejxMOh4fezO3GMAxkWaanp4cdO3bw\n0ksv8frrr0/q+NciE62xHG9UjX1ZHc1e+rpdMqGglUKwGwMA2i7EqKsqY1l1adYZDDKKtXFlT1eQ\nJYmT5/s4ed56L7tKAsibqlCT8wVhGeLki4bd8WaaJvGkioE1mrzE78bvcxNPKiBZpV77GqzJwLb4\ntFyIOmmO3kgaM9tR5vXIxNOaM1NM1XTea+jgs+trONfeRyqZQNUl4hmJXQfbRv0c/R6ZnsEUDR9f\nZP1NC8G0Pp/KuXOcqNYWsUuJ6mSjzamIkEXlwpWnINGtrq7mpz/9KYcOHULTNNavX8+TTz55ydeF\nQiESiSHLOltwAd58800GBwf5yle+Qk9PD5lMhmXLlo076v3FF18c1+P3WmCiNZajPb/+aCuv7W8k\nllSJJjKAhM/jwu91cct18wgGvCRTKr2DKTp743RcjPO/Xz9DOOhxduftCDhXUOx8bkW2cysU9FCa\nYwZuAn2RNKGAFxOD8rAP3Uij6QYu2eoSs78AFNUgVOJFwmoZ1nSDSHajzuuWiSZUmruiJFJD031z\nxUyWQHLLuF0y5WEffYNp7IIIy25S40JPP4qi0R83SSn5c8tkWcpr3U0rOtFograuXh7asISSEssU\n3LGgVHT2mCZ7f9dORbZUzP6pDBfV3J9JzUKrLK8Q43iRj50dFCS6zz//PC0tLXzhC1/ANE3+4z/+\ng/b2dv76r/963NetWbOGPXv2sGXLFhoaGli+fLnz2Je//GW+/OUvA/DLX/6SpqamcQUXYNu2bWzb\nti3vvvb2djZt2lTIacwKJhqpjPb85u4o0YRi5XB1EyTrkrss5KMk6HUuhf/plQ9o7IyQTFv+BRlF\np7TE67TD1lVZxtq20NmOY7nTJAAnOovGM1zsT+YJmqoZaLqJJpl09SWQZQm3y5oAjGkSLvE6DQw+\nj4yi6k7Ear/f8K45pxMtO2wyFPCSUXTUmIFhGLhMhTklXp7/95N83JqfRqitKqWmKsz7H14gldbQ\nDRNdyyBjovuC3LJ8MSUlQ7amtgWlblhpmY/bBoinFGqryvL8JMb6mVipiOa8z3Gsn6/Ix84OChLd\n/fv388orrzhR6n333ccjjzxyyddt3ryZ/fv3O5ODt2/fzq5du0ilUjz++OOXsexrl8vN6xmGNXam\n3xZcABPiKZWykC/vDzmZstIMRtalJuCTqa4IsbQqPEJMmroiJJKqtRmGxMZbF414/LcnOkmkVUzD\ninplaZgfbtYTV9d1PG4Zvy87vSHoJZZtBY4lFKciwva+tV3DrM44k9ISr+MFEUsohAJebl42j47u\nPqJJHcXws/fEhbzP5YaaOXxuQy031MyxmilSGd4/3YauS7jdPjweF+turh6ZyjElZ/02kmR14Y3m\nEzyciUSvIh87OyhIdHVdR9M0x+1I13VcLtclXmX98j377LN599XV1Y14nqgDLpzLzevZgi1LEjpW\n/aptrxgKWBtMmmaw51gbjZ0RPG4ZVbNsFDOqzrwyv9M4YZNX52uaRJMqr+w9x3sn2tm4ehEP3Glt\nWO0+0oaR43szrJEr7/6MauBVdOJJlZrKUuJZ0bXnmdldc7ljdA7lbJQBqKpBMq3yUVMX4MLr8xFN\nqHnvtfr6+WzZUENdtRW1K0oGj2zyZ19czb++FsjbfLuxrmLEF9zdq6s53zGIbhhIJrhkK/f7SesA\n//TKB9RVlRU0ay739liIfOzsoCDRfeSRR3jqqad46KGHAHjttdd4+OGHi7owwehcbl7PFigrz5ly\nIk7dMOnsTfDGwSbONPXR0h0lkVIxTdMRXp/HRVPnIN//2fERVoz2OmJJlYFo2jne+XarWqHlQoxw\n0ENa0ZyocGT7Qz6abtIzmCLoc1NTWUpjZwS/1xpouaza6pr7l1dPOblTO6dcKlmtvhd7B0kkNUzZ\nEuG0ZuWWZUnijpULWDg3SDylsu937RxoaKa2MsTDG28gGLSqEEqCHqe+2DqHkZ+1LFllZHK21E3T\nDSRJprEjQl8k7YztGUssLxW9ig6y2cclRTcSifDFL36RlStXcujQIQ4fPsxTTz11yfyroDhcTl7P\nTi30DKbwuGXnj9c0rf9iSZVwiZfGzgiJlEpa0fB6XEiSFWFarbP5I3ogfxMro+pDtb5Y9ojvnejg\nnlsXc7rR8kKIp1QkScLWDnvUznAsxy+Jxs4I3f1JTKxKiuauGHtd7ew93k5FWSC7dsXpFOvo7sdA\nQtFlR3Btli8t58ktK/mkbYDfvN9KJBYnEs/g9/tpOBfhZFPCsYgc77O2xfC17FVHxZwAvXmGN5Lz\nJTDeF+OlolfRQTb7GFd0z5w5w1e/+lX+23/7b9x7773ce++9vPDCC3zve99jxYoVrFixYrrWKchS\nyEidsaIi+zGfx0UsqeJ2yXmdW6qmE0sozCvzO6VhYBmA2zaIw0f0NHdHMbIiGwp4yah61ohmqBsM\nc8husakrSiKpWCN3TFA0ncbOCLqSL7oSOKKsG2a2osESdD1bafBx6wDxCgVvdvS6oWfIqCbSMKG1\nj+f3ynT2Jti17xN8XhPJVFEMD7JHRtFBSamcbbU2wi71We8+0srPdp/Ns4jM/VzSmaHP6XI2vETF\nwuxjXNH9+7//e773ve+xbt06576nn36atWvX8nd/93f86Ec/Kvb6BMMoZKQOjB4V2amF0hJLHMlu\nSBmGjsslEfR5qJ5fwuIFYfoiaUdgP7W4nLqsAXgiqfDB+T46sqJcU1nK24db+Hn9x3nPb8mKg0uW\nMDEdw/PcL4G3D7Xws91n0bSRUa7lZWs1RNim4opm5G1YpRWdaELBJeloqoaiu5Fyhjx43DI31c3l\n4kCSSFwhnUqhJjXe/yjJDbUL8PiDSLFE3jE13aBnMMW+hnZn1tlovNdgVS2Y5lAjydbNywEr1ZJM\nqQQDbienO1lExcLsY1zRjUajeYJrs3HjRr773e8WbVGCwhge2TZ1FVaUb2Zfazl5SY4ZTEW5n3tu\nXQzAh839kK2ZTaa1vNHoR85cQFEtB7HDp7s4fLqbtGLZM6YzOtUVJXzl91ax73gHnb1xYokMO985\ny77jHdlpEiYtF2Ic/+iiZaRjjp3ZdbkkaipL6Y+mUTUDw9CHBl+qChf7NSQ5/9dYzqZDtmyo5Z7b\nFrHvWCO/2nceQ5JxeQLIskRHT5y1KxfSH0nnDYm0/H31PH/e0T7zjp4YumFku+RkFi0oyeuOm+jP\nbqxcrahYmH2MK7qapuU1NNgYhoGqqmO8SjBdDI9sa4ZFQWMV5e873kHUZ0VpyYyO1+1CliVqsxMl\n3kHXcZMAACAASURBVH2/DUXRiSUVSvxuPjjXw7f+6SD33GbNH7NraXXDGjaJhFN365KtHtzN6yzr\nwnhKcVy/MmqEzt44YIlibyRl7fpno1kbWbKGNsqyRF1VGUsqw3zY1Ee4xEtnT4JEMoUkycguT15H\nmyxZTmSlJV7KS9xIRoaA26BiThkVc8rp7EuAaW2k+b1u+qJpDMPE7ZIcC0iXy3Issw3ax/rM7fd1\nuSTCQS8bs/PNchlPWAvN1YqKhdnHuKK7du1aduzYwTe+8Y28+1966SVuvvnmoi5McGmGi4LtkTBW\nVGT/AdtiqKg6HpeJL2vW3RdJ8+y/HKSzJ0FG1VE1g0i2LjataHT2xvF5XNkc7pCDmN/rIq3oyLLl\ntTs37OcHvzpJImlVP9gbSl63zEC2u2wglsbrlvG4ZTTdzOv+8npcLJgbRALuuc0SszONvcQSKdIZ\nBdmVn7N1yt5MSCZTJJNxYnEfFwYzNJy3rCC9XhdBnxtNt8a/m6ZJx8U4hmnikmVcMsiy5a1rtxKP\ndinveFUEvdmhlxKrrqvg/jtGRqDjCavI1V67jCu6Tz/9NF/96ld59dVXWbVqFaZpcubMGebOncv/\n+l//a7rWKBiD4fm+XJ/WQl5nG+f4PC5iCcWxH0xnrNSBblhNEUigaiaKquD3uQj43JSHfZAV43C2\nGaF6fgnzSgNO7tgEaqvKnAg1ldGcTSdVs9IbVfOC9EXSTtmXLENJwE0o4KE/kuY3v2tjYbmXwVia\nvqgKDF11yRIE/W4UVSeVSmOaBrLLg+zyklIhrSpE4wolATcL55YQ8LkxTRO/x0Uqo5JWrNSJ1+PC\n65G5Y8VCblpWkWd9OdZnF0uOdFzL/ewNw2RfQ7vj0xsOekaYlYtc7bXJuKIbCoV4+eWXOXToEB9+\n+CGyLPOlL32JO+64Y7rWJxiHyeb7hioJrAkLwYCHtgtRyyMhae28WxGg5Fz6G6aJlPVoKC3xcuOy\nefy/D93Ejp830NQVYdV187ihZi4/r/+EeEolHPQQLvFSEvTwjSduo/5oKz967YwTldr0RdPouunU\n6+qG1QnXcTFO70CM1gsuJCk/veX3WmuYE/YRi8e5kExZqQY5v2HHPmYipXFxIGlNnvC4iCQUy+/X\ntAxxDNNk7cpKvvHEbcBQlYe9+Zd7X83CUj63oZZd+y3HtYyiE0UZ4Z5Wf7SVzp5EngVnrrCKXO21\nyyXrdCVJYsOGDWzYsGE61nNNcbmF75PN9432OrujLBRwO3PFJMkaGx5PqdZE3GwdrN1x9cw/H6Cr\nN0m4xMvJ830cOXOBVMbyK7DH7eROpzh1vpff/K49ryFCHVaRYJom8VSaZEZFkj3kfho1VWHSaRVF\n1YnGYlxX6eeBtSv51b5GOnsTY3a4ydkvD6/HOgfDNFF1A5dLys4zsxou6o+2jjqCHob8I0439lFb\nWYqmmaSys93Sik4ylW+Y09wddaYQZ1Sd6opQnrCKXO21S0EdaYLiMJMK33NHrMdTGqGgh3hSpbTE\nx8OfXubMQnv/I2vu2Pn2CC6X5LT1ZlTdmqKLVRNrmFau+DO3L8EwTHYfaeHjtgGrDCz7nl6P7OR7\nTdPA0HVklxuXa2SdbWnQzYIyL6d7BkikNcLhEBejBh+1DOLxyAT9btKKjqaPVF6vR2btyoXWWKAs\nsixhYpWVKapBPKlaXzpjjKC3iSWUYceRCQc9BANDr7ObUHqzqYWKMj/33LZIdJIJgNwEmWDamUmb\nKXbktbSylNISr7M7H01mnMdLgh7mlwes2l7TqpvVDYO0Yo1VlyUJzTAt03FJsuwOj7VRf7SVn+3+\nmK7eZPaS3srb+rwuMA0MXQUkXO78agRJyrYoayqRaIzDJztJaW5kj5+0otPRE+e9Ex30DKRIpLUR\nguuSIeBzseHmKr7++K3csWIhLtdQ1UHQZ3n0loW8jl/D8BH0tZWl1lRkrAGbg/EMhmHi9bhwyTLe\n7Jj1uqqh1EFuE0pG1am9zFpdwexCRLpXkJm4meJsFGXLvADHyMZuIU5mBU6WQJIlykp8LF9azolz\nvVn7RJOAz51XdpXJ1vWSbfmNJ1N43S5MZGTX6N/9bjQyqookuZFdlket7VOr6yaariNny9VyUxRu\nl4THLVNVUcLD2fHpsizxjSduoy+Spik7SDNc4iUc8BJLZoglVTKqTk1lKZ9eXcVvP+gEU8I04f47\nluQN9cwoOn6vtfnmdcvUVFrz4mxym1DA8nDIjXKFn8K1jRDdK8hM20yxS8FCQQ+ReIbSEo8TAb53\nooNYwpoIrOuWOxmSVa87EEtz4GQXbpdsbW4lVCuPiiXidkeZYZhoioIky8guFxktv8bWqvcFXc1Y\n6Qa3F5fH8lYYnjQwyXbTmWAaptPBZpeyhYNeHr7bSot8/2fHs+OEyrh7dbXT5msC88p89EaSDMQy\nuF0yJ8/3AtbUCoA3DjYhSThRvj2O3jQto5tw0DOieuFSX6YzKa0kmH6E6F5BZtpmSv3RVl4/2Jwd\nr6PhdkmEg5bIROJK9nLfaiCwN9rSeePILX8EWZYoDVoWjJvWLuWdwy1gqJimjsvtyRoyWNhTdSvm\n+LlwcZCBWBrZ5XUqEXIbJySsz8zvcyEBimY49b0+j4wkSaQUndKgly9uup5Na5fy/Z8d57cnOgHo\nuJjANE2nljmRVGnustzANN3ANE0icZMPzvVSFvI5a7S/FE839jkRcWnQi9frcjb6clNDl/oynUlp\nJcH0I3K6Aofm7mg2rZBB1Szjmo5sfS0STsuuLEkE/e5RbRlV3SCcFSTD0Dn4QQv//tYZYmkwceUJ\nLlizx/xuHVlXqZhbSigUxu12Z8vVcgZMYuVh3S6JuWE/C+YG8bplDMMqbQuXeHG5ZOaV+plb5keW\nLRe14aVczd1Rx0GsqStCLKk6YfT/396ZR0dxnun+qeru6r0ltKCFRRJg4YBBbLZZAjbBwpg4BmyI\ncRxIYo89NzlhbhJ7ziQ+4wRmDmHsyYwzQSFxfLNc++QEX5IYx0rAZvMGyIAsgYQxxKAFrUhCUqvX\n2r77R3WVulrdrdbSjRDf748EdXVXfd2ynn7r/d73edUUhYXTxyKqcBbmujR/iQAvamOI1OeoqF+m\nT62bo41njzxfvJ8p4xsa6Y5hkpX7i3XewlwX3vu4CZJMtE0pXlBcyKyhDSe71Yhp+emwWU2outiO\npmte3blNBhZmg4Senj68dvDTAabhKoQQSEIAMJnwuWmFmD0tCwdO1sFpM6HXQ+C0GREUZFg4I0RZ\nhtcvgAlJcEaaBVlpVlxt74NMlDW2X/fDYTVpeVQ1eizKS0OztkYCs8mAH/3qJFo6PaGZbAKMhpC4\nM0qlw5eWT4PRwGp1zHWtSs2uzWrURhWR0CihqaGNtqGkhsZaWomSWqjojmFGkvsbTt//qjun4vyV\nLnxwtlmZnQMlCJRkggAvYuIEG9YuLdLW8NM/8JroEqLMEpMEBi2SGcoYs/4xEbmZNnT2+CGIsiK2\nAIycBSaOw9+bemCzmlCQ64LNYlQmEYc5dB0+1aAMfwxFmSvmTUJDex8YhgHD9MfbQUHSRvQ0trlx\n6KMGfOuREgDQNs+CgoSWTqVpweXgkObgFOOaUGRsNhlgCEWq4aPUL9TpvS0YhsGKeZNHrU6acutA\nRXcMM5Lc31D7/kVRRtm+alxp6UWmy4Jr3T5IMrS6WwPLwmE14fyVLm1Tymo2goUMng+CYQ0wGM1g\nGCYkuApTcxx4bPXtKMx34f/8+QzOXGiHkbNATRz0+QR4fAICQRFpDrNO1FW+sGgqPqm7jnOfdYIz\nGVB7uRPX3cGQ7WP/8zJdFjgsJly77sOV5l60dCi2jd95bAEA4JU3a3Ttz7wgITvdCoeVg8fPa5tk\nfw0Z2kS6ttmsppjeFpFfcisXTsGxyqu0QoEyACq6Y5iRlJTFE+xo5y3bV61tOAGAy27WNslUF67L\nzb2oudwFm8WIs45WEFmEKMkwclbdtRgongguu2Is09DcgfaObuRNzMAsQfE96OgOIBDqDiMAejw8\neFHG+1XNAwTqWOVV1FzuhNvLQ+qT0dblxQSXBc5QKRYvSLCajbBZTLjuDoAXQobrPI8PqpuxerEi\n4lMmOnHszFUEBQksw6Ag14l7F0wBIUqVgrphCChlcpGubUV5roS9jM9f6dI8hWmFAiUcKrpjmJHk\n/uIJduR5Vy6cgj+882lovpdiz6hYFppCExtkGA2A1y+A5wMQggSCYENQJGAN+v+ErGYj8jNt4CUl\njUBE4EJjH7yB/iqHh5bPwPtVzbhQfx2CJIe8fWXFx7bTM8DHtr7NHda5pjwW5EVYOKM2rp1hlJE9\nkd68BDIOfdSA+jY3LjV0wxdQGjFkhiArzYrSuwtCto7K6Ha15Ky5w4MeTxBzp2fBblOaH+J9/pFf\ncnWtvWDDNg1phQJFhYruGGYkub94gh153kMfNWhRp7qTn5VmRZc7oDh4BXiIglIyZjBawDAMAkKU\naQ9Q6l47rveCYQg4zoqgKMPb7lXagk0GOKxGvF/dpNXZAkSrUOBM7AA3LrWlVtnQk7XiB0KglbEF\nBQkGlkGQl1GU79KGRCotuFYtAm0M5YENIX9o9Trhn8feQxdxPTRYUxBl1F7pwubSmYP+HqI5vjVE\n3F1QKAAV3THPcCsYhiLY9W1uZE9QUgRBQULOBBtmTElD+8fd8Hr9IDAMSCEAgJlTvHXF0Ih2WQyg\nr09GZroTPV4RvT4BLMNAEJVBlIGgFBpMKcJpM4FhlLlihAB8aJIuoBeoI6cbUd/aC4fVCI9fiU5v\nm5KuzFrzC+jzKekAmRBYjIrYzpmepW3EhedlzSYDfIF+Y5qivDTd+1l151S8X9WMHo/S+mxglfOp\n4hztd6Gusa7VrWwEhq4bLadLoQBUdMc8iVYwjKS8rCDHhYqaVrAsgzSbCffOm4hP66/D7ZfBGgeK\nrd1ixNplRVg2Nx+/fOMcGpo7IUsSZLMFhDWh081rI3CkUBcFwyiz0tRuMYZR/r/Pp2xgsaGWtMI8\nFySZ4PlfngAYAiIDYBikOcxIc5gxa1omnlo3B+9UNOB3fz2PAK+M72GgNGp4/YL2GaizytTW4YkT\nbJrJTlFeGr69aZ7ufbEsgxXzJ6Gl06Plds0mg/YlEO13AfQ7kAHQbQTSHC4lGlR0xziJVjCMrLWU\nQBCC8Hr88DAsDle2oqePh0QG9s