├── 01_Getting_&_Knowing_Your_Data
├── Chipotle
│ ├── Exercise_with_Solutions.ipynb
│ ├── Exercises.ipynb
│ ├── Solutions.ipynb
│ └── chipotle.csv
└── Occupation
│ ├── Exercise_with_Solution.ipynb
│ ├── Exercises.ipynb
│ ├── Solutions.ipynb
│ └── user.csv
├── 02_Filtering_&_Sorting
├── Chipotle
│ ├── Exercises.ipynb
│ ├── Exercises_with_solutions.ipynb
│ ├── Solutions.ipynb
│ └── chipotle.csv
├── Euro12
│ ├── Euro_2012_stats_TEAM.csv
│ ├── Exercises.ipynb
│ ├── Exercises_with_Solutions.ipynb
│ └── Solutions.ipynb
└── Fictional Army
│ ├── Exercise.ipynb
│ ├── Exercise_with_solutions.ipynb
│ └── Solutions.ipynb
├── 03_Grouping
├── Alcohol_Consumption
│ ├── Exercise.ipynb
│ ├── Exercise_with_solutions.ipynb
│ ├── Solutions.ipynb
│ └── drinks.csv
├── Occupation
│ ├── Exercise.ipynb
│ ├── Exercises_with_solutions.ipynb
│ ├── Solutions.ipynb
│ ├── u.user
│ └── user.csv
└── Regiment
│ ├── Exercises.ipynb
│ ├── Exercises_solutions.ipynb
│ └── Solutions.ipynb
├── 04_Apply
├── Students_Alcohol_Consumption
│ ├── Exercises.ipynb
│ ├── Exercises_with_solutions.ipynb
│ ├── Solutions.ipynb
│ └── student-mat.csv
└── US_Crime_Rates
│ ├── Exercises.ipynb
│ ├── Exercises_with_solutions.ipynb
│ ├── Solutions.ipynb
│ └── US_Crime_Rates_1960_2014.csv
├── 05_Merge
├── Auto_MPG
│ ├── Exercises.ipynb
│ ├── Exercises_with_solutions.ipynb
│ ├── Solutions.ipynb
│ ├── cars1.csv
│ └── cars2.csv
├── Fictitous Names
│ ├── Exercises.ipynb
│ ├── Exercises_with_solutions.ipynb
│ └── Solutions.ipynb
└── Housing Market
│ ├── Exercises.ipynb
│ ├── Exercises_with_solutions.ipynb
│ └── Solutions.ipynb
├── 06_Stats
└── US_Baby_Names
│ ├── Exercises.ipynb
│ ├── Exercises_with_solutions.ipynb
│ └── Solutions.ipynb
├── 07_Visualization
├── Chipotle
│ ├── Exercise_with_Solutions.ipynb
│ ├── Exercises.ipynb
│ └── Solutions.ipynb
└── Online_Retail
│ ├── Exercises.ipynb
│ └── Exercises_with_solutions_code.ipynb
├── 08_Creating_Series_and_DataFrames
└── Pokemon
│ ├── Exercises-with-solutions-and-code.ipynb
│ ├── Exercises.ipynb
│ └── Solutions.ipynb
├── 09_Time_Series
├── Apple_Stock
│ ├── Exercises-with-solutions-code.ipynb
│ ├── Exercises.ipynb
│ ├── Solutions.ipynb
│ └── appl_1980_2014.csv
└── Investor_Flow_of_Funds_US
│ ├── Exercises.ipynb
│ ├── Exercises_with_code_and_solutions.ipynb
│ ├── Solutions.ipynb
│ └── weekly.csv
├── 10_Deleting
├── Iris
│ ├── Exercises.ipynb
│ ├── Exercises_with_solutions_and_code.ipynb
│ ├── Solutions.ipynb
│ └── iris.data
└── Wine
│ ├── Exercises.ipynb
│ ├── Exercises_code_and_solutions.ipynb
│ ├── Solutions.ipynb
│ └── wine.data
├── 11_Indexing
├── Exercises.ipynb
└── chipotle.csv
├── README.md
└── dataset
├── Euro_2012_stats_TEAM.csv
├── US_Crime_Rates_1960_2014.csv
├── appl_1980_2014.csv
├── cars1.csv
├── cars2.csv
├── chipotle.csv
├── drinks.csv
├── iris.data
├── student-mat.csv
├── tips.csv
├── train.csv
├── user.csv
├── weekly.csv
├── wind.data
└── wine.data
/01_Getting_&_Knowing_Your_Data/Chipotle/Exercises.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Ex2 - Getting and Knowing your Data"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "\n",
15 | "### Step 1. Import the necessary libraries"
16 | ]
17 | },
18 | {
19 | "cell_type": "code",
20 | "execution_count": 9,
21 | "metadata": {},
22 | "outputs": [],
23 | "source": []
24 | },
25 | {
26 | "cell_type": "markdown",
27 | "metadata": {},
28 | "source": [
29 | "### Step 2. Import the dataset : chipotle.csv "
30 | ]
31 | },
32 | {
33 | "cell_type": "code",
34 | "execution_count": null,
35 | "metadata": {},
36 | "outputs": [],
37 | "source": []
38 | },
39 | {
40 | "cell_type": "markdown",
41 | "metadata": {},
42 | "source": [
43 | "### Step 3. Assign it to a variable called chipo."
44 | ]
45 | },
46 | {
47 | "cell_type": "code",
48 | "execution_count": null,
49 | "metadata": {},
50 | "outputs": [],
51 | "source": []
52 | },
53 | {
54 | "cell_type": "markdown",
55 | "metadata": {},
56 | "source": [
57 | "### Step 4. See the first 10 entries"
58 | ]
59 | },
60 | {
61 | "cell_type": "code",
62 | "execution_count": null,
63 | "metadata": {
64 | "scrolled": false
65 | },
66 | "outputs": [],
67 | "source": []
68 | },
69 | {
70 | "cell_type": "markdown",
71 | "metadata": {},
72 | "source": [
73 | "### Step 5. What is the number of observations in the dataset?"
74 | ]
75 | },
76 | {
77 | "cell_type": "code",
78 | "execution_count": 1,
79 | "metadata": {},
80 | "outputs": [],
81 | "source": [
82 | "# Solution 1\n",
83 | "\n"
84 | ]
85 | },
86 | {
87 | "cell_type": "markdown",
88 | "metadata": {},
89 | "source": [
90 | "### Step 6. What is the number of columns in the dataset?"
91 | ]
92 | },
93 | {
94 | "cell_type": "code",
95 | "execution_count": null,
96 | "metadata": {},
97 | "outputs": [],
98 | "source": []
99 | },
100 | {
101 | "cell_type": "markdown",
102 | "metadata": {},
103 | "source": [
104 | "### Step 7. Print the name of all the columns."
105 | ]
106 | },
107 | {
108 | "cell_type": "code",
109 | "execution_count": null,
110 | "metadata": {},
111 | "outputs": [],
112 | "source": []
113 | },
114 | {
115 | "cell_type": "markdown",
116 | "metadata": {},
117 | "source": [
118 | "### Step 8. How is the dataset indexed?"
119 | ]
120 | },
121 | {
122 | "cell_type": "code",
123 | "execution_count": null,
124 | "metadata": {},
125 | "outputs": [],
126 | "source": []
127 | },
128 | {
129 | "cell_type": "markdown",
130 | "metadata": {},
131 | "source": [
132 | "### Step 9. Which was the most-ordered item? "
133 | ]
134 | },
135 | {
136 | "cell_type": "code",
137 | "execution_count": null,
138 | "metadata": {},
139 | "outputs": [],
140 | "source": []
141 | },
142 | {
143 | "cell_type": "markdown",
144 | "metadata": {},
145 | "source": [
146 | "### Step 10. For the most-ordered item, how many items were ordered?"
147 | ]
148 | },
149 | {
150 | "cell_type": "code",
151 | "execution_count": null,
152 | "metadata": {},
153 | "outputs": [],
154 | "source": []
155 | },
156 | {
157 | "cell_type": "markdown",
158 | "metadata": {},
159 | "source": [
160 | "### Step 11. What was the most ordered item in the choice_description column?"
