├── .github
└── ISSUE_TEMPLATE
│ ├── bug_report.md
│ ├── custom.md
│ └── feature_request.md
├── CODE_OF_CONDUCT.md
├── LICENSE
├── MANIFEST.in
├── README.md
├── bin
├── predict.py
└── train.py
├── fetch
├── __init__.py
├── data_sequence.py
├── models
│ ├── a_FT_DenseNet121_2_DMT_Xception_13_256
│ │ ├── ft_DenseNet121_2_dt_Xception_13_256.json
│ │ └── ft_DenseNet121_2_dt_Xception_13_256.yaml
│ ├── b_FT_DenseNet121_2_DMT_VGG16_1_32
│ │ ├── ft_DenseNet121_2_dt_VGG16_1_32.json
│ │ └── ft_DenseNet121_2_dt_VGG16_1_32.yaml
│ ├── c_FT_DenseNet169_6_DMT_Xception_13_112
│ │ ├── ft_DenseNet169_6_dt_Xception_13_112.json
│ │ └── ft_DenseNet169_6_dt_Xception_13_112.yaml
│ ├── d_FT_DenseNet201_4_DMT_Xception_13_32
│ │ ├── ft_DenseNet201_4_dt_Xception_13_32.json
│ │ └── ft_DenseNet201_4_dt_Xception_13_32.yaml
│ ├── e_FT_VGG19_3_DMT_Xception_13_128
│ │ ├── ft_VGG19_3_dt_Xception_13_128.json
│ │ └── ft_VGG19_3_dt_Xception_13_128.yaml
│ ├── f_FT_DenseNet169_6_DMT_VGG16_1_512
│ │ ├── ft_DenseNet169_6_dt_VGG16_1_512.json
│ │ └── ft_DenseNet169_6_dt_VGG16_1_512.yaml
│ ├── g_FT_VGG19_3_DMT_VGG16_1_128
│ │ ├── ft_VGG19_3_dt_VGG16_1_128.json
│ │ └── ft_VGG19_3_dt_VGG16_1_128.yaml
│ ├── h_FT_DenseNet201_4_DMT_InceptionResNetV2_20_160
│ │ └── ft_DenseNet201_4_dt_InceptionResNetV2_20_160.yaml
│ ├── i_FT_DenseNet201_4_DMT_VGG16_1_32
│ │ └── ft_DenseNet201_4_dt_VGG16_1_32.yaml
│ ├── j_FT_VGG19_3_DMT_InceptionResNetV2_20_512
│ │ └── ft_VGG19_3_dt_InceptionResNetV2_20_512.yaml
│ ├── k_FT_DenseNet121_2_DMT_InceptionV3_18_64
│ │ ├── ft_DenseNet121_2_dt_InceptionV3_18_64.json
│ │ └── ft_DenseNet121_2_dt_InceptionV3_18_64.yaml
│ └── model_list.csv
└── utils.py
├── requirements.txt
└── setup.py
/.github/ISSUE_TEMPLATE/bug_report.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: Bug report
3 | about: Create a report to help us improve
4 | title: ''
5 | labels: ''
6 | assignees: ''
7 |
8 | ---
9 |
10 | **Describe the bug**
11 | A clear and concise description of what the bug is.
12 |
13 | **To Reproduce**
14 | Steps to reproduce the behavior:
15 | 1. Go to '...'
16 | 2. Click on '....'
17 | 3. Scroll down to '....'
18 | 4. See error
19 |
20 | **Expected behavior**
21 | A clear and concise description of what you expected to happen.
22 |
23 | **Screenshots**
24 | If applicable, add screenshots to help explain your problem.
25 |
26 | **Additional context**
27 | Add any other context about the problem here.
28 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/custom.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: Custom issue template
3 | about: Describe this issue template's purpose here.
4 | title: ''
5 | labels: ''
6 | assignees: ''
7 |
8 | ---
9 |
10 |
11 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/feature_request.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: Feature request
3 | about: Suggest an idea for this project
4 | title: ''
5 | labels: ''
6 | assignees: ''
7 |
8 | ---
9 |
10 | **Is your feature request related to a problem? Please describe.**
11 | A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
12 |
13 | **Describe the solution you'd like**
14 | A clear and concise description of what you want to happen.
15 |
16 | **Describe alternatives you've considered**
17 | A clear and concise description of any alternative solutions or features you've considered.
18 |
19 | **Additional context**
20 | Add any other context or screenshots about the feature request here.
21 |
--------------------------------------------------------------------------------
/CODE_OF_CONDUCT.md:
--------------------------------------------------------------------------------
1 | # Contributor Covenant Code of Conduct
2 |
3 | ## Our Pledge
4 |
5 | In the interest of fostering an open and welcoming environment, we as
6 | contributors and maintainers pledge to making participation in our project and
7 | our community a harassment-free experience for everyone, regardless of age, body
8 | size, disability, ethnicity, sex characteristics, gender identity and expression,
9 | level of experience, education, socio-economic status, nationality, personal
10 | appearance, race, religion, or sexual identity and orientation.
11 |
12 | ## Our Standards
13 |
14 | Examples of behavior that contributes to creating a positive environment
15 | include:
16 |
17 | * Using welcoming and inclusive language
18 | * Being respectful of differing viewpoints and experiences
19 | * Gracefully accepting constructive criticism
20 | * Focusing on what is best for the community
21 | * Showing empathy towards other community members
22 |
23 | Examples of unacceptable behavior by participants include:
24 |
25 | * The use of sexualized language or imagery and unwelcome sexual attention or
26 | advances
27 | * Trolling, insulting/derogatory comments, and personal or political attacks
28 | * Public or private harassment
29 | * Publishing others' private information, such as a physical or electronic
30 | address, without explicit permission
31 | * Other conduct which could reasonably be considered inappropriate in a
32 | professional setting
33 |
34 | ## Our Responsibilities
35 |
36 | Project maintainers are responsible for clarifying the standards of acceptable
37 | behavior and are expected to take appropriate and fair corrective action in
38 | response to any instances of unacceptable behavior.
39 |
40 | Project maintainers have the right and responsibility to remove, edit, or
41 | reject comments, commits, code, wiki edits, issues, and other contributions
42 | that are not aligned to this Code of Conduct, or to ban temporarily or
43 | permanently any contributor for other behaviors that they deem inappropriate,
44 | threatening, offensive, or harmful.
45 |
46 | ## Scope
47 |
48 | This Code of Conduct applies both within project spaces and in public spaces
49 | when an individual is representing the project or its community. Examples of
50 | representing a project or community include using an official project e-mail
51 | address, posting via an official social media account, or acting as an appointed
52 | representative at an online or offline event. Representation of a project may be
53 | further defined and clarified by project maintainers.
54 |
55 | ## Enforcement
56 |
57 | Instances of abusive, harassing, or otherwise unacceptable behavior may be
58 | reported by contacting the project team at devansh.kv@gmail.com. All
59 | complaints will be reviewed and investigated and will result in a response that
60 | is deemed necessary and appropriate to the circumstances. The project team is
61 | obligated to maintain confidentiality with regard to the reporter of an incident.
62 | Further details of specific enforcement policies may be posted separately.
63 |
64 | Project maintainers who do not follow or enforce the Code of Conduct in good
65 | faith may face temporary or permanent repercussions as determined by other
66 | members of the project's leadership.
67 |
68 | ## Attribution
69 |
70 | This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
71 | available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
72 |
73 | [homepage]: https://www.contributor-covenant.org
74 |
75 | For answers to common questions about this code of conduct, see
76 | https://www.contributor-covenant.org/faq
77 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/MANIFEST.in:
--------------------------------------------------------------------------------
1 | include fetch/models/*.csv
2 | include fetch/models/*/*yaml
3 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # FETCH
2 |
3 |
4 | [](https://zenodo.org/badge/latestdoi/165734093)
5 | [](https://github.com/devanshkv/fetch/issues)
6 | [](https://github.com/devanshkv/fetch/network/members)
7 | [](https://github.com/devanshkv/fetch/stargazers)
8 | [](https://github.com/devanshkv/fetch/blob/master/LICENSE)
9 | [](http://hits.dwyl.com/devanshkv/fetch)
10 | [](https://arxiv.org/abs/1902.06343)
11 | [](https://github.com/psf/black)
12 |
13 |
14 | fetch is Fast Extragalactic Transient Candidate Hunter. It has been detailed in the paper [Towards deeper neural networks for Fast Radio Burst detection](https://arxiv.org/abs/1902.06343).
15 |
16 | This is the `tensorflow>=2` version of the fetch, if you are looking for the older tensorflow version click [here](https://github.com/devanshkv/fetch/archive/0.1.8.tar.gz).
17 |
18 | Install
19 | ---
20 | git clone https://github.com/devanshkv/fetch.git
21 | cd fetch
22 | pip install -r requirements.txt
23 | python setup.py install
24 |
25 | The installation will put `predict.py` and `train.py` in your `PYTHONPATH`.
26 |
27 | Usage
28 | ---
29 | To use fetch, you would first have to create candidates. Use [`your`](https://thepetabyteproject.github.io/your/) for this purpose, [this notebook](https://thepetabyteproject.github.io/your/ipynb/Candidate/) explains the whole process. Your also comes with a command line script [`your_candmaker.py`](https://thepetabyteproject.github.io/your/bin/your_candmaker/) which allows you to use CPU or single/multiple GPUs.
30 |
31 | To predict a candidate h5 files living in the directory `/data/candidates/` use `predict.py` for model `a` as follows:
32 |
33 | predict.py --data_dir /data/candidates/ --model a
34 |
35 | To fine-tune the model `a`, with a bunch of candidates, put them in a pandas readable csv, `candidate.csv` with headers 'h5' and 'label'. Use
36 |
37 | train.py --data_csv candidates.csv --model a --output_path ./
38 |
39 | This would train the model `a` and save the training log, and model weights in the output path.
40 |
41 | Example
42 | ---
43 |
44 | Test filterbank data can be downloaded from [here](http://astro.phys.wvu.edu/files/askap_frb_180417.tgz). The folder contains three filterbanks: 28.fil 29.fil 34.fil.
45 | Heimdall results for each of the files are as follows:
46 |
47 | for 28.fil
48 |
49 | 16.8128 1602 2.02888 1 127 475.284 22 1601 1604
50 | for 29.fil
51 |
52 | 18.6647 1602 2.02888 1 127 475.284 16 1601 1604
53 | for 34.fil
54 |
55 | 13.9271 1602 2.02888 1 127 475.284 12 1602 1604
56 |
57 | The `cand.csv` would look like the following:
58 |
59 | file,snr,stime,width,dm,label,chan_mask_path,num_files
60 | 28.fil,16.8128,2.02888,1,475.284,1,,1
61 | 29.fil,18.6647,2.02888,1,475.284,1,,1
62 | 34.fil,13.9271,2.02888,1,475.284,1,,1
63 |
64 | Running `your_candmaker.py` will create three files:
65 |
66 | cand_tstart_58682.620316710374_tcand_2.0288800_dm_475.28400_snr_13.92710.h5
67 | cand_tstart_58682.620316710374_tcand_2.0288800_dm_475.28400_snr_16.81280.h5
68 | cand_tstart_58682.620316710374_tcand_2.0288800_dm_475.28400_snr_18.66470.h5
69 |
70 | Running `predict.py` with model `a` will give `results_a.csv`:
71 |
72 | ,candidate,probability,label
73 | 0,cand_tstart_58682.620316710374_tcand_2.0288800_dm_475.28400_snr_18.66470.h5,1.0,1.0
74 | 1,cand_tstart_58682.620316710374_tcand_2.0288800_dm_475.28400_snr_16.81280.h5,1.0,1.0
75 | 2,cand_tstart_58682.620316710374_tcand_2.0288800_dm_475.28400_snr_13.92710.h5,1.0,1.0
76 |
77 | Training Data
78 | ---
79 |
80 | The training data is available at [astro.phys.wvu.edu/fetch](http://astro.phys.wvu.edu/fetch/).