7YLAbcMT0T98yfDCILuLM4HYFAEN4ggcfHw2BgEVAFNzQCh8gE\nDAuwDKvlXl12ZSSO2WSA28drXghdvUHsO3IJ192BkHEOYDIaNH/e/iiYQJSUGWUEynVMRuUcqhOY\n2rZbmJcGu8004MtIlomW71WPrbpzKghRBk+CIVheMkmXqhnsd0Fzt5TBSKroEkKwfft2XLx4ERzH\nYefOnZgypd8Y5O2338Yrr7wClmXx4IMPYuvWrclczk1JohUMwykvI4Sg192Hs5eaFCNx1gKZELR2\n+XXPUzxnWQR5ZYTPmfMtIGIQ//L1JdhYOgct10Wc+bQdTpsyZdhoYEOWj7LiTmbhtJyu3WqEKCqm\n6EV5abi9MANvV9Rr9bW9niB6+oJac4aScJAQFFjMCbtNb2jvg9PGaRGpMmpH8d8NHxPPMIo72lPr\n5ijnCxNar0/QzGnCv6juu2sqGCZkXBO2GRbrdzHWTIsoY5ukiu7hw4fB8zz27t2Ls2fPYteuXdiz\nZw8AZbjlf//3f+PPf/4zrFYr1q5di4ceegjp6enJXNJNx2AVDGpaobG1D24vH8qVMnH/+HmeR4/b\nC69fBGviwBgs8AT7h0uqKFMiTLh/cQHe/bgJrdfcEIMCDEYTOj0yOK7fRUvt1HJ7eQR4EWkORYAX\n3Z6DWUUZmjG426ukEwI8cKKmBRcbu1E8JR3X3UH0eXkwwACLRim0ri53/5dBYa4L5y93AlBENi/T\nBjNnBAMGU3OcqLncqY3KKchxaq8LvyNQj4d3sckywc9er9Icxc5HNI/E+l3Q3C0lUZIqupWVlVi+\nfDkAoKSkBLW1tdoxlmVx4MABsCyLrq4uEEJgMg00r77VGWxDTBURVaYcNg5ZaVbUtSodWerttBrV\n9nmVtAFrNKLqs04crGhAa6e+ldfCGTBjchomZtgwKduBO2/PwqW6NrR1AJzFDkC/CVWQ40RFTSuC\noXE4i27PgSOUClh151TIMsEnddeVrjDOAH9QRE9fEJJM0NrpBR+arKDW9XaHRbqAUqnQ5xNwsaEH\nP3u9CrOKMhSRy0uDzWqCz68Y14iS0nKcmWbWRaj9Dg76OwC1Q02lMNeFw6cacKKmBbwgw8sIutfE\n+l3Q3C1lKCRVdD0eD5zO/ijDaDTqRrqzLItDhw5hx44dWLlyJWw2WzKXc9MTbbNMFQTVv5UBo5Uq\nXajrgiDwWDgzE76gBKPJDBEmnKhtxaGPGtDVG9DOzTBAQa4LEydYMbNgApbMyYcsiTAwEjLS7fjB\nEyu0eWgDN6EY3b9mT8vSGhIA5Yuhoc2tGZt7/YJWb6uWfCHUzsswDCxmozJJOOwKij2kjBM1Lai5\n3KlFp2qHWLjI1rW6teMA0NDeX32gegKr5WtzpmfBbjNh6kQnzl/pxPGaVgRDM83AKGKfaMqA+uRS\nEiGpoutwOOD19kdR4YKrUlpaitLSUvzLv/wL9u/fjw0bNsQ83+7du1FWVpa09Y51om2WReYZCWS4\nvTw8Xi9MLFB7mUPJzDxIEHHslDLFwR3mjmU0MFgyJw+ldxdg4gTlS08SRciCH+c+60ZbL68JyHce\nW6AJy2//el57vKE9usiphEeX6uZZZ29A8Uogilh9fq4yzqa+zQ2H1YTLzb3wBUSlFC3kJKaKe3+j\nhDJxF4TRpVZi1chGTnSYMz0L//TofLAsg5/+oRLvVTVrETYDxcYyK80SN2UQLrSqVSTDMOOyC41+\nqYwOSRXdBQsW4NixY1izZg2qq6tRXFysHfN4PPjmN7+JX//61+A4DlarNeKWcCDbtm3Dtm3bdI81\nNTVh1apVSVn/WCPaZtmTX7pD+/fUiQ5Unm9EZ1cPWCMHgTXAzzN48/3LeK+yCb5gf42qgWUws2AC\nvrrmc8hIswAARFHCiao6dPQG0dQZREund0Be88jpRvz1+BX0+QS893ETzl/pwqyizJibSZHRpdNm\nwvp7puOTui6cqGlVDMoJwYdnm7Fi/mQ8+aU7cOR0I/r8gjYS3mY2KtExADHUwab6JPT5BDhtHPxB\nETIhKJmRjf+1YS5++cY5LSpXpzrEm+hw7rNOLXcMAGCAzDQL1t8zI66wDJYjHk9Q8/XRIamiW1pa\niuPHj2Pz5s0AgF27dqG8vBx+vx+bNm3CQw89hK9+9aswmUyYOXMm1q1bl8zl3PRE2z1nWQZL50zE\nHUVOBHgZtVfsSE93wR8UIYgyKj+9prtN50wsrJwxNHiSx4X6Liydmw+RD6Dq4jWcutgDt5dHV29A\nMSkPivAHRZQfvwIAmgetWjVw5tN2zCrKwANLirQyK3VSBMsyA6PLvCzcd1cBGtr7MCnbAXdoLFBd\nqxt9/jqcv9IFm9WIwlwXbFYTivJcuqGYTjMHAsXAXDVS7/Px4AWlUqKhza3UDofSGeFTHeJVgqge\nuqGJQuCMBuRn2wH0v5doDJYjHk9Q8/XRIamiyzAMduzYoXusqKhI+/emTZuwadOmZC5hXBG+e16Q\n48T829LR2NIJMEYYjBw4M5DmMCPIS/AHJd1rrWYj1i4tREePD/Ut/X8s9c2d+MKCHGRmZ+FQZRuA\n/nlmRJ1n5hcgSjL2HrqIOdMzdcJiNhnQ0N6Hghwnmjs98Ph4XGzoxvkrXfjfmxdEjS4BaNEvL0hQ\nfW7D62sBfaNBZIWE26vU9vZ6eE0Qle42grOfdUAQZS2yVjcV61p7Q11jpgFeCutWTMf//dsnmhmO\nMzQN+cDJejBM7M3McCF32jnMyXXpaoLHE2Nxpt/NCG2OuIlgWQafn5uDOdNc8AdEBEQWBpOSGmhs\n68PBinpURUS2RoMyOmfubVkovbsAx882o77FDUnkwRAZJcXTkJWhlOmpf1RmkwH+gAiz2QBfUNQG\nQfZ6eHT2BJCfZcfl5tBwRxuHghwX9r/3GTp7/Fr0ebK2FXecboz6hxoe/fKhigenjUNjex/kUJSc\nPcEa0xlNrcNV57cRojRHOG0mZZwOr5j0BEJfPD6/ELNrTKX07gIwjDILrvmaV/nSgRL5xmsDjlZG\nNl7znNR8fXSgonsTIEkSunv74PEJOFl7DW3dAUzKdmDJnHz8vbEbew9dREtE2dcEpxkso1gsMgyD\nKaFa1UUzs0CkAK57JMyYnKn7w1H/XdeqtM/arEZUX+zAte7++tjr7gA4E4t0hzk0XtwFgKCz169V\nJKj/H5lzVv9Qf/1WrRb9qp1mXT0BSJIMmQAev1KqFemMRgjwflUTupiA1j7ssnN4YEkhLtR390/5\nDbUXB0OlaDar/j/zyNtiVUw/ONuMlg4vwAA9fUH4gyJYloHXJ2jPiZbTjBUFj7eNJ2q+PjpQ0R2j\nEELQ5/GizxsELxJwZgtOfdqOD8+1gRCCmlCNbUe3vnssO92KL99XjFlFGaiobUVzhydUa5sNIgaQ\nn+3Eo/eXaILw67dqdYIQ+Uf1TkW9bmpDRpoZXr+o1dR2uf3464k6zV5RjXQdVpOWc448Z3jUqk5g\nKD9+BSYjCyk0Tt3CGXDP/Mn46R8+1jbEZFnGpavdEESlT83jFzF3RjYYhu0vSRMkZXBkKJ2xYv4k\nAIpIqkMlVRFlWUbXDMELEiSJIM3Bwcwp+dl0hxn1bW5NPMMZLKdJN54o0aCiO8YI7xYzcmawBjM4\npaMVTdf64A0IcHsFTXhULJyyaz57WgbmzMgCACwrmQRJkgCZR2aaBXa7UhI2oOsq1NkVTRDuu6sA\nDMNo0RohBAdO1oMQgmvdfrR0+mA0MOBFGXaLEZKsOIGtv2d6zMkKBTlOPLCkSDOkUSNUgAmVhgFz\nZ2Rjz5/O4sOzLSCEaHloEvofg0FpTbbbTLoSNTVyjpxddv5Kl/Z+VRFVqzHOfNqOQFCCpPQugxeV\nTbl0h1lXiTDUnCbdeKJEg4ruGIAQAnefFx5fEILEwMRx4Cz93XmCKKOithVnLlxTpteGMTXXCZ4X\nwYW8BiZPdGrnFPkA0p1muJxZuttcQogmNGreM5YgREaqcsjE5v3qJrR0eiHLAC8rG2HZE6x4cNm0\nqLfRkVHf2qVFKMx14fXDFxHgRUiSDJtFmQKcPcEKi9mA9z5u1kajR3QoQ5KJ0jXmE3Qla+Gzy0RR\nxs9er0Jday8EQUZmmkUzFlffr5pbDgQVT16WVep8M9MsEa3EriHnNOnGEyUaVHRvIIIg4HpPH/xB\nCQaTEtWGtBMAEOBFfFjdgkOnGtEb8ngFlNv3aflpeHzN7cjNtONkTYuWRlgyJx98wA+nzYTMSVlg\nGEYbsEgAVNS0aptV6lZRUJCiCkKsnGTp3QWob3OjpcMbZjjDaIIb7TXRJitUX+xAV29AE1VJBkxG\nFvWtbjRd88AXEHRiyzLKe5cJYDSwcFiNqG/txayijKizy8r2VeG9qmalAYMQcEYWFrNR58dQmOvS\n6pBVr4h/enQ+Dp9qQE3oDkCBDDmnSTeeKNGgoptiwqNaXgQ4sxkms/45Xr+Adyuv4mhlE7z+/sjW\nwDLIy7Ljrlk5uO+uAi2aXFai5C35YAAcKyA/PwMGQ79617e5tRE0akmUgWVg5gxgWQaLbs+JKgjx\ncpIFOU6cPNcCllXeU36WHXUtvfj+zz9Ac4cHFs6oS1tERn0+v4jO3oAyIy0krJJMIIRMxtW6WwPD\naNUJ6Q4zPH4BBpaB1WKEK9SB1tDep7mIqcgywUfn23QeDoJEYNF+Uj67aKOLjpxuxF9D7zsr3QoG\niqvZUKEbT5RoUNFNEYFAEG6PL2quVqXXE8ThU414v7oZQb6/FtZqNmL65DR0uwNgGeDMhXbYrSYs\nK5kEWSZ4/+N6tHe58bnCHJQunoajZ/QTCwpzXTh25qo2aFIiykwwhlEE99ub5kXdVY+fk1SMyTmT\nMj2iqzeArt42rakiyCv50brW3lCNrH6ywpWWXhgN+msaDQyEsBlnhAAZLrPmo3upsRt9viAEEfD1\nKB1rnImFqZHFr/af00a2q00ZQUGf9zawjFbrq+aBo40u+tuJOnjCGkBcOh9fCmVkUNFNIpqzl4+H\nKDPgOLMuV6vS0ePHoY8acOJciy4yc9pMuO+uqVgxbzLe+vAy3GEphuYOD0RBwMlzjaioaYfRxOFq\nRxMuXnUPmEK76s6p+M1b53XXFCUCC2dAQ5sbR89c1fxjw1MC6kQJtXKhIMelpRz+ekLpUMtKt6Kz\nx48+nwBJlrWNLkC5Xff5RV2N7ANLCgEAZy91wB8UYWAZyARwWk0whTx7LaHKgUnZDsyYMgFFef15\naEEkWruu+iVypbkXXb0BXKi7DgBa+iPdadbSFyzDIN3Zf0sxmC+xWgPssClj12lqgDJaUNFNAjzP\no7vXA19AUqJaowVclOc1X/PgYEU9zlxoR1iAhwyXBavvnoqlc/O1DbJJ2Q58drUHACDLEnLTDMhK\nM6MvyMJo6j97tCm0LMtggsus+RcAStTnDO3Mf1DdDI9fier0aQS18BbwB0W8X9WET+q6UN/aq4sE\nlWm+/SY0JiMLlgVcNi5Uv0s0X40PzjbD4xPg9vLaZAjOqJggpTnM6PPyyM+2Y8W8yboNuVferFGm\nTJB+sx4AECQZRpbVuuRU0VRztaqp+cKZEzF7WhYa2vu/WKLlrNU0CMMwcNm5qI0UFMpIoKI7irj7\nPHB7AhAkBpzZDM4S/XlXmntx8GQ9zn3WqXs8N9OGNUsKcefncmAw6N3YlszJByEEja1dmDEpHetW\nzgLLMglPoV23fBr+798uKC2+UDasOkM783arPvqua+3FOxUN2HvoopZD5QUZda29+KT+OmRCujWN\nUQAAIABJREFUYOUMcNpNcNhMyMuyoaXDC16QlQ0rEwsDy4LjDJpXr+ZCRkKjckKbeYQBJFmCychq\nDRNTc11Ra3vPX+lCd18Agki0qcDKF4xyro4ev1aDm0inmJpKAPR3BZGvGwnjrUGCMnKo6I4QSZLQ\n3aPUzzIGDgajBVyUT5UQggv11/H2yQZcbOzWHSvIc2HN4gKUFGfrolTddYQgVi3IRWbGTJ0bW7SN\noGhTaEvvLgTLsqhvc8Pj5VFzpSvkewBkuiy6DTufX8Trhy/qzMRZBuAFRqsP9oY2vEpmZIfyuAyy\n0pXx7A4rp0XOTjsHp5XD1DwnCnOV9MT/O3JJm8pLQtFueN1x5K2/HGqYcFo55GTY0NMXBMuyIIRg\nWn4aeFFCc4dnQA3uYBFqtJz1aG9+0QYJSiRUdIeJzx+Au88HX1CC2WKFMZrSQonozl7qwIGT9Whs\n0++A52ba8OVVxfhcUUZMW0uBD8LKMcjNm6CrSFCJJhLR/qjDn/fKmzVIC/O/tduUVtoPzjYDhEFn\nrx8BXtS9Xib9PrYsyyh7/4y+FMxp57Bi3mQQAvztxBWtA6ww14Unv3QHWJbBOxUNCL0UgJLmUGtz\nZ03LjBpdHjndiAMnlZI3XpAxwWlBRpoFmS4L7DYOV9vdyE7vtwZNtAlBHfkTrVNttKANEpRIqOgO\nAUIIenr74PHxkGGA0cTBHCOFIEkyTn3Sjrcr6tHW5dMds5qV7jHOyKK7LxBVcAWeh9lIMGmia8AY\no5Hesg5MSSiRpSfUeKHMMYMuz8yySo8vwwAmg2IoPsFh1mZGhKcFlPE80TvAwg3Pr7sDWufX+hXT\nsXpxYdT1qkLVF7KBtJiVjbaWTi8YKNMdjAYGEzNsYJB4E8KqO6fG7FQbLWiDBCUSKroJoGyMeeEL\nijBxFrAmCwYOJw89V5Bw/FwLDn3UiOvu/nE4LMPgzlk5ICBoCzOnae7w6F4viSJYiMjNdMJiiSjg\nDTHSW9Zoectfv9U/v85p55Cf5UBXrx8tXYqwGVgGLocFFpMBJhOLorw0fK4wAwcr6rXXqYLCsozO\nilG9FgBdRYTVbMS0SWm4Z/5krFw4ZcA4dPWLRBUuNdJWfWt5QQpNHSYQwcBp5bBi/qSE8rDqF1e/\nSY5J5yg2WtAGCUokVHRjELU11xx7cKY/IOK9qiZl6kFYq67RwGLpXGUcTna6FcfPNutEd1K2Q7ue\nyPuRmW6H0xF/IvJIb1kHNaEBNPEK92hw2jl8MVQ+pQiWvvY2XFBiR3hEe7/qtQDg6JmrOHCy/4tE\nNc5RvBpcSvqjugUtnR6lnMsHLScNMHDalLxxol8+6hdXsutxaYMEJRIquhEIghAynBGituZG4vby\nOHqmEe9+3KT5GACAmTNgxfxJuO/OqUhz9EesS+bkA4CubVcIBuCwGZGZnT3oyCIgObesKxdOwfkr\nXboRNyzL4J8enT8glREeaQPR/WmjRXiyTPDB2WZtNhovSKhrdcPjr4PDqkyEUEf07H/vM3CcAQz6\nvRp2PL0Eh0814oPqZjhsHDJ4M1o7fTBzSqQaq5VZfQ0YguUlk3DfXQX99bihVAetx6WkCiq6ITwe\nL3o9Ac1G0WSO/9F09fpx6KNGHD/Xott5t1tN+MKiKbh34WTYozRCsCyjte0KPA8jIyA/xiZZLJJx\ny3qs8mrUETcsy+j8FNRb8nCiRdrRIrxDHzWg+ZoHXr8ASVLywy57KFHDEC1nCwC84IfTxulcvtiQ\nfaRaGUEALPpcTtxJDUdON+L1wxe187Z0eMEw/aV2apkarcelpIpbWnRVc3CvXwDDmmAwDmzNjaS1\n04u3Kxpw6pO2kGmMQrrTjNK7puLzJZNg5pTW2ONnm3URrZqjVPO2OZlOWGPkbeORjFvWWCmLaDaQ\nhXlp2mBIdddfFOUBpWqRm3v1be7+soXQZAb15+Ulk7QoWB27E23eWPg6GShjfNRhlpHewOrzw88T\nFKSY5uoUSiq4JUXX6/PD7fHDP0i5VzgNrW4cPFmP6ksdunE42ROsWLO4EHfNzoXJ2L+9drKmBe99\n3AQAWifZkjl5kMUgMtJsg+ZtU02s8qlwv1k1fWKzmlCYl6bb9S/bVz2g/Tha3vi9j5tgYFkYWBIa\n09N/W88wDDw+JW1BCEFhXtqAKDbW+J9YG4uFuS5UhKwbAWUTLpa5OoWSCm4Z0ZVlGdd73EpRfmiQ\nY6xyLxVCCC419uDgyXpcqL+uOzZ5ogNrlhRiwcyJUcu1wqsSCCFoaOlE6aI8TMjJHo23M+qsXDgF\nh041oMcTajJo7Z+WYA4TraAgoSjPhfo2t646IVr7cSSRJVrqxpwqfvEaPY6cbow5kyy88iLy2uqY\nn/CcLo1qKTeScS+6Pn8AvW4vAgKBiTPDYBr8LYePw7nSrM9fzpichjVLCjF7WmbcTS/VK0EUgmAZ\noKR4Biakj90azWOVV0N1r0rLb5+P14Qt0m9WzfGqUSWBEkG2dHq18qtom1qxNubCj0dz/ALizySL\nt7HIsgxWLy7A6sU0qqWMDcal6A5sYjCDSyB1KskyKi9cw9sVDQPqZ2dPy8SaJQW4bcqEhNawsDgT\nkILo9sqYNmnCmI+uokW0qiiGR4qzijIA6KNSr69/5E5QkDAnL2tU3m9dqxvuUDWD2WRAXWv00riR\nbiyKooyyfdVa5ca3N82D0RirEptCGRnjSnQDgSB6+3zwBUSYzPGbGMJRx+G8XdGAzp7+QY8MgAW3\nT8T9iwsxNdeZ0BpEQYCRlTFpohPTp84d3hsZAbG61QbrYlNzukB/RKsaen9Q3azVxx44WQ+GYXQR\n5ytv1oANuXIByuZWrA65oTR2+Pz9NbSBoASfX4j6vJHmZ8v2VePDsy0AgOZrSg31dx5bMOzzUSjx\nGDei23qtGyJrg8nERfWsjUaAF/FBVTMOn76qG4djYBksviMPqxcXICfDltC51AGQWWl2bQBksogn\noLFEbTCxixYtqq/p6PFrEbDLzg3I1w6lbngojR02qxFpDk6LdCNHqY+E8M8w0u0tsiSOOoVRRpOk\nii4hBNu3b8fFixfBcRx27tyJKVOmaMfLy8vx6quvwmg0ori4GNu3bx/2tVijGSZTNNfagXj8Ao6d\nuYpjlVc1tysA4EwsPl8yCaV3TcUE1yC7bCEIIZCEANKdFqS5UrNJFk9AY4naYGIXLVpUn6OmHdTS\nq0hRHcrt/VAEuigvTTMmV38eLcI/wwAvQpJlGFh2wHUGlMxRpzDKCEmq6B4+fBg8z2Pv3r04e/Ys\ndu3ahT179gAAgsEgfvazn6G8vBwcx+GZZ57BsWPHsHLlyqStp7svgCOnruKD6mZd7abNbMTKRVOw\ncuFkOGyJCTcAZQCk3YTM7KyEOslGi3gCGkvUhtPFpr5G7doKNxdXGUoUqFo0OqxcQpUE0aoZYvkz\nDJXwzyw73QJBUszX1ZyuSrSSOeoURhkJSRXdyspKLF++HABQUlKC2tr+0h6O47B3715wnPIHLYoi\nzOahNwokwrVuH96paEBFbatuHI7LzmHVnVNxz/xJsAzSgRYOHwzAZmaRNykTLJv6DZd4Ahor6hzO\nZlMiRuCJ5GhVYX6v6iquNCtdb8pASmWiRCzxTLSaIfI6ieSzwz9DlmWx4fPRO9JibTBSKMMlqaLr\n8XjgdPZvQBmNRsiyDJZlwTAMMjKUnfDXXnsNfr8fS5cuHdXrN7X34WBFAyo/1Y/DyUyz4P7FBVgy\nJw8mY+Ltt6IggDPImJyTNsBuMZXEE9BYm0rD2WxSX6OK1q/fqg2NLld8dH1+AVdaeuD1i3DauZgu\nXaowN3d4EOAlMKEJv5caldcCid2uD5YiGUo+O9EvId0GIy8pU49DwzZpbpcyHJIqug6HA15vv6OW\nKrgqhBC8+OKLaGhoQFlZ2aDn2717d0LP+6ypB2+frEfN5S7d4/lZdty/pBCLPjdRy98lgtq2mz3B\nAZs1sVxvMkl1N1W4aFXUtGqP93qUabx8aOpuLJeuSHEk4d+AUY7HYrAUyVDy2Yl+hpGlcfVtblyo\nu64bgkmhDIWkiu6CBQtw7NgxrFmzBtXV1SguLtYdf/7552GxWLQ872Bs27YN27Zt0z3W1NSEVatW\ngRCC81e6cPBkPf4eartVKcp34f7FhZh7W1bMcTjRkCQJkHhkpttht4+ttt1UEi5a4blwQPEJTnNw\ncV26VLF0WE0QRFmLdB2h2WzqGJ/BcsODRaejmc/W3l/ExI3wFdHcLmU4JFV0S0tLcfz4cWzevBkA\nsGvXLpSXl8Pv92P27Nn485//jIULF2LLli1gGAZbt27FfffdN6xr/fyP59Dp02+C3V6YgQeWFKB4\n6oQhbXTdiIqEsUy4aJnDfC4DQQlmzjCoS5cqjnWtvfD5RdgsRvgCIjp7/GBY5fM+fKoBB07WA4id\nGx4sOo1lJzmUzbtIwr8MvD5lmrL6XxLN7VKGQ1JFl2EY7NixQ/dYUVGR9u9PPvlk1K7V2umByabk\niOcVZ2PNkkIU5g39j4IP+uG0pb4iYawQLeIMF7PInG40A/NYMAyD2dMyB3jyHjhZD4dNnyMfThQZ\ny05SNUdX1zCUPGz4OmOZ8FAoQ2HcNEcwDIPFd+Ri9eIC5Gc5hvx6rSIh/8ZUJAyHZBTtx9qMGknu\nMto5B+R5ZehafhVxHzl1rb0RrcS9g78oDJ2VJKOMIXpq3ZxRWRvl1mTciO73vrIAs2ZOG/Lr1AGQ\nN7oiYTgkY7x3MqbXRjtnZJ41K92K1i5v2LNG5y7D5xcjWonFQV6hhw6WpIw240Z0MxLsIFORRBEM\nETExY2xUJAyHZAhkoiIzlCg72jkj8691rf1TggGgoX10NqlsVlNEK/HQvljpYEnKaDNuRDdR+jfJ\nrEhz3dwVCcmIwhIVmaFE2bGaLNQa4MOnGlB96Ro6e/xw2Dg4rUZ4fQJeebNmxGmTojwXLtQNHDef\nKNTsnDLa3DKiSwiBwAfgsnPIGCebZNGGSY6UREVmKFF2vHMqM8wuodcThCjJ6OkLQhRleC53wmnn\nhpw2iYzA1c9EnSpMCBkVMR/qOmgjBUXllhBdPhiA3WJA/k20SZYIsYZJjpRoggFA91hBzuhE2f0z\nzBgwjNKy6w0IYEI53WiuZvGIF4ErbcT1UY+NNsnIt1PGB+NadAWeh9kETMlNh9E4/t5qMnK6gF4w\nzl/uxPkrXejqDWieup9c6cIDSwqxdmnRiHOd6gwzf0CEFBr0aWJYEIKYrmbxiPeZJOvzGuo6KLc2\n40+JoHgkGBgJuZlOWIYxbfdmYag53URvecMFos8n4Myn7QCg89RtaO8bldIpZTIFwf73L6OtywdC\nCGSZwMwZUJSXhhXz4zczKDnhRm2yRYbTohnpAPrPJJWVCLTqgRKLcSW6siyDiEFkpSffSPxGEC9f\nmUi0megtb7hgqLv+ADRPXQJoG11qs0RDe2K5y/D30P/aPmSmWWAyMPD4RWX4Zb4LO55aMmgeVMkJ\nX9TKwlwODnOnZ0VtYIjsjKtrdSfNuIZWPVBiMW5EV+ADcFqA9LTx27Y70jxhore80UxeVPKz7ch0\nWVHf2guGYTQDHFeCm17RzHNcdg5uLw9/UATLMjCbDFheMjkhIezPCSvwghSzgUHd0Au3iFQrG0Y7\n30qrHiixGDeiOylnAtLTxvct3HDyhMPxDggXDPX1da39bb9X2/u050Ya4Ay2pnjmOaIkg2NVbwe9\nE1ks1Jywmvowmwza+4qVTqH5VsqNZNyI7ngoARuM4eRww0fNOGwmFA3ROyBadOj2hm7l7RzMJgMI\nIVqrrdcnQJZJQo0SnMmAQFBER48fvCDDYTUhzaHk4BvChD0ekdOKww1tYt0Z0Hwr5UYybkT3VmCo\necJoo2aG6x0QHg067RycVg5T85woyHHik7rrmrDXt7lx5HRjQo0SHi+Pmsud4EUZRoNepBMVQpZl\nsHpxAVYvjj71IdrPyahvplAShYruTcRQ84SjOWomPDpkAKyYP0lbS0N7H7LTrbrrxiLSn1aNbAmg\nCXnkF8pwGw3C10wI0Tb/vD4B9a29o17fTKEkAhXdcYw6aoYQAo9fgMvGaSVZQ92tjxdlD/d2PZ6Q\nhzPcDcRoG4IMgI4eP8wmg+b1QHO6lFRCRXcco4rO+9VNaOnwguMMOHCyHgwz/Hlp8a4z1PKowV6n\nRrjlx6/A4xPgtJnAMAM3whJZc/jUB7PJoNvEozldSiqhojuOUUWnvs0Nj0/QHh/tyG645VHxXhe+\nCSjLBLzQ35gxHJEMj6qddg5zcl3UjJxyQ6CiewsQeftfkOPCoY8axrQZS/gmIKBUOsSbwzYYiYyT\nHwxqYkMZDajo3gJECg4hJGXGL8MlchOQZRk8uGzakNYZTyRlmQz5i4ea2FBGAyq6twCRt/GvvFmj\nOz4WN5LUTUBAqbpYdHuO9uWhbyV2ASBoaO8bIJ7xRHI4AkqbKiijARXdW5DRbg5Ixm13vHRArFbi\nSPEcbccx2lRBGQ2o6N6CjLYZSzJuu+NtssVrJVaPybJSl6uWhzlDm2YqwxHQ0frcaG741oaK7i3I\naJuxjOZtdyKCFC6YqgNa+DGg33BdLQ+bk5cV1XEs/DqDXXu0PjeaG761oaJLGTHDiRpjCVwighQu\nmNFyuuoxBtAaIOw206ACGu4vkUwxpLnhW5ukii4hBNu3b8fFixfBcRx27tyJKVP0fe5+vx9PPPEE\nfvzjH6OoqCiZy6GMMuEOZAW5LtisRhTlpSV02x1LXBMRpEQizuF8EaRKDGlu+NYmqaJ7+PBh8DyP\nvXv34uzZs9i1axf27NmjHa+trcWPfvQjtLe3J3MZlCQRLpwAsHZpUcKRYSyBGy1BGk7+NVViSA3O\nb22SKrqVlZVYvnw5AKCkpAS1tbW644IgYM+ePfjnf/7nZC6DkiRGEhnGErjREqTh5F9TJYbU4PzW\nJqmi6/F44HQ6+y9mNEKWZW0i7/z58wEoaQjKzcdIIsNYAncjBYmKISUVJFV0HQ4HvF6v9nO44A6H\n3bt3o6ysbDSWRhkFRhIZUoGj3KokVXQXLFiAY8eOYc2aNaiurkZxcfGIzrdt2zZs27ZN91hTUxNW\nrVo1ovNShgcVTgpl6CRVdEtLS3H8+HFs3rwZALBr1y6Ul5fD7/dj06ZN2vNuhVE7FAqFAgAMuckT\nqmqke+TIEUyePPlGL4dCoVDiMvwEK4VCoVCGDBVdCoVCSSG0DZhCGSLUsIYyEqjoUihDhBrWUEYC\nTS9QKEOEGtZQRgIVXQpliER23lHDGspQoOkFCmWIUMMaykigokuhDBHaiUcZCTS9QKFQKCmEii6F\nQqGkECq6FAqFkkKo6FIoFEoKoaJLoVAoKYSKLoVCoaQQKroUCoWSQqjoUigUSgqhokuhUCgphIou\nhUKhpBAquhQKhZJCqOhSKBRKCqGiS6FQKCmEii6FQqGkECq6FAqFkkKo6FIoFEoKoaJLoVAoKSSp\noksIwY9+9CNs3rwZW7duxdWrV3XHjx49io0bN2Lz5s3Yt29fMpdCoVAoY4Kkiu7hw4fB8zz27t2L\nZ555Brt27dKOiaKI//iP/8Dvfvc7vPbaa3j99ddx/fr1ZC6HQqFQbjhJFd3KykosX74cAFBSUoLa\n2lrt2OXLl1FQUACHwwGTyYSFCxfi9OnTyVwOhUKh3HCSOpjS4/HA6XT2X8xohCzLYFl2wDG73Y6+\nvr4hX0OSJABAW1vbyBdMoVAoQyA3NxdG49BkNKmi63A44PV6tZ9VwVWPeTwe7ZjX64XL5Yp7vt27\nd6OsrCzqsccff3wUVkyhUCiJc+TIEUyePHlIr0mq6C5YsADHjh3DmjVrUF1djeLiYu3Y9OnT0dDQ\nALfbDYvFgtOnT+PJJ5+Me75t27Zh27ZtuscCgQBKSkrwzjvvwGAwJOV9jAarVq3CkSNHbvQy4kLX\nODqM9TWO9fUBN88ac3Nzh/y6pIpuaWkpjh8/js2bNwMAdu3ahfLycvj9fmzatAk/+MEP8MQTT4AQ\ngk2bNmHixIlDvobFYgEAFBQUjOrak8FQvxFvBHSNo8NYX+NYXx9wc6xxqKkFIMmiyzAMduzYoXus\nqKhI+/e9996Le++9N5lLoFAolDEFbY6gUCiUFEJFl0KhUFKIYfv27dtv9CJGg7vvvvtGL2FQ6BpH\nB7rGkTPW1weM3zUyhBCShLVQKBQKJQo0vUChUCgphIouhUKhpBAquhQKhZJCqOhSKBRKCqGiS6FQ\nKCkkqR1pow0hBNu3b8fFixfBcRx27tyJKVOmaMePHj2KPXv2wGg04pFHHsGmTZvG1PoAwO/344kn\nnsCPf/xjXXfeWFljeXk5Xn31VRiNRhQXF+NGVBQOtsa3334br7zyCliWxYMPPoitW7eOuTWq/PCH\nP0R6ejq+973vjbk1/u53v8Mf//hHZGRkAAD+7d/+DYWFhWNqjefOncMLL7wAAMjKysJ//ud/guO4\nMbPGzs5OfPe73wXDMCCE4NNPP8Wzzz6LRx99NO4Jbxreeecd8v3vf58QQkh1dTX55je/qR0TBIGU\nlpaSvr4+wvM8eeSRR0hXV9eYWR8hhNTU1JCHH36YLFu2jFy5ciWla1OJt8ZAIEBKS0tJMBgkhBDy\nve99jxw9enRMrVGSJLJ69Wri8XiIJEnk/vvvJ93d3WNqjSp/+MMfyKOPPkr+67/+K9XLI4QMvsZn\nn32WnD9//kYsTWOwNa5bt440NjYSQgjZt28fqaurS/USE/pdE0JIVVUV+drXvkZkWY57vpsqvTDW\nTdHjrQ8ABEHAnj17MG3atJSuK5x4a+Q4Dnv37tUiCVEUYTabx9QaWZbFgQMHYLfb0d3dDUIITCbT\nmFojAFRVVaGmpkYze7oRDLbG8+fP4+WXX8ZXvvIV/OpXv7oRS4y7xrq6OqSnp+O3v/0ttmzZgt7e\n3pRH4oOtMZx///d/x44dO8AwTNzz3VSiG8sUPdqx4ZqiJ2t9ADB//nzk5OSA3MB+lHhrZBhGu9V8\n7bXX4Pf7sXTp0jG1RkAR3kOHDmHdunW46667YLPZxtQaOzo6UFZWhh/+8Idj9ncNAF/84hexY8cO\nvPrqq6isrMR77703ptbY3d2N6upqbNmyBb/97W9x4sQJfPTRR2NqjSpHjx5FcXFxQm6HN5XojrYp\neirXN1YYbI2EELzwwgs4efJkTMP4ZJPI51haWooPP/wQPM9j//79qV5i3DUePHgQPT09eOqpp/Cr\nX/0K5eXlY26NAPC1r30N6enpMBqNuOeee/DJJ5+MqTWmp6dj6tSpKCoqgtFoxPLly2NGmTdqjSp/\n+ctf8OUvfzmh840tRRiEBQsWaN/G8UzReZ7H6dOnMW/evDGzvrHCYGt8/vnntTRIqjcsVOKt0ePx\nYMuWLeB5HgBgtVoHvZ1L9Rq3bNmCP/3pT3j11Vfx9NNP48EHH8T69evH1Bo9Hg8efPBB+P1+EEJQ\nUVGB2bNnj6k1TpkyBT6fT5siXllZiRkzZoypNarU1tZi/vz5CZ3vpvJeIGG7iIBiin7+/HnNFP3d\nd99FWVkZCCHYuHEjHnvssTG1PpWtW7dix44dN7x6IXKNs2fPxsaNG7Fw4UIASrph69atuO+++8bM\nGjdt2oR9+/Zh3759MJlMmDlzJp5//vmUC2+iv+s33ngDdXV1N7x6Idoa//KXv+DVV1+F2WzGkiVL\n8O1vf3vMrfGjjz7CT37yEwBKeu65554bc2u8fv06nnzySbzxxhsJne+mEl0KhUK52bmp0gsUCoVy\ns0NFl0KhUFIIFV0KhUJJIVR0KRQKJYVQ0aVQKJQUQkWXQqFQUggVXUpKeeKJJ3D48GHt5xdeeAHz\n58+HKIraY8uXL0dzczMqKyuxceNGbNiwAd/4xjfQ0tKCkydP4oEHHhhw3rKyMs2NKpzf//73WL9+\nPdatW4cNGzboOsM2bNiQ8Lpra2vx/PPPA1CaH4bi63H06FHs3r0bALB7925UVlYm/FrKOGSEBjwU\nypB4+eWXyYsvvqj9vG7dOvKNb3yDVFRUEEIIaWhoIKtXryaEELJy5Upy6dIlQgghf/zjH8m3vvUt\nQgghX/jCFwa4Y61evZp89tlnusfOnj1L1q9fr7mmdXV1kZUrV5JPP/10RO/hq1/9Kjl16lTKX0sZ\nH9BIl5JSFi9erEV67e3tMJvNWLNmDT744AMAwJkzZ7Bs2TIIgoDvfve7uO222wAAM2fORGtrKwAl\nQn3rrbe0c1ZVVSE9PR3Tp0/XXaujowMA4PP5AAAZGRn4n//5H83U5/bbbwegRMnPPfccHn74Yaxc\nuRL79+/H97//fTzwwANaJ9mpU6ewZcsW3fklScLzzz+PzZs3o7S0FE8//TR4nkdzczMeeOABPP74\n43jiiSfwxhtv4Ac/+AH279+P2tpa/Ou//isuXbqElStXauc6ffo0nnrqqVH4hCljHSq6lJRyxx13\noKmpCTzP4/jx41i2bBmWLl2KDz/8EIAiPsuWLYPJZMKXvvQlAEobZllZmdaOvGHDBhw4cEA75/79\n+/HII48MuNaKFSuQn5+Pz3/+89iyZQvKysqQnp6O7OxsANC1Dv/973/Hn/70J7z44ot47rnn8PTT\nT6O8vBznz5/X2j8jW42rqqo0O8x33nkHfr9f69Gvr6/HT37yE/zmN7/Rnr9+/Xrccccd2LlzJ4qL\nizF58mTNNeuNN97Aww8/PLIPl3JTQEWXklJYlkVJSQlqamrw4YcfYtmyZZg8eTICgQDcbjeqq6tx\n9913a88XBAHPPPMMJEnCP/7jPwIAJk2ahKKiIpw6dQqCIODdd9/FF7/4xQHXMplM+PnPf44DBw5g\n7dq1qK2txUMPPYRz584NeO7SpUvBMAzy8/MxceJETJs2DQaDARMnToTb7Y76XhYtWoTHHnsMv//9\n77Fz5040NjZqblSZmZnIy8uL+joS6rx/5JFH8OabbyIQCKCioiLlHheUGwMVXUrKWbJUt5JDAAAC\nFklEQVRkCT7++GPU1NRozkxLly7FkSNHMGHCBDgcDgBKWuAf/uEfQAjBL37xCxgMBu0caorh3Xff\nxZIlS2C32wdcZ//+/Th58iSmTJmCxx57DL/85S+xdetWvPnmmwOeG26EHn6deBw9ehTPPvss7HY7\nHnnkESxatEg7loj5+5o1a3D8+HEcPHgQ99xzzw0xY6ekHiq6lJRz9913480330RxcbHmS7p06VL8\n5je/0ZmmP/vssygoKMBLL70Eo1E/zu/+++9HRUUFysvLsXHjxqjXkWUZL730Erq7uwEokzDq6+sx\na9YsAIhpMB7r8UhOnDiBtWvXYv369cjIyMDp06chSVLccxiNRq1Sw2KxYMWKFfjpT386pEoKys3N\nTTWYkjI+uO2229DT04PHH39ce2zx4sX4zne+o41FuXDhAo4dO4YZM2ZoXrQ5OTl4+eWXAUCzIzx1\n6pQuwgzn4YcfRk9PDx577DEtel27dq2W/41lBxn+eLTnqI99+ctfxjPPPIODBw+C4zjMmzcPTU1N\ncc+9fPlybN++HS+88ALmzZuHtWvXoqqqCnPnzo3xaVHGG9TakUK5QUiShJdeeglZWVn4+te/fqOX\nQ0kRNNKlUG4QGzduREZGBn7xi1/c6KVQUgiNdCkUCiWF0I00CoVCSSFUdCkUCiWFUNGlUCiUFEJF\nl0KhUFIIFV0KhUJJIVR0KRQKJYX8f/fdut9U/+ZGAAAAAElFTkSuQmCC\n", 