161 | ]
162 | },
163 | {
164 | "cell_type": "code",
165 | "execution_count": null,
166 | "metadata": {},
167 | "outputs": [],
168 | "source": []
169 | },
170 | {
171 | "cell_type": "markdown",
172 | "metadata": {},
173 | "source": [
174 | "### Step 12. How many items were orderd in total?"
175 | ]
176 | },
177 | {
178 | "cell_type": "code",
179 | "execution_count": null,
180 | "metadata": {},
181 | "outputs": [],
182 | "source": []
183 | },
184 | {
185 | "cell_type": "markdown",
186 | "metadata": {},
187 | "source": [
188 | "### Step 13. Turn the item price into a float"
189 | ]
190 | },
191 | {
192 | "cell_type": "markdown",
193 | "metadata": {},
194 | "source": [
195 | "#### Step 13.a. Check the item price type"
196 | ]
197 | },
198 | {
199 | "cell_type": "code",
200 | "execution_count": null,
201 | "metadata": {},
202 | "outputs": [],
203 | "source": []
204 | },
205 | {
206 | "cell_type": "markdown",
207 | "metadata": {},
208 | "source": [
209 | "#### Step 13.b. Create a lambda function and change the type of item price"
210 | ]
211 | },
212 | {
213 | "cell_type": "code",
214 | "execution_count": null,
215 | "metadata": {
216 | "collapsed": true
217 | },
218 | "outputs": [],
219 | "source": []
220 | },
221 | {
222 | "cell_type": "markdown",
223 | "metadata": {},
224 | "source": [
225 | "#### Step 13.c. Check the item price type"
226 | ]
227 | },
228 | {
229 | "cell_type": "code",
230 | "execution_count": null,
231 | "metadata": {},
232 | "outputs": [],
233 | "source": []
234 | },
235 | {
236 | "cell_type": "markdown",
237 | "metadata": {},
238 | "source": [
239 | "### Step 14. How much was the revenue for the period in the dataset?"
240 | ]
241 | },
242 | {
243 | "cell_type": "code",
244 | "execution_count": null,
245 | "metadata": {},
246 | "outputs": [],
247 | "source": []
248 | },
249 | {
250 | "cell_type": "markdown",
251 | "metadata": {},
252 | "source": [
253 | "### Step 15. How many orders were made in the period?"
254 | ]
255 | },
256 | {
257 | "cell_type": "code",
258 | "execution_count": null,
259 | "metadata": {},
260 | "outputs": [],
261 | "source": []
262 | },
263 | {
264 | "cell_type": "markdown",
265 | "metadata": {},
266 | "source": [
267 | "### Step 16. What is the average revenue amount per order?"
268 | ]
269 | },
270 | {
271 | "cell_type": "code",
272 | "execution_count": 3,
273 | "metadata": {},
274 | "outputs": [],
275 | "source": [
276 | "# Solution 1\n",
277 | "\n"
278 | ]
279 | },
280 | {
281 | "cell_type": "markdown",
282 | "metadata": {},
283 | "source": [
284 | "### Step 17. How many different items are sold?"
285 | ]
286 | },
287 | {
288 | "cell_type": "code",
289 | "execution_count": null,
290 | "metadata": {},
291 | "outputs": [],
292 | "source": []
293 | }
294 | ],
295 | "metadata": {
296 | "anaconda-cloud": {},
297 | "kernelspec": {
298 | "display_name": "Python 3",
299 | "language": "python",
300 | "name": "python3"
301 | },
302 | "language_info": {
303 | "codemirror_mode": {
304 | "name": "ipython",
305 | "version": 3
306 | },
307 | "file_extension": ".py",
308 | "mimetype": "text/x-python",
309 | "name": "python",
310 | "nbconvert_exporter": "python",
311 | "pygments_lexer": "ipython3",
312 | "version": "3.7.6"
313 | }
314 | },
315 | "nbformat": 4,
316 | "nbformat_minor": 1
317 | }
318 |
--------------------------------------------------------------------------------
/01_Getting_&_Knowing_Your_Data/Occupation/Exercises.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Ex3 - Getting and Knowing your Data"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "\n",
15 | "### Step 1. Import the necessary libraries"
16 | ]
17 | },
18 | {
19 | "cell_type": "code",
20 | "execution_count": null,
21 | "metadata": {},
22 | "outputs": [],
23 | "source": []
24 | },
25 | {
26 | "cell_type": "markdown",
27 | "metadata": {},
28 | "source": [
29 | "### Step 2. Import the dataset : user.csv"
30 | ]
31 | },
32 | {
33 | "cell_type": "code",
34 | "execution_count": null,
35 | "metadata": {},
36 | "outputs": [],
37 | "source": []
38 | },
39 | {
40 | "cell_type": "markdown",
41 | "metadata": {},
42 | "source": [
43 | "### Step 3. Assign it to a variable called users and use the 'user_id' as index"
44 | ]
45 | },
46 | {
47 | "cell_type": "code",
48 | "execution_count": null,
49 | "metadata": {},
50 | "outputs": [],
51 | "source": []
52 | },
53 | {
54 | "cell_type": "markdown",
55 | "metadata": {},
56 | "source": [
57 | "### Step 4. See the first 25 entries"
58 | ]
59 | },
60 | {
61 | "cell_type": "code",
62 | "execution_count": null,
63 | "metadata": {
64 | "scrolled": true
65 | },
66 | "outputs": [],
67 | "source": []
68 | },
69 | {
70 | "cell_type": "markdown",
71 | "metadata": {},
72 | "source": [
73 | "### Step 5. See the last 10 entries"
74 | ]
75 | },
76 | {
77 | "cell_type": "code",
78 | "execution_count": null,
79 | "metadata": {
80 | "scrolled": true
81 | },
82 | "outputs": [],
83 | "source": []
84 | },
85 | {
86 | "cell_type": "markdown",
87 | "metadata": {},
88 | "source": [
89 | "### Step 6. What is the number of observations in the dataset?"
90 | ]
91 | },
92 | {
93 | "cell_type": "code",
94 | "execution_count": null,
95 | "metadata": {},
96 | "outputs": [],
97 | "source": []
98 | },
99 | {
100 | "cell_type": "markdown",
101 | "metadata": {},
102 | "source": [
103 | "### Step 7. What is the number of columns in the dataset?"
104 | ]
105 | },
106 | {
107 | "cell_type": "code",
108 | "execution_count": null,
109 | "metadata": {},
110 | "outputs": [],
111 | "source": []
112 | },
113 | {
114 | "cell_type": "markdown",
115 | "metadata": {},
116 | "source": [
117 | "### Step 8. Print the name of all the columns."
118 | ]
119 | },
120 | {
121 | "cell_type": "code",
122 | "execution_count": null,
123 | "metadata": {},
124 | "outputs": [],
125 | "source": []
126 | },
127 | {
128 | "cell_type": "markdown",
129 | "metadata": {},
130 | "source": [
131 | "### Step 9. How is the dataset indexed?"
132 | ]
133 | },
134 | {
135 | "cell_type": "code",
136 | "execution_count": null,
137 | "metadata": {},
138 | "outputs": [],
139 | "source": []
140 | },
141 | {
142 | "cell_type": "markdown",
143 | "metadata": {},
144 | "source": [
145 | "### Step 10. What is the data type of each column?"
146 | ]
147 | },
148 | {
149 | "cell_type": "code",
150 | "execution_count": null,
151 | "metadata": {},
152 | "outputs": [],
153 | "source": []
154 | },
155 | {
156 | "cell_type": "markdown",
157 | "metadata": {},
158 | "source": [
159 | "### Step 11. Print only the occupation column"
160 | ]
161 | },
162 | {
163 | "cell_type": "code",
164 | "execution_count": null,
165 | "metadata": {},
166 | "outputs": [],
167 | "source": []
168 | },
169 | {
170 | "cell_type": "markdown",
171 | "metadata": {},
172 | "source": [
173 | "### Step 12. How many different occupations are in this dataset?"