81 |
82 | ## Citating this work
83 | ___
84 |
85 | If you use this work please cite:
86 |
87 | @article{Agarwal2020,
88 | doi = {10.1093/mnras/staa1856},
89 | url = {https://doi.org/10.1093/mnras/staa1856},
90 | year = {2020},
91 | month = jun,
92 | publisher = {Oxford University Press ({OUP})},
93 | author = {Devansh Agarwal and Kshitij Aggarwal and Sarah Burke-Spolaor and Duncan R Lorimer and Nathaniel Garver-Daniels},
94 | title = {{FETCH}: A deep-learning based classifier for fast transient classification},
95 | journal = {Monthly Notices of the Royal Astronomical Society}
96 | }
97 | @software{agarwal_aggarwal_2020,
98 | author = {Devansh Agarwal and
99 | Kshitij Aggarwal},
100 | title = {{devanshkv/fetch: Software release with the
101 | manuscript}},
102 | month = jun,
103 | year = 2020,
104 | publisher = {Zenodo},
105 | version = {0.1.8},
106 | doi = {10.5281/zenodo.3905437},
107 | url = {https://doi.org/10.5281/zenodo.3905437}
108 | }
109 |
--------------------------------------------------------------------------------
/bin/predict.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 |
3 | import argparse
4 | import glob
5 | import logging
6 | import os
7 | import string
8 |
9 | import numpy as np
10 | import pandas as pd
11 |
12 | from fetch.data_sequence import DataGenerator
13 | from fetch.utils import get_model
14 |
15 | logger = logging.getLogger(__name__)
16 |
17 | if __name__ == "__main__":
18 | parser = argparse.ArgumentParser(
19 | description="Fast Extragalactic Transient Candiate Hunter (FETCH)",
20 | formatter_class=argparse.ArgumentDefaultsHelpFormatter,
21 | )
22 | parser.add_argument("-v", "--verbose", help="Be verbose", action="store_true")
23 | parser.add_argument(
24 | "-g",
25 | "--gpu_id",
26 | help="GPU ID (use -1 for CPU)",
27 | type=int,
28 | required=False,
29 | default=0,
30 | )
31 | parser.add_argument(
32 | "-n", "--nproc", help="Number of processors for training", default=4, type=int
33 | )
34 | parser.add_argument(
35 | "-c",
36 | "--data_dir",
37 | help="Directory with candidate h5s.",
38 | required=True,
39 | type=str,
40 | action='append'
41 | )
42 | parser.add_argument(
43 | "-b", "--batch_size", help="Batch size for training data", default=8, type=int
44 | )
45 | parser.add_argument(
46 | "-m", "--model", help="Index of the model to train", required=True
47 | )
48 | parser.add_argument(
49 | "-p", "--probability", help="Detection threshold", default=0.5, type=float
50 | )
51 | args = parser.parse_args()
52 |
53 | logging_format = (
54 | "%(asctime)s - %(funcName)s -%(name)s - %(levelname)s - %(message)s"
55 | )
56 |
57 | if args.verbose:
58 | logging.basicConfig(level=logging.DEBUG, format=logging_format)
59 | else:
60 | logging.basicConfig(level=logging.INFO, format=logging_format)
61 |
62 | if args.model not in list(string.ascii_lowercase)[:11]:
63 | raise ValueError(f"Model only range from a -- j.")
64 |
65 | if args.gpu_id >= 0:
66 | os.environ["CUDA_VISIBLE_DEVICES"] = f"{args.gpu_id}"
67 | else:
68 | os.environ["CUDA_VISIBLE_DEVICES"] = ""
69 |
70 | if args.nproc > 1:
71 | use_multiprocessing = True
72 | logging.info(f"Using multiprocessing with {args.nproc} workers")
73 | else:
74 | use_multiprocessing = False
75 |
76 | if args.model not in list(string.ascii_lowercase)[:11]:
77 | raise ValueError(f"Model only range from a -- j.")
78 |
79 | model = get_model(args.model)
80 |
81 | for data_dir in args.data_dir:
82 |
83 | cands_to_eval = glob.glob(f"{data_dir}/*h5")
84 |
85 | if len(cands_to_eval) == 0:
86 | logger.warning(f"No candidates to evaluate in directory: {data_dir}")
87 | continue
88 |
89 | logging.debug(f"Read {len(cands_to_eval)} candidates")
90 |
91 | # Get the data generator, make sure noise and shuffle are off.
92 | cand_datagen = DataGenerator(
93 | list_IDs=cands_to_eval,
94 | labels=[0] * len(cands_to_eval),
95 | shuffle=False,
96 | noise=False,
97 | batch_size=args.batch_size,
98 | )
99 |
100 | # get's get predicting
101 | probs = model.predict_generator(
102 | generator=cand_datagen,
103 | verbose=1,
104 | use_multiprocessing=use_multiprocessing,
105 | workers=args.nproc,
106 | steps=len(cand_datagen),
107 | )
108 |
109 | # Save results
110 | results_dict = {}
111 | results_dict["candidate"] = cands_to_eval
112 | results_dict["probability"] = probs[:, 1]
113 | results_dict["label"] = np.round(probs[:, 1] >= args.probability)
114 | results_file = data_dir + f"/results_{args.model}.csv"
115 | pd.DataFrame(results_dict).to_csv(results_file)
116 |
117 |
--------------------------------------------------------------------------------
/bin/train.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 |
3 | import argparse
4 | import logging
5 | import os
6 | import string
7 |
8 | import pandas as pd
9 | from tensorflow.keras.callbacks import EarlyStopping, CSVLogger, ModelCheckpoint
10 | from tensorflow.keras.models import Model
11 | from sklearn.model_selection import train_test_split
12 |
13 | from fetch.data_sequence import DataGenerator
14 | from fetch.utils import get_model
15 | from fetch.utils import ready_for_train
16 |
17 | logger = logging.getLogger(__name__)
18 |
19 | os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
20 |
21 |
22 | def train(model, epochs, patience, output_path, nproc, train_obj, val_obj):
23 | """
24 |
25 | :param model: model to train (must be compiled)
26 | :type model: Model
27 | :param epochs: max number of epochs to train.
28 | :type epochs: int
29 | :param patience: Stop after these many layers if val. loss doesn't decrease
30 | :type patience: int
31 | :param output_path: paths to save weights and logs
32 | :type output_path: str
33 | :param nproc: number of processors for training
34 | :type nproc: int
35 | :param train_obj: DataGenerator training object for training
36 | :type train_obj: DataGenerator
37 | :param val_obj: DataGenerator training object for validation
38 | :type val_obj: DataGenerator
39 | :return: model, history object
40 | """
41 | if nproc == 1:
42 | use_multiprocessing = False
43 | else:
44 | use_multiprocessing = True
45 |
46 | # Callbacks for training and validation
47 | ES = EarlyStopping(
48 | monitor="val_loss",
49 | min_delta=1e-3,
50 | patience=patience,
51 | verbose=1,
52 | mode="min",
53 | restore_best_weights=True,
54 | )
55 | CK = ModelCheckpoint(
56 | output_path + "weights.h5",
57 | monitor="val_loss",
58 | verbose=1,
59 | save_best_only=True,
60 | save_weights_only=False,
61 | mode="min",
62 | )
63 | csv_name = output_path + "training_log.csv"
64 | LO = CSVLogger(csv_name, append=False)
65 |
66 | callbacks = [ES, CK, LO]
67 |
68 | train_history = model.fit_generator(
69 | generator=train_obj,
70 | validation_data=val_obj,
71 | epochs=epochs,
72 | use_multiprocessing=use_multiprocessing,
73 | max_queue_size=10,
74 | workers=nproc,
75 | shuffle=True,
76 | callbacks=callbacks,
77 | verbose=1,
78 | )
79 | return model, train_history
80 |
81 |
82 | if __name__ == "__main__":
83 | parser = argparse.ArgumentParser(
84 | description="Fast Extragalactic Transient Candiate Hunter (FETCH)"
85 | )
86 | parser.add_argument("-v", "--verbose", help="Be verbose", action="store_true")
87 | parser.add_argument(
88 | "-g", "--gpu_id", help="GPU ID", type=int, required=False, default=0
89 | )
90 | parser.add_argument(
91 | "-n", "--nproc", help="Number of processors for training", default=4, type=int
92 | )
93 | parser.add_argument(
94 | "-c",
95 | "--data_csv",
96 | help="CSV with candidate h5 paths and labels",
97 | required=True,
98 | type=str,
99 | )
100 | parser.add_argument(
101 | "-b", "--batch_size", help="Batch size for training data", default=8, type=int
102 | )
103 | parser.add_argument(
104 | "-e", "--epochs", help="Number of epochs for training", default=15, type=int
105 | )
106 | parser.add_argument(
107 | "-p",
108 | "--patience",
109 | help="Layer patience, stop training if validation loss does not decreate",
110 | default=3,
111 | type=int,
112 | )
113 | parser.add_argument(
114 | "-nft",
115 | "--n_ft_layers",
116 | help="Number of layers in FT model to train",
117 | default=0,
118 | type=int,
119 | )
120 | parser.add_argument(
121 | "-ndt",
122 | "--n_dt_layers",
123 | help="Number of layers in DT model to train",
124 | default=0,
125 | type=int,
126 | )
127 | parser.add_argument(
128 | "-nf",
129 | "--n_fusion_layers",
130 | help="Number of layers to train post FT and DT models",
131 | default=1,
132 | type=int,
133 | )
134 | parser.add_argument(
135 | "-o",
136 | "--output_path",
137 | help="Place to save the weights and training logs",
138 | type=str,
139 | required=True,
140 | )
141 | parser.add_argument(
142 | "-vs",
143 | "--val_split",
144 | help="Percent of data to use for validation",
145 | type=float,
146 | default=0.2,
147 | )
148 | parser.add_argument(
149 | "-m", "--model", help="Index of the model to train", required=True, type=str
150 | )
151 | args = parser.parse_args()
152 |
153 | logging_format = (
154 | "%(asctime)s - %(funcName)s -%(name)s - %(levelname)s - %(message)s"
155 | )
156 |
157 | if args.verbose:
158 | logging.basicConfig(level=logging.DEBUG, format=logging_format)
159 | else:
160 | logging.basicConfig(level=logging.INFO, format=logging_format)
161 |
162 | if args.model not in list(string.ascii_lowercase)[:11]:
163 | raise ValueError(f"Model only range from a -- j.")
164 |
165 | if args.gpu_id:
166 | os.environ["CUDA_VISIBLE_DEVICES"] = f"{args.gpu_id}"
167 |
168 | if args.n_fusion_layers >= 9:
169 | raise ValueError(
170 | f"Cannot open {args.n_fusion_layers} for training. Models only have 6 layers after FT and DT models."
171 | )
172 |
173 | data_df = pd.read_csv(args.data_csv)
174 |
175 | train_df, val_df = train_test_split(
176 | data_df, test_size=(1 - args.val_split), random_state=1993
177 | )
178 | train_data_generator = DataGenerator(
179 | list_IDs=list(train_df["h5"]),
180 | labels=list(train_df["label"]),
181 | noise=True,
182 | shuffle=True,
183 | )
184 | validate_data_generator = DataGenerator(
185 | list_IDs=list(val_df["h5"]),
186 | labels=list(val_df["label"]),
187 | noise=False,
188 | shuffle=False,
189 | )
190 |
191 | model_to_train = get_model(args.model)
192 |
193 | model_to_train = ready_for_train(
194 | model_to_train,
195 | ndt=args.n_dt_layers,
196 | nft=args.n_ft_layers,
197 | nf=args.n_fusion_layers,
198 | )
199 |
200 | trained_model, history = train(
201 | model_to_train,
202 | epochs=args.epochs,
203 | patience=args.patience,
204 | output_path=args.output_path,
205 | nproc=args.nproc,
206 | train_obj=train_data_generator,
207 | val_obj=validate_data_generator,
208 | )
209 |
--------------------------------------------------------------------------------
/fetch/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/devanshkv/fetch/5b85488f93c199f6a2efc8b2060defc84080f54a/fetch/__init__.py
--------------------------------------------------------------------------------
/fetch/data_sequence.py:
--------------------------------------------------------------------------------
1 | """
2 | https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly
3 | """
4 | import logging
5 | import os
6 |
7 | import h5py
8 | from tensorflow import keras
9 | import numpy as np
10 | import scipy.signal as s
11 |
12 | os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
13 | logger = logging.getLogger(__name__)
14 |
15 |
16 | class DataGenerator(keras.utils.Sequence):
17 | def __init__(
18 | self,
19 | list_IDs,
20 | labels,
21 | batch_size=32,
22 | ft_dim=(256, 256),
23 | dt_dim=(256, 256),
24 | n_channels=1,
25 | n_classes=2,
26 | shuffle=True,
27 | noise=False,
28 | noise_mean=0.0,
29 | noise_std=1.0,
30 | ):
31 | """
32 |
33 | :param list_IDs: list of h5 files
34 | :type list_IDs: list
35 | :param labels: list of labels (use fake labels when using predict)
36 | :type labels: list
37 | :param batch_size: Batch size (def = 32)
38 | :type batch_size: int
39 | :param ft_dim: 2D shape (def (256, 256)
40 | :type dt_dim tuple
41 | :param dt_dim: 2D shape (def (256, 256)
42 | :type ft_dim tuple
43 | :param n_channels: number of channels in data (def = 1)
44 | :type n_channels: int
45 | :param n_classes: number of classes to classify data into (def = 2)
46 | :type n_classes: ints
47 | :param shuffle: to shuffle or not to shuffle?
48 | :type shuffle: bool
49 | :param noise: to add noise or not to?