680 | "text/plain": [ 681 | "" 682 | ] 683 | }, 684 | "metadata": {}, 685 | "output_type": "display_data" 686 | } 687 | ], 688 | "source": [ 689 | "%matplotlib inline\n", 690 | "from IPython.display import display\n", 691 | "import seaborn as sns\n", 692 | "sns.set(style=\"ticks\")\n", 693 | "\n", 694 | "df_market_cap = pd.read_csv('ftse_100_market_cap_7.csv')\n", 695 | "\n", 696 | "display(sns.lmplot(\"W2V Similarity\", \"Correlation\", data=df_market_cap))" 697 | ] 698 | }, 699 | { 700 | "cell_type": "markdown", 701 | "metadata": { 702 | "slideshow": { 703 | "slide_type": "fragment" 704 | } 705 | }, 706 | "source": [ 707 | "$$R^2 = 0.179$$" 708 | ] 709 | }, 710 | { 711 | "cell_type": "code", 712 | "execution_count": 27, 713 | "metadata": { 714 | "collapsed": false, 715 | "slideshow": { 716 | "slide_type": "subslide" 717 | } 718 | }, 719 | "outputs": [ 720 | { 721 | "data": { 722 | "text/plain": [ 723 | "" 724 | ] 725 | }, 726 | "metadata": {}, 727 | "output_type": "display_data" 728 | }, 729 | { 730 | "data": { 731 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAFdCAYAAACgiL63AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmUW+WZr/tsjaWp5nJNrvKAZ2MMBgOGGAOOCWBDhxDA\nnTDddU5ycs9pp7tZvW6vm3VOQtKh3eGkud2BRa++6dshoRNMd5qQxOAQbBzsGNsY4zIeC+OaXJNr\nlkrzlva+f6i0JVWpVFKVVKWq+p61vLCmrU8y+u13v9/7/l5JVVUVgUAgEEwLuplegEAgEMwnhOgK\nBALBNCJEVyAQCKYRIboCgUAwjQjRFQgEgmlEiK5AIBBMIzkVXVVV+c53vsPOnTt58sknuXLlSsLj\nv/nNb/jSl77EI488wmuvvZbLpQgEAkFeYMjlwffv308wGGTPnj2cPn2a3bt38/LLL2uPP//88+zb\nt4+CggK2b9/Ojh07cDgcuVySQCAQzCg5Fd2TJ0+yefNmANavX8/Zs2cTHl+1ahVOpxNJkgC0/woE\nAsFcJaei63a7EyJXg8GAoijodJGsxvLly3n44YexWq1s27YNu92e8XuEQiG6u7upqqrCYMjpxxEI\nBIIpk9Ocrt1ux+PxaLfjBbexsZE//OEPvPfee7z33nv09/fzzjvvpDzeiy++yMqVKxP+rF27lq1b\nt9Ld3Z3LjyIQCARZIaeiu2HDBt5//30AGhoaWLFihfaYw+HAYrFgMpmQJInS0lJcLlfK4+3atYvG\nxsaEPwcOHMjlRxAIBIKsktPr8W3btnHkyBF27twJwO7du9m7dy8+n49HHnmERx99lK985SuYTCbq\n6+t56KGHcrkcgUAgmHGk2e4y1t7eztatWzlw4AALFy6c6eUIBAJBSkRzhEAgEEwjQnQFAoFgGhGi\nKxAIBNOIEF2BQCCYRoToCgQCwTQiRFcgEAimESG6AoFAMI0I0RUIBIJpRIiuQCAQTCPClksgEOQN\niqJy4EQbLd0uFlcVsnVjPTrd3LJ8FaIrEAjyhgMn2nj7g2YAzjf1A7DtlkUzuaSsI9ILAoEgb2jp\ndqW8PRcQoisQCPKGxVWFKW/PBUR6QSAQ5A1bN9YDJOR05xpCdAUCQd6g00lzLoc7GpFeEAgEgmlE\niK5AIBBMI0J0BQKBYBoRoisQCATTiBBdgUAgmEaE6AoEAsE0IkRXIBAIphFRpyuYs8wH8xTB7EOI\nrmDOMh/MUwSzD5FeEMxZ5oN5imD2IURXMGeZD+YpgtmHSC8I5izZME8ReWFBthGiK5izZMM8ReSF\nBdlGpBcEghSIvLAg2wjRFQhSIPLCgmwj0gsCQQrmg6m2YHoRoisQpGA+mGoLJseQ00VxUeZXPiK9\nIBAIBBkQCoW40tnL0LB/Uq8Xka5AIBCkicfjpXfQi9FsQZXzUHRVVeXZZ5+lsbERk8nEc889R11d\nHQB9fX385V/+JZIkoaoqFy9e5K/+6q947LHHcrkkgUAgmBR9A0O4fQpGc8GUjpNT0d2/fz/BYJA9\ne/Zw+vRpdu/ezcsvvwxAeXk5r776KgANDQ38wz/8A48++mgulyMQCAQZoygKXT0DhDFiNJmmfLyc\niu7JkyfZvHkzAOvXr+fs2bNJn/c3f/M3vPDCC0iS6PQRCAT5g98foLvPidFsRZ+lY+ZUdN1uNw6H\nI/ZmBgOKoqDTxfbv3nvvPVasWMGiRWKHWCAQ5A9O1zADrgAmszWrx82p6Nrtdjwej3Z7tOAC/OY3\nv+Gpp55K63gvvvgiL730UlbXKMgfhM+BIB9QVZWevkECIR2mKeZvk5FT0d2wYQMHDx7k3nvvpaGh\ngRUrVox5ztmzZ7nhhhvSOt6uXbvYtWtXwn3t7e1s3bo1K+sVzCzC50Aw08iyTGfPIHqjBb0hNyf8\nnIrutm3bOHLkCDt37gRg9+7d7N27F5/PxyOPPMLAwEBC+kEwvxE+B4KZxO3x0jvoyXo6YTQ5FV1J\nkvjud7+bcN+SJUu0v5eWlvKrX/0ql0sQzCIWVxVqEW70tkAwHfT1D+EJqJjMlpy/l2iOEOQNwudA\nMN0oikLn1QFUnQmDcXoadIXoCvIG4XMgmM7NVJ8/QE+/C4PJwnRu1wrRFQgEecN0baYODrlwemSM\nptynE0YjRFcgEOQNud5MVVWVrp4BQooeo8mc1WOni3AZEwgEeUMuTeP9/gBtnX0okgm9YWrxZjis\nTPq1ItIVCAR5Q642U2PdZVNPJ3x8sYdfvHORH/z3myf1eiG6AoEgb8j2ZqqqqnT3DCAr+il3l3n8\nMnt+38iJ81endBwhugKBYE4SCATp7nOiNxZMubvsXFM/P3v7Ak53AGBKFRVCdAUCwZzD6RpmcDg4\n5eoEfyDEfx68xOGGTu2+mnIbT+9YM+ljCtEVzEuEuc7cJD6dMNXqhEttg/z0rfP0OSMTIiQi5WsP\nbF6K0aAjnI+TIwSCfEWY68w9ZFmm8+ogetPUzGqCcphfH7rMeyeuoI7cV1Fs4akda1i2sHjK6xSi\nK5iXCHOducWw20P/kA/jFM1qWrpcvLL3HN39Xu2+LRsW8qU7l2E2ZcfGXIiuYF4izHXmDr19g3iC\n6pRml4XCCm8faeZ3R1tR1Eh8W+Iw8+T2NaxeXJqtpQJCdAXzFGGuM/uJN6sxTsGspqPHzSt7z3Gl\nx63dd+u11Tz6+eVYC4zZWGoCQnQF8xJhrjO78fr89PQPYzRP3qxGUVR+f7yV3x5uIqxEoluH1chX\n713N9SsqsrfYUQjRFQjmKbO1gmNgyIXLI2OcQnfZ1QEvP33rPE0dTu2+G1ZW8JUvrMJhnfrE31QI\n0RUI5imzrYJDURS6tVHokysHU1SV9z9u542DnyGHIv4JVrOBnfesZOOaymmZSC5EVyCYp8ymCo74\nUeiTzd4OOP389O3zNLYOavetXVrG4/etosSR/QGU4yFEVyCYp8yWCo6pjkJXVZWjZ7r49wOf4g+E\nATCb9Hz57uV8bn3NtES38QjRFQhmMVPJy+Z7BUc2zGqc7gA//91FPvmsT7tveV0xT21fQ3nx9BuY\ngxBdgSCB2ba5NJW8bD5XcASDQbp6hqbUXfbRhau89s5FPP4QAAa9ji9uuYa7N9ahm+boNh4hugJB\nHLNtc2k25WXTxTXsYcA5+e4yty9iwfjRhZgF46LqQp7evobqclu2ljlphOgKBHHMNhGbLXnZdFBV\nlZ6+QfwhadLdZWcu9/Hq2xdweYJAJJrfcfsSvrBpEXpddgflKMrkpkcI0RUI4siliOUidZHvedl0\nkWWZrp4hdMYCDJNIJ/gCIX753iWOnI5ZMNZW2Hl6xxrqKh3ZXCohWcaoV6itLJnU64XoCmaMfMyf\n5lLEcpG6yOe8bLq4PV56Bz2THqXT2BqxYBxwjVgwSvCFWxex/faIBWO2UFWVUNBHebENu33yaQoh\nuoIZIx/zp7kUsdmWupgO+vqH8ATUSQluUA7z5vuXee+jK9p9C0osPL1jLUtri7K5TORgAHuBnrLa\niimXmAnRFcwY802E5lL+daqEw2E6rw6A3oxhEmY1zZ1OXtl7nqsDMQvGu25cyEN3LsNkzI4FI8Sl\nEhYUYjRmx/xGiK5gxphvIjRX8q9TxecPcLXPNSnvhFBYYe8fm3nnWAsjDoyUFhbw5P2rWZVFC8Zo\nKqGixI7NNjWP3tEI0RXMGPNNhOZC/jUV6eToB4dcOCdpVtPeM8wre8/THmfBeNt11TyydQUWc/ak\nLBjw47AaKKuYeiohGUJ0BTPGXBeh+UaqHP1UZpeFFYV3j7clWDAW2kw8ft9qrltWnrX1h0IyRp3C\nwsqirKUSkiFEVyAQZIXxcvSyLNPZM4jeOH53maKoHD3TSUevm9oKO5vW1aDTSVwd8PLK3nM0d8aO\nfdPqBey8ZxV2S3aEUVVVwrKf8mJb1lMJyRCiKxAIskKyHL3H46Vn0DOhWc3RM528/3E7AJ9dGUJV\nVYIhlV/9IWbBaCsw8KdfWMVNqyuztuZYKqF82oxvhOgKBIKsMDpHf/01hfQO+dMqB+vojeVpQ2GF\nvUdaGBoOaPetu6aMx+9bTZF9amPVtfcIyZimIZWQDCG6AoEgK0Rz9Iqi0NUzgC+kw5jmBN3aCjuX\n2gbx+EMMDge0yoQCk55Htq7gtuuqsxKJTncqIRk5FV1VVXn22WdpbGzEZDLx3HPPUVdXpz3+ySef\n8IMf/ACA8vJy/vf//t+YTLkdlSEQCHJHvNl4JtWya5aU8d5HVxhwxaLblfUlPHH/6qxZMM5EKiEZ\nORXd/fv3EwwG2bNnD6dPn2b37t28/PLL2uPf/va3efHFF6mrq+OXv/wlnZ2dLF68OJdLEggEOcLp\nGmZwOJixO9iJ89289vtGvCMWjEaDjofuXMadNy7MigWjLAcx69UZSSUkI6eie/LkSTZv3gzA+vXr\nOXv2rPZYc3MzxcXF/OQnP+HSpUvceeedQnAFs4J89IyYSRLcwTIoB3N7g7z2+0ZOXuzR7ltSU8hT\n29dQVTZ1C0ZFUVBCASpmMJWQjJyKrtvtxuGIOfwYDAYURUGn0zE4OEhDQwPf+c53qKur47/9t//G\ntddeyy233JLLJQkEUyYdz4j5Iszx5WCZuIN9cqmXf/vdRc2CUa+T2PG5pdxza31WLBi1VMKCSCoh\nn/49ciq6drsdj8ej3Y4KLkBxcTH19fUsWbIEgM2bN3P27NmUovviiy/y0ksv5XLJAsGEpOMZkY9m\nPtlmMmbjPn+I/zjwKR+c6dLuq62w83/sWMPCLFgwRlMJdVXFGAwxecunf4/suvqOYsOGDbz//vsA\nNDQ0sGLFCu2xuro6vF4vV65EHIJOnjzJsmXLUh5v165dNDY2Jvw5cOBA7j6AQJCE0R4RyTwj5rKZ\nj6qqXO0dYGA4kJHZ+MWWAf7mX49rgitJcN9ti/m/n944ZcFVFCXilVBUQHVlWYLgQn79e+Q00t22\nbRtHjhxh586dAOzevZu9e/fi8/l45JFHeO6553jmmWcAuOGGG9iyZUsulyMQZIVknhGjL18XVc5N\nM594s3GjMb3L86Ac5o2Dn/GHkeYHiLTxLq8roryoYMqbZXLAj8NmpHTB+FUJ+WSuJKlqtCJudtLe\n3s7WrVs5cOAACxcunOnlCOYp7x5v1S5fAe7btBhJkvIih5gtYt1l6ZdwNXU4eWXvOXoGfdp9qxaX\n4PYGNbHdsmEht6+vzXg90VRCRVnRmMh2NPMmpysQzBdGX662Xh3ma3+yboZWk336+odw+5W0BVcO\nKez9YxO/P96aYMH41PY1nL7Uw2dXZO258d1o6aAoCmqGVQn5ZK4kRFcgyAL5dPmaTcLhMF09g6g6\nE0ZTenJx5WrEgjFeTG9fX8OX716OxWygb8jLZ1eGtMdqK+xpryeaSiirrEj/Q+QZQnQFgiwwF72B\nvT4/Pf3DGM0W0rkQDysK7xxtZe+RZpQRC8Yiu4nH713NujgLxk3ragASHMUmQpaDmA1QV12CXp+9\nyRAzgRBdwawmX3J1+XT5mg36Bobw+JW0zca7+jy88tZ5WrtiaZaNayrZuW0ltlEWjDqdlHYON5pK\nWFDqwGqZ3Fj2fEOIrmBWk0/1l3OBaDpBkYwYjBP7oCiqynsnrvDm+5cJhUcsGC1GvvKFldy4amoW\njHLAT6HdROksTiUkQ4iuYFaTT/WXs534dEI6F/B9Qz5++tZ5LsXlZ69bVs5X7101JQvGuZRKSIYQ\nXcGsIz6l4PHKqKDlHOfKBtZ0k0k6QVVV/ni6k1++d4lAMAxAgVnPo1tXsGnd5C0Y52IqIRlCdAWz\njviUgqqqLK4uwmY1Jt3Aypecb76SaTphaDjAq/sucC6uUmPVohKevH8NpUWTF8qg30eRwzznUgnJ\nEKIryDq5Frr4FIIkSdisxnFrYkXOd3wySSeoqspHF66OsWB8+K5l3LFh8haM0VRCfU3pnEwlJEOI\nriDr5FroMqmJFTnf5GSSTnB7g/zinUY+boxZMC6tLeKp7WuoLJ2cZeJ8SSUkQ4iuIOvkWugyqYmd\nq00LkyU6SidMeumE05d6+bd9Fxj2RjrIDHqJBzYvZdvNiyZ99TKfUgnJEKIryDq5FrpMamLnYtPC\nZPH6/PQODGMwTZxO8Ppl/n3/JY6djVkw1i2w8/SOtdQuSL+DLJ75mEpIhhBdQdbJJ6Gba00Lk2Vg\nyIXLI2M0TZxOON/cz6tvX2BwZBqvTpK4d9Mi7r99CQZ95m6wiqKghgMsKJl/qYRkCNEVZB0hdPmD\noih0j6QTJhqlEwiG+c+Dlzh0qkO7r6rMytM71rK4enJXK0G/j2KHmZLi+ZlKSIYQXcGsQZR/ZYbP\nH+DqyGTeieLTz9qH+One8/QORSwYJeDujXX8yR3XYDJmngoIyTImgzrvUwnJEKIrmDXkW/lXPp8E\nBodcOD3yhKN05FCY3xxuYv/xNqLG2uVFBTy5fQ0r6ksyfl/NdnEeViWkixBdwYySiXA1d7lweYIE\n5DBmo57mEXOVmRK/fDsJwEg6oXeQkKKfMJ3Q1u3ilb3n6eyLzTHcfH0ND9+1nAJz5tIwV70Sso0Q\nXcGMkolweX0yTndkeqw/EMbrkzM+RjbJtxpgvz9A90g6IdV+VzissO9oC29/0BJnwWjmyftXs3Zp\nWcbvGwrJmHQKC0cNg8wW+XxFMRmE6ApmlEyEy2oxUGQ3aZGupcDAu8db2XukCbdXxmEzIU1wjGyS\nTzXATtcwA64ApgnSCZ19bl7Ze5627mHtvo1rKtl5z0psBcYUrxyLqqqRYZAl9rQnOEyGfLyimApC\ndAUzSibCtaS6iAvNA9ptnz/E2x804/bGIuBCm2laxE9RVFQV7BYTSCqb19fOSGmcqqp09wwgK3pM\nKSbzKorK/hNt/OZQk2bBaLcY+dNJWjAGA34cFgNltRWTNrhJl3y7opgqQnTnEfl4mZZJTe/o5zZ3\nOQFwWCMRmt1q5P7blkyL+B040ca+o7FBlJIkTft3GQgE6e5zojcWoDeM/969g15++tYFPmuPWTCu\nXx6xYCy0jc37KorK0TOdCZMdop8tHAohqTK1C4owmSbuaMsG+XRFkQ2E6M4j8vEyLVVNb7KTRPxz\n3z3eyoXmASRJotBm4v7blkzb55np6MvpGmZwOJiy2UFVVQ43dPCf731GQI5YMFrMBh77/ApuubZq\n3Aj16JlO3h8Zlx6dZXbbdTWEgn5KCi0UFRZn+dOkJp+abbKBEN15xEwLRSYoisqPXj/FRxevYjbq\nNSvBeFGdyR/jTEVfqqpytXeAQEiXsjph0OXn1X0XOB+Xjlm9uJQn7l9NaWHqUq7R03nbugbZsr6C\nmpoydLrMO9KmylxrthGiO4/IlVBkM20RPdahUx00tg0QDqv4A5EobfRJYiZ/jDMh+MFgkK6eIfQm\nCwZj8u9XVVWOn+vm9Xc/xReIWDCajDoevms5d9xQm1b+tbbCzmdXhlCUMEooyOrFdVRWlGb1s8xn\nhOjOI3IlFNlMW0SP1TvkQw5FNnz0kkRADudVLm+6Bd817GHA6UNvtPDBJ8nzrS5PkF+8c5GGT3u1\n1y1bGLFgrChJv7pg07oaQgE/vS4fa5ZWz/rL+XxDiO48IldCkc20RfS1ZqMefyCETidhMuq5aVXl\nvPzxq6pKT98g/pCE0VzAkdMdY/Ktt6+v5VRjD79452KCBeODd1zD5zO86pCDQQqMsPO+dTOSSpgP\nCNEVTJlspi2ix3LYIjvjNRU27rh+Yc4qLfKxoiOKLMt09gyiN1owjFQnjM63tnS5+LRtiOPnurX7\n6isdPL1jDTUV6VswhsNhJEVmQaldtO/mGCG6gimTzbRF9LXNXS68PhmrJbf/i+ZjRQfAsNtD/5Bv\njHdCNN8K4AuEOHmhB+9I7lank7j/tsXct2kx+gwsGOWAn2KHieKi8ux9AMG4CNEVTJmppC3GKwt7\n93irJobRhoh8T41ki56+QbxBFWOSZodN62qQQwqHGzroHfJr91eX23h6xxoWZXCVEQwEsJolqmtK\nRSphGhGiKwCyf5md7HjAmPvGizQzEcOprD2fKjpCoRBdPYOgN2M0JhfByx1D7D9xhb44C8bP31zP\ng3csxWhIz0JRCYeRVJnqcgcFBalNcQTZR4juHCaTH362L7OTHQ8Yc9944pqJGE5l7flS0eH1+ugZ\n8Iw7KFIOhfn1oSYOfBhnwVhs4enta1hWl16zQsQrwU9JYQFFhSKVMFMI0Z3DZPLDz/ZldjrHiwpd\nMnHNRAynsvbJpkYmOqFlsqa+gSHcPiVpOgGgtcvFT/aeo7vfq913xw21fOmuZRSY0vsJy8EAFpOU\ncYNDPm80zlaE6M5hMvnhjyd+k/3RjXe80feNJ67piqGiqHi8Mr1DPsxGPY5pMryZ6ISWTqQeP5nX\nmMTHIBxWePuDFvZ90IKiRuLbYoeZJ+5L34IxHAqhI0R1eSFmc+ZeCfm60TibEaI7h8nkEn088Zvs\njy5VpDpawJMdL12xP3CijZYuJ2ajnkAwTFmRjuYuJ+8eb81pVDbRCW2iSH2iybwdvRELxitXYxaM\nVWVWttxQy+rFE3eHqapKWPZTWmTFYZ+8V0I+bjTOdnIquqqq8uyzz9LY2IjJZOK5556jrq5Oe/yV\nV17hl7/8JaWlkf+Jvve977F48eJcLmlekckl+njiN9kf3XjHSzdKSlfsW7pdmuGNiyCdfR7kkJLT\nigeY+ISWKlJPNZk3ZsF4mVA4Et2aTXocFiMmg46jZ7owGfXcvr523LUF/D5OXeym36OypLqIrRut\nkz75zDWHr3wgLdF1uVz89re/ZWhoCFVVtfv/7M/+LOXr9u/fTzAYZM+ePZw+fZrdu3fz8ssva4+f\nO3eO559/njVr1kxy+YJUZKMDbaZ+dOmKffz6AnIYk0GnjfQ51NCeMtpVFJX9H7ZxuKFD88T9/M2L\n0hKoyWzAJaYTxlYN9Ax6+elb57nc7tTuu2FFBTaLIcF0fHSDRJRQSMaoU2hsdfLHs5HvZKonn7nm\n8JUPpCW6f/7nf47D4WD58uUZGRafPHmSzZs3A7B+/XrOnj2b8Pi5c+f453/+Z3p7e7nzzjv5+te/\nnsHSBdNBNn906ZaR6XRSmjnRRCPx+koHZ5r6NUPzzl4PB060jSs4B0608fr+xoTnS1LkRDVReiOT\nE5qiqLx1+FMutvaxqKacTetqEh9XVQ6d6uCNg5cIyhG/CYvZwM5tK7h5bRUffNKZILq1ozrNFEVB\nCQUoL7Zhs1l561hnwuNTSQnMNYevfCAt0e3r6+MnP/lJxgd3u904HI7YmxkMKIqi7Z5u376dr371\nq9jtdv7H//gfvP/++2zZsiXj9xHkjtE/OkVRefd466R2s9MtI9t2y6K0xH60kfjm9QsZcAUIyk5t\nUy2V4LR0uzSfWYhEytHnZ3MD6VcHzrH/o3Z0eiMt3RHfhGh6YMDl52dvX+BiS8yCcc2SUp64bzUl\nIxaMUZGON7mJIgf8OGxGSheUawGRSAnkN2mJ7urVq7l48SKrVq3K6OB2ux2PJzZpNF5wAZ566ins\n9shZe8uWLZw/fz6l6L744ou89NJLGa1BMHXioz6PV47kUclcjNItI4P0IqzRr2+96uKOG2px+4La\nfakEZ3FVIceMes060mzUa8/PxgZSOBymq2eQlh4vOn1s/lhHrxtVVTl2tpvX9zcmvP/Ddy9j8/WJ\nFow6nTQmhyvLQcwGqKsuQa9P3IoTKYH8Ji3RvXTpEg899BBlZWWYzWZUVUWSJA4cOJDydRs2bODg\nwYPce++9NDQ0sGLFCu0xt9vNjh072LdvHwUFBRw7dowvf/nLKY+3a9cudu3alXBfe3s7W7duTedj\nzAkyLeFK9/mpnheN+lRV1cZ1O6wmHFZjRmKUbhnZVI432rshVSXD1o31qCoJOd3o66caLXp9fnr6\nhzGaLdRVFtHUEUsPlBYW8E//+QmffNan3bdsYTFP7VhDRfH4kyAgEriooQALSh3jGtOIlEB+k5bo\nTja63LZtG0eOHGHnzp0A7N69m7179+Lz+XjkkUd45plneOKJJzCbzWzatIk77rhjUu8zn8j0snf/\nh628vv9TAnKYowYdZy/3YR+pZU0mrMmOGxXWYa+MHFJQVbQ8aCZilG4Z2VSOFxWcdLwbdDqJe25d\nxD23jv3+phIt9g86cfvCWndZfHogFFLYd7QVjy9qwajji1uu4e6b6iZM0wQDfgptRsoqK9JeiyD/\nSEt0a2pqeO211zh27BihUIhbb72Vxx9/fMLXSZLEd7/73YT7lixZov39wQcf5MEHH8xwyfObTC97\nD5/u0ATS45M5eraL2gr7uMKa7LjRqC8gh9GP+NvqdBI15faMxGiqZWQTzUwbb/3Jbk92ranXF6tO\nMBhjjQg6ncT1KxdwsXWQE+evavcvqnLw9I61VJfbUh43JMsYdGEWVhZhNGY2Jl2Qf6Qlus8//zyt\nra08/PDDqKrKG2+8QXt7O9/61rdyvT7BKDK+7FVj0VNctR+QXFijLKp0aBtmiyoLuW/TYg6f7qCz\n14PDZkIi0oo6nS2ho6NxVQVJGhvpJvs843XY3XVjHQdPXhn3drobhamaHc5e7uPVfRdxugNARIS3\n376Ee29dlNKCMeKV4KOs2IbDnlqYBbOHtET3yJEjvPnmm9om2J133skDDzyQ04UJkpPpZe/m62vp\n7HMTkMMoio4Cc+yfPF6wRx9XVROrCu6/bQnf/dptSUu+JiKTPHSq546OVg83dGibZqMj93Q77M41\n9dM6ctxkt+OPOd7a+gaG8PgVDKOaHfyBEL987xJ/PB0r4aoZsWCsn+BkGfVKqK2tyKhMU5D/pCW6\n4XCYUCikzbkPh8NjdkwF00Oml72fv7leiwYXVRYCKq1Xh8eI5ujj/vjXZxKO09LtmvQGTSZ56FTP\nHR29IiWG7vGinG6HXXOXE12cqI2+Hf/80WtTFIW1ix0oUmI6AeBS2yA/fes8fc6I560kwbabF/HA\n5qUYDeNHt4qiQDhIVZmwXZyrpCW6DzzwAE8++STbt28H4K233tL+LshvJiuU2az1zCS/2tzl0jrK\nzEY9zV0Gc5M8AAAgAElEQVSx546NxlX2HW3JaI2jP9eS6iItsk12Oz4tcaihXTPWKTAqfHKpk2uX\nrU9IJwTlML8+dJn3TlzRLBgrSiIWjNcsTO2BEAz4KbKbKC0WtotzmbRE9xvf+AarV6/m2LFjqKrK\nN77xDe68884cL00wk2Sz1jMTAff6ZG3jzx8I4x3Z5YfkjRqSJGW0xtGfa3QOd8sNC3n5P0/T3OVk\nSXURd90Y8Qo5cKKNzl4P/kCYYZebQpuZRTcmimNLl4tXRlkw3rlhIQ/duQyzafwrw3AohF4KiY2y\neUJK0T137hxr167lxIkTWK1W7r77bu2xEydOsHHjxpwvUDAz6HSSNtmhpdvFgRNtk3btSibg4+VH\nrRYDRXaTFummmpE2mSg+2Wvib797vJXWbhc6SaK128XBk1e0SRZ2iwG/143eWkDVgiKtFCwUVnj7\nSDO/O9qqWTCWFJp58v41EzqCyQEfZcVTcwITzC5Siu5rr73G97//fX70ox+NeUySJH72s5/lbGGC\nmSdbrbDJhC6+jjb+2Euqi7S6Wohc7k8n46VCqopNfOTzUVwcWc/GNZXodBIdPW5e2XuOKz0xE5pN\n66p5dOsKLAXj/7zkYBCLCaozNBUXzH5Siu73v/99AP7X//pfCd1kAA0NDblblSCBmXLvH0+AsrGe\n8Y49lbRGNtaVLBXSNzDE2qXl+OSY/8Eta6t551gLvznURFiJRLcOq5HH71vN+uXjNy+Ew2FQgik7\nygRzm5Sie/LkSRRF4X/+z//Jc889p9k6hkIhnn32Wd55551pWeR8Z6bc++MFSFUjExp+/OszEf+F\nLieSJGmPx6ci0hG88fK8U2lhzcb3FN9G7Pb4abjYRv9QGbdfX6f5H1wd8PLCax/T1BGzYNywcgFf\n+cJK7NbxpzMEAz6K7WZKikVH2Xwmpeh+8MEHfPjhh/T09PCP//iPsRcZDDz22GM5X5wgwky598dH\nnfFGN9Ed/EKbSXs8U8HLhSlLNr6nqOj/9v1G9p5tw2AqoOVqFzq9nk3X1fD+x+28cfAz5FDEgtFa\nYGDntpVsXFM5bj2tSCUI4kkpulFzmTfffJMvfvGL07IgwVgm2v3PVfohfjNt75Em3F4Zh80UGY0T\nZ4m4uKowY8HLhSlLsu9pMt9N38AQjW2DGEyxy//P2of48PxVGlsHtfvWLi3jiftWU+xIXk8bHXUu\nam4F8aRVMnbdddfx/e9/H6/Xi6qqKIpCe3s7P//5z3O9PgETR4W5TD9Ej+32xkq5HDYT66oKsVmN\n2noOnGibcQ/XZN9TJt9N1IoxpBoIhiQGhgMY9RGB/uh8D3I4Et2aTXoe2bqc26+rSRrdxkadWygq\nnN6NQEH+k5bo/uVf/iVbt27l5MmTPPTQQxw6dIjly5fnem2CESaKCnOZfogey2GN1I/arUa237Zk\nTMSYDx6uyb6ndL8bj8dL76AHo9nCh6c7aO91Y9BJuDyytlEGsLyumKe2r6F8lAWjoqgcPdNJS2c/\nS6rsfGnrtSl9FQTzl7REV1EUvvnNbxIKhVizZg07d+7U7BoFM08uJwVEjx0d/nj/bUvGCFuu0hu5\nqEZYVFk4ZvLFwJATt0/RrBg7et14/TIuT5Co3hoNEQvGu26qS2gTjnKk4Qp/OHEZo7mArv4gxUVX\nhKetIClpia7FYiEYDLJ48WLOnTvHTTfdRCAQyPXaBGmSrSgzmchNdGxFUfnR66f46OJVzEY95y5H\njLknIzij3z++zXeq1Qjxx3z7g8gxz37WQ//AILdvWIrRFPkpuH0ylzuc9Dtj/3+XFRWw69HrqSpL\n7vQlB/z0Dg5jscVGU4lR5YLxSEt0H3zwQb7xjW/wwx/+kMcee4zDhw9TWVmZ67UJ0iRbm1Lj5T9T\nHfvAiTY+ungVfyCsjZ2ZrODs/zAyKDIghzlm1I/xmZ1MnfB4Rj6yHEAOhugaCgMSR053cPpSL5eu\nOPEFQkDEpOa6ZeX81z+5FqNBr6UQorW6G1eVU2CSqK8pZdUSD01dsXltYi6ZYDzSEt3HH3+cL37x\ni9jtdl599VXOnDnD5z73uVyvTTDNTCY33NLtwhw3ZywghyctOIcbOhJ8F8xGfYJnQfS4E22OpRLl\nxVWFfHy2DXQ6DKYCaivsvP/xFfb+sRmPP6Qdo7bCztM71lBXGYtej57p5P2P21FVlYuXu7AY4IE7\nVwL5kdMWzA5Sim6qMT2NjY382Z/9WdYXJEhNOlFeJqPO45lMbnhxVSHnRl4TkMPcuHIBqhqJKDPO\nw46yaiwtKmDLDQsTzGnePd6aUL4mMfbkMJ4oy7LM8loLWzYupavfS22FndJCC//8q0/wB2MlcIuq\nHPzV4zeNsWDs6HUTDslIahiL1Ua3MzYAU8wlE6RLWpGuIH9IpwQqk1Hn8UwmWot1cDnx+kL0O/28\nvr8Ru9XIsTNdHGpo547rF6YlvpvX19LZ69HMbu64vnaMGc3o8rXCkXlv8SSL2IfdHvqHfBjNVjbf\nYCUoh/nVHz7j1X0XtecZ9BJlhQXccUPtGMENh0JUlxhoatdjMETqd0UKQTAZUopufCTr9Xppa2tj\nxYoV+P1+rFZrzhcnGEsmY8wzeQ5MzbUrKoi9Qz78gTC+QAhfIMSQO0BnrwdVVbnn1sUpj/X5mxel\ntGpMVr52/0j5Wjyj25eLLSoDw0GM5ohYNnU4+elb57k6ELNgXLWohMpSC/VVhZp7WPT1YdlPscPC\no/dcR1lJ5pMz0mWmPDYE00take7Ro0f59re/TTgcZs+ePTz44IP88Ic/FHndGSCdFEC2R52nQ1QQ\no/ldbyCEMlJv5XQHOXy6Y0LRnUj00ylfg1j0/dmVPoqtem65bjF6vQ45pPDWkWbeOdaizYsrLSzg\nyftXsyqJBWMw4MdWoKeiplxrgshlCmGmPDYE00taovvCCy/wi1/8gq997WssWLCAf/u3f+OZZ54R\nojsDpJMCmGjU+aJKx+TzruMQFUTHiB+D1y/j9UeFV0GNNHNNKZpLN/2h00ncvLqU5QvtGE2R9tv2\nq8P8ZO95OnpjFoy3ravmkSQWjLIcxKRXp91UfKY8NgTTS9rNERUVMWekZcuW5WxBgtSkkwKYaNR5\nNBWgqmok73qqgztuqJ2S+I4WxLOX+zjU0KFFlNEOrqlEc+l89nBY4T/fPUNbf4D6yiJuXlvFux+2\n8dYfm7XOskKbicfvW811yxInP0RTCRXFNmy26U+fTWYjU6QkZh9piW5VVRUHDx5EkiRcLhc///nP\nqampmfiFgrwkGkENj2xIBWSnNlV3spezowWxuctFaWFB3AQIY8J7j17LRKQjLoFAkDcOnOfwmT4k\nSeLTVif7PmjRhkMC3LR6ATvvWYXdkhjBBgN+HBYDZRXlMzZ9dzIbmaNrm1UV7rlVpCTymbRE93vf\n+x7PPfccXV1dbNu2jVtuuYXvfe97uV6bIEdEI6qoU5jZGKmFzebl7JLqQi409yfcjn9vVVUZ9sq0\ndQ3z7vHWCSO0+Aj53MiodKvFiNcnY7UYqCg0cN2yCrqdkc/k8gZxDge14ZC2AgN/+oVV3LQ6sakn\nHAqhI0TtgkJt2vVMMZmNzNG1zYcbOoTo5jlpie7PfvYzXnjhhVyvRZAG2bicjEZQhxra6ez1aHnY\n+MvZ0e8zeoDjRPXBiyod3LdpCa1XE6O2+Pce9soM+4KamKZr6jPsCWptx0PDAQoMMg67DVnRU2Qz\n0TPoT7CeXHdNOY/ft4oie8xeMeoEVlpkpdAxi+eTjaptHnNbkHekJboHDx7kL/7iL2bssmu2kot8\nWzZ2uKMRVbJpD+O9z7mmfm00ebr1wffftoSv/cm6pO/d0u3C7Y1N+p0oyo7Pd0ZTFh6fDzngx2i0\no9PpOXH+Ks2dLk1wjXodO+9ZwW2jLBijpuK1tTOXSsgWo2ubN49MtxDkL2mJbnFxMffeey9r167F\nbI5FC7t3787ZwuYCuSgByubcslSXs6Pfp7nLmeCuNV7tbzRtEJDDHGpoH3cdmW4ajZ5icbGpC6Mk\nYTBbMep19A75udLj0Z6/sr6ENUtL6eh188EnnSO1typqOEBFiYMPzlyl5YOOpFF8OlF9vjBRbbMg\n/0hLdB966KFcr2NOMtUSoGSX+B6vrI3LccR1Y2Vb4EeL4pLqIlq6XPQMegnIYYwGHaGQgiGuc2tx\nVSHHznRpOcbOXg8HTrSNW0urqpGcJJI6Yo6vTmhcE90sa7fZsNslwopCS9cwoXDkstpo0PGlu5Zh\n1EscOtUBwGdXhpCDAb5waz3llRVjJhGPjuLTierzBdF+PPtIS3R/+9vf8q//+q+5XsucY6o+t8ku\n8Vu6nNq4nHVxkU1U0FUiOc+9R5pGBolKCXnVydbE3nVjHd/6pz/i9YeQJLjc7uSl/2jgL/50g3Zy\naO5yjZjU6CgwGXDYTOOeaHQ6CUlCq5rYd7QFSUotIE7XMG/9sZkjZ/sJKyqDrgDeQMykZklNIU/v\nWEtlqZV