174 | ]
175 | },
176 | {
177 | "cell_type": "code",
178 | "execution_count": null,
179 | "metadata": {},
180 | "outputs": [],
181 | "source": []
182 | },
183 | {
184 | "cell_type": "markdown",
185 | "metadata": {},
186 | "source": [
187 | "### Step 13. What is the most frequent occupation?"
188 | ]
189 | },
190 | {
191 | "cell_type": "code",
192 | "execution_count": null,
193 | "metadata": {},
194 | "outputs": [],
195 | "source": []
196 | },
197 | {
198 | "cell_type": "markdown",
199 | "metadata": {},
200 | "source": [
201 | "### Step 14. Summarize the DataFrame."
202 | ]
203 | },
204 | {
205 | "cell_type": "code",
206 | "execution_count": null,
207 | "metadata": {},
208 | "outputs": [],
209 | "source": []
210 | },
211 | {
212 | "cell_type": "markdown",
213 | "metadata": {},
214 | "source": [
215 | "### Step 15. Summarize all the columns"
216 | ]
217 | },
218 | {
219 | "cell_type": "code",
220 | "execution_count": null,
221 | "metadata": {},
222 | "outputs": [],
223 | "source": []
224 | },
225 | {
226 | "cell_type": "markdown",
227 | "metadata": {},
228 | "source": [
229 | "### Step 16. Summarize only the occupation column"
230 | ]
231 | },
232 | {
233 | "cell_type": "code",
234 | "execution_count": null,
235 | "metadata": {},
236 | "outputs": [],
237 | "source": []
238 | },
239 | {
240 | "cell_type": "markdown",
241 | "metadata": {},
242 | "source": [
243 | "### Step 17. What is the mean age of users?"
244 | ]
245 | },
246 | {
247 | "cell_type": "code",
248 | "execution_count": null,
249 | "metadata": {},
250 | "outputs": [],
251 | "source": []
252 | },
253 | {
254 | "cell_type": "markdown",
255 | "metadata": {},
256 | "source": [
257 | "### Step 18. What is the age with least occurrence?"
258 | ]
259 | },
260 | {
261 | "cell_type": "code",
262 | "execution_count": null,
263 | "metadata": {},
264 | "outputs": [],
265 | "source": []
266 | }
267 | ],
268 | "metadata": {
269 | "anaconda-cloud": {},
270 | "kernelspec": {
271 | "display_name": "Python 3",
272 | "language": "python",
273 | "name": "python3"
274 | },
275 | "language_info": {
276 | "codemirror_mode": {
277 | "name": "ipython",
278 | "version": 3
279 | },
280 | "file_extension": ".py",
281 | "mimetype": "text/x-python",
282 | "name": "python",
283 | "nbconvert_exporter": "python",
284 | "pygments_lexer": "ipython3",
285 | "version": "3.7.6"
286 | }
287 | },
288 | "nbformat": 4,
289 | "nbformat_minor": 1
290 | }
291 |
--------------------------------------------------------------------------------
/02_Filtering_&_Sorting/Chipotle/Exercises.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Ex1 - Filtering and Sorting Data"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Step 1. Import the necessary libraries"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": null,
20 | "metadata": {},
21 | "outputs": [],
22 | "source": []
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "### Step 2. Import the dataset : chipotle.csv "
29 | ]
30 | },
31 | {
32 | "cell_type": "code",
33 | "execution_count": null,
34 | "metadata": {},
35 | "outputs": [],
36 | "source": []
37 | },
38 | {
39 | "cell_type": "markdown",
40 | "metadata": {},
41 | "source": [
42 | "### Step 3. Assign it to a variable called chipo."
43 | ]
44 | },
45 | {
46 | "cell_type": "code",
47 | "execution_count": null,
48 | "metadata": {},
49 | "outputs": [],
50 | "source": []
51 | },
52 | {
53 | "cell_type": "markdown",
54 | "metadata": {},
55 | "source": [
56 | "### Step 4. How many products cost more than $10.00?"
57 | ]
58 | },
59 | {
60 | "cell_type": "code",
61 | "execution_count": null,
62 | "metadata": {},
63 | "outputs": [],
64 | "source": []
65 | },
66 | {
67 | "cell_type": "markdown",
68 | "metadata": {},
69 | "source": [
70 | "### Step 5. What is the price of each item? \n",
71 | "###### print a data frame with only two columns item_name and item_price"
72 | ]
73 | },
74 | {
75 | "cell_type": "code",
76 | "execution_count": null,
77 | "metadata": {},
78 | "outputs": [],
79 | "source": []
80 | },
81 | {
82 | "cell_type": "markdown",
83 | "metadata": {},
84 | "source": [
85 | "### Step 6. Sort by the name of the item"
86 | ]
87 | },
88 | {
89 | "cell_type": "code",
90 | "execution_count": null,
91 | "metadata": {},
92 | "outputs": [],
93 | "source": []
94 | },
95 | {
96 | "cell_type": "markdown",
97 | "metadata": {},
98 | "source": [
99 | "### Step 7. What was the quantity of the most expensive item ordered?"
100 | ]
101 | },
102 | {
103 | "cell_type": "code",
104 | "execution_count": null,
105 | "metadata": {},
106 | "outputs": [],
107 | "source": []
108 | },
109 | {
110 | "cell_type": "markdown",
111 | "metadata": {},
112 | "source": [
113 | "### Step 8. How many times was a Veggie Salad Bowl ordered?"
114 | ]
115 | },
116 | {
117 | "cell_type": "code",
118 | "execution_count": null,
119 | "metadata": {},
120 | "outputs": [],
121 | "source": []
122 | },
123 | {
124 | "cell_type": "markdown",
125 | "metadata": {},
126 | "source": [
127 | "### Step 9. How many times did someone order more than one Canned Soda?"