50 | :type noise: bool
51 | :param noise_mean: mean of gaussian noise
52 | :type noise_mean: float
53 | :param noise_std: standard deviation of gaussian noise
54 | :type noise_std: float
55 | """
56 | self.ft_dim = ft_dim
57 | self.dt_dim = dt_dim
58 | self.batch_size = batch_size
59 | self.list_IDs = list_IDs
60 | self.n_channels = n_channels
61 | self.n_classes = n_classes
62 | self.shuffle = shuffle
63 | self.on_epoch_end()
64 | self.noise = noise
65 | self.labels = labels
66 | self.noise_mean = noise_mean
67 | self.noise_std = noise_std
68 |
69 | def __len__(self):
70 | """
71 |
72 | :return: Number of batches per epoch
73 | """
74 | return int(np.ceil(len(self.list_IDs) / self.batch_size))
75 |
76 | def __getitem__(self, index):
77 | """
78 |
79 | :param index: index
80 | :return: Data dictionary and categorical labels
81 | """
82 | if index < self.__len__():
83 | indexes = self.indexes[
84 | index * self.batch_size : (index + 1) * self.batch_size
85 | ]
86 | else:
87 | indexes = self.indexes[index * self.batch_size :]
88 | # Find list of IDs
89 | list_IDs_temp = [self.list_IDs[k] for k in indexes]
90 |
91 | # Generate data
92 | X, y = self.__data_generation(list_IDs_temp, indexes)
93 |
94 | return X, y
95 |
96 | def on_epoch_end(self):
97 | """
98 |
99 | :return: Updates the indices at the end of the epoch
100 | """
101 | self.indexes = np.arange(len(self.list_IDs))
102 | if self.shuffle == True:
103 | np.random.shuffle(self.indexes)
104 |
105 | def __data_generation(self, list_IDs_temp, indexes):
106 | """
107 |
108 | :param list_IDs_temp: list of h5 files to read
109 | :param indexes: indexes
110 | :return: Batch of data and labels
111 | """
112 | X = np.empty((len(list_IDs_temp), *self.ft_dim, self.n_channels))
113 | Y = np.empty((len(list_IDs_temp), *self.dt_dim, self.n_channels))
114 | y = np.empty((len(list_IDs_temp)), dtype=int)
115 |
116 | # Generate data
117 | for i, ID in enumerate(list_IDs_temp):
118 | try:
119 | with h5py.File(ID, "r") as f:
120 | data_ft = s.detrend(
121 | np.nan_to_num(np.array(f["data_freq_time"], dtype=np.float32).T)
122 | )
123 | data_ft /= np.std(data_ft)
124 | data_ft -= np.median(data_ft)
125 | data_dt = np.nan_to_num(
126 | np.array(f["data_dm_time"], dtype=np.float32)
127 | )
128 | data_dt /= np.std(data_dt)
129 | data_dt -= np.median(data_dt)
130 | X[
131 | i,
132 | ] = np.reshape(data_ft, (*self.ft_dim, self.n_channels))
133 | Y[
134 | i,
135 | ] = np.reshape(data_dt, (*self.dt_dim, self.n_channels))
136 | except KeyError:
137 | print(ID)
138 | y[i] = self.labels[indexes[i]]
139 | X[X != X] = 0.0
140 | Y[Y != Y] = 0.0
141 |
142 | if self.noise:
143 | X += np.random.normal(
144 | loc=self.noise_mean, scale=self.noise_std, size=X.shape
145 | )
146 | return {"data_freq_time": X, "data_dm_time": Y}, keras.utils.to_categorical(
147 | y, num_classes=self.n_classes
148 | )
149 |
--------------------------------------------------------------------------------
/fetch/models/e_FT_VGG19_3_DMT_Xception_13_128/ft_VGG19_3_dt_Xception_13_128.json:
--------------------------------------------------------------------------------
1 | {"class_name": "Functional", "config": {"name": "model_3", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": [null, 256, 256, 1], "dtype": "float32", "sparse": false, "ragged": false, "name": "data_freq_time"}, "name": "data_freq_time", "inbound_nodes": []}, {"class_name": "InputLayer", "config": {"batch_input_shape": [null, 256, 256, 1], "dtype": "float32", "sparse": false, "ragged": false, "name": "data_dm_time"}, "name": "data_dm_time", "inbound_nodes": []}, {"class_name": "Conv2D", "config": {"name": "conv2d_1__0", "trainable": true, "dtype": "float32", "filters": 3, "kernel_size": [2, 2], "strides": [1, 1], "padding": "valid", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "conv2d_1__0", "inbound_nodes": [[["data_freq_time", 0, 0, {}]]]}, {"class_name": "Conv2D", "config": {"name": "conv2d_2__1", "trainable": true, "dtype": "float32", "filters": 3, "kernel_size": [2, 2], "strides": [1, 1], "padding": "valid", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "conv2d_2__1", "inbound_nodes": [[["data_dm_time", 0, 0, {}]]]}, {"class_name": "Functional", "config": {"name": "vgg19__0", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": [null, null, null, 3], "dtype": "float32", "sparse": false, "ragged": false, "name": "input_2"}, "name": "input_2", "inbound_nodes": []}, {"class_name": "Conv2D", "config": {"name": "block1_conv1", "trainable": false, "dtype": "float32", "filters": 64, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "block1_conv1", "inbound_nodes": [[["input_2", 0, 0, {}]]]}, {"class_name": "Conv2D", "config": {"name": "block1_conv2", "trainable": false, "dtype": "float32", "filters": 64, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "block1_conv2", "inbound_nodes": [[["block1_conv1", 0, 0, {}]]]}, {"class_name": "MaxPooling2D", "config": {"name": "block1_pool", "trainable": false, "dtype": "float32", "pool_size": [2, 2], "padding": "valid", "strides": [2, 2], "data_format": "channels_last"}, "name": "block1_pool", "inbound_nodes": [[["block1_conv2", 0, 0, {}]]]}, {"class_name": "Conv2D", "config": {"name": "block2_conv1", "trainable": false, "dtype": "float32", "filters": 128, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "block2_conv1", "inbound_nodes": [[["block1_pool", 0, 0, {}]]]}, {"class_name": "Conv2D", "config": {"name": "block2_conv2", "trainable": false, "dtype": "float32", "filters": 128, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "block2_conv2", "inbound_nodes": [[["block2_conv1", 0, 0, {}]]]}, {"class_name": "MaxPooling2D", "config": {"name": "block2_pool", "trainable": false, "dtype": "float32", "pool_size": [2, 2], "padding": "valid", "strides": [2, 2], "data_format": "channels_last"}, "name": "block2_pool", "inbound_nodes": [[["block2_conv2", 0, 0, {}]]]}, {"class_name": "Conv2D", "config": {"name": "block3_conv1", "trainable": false, "dtype": "float32", "filters": 256, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "block3_conv1", "inbound_nodes": [[["block2_pool", 0, 0, {}]]]}, {"class_name": "Conv2D", "config": {"name": "block3_conv2", "trainable": false, "dtype": "float32", "filters": 256, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "block3_conv2", "inbound_nodes": [[["block3_conv1", 0, 0, {}]]]}, {"class_name": "Conv2D", "config": {"name": "block3_conv3", "trainable": false, "dtype": "float32", "filters": 256, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "block3_conv3", "inbound_nodes": [[["block3_conv2", 0, 0, {}]]]}, {"class_name": "Conv2D", "config": {"name": "block3_conv4", "trainable": false, "dtype": "float32", "filters": 256, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "block3_conv4", "inbound_nodes": [[["block3_conv3", 0, 0, {}]]]}, {"class_name": "MaxPooling2D", "config": {"name": "block3_pool", "trainable": false, "dtype": "float32", "pool_size": [2, 2], "padding": "valid", "strides": [2, 2], "data_format": "channels_last"}, "name": "block3_pool", "inbound_nodes": [[["block3_conv4", 0, 0, {}]]]}, {"class_name": "Conv2D", "config": {"name": "block4_conv1", "trainable": false, "dtype": "float32", "filters": 512, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "block4_conv1", "inbound_nodes": [[["block3_pool", 0, 0, {}]]]}, {"class_name": "Conv2D", "config": {"name": "block4_conv2", "trainable": false, "dtype": "float32", "filters": 512, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "block4_conv2", "inbound_nodes": [[["block4_conv1", 0, 0, {}]]]}, {"class_name": "Conv2D", "config": {"name": "block4_conv3", "trainable": false, "dtype": "float32", "filters": 512, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "block4_conv3", "inbound_nodes": [[["block4_conv2", 0, 0, {}]]]}, {"class_name": "Conv2D", "config": {"name": "block4_conv4", "trainable": false, "dtype": "float32", "filters": 512, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "block4_conv4", "inbound_nodes": [[["block4_conv3", 0, 0, {}]]]}, {"class_name": "MaxPooling2D", "config": {"name": "block4_pool", "trainable": false, "dtype": "float32", "pool_size": [2, 2], "padding": "valid", "strides": [2, 2], "data_format": "channels_last"}, "name": "block4_pool", "inbound_nodes": [[["block4_conv4", 0, 0, {}]]]}, {"class_name": "Conv2D", "config": {"name": "block5_conv1", "trainable": false, "dtype": "float32", "filters": 512, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "block5_conv1", "inbound_nodes": [[["block4_pool", 0, 0, {}]]]}, {"class_name": "Conv2D", "config": {"name": "block5_conv2", "trainable": true, "dtype": "float32", "filters": 512, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "block5_conv2", "inbound_nodes": [[["block5_conv1", 0, 0, {}]]]}, {"class_name": "Conv2D", "config": {"name": "block5_conv3", "trainable": true, "dtype": "float32", "filters": 512, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "block5_conv3", "inbound_nodes": [[["block5_conv2", 0, 0, {}]]]}, {"class_name": "Conv2D", "config": {"name": "block5_conv4", "trainable": true, "dtype": "float32", "filters": 512, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "block5_conv4", "inbound_nodes": [[["block5_conv3", 0, 0, {}]]]}, {"class_name": "MaxPooling2D", "config": {"name": "block5_pool", "trainable": false, "dtype": "float32", "pool_size": [2, 2], "padding": "valid", "strides": [2, 2], "data_format": "channels_last"}, "name": "block5_pool", "inbound_nodes": [[["block5_conv4", 0, 0, {}]]]}, {"class_name": "GlobalMaxPooling2D", "config": {"name": "global_max_pooling2d_1", "trainable": false, "dtype": "float32", "data_format": "channels_last"}, "name": "global_max_pooling2d_1", "inbound_nodes": [[["block5_pool", 0, 0, {}]]]}], "input_layers": [["input_2", 0, 0]], "output_layers": [["global_max_pooling2d_1", 0, 0]]}, "name": "vgg19__0", "inbound_nodes": [[["conv2d_1__0", 0, 0, {}]]]}, {"class_name": "Functional", "config": {"name": "xception__1", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": [null, null, null, 3], "dtype": "float32", "sparse": false, "ragged": false, "name": "input_4"}, "name": "input_4", "inbound_nodes": []}, {"class_name": "Conv2D", "config": {"name": "block1_conv1", "trainable": false, "dtype": "float32", "filters": 32, "kernel_size": [3, 3], "strides": [2, 2], "padding": "valid", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "block1_conv1", "inbound_nodes": [[["input_4", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block1_conv1_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block1_conv1_bn", "inbound_nodes": [[["block1_conv1", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block1_conv1_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block1_conv1_act", "inbound_nodes": [[["block1_conv1_bn", 0, 0, {}]]]}, {"class_name": "Conv2D", "config": {"name": "block1_conv2", "trainable": false, "dtype": "float32", "filters": 64, "kernel_size": [3, 3], "strides": [1, 1], "padding": "valid", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "block1_conv2", "inbound_nodes": [[["block1_conv1_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block1_conv2_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block1_conv2_bn", "inbound_nodes": [[["block1_conv2", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block1_conv2_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block1_conv2_act", "inbound_nodes": [[["block1_conv2_bn", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block2_sepconv1", "trainable": false, "dtype": "float32", "filters": 128, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 85}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block2_sepconv1", "inbound_nodes": [[["block1_conv2_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block2_sepconv1_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block2_sepconv1_bn", "inbound_nodes": [[["block2_sepconv1", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block2_sepconv2_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block2_sepconv2_act", "inbound_nodes": [[["block2_sepconv1_bn", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block2_sepconv2", "trainable": false, "dtype": "float32", "filters": 128, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 96}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block2_sepconv2", "inbound_nodes": [[["block2_sepconv2_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block2_sepconv2_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block2_sepconv2_bn", "inbound_nodes": [[["block2_sepconv2", 0, 0, {}]]]}, {"class_name": "Conv2D", "config": {"name": "conv2d_3", "trainable": false, "dtype": "float32", "filters": 128, "kernel_size": [1, 1], "strides": [2, 2], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "conv2d_3", "inbound_nodes": [[["block1_conv2_act", 0, 0, {}]]]}, {"class_name": "MaxPooling2D", "config": {"name": "block2_pool", "trainable": false, "dtype": "float32", "pool_size": [3, 3], "padding": "same", "strides": [2, 2], "data_format": "channels_last"}, "name": "block2_pool", "inbound_nodes": [[["block2_sepconv2_bn", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_1", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "batch_normalization_1", "inbound_nodes": [[["conv2d_3", 0, 0, {}]]]}, {"class_name": "Add", "config": {"name": "add_1", "trainable": false, "dtype": "float32"}, "name": "add_1", "inbound_nodes": [[["block2_pool", 