/398IQFgJM+xy88HZMAvKiti6sWjCKD6dqF4gmCxpiW4gEKCrq4vq6upcr2dOMVXnqfHE\nIToQ0mY1JrhnnW/qZ9gT1CLN1/d/CkTqUqdSExsV1Y5eD5IEEqCoKicuXOXd462oKuw7Gjk5BOQw\nBSaDtsbx5rk1dzlpaOzF5Q1GonarcVxxU1WVrp4BQoqeq04ZbyDEgCugdbzpdRIPbF7KPbcs0r6P\n2go7F5u68flDBBQT/mDMeyJZFN8a996jb+erx4Ko0Z2dpCW6AwMD3H333ZSVlWE2m1FVFUmSOHDg\nQK7XN6uZ6qXf4qpCzl3u03KkNeU2gnJY2/yJF4OooO890gRE/Ani61MhdcSW6gccjbhVVSWsqEhE\nIuqIIXgzdkus1MphM+GwmKivdqSc5+byBBlwRdYXtYVMJm4+f4CrfU4MJgvBUJjWrmH6hmKfy1pg\n4C92bqC+KmbBGArJ3LamlELravYda8XolTW/hpZuF//lgWu1v6eb081HRNvw7CQt0f2Xf/mXXK9j\nXjOe4G3dWM+5pn6tPCooKyyuLkoYCBklXuCjP8Ro/W2UVBFbqh9wdIOswGTAHwyjKCpWs54FJSNd\nW3FlShJwxw21E27QBeQwep2ETqfDZNRRU24fI24DQy5cHhmj2crFlgF+9vYFTagBCkx6SgvNXLnq\nor7KMVIG5qOixI7NVsLCmgr0er32uaLfQbKT4US38xHRNjw7SUt0a2pqeO211zh27BihUIhbb72V\nxx9/PNdrmzeMJ3g6nYTNaqRipIVWBfqdfmzW8f0A4lMa9QvsXGgZpLnLyZLqIu66sW7c1zV3OXF5\nglrpUXOXU3ssukHm8gTRSRIFBXosZgPRtOfm9bVp76BHo3dFUQmFVaxGifJiC3fcUKtF1oqi0NUz\nQBgjCgb2/L6RP3zcrh3DajbgsBkxGXR4/CEOnrxCSA5y14ZaamsrEsrAcjnKaKYv5XM5G0+QO9IS\n3eeff57W1lYefvhhVFXljTfeoL29nW9961spX6eqKs8++yyNjY2YTCaee+456urG/vC//e1vU1xc\nzDPPPDO5TzHLSRWxxP+whj1Bhj1B3L7guJeT8VHcu8dbae12oZMkWrtdHDw5/rBEry+U0Nnk9cU2\nqLZurOfQqQ4CsnMk/2rCYU1MIWSyQXeuqZ/eIR/WAgM6nZRgwFNVbOLaJSWYLFZa2od4Ze95eod8\n2uvvvrGOyjILR0534vbJuDwBwkEfR88oVJQWUl2Z6BaW61FGM4mYVjE7SUt0jxw5wptvvolOFykP\nuvPOO3nggQcmfN3+/fsJBoPs2bOH06dPs3v3bl5++eWE5+zZs4dPP/2Um2++eRLLnxukiljif1it\nXS46e91ayVhzV+rLyWQVDdFjjhZJq8VIkd00xisBIsJ1xw21uH3BkTrcIA6raVIRXzR6j6YmVODS\nlSFONvYghQPYbAW4/Qr9rk5+P7JJB5HNsrIiM7ULbGxaV4NBr2P/8cvYTSplZSUAHDrVkbNINB8v\n5UW52OwkLdENh8OEQiGtNz0cDqPX6yd4FZw8eZLNmzcDsH79es6ePZvw+KlTpzhz5gw7d+6kqakp\n07XPGVJFLPE/rH947WMutgwC0WhUHnuwOJJVNIzXcjueV0KUu26s41xTP6c/6yUQDDPsTa99N57o\nJXpb1zAuTxCH1ciwV8bl9hHw+9EbzSg6hV8fbsITF2nbLAZK7GZ0OomOXjeqqrBpTSmOAj2/PxFJ\nO7jSuAqIX0Om4iwu5QXZIi3RfeCBB3jyySfZvn07AG+99RY7duyY8HVutxuHI7arbDAYUBQFnU5H\nb28vL730Ei+//DJvv/32JJc/N0g3YrFaDKOi0dT/fMkqGiB5lDbRperBk1do7XYhhxSCssKwN0hh\nXB1uOmKmVUGM3HbYTBQYVXxehZDJgqKCyxM7kRTZTdy4cgGftQ9p91UWGiiy6igqrKC2qhy9wcjh\nhg6G3AGtqiLZ3LTRa4DM0gTiUl6QLSYUXafTyaOPPsrq1as5duwYx48f58knn+SLX/zihAe32+14\nPLHWzKjgAvzud79jaGiIr33ta/T29hIIBFi6dGnK47744osph2XOBjKJtEY/d3FVIReaB7THl1QX\npXyvZBUNAIsqC3n3eGvSaono+x040ZZQOtXWNYxKbDJE1N8gk464qBBKRGqHy+w6KksX0O8K4R3y\na3W3ABvXVLJz20osZgNHz3TS2j3EoooCHrp7LUajQft80QYLnSThdAe1qRLjRaKTTROMPjEqipr0\nOxQIJiKl6J4/f56vf/3r/O3f/i1btmxhy5YtvPDCC/z93/89q1atYtWqVSkPvmHDBg4ePMi9995L\nQ0MDK1as0B574okneOKJJwD41a9+RXNz84RCvmvXLnbt2pVwX3t7O1u3bk35unxBUVR+9PoprQTs\n3OU+YPxIa7SQ3bdpCffftiTjaGt0lBapr23Rjhtdw2hv1vh2WJcnkp6IRss15XbN+Dx67HiSiZlm\n66go+H0eKssqCISgJ05wbRYjX/nCSm5cFbFgVFWVm1eVsH1TXVJj8XTnpo1eQ/ztyZCPG2uC2UFK\n0f3BD37A3//933PLLbdo9z3zzDNs3LiRv/u7v+OVV15JefBt27Zx5MgRdu7cCUQMcvbu3YvP5+OR\nRx6Z+upnGQdOtPHRxav4A2GtISBVpDX6sdarrjGuXekwurvsOz/+IObfENcJFvNmVfH4ZD440zlS\nqWCM/LGZqB+JuEdHdqnELL4LrabUjIpCWUkFJy72celKLHVw3bJyvnpvzIIx5gZWMa4bWLpz06Jk\nK02QjxtrgtlBStF1uVwJghtl8+bN/PCHP5zw4JIk8d3vfjfhviVLlox5Xj4a6uSiLrOl26VdnkOk\nQSBVpJWLzZsDJ9ro7PXgD4TxjJRcmYx6/t9ffULrVRdyKLK2SOCpMODy4/IEMBr0KSsWUolZNCr0\n+7yoQF11GfuOthIIRt6rwKzn0a0r2LSuGkmStCaHBWWFWC0FKT9PpiKarR1/sbEmmCwpRTcUCiXk\nYaMoioIsp945n+3k4vJxcVUh5+I8YW9cuSDlgMiogDR3ufD6ZJq7nGlNWYiS7MTR0u3CYTPhC4Tw\n+hXCikpTh5P2Hje+EfMYRY3kXSUgrKgE1UgjQ2efZ9yKhVRidrl9AJ9nGEUyMeiW6ejv1h5btaiE\nJ+9fQ2lRRFzTiW7Tfd90vg+dTprUCVZsrAkmS0rR3bhxIy+99BLf/OY3E+5/+eWXufbaa3O6sJkm\nF5ePY3OrMaOYZMIeFZR4K8LoRlo6QpPsxBGN0HQ6CYNeh04HihJty9VhNEAgGEZRQR6xSzToJPQ6\nnbZ5Fv9dTCRYbo8Xh1nCHzYyMOzX6m5NRh1funMZd2xYiE6SUBQFNRygqqyQgoKYZ3M2Ge9EOpkT\nrKiRFUyWlKL7zDPP8PWvf53f/va3rFu3DlVVOX/+PKWlpfzTP/3TdK1xRsjF5ePoH+qPf30m4fGW\nbte40eno56VDstbe//pgJCd86FQHnX1uVFXF5ZE1bweDXoefcMJxohGn2ajH5QnS1u3SIu7xBiOq\nqkpv/xBXhwI0dnjpdwW04y2tLeKp7WuoLI1sjAUDforsJkqLK0jFVFM+432PucrP5mPrsGDmSSm6\ndrudn//85xw7dowLFy6g0+n46le/yk033TRd65sxpuPyMZmwp4pO45+XDslae0eP6mnucuL1hbAW\nGPD6QzR1DuEPhjRTcIjUy1YUW+gb8uEPhnG5A9oa4wcjenwye969SCgUZM2iQs61efj57y4yPDKW\nx6CPWDBuuzniKxEOhZBUmYstTtr7fRMK01RTPuN9j7nKz4oKB0EyJqzTlSSJTZs2sWnTpulYT94w\nHZePyYT9//ttYtdeMivC0SeA8SKqiVp7k32+3x9r5Sd7zyKHIvndApOe664pp+3qMMGRxgi3LxRr\njBhxGAsrkfzw4JCLN/9wiXesFpo6YhFj3QI7T+9YS+0COwBywE9pkYXj5528c6KdYU+Q9z9u51xT\nP9987IakwjvV8e3NXU4WVRVitRhZUj12WGa2T7CiwkGQjLQ60gS5IZnwJYu6khmKxwvEeJf4E7X2\nJiciotE9LINeon/ElzdaeeEPRgS5rWuY0sICCm1GBlxeQgE/BouV7iEZdTAS3eokiXs3LeL+25dg\n0OsIyTJGXZi66hL0ej0t3U1am3JYUTh8OjJiJyq88Z/X45VRVBX3iL+wxyunHPETJT7iBMaUleXq\nBCsqHATJEKKbZ0wUdSW7ZI2/xPcHwhxu6OCeWxdNKoJrvTqMXq/DZIh4a+j1OqSR4pXoqHazSR/x\nX/AFGfYFWVFrp7tAorVXr22+QaTr7L9/eT2LR8Q+6PdRVmyl0GHTnrO4qpD3P27XImWAjy5e1War\nxX9eVVUxG/X0y37MRr3WOTeRYM5UxCkqHATJEKKbJtO1KTJR1JVUQOJMxAHt9mQiuMVVhRyLqyWO\njvWO98tt7nJxobkfRQkT8HvxWEtw+UnIA9utRm5YWcHi6kJCsozJoLKotmxM+WHU6jEa4eokSRPU\n0Z9XkiQCcljzF072fYz3mWYi4hQVDoJkCNFNk5naFBkt9osqHWMEZFGlg85ej5a73by+NqNjxp9A\n7rqxjrOX+/jkch8Wk4EH77iGz9+8KOEE8+7xVk5fbEcOhXEH9HR8GluPXi9RVlhAgUlPfaUDORCJ\nbm1W65j3hMj3arUYuaa2iI5ed2Sg5chkjOjnSzXPLB0BFRGnIJ8Qopsm03mJOjqP2TIyxeHYmS5q\nyu0jm0EGllQXaQIyenJDKmGN5oCjVQXnmvr45mMb0OkkDp68QtvVYYpHWnEjI3VighsOh1lVZ2Xt\nNZUcaujC4481yXxufQ0LF9joGfRRVWzmc9eWU7WgBJ1Op9UaqyOf41BDO2WFFlq6XZo72MbVVVgt\nxoRGkOi0i6nMLxMRpyCfEKKbJtN5iRofVUc9EgCc7iAB2YnbFxyzGTRaVOIbKkZH5ocbOhhw+bUc\n6gdnuli7NJIbjc5Diw7DPNTQrgndxearlNhMuGUd73zYrpnUFNnNPHn/atYuLQNADvioKLFpBjWK\nonLoVAe9Qz4URSUoR1zKmjsjbdHRycH9Tj/9Tj+dfW4cVuO4jSBCQAWzGSG6aTKdl6jxUbTZqNc6\nwaK3o89JFc2mjMwlVesMixKNLNu6hunu9+ANhEGFiy2D/OOej7jUepWQYmTQLRMMKdrrbl5bxWPb\nVmArMBIKyZh0CvU1ibnbAyfa6Oxz4w+ECYUVJCn2OaKfLTqKKCDHzIDi/XrjyUV+XTQyCKYLIbpp\nMp2XqPFRtcNmYl1VIf0uH529Hq2CYHQjxbmmfs419WuX531OX2Q6g82ERGJk/rnrarjYMkggGEaS\nwFZgwOsLaZf//qCiibLH4+VIwxVsNitD7lhXmd1i5CtfWMWGVQuASGVCeYkVhz1WmRAVsr1HmlBV\nlUK7Cbc30SJyXXU5NquRtm4Xw54geEnq1xtPLvLropFBMF0I0c0jJiri3/9hG4cbOlBROXu5j+Yu\nJx5fCIfNxLAnqPn0Ot1BCm1GJEnCYTEl+N4CSJKOQpuJYSmSj12/vCKhcUJVVRQlTFgOYDCaCaNn\naKQkDaCu0s6uR2+g0GYiHAqhU2Uarwyz/+PuhCgxKmRur4zLI1NkN1FTYWdxVWHCGHmdTtLSIdGT\nSk2FjTuuX8hdN9aNMQvPRX5dNDIIpgshunnEREX80SkJLk+Qiy2DmIw6gnLkUj9auRCNEIMhhYpi\nC/XVjjERW+tVF4U2k5ZLtY1YNl5ojsxTk4ORiNZoHsnJjkS9Br3EzWuqWFJTyO+ONlNZZOD+26/h\nxEUn7xxvAxKjxGh+WFXViLGOqnL/psVjqiEgefomXozjj52L/LpoZBBMF0J084iJoq3o7aiw6iSJ\nIrsJu9XIuupymruc+AZDhMIKiqJDVdUx4qEoKh6vHDMxt8U8ckOhEL967xzFjgI8AVUTW4g0RGy/\nbTE2i5H3TrSAItNaYKWirDhhnSoRM51Dpzrod/oYHPYjj+SAA8Ewh093IEnSmJxpsnFB40W1E7VF\nTwZRViaYLoTo5hHaOBsiG0vxbl46naQ9Hm3HNZv02rSErRvr+dHrp+h3+rEWGJAkWBxXUhblwIk2\nWrqcWlRcZtDR3OXk13+4wHXLyllaX8UHZ7oSNtp0OgmrWc+QO0BPvxOvL4AiGZHVEM1dTpZUF2lR\n4rAnSM+AV4vAFVXFoNdh0EsEZYXmThdub3JP3nTNfnKRXxdlZYLpQohuHhEVyEOnOrTd/HjT8NGm\n5vG1ujqdhM1qTOjWslmNYy7jW7pd2mgblyfIle4hnENO3EGJf3+vBXfcWHedFB3+KBGQQ1QX6+no\nN+IN6oCw5lwWv66Gxh4GR3xz9ToJg17CZIxVMsRXX4xmvKhWVdVIx5oqoaqk5bcQTzYqE0R1gyBb\nCOXnRyAAACAASURBVNHNI6LRVku3C7cvtnEVFaNk0VgopPCj10/RPBK9qmrMrCZVasFk0DHsHsZs\nNOIK6HH7QkAsbXH9inKaOobwBcKEQwHWL6/k0S+s519+c5Yiuwl/MISqQlOnU0sFHDjRxvGzkSg5\nWgNcaDNx3bKKhPrb6NrGdtslRrWLKiMVGodPd2iVG/uONiNJmVUWZKMyQVQ3CLKFEN08JJNNnZf+\no4E/nu4EIlUH1ywsYnl9ybhmOS3dLvSEGB4OsKCihL5BH96RMT0ARoOOG1ZWsKKuhOZOJ5ISoNBW\nwE3XRiK7eOcypzuIxydrYtTS7cJhNaICbm8Qm8XIY59fgSTpaOl2UVZUkBCdj512vDhh2nF0anHv\nkG/C2t14Rot5c9fUKxNEdYMgWwjRzUPuurGOc039Wr402gqbjOaRFmGIGcKMNzG4qXOIgNeDpcBA\nUNHT3uPRusoACm1GimwmVtaX0No9hM2oUFpVhiRJtF6NiExUyPceaQJizmNRgTvf1E+RzUTRSK4Z\nGLciY+y04+GEtUcna0Rz2Klqd+MZLeaLRj1/MpUJorpBkC2E6OYhB09eobXbhU6SaO12cfDklXEv\nZZdUF9HR40m4nYzIrDIVVWeiz+knIMe6yopsJm5fX4M/GKK2ws5NK0uxGKCz16c9Jyoy8SmOeDGN\nRtaqGmkzjnS9qbR0DyesI15oJxKy6OPRlERNuX1MzXEyRou51WJIiKAnU5kgqhsE2UKI7jSS7mZM\nJpey//3h9XT0DtPSNYy1wMDKRSUJG02KotDdO4is6KheUIbT05kguDoJKsusPHjHNSjhMDpkqipK\nWFxbToGlYFyRGa+uNlpLDLDvaEvKKHMiIYtt0I2MFIpr4Ej1nSZzJptq/lVUNwiyhRDdaSTdzZhM\nLmX/8PEVOno9yCEFlyfIfxz4FINex7ZbFuH2eOkb9IDexK8PNXHgwzbiLRf0egmdFPkTDPgptpso\nKS7XHk8lMuOJUKooc1FlJE8bP3I+nfdInIac+L0l+05FVCrIZ4ToTiPJIthkkVoy0RgvSj58ugOv\nP4SiqqCC2yfT1DlER7edQ6e6+LRjmEttQzg9sWqIFfXF9A56kcMqRr3E9UsdXGgZpKPfn3Y5lKKo\nCW3JZYUF2KxGvL4Q6kiR77BX5kq3myXVRfyXB64dEcgWILMKgITmC1XlUEN7yk0yEZUK8hkhutNI\nutN/t92yKEE0FEXlR6+f0rwVzsVFdP1DfhRV1UrF5KAfhxkOf9LL3qNtuDyxutsSh5kn7l/NqkWl\nHD3TSVv3EIsWWCh0FPK7Yy1AzDhntDfCaA6ciHjyRmebAZQWFkQ63KqL6Hf5GPbKDPsitcbRXG98\nJ9zok9B4J5b4723YKzPslXF75axtkgkE04kQ3Wkk3em/ozlwoo2PLl6NDIUcKZ2Ktsr6gyH0Oomg\nHEJSgmxcV8c19Qv4h9dP4fbGBLeqzMr/9cRNWAsiedGbV5WxfVMdNptVqxIANOOcimJLymi0pdul\nVRNEu9cCcphCIk0ZNqsx4f0PN3Ro9o7RzzBaIMcbsBn/vbV1DTMcV8OcjU0ygWA6EaI7jaQ7/Xds\nnalTK5uCiLgtriqkpTtiXCMH/QR0UF9TTc2CIv7uZye0eWU6nUSpw8y2m+uxFhhRFAXCAeqqS9Hr\n9WPWEDXOiTLeJl78LLVoM0b0dZEa28iEiOjxbBajVoUQkMPUVNjGpE1OXexhaDiAJEkJAzbjv7d3\nj7fy1pEmXCMm64tGOuJEd5hgtiBEd4ZJFv1GUw6qqnLsTNdIp5lKoc1IMKRw06pKtm6s550PLnPy\njBubtQDVr9DWPUxj65B27PpKO/VVDpbUFHHL2moOfdRC98Aw1y6robaqPOka4scDQfLLdUWJlINV\nl9swG/WUFhZQVhTJ6UYbH/Z/2JrwmrLCAjw+WXM2u+P6hWNcxPqckVSJPqriowduEhtkGU21pDsR\nWCDIF4TozjDJot+Wbhcq0DPow+sPYTLqcViNmsfs1o31DDpdrFxUzF23LOfdD9u0