128 | ]
129 | },
130 | {
131 | "cell_type": "code",
132 | "execution_count": null,
133 | "metadata": {},
134 | "outputs": [],
135 | "source": []
136 | }
137 | ],
138 | "metadata": {
139 | "kernelspec": {
140 | "display_name": "Python 3",
141 | "language": "python",
142 | "name": "python3"
143 | },
144 | "language_info": {
145 | "codemirror_mode": {
146 | "name": "ipython",
147 | "version": 3
148 | },
149 | "file_extension": ".py",
150 | "mimetype": "text/x-python",
151 | "name": "python",
152 | "nbconvert_exporter": "python",
153 | "pygments_lexer": "ipython3",
154 | "version": "3.7.6"
155 | }
156 | },
157 | "nbformat": 4,
158 | "nbformat_minor": 1
159 | }
160 |
--------------------------------------------------------------------------------
/02_Filtering_&_Sorting/Euro12/Euro_2012_stats_TEAM.csv:
--------------------------------------------------------------------------------
1 | ,Team,Goals,Shots on target,Shots off target,Shooting Accuracy,% Goals-to-shots,Total shots (inc. Blocked),Hit Woodwork,Penalty goals,Penalties not scored,Headed goals,Passes,Passes completed,Passing Accuracy,Touches,Crosses,Dribbles,Corners Taken,Tackles,Clearances,Interceptions,Clearances off line,Clean Sheets,Blocks,Goals conceded,Saves made,Saves-to-shots ratio,Fouls Won,Fouls Conceded,Offsides,Yellow Cards,Red Cards,Subs on,Subs off,Players Used
2 | 0,Croatia,4,13,12,51.9%,16.0%,32,0,0,0,2,1076,828,76.9%,1706,60,42,14,49,83,56,,0,10,3,13,81.3%,41,62,2,9,0,9,9,16
3 | 1,Czech Republic,4,13,18,41.9%,12.9%,39,0,0,0,0,1565,1223,78.1%,2358,46,68,21,62,98,37,2.0,1,10,6,9,60.1%,53,73,8,7,0,11,11,19
4 | 2,Denmark,4,10,10,50.0%,20.0%,27,1,0,0,3,1298,1082,83.3%,1873,43,32,16,40,61,59,0.0,1,10,5,10,66.7%,25,38,8,4,0,7,7,15
5 | 3,England,5,11,18,50.0%,17.2%,40,0,0,0,3,1488,1200,80.6%,2440,58,60,16,86,106,72,1.0,2,29,3,22,88.1%,43,45,6,5,0,11,11,16
6 | 4,France,3,22,24,37.9%,6.5%,65,1,0,0,0,2066,1803,87.2%,2909,55,76,28,71,76,58,0.0,1,7,5,6,54.6%,36,51,5,6,0,11,11,19
7 | 5,Germany,10,32,32,47.8%,15.6%,80,2,1,0,2,2774,2427,87.4%,3761,101,60,35,91,73,69,0.0,1,11,6,10,62.6%,63,49,12,4,0,15,15,17
8 | 6,Greece,5,8,18,30.7%,19.2%,32,1,1,1,0,1187,911,76.7%,2016,52,53,10,65,123,87,0.0,1,23,7,13,65.1%,67,48,12,9,1,12,12,20
9 | 7,Italy,6,34,45,43.0%,7.5%,110,2,0,0,2,3016,2531,83.9%,4363,75,75,30,98,137,136,1.0,2,18,7,20,74.1%,101,89,16,16,0,18,18,19
10 | 8,Netherlands,2,12,36,25.0%,4.1%,60,2,0,0,0,1556,1381,88.7%,2163,50,49,22,34,41,41,0.0,0,9,5,12,70.6%,35,30,3,5,0,7,7,15
11 | 9,Poland,2,15,23,39.4%,5.2%,48,0,0,0,1,1059,852,80.4%,1724,55,39,14,67,87,62,0.0,0,8,3,6,66.7%,48,56,3,7,1,7,7,17
12 | 10,Portugal,6,22,42,34.3%,9.3%,82,6,0,0,2,1891,1461,77.2%,2958,91,64,41,78,92,86,0.0,2,11,4,10,71.5%,73,90,10,12,0,14,14,16
13 | 11,Republic of Ireland,1,7,12,36.8%,5.2%,28,0,0,0,1,851,606,71.2%,1433,43,18,8,45,78,43,1.0,0,23,9,17,65.4%,43,51,11,6,1,10,10,17
14 | 12,Russia,5,9,31,22.5%,12.5%,59,2,0,0,1,1602,1345,83.9%,2278,40,40,21,65,74,58,0.0,0,8,3,10,77.0%,34,43,4,6,0,7,7,16
15 | 13,Spain,12,42,33,55.9%,16.0%,100,0,1,0,2,4317,3820,88.4%,5585,69,106,44,122,102,79,0.0,5,8,1,15,93.8%,102,83,19,11,0,17,17,18
16 | 14,Sweden,5,17,19,47.2%,13.8%,39,3,0,0,1,1192,965,80.9%,1806,44,29,7,56,54,45,0.0,1,12,5,8,61.6%,35,51,7,7,0,9,9,18
17 | 15,Ukraine,2,7,26,21.2%,6.0%,38,0,0,0,2,1276,1043,81.7%,1894,33,26,18,65,97,29,0.0,0,4,4,13,76.5%,48,31,4,5,0,9,9,18
18 |
--------------------------------------------------------------------------------
/02_Filtering_&_Sorting/Euro12/Exercises.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Ex2 - Filtering and Sorting Data"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Step 1. Import the necessary libraries"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": null,
20 | "metadata": {},
21 | "outputs": [],
22 | "source": []
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "### Step 2. Import the dataset : Euro_2012_stats_TEAM.csv"
29 | ]
30 | },
31 | {
32 | "cell_type": "code",
33 | "execution_count": null,
34 | "metadata": {},
35 | "outputs": [],
36 | "source": []
37 | },
38 | {
39 | "cell_type": "markdown",
40 | "metadata": {},
41 | "source": [
42 | "### Step 3. Assign it to a variable called euro12."
43 | ]
44 | },
45 | {
46 | "cell_type": "code",
47 | "execution_count": null,
48 | "metadata": {},
49 | "outputs": [],
50 | "source": []
51 | },
52 | {
53 | "cell_type": "markdown",
54 | "metadata": {},
55 | "source": [
56 | "### Step 4. Select only the Goal column."
57 | ]
58 | },
59 | {
60 | "cell_type": "code",
61 | "execution_count": null,
62 | "metadata": {},
63 | "outputs": [],
64 | "source": []
65 | },
66 | {
67 | "cell_type": "markdown",
68 | "metadata": {},
69 | "source": [
70 | "### Step 5. How many team participated in the Euro2012?"
71 | ]
72 | },
73 | {
74 | "cell_type": "code",
75 | "execution_count": null,
76 | "metadata": {},
77 | "outputs": [],
78 | "source": []
79 | },
80 | {
81 | "cell_type": "markdown",
82 | "metadata": {},
83 | "source": [
84 | "### Step 6. What is the number of columns in the dataset?"
85 | ]
86 | },
87 | {
88 | "cell_type": "code",
89 | "execution_count": null,
90 | "metadata": {},
91 | "outputs": [],
92 | "source": []
93 | },
94 | {
95 | "cell_type": "markdown",
96 | "metadata": {},
97 | "source": [
98 | "### Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline"
99 | ]
100 | },
101 | {
102 | "cell_type": "code",
103 | "execution_count": null,
104 | "metadata": {},
105 | "outputs": [],
106 | "source": []
107 | },
108 | {
109 | "cell_type": "markdown",
110 | "metadata": {},
111 | "source": [
112 | "### Step 8. Sort the teams by Red Cards, then to Yellow Cards"
113 | ]
114 | },
115 | {
116 | "cell_type": "code",
117 | "execution_count": null,
118 | "metadata": {
119 | "scrolled": true
120 | },
121 | "outputs": [],
122 | "source": []
123 | },
124 | {
125 | "cell_type": "markdown",
126 | "metadata": {},
127 | "source": [
128 | "### Step 9. Calculate the mean Yellow Cards given per Team"
129 | ]
130 | },
131 | {
132 | "cell_type": "code",
133 | "execution_count": null,
134 | "metadata": {},
135 | "outputs": [],
136 | "source": []
137 | },
138 | {
139 | "cell_type": "markdown",
140 | "metadata": {},
141 | "source": [
142 | "### Step 10. Filter teams that scored more than 6 goals"
143 | ]
144 | },
145 | {
146 | "cell_type": "code",
147 | "execution_count": null,
148 | "metadata": {},
149 | "outputs": [],
150 | "source": []
151 | },
152 | {
153 | "cell_type": "markdown",
154 | "metadata": {},
155 | "source": [
156 | "### Step 11. Select the teams that start with G"
157 | ]
158 | },
159 | {
160 | "cell_type": "code",
161 | "execution_count": null,
162 | "metadata": {},
163 | "outputs": [],
164 | "source": []
165 | },
166 | {
167 | "cell_type": "markdown",
168 | "metadata": {},
169 | "source": [
170 | "### Step 12. Select the first 7 columns"
171 | ]
172 | },
173 | {
174 | "cell_type": "code",
175 | "execution_count": null,
176 | "metadata": {},
177 | "outputs": [],
178 | "source": []
179 | },
180 | {
181 | "cell_type": "markdown",
182 | "metadata": {},
183 | "source": [
184 | "### Step 13. Select all columns except the last 3."