0, 0, {}], ["batch_normalization_1", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block3_sepconv1_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block3_sepconv1_act", "inbound_nodes": [[["add_1", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block3_sepconv1", "trainable": false, "dtype": "float32", "filters": 256, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 117}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block3_sepconv1", "inbound_nodes": [[["block3_sepconv1_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block3_sepconv1_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block3_sepconv1_bn", "inbound_nodes": [[["block3_sepconv1", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block3_sepconv2_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block3_sepconv2_act", "inbound_nodes": [[["block3_sepconv1_bn", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block3_sepconv2", "trainable": false, "dtype": "float32", "filters": 256, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 128}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block3_sepconv2", "inbound_nodes": [[["block3_sepconv2_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block3_sepconv2_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block3_sepconv2_bn", "inbound_nodes": [[["block3_sepconv2", 0, 0, {}]]]}, {"class_name": "Conv2D", "config": {"name": "conv2d_4", "trainable": false, "dtype": "float32", "filters": 256, "kernel_size": [1, 1], "strides": [2, 2], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "conv2d_4", "inbound_nodes": [[["add_1", 0, 0, {}]]]}, {"class_name": "MaxPooling2D", "config": {"name": "block3_pool", "trainable": false, "dtype": "float32", "pool_size": [3, 3], "padding": "same", "strides": [2, 2], "data_format": "channels_last"}, "name": "block3_pool", "inbound_nodes": [[["block3_sepconv2_bn", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_2", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "batch_normalization_2", "inbound_nodes": [[["conv2d_4", 0, 0, {}]]]}, {"class_name": "Add", "config": {"name": "add_2", "trainable": false, "dtype": "float32"}, "name": "add_2", "inbound_nodes": [[["block3_pool", 0, 0, {}], ["batch_normalization_2", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block4_sepconv1_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block4_sepconv1_act", "inbound_nodes": [[["add_2", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block4_sepconv1", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 149}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block4_sepconv1", "inbound_nodes": [[["block4_sepconv1_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block4_sepconv1_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block4_sepconv1_bn", "inbound_nodes": [[["block4_sepconv1", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block4_sepconv2_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block4_sepconv2_act", "inbound_nodes": [[["block4_sepconv1_bn", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block4_sepconv2", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 160}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block4_sepconv2", "inbound_nodes": [[["block4_sepconv2_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block4_sepconv2_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block4_sepconv2_bn", "inbound_nodes": [[["block4_sepconv2", 0, 0, {}]]]}, {"class_name": "Conv2D", "config": {"name": "conv2d_5", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [1, 1], "strides": [2, 2], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "conv2d_5", "inbound_nodes": [[["add_2", 0, 0, {}]]]}, {"class_name": "MaxPooling2D", "config": {"name": "block4_pool", "trainable": false, "dtype": "float32", "pool_size": [3, 3], "padding": "same", "strides": [2, 2], "data_format": "channels_last"}, "name": "block4_pool", "inbound_nodes": [[["block4_sepconv2_bn", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_3", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "batch_normalization_3", "inbound_nodes": [[["conv2d_5", 0, 0, {}]]]}, {"class_name": "Add", "config": {"name": "add_3", "trainable": false, "dtype": "float32"}, "name": "add_3", "inbound_nodes": [[["block4_pool", 0, 0, {}], ["batch_normalization_3", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block5_sepconv1_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block5_sepconv1_act", "inbound_nodes": [[["add_3", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block5_sepconv1", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 181}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block5_sepconv1", "inbound_nodes": [[["block5_sepconv1_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block5_sepconv1_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block5_sepconv1_bn", "inbound_nodes": [[["block5_sepconv1", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block5_sepconv2_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block5_sepconv2_act", "inbound_nodes": [[["block5_sepconv1_bn", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block5_sepconv2", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 192}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block5_sepconv2", "inbound_nodes": [[["block5_sepconv2_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block5_sepconv2_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block5_sepconv2_bn", "inbound_nodes": [[["block5_sepconv2", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block5_sepconv3_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block5_sepconv3_act", "inbound_nodes": [[["block5_sepconv2_bn", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block5_sepconv3", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 203}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block5_sepconv3", "inbound_nodes": [[["block5_sepconv3_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block5_sepconv3_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block5_sepconv3_bn", "inbound_nodes": [[["block5_sepconv3", 0, 0, {}]]]}, {"class_name": "Add", "config": {"name": "add_4", "trainable": false, "dtype": "float32"}, "name": "add_4", "inbound_nodes": [[["block5_sepconv3_bn", 0, 0, {}], ["add_3", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block6_sepconv1_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block6_sepconv1_act", "inbound_nodes": [[["add_4", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block6_sepconv1", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 215}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block6_sepconv1", "inbound_nodes": [[["block6_sepconv1_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block6_sepconv1_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block6_sepconv1_bn", "inbound_nodes": [[["block6_sepconv1", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block6_sepconv2_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block6_sepconv2_act", "inbound_nodes": [[["block6_sepconv1_bn", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block6_sepconv2", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 226}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block6_sepconv2", "inbound_nodes": [[["block6_sepconv2_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block6_sepconv2_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block6_sepconv2_bn", "inbound_nodes": [[["block6_sepconv2", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block6_sepconv3_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block6_sepconv3_act", "inbound_nodes": [[["block6_sepconv2_bn", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block6_sepconv3", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 237}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block6_sepconv3", "inbound_nodes": [[["block6_sepconv3_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block6_sepconv3_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block6_sepconv3_bn", "inbound_nodes": [[["block6_sepconv3", 0, 0, {}]]]}, {"class_name": "Add", "config": {"name": "add_5", "trainable": false, "dtype": "float32"}, "name": "add_5", "inbound_nodes": [[["block6_sepconv3_bn", 0, 0, {}], ["add_4", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block7_sepconv1_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block7_sepconv1_act", "inbound_nodes": [[["add_5", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block7_sepconv1", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 249}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block7_sepconv1", "inbound_nodes": [[["block7_sepconv1_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block7_sepconv1_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block7_sepconv1_bn", "inbound_nodes": [[["block7_sepconv1", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block7_sepconv2_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block7_sepconv2_act", "inbound_nodes": [[["block7_sepconv1_bn", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block7_sepconv2", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 260}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block7_sepconv2", "inbound_nodes": [[["block7_sepconv2_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block7_sepconv2_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block7_sepconv2_bn", "inbound_nodes": [[["block7_sepconv2", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block7_sepconv3_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block7_sepconv3_act", "inbound_nodes": [[["block7_sepconv2_bn", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block7_sepconv3", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 271}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block7_sepconv3", "inbound_nodes": [[["block7_sepconv3_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block7_sepconv3_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block7_sepconv3_bn", "inbound_nodes": [[["block7_sepconv3", 0, 0, {}]]]}, {"class_name": "Add", "config": {"name": "add_6", "trainable": false, "dtype": "float32"}, "name": "add_6", "inbound_nodes": [[["block7_sepconv3_bn", 0, 0, {}], ["add_5", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block8_sepconv1_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block8_sepconv1_act", "inbound_nodes": [[["add_6", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block8_sepconv1", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 283}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block8_sepconv1", "inbound_nodes": [[["block8_sepconv1_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block8_sepconv1_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block8_sepconv1_bn", "inbound_nodes": [[["block8_sepconv1", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block8_sepconv2_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block8_sepconv2_act", "inbound_nodes": [[["block8_sepconv1_bn", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block8_sepconv2", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 294}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block8_sepconv2", "inbound_nodes": [[["block8_sepconv2_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block8_sepconv2_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block8_sepconv2_bn", "inbound_nodes": [[["block8_sepconv2", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block8_sepconv3_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block8_sepconv3_act", "inbound_nodes": [[["block8_sepconv2_bn", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block8_sepconv3", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 305}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block8_sepconv3", "inbound_nodes": [[["block8_sepconv3_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block8_sepconv3_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block8_sepconv3_bn", "inbound_nodes": [[["block8_sepconv3", 0, 0, {}]]]}, {"class_name": "Add", "config": {"name": "add_7", "trainable": false, "dtype": "float32"}, "name": "add_7", "inbound_nodes": [[["block8_sepconv3_bn", 0, 0, {}], ["add_6", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block9_sepconv1_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block9_sepconv1_act", "inbound_nodes": [[["add_7", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block9_sepconv1", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 317}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block9_sepconv1", "inbound_nodes": [[["block9_sepconv1_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block9_sepconv1_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block9_sepconv1_bn", "inbound_nodes": [[["block9_sepconv1", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block9_sepconv2_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block9_sepconv2_act", "inbound_nodes": [[["block9_sepconv1_bn", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block9_sepconv2", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 