EewAJoOOr963\nmpvXVKKqcPRMJ//Pzz9gcFimpNhBW0+i4Uz8GpLlVUdz4EQb+462ABH3sS0bFiaxjxzWBBYi9pHJ\n0gDxkbTDamTYq2Iy6scdsJnMYyLd3LBAkA8I0c1DFlcVcuxMl1aVIIfCgJH6qkI2r6+ivbsPSW/G\nE4SPLvZydSDWxFBg0rNhVQW3rK0C4I+n2vjDR00MByQCQQmDJzjlMTjp1BGPrZUtnLA8zmEzse6a\n8oRNvPG+n1QldcInQZDPCNHNQ7ZurOdQQzvD3iBySEGvk/AHQxRbVLr73RiMBRw7283r+xu1PK8k\nQYndjM1iYGlNMUdOd9Da1U/vgJcCiw1ZlQkEg1kZg5NOHfF4tbKjhX30tN90otKJ6nCFT4IgnxGi\nm4fodBJ3XL8wYu/olfF4vayssRPGxOsHLtPSNUx7j1t7/rKFRaxdWkZj2yCocKltgLbOXswFFrwB\nFVDSaqUdT6zixwh5fSEsBYak44RGf4Zkgp1JFDpe5D1RHa7wSRDkM0J085StG+sJh8Ocb+qiuqwG\nncHI7462MODyx43P0fHFLddw98Y6jn7Sidcno4RlWjs9OOwODAYjDgM4LCbqqx0TRpLjiVVUKF2e\nIE53kCK7STNPz/SyPZModLJpAtGRJshnciq6qqry7LPP0tjYiMlk4rnnnqOuLuaY9c477/DjH/8Y\nnU7Hjh07ePLJJ3O5nFnFkGuYVfWFrFu+AI9P5vlXT9Dn9GuPO6xGnvnKjVSXR6bvtvcMEwr6MJqM\nOOwOLY0gAXfcUJtUrNK51I/ehtiYoOh/M7VYTOaLkCoKnWyaQHSkCfKZnIru/v37CQaD7Nmzh9On\nT7N7925efvllIGLE8sILL/DGG29gsVi4//77efDBBykuLs7lkvIer89P38AwksGM0VzAmct9/Nu+\nCwnVCUU2Ezs+t0QT3HAoxMJSA21dViSdDoMR1o2auJuMAyfa2PvHy/QO+QnIYd79sJW//T8/h8Gg\nS3je4qpCzl3uQ1FUQmGFcFjC6QnS1jWcME4o2fFHR6qZ2FaKNIFgLpJT0T158iSbN28GYP369Zw9\nG+u+0ul07Nu3D51OR39/P6qqYjSOdZGaLyiKQk/fEH4ZjCYL/kCIX77XqBmUAxTZTayoK2bV4lI2\nrasBQA4GKHGY+PI96ykpyaxMqqXbRe+QXxvR82nbEC/9RwN/8acbEp531411vPthK4FgGKNBRyik\nMOwJ0iw76exzE1ZU9DppzHsni1Qzsa1MdzNOlIQJZhM5FV23243D4Yi9mcGAoijodJFISqfT8e67\n7/Ld736Xu+66C6vVmsvlZMR0/rBdwx76h7yYCiwYTfBp2yA/fes8/SPpBIlILvOBzUsxjkShqqoS\nCniprijGbI7Uw050ST12PE4sDQGRCoh4U/QoB09eobPPgySNzChTVZRwxO/BHwjzm0OXMZsi3Wjx\nuddkkWomKYNsbMaNhxBuwUyRU9G12+14PDGD7XjBjbJt2za2bdvGX//1X/Pmm2/y0EMPjXu8F198\nkZdeeiln641nOmo9w+EwV3sHkRU9pgILQTnMm+9f5r2PrmjPqSix8PT2NVyzsBhFUTlyuoO27iHq\nF1h4+P9v78yjorzPPf59Z99YBBREFHEBtwRFExWC1iAuxATXRBsxy23Sm57jPU30jzSnptoe6zFt\nT9pKkyY5TXLNza3nZtOGVGNEskg0GiIGXGNkkVVUYBiYfX73j+F9mX2GZWZgfD5/hXfe5eGN8+V5\nn/d5vr+8WRCLRT6u4Pt3WrkwDZPHxeBSXbuwjycT9NoWrdMYss1hHTYA0Jssgug6uoClJkZj5cKJ\nqGvtcpq2G2zJYChawqiXlwgXQRXdrKwslJWVYcWKFaisrER6errwmU6nwzPPPIN//OMfkMlkUCqV\n4DjfmcbWrVuxdetWp20NDQ3Iy8sb8tiHutfTMbNKTYzCnCkx6DZYIZUrIBEDNU2deLvkAlpv9wjH\nZEyIxX+uzYRSYf/fdLKqCaXf/AipRITGNj1GxXh/NA/kd6pr1SJv3ng03NAJHgnTJ45yO25iUrTg\nbGY0WzE2Phq3OvUwmq1gDFDKJNB2m3onypxdwAqy05yW4BlMZwF/D+tbtPbrqWXgED7hJoiBEFTR\nzc/PR3l5OTZu3AgA2LNnD0pKSqDX67FhwwY89NBD2Lx5M6RSKTIyMlBYWBjMcPrFUL/E4TMrs8mA\nb6ssaO+agvtmp8BiteGT8hocOVkruHWJOCA+RgG90YLvLrciJ3OcfembxhuQy2QQS+z/2/orFN4e\n9xPj+so6da32l2O+/H2XzB2Psorr+LKyAU1t3ZBJxTCarYhSyxClkgsuYAz25eRdjxvoI72jJwVg\nb4ULZPmeQO8FQYSCoIoux3HYtWuX07a0tDThvzds2IANGzYEM4QBM9S9nlev34S+WweIpZDIlGi6\n2Y2GG114u+SC06CDRGwXIX4J88Y2HcxmE5RSYHbGeDTfrhX27a9QeDPXcRSfHr3Fr78vv622RSvY\nN0apZQDjAI6hqzcL7eo2oavbBJ3ehAu9Pr11vX8oBvJIz/+R4TgO0Wp77/FASwLUy0uECxqO8MJQ\n9XrabDa03epAjFoGscxu0sIYQ7vWiD1vnxHEVSoRIUYtg40xdPWYYbLYjcEToyVIiFFAo1Zhafwo\ncBznVSgcV3MAx5CbOQ5L700VsknX38nuFgZolDJhf18LSbriZC7eK7D85FuUUmYvN/SuWMEYw7mr\nbTBbbHYTc5V0SDL1gUK9vES4INENIh2dWnR0mSCVK5CbNRESqQw/XG/H1YZOnL3SJuyXlTEGk1Oi\n8U11i7CG2ehYBealx2Jt3gzIZHYh8ycUjqs5AEBTm73jwNsxdrewvhV9OY5D2thoXKy5BQa7kNa3\naL324jqZi7do0dVtcspCJyZFC1lzV48ZRpMVJrPNycS8P10ElJ0SkQCJbhDQG4xou60FRDJI5Qr7\nRg4wmW2ouGTP9gBApZBg07IMzJtut2BUyCRobNMhKVaOpfeMw+gE55davgTKZmP48mwjOnRG2GwM\nYpEIRrPVZzbp6WXSfzw4C4wBB7+4iq4eExpvMHzytbMVJI+rubinJdn589Y3d6Grx4SuHrvpTnKC\nxsk7GPBecnD9vf/jwVkBreFGLWHEcIRE1wMD/cK6Djjw3OrUY/+/L+KyQ2vWzEnxKFo5HbFRcgD2\nFqyczHEwG/UYEx8FlVLhdn5fAlV6ph5NN3Ww2VhvycIGuVTm8xHc0+M6v4y6tscEmw3QdpuFkoYv\n/GWh8TEKdOlNfSbmc8Z5HaDoz+/tDWoJI4YrJLoe8PaF9SXGHZ1atHcZIZPbBxwAex3z6++b8V7p\nFRhM9kdquVSMORmjoZSLcf7aTSy8KxkiEQer1QoxzJiQHO/Wy8zjKkg1zZ1Cp0F9ixYapQSMyaHT\nm6FWSvHI0nSfj+DehNK1L5dfHsgR1xY4gENdq/N9ccx+GWOYODbGbTSZF37WW8t2HS222ex9v8KC\nlgHWgqkljBiukOh6wNsX1pMYL5o9FjdudYKJZJDJ+7LbTp0R/3P4Eqp+vClsS4xTQq2U4kp9O9QK\nCX5ssE9/3Ts9AVEqCeJH9S2h4wnHzJQxhqvXO/Dl2UanNc1iNHLEaOReHcACyeJ5rwXALrj88kCO\nx3/xXQOuNXVCxHGwMQalXIJotczpj5TjfeQ4+4oPjj27QJ/w2/2D+1YP5s9ReqYeTW3dPhe09Hev\nAj2GIEIBia4HvH1hHUWEMYbqq02YmqJxKiUAwLcXW/HPTy+h22ABYO9MyJySgNbb3bjRroexN+vV\nKKWoa7qJVTmpHssJrriuZea4QnCMRobkBI2ThaMnAnns9pQB88LMH9/YpoPBZIVYZB8NtliZUDrg\n71MgwsfXhR3bzxzPUduitbejAU614P7cK3rpRgwnSHQ94O0Ly4uI2WSE2WxG8pixkMrkwnE6vRkH\njl7CtxdvCNuiVFIsmZuCrh4zbrT3QCYRwWiywmAyQykx4+6pkwISXMD5xdUbh6rcSgDeLBwd8ffY\n7S8Tdt2fuYwEA33i6kv43H0gPAs0f89da8H+oJYwYrhCousBb1/YxXOScbujA/VtBqQmxQpOXwBQ\ndfUm3jl8EdrevlQRB0SpZIhSS3HiXBNkUjFMZivUCilsZhOSEpRYttB3zdUXgZQAPAnnYNcX44/X\nqGQwWwyQSsTQKCW4e8pot3qtL+Fzvc6KBalI7V1u3tHykTJWItIg0XXBm2Ddau9EV7cZ92VNdtpf\nb7TgvdIr+Pr7ZmHbuNEaJI9WoeVWD253GqA3WiCViKBSSiEXW1CwbBoK7ps6qBamvHsmgDGGr841\nAozD9IlxOHa6HnWtfcuocxznJpyDXV+M359fukelkKDHYIFKKelXp0dNcye03SbB8+Grc03o1pvd\nLB8pYyUiDRJdF1wzMIPBgMwpcYKpuM3GcLKqCY1tOohFHCouteG2tteCkQOWL0jFAzmT8E11My5c\nuy3UdU0mM+QiM6bdPRmrFqV7vX6g2Fu7OKEO+n+lVwAA0WqZ8KbfscYaaK+rv0zYVQQdOxQu1twG\nEFhrVo/eIgxxGIx24eWdyviYCSISIdF1gf+yM5sNBoMel653IGvGOOHzk1VNKKu4jo4uk2D+DQCJ\ncSo89sAMTBrXZ41osdqHIKwWExizgZNGY1Ly0K2M4ShMjr648l4DGp6JSdE+ywaOgjx+TBQmJEah\ntkXrd2UH13YujVLiZOsIMCdbR0eRVymliNHIhEw3LkaBbof7Sd0GRKRCouvCxKRoVF64DouNQSJV\nIDXJWSQv1NxCy60eWKxM2LZkbgrW/GQKZA6tW003dZCIReju7gYnkkAqVSA5QR1wTdJTmQOA15dP\nMqkYBqNFEMB50xKdaqz/+Lja6fyO2S/vFhalluFUlb1MEq2W+V3ZwbWdS2+0QKe3QNdjdjqPp9ow\nP27Ms2j2OJ++EgQRKZDoOmAwGJGeokJu1kQ039Zj3GhN37I4Fhs+Kb+G7y61Cf4IYhGH++elYN39\n7uWCsXFKWC16yBUKACKoFBJMGR8bcB3X0cbwVFUzvjzbiPgYhVOtduXCiSjITrO3W3WbUPXjTcEo\nZ0ZaHJYtmCicz1PZgL9GW4ce3Xq7Dy4AyKR9wxn+xogd27lkErHTz677OuKrLY2HRnmJSIREF/ae\n2xs326E32cd3c7Ocs6yG1i68VXIBjW19FoxjE1RYNHscFme5P36bTUbkzR2LltsGfHupVZik8rQq\ngzd4kerqMaNTZ4LR3Ima5k6nWm1da5cwbPDGoSrEaPra1+pand3CPIkcn/3yo8PMbAXH9dlLAr4f\n813buVKTogXrRrlUDMaY8LKsu8cMm415dTzzBI3yEpHIHS+6Xbpu3O7sgViqgFTmnEVZbTZ8eqoO\nn5yoESwYo9UybF45HXdP8Tw9Zjb2YEx8NFRKBf7rkVinUVnG7OIYSNbGCxqfMfJTZ661Wtf9PX0G\neBY5/hiOs2ftUokIGqUUyaPVSB0b4/cx35u5OV/TPX/tJiou34BcKkZtixalZ+oHtdIFvVwjIoE7\nVnQd1yeTuEyUAUDLrW68XXIBtc19X/S508Zg0/Jp0CjdVy22WiyQcBZMSE5wWHjTswtXIFkbv1Q5\n7xoWpZIBnPvS6vwjeE2zFqlJ0VApJUgbGxNQTZS/RqfOBMbsdpIikQiL54wPSBw9Cbnjz3WtWoyO\n7bu34fTPJYjhwh0puo7mNBKx82c2xlD27XUc/OJHwYJRrZBg0/JpmDc90eP5TEYDRkXJEBvj3Tuh\nv1lbWcV1e/0W9i4Ik9mK1YsnO5mSA+6Wit48F7xdo65Fi2iNDFw3EK2RY9HslAG/xPK02vBgRJMG\nI4hI5I4SXb3BiJu3u8BEUidzGp6bHXrs//cFXKnvELbdNTkem1dOd6qX8jDGYDMbkDw6RlgG3Rv9\nzdpqW7To6jFD221/uaXtsRuEu5YkfIl5oCO9HOxlkwlJ0YNaytx1KGPlwjThRd9ARJMGI4hI5I4Q\nXWefW3efA8YYyr9vwnulPwhmNAqZGBvy0rFgVhJOVTejsU0ndDOIRBwsFjMUEoYxyQl+VzEG+p+1\nTUyKxhffNQg/83VRT/t5E/NAR3o9HRsojtdwHcqoa9W6uYoRxJ1OxItue4cWHTpnn1tH7BaMF1H1\nY5/4ZKSOwpaC6YiPUaL8XKMgflev2zPge6fFIy5GiegodcBx9Ddry7tnAs5fu9XX/aD2bEjuS8z9\nZcGMMWhUUjAbkBCrRE2z96V5vOF4Tk9DGYOBWsaISCRiRddgMKLNRymBMWa3YDx6GT0OFoxrfzIF\ni+emQNSbvTq2iTHGUNfYhjWLJ0EqdX+ZNpSIRBz+65E5HgckAhUjf1nw4ZO1AABttwnNt7oRrZYJ\nAwuB/oFwvEaUWub2om8wUMsYEYlEnOj29dwyj6UEAND1mPC/Ry/ju0t9FoxpydF4fNVMJMapnPYd\nN1qDq9c7YLWawdmsyMyYMuSC601EvWXHgYpRoFmwt0EG17gcW8L48wUy5DBQqGWMiEQiSnR99dzy\nnPuhDf9z+KIwfSURc3gwdxLyXboCeBbelQyLyYhbWgOmpSUG5Q16fzO6QMXIm2jbbAzdvf6+dgNy\nGyRiERhj4DhOyIhd4zp/7ZYw/OAY50CzT38ZO7WMEZFIxIhua1s7rCK1x55bANAbLPi/0is4WdVn\nwZgyRoPHV81Aypgoj8cwxmCz6LEhf3pQywn9zeh4L92uHrMw7WWx2NyyUG8ZJy90jMFuy6iQQCmX\nIEotc2oZ87Qmm4hz734YKP7+2FDLGBGJRIzoQiyHxIswXqq9jf/+9wW0a40AABHHYcXCVBTkpEEi\n9rwIpNlsglIKjEseHVB3wmDwldF5ygZdX7LVtmhR/F6lxyzUE7UtWnCwZ8ISsQgiEeexZcw1rrSx\nMcI1XOP0RH9XoXD9mVrGiEgkckTXA0aTFR99fhWfO7ReJcap8PiqGUhL9u6DYDLqkRCrQpQm8O6E\nweAro/OWDapVUqdpr/5kobyY8sv98CPGriLqa8w3kMwzFC1rBDHSiFjR/bGhA29/cgFt7Xph2/3z\nxmP14slOFoyO2Gw2wGpESmJs0LsT+q45sGxwMFmo2+oPSinSxrqLqKdMM++eCUK8pWfqfZYxAl2F\ngsoHxJ1ExImu2WLFx1/V4LPTdWC9HozxMQpsKZiBjNRR3o8zmaBRiJCQODpEkdoZaDY4mCx0MI/t\n/XnpNxATHoKIdCJKdOtbuvD2J+fR1NYtbLsvMxnr758Khdz7r2o26jEmTgOVyvNLuGAy0GzQUbBC\nOUTQn5d+lMkShDsRI7rHv72OExe7Yeu1YIzR2C0Y75rs3YTGarVCDDMmJMcLzmChZiiywVANEfCt\nZvy4r7cpOZ6hzGRpOo2IFCJGdEvP1EOqigMA3DMjERvzM6D2YMHIYzYZEa2WIi7WuyiHAm/ZYH9E\nJlRDBKVn6lHba6RuNFtxVwizV5pOIyKFiBFdAFArpfjp8gzMnebZgpHH0WjcF4EI32AzsMFOnQGh\n6wKobdGC4zjB0EatkoYs26TpNCJSiBjRnZYah59vnI9otbsFI09fOSEhoHJCIMIXrAxsONZOw9ni\nRe1lRKQQVNFljGHnzp24fPkyZDIZdu/ejfHj+9YUKykpwf79+yGRSJCeno6dO3cO+FqbV07zKbgW\nswlRKkm/ygmBCF+wMrD+iEyougDC+WKMXsoRkUJQRffYsWMwmUw4cOAAzp07hz179uCVV14BABiN\nRvz1r39FSUkJZDIZtm3bhrKyMixZsmRA1/I1NWYy6JGYEOW3nOBKIMIXrAysPyIzkBLHQI7xJO6h\nesFF7WVEpBBU0a2oqEBubi4AIDMzE9XV1cJnMpkMBw4cgExmrw9aLBbI5d4z1YHADztMSI6DWOx5\nIMIXgQhfsDKw/ohMoCUOt1UeeseBB1MWGYryCnUmEHcSQRVdnU6HqKg+MxmJRAKbzQaRSASO4xAX\nZ+82eOedd6DX65GdnT1k1zabTVDJOIwZxLBDIMIXrgzMUajqm7vAYF92B/Be4uAFkjGGppv2XmaJ\nWASOA7482zggsRuK8gp1JhB3EkEVXY1Gg+7uvkEFXnB5GGN46aWXUFdXh+LiYr/n27dvX0D7mY0G\nxMcqQ+adEA4chUrbbQIAoavAW4mDF8SuHjPMFlvvsvJWiEUcmm7q+r1EOn+twZZXhrouTpkzMZwJ\nquhmZWWhrKwMK1asQGVlJdLT050+37FjBxQKhVDn9cfWrVuxdetWp20NDQ3Iy8sDYBdxq0mP5DGx\nQtkiUnEUpiiVFFG9LmG+Shy8QBrNdqHlOA42G4NUIkKUSjogsRuK8spQ18UpcyaGM0EV3fz8fJSX\nl2Pjxo0AgD179qCkpAR6vR4zZ87Ehx9+iLlz56KoqAgcx2HLli1YunTpgK5lsZgh5cwYNy74VozD\nAUeh4jgOi2an+BUWXhC/rGwQRqU7dSZEqWRO5uX9YSjKK0NdF6eeXmI4wzHG28KMTPhM99C/SjAt\nY2q4wwkZg3mE5o+tadaiR2+GUiGB3mCBSilB2tiYEf84/tk3dUKmCwAF2WmU6RLDhogZjtCoQ29W\nE04Gk2G6HusoUhdrbgMY2Y/j1NNLDGciRnRHOqF4+ePtGpH2OE49vcRwhkR3mBCKlz/erhGuEVvq\nMiDuREh0hwmhyDa9XSNcj+PUZUDciZDoDhNCkW16u0a4HscjraxBEIFAojtMCEW2OZhrBKMUQM5h\nxJ0Iie4wIRTZpr9r+BLWYJQCqMuAuBMh0SUEfAlrMEoB4VrnjSDCCYnuCCEUouRLWINdCqCXasSd\nAonuMCLUj/eu+BLWYJcC6KUacadAojuM8CSsefdMQOmZepSUX4Oux4wolRQc5z7QMBT4EtZgTtYM\nGAAADMxJREFU15zppRpxp0CiO4zwlO3xQqzrMaNT12fhGAxRCuckF71UI+4USHSHEZ6yPV6Io3q9\ncjUqKQqy0yJOlOilGnGnQKLrgXB96T1le6Vn6nHh2i1wsGe4vOAGM75wix69VCMiGRJdD4TrS+/p\n8d6bEAczvnCLHr1UIyIZEl0PDKcvvSchDnZ84f796aUaEcmQ6HpgoF/6YD2Wu543NTHKLb6hvHa4\nRY9eqhGRDImuBwb6pQ/WY7nreVcuTENBdlrQSg7hFj3ywyUiGRJdDwz0Sx+sx3LX89S1avFU4V1B\nuzaJHkEED5H/XYhAcX0MH6rH8kDOG6xrEwQxtFCmO4QE67E8kPOGuyRAEERgkOgOIcF6LA/kvFQS\nIIiRAZUXCIIgQgiJLkEQRAgh0SUIggghJLoEQRAhhESXIAgihJDoEgRBhBASXYIgiBBCoksQBBFC\nSHQJgiBCCIkuQRBECCHRJQiCCCEkugRBECEkqKLLGMNvfvMbbNy4EVu2bMH169fd9tHr9di0aRNq\namqCGQpBEMSwIKiie+zYMZhMJhw4cADbtm3Dnj17nD6vrq7G5s2bPYoxQRBEJBJU0a2oqEBubi4A\nIDMzE9XV1U6fm81mvPLKK5g0aVIwwyAIghg2BNVPV6fTISoqqu9iEglsNhtEIrvWz5kzB4C9DDFQ\nrFYrAKClpWUQkRIEQfSfpKQkSCT9k9Ggiq5Go0F3d7fws6PgDoR9+/ahuLjY42ePPvrogM9LEAQx\nEEpLS5GSktKvY4IqullZWSgrK8OKFStQWVmJ9PT0QZ1v69at2Lp1q9M2g8GAzMxMHD16FGKxeFDn\nDxd5eXkoLS0NdxgDZiTHP5JjByj+cJKXl4ekpKR+HxdU0c3Pz0d5eTk2btwIANizZw9KSkqg1+ux\nYcMGYT+O4wZ8DYVCAQBITR3ZS9X096/lcGMkxz+SYwco/nDS39ICEGTR5TgOu3btctqWlpbmtt/+\n/fuDGQZBEMSwgYYjCIIgQgiJLkEQRAgR79y5c2e4gxgK5s+fH+4QBgXFHz5GcuwAxR9OBhI7xwbT\nJEsQBEH0CyovEARBhBASXYIgiBBCoksQBBFCSHQJgiBCCIkuQRBECAnqRNpQwxjDzp07cfnyZchk\nMuzevRvjx4932kev1+PJJ5/E73//e4/Tb+HCX+wlJSXYv38/JBIJ0tPTMdw6+fzF/+mnn+KNN96A\nSCTCqlWrsGXLljBG604g/3YA4MUXX0RsbCyee+65METpGX+xv/3223j//fcRFxcHAPjtb3+LiRMn\nhilad/zF//3332Pv3r0AgISEBPzhD3+ATCYLV7hu+Ir/5s2bePbZZ8FxHBhjuHTpErZv345HHnnE\n5wlHDEePHmXPP/88Y4yxyspK9swzzzh9XlVVxdauXctycnLYtWvXwhGiV3zFbjAYWH5+PjMajYwx\nxp577jl2/PjxsMTpDV/xW61WtmzZMqbT6ZjVamXLly9n7e3t4QrVI/7+7TDG2D//+U/2yCOPsD/9\n6U+hDs8n/mLfvn07O3/+fDhCCwh/8RcWFrL6+nrGGGPvvfceq6mpCXWIPgnk3w5jjJ09e5Y99thj\nzGaz+TzfiCovjGRTdF+xy2QyHDhwQPjrbrFYIJfLwxKnN3zFLxKJcPjwYajVarS3t4MxBqlUGq5Q\nPeLv387Zs2dRVVUlmDMNJ/zFfv78ebz22mv46U9/itdffz0cIfrEV/w1NTWIjY3FW2+9haKiInR2\ndg6rLB3wf/95fve732HXrl1+DbxGlOh6M0XnmTNnDhITEwdlih4sfMXOcZzwaPjOO+9Ar9cjOzs7\nLHF6w9+9F4lE+Oyzz1BYWIh7770XKpUqHGF6xVf8bW1tKC4uxosvvjji/u0AwAMPPIBdu3Zh//79\nqKiowBdffBGOML3iK/729nZUVlaiqKgIb731Fr7++mt888034QrVI/7uPwAcP34c6enpAbkdjijR\nHWpT9FDiL3bGGPbu3YuTJ096NWoPJ4Hc+/z8fJw4cQImkwkHDx4MdYg+8RX/kSNH0NHRgaeeegqv\nv/46SkpKhlX8/u79Y489htjYWEgkEixevBgXLlwIR5he8RV/bGwsJkyYgLS0NEgkEuTm5nrNJMNF\nIP/2//Wvf+Hhhx8O6HwjQ7F6ycrKEv6KD4UpeijxF/uOHTuE8shweonA4yt+nU6HoqIimEwmAIBS\nqRyUR3Iw8BV/UVERPvjgA+zfvx9PP/00Vq1ahdWrV4crVDf83ftVq1ZBr9eDMYZTp05h5syZ4QrV\nI77iHz9+PHp6eoTFaSsqKjBlypSwxOmNQHSnurpaWH7MHyOqeyEUpujBwlfsM2fOxIcffoi5c+ei\nqKgIHMdhy5YtWLp0aZij7sPfvX/ooYewefNmSKVSZGRkoLCwMMwROxPov53hiL/Yn3vuORQVFUEu\nl2PhwoVYtGhRmCN2xl/8u3fvFrpF5syZg8WLF4czXDf8xX/79m2n8oM/yPCGIAgihIyo8gJBEMRI\nh0SXIAgihJDoEgRBhBASXYIgiBBCoksQBBFCSHQJgiBCCIkuEVKefPJJHDt2TPh57969mDNnDiwW\ni7AtNzcXjY2NqKiowPr167FmzRo88cQTaGpqwsmTJ7Fy5Uq38xYXFwtOVY68++67WL16NQoLC7Fm\nzRqnSbM1a9YEHHd1dTV27NgBwD5McebMmYCPPX78OPbt2wcA2LdvHyoqKgI+lohAhs6LhyD889pr\nr7GXXnpJ+LmwsJA98cQT7NSpU4wxxurq6tiyZcsYY4wtWbKEXblyhTHG2Pvvv89+8YtfMMYYu//+\n+91ctZYtW8auXr3qtO3cuXNs9erVgnvbrVu32JIlS9ilS5cG9Tts3ryZnT59OuTHEpEBZbpESFmw\nYIGQ6bW2tkIul2PFihX46quvAADffvstcnJyYDab8eyzz2Lq1KkAgIyMDDQ3NwOwZ6gff/yxcM6z\nZ88iNjYWkydPdrpWW1sbAKCnpwcAEBcXh7/85S+CudC0adMA2LPkF154AWvXrsWSJUtw8OBBPP/8\n81i5cqUwKXX69GkUFRU5nd9qtWLHjh3YuHEj8vPz8fTTT8NkMqGxsRErV67Eo48+iieffBIfffQR\nfvWrX+HgwYOorq7Gr3/9a1y5cgVLliwRznXmzBk89dRTQ3CHieEOiS4RUmbNmoWGhgaYTCaUl5cj\nJycH2dnZOHHiBAC7+OTk5EAqleLBBx8EYDcDKi4uFsai16xZg8OHDwvnPHjwINatW+d2rUWLFiE5\nORn33XcfioqKUFxcjNjYWIwePRqA87j4Dz/8gA8++AAvvfQSXnjhBTz99NMoKSnB+fPncfnyZbf9\nAbvY87acR48ehV6vF2b0a2tr8cc//hFvvvmmsP/q1asxa9Ys7N69G+np6UhJSREctT766COsXbt2\ncDeXGBGQ6BIhRSQSITMzE1VVVThx4gRycnKQkpICg8EArVaLyspKzJ8/X9jfbDZj27ZtsFqt+PnP\nfw4AGDduHNLS0nD69GmYzWZ8/vnneOCBB9yuJZVK8be//Q2HDx9GQUEBqqur8dBDD+H777932zc7\nOxscxyE5ORljxozBpEmTIBaLMWbMGGi1Wo+/y7x587Bp0ya8++672L17N+rr6wU3qvj4eIwdO9bj\ncax38n7dunU4dOgQDAYDTp06Nay8NojgQaJLhJyFCxfiu+++Q1VVleDMlJ2djdLSUowaNQoajQaA\nvSzws5/9DIwxvPrqqxCLxcI5+BLD559/joULF0KtVrtd5+DBgzh58iTGjx+PTZs24e9//zu2bNmC\nQ4cOue3raLrueB1fHD9+HNu3b4darca6deswb9484bNATOhXrFiB8vJyHDlyBIsXLx52xu9EcCDR\nJULO/PnzcejQIaSnpwu+pNnZ2XjzzTedzNu3b9+O1NRUvPzyy5BInA3xli9fjlOnTqGkpATr16/3\neB2bzYaXX34Z7e3tAOwrctTW1mLGjBkA4NWw3Nt2V77++msUFBRg9erViIuLw5kzZ2C1Wn2eQyKR\nCJ0aCoUCixYtwp///Od+dVIQI5sRZe1IRAZTp05FR0cHHn30UWHbggUL8Mtf/lJYFuXixYsoKyvD\nlClTBG/bxMREvPbaawAg2BiePn3aKcN0ZO3atejo6MCmTZuE7LWgoECo/3qzAHXc7mkfftvDDz+M\nbdu24ciRI5DJZJg9ezYaGhp8njs3Nxc7d+7E3r17MXv2bBQUFODs2bO4++67vdwtItIga0eCCBNW\nqxUvv/wyEhIS8Pjjj4c7HCJEUKZLEGFi/fr1iIuLw6uvvhruUIgQQpkuQRBECKEXaQRBECGERJcg\nCCKEkOgSBEGEEBJdgiCIEEKiSxAEEUJIdAmCIELI/wPA10fa7C3euwAAAABJRU5ErkJggg==\n", 732 | "text/plain": [ 733 | "" 734 | ] 735 | }, 736 | "metadata": {}, 737 | "output_type": "display_data" 738 | } 739 | ], 740 | "source": [ 741 | "df_market_cap = pd.read_csv('ftse_100_market_cap_12.csv')\n", 742 | "\n", 743 | "display(sns.lmplot(\"W2V Similarity\", \"Correlation\", data=df_market_cap))" 744 | ] 745 | }, 746 | { 747 | "cell_type": "markdown", 748 | "metadata": { 749 | "slideshow": { 750 | "slide_type": "fragment" 751 | } 752 | }, 753 | "source": [ 754 | "$$R^2 = 0.333$$" 755 | ] 756 | }, 757 | { 758 | "cell_type": "markdown", 759 | "metadata": { 760 | "slideshow": { 761 | "slide_type": "slide" 762 | } 763 | }, 764 | "source": [ 765 | "# Remarks\n", 766 | "\n", 767 | "- Wikipedia, an unconventional source of unstructured data, has explanatory power for financial variables\n", 768 | "\n", 769 | "- Graph-based similarity \n", 770 | " - does not capture similarity so well within a specific topic\n", 771 | " - categories are too broad - e.g. \"Companies listed on the London Stock Exchange\", \"Companies based in London\" \n", 772 | "\n", 773 | "- Context-based similarity (Word2Vec)\n", 774 | " - more powerful measure, captures similarity between words, topics\n", 775 | "\n", 776 | "- A lot more to be gained from industry-specific documents\n", 777 | " - e.g. annual reports, conference call transcripts" 778 | ] 779 | }, 780 | { 781 | "cell_type": "markdown", 782 | "metadata": { 783 | "slideshow": { 784 | "slide_type": "slide" 785 | } 786 | }, 787 | "source": [ 788 | "# Applications\n", 789 | "\n", 790 | "- predicting financial figures solely based on unstructured data or using hybrid models (unstructured + structured data)\n", 791 | "\n", 792 | "- estimating financial figures, ratios or statistical moments when relevant quantitative data is not available \n", 793 | " - e.g. the time preceding an IPO" 794 | ] 795 | }, 796 | { 797 | "cell_type": "markdown", 798 | "metadata": { 799 | "slideshow": { 800 | "slide_type": "slide" 801 | } 802 | }, 803 | "source": [ 804 | "# Resources\n", 805 | "\n", 806 | "- Word2Vec and Wiki2Vec\n", 807 | " - Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of Words and Phrases and their Compositionality. In Proceedings of NIPS, 2013.\n", 808 | " - [Word2Vec code repository](https://code.google.com/archive/p/word2vec/)\n", 809 | " - [Word2Vec in gensim](https://radimrehurek.com/gensim/models/word2vec.html)\n", 810 | " - [Wiki2Vec](https://github.com/idio/wiki2vec)\n", 811 | " \n", 812 | "- Graph-Based Similarity\n", 813 | " - Agirre, Eneko, Ander Barrena, and Aitor Soroa. \"Studying the Wikipedia Hyperlink Graph for Relatedness and Disambiguation.\" arXiv preprint arXiv:1503.01655, 2015.\n", 814 | " - Delia Rusu. Text Annotation using Background Knowledge. PhD Thesis. Ljubljana, 2014.\n", 815 | " \n", 816 | "- Notebook for this presentation\n", 817 | " - https://github.com/deliarusu" 818 | ] 819 | }, 820 | { 821 | "cell_type": "markdown", 822 | "metadata": { 823 | "slideshow": { 824 | "slide_type": "slide" 825 | } 826 | }, 827 | "source": [ 828 | "# Thank You!\n", 829 | "\n", 830 | "# Questions?\n", 831 | "\n", 832 | "" 833 | ] 834 | } 835 | ], 836 | "metadata": { 837 | "celltoolbar": "Slideshow", 838 | "kernelspec": { 839 | "display_name": "Python 2", 840 | "language": "python", 841 | "name": "python2" 842 | }, 843 | "language_info": { 844 | "codemirror_mode": { 845 | "name": "ipython", 846 | "version": 2 847 | }, 848 | "file_extension": ".py", 849 | "mimetype": "text/x-python", 850 | "name": "python", 851 | "nbconvert_exporter": "python", 852 | "pygments_lexer": "ipython2", 853 | "version": "2.7.11" 854 | } 855 | }, 856 | "nbformat": 4, 857 | "nbformat_minor": 0 858 | } 859 | --------------------------------------------------------------------------------