185 | ]
186 | },
187 | {
188 | "cell_type": "code",
189 | "execution_count": null,
190 | "metadata": {},
191 | "outputs": [],
192 | "source": []
193 | },
194 | {
195 | "cell_type": "markdown",
196 | "metadata": {},
197 | "source": [
198 | "### Step 14. Present only the Shooting Accuracy from England, Italy and Russia"
199 | ]
200 | },
201 | {
202 | "cell_type": "code",
203 | "execution_count": null,
204 | "metadata": {},
205 | "outputs": [],
206 | "source": []
207 | }
208 | ],
209 | "metadata": {
210 | "anaconda-cloud": {},
211 | "kernelspec": {
212 | "display_name": "Python 3",
213 | "language": "python",
214 | "name": "python3"
215 | },
216 | "language_info": {
217 | "codemirror_mode": {
218 | "name": "ipython",
219 | "version": 3
220 | },
221 | "file_extension": ".py",
222 | "mimetype": "text/x-python",
223 | "name": "python",
224 | "nbconvert_exporter": "python",
225 | "pygments_lexer": "ipython3",
226 | "version": "3.7.6"
227 | }
228 | },
229 | "nbformat": 4,
230 | "nbformat_minor": 1
231 | }
232 |
--------------------------------------------------------------------------------
/02_Filtering_&_Sorting/Fictional Army/Exercise.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Fictional Army - Filtering and Sorting"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Step 1. Import the necessary libraries"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": null,
20 | "metadata": {},
21 | "outputs": [],
22 | "source": []
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "### Step 2. This is the data given as a dictionary"
29 | ]
30 | },
31 | {
32 | "cell_type": "code",
33 | "execution_count": 4,
34 | "metadata": {
35 | "collapsed": true
36 | },
37 | "outputs": [],
38 | "source": [
39 | "# Create an example dataframe about a fictional army\n",
40 | "raw_data = {'regiment': ['Nighthawks', 'Nighthawks', 'Nighthawks', 'Nighthawks', 'Dragoons', 'Dragoons', 'Dragoons', 'Dragoons', 'Scouts', 'Scouts', 'Scouts', 'Scouts'],\n",
41 | " 'company': ['1st', '1st', '2nd', '2nd', '1st', '1st', '2nd', '2nd','1st', '1st', '2nd', '2nd'],\n",
42 | " 'deaths': [523, 52, 25, 616, 43, 234, 523, 62, 62, 73, 37, 35],\n",
43 | " 'battles': [5, 42, 2, 2, 4, 7, 8, 3, 4, 7, 8, 9],\n",
44 | " 'size': [1045, 957, 1099, 1400, 1592, 1006, 987, 849, 973, 1005, 1099, 1523],\n",
45 | " 'veterans': [1, 5, 62, 26, 73, 37, 949, 48, 48, 435, 63, 345],\n",
46 | " 'readiness': [1, 2, 3, 3, 2, 1, 2, 3, 2, 1, 2, 3],\n",
47 | " 'armored': [1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1],\n",
48 | " 'deserters': [4, 24, 31, 2, 3, 4, 24, 31, 2, 3, 2, 3],\n",
49 | " 'origin': ['Arizona', 'California', 'Texas', 'Florida', 'Maine', 'Iowa', 'Alaska', 'Washington', 'Oregon', 'Wyoming', 'Louisana', 'Georgia']}"
50 | ]
51 | },
52 | {
53 | "cell_type": "markdown",
54 | "metadata": {},
55 | "source": [
56 | "### Step 3. Create a dataframe and assign it to a variable called army. \n",
57 | "\n",
58 | "#### Don't forget to include the columns names in the order presented in the dictionary ('regiment', 'company', 'deaths'...) so that the column index order is consistent with the solutions. If omitted, pandas will order the columns alphabetically."
59 | ]
60 | },
61 | {
62 | "cell_type": "code",
63 | "execution_count": null,
64 | "metadata": {},
65 | "outputs": [],
66 | "source": []
67 | },
68 | {
69 | "cell_type": "markdown",
70 | "metadata": {},
71 | "source": [
72 | "### Step 4. Set the 'origin' colum as the index of the dataframe"
73 | ]
74 | },
75 | {
76 | "cell_type": "code",
77 | "execution_count": null,
78 | "metadata": {},
79 | "outputs": [],
80 | "source": []
81 | },
82 | {
83 | "cell_type": "markdown",
84 | "metadata": {},
85 | "source": [
86 | "### Step 5. Print only the column veterans"
87 | ]
88 | },
89 | {
90 | "cell_type": "code",
91 | "execution_count": null,
92 | "metadata": {},
93 | "outputs": [],
94 | "source": []
95 | },
96 | {
97 | "cell_type": "markdown",
98 | "metadata": {},
99 | "source": [
100 | "### Step 6. Print the columns 'veterans' and 'deaths'"
101 | ]
102 | },
103 | {
104 | "cell_type": "code",
105 | "execution_count": null,
106 | "metadata": {},
107 | "outputs": [],
108 | "source": []
109 | },
110 | {
111 | "cell_type": "markdown",
112 | "metadata": {},
113 | "source": [
114 | "### Step 7. Print the name of all the columns."
115 | ]
116 | },
117 | {
118 | "cell_type": "code",
119 | "execution_count": null,
120 | "metadata": {},
121 | "outputs": [],
122 | "source": []
123 | },
124 | {
125 | "cell_type": "markdown",
126 | "metadata": {},
127 | "source": [
128 | "### Step 8. Select the 'deaths', 'size' and 'deserters' columns from Maine and Alaska"
129 | ]
130 | },
131 | {
132 | "cell_type": "code",
133 | "execution_count": null,
134 | "metadata": {},
135 | "outputs": [],
136 | "source": []
137 | },
138 | {
139 | "cell_type": "markdown",
140 | "metadata": {},
141 | "source": [
142 | "### Step 9. Select the rows 3 to 7 and the columns 3 to 6"
143 | ]
144 | },
145 | {
146 | "cell_type": "code",
147 | "execution_count": null,
148 | "metadata": {},
149 | "outputs": [],
150 | "source": []
151 | },
152 | {
153 | "cell_type": "markdown",
154 | "metadata": {},
155 | "source": [
156 | "### Step 10. Select every row after the fourth row and all columns"
157 | ]
158 | },
159 | {
160 | "cell_type": "code",
161 | "execution_count": null,
162 | "metadata": {},
163 | "outputs": [],
164 | "source": []
165 | },
166 | {
167 | "cell_type": "markdown",
168 | "metadata": {},
169 | "source": [
170 | "### Step 11. Select every row up to the 4th row and all columns"
171 | ]
172 | },
173 | {
174 | "cell_type": "code",
175 | "execution_count": null,
176 | "metadata": {},
177 | "outputs": [],
178 | "source": []
179 | },
180 | {
181 | "cell_type": "markdown",
182 | "metadata": {},
183 | "source": [
184 | "### Step 12. Select the 3rd column up to the 7th column"
185 | ]
186 | },
187 | {
188 | "cell_type": "code",
189 | "execution_count": null,
190 | "metadata": {},
191 | "outputs": [],
192 | "source": []
193 | },
194 | {
195 | "cell_type": "markdown",
196 | "metadata": {},
197 | "source": [
198 | "### Step 13. Select rows where df.deaths is greater than 50"
199 | ]
200 | },
201 | {
202 | "cell_type": "code",
203 | "execution_count": null,
204 | "metadata": {},
205 | "outputs": [],
206 | "source": []
207 | },
208 | {
209 | "cell_type": "markdown",
210 | "metadata": {},
211 | "source": [
212 | "### Step 14. Select rows where df.deaths is greater than 500 or less than 50"
213 | ]
214 | },
215 | {
216 | "cell_type": "code",
217 | "execution_count": null,
218 | "metadata": {},
219 | "outputs": [],
220 | "source": []
221 | },
222 | {
223 | "cell_type": "markdown",
224 | "metadata": {},
225 | "source": [
226 | "### Step 15. Select all the regiments not named \"Dragoons\""
227 | ]
228 | },
229 | {
230 | "cell_type": "code",
231 | "execution_count": null,
232 | "metadata": {},
233 | "outputs": [],
234 | "source": []
235 | },
236 | {
237 | "cell_type": "markdown",
238 | "metadata": {},
239 | "source": [
240 | "### Step 16. Select the rows called Texas and Arizona"
241 | ]
242 | },
243 | {
244 | "cell_type": "code",
245 | "execution_count": null,
246 | "metadata": {},
247 | "outputs": [],
248 | "source": []
249 | },
250 | {
251 | "cell_type": "markdown",
252 | "metadata": {},
253 | "source": [
254 | "### Step 17. Select the third cell in the row named Arizona"
255 | ]
256 | },
257 | {
258 | "cell_type": "code",
259 | "execution_count": null,
260 | "metadata": {},
261 | "outputs": [],
262 | "source": []
263 | },
264 | {
265 | "cell_type": "markdown",
266 | "metadata": {},
267 | "source": [
268 | "### Step 18. Select the third cell down in the column named deaths"
269 | ]
270 | },
271 | {
272 | "cell_type": "code",
273 | "execution_count": null,
274 | "metadata": {},
275 | "outputs": [],
276 | "source": []
277 | }
278 | ],
279 | "metadata": {
280 | "kernelspec": {
281 | "display_name": "Python 3",
282 | "language": "python",
283 | "name": "python3"
284 | },
285 | "language_info": {
286 | "codemirror_mode": {
287 | "name": "ipython",
288 | "version": 3
289 | },
290 | "file_extension": ".py",
291 | "mimetype": "text/x-python",
292 | "name": "python",
293 | "nbconvert_exporter": "python",
294 | "pygments_lexer": "ipython3",
295 | "version": "3.7.6"
296 | }
297 | },
298 | "nbformat": 4,
299 | "nbformat_minor": 1
300 | }
301 |
--------------------------------------------------------------------------------
/03_Grouping/Alcohol_Consumption/Exercise.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Ex - GroupBy"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Step 1. Import the necessary libraries"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": null,
20 | "metadata": {},
21 | "outputs": [],
22 | "source": []
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "### Step 2. make dataframe : drinks.csv"
29 | ]
30 | },
31 | {
32 | "cell_type": "code",
33 | "execution_count": null,
34 | "metadata": {},
35 | "outputs": [],
36 | "source": []
37 | },
38 | {
39 | "cell_type": "markdown",
40 | "metadata": {},
41 | "source": [
42 | "### Step 3. Assign it to a variable called drinks."