328}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block9_sepconv2", "inbound_nodes": [[["block9_sepconv2_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block9_sepconv2_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block9_sepconv2_bn", "inbound_nodes": [[["block9_sepconv2", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block9_sepconv3_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block9_sepconv3_act", "inbound_nodes": [[["block9_sepconv2_bn", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block9_sepconv3", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 339}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block9_sepconv3", "inbound_nodes": [[["block9_sepconv3_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block9_sepconv3_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block9_sepconv3_bn", "inbound_nodes": [[["block9_sepconv3", 0, 0, {}]]]}, {"class_name": "Add", "config": {"name": "add_8", "trainable": false, "dtype": "float32"}, "name": "add_8", "inbound_nodes": [[["block9_sepconv3_bn", 0, 0, {}], ["add_7", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block10_sepconv1_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block10_sepconv1_act", "inbound_nodes": [[["add_8", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block10_sepconv1", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 351}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block10_sepconv1", "inbound_nodes": [[["block10_sepconv1_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block10_sepconv1_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block10_sepconv1_bn", "inbound_nodes": [[["block10_sepconv1", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block10_sepconv2_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block10_sepconv2_act", "inbound_nodes": [[["block10_sepconv1_bn", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block10_sepconv2", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 362}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block10_sepconv2", "inbound_nodes": [[["block10_sepconv2_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block10_sepconv2_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block10_sepconv2_bn", "inbound_nodes": [[["block10_sepconv2", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block10_sepconv3_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block10_sepconv3_act", "inbound_nodes": [[["block10_sepconv2_bn", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block10_sepconv3", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 373}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block10_sepconv3", "inbound_nodes": [[["block10_sepconv3_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block10_sepconv3_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block10_sepconv3_bn", "inbound_nodes": [[["block10_sepconv3", 0, 0, {}]]]}, {"class_name": "Add", "config": {"name": "add_9", "trainable": false, "dtype": "float32"}, "name": "add_9", "inbound_nodes": [[["block10_sepconv3_bn", 0, 0, {}], ["add_8", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block11_sepconv1_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block11_sepconv1_act", "inbound_nodes": [[["add_9", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block11_sepconv1", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 385}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block11_sepconv1", "inbound_nodes": [[["block11_sepconv1_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block11_sepconv1_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block11_sepconv1_bn", "inbound_nodes": [[["block11_sepconv1", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block11_sepconv2_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block11_sepconv2_act", "inbound_nodes": [[["block11_sepconv1_bn", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block11_sepconv2", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 396}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block11_sepconv2", "inbound_nodes": [[["block11_sepconv2_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block11_sepconv2_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block11_sepconv2_bn", "inbound_nodes": [[["block11_sepconv2", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block11_sepconv3_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block11_sepconv3_act", "inbound_nodes": [[["block11_sepconv2_bn", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block11_sepconv3", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 407}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block11_sepconv3", "inbound_nodes": [[["block11_sepconv3_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block11_sepconv3_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block11_sepconv3_bn", "inbound_nodes": [[["block11_sepconv3", 0, 0, {}]]]}, {"class_name": "Add", "config": {"name": "add_10", "trainable": false, "dtype": "float32"}, "name": "add_10", "inbound_nodes": [[["block11_sepconv3_bn", 0, 0, {}], ["add_9", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block12_sepconv1_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block12_sepconv1_act", "inbound_nodes": [[["add_10", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block12_sepconv1", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 419}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block12_sepconv1", "inbound_nodes": [[["block12_sepconv1_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block12_sepconv1_bn", "trainable": false, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block12_sepconv1_bn", "inbound_nodes": [[["block12_sepconv1", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block12_sepconv2_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block12_sepconv2_act", "inbound_nodes": [[["block12_sepconv1_bn", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block12_sepconv2", "trainable": false, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 430}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block12_sepconv2", "inbound_nodes": [[["block12_sepconv2_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block12_sepconv2_bn", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block12_sepconv2_bn", "inbound_nodes": [[["block12_sepconv2", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block12_sepconv3_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block12_sepconv3_act", "inbound_nodes": [[["block12_sepconv2_bn", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block12_sepconv3", "trainable": true, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 441}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block12_sepconv3", "inbound_nodes": [[["block12_sepconv3_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block12_sepconv3_bn", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block12_sepconv3_bn", "inbound_nodes": [[["block12_sepconv3", 0, 0, {}]]]}, {"class_name": "Add", "config": {"name": "add_11", "trainable": false, "dtype": "float32"}, "name": "add_11", "inbound_nodes": [[["block12_sepconv3_bn", 0, 0, {}], ["add_10", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block13_sepconv1_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block13_sepconv1_act", "inbound_nodes": [[["add_11", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block13_sepconv1", "trainable": true, "dtype": "float32", "filters": 728, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 453}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block13_sepconv1", "inbound_nodes": [[["block13_sepconv1_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block13_sepconv1_bn", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block13_sepconv1_bn", "inbound_nodes": [[["block13_sepconv1", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block13_sepconv2_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block13_sepconv2_act", "inbound_nodes": [[["block13_sepconv1_bn", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block13_sepconv2", "trainable": true, "dtype": "float32", "filters": 1024, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 464}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block13_sepconv2", "inbound_nodes": [[["block13_sepconv2_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block13_sepconv2_bn", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block13_sepconv2_bn", "inbound_nodes": [[["block13_sepconv2", 0, 0, {}]]]}, {"class_name": "Conv2D", "config": {"name": "conv2d_6", "trainable": true, "dtype": "float32", "filters": 1024, "kernel_size": [1, 1], "strides": [2, 2], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "conv2d_6", "inbound_nodes": [[["add_11", 0, 0, {}]]]}, {"class_name": "MaxPooling2D", "config": {"name": "block13_pool", "trainable": false, "dtype": "float32", "pool_size": [3, 3], "padding": "same", "strides": [2, 2], "data_format": "channels_last"}, "name": "block13_pool", "inbound_nodes": [[["block13_sepconv2_bn", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_4", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "batch_normalization_4", "inbound_nodes": [[["conv2d_6", 0, 0, {}]]]}, {"class_name": "Add", "config": {"name": "add_12", "trainable": false, "dtype": "float32"}, "name": "add_12", "inbound_nodes": [[["block13_pool", 0, 0, {}], ["batch_normalization_4", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block14_sepconv1", "trainable": true, "dtype": "float32", "filters": 1536, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 484}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block14_sepconv1", "inbound_nodes": [[["add_12", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block14_sepconv1_bn", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block14_sepconv1_bn", "inbound_nodes": [[["block14_sepconv1", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block14_sepconv1_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block14_sepconv1_act", "inbound_nodes": [[["block14_sepconv1_bn", 0, 0, {}]]]}, {"class_name": "SeparableConv2D", "config": {"name": "block14_sepconv2", "trainable": true, "dtype": "float32", "filters": 2048, "kernel_size": [3, 3], "strides": [1, 1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "linear", "use_bias": false, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 495}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null, "depth_multiplier": 1, "depthwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "pointwise_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "depthwise_regularizer": null, "pointwise_regularizer": null, "depthwise_constraint": null, "pointwise_constraint": null}, "name": "block14_sepconv2", "inbound_nodes": [[["block14_sepconv1_act", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "block14_sepconv2_bn", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "block14_sepconv2_bn", "inbound_nodes": [[["block14_sepconv2", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "block14_sepconv2_act", "trainable": false, "dtype": "float32", "activation": "relu"}, "name": "block14_sepconv2_act", "inbound_nodes": [[["block14_sepconv2_bn", 0, 0, {}]]]}, {"class_name": "GlobalMaxPooling2D", "config": {"name": "global_max_pooling2d_2", "trainable": false, "dtype": "float32", "data_format": "channels_last"}, "name": "global_max_pooling2d_2", "inbound_nodes": [[["block14_sepconv2_act", 0, 0, {}]]]}], "input_layers": [["input_4", 0, 0]], "output_layers": [["global_max_pooling2d_2", 0, 0]]}, "name": "xception__1", "inbound_nodes": [[["conv2d_2__1", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_5", "trainable": true, "dtype": "float32", "axis": [1], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "batch_normalization_5", "inbound_nodes": [[["vgg19__0", 1, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_6", "trainable": true, "dtype": "float32", "axis": [1], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "batch_normalization_6", "inbound_nodes": [[["xception__1", 1, 0, {}]]]}, {"class_name": "Dropout", "config": {"name": "dropout_1", "trainable": true, "dtype": "float32", "rate": 0.3, "noise_shape": null, "seed": null}, "name": "dropout_1", "inbound_nodes": [[["batch_normalization_5", 0, 0, {}]]]}, {"class_name": "Dropout", "config": {"name": "dropout_2", "trainable": true, "dtype": "float32", "rate": 0.3, "noise_shape": null, "seed": null}, "name": "dropout_2", "inbound_nodes": [[["batch_normalization_6", 0, 0, {}]]]}, {"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "dtype": "float32", "units": 128, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "dense_1", "inbound_nodes": [[["dropout_1", 0, 0, {}]]]}, {"class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "dtype": "float32", "units": 128, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "dense_2", "inbound_nodes": [[["dropout_2", 0, 0, {}]]]}, {"class_name": "Multiply", "config": {"name": "multiply_1", "trainable": true, "dtype": "float32"}, "name": "multiply_1", "inbound_nodes": [[["dense_1", 0, 0, {}], ["dense_2", 0, 0, {}]]]}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_7", "trainable": true, "dtype": "float32", "axis": [1], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "name": "batch_normalization_7", "inbound_nodes": [[["multiply_1", 0, 0, {}]]]}, {"class_name": "Activation", "config": {"name": "activation_1", "trainable": true, "dtype": "float32", "activation": "relu"}, "name": "activation_1", "inbound_nodes": [[["batch_normalization_7", 0, 0, {}]]]}, {"class_name": "Dense", "config": {"name": "dense_3", "trainable": true, "dtype": "float32", "units": 2, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "name": "dense_3", "inbound_nodes": [[["activation_1", 0, 0, {}]]]}], "input_layers": [["data_freq_time", 0, 0], ["data_dm_time", 0, 0]], "output_layers": [["dense_3", 0, 0]]}, "keras_version": "2.5.0", "backend": "tensorflow"}