43 | ]
44 | },
45 | {
46 | "cell_type": "code",
47 | "execution_count": null,
48 | "metadata": {},
49 | "outputs": [],
50 | "source": []
51 | },
52 | {
53 | "cell_type": "markdown",
54 | "metadata": {},
55 | "source": [
56 | "### Step 4. Which continent drinks more beer on average?"
57 | ]
58 | },
59 | {
60 | "cell_type": "code",
61 | "execution_count": null,
62 | "metadata": {},
63 | "outputs": [],
64 | "source": []
65 | },
66 | {
67 | "cell_type": "markdown",
68 | "metadata": {},
69 | "source": [
70 | "### Step 5. For each continent print the statistics for wine consumption."
71 | ]
72 | },
73 | {
74 | "cell_type": "code",
75 | "execution_count": null,
76 | "metadata": {},
77 | "outputs": [],
78 | "source": []
79 | },
80 | {
81 | "cell_type": "markdown",
82 | "metadata": {},
83 | "source": [
84 | "### Step 6. Print the mean alcohol consumption per continent for every column"
85 | ]
86 | },
87 | {
88 | "cell_type": "code",
89 | "execution_count": null,
90 | "metadata": {},
91 | "outputs": [],
92 | "source": []
93 | },
94 | {
95 | "cell_type": "markdown",
96 | "metadata": {},
97 | "source": [
98 | "### Step 7. Print the median alcohol consumption per continent for every column"
99 | ]
100 | },
101 | {
102 | "cell_type": "code",
103 | "execution_count": null,
104 | "metadata": {},
105 | "outputs": [],
106 | "source": []
107 | },
108 | {
109 | "cell_type": "markdown",
110 | "metadata": {},
111 | "source": [
112 | "### Step 8. Print the mean, min and max values for spirit consumption.\n",
113 | "#### This time output a DataFrame"
114 | ]
115 | },
116 | {
117 | "cell_type": "code",
118 | "execution_count": null,
119 | "metadata": {},
120 | "outputs": [],
121 | "source": []
122 | }
123 | ],
124 | "metadata": {
125 | "kernelspec": {
126 | "display_name": "Python 3",
127 | "language": "python",
128 | "name": "python3"
129 | },
130 | "language_info": {
131 | "codemirror_mode": {
132 | "name": "ipython",
133 | "version": 3
134 | },
135 | "file_extension": ".py",
136 | "mimetype": "text/x-python",
137 | "name": "python",
138 | "nbconvert_exporter": "python",
139 | "pygments_lexer": "ipython3",
140 | "version": "3.7.6"
141 | }
142 | },
143 | "nbformat": 4,
144 | "nbformat_minor": 1
145 | }
146 |
--------------------------------------------------------------------------------
/03_Grouping/Alcohol_Consumption/drinks.csv:
--------------------------------------------------------------------------------
1 | country,beer_servings,spirit_servings,wine_servings,total_litres_of_pure_alcohol,continent
2 | Afghanistan,0,0,0,0.0,AS
3 | Albania,89,132,54,4.9,EU
4 | Algeria,25,0,14,0.7,AF
5 | Andorra,245,138,312,12.4,EU
6 | Angola,217,57,45,5.9,AF
7 | Antigua & Barbuda,102,128,45,4.9,
8 | Argentina,193,25,221,8.3,SA
9 | Armenia,21,179,11,3.8,EU
10 | Australia,261,72,212,10.4,OC
11 | Austria,279,75,191,9.7,EU
12 | Azerbaijan,21,46,5,1.3,EU
13 | Bahamas,122,176,51,6.3,
14 | Bahrain,42,63,7,2.0,AS
15 | Bangladesh,0,0,0,0.0,AS
16 | Barbados,143,173,36,6.3,
17 | Belarus,142,373,42,14.4,EU
18 | Belgium,295,84,212,10.5,EU
19 | Belize,263,114,8,6.8,
20 | Benin,34,4,13,1.1,AF
21 | Bhutan,23,0,0,0.4,AS
22 | Bolivia,167,41,8,3.8,SA
23 | Bosnia-Herzegovina,76,173,8,4.6,EU
24 | Botswana,173,35,35,5.4,AF
25 | Brazil,245,145,16,7.2,SA
26 | Brunei,31,2,1,0.6,AS
27 | Bulgaria,231,252,94,10.3,EU
28 | Burkina Faso,25,7,7,4.3,AF
29 | Burundi,88,0,0,6.3,AF
30 | Cote d'Ivoire,37,1,7,4.0,AF
31 | Cabo Verde,144,56,16,4.0,AF
32 | Cambodia,57,65,1,2.2,AS
33 | Cameroon,147,1,4,5.8,AF
34 | Canada,240,122,100,8.2,
35 | Central African Republic,17,2,1,1.8,AF
36 | Chad,15,1,1,0.4,AF
37 | Chile,130,124,172,7.6,SA
38 | China,79,192,8,5.0,AS
39 | Colombia,159,76,3,4.2,SA
40 | Comoros,1,3,1,0.1,AF
41 | Congo,76,1,9,1.7,AF
42 | Cook Islands,0,254,74,5.9,OC
43 | Costa Rica,149,87,11,4.4,
44 | Croatia,230,87,254,10.2,EU
45 | Cuba,93,137,5,4.2,
46 | Cyprus,192,154,113,8.2,EU
47 | Czech Republic,361,170,134,11.8,EU
48 | North Korea,0,0,0,0.0,AS
49 | DR Congo,32,3,1,2.3,AF
50 | Denmark,224,81,278,10.4,EU
51 | Djibouti,15,44,3,1.1,AF
52 | Dominica,52,286,26,6.6,
53 | Dominican Republic,193,147,9,6.2,
54 | Ecuador,162,74,3,4.2,SA
55 | Egypt,6,4,1,0.2,AF
56 | El Salvador,52,69,2,2.2,
57 | Equatorial Guinea,92,0,233,5.8,AF
58 | Eritrea,18,0,0,0.5,AF
59 | Estonia,224,194,59,9.5,EU
60 | Ethiopia,20,3,0,0.7,AF
61 | Fiji,77,35,1,2.0,OC
62 | Finland,263,133,97,10.0,EU
63 | France,127,151,370,11.8,EU
64 | Gabon,347,98,59,8.9,AF
65 | Gambia,8,0,1,2.4,AF
66 | Georgia,52,100,149,5.4,EU
67 | Germany,346,117,175,11.3,EU
68 | Ghana,31,3,10,1.8,AF
69 | Greece,133,112,218,8.3,EU