--------------------------------------------------------------------------------
/fetch/models/g_FT_VGG19_3_DMT_VGG16_1_128/ft_VGG19_3_dt_VGG16_1_128.yaml:
--------------------------------------------------------------------------------
1 | backend: tensorflow
2 | class_name: Model
3 | config:
4 | input_layers:
5 | - [data_freq_time, 0, 0]
6 | - [data_dm_time, 0, 0]
7 | layers:
8 | - class_name: InputLayer
9 | config:
10 | batch_input_shape: !!python/tuple [null, 256, 256, 1]
11 | dtype: float32
12 | name: data_freq_time
13 | sparse: false
14 | inbound_nodes: []
15 | name: data_freq_time
16 | - class_name: InputLayer
17 | config:
18 | batch_input_shape: !!python/tuple [null, 256, 256, 1]
19 | dtype: float32
20 | name: data_dm_time
21 | sparse: false
22 | inbound_nodes: []
23 | name: data_dm_time
24 | - class_name: Conv2D
25 | config:
26 | activation: relu
27 | activity_regularizer: null
28 | bias_constraint: null
29 | bias_initializer:
30 | class_name: Zeros
31 | config: {}
32 | bias_regularizer: null
33 | data_format: channels_last
34 | dilation_rate: &id001 !!python/tuple [1, 1]
35 | filters: 3
36 | kernel_constraint: null
37 | kernel_initializer:
38 | class_name: VarianceScaling
39 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
40 | kernel_regularizer: null
41 | kernel_size: &id002 !!python/tuple [2, 2]
42 | name: conv2d_1__0
43 | padding: valid
44 | strides: &id003 !!python/tuple [1, 1]
45 | trainable: true
46 | use_bias: true
47 | inbound_nodes:
48 | - - - data_freq_time
49 | - 0
50 | - 0
51 | - {}
52 | name: conv2d_1__0
53 | - class_name: Conv2D
54 | config:
55 | activation: relu
56 | activity_regularizer: null
57 | bias_constraint: null
58 | bias_initializer:
59 | class_name: Zeros
60 | config: {}
61 | bias_regularizer: null
62 | data_format: channels_last
63 | dilation_rate: *id001
64 | filters: 3
65 | kernel_constraint: null
66 | kernel_initializer:
67 | class_name: VarianceScaling
68 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
69 | kernel_regularizer: null
70 | kernel_size: *id002
71 | name: conv2d_2__1
72 | padding: valid
73 | strides: *id003
74 | trainable: true
75 | use_bias: true
76 | inbound_nodes:
77 | - - - data_dm_time
78 | - 0
79 | - 0
80 | - {}
81 | name: conv2d_2__1
82 | - class_name: Model
83 | config:
84 | input_layers:
85 | - [input_2, 0, 0]
86 | layers:
87 | - class_name: InputLayer
88 | config:
89 | batch_input_shape: !!python/tuple [null, null, null, 3]
90 | dtype: float32
91 | name: input_2
92 | sparse: false
93 | inbound_nodes: []
94 | name: input_2
95 | - class_name: Conv2D
96 | config:
97 | activation: relu
98 | activity_regularizer: null
99 | bias_constraint: null
100 | bias_initializer:
101 | class_name: Zeros
102 | config: {}
103 | bias_regularizer: null
104 | data_format: channels_last
105 | dilation_rate: *id001
106 | filters: 64
107 | kernel_constraint: null
108 | kernel_initializer:
109 | class_name: VarianceScaling
110 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
111 | kernel_regularizer: null
112 | kernel_size: !!python/tuple [3, 3]
113 | name: block1_conv1
114 | padding: same
115 | strides: &id004 !!python/tuple [1, 1]
116 | trainable: &id005 !!python/object/apply:numpy.core.multiarray.scalar
117 | - &id006 !!python/object/apply:numpy.dtype
118 | args: [b1, 0, 1]
119 | state: !!python/tuple [3, '|', null, null, null, -1, -1, 0]
120 | - !!binary |
121 | AA==
122 | use_bias: true
123 | inbound_nodes:
124 | - - - input_2
125 | - 0
126 | - 0
127 | - {}
128 | name: block1_conv1
129 | - class_name: Conv2D
130 | config:
131 | activation: relu
132 | activity_regularizer: null
133 | bias_constraint: null
134 | bias_initializer:
135 | class_name: Zeros
136 | config: {}
137 | bias_regularizer: null
138 | data_format: channels_last
139 | dilation_rate: *id001
140 | filters: 64
141 | kernel_constraint: null
142 | kernel_initializer:
143 | class_name: VarianceScaling
144 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
145 | kernel_regularizer: null
146 | kernel_size: !!python/tuple [3, 3]
147 | name: block1_conv2
148 | padding: same
149 | strides: *id004
150 | trainable: *id005
151 | use_bias: true
152 | inbound_nodes:
153 | - - - block1_conv1
154 | - 0
155 | - 0
156 | - {}
157 | name: block1_conv2
158 | - class_name: MaxPooling2D
159 | config:
160 | data_format: channels_last
161 | name: block1_pool
162 | padding: valid
163 | pool_size: !!python/tuple [2, 2]
164 | strides: !!python/tuple [2, 2]
165 | trainable: *id005
166 | inbound_nodes:
167 | - - - block1_conv2
168 | - 0
169 | - 0
170 | - {}
171 | name: block1_pool
172 | - class_name: Conv2D
173 | config:
174 | activation: relu
175 | activity_regularizer: null
176 | bias_constraint: null
177 | bias_initializer:
178 | class_name: Zeros
179 | config: {}
180 | bias_regularizer: null
181 | data_format: channels_last
182 | dilation_rate: *id001
183 | filters: 128
184 | kernel_constraint: null
185 | kernel_initializer:
186 | class_name: VarianceScaling
187 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
188 | kernel_regularizer: null
189 | kernel_size: !!python/tuple [3, 3]
190 | name: block2_conv1
191 | padding: same
192 | strides: *id004
193 | trainable: *id005
194 | use_bias: true
195 | inbound_nodes:
196 | - - - block1_pool
197 | - 0
198 | - 0
199 | - {}
200 | name: block2_conv1
201 | - class_name: Conv2D
202 | config:
203 | activation: relu
204 | activity_regularizer: null
205 | bias_constraint: null
206 | bias_initializer:
207 | class_name: Zeros
208 | config: {}
209 | bias_regularizer: null
210 | data_format: channels_last
211 | dilation_rate: *id001
212 | filters: 128
213 | kernel_constraint: null
214 | kernel_initializer:
215 | class_name: VarianceScaling
216 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
217 | kernel_regularizer: null
218 | kernel_size: !!python/tuple [3, 3]
219 | name: block2_conv2
220 | padding: same
221 | strides: *id004
222 | trainable: *id005
223 | use_bias: true
224 | inbound_nodes:
225 | - - - block2_conv1
226 | - 0
227 | - 0
228 | - {}
229 | name: block2_conv2
230 | - class_name: MaxPooling2D
231 | config:
232 | data_format: channels_last
233 | name: block2_pool
234 | padding: valid
235 | pool_size: !!python/tuple [2, 2]
236 | strides: !!python/tuple [2, 2]
237 | trainable: *id005
238 | inbound_nodes:
239 | - - - block2_conv2
240 | - 0
241 | - 0
242 | - {}
243 | name: block2_pool
244 | - class_name: Conv2D
245 | config:
246 | activation: relu
247 | activity_regularizer: null
248 | bias_constraint: null
249 | bias_initializer:
250 | class_name: Zeros
251 | config: {}
252 | bias_regularizer: null
253 | data_format: channels_last
254 | dilation_rate: *id001
255 | filters: 256
256 | kernel_constraint: null
257 | kernel_initializer:
258 | class_name: VarianceScaling
259 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
260 | kernel_regularizer: null
261 | kernel_size: !!python/tuple [3, 3]
262 | name: block3_conv1
263 | padding: same
264 | strides: *id004
265 | trainable: *id005
266 | use_bias: true
267 | inbound_nodes:
268 | - - - block2_pool
269 | - 0
270 | - 0
271 | - {}
272 | name: block3_conv1
273 | - class_name: Conv2D
274 | config:
275 | activation: relu
276 | activity_regularizer: null
277 | bias_constraint: null
278 | bias_initializer:
279 | class_name: Zeros
280 | config: {}
281 | bias_regularizer: null
282 | data_format: channels_last
283 | dilation_rate: *id001
284 | filters: 256
285 | kernel_constraint: null
286 | kernel_initializer:
287 | class_name: VarianceScaling
288 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
289 | kernel_regularizer: null
290 | kernel_size: !!python/tuple [3, 3]
291 | name: block3_conv2
292 | padding: same
293 | strides: *id004
294 | trainable: *id005
295 | use_bias: true
296 | inbound_nodes:
297 | - - - block3_conv1
298 | - 0
299 | - 0
300 | - {}
301 | name: block3_conv2
302 | - class_name: Conv2D
303 | config:
304 | activation: relu
305 | activity_regularizer: null
306 | bias_constraint: null
307 | bias_initializer:
308 | class_name: Zeros
309 | config: {}
310 | bias_regularizer: null
311 | data_format: channels_last
312 | dilation_rate: *id001
313 | filters: 256
314 | kernel_constraint: null
315 | kernel_initializer:
316 | class_name: VarianceScaling
317 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
318 | kernel_regularizer: null
319 | kernel_size: !!python/tuple [3, 3]
320 | name: block3_conv3
321 | padding: same
322 | strides: *id004
323 | trainable: *id005
324 | use_bias: true
325 | inbound_nodes:
326 | - - - block3_conv2
327 | - 0
328 | - 0
329 | - {}
330 | name: block3_conv3
331 | - class_name: Conv2D
332 | config:
333 | activation: relu
334 | activity_regularizer: null
335 | bias_constraint: null
336 | bias_initializer:
337 | class_name: Zeros
338 | config: {}
339 | bias_regularizer: null
340 | data_format: channels_last
341 | dilation_rate: *id001
342 | filters: 256
343 | kernel_constraint: null
344 | kernel_initializer:
345 | class_name: VarianceScaling
346 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
347 | kernel_regularizer: null
348 | kernel_size: !!python/tuple [3, 3]
349 | name: block3_conv4
350 | padding: same
351 | strides: *id004
352 | trainable: *id005
353 | use_bias: true
354 | inbound_nodes:
355 | - - - block3_conv3
356 | - 0
357 | - 0
358 | - {}
359 | name: block3_conv4
360 | - class_name: MaxPooling2D
361 | config:
362 | data_format: channels_last
363 | name: block3_pool
364 | padding: valid
365 | pool_size: !!python/tuple [2, 2]
366 | strides: !!python/tuple [2, 2]
367 | trainable: *id005
368 | inbound_nodes:
369 | - - - block3_conv4
370 | - 0
371 | - 0
372 | - {}
373 | name: block3_pool
374 | - class_name: Conv2D
375 | config:
376 | activation: relu
377 | activity_regularizer: null
378 | bias_constraint: null
379 | bias_initializer:
380 | class_name: Zeros
381 | config: {}
382 | bias_regularizer: null
383 | data_format: channels_last
384 | dilation_rate: *id001
385 | filters: 512
386 | kernel_constraint: null
387 | kernel_initializer:
388 | class_name: VarianceScaling
389 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
390 | kernel_regularizer: null
391 | kernel_size: !!python/tuple [3, 3]
392 | name: block4_conv1
393 | padding: same
394 | strides: *id004
395 | trainable: *id005
396 | use_bias: true
397 | inbound_nodes:
398 | - - - block3_pool
399 | - 0
400 | - 0
401 | - {}
402 | name: block4_conv1
403 | - class_name: Conv2D
404 | config:
405 | activation: relu
406 | activity_regularizer: null
407 | bias_constraint: null
408 | bias_initializer:
409 | class_name: Zeros
410 | config: {}
411 | bias_regularizer: null
412 | data_format: channels_last
413 | dilation_rate: *id001
414 | filters: 512
415 | kernel_constraint: null
416 | kernel_initializer:
417 | class_name: VarianceScaling
418 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
419 | kernel_regularizer: null
420 | kernel_size: !!python/tuple [3, 3]
421 | name: block4_conv2
422 | padding: same
423 | strides: *id004
424 | trainable: *id005
425 | use_bias: true
426 | inbound_nodes:
427 | - - - block4_conv1
428 | - 0
429 | - 0
430 | - {}
431 | name: block4_conv2
432 | - class_name: Conv2D
433 | config:
434 | activation: relu
435 | activity_regularizer: null
436 | bias_constraint: null
437 | bias_initializer:
438 | class_name: Zeros
439 | config: {}
440 | bias_regularizer: null
441 | data_format: channels_last
442 | dilation_rate: *id001
443 | filters: 512
444 | kernel_constraint: null
445 | kernel_initializer:
446 | class_name: VarianceScaling
447 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
448 | kernel_regularizer: null
449 | kernel_size: !!python/tuple [3, 3]
450 | name: block4_conv3
451 | padding: same
452 | strides: *id004
453 | trainable: *id005
454 | use_bias: true
455 | inbound_nodes:
456 | - - - block4_conv2
457 | - 0
458 | - 0
459 | - {}
460 | name: block4_conv3
461 | - class_name: Conv2D
462 | config:
463 | activation: relu
464 | activity_regularizer: null
465 | bias_constraint: null
466 | bias_initializer:
467 | class_name: Zeros
468 | config: {}
469 | bias_regularizer: null
470 | data_format: channels_last
471 | dilation_rate: *id001
472 | filters: 512
473 | kernel_constraint: null
474 | kernel_initializer:
475 | class_name: VarianceScaling
476 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
477 | kernel_regularizer: null
478 | kernel_size: !!python/tuple [3, 3]
479 | name: block4_conv4
480 | padding: same
481 | strides: *id004
482 | trainable: *id005
483 | use_bias: true
484 | inbound_nodes:
485 | - - - block4_conv3
486 | - 0
487 | - 0
488 | - {}
489 | name: block4_conv4
490 | - class_name: MaxPooling2D
491 | config:
492 | data_format: channels_last
493 | name: block4_pool
494 | padding: valid
495 | pool_size: !!python/tuple [2, 2]
496 | strides: !!python/tuple [2, 2]
497 | trainable: *id005
498 | inbound_nodes:
499 | - - - block4_conv4
500 | - 0
501 | - 0
502 | - {}
503 | name: block4_pool
504 | - class_name: Conv2D
505 | config:
506 | activation: relu
507 | activity_regularizer: null
508 | bias_constraint: null
509 | bias_initializer:
510 | class_name: Zeros
511 | config: {}
512 | bias_regularizer: null
513 | data_format: channels_last
514 | dilation_rate: *id001
515 | filters: 512
516 | kernel_constraint: null
517 | kernel_initializer:
518 | class_name: VarianceScaling
519 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
520 | kernel_regularizer: null
521 | kernel_size: !!python/tuple [3, 3]
522 | name: block5_conv1
523 | padding: same
524 | strides: *id004
525 | trainable: *id005
526 | use_bias: true
527 | inbound_nodes:
528 | - - - block4_pool
529 | - 0
530 | - 0
531 | - {}
532 | name: block5_conv1
533 | - class_name: Conv2D
534 | config:
535 | activation: relu
536 | activity_regularizer: null
537 | bias_constraint: null
538 | bias_initializer:
539 | class_name: Zeros
540 | config: {}
541 | bias_regularizer: null
542 | data_format: channels_last
543 | dilation_rate: *id001
544 | filters: 512
545 | kernel_constraint: null
546 | kernel_initializer:
547 | class_name: VarianceScaling
548 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
549 | kernel_regularizer: null
550 | kernel_size: !!python/tuple [3, 3]
551 | name: block5_conv2
552 | padding: same
553 | strides: *id004
554 | trainable: &id007 !!python/object/apply:numpy.core.multiarray.scalar
555 | - *id006
556 | - !!binary |
557 | AQ==
558 | use_bias: true
559 | inbound_nodes:
560 | - - - block5_conv1
561 | - 0
562 | - 0
563 | - {}
564 | name: block5_conv2
565 | - class_name: Conv2D
566 | config:
567 | activation: relu
568 | activity_regularizer: null
569 | bias_constraint: null
570 | bias_initializer:
571 | class_name: Zeros
572 | config: {}
573 | bias_regularizer: null
574 | data_format: channels_last
575 | dilation_rate: *id001
576 | filters: 512
577 | kernel_constraint: null
578 | kernel_initializer:
579 | class_name: VarianceScaling
580 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
581 | kernel_regularizer: null
582 | kernel_size: !!python/tuple [3, 3]
583 | name: block5_conv3
584 | padding: same
585 | strides: *id004
586 | trainable: *id007
587 | use_bias: true
588 | inbound_nodes:
589 | - - - block5_conv2
590 | - 0
591 | - 0
592 | - {}
593 | name: block5_conv3
594 | - class_name: Conv2D
595 | config:
596 | activation: relu
597 | activity_regularizer: null
598 | bias_constraint: null
599 | bias_initializer:
600 | class_name: Zeros
601 | config: {}
602 | bias_regularizer: null
603 | data_format: channels_last
604 | dilation_rate: *id001
605 | filters: 512
606 | kernel_constraint: null
607 | kernel_initializer:
608 | class_name: VarianceScaling
609 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
610 | kernel_regularizer: null
611 | kernel_size: !!python/tuple [3, 3]
612 | name: block5_conv4
613 | padding: same
614 | strides: *id004
615 | trainable: *id007
616 | use_bias: true
617 | inbound_nodes:
618 | - - - block5_conv3
619 | - 0
620 | - 0
621 | - {}
622 | name: block5_conv4
623 | - class_name: MaxPooling2D
624 | config:
625 | data_format: channels_last
626 | name: block5_pool
627 | padding: valid
628 | pool_size: !!python/tuple [2, 2]
629 | strides: !!python/tuple [2, 2]
630 | trainable: *id005
631 | inbound_nodes:
632 | - - - block5_conv4
633 | - 0
634 | - 0
635 | - {}
636 | name: block5_pool
637 | - class_name: GlobalMaxPooling2D
638 | config:
639 | data_format: channels_last
640 | name: global_max_pooling2d_1
641 | trainable: *id005
642 | inbound_nodes:
643 | - - - block5_pool
644 | - 0
645 | - 0
646 | - {}
647 | name: global_max_pooling2d_1
648 | name: vgg19__0
649 | output_layers:
650 | - [global_max_pooling2d_1, 0, 0]
651 | inbound_nodes:
652 | - - - conv2d_1__0
653 | - 0
654 | - 0
655 | - {}
656 | name: vgg19__0
657 | - class_name: Model
658 | config:
659 | input_layers:
660 | - [input_4, 0, 0]
661 | layers:
662 | - class_name: InputLayer
663 | config:
664 | batch_input_shape: !!python/tuple [null, null, null, 3]
665 | dtype: float32
666 | name: input_4
667 | sparse: false
668 | inbound_nodes: []
669 | name: input_4
670 | - class_name: Conv2D
671 | config:
672 | activation: relu
673 | activity_regularizer: null
674 | bias_constraint: null
675 | bias_initializer:
676 | class_name: Zeros
677 | config: {}
678 | bias_regularizer: null
679 | data_format: channels_last
680 | dilation_rate: *id001
681 | filters: 64
682 | kernel_constraint: null
683 | kernel_initializer:
684 | class_name: VarianceScaling
685 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
686 | kernel_regularizer: null
687 | kernel_size: !!python/tuple [3, 3]
688 | name: block1_conv1
689 | padding: same
690 | strides: *id004
691 | trainable: *id005
692 | use_bias: true
693 | inbound_nodes:
694 | - - - input_4
695 | - 0
696 | - 0
697 | - {}
698 | name: block1_conv1
699 | - class_name: Conv2D
700 | config:
701 | activation: relu
702 | activity_regularizer: null
703 | bias_constraint: null
704 | bias_initializer:
705 | class_name: Zeros
706 | config: {}
707 | bias_regularizer: null
708 | data_format: channels_last
709 | dilation_rate: *id001
710 | filters: 64
711 | kernel_constraint: null
712 | kernel_initializer:
713 | class_name: VarianceScaling
714 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
715 | kernel_regularizer: null
716 | kernel_size: !!python/tuple [3, 3]
717 | name: block1_conv2
718 | padding: same
719 | strides: *id004
720 | trainable: *id005
721 | use_bias: true
722 | inbound_nodes:
723 | - - - block1_conv1
724 | - 0
725 | - 0
726 | - {}
727 | name: block1_conv2
728 | - class_name: MaxPooling2D
729 | config:
730 | data_format: channels_last
731 | name: block1_pool
732 | padding: valid
733 | pool_size: !!python/tuple [2, 2]
734 | strides: !!python/tuple [2, 2]
735 | trainable: *id005
736 | inbound_nodes:
737 | - - - block1_conv2
738 | - 0
739 | - 0
740 | - {}
741 | name: block1_pool
742 | - class_name: Conv2D
743 | config:
744 | activation: relu
745 | activity_regularizer: null
746 | bias_constraint: null
747 | bias_initializer:
748 | class_name: Zeros
749 | config: {}
750 | bias_regularizer: null
751 | data_format: channels_last
752 | dilation_rate: *id001
753 | filters: 128
754 | kernel_constraint: null
755 | kernel_initializer:
756 | class_name: VarianceScaling
757 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
758 | kernel_regularizer: null
759 | kernel_size: !!python/tuple [3, 3]
760 | name: block2_conv1
761 | padding: same
762 | strides: *id004
763 | trainable: *id005
764 | use_bias: true
765 | inbound_nodes:
766 | - - - block1_pool
767 | - 0
768 | - 0
769 | - {}
770 | name: block2_conv1
771 | - class_name: Conv2D
772 | config:
773 | activation: relu
774 | activity_regularizer: null
775 | bias_constraint: null
776 | bias_initializer:
777 | class_name: Zeros
778 | config: {}
779 | bias_regularizer: null
780 | data_format: channels_last
781 | dilation_rate: *id001
782 | filters: 128
783 | kernel_constraint: null
784 | kernel_initializer:
785 | class_name: VarianceScaling
786 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
787 | kernel_regularizer: null
788 | kernel_size: !!python/tuple [3, 3]
789 | name: block2_conv2
790 | padding: same
791 | strides: *id004
792 | trainable: *id005
793 | use_bias: true
794 | inbound_nodes:
795 | - - - block2_conv1
796 | - 0
797 | - 0
798 | - {}
799 | name: block2_conv2
800 | - class_name: MaxPooling2D
801 | config:
802 | data_format: channels_last
803 | name: block2_pool
804 | padding: valid
805 | pool_size: !!python/tuple [2, 2]
806 | strides: !!python/tuple [2, 2]
807 | trainable: *id005
808 | inbound_nodes:
809 | - - - block2_conv2
810 | - 0
811 | - 0
812 | - {}
813 | name: block2_pool
814 | - class_name: Conv2D
815 | config:
816 | activation: relu
817 | activity_regularizer: null
818 | bias_constraint: null
819 | bias_initializer:
820 | class_name: Zeros
821 | config: {}
822 | bias_regularizer: null
823 | data_format: channels_last
824 | dilation_rate: *id001
825 | filters: 256
826 | kernel_constraint: null
827 | kernel_initializer:
828 | class_name: VarianceScaling
829 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
830 | kernel_regularizer: null
831 | kernel_size: !!python/tuple [3, 3]
832 | name: block3_conv1
833 | padding: same
834 | strides: *id004
835 | trainable: *id005
836 | use_bias: true
837 | inbound_nodes:
838 | - - - block2_pool
839 | - 0
840 | - 0
841 | - {}
842 | name: block3_conv1
843 | - class_name: Conv2D
844 | config:
845 | activation: relu
846 | activity_regularizer: null
847 | bias_constraint: null
848 | bias_initializer:
849 | class_name: Zeros
850 | config: {}
851 | bias_regularizer: null
852 | data_format: channels_last
853 | dilation_rate: *id001
854 | filters: 256
855 | kernel_constraint: null
856 | kernel_initializer:
857 | class_name: VarianceScaling
858 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
859 | kernel_regularizer: null
860 | kernel_size: !!python/tuple [3, 3]
861 | name: block3_conv2
862 | padding: same
863 | strides: *id004
864 | trainable: *id005
865 | use_bias: true
866 | inbound_nodes:
867 | - - - block3_conv1
868 | - 0
869 | - 0
870 | - {}
871 | name: block3_conv2
872 | - class_name: Conv2D
873 | config:
874 | activation: relu
875 | activity_regularizer: null
876 | bias_constraint: null
877 | bias_initializer:
878 | class_name: Zeros
879 | config: {}
880 | bias_regularizer: null
881 | data_format: channels_last
882 | dilation_rate: *id001
883 | filters: 256
884 | kernel_constraint: null
885 | kernel_initializer:
886 | class_name: VarianceScaling
887 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
888 | kernel_regularizer: null
889 | kernel_size: !!python/tuple [3, 3]
890 | name: block3_conv3
891 | padding: same
892 | strides: *id004
893 | trainable: *id005
894 | use_bias: true
895 | inbound_nodes:
896 | - - - block3_conv2
897 | - 0
898 | - 0
899 | - {}
900 | name: block3_conv3
901 | - class_name: MaxPooling2D
902 | config:
903 | data_format: channels_last
904 | name: block3_pool
905 | padding: valid
906 | pool_size: !!python/tuple [2, 2]
907 | strides: !!python/tuple [2, 2]
908 | trainable: *id005
909 | inbound_nodes:
910 | - - - block3_conv3
911 | - 0
912 | - 0
913 | - {}
914 | name: block3_pool
915 | - class_name: Conv2D
916 | config:
917 | activation: relu
918 | activity_regularizer: null
919 | bias_constraint: null
920 | bias_initializer:
921 | class_name: Zeros
922 | config: {}
923 | bias_regularizer: null
924 | data_format: channels_last
925 | dilation_rate: *id001
926 | filters: 512
927 | kernel_constraint: null
928 | kernel_initializer:
929 | class_name: VarianceScaling
930 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
931 | kernel_regularizer: null
932 | kernel_size: !!python/tuple [3, 3]
933 | name: block4_conv1
934 | padding: same
935 | strides: *id004
936 | trainable: *id005
937 | use_bias: true
938 | inbound_nodes:
939 | - - - block3_pool
940 | - 0
941 | - 0
942 | - {}
943 | name: block4_conv1
944 | - class_name: Conv2D
945 | config:
946 | activation: relu
947 | activity_regularizer: null
948 | bias_constraint: null
949 | bias_initializer:
950 | class_name: Zeros
951 | config: {}
952 | bias_regularizer: null
953 | data_format: channels_last
954 | dilation_rate: *id001
955 | filters: 512
956 | kernel_constraint: null
957 | kernel_initializer:
958 | class_name: VarianceScaling
959 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
960 | kernel_regularizer: null
961 | kernel_size: !!python/tuple [3, 3]
962 | name: block4_conv2
963 | padding: same
964 | strides: *id004
965 | trainable: *id005
966 | use_bias: true
967 | inbound_nodes:
968 | - - - block4_conv1
969 | - 0
970 | - 0
971 | - {}
972 | name: block4_conv2
973 | - class_name: Conv2D
974 | config:
975 | activation: relu
976 | activity_regularizer: null
977 | bias_constraint: null
978 | bias_initializer:
979 | class_name: Zeros
980 | config: {}
981 | bias_regularizer: null
982 | data_format: channels_last
983 | dilation_rate: *id001
984 | filters: 512
985 | kernel_constraint: null
986 | kernel_initializer:
987 | class_name: VarianceScaling
988 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
989 | kernel_regularizer: null
990 | kernel_size: !!python/tuple [3, 3]
991 | name: block4_conv3
992 | padding: same
993 | strides: *id004
994 | trainable: *id005
995 | use_bias: true
996 | inbound_nodes:
997 | - - - block4_conv2
998 | - 0
999 | - 0
1000 | - {}
1001 | name: block4_conv3
1002 | - class_name: MaxPooling2D
1003 | config:
1004 | data_format: channels_last
1005 | name: block4_pool
1006 | padding: valid
1007 | pool_size: !!python/tuple [2, 2]
1008 | strides: !!python/tuple [2, 2]
1009 | trainable: *id005
1010 | inbound_nodes:
1011 | - - - block4_conv3
1012 | - 0
1013 | - 0
1014 | - {}
1015 | name: block4_pool
1016 | - class_name: Conv2D
1017 | config:
1018 | activation: relu
1019 | activity_regularizer: null
1020 | bias_constraint: null
1021 | bias_initializer:
1022 | class_name: Zeros
1023 | config: {}
1024 | bias_regularizer: null
1025 | data_format: channels_last
1026 | dilation_rate: *id001
1027 | filters: 512
1028 | kernel_constraint: null
1029 | kernel_initializer:
1030 | class_name: VarianceScaling
1031 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
1032 | kernel_regularizer: null
1033 | kernel_size: !!python/tuple [3, 3]
1034 | name: block5_conv1
1035 | padding: same
1036 | strides: *id004
1037 | trainable: *id005
1038 | use_bias: true
1039 | inbound_nodes:
1040 | - - - block4_pool
1041 | - 0
1042 | - 0
1043 | - {}
1044 | name: block5_conv1
1045 | - class_name: Conv2D
1046 | config:
1047 | activation: relu
1048 | activity_regularizer: null
1049 | bias_constraint: null
1050 | bias_initializer:
1051 | class_name: Zeros
1052 | config: {}
1053 | bias_regularizer: null
1054 | data_format: channels_last
1055 | dilation_rate: *id001
1056 | filters: 512
1057 | kernel_constraint: null
1058 | kernel_initializer:
1059 | class_name: VarianceScaling
1060 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
1061 | kernel_regularizer: null
1062 | kernel_size: !!python/tuple [3, 3]
1063 | name: block5_conv2
1064 | padding: same
1065 | strides: *id004
1066 | trainable: *id005
1067 | use_bias: true
1068 | inbound_nodes:
1069 | - - - block5_conv1
1070 | - 0
1071 | - 0
1072 | - {}
1073 | name: block5_conv2
1074 | - class_name: Conv2D
1075 | config:
1076 | activation: relu
1077 | activity_regularizer: null
1078 | bias_constraint: null
1079 | bias_initializer:
1080 | class_name: Zeros
1081 | config: {}
1082 | bias_regularizer: null
1083 | data_format: channels_last
1084 | dilation_rate: *id001
1085 | filters: 512
1086 | kernel_constraint: null
1087 | kernel_initializer:
1088 | class_name: VarianceScaling
1089 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
1090 | kernel_regularizer: null
1091 | kernel_size: !!python/tuple [3, 3]
1092 | name: block5_conv3
1093 | padding: same
1094 | strides: *id004
1095 | trainable: *id007
1096 | use_bias: true
1097 | inbound_nodes:
1098 | - - - block5_conv2
1099 | - 0
1100 | - 0
1101 | - {}
1102 | name: block5_conv3
1103 | - class_name: MaxPooling2D
1104 | config:
1105 | data_format: channels_last
1106 | name: block5_pool
1107 | padding: valid
1108 | pool_size: !!python/tuple [2, 2]
1109 | strides: !!python/tuple [2, 2]
1110 | trainable: *id005
1111 | inbound_nodes:
1112 | - - - block5_conv3
1113 | - 0
1114 | - 0
1115 | - {}
1116 | name: block5_pool
1117 | - class_name: GlobalMaxPooling2D
1118 | config:
1119 | data_format: channels_last
1120 | name: global_max_pooling2d_2
1121 | trainable: *id005
1122 | inbound_nodes:
1123 | - - - block5_pool
1124 | - 0
1125 | - 0
1126 | - {}
1127 | name: global_max_pooling2d_2
1128 | name: vgg16__1
1129 | output_layers:
1130 | - [global_max_pooling2d_2, 0, 0]
1131 | inbound_nodes:
1132 | - - - conv2d_2__1
1133 | - 0
1134 | - 0
1135 | - {}
1136 | name: vgg16__1
1137 | - class_name: BatchNormalization
1138 | config:
1139 | axis: -1
1140 | beta_constraint: null
1141 | beta_initializer:
1142 | class_name: Zeros
1143 | config: {}
1144 | beta_regularizer: null
1145 | center: true
1146 | epsilon: 0.001
1147 | gamma_constraint: null
1148 | gamma_initializer:
1149 | class_name: Ones
1150 | config: {}
1151 | gamma_regularizer: null
1152 | momentum: 0.99
1153 | moving_mean_initializer:
1154 | class_name: Zeros
1155 | config: {}
1156 | moving_variance_initializer:
1157 | class_name: Ones
1158 | config: {}
1159 | name: batch_normalization_1
1160 | scale: true
1161 | trainable: true
1162 | inbound_nodes:
1163 | - - - vgg19__0
1164 | - 1
1165 | - 0
1166 | - {}
1167 | name: batch_normalization_1
1168 | - class_name: BatchNormalization
1169 | config:
1170 | axis: -1
1171 | beta_constraint: null
1172 | beta_initializer:
1173 | class_name: Zeros
1174 | config: {}
1175 | beta_regularizer: null
1176 | center: true
1177 | epsilon: 0.001
1178 | gamma_constraint: null
1179 | gamma_initializer:
1180 | class_name: Ones
1181 | config: {}
1182 | gamma_regularizer: null
1183 | momentum: 0.99
1184 | moving_mean_initializer:
1185 | class_name: Zeros
1186 | config: {}
1187 | moving_variance_initializer:
1188 | class_name: Ones
1189 | config: {}
1190 | name: batch_normalization_2
1191 | scale: true
1192 | trainable: true
1193 | inbound_nodes:
1194 | - - - vgg16__1
1195 | - 1
1196 | - 0
1197 | - {}
1198 | name: batch_normalization_2
1199 | - class_name: Dropout
1200 | config: {name: dropout_1, noise_shape: null, rate: 0.3, seed: null, trainable: true}
1201 | inbound_nodes:
1202 | - - - batch_normalization_1
1203 | - 0
1204 | - 0
1205 | - {}
1206 | name: dropout_1
1207 | - class_name: Dropout
1208 | config: {name: dropout_2, noise_shape: null, rate: 0.3, seed: null, trainable: true}
1209 | inbound_nodes:
1210 | - - - batch_normalization_2
1211 | - 0
1212 | - 0
1213 | - {}
1214 | name: dropout_2
1215 | - class_name: Dense
1216 | config:
1217 | activation: linear
1218 | activity_regularizer: null
1219 | bias_constraint: null
1220 | bias_initializer:
1221 | class_name: Zeros
1222 | config: {}
1223 | bias_regularizer: null
1224 | kernel_constraint: null
1225 | kernel_initializer:
1226 | class_name: VarianceScaling
1227 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
1228 | kernel_regularizer: null
1229 | name: dense_1
1230 | trainable: true
1231 | units: 128
1232 | use_bias: true
1233 | inbound_nodes:
1234 | - - - dropout_1
1235 | - 0
1236 | - 0
1237 | - {}
1238 | name: dense_1
1239 | - class_name: Dense
1240 | config:
1241 | activation: linear
1242 | activity_regularizer: null
1243 | bias_constraint: null
1244 | bias_initializer:
1245 | class_name: Zeros
1246 | config: {}
1247 | bias_regularizer: null
1248 | kernel_constraint: null
1249 | kernel_initializer:
1250 | class_name: VarianceScaling
1251 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
1252 | kernel_regularizer: null
1253 | name: dense_2
1254 | trainable: true
1255 | units: 128
1256 | use_bias: true
1257 | inbound_nodes:
1258 | - - - dropout_2
1259 | - 0
1260 | - 0
1261 | - {}
1262 | name: dense_2
1263 | - class_name: Multiply
1264 | config: {name: multiply_1, trainable: true}
1265 | inbound_nodes:
1266 | - - - dense_1
1267 | - 0
1268 | - 0
1269 | - &id008 {}
1270 | - - dense_2
1271 | - 0
1272 | - 0
1273 | - *id008
1274 | name: multiply_1
1275 | - class_name: BatchNormalization
1276 | config:
1277 | axis: -1
1278 | beta_constraint: null
1279 | beta_initializer:
1280 | class_name: Zeros
1281 | config: {}
1282 | beta_regularizer: null
1283 | center: true
1284 | epsilon: 0.001
1285 | gamma_constraint: null
1286 | gamma_initializer:
1287 | class_name: Ones
1288 | config: {}
1289 | gamma_regularizer: null
1290 | momentum: 0.99
1291 | moving_mean_initializer:
1292 | class_name: Zeros
1293 | config: {}
1294 | moving_variance_initializer:
1295 | class_name: Ones
1296 | config: {}
1297 | name: batch_normalization_3
1298 | scale: true
1299 | trainable: true
1300 | inbound_nodes:
1301 | - - - multiply_1
1302 | - 0
1303 | - 0
1304 | - {}
1305 | name: batch_normalization_3
1306 | - class_name: Activation
1307 | config: {activation: relu, name: activation_1, trainable: true}
1308 | inbound_nodes:
1309 | - - - batch_normalization_3
1310 | - 0
1311 | - 0
1312 | - {}
1313 | name: activation_1
1314 | - class_name: Dense
1315 | config:
1316 | activation: softmax
1317 | activity_regularizer: null
1318 | bias_constraint: null
1319 | bias_initializer:
1320 | class_name: Zeros
1321 | config: {}
1322 | bias_regularizer: null
1323 | kernel_constraint: null
1324 | kernel_initializer:
1325 | class_name: VarianceScaling
1326 | config: {distribution: uniform, mode: fan_avg, scale: 1.0, seed: null}
1327 | kernel_regularizer: null
1328 | name: dense_3
1329 | trainable: true
1330 | units: 2
1331 | use_bias: true
1332 | inbound_nodes:
1333 | - - - activation_1
1334 | - 0
1335 | - 0
1336 | - {}
1337 | name: dense_3
1338 | name: model_3
1339 | output_layers:
1340 | - [dense_3, 0, 0]
1341 | keras_version: 2.2.2
1342 |
--------------------------------------------------------------------------------
/fetch/models/model_list.csv:
--------------------------------------------------------------------------------
1 | ,model,hash
2 | 0,a_ft_DenseNet121_2_dt_Xception_13_256.h5,cfbdec1c229b0578899635b0235653bd
3 | 1,b_ft_DenseNet121_2_dt_VGG16_1_32.h5,d384b231c6ccb2fff96d5a7c305f3076
4 | 2,c_ft_DenseNet169_6_dt_Xception_13_112.h5,666775321a871d88beb83361f50cf9e1
5 | 3,d_ft_DenseNet201_4_dt_Xception_13_32.h5,a3712763ab78ae96a4ce422e4eeab1de
6 | 4,e_ft_VGG19_3_dt_Xception_13_128.h5,b951b674aa20192ca801d424b0103efc
7 | 5,f_ft_DenseNet169_6_dt_VGG16_1_512.h5,63da8f0ea980ee95d8b41284f444e6b9
8 | 6,g_ft_VGG19_3_dt_VGG16_1_128.h5,f407cbbe38a1a266b552fcc73b06a82e
9 | 7,h_ft_DenseNet201_4_dt_InceptionResNetV2_20_160.h5,605b39a0191ca07079c53026786821fb
10 | 8,i_ft_DenseNet201_4_dt_VGG16_1_32.h5,2621f23f19ddad1fb692bbd6c59a364f
11 | 9,j_ft_VGG19_3_dt_InceptionResNetV2_20_512.h5,25addb221183e34de569d2d11ef39576
12 | 10,k_ft_DenseNet121_2_dt_InceptionV3_18_64.h5,aa30fc3d9a6566d9ea07068acc45c2ec
13 |
--------------------------------------------------------------------------------
/fetch/utils.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 |
3 | import glob
4 | import logging
5 | import os
6 | import string
7 |
8 | import numpy as np
9 | import pandas as pd
10 | from tensorflow.keras.models import Model
11 | from tensorflow.keras.models import model_from_json
12 | from tensorflow.keras.optimizers import Adam
13 | from tensorflow.keras.utils import get_file
14 |
15 | os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
16 | PATH_TO_WEIGHTS = "https://zenodo.org/records/5029590/files/"
17 |
18 | logger = logging.getLogger(__name__)
19 |
20 |
21 | def open_n_layers_for_training(model, nlayers):
22 | """
23 | Makes nlayers of the model trainable.
24 | nlayers start from the top of the model.
25 | Top (or head) refers to the classification layer. The opening of layers for training starts from top.
26 |
27 | :param model: Model to open layers of
28 | :type model: Model
29 | :param nlayers: Number of (trainable) layers to open.
30 | :type nlayers: int
31 | :return: model
32 | """
33 | mask = np.zeros(len(model.layers), dtype=np.bool)
34 | mask[-nlayers:] = True
35 | for layer, mask_val in zip(model.layers, mask):
36 | layer.trainable = mask_val
37 | return model
38 |
39 |
40 | def ready_for_train(model, nf, ndt, nft):
41 | """
42 | This makes the model ready for training, it opens the layers for training and complies it.
43 |
44 | :param model: model to train
45 | :type: Model
46 | :param nf: Number of layers to train post FT and DT models
47 | :type nf: int
48 | :param ndt: Number of layers in DT model to train
49 | :type ndt: int
50 | :param nft: Number of layers in FT model to train
51 | :type nft : int
52 | :return: compiled model ready for training
53 | """
54 |
55 | # Make all layers non trainable first
56 | model.trainable = False
57 | model = open_n_layers_for_training(model, nf)
58 |
59 | # Get the FT and DT models to open them up for training
60 | model.layers[4] = open_n_layers_for_training(model.layers[4], nft)
61 | model.layers[5] = open_n_layers_for_training(model.layers[5], ndt)
62 |
63 | model_trainable = Model(model.inputs, model.outputs)
64 |
65 | # Adam optimizer with imagenet defaults
66 | optimizer = Adam(
67 | lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False
68 | )
69 |
70 | # Compile
71 | model_trainable.compile(
72 | optimizer=optimizer, loss="binary_crossentropy", metrics=["accuracy"]
73 | )
74 |
75 | return model_trainable
76 |
77 |
78 | def get_model(model_idx):
79 | """
80 |
81 | :param model_idx: model string between a--j
82 | :type model_idx: str
83 | :return: Model
84 | """
85 | # Get the model from the folder
86 | logger.info(f"Getting model {model_idx}")
87 | path = os.path.split(__file__)[0]
88 | model_json = glob.glob(f"{path}/models/{model_idx}_FT*/*json")[0]
89 |
90 | # Read the model from the json
91 | with open(model_json, "r") as j:
92 | model = model_from_json(j.read())
93 |
94 | # get the model weights, if not present download them.
95 | model_list = pd.read_csv(f"{path}/models/model_list.csv")
96 | model_index = string.ascii_lowercase.index(model_idx)
97 |
98 | weights = get_file(
99 | model_list["model"][model_index],
100 | PATH_TO_WEIGHTS + model_list["model"][model_index],
101 | file_hash=model_list["hash"][model_index],
102 | cache_subdir="models",
103 | hash_algorithm="md5",
104 | )
105 |
106 | # dump weights
107 | model.load_weights(weights)
108 |
109 | return model
110 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | pandas>=1.2.2
2 | tensorflow[and-cuda]>=2.12
3 | numpy>=1.19.5
4 | h5py>=3.1.0
5 | scipy>=1.6.0
6 |
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | from setuptools import setup
2 |
3 | setup(
4 | name="fetch",
5 | version="0.2.0",
6 | packages=["fetch"],
7 | scripts=["bin/predict.py", "bin/train.py"],
8 | package_dir={"fetch": "fetch"},
9 | package_data={"fetch": ["models/model_list.csv", "models/*/*"]},
10 | url="https://github.com/devanshkv/fetch",
11 | tests_require=["pytest", "pytest-cov"],
12 | license="GNU General Public License v3.0",
13 | author=["Devansh Agarwal", "Kshitij Aggarwal"],
14 | author_email=["devansh.kv@gmail.com", "ka0064@mix.wvu.edu"],
15 | description="FETCH (Fast Extragalactic Transient Candidate Hunter)",
16 | classifiers=[
17 | "Natural Language :: English",
18 | "Intended Audience :: Science/Research",
19 | "Programming Language :: Python",
20 | "Programming Language :: Python :: 3.6",
21 | "Programming Language :: Python :: 3.7",
22 | "Programming Language :: Python :: 3.8",
23 | "Programming Language :: Python :: 3.9",
24 | "License :: OSI Approved :: GNU General Public License v3 (GPLv3)",
25 | "Topic :: Scientific/Engineering :: Astronomy",
26 | ],
27 | )
28 |
--------------------------------------------------------------------------------