70 | Grenada,199,438,28,11.9,
71 | Guatemala,53,69,2,2.2,
72 | Guinea,9,0,2,0.2,AF
73 | Guinea-Bissau,28,31,21,2.5,AF
74 | Guyana,93,302,1,7.1,SA
75 | Haiti,1,326,1,5.9,
76 | Honduras,69,98,2,3.0,
77 | Hungary,234,215,185,11.3,EU
78 | Iceland,233,61,78,6.6,EU
79 | India,9,114,0,2.2,AS
80 | Indonesia,5,1,0,0.1,AS
81 | Iran,0,0,0,0.0,AS
82 | Iraq,9,3,0,0.2,AS
83 | Ireland,313,118,165,11.4,EU
84 | Israel,63,69,9,2.5,AS
85 | Italy,85,42,237,6.5,EU
86 | Jamaica,82,97,9,3.4,
87 | Japan,77,202,16,7.0,AS
88 | Jordan,6,21,1,0.5,AS
89 | Kazakhstan,124,246,12,6.8,AS
90 | Kenya,58,22,2,1.8,AF
91 | Kiribati,21,34,1,1.0,OC
92 | Kuwait,0,0,0,0.0,AS
93 | Kyrgyzstan,31,97,6,2.4,AS
94 | Laos,62,0,123,6.2,AS
95 | Latvia,281,216,62,10.5,EU
96 | Lebanon,20,55,31,1.9,AS
97 | Lesotho,82,29,0,2.8,AF
98 | Liberia,19,152,2,3.1,AF
99 | Libya,0,0,0,0.0,AF
100 | Lithuania,343,244,56,12.9,EU
101 | Luxembourg,236,133,271,11.4,EU
102 | Madagascar,26,15,4,0.8,AF
103 | Malawi,8,11,1,1.5,AF
104 | Malaysia,13,4,0,0.3,AS
105 | Maldives,0,0,0,0.0,AS
106 | Mali,5,1,1,0.6,AF
107 | Malta,149,100,120,6.6,EU
108 | Marshall Islands,0,0,0,0.0,OC
109 | Mauritania,0,0,0,0.0,AF
110 | Mauritius,98,31,18,2.6,AF
111 | Mexico,238,68,5,5.5,
112 | Micronesia,62,50,18,2.3,OC
113 | Monaco,0,0,0,0.0,EU
114 | Mongolia,77,189,8,4.9,AS
115 | Montenegro,31,114,128,4.9,EU
116 | Morocco,12,6,10,0.5,AF
117 | Mozambique,47,18,5,1.3,AF
118 | Myanmar,5,1,0,0.1,AS
119 | Namibia,376,3,1,6.8,AF
120 | Nauru,49,0,8,1.0,OC
121 | Nepal,5,6,0,0.2,AS
122 | Netherlands,251,88,190,9.4,EU
123 | New Zealand,203,79,175,9.3,OC
124 | Nicaragua,78,118,1,3.5,
125 | Niger,3,2,1,0.1,AF
126 | Nigeria,42,5,2,9.1,AF
127 | Niue,188,200,7,7.0,OC
128 | Norway,169,71,129,6.7,EU
129 | Oman,22,16,1,0.7,AS
130 | Pakistan,0,0,0,0.0,AS
131 | Palau,306,63,23,6.9,OC
132 | Panama,285,104,18,7.2,
133 | Papua New Guinea,44,39,1,1.5,OC
134 | Paraguay,213,117,74,7.3,SA
135 | Peru,163,160,21,6.1,SA
136 | Philippines,71,186,1,4.6,AS
137 | Poland,343,215,56,10.9,EU
138 | Portugal,194,67,339,11.0,EU
139 | Qatar,1,42,7,0.9,AS
140 | South Korea,140,16,9,9.8,AS
141 | Moldova,109,226,18,6.3,EU
142 | Romania,297,122,167,10.4,EU
143 | Russian Federation,247,326,73,11.5,AS
144 | Rwanda,43,2,0,6.8,AF
145 | St. Kitts & Nevis,194,205,32,7.7,
146 | St. Lucia,171,315,71,10.1,
147 | St. Vincent & the Grenadines,120,221,11,6.3,
148 | Samoa,105,18,24,2.6,OC
149 | San Marino,0,0,0,0.0,EU
150 | Sao Tome & Principe,56,38,140,4.2,AF
151 | Saudi Arabia,0,5,0,0.1,AS
152 | Senegal,9,1,7,0.3,AF
153 | Serbia,283,131,127,9.6,EU
154 | Seychelles,157,25,51,4.1,AF
155 | Sierra Leone,25,3,2,6.7,AF
156 | Singapore,60,12,11,1.5,AS
157 | Slovakia,196,293,116,11.4,EU
158 | Slovenia,270,51,276,10.6,EU
159 | Solomon Islands,56,11,1,1.2,OC
160 | Somalia,0,0,0,0.0,AF
161 | South Africa,225,76,81,8.2,AF
162 | Spain,284,157,112,10.0,EU
163 | Sri Lanka,16,104,0,2.2,AS
164 | Sudan,8,13,0,1.7,AF
165 | Suriname,128,178,7,5.6,SA
166 | Swaziland,90,2,2,4.7,AF
167 | Sweden,152,60,186,7.2,EU
168 | Switzerland,185,100,280,10.2,EU
169 | Syria,5,35,16,1.0,AS
170 | Tajikistan,2,15,0,0.3,AS
171 | Thailand,99,258,1,6.4,AS
172 | Macedonia,106,27,86,3.9,EU
173 | Timor-Leste,1,1,4,0.1,AS
174 | Togo,36,2,19,1.3,AF
175 | Tonga,36,21,5,1.1,OC
176 | Trinidad & Tobago,197,156,7,6.4,
177 | Tunisia,51,3,20,1.3,AF
178 | Turkey,51,22,7,1.4,AS
179 | Turkmenistan,19,71,32,2.2,AS
180 | Tuvalu,6,41,9,1.0,OC
181 | Uganda,45,9,0,8.3,AF
182 | Ukraine,206,237,45,8.9,EU
183 | United Arab Emirates,16,135,5,2.8,AS
184 | United Kingdom,219,126,195,10.4,EU
185 | Tanzania,36,6,1,5.7,AF
186 | USA,249,158,84,8.7,
187 | Uruguay,115,35,220,6.6,SA
188 | Uzbekistan,25,101,8,2.4,AS
189 | Vanuatu,21,18,11,0.9,OC
190 | Venezuela,333,100,3,7.7,SA
191 | Vietnam,111,2,1,2.0,AS
192 | Yemen,6,0,0,0.1,AS
193 | Zambia,32,19,4,2.5,AF
194 | Zimbabwe,64,18,4,4.7,AF
195 |
--------------------------------------------------------------------------------
/03_Grouping/Occupation/Exercise.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Occupation"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Step 1. Import the necessary libraries"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": null,
20 | "metadata": {},
21 | "outputs": [],
22 | "source": []
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "### Step 2. Import the dataset : user.csv"
29 | ]
30 | },
31 | {
32 | "cell_type": "code",
33 | "execution_count": null,
34 | "metadata": {},
35 | "outputs": [],
36 | "source": []
37 | },
38 | {
39 | "cell_type": "markdown",
40 | "metadata": {},
41 | "source": [
42 | "### Step 3. Assign it to a variable called users."
43 | ]
44 | },
45 | {
46 | "cell_type": "code",
47 | "execution_count": null,
48 | "metadata": {},
49 | "outputs": [],
50 | "source": []
51 | },
52 | {
53 | "cell_type": "markdown",
54 | "metadata": {},
55 | "source": [
56 | "### Step 4. Discover what is the mean age per occupation"
57 | ]
58 | },
59 | {
60 | "cell_type": "code",
61 | "execution_count": null,
62 | "metadata": {},
63 | "outputs": [],
64 | "source": []
65 | },
66 | {
67 | "cell_type": "markdown",
68 | "metadata": {},
69 | "source": [
70 | "### Step 5. Discover the Male ratio per occupation and sort it from the most to the least"
71 | ]
72 | },
73 | {
74 | "cell_type": "code",
75 | "execution_count": null,
76 | "metadata": {},
77 | "outputs": [],
78 | "source": []
79 | },
80 | {
81 | "cell_type": "markdown",
82 | "metadata": {},
83 | "source": [
84 | "### Step 6. For each occupation, calculate the minimum and maximum ages"
85 | ]
86 | },
87 | {
88 | "cell_type": "code",
89 | "execution_count": null,
90 | "metadata": {},
91 | "outputs": [],
92 | "source": []
93 | },
94 | {
95 | "cell_type": "markdown",
96 | "metadata": {},
97 | "source": [
98 | "### Step 7. For each combination of occupation and gender, calculate the mean age"
99 | ]
100 | },
101 | {
102 | "cell_type": "code",
103 | "execution_count": null,
104 | "metadata": {},
105 | "outputs": [],
106 | "source": []
107 | },
108 | {
109 | "cell_type": "markdown",
110 | "metadata": {},
111 | "source": [
112 | "### Step 8. For each occupation present the percentage of women and men"
113 | ]
114 | },
115 | {
116 | "cell_type": "code",
117 | "execution_count": null,
118 | "metadata": {},
119 | "outputs": [],
120 | "source": []
121 | }
122 | ],
123 | "metadata": {
124 | "kernelspec": {
125 | "display_name": "Python 3",
126 | "language": "python",
127 | "name": "python3"
128 | },
129 | "language_info": {
130 | "codemirror_mode": {
131 | "name": "ipython",
132 | "version": 3
133 | },
134 | "file_extension": ".py",
135 | "mimetype": "text/x-python",
136 | "name": "python",
137 | "nbconvert_exporter": "python",
138 | "pygments_lexer": "ipython3",
139 | "version": "3.7.6"
140 | }
141 | },
142 | "nbformat": 4,
143 | "nbformat_minor": 1
144 | }
145 |
--------------------------------------------------------------------------------
/03_Grouping/Regiment/Exercises.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Regiment"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Step 1. Import the necessary libraries"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": null,
20 | "metadata": {},
21 | "outputs": [],
22 | "source": []
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "### Step 2. Create the DataFrame with the following values:"
29 | ]
30 | },
31 | {
32 | "cell_type": "code",
33 | "execution_count": 51,
34 | "metadata": {
35 | "collapsed": true
36 | },
37 | "outputs": [],
38 | "source": [
39 | "raw_data = {'regiment': ['Nighthawks', 'Nighthawks', 'Nighthawks', 'Nighthawks', 'Dragoons', 'Dragoons', 'Dragoons', 'Dragoons', 'Scouts', 'Scouts', 'Scouts', 'Scouts'], \n",
40 | " 'company': ['1st', '1st', '2nd', '2nd', '1st', '1st', '2nd', '2nd','1st', '1st', '2nd', '2nd'], \n",
41 | " 'name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze', 'Jacon', 'Ryaner', 'Sone', 'Sloan', 'Piger', 'Riani', 'Ali'], \n",
42 | " 'preTestScore': [4, 24, 31, 2, 3, 4, 24, 31, 2, 3, 2, 3],\n",
43 | " 'postTestScore': [25, 94, 57, 62, 70, 25, 94, 57, 62, 70, 62, 70]}"
44 | ]
45 | },
46 | {
47 | "cell_type": "markdown",
48 | "metadata": {},
49 | "source": [
50 | "### Step 3. Assign it to a variable called regiment.\n",
51 | "#### Don't forget to name each column"
52 | ]
53 | },
54 | {
55 | "cell_type": "code",
56 | "execution_count": null,
57 | "metadata": {},
58 | "outputs": [],
59 | "source": []
60 | },
61 | {
62 | "cell_type": "markdown",
63 | "metadata": {},
64 | "source": [
65 | "### Step 4. What is the mean preTestScore from the regiment Nighthawks? "
66 | ]
67 | },
68 | {
69 | "cell_type": "code",
70 | "execution_count": null,
71 | "metadata": {},
72 | "outputs": [],
73 | "source": []
74 | },
75 | {
76 | "cell_type": "markdown",
77 | "metadata": {},
78 | "source": [
79 | "### Step 5. Present general statistics by company"
80 | ]
81 | },
82 | {
83 | "cell_type": "code",
84 | "execution_count": null,
85 | "metadata": {},
86 | "outputs": [],
87 | "source": []
88 | },
89 | {
90 | "cell_type": "markdown",
91 | "metadata": {},
92 | "source": [
93 | "### Step 6. What is the mean of each company's preTestScore?"
94 | ]
95 | },
96 | {
97 | "cell_type": "code",
98 | "execution_count": null,
99 | "metadata": {},
100 | "outputs": [],
101 | "source": []
102 | },
103 | {
104 | "cell_type": "markdown",
105 | "metadata": {},
106 | "source": [
107 | "### Step 7. Present the mean preTestScores grouped by regiment and company"
108 | ]
109 | },
110 | {
111 | "cell_type": "code",
112 | "execution_count": null,
113 | "metadata": {},
114 | "outputs": [],
115 | "source": []
116 | },
117 | {
118 | "cell_type": "markdown",
119 | "metadata": {},
120 | "source": [
121 | "### Step 8. Present the mean preTestScores grouped by regiment and company without heirarchical indexing"
122 | ]
123 | },
124 | {
125 | "cell_type": "code",
126 | "execution_count": null,
127 | "metadata": {},
128 | "outputs": [],
129 | "source": []
130 | },
131 | {
132 | "cell_type": "markdown",
133 | "metadata": {},
134 | "source": [
135 | "### Step 9. Group the entire dataframe by regiment and company"
136 | ]
137 | },
138 | {
139 | "cell_type": "code",
140 | "execution_count": null,
141 | "metadata": {},
142 | "outputs": [],
143 | "source": []
144 | },
145 | {
146 | "cell_type": "markdown",
147 | "metadata": {},
148 | "source": [
149 | "### Step 10. What is the number of observations in each regiment and company"
150 | ]
151 | },
152 | {
153 | "cell_type": "code",
154 | "execution_count": null,
155 | "metadata": {},
156 | "outputs": [],
157 | "source": []
158 | },
159 | {
160 | "cell_type": "markdown",
161 | "metadata": {},
162 | "source": [
163 | "### Step 11. Iterate over a group and print the name and the whole data from the regiment"
164 | ]
165 | },
166 | {
167 | "cell_type": "code",
168 | "execution_count": null,
169 | "metadata": {},
170 | "outputs": [],
171 | "source": []
172 | }
173 | ],
174 | "metadata": {
175 | "kernelspec": {
176 | "display_name": "Python 3",
177 | "language": "python",
178 | "name": "python3"
179 | },
180 | "language_info": {
181 | "codemirror_mode": {
182 | "name": "ipython",
183 | "version": 3
184 | },
185 | "file_extension": ".py",
186 | "mimetype": "text/x-python",
187 | "name": "python",
188 | "nbconvert_exporter": "python",
189 | "pygments_lexer": "ipython3",
190 | "version": "3.7.6"
191 | }
192 | },
193 | "nbformat": 4,
194 | "nbformat_minor": 1
195 | }
196 |
--------------------------------------------------------------------------------
/04_Apply/Students_Alcohol_Consumption/Exercises.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Student Alcohol Consumption"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Step 1. Import the necessary libraries"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": 1,
20 | "metadata": {},
21 | "outputs": [],
22 | "source": []
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "### Step 2. Import the dataset : student-mat.csv"
29 | ]
30 | },
31 | {
32 | "cell_type": "code",
33 | "execution_count": null,
34 | "metadata": {},
35 | "outputs": [],
36 | "source": []
37 | },
38 | {
39 | "cell_type": "markdown",
40 | "metadata": {},
41 | "source": [
42 | "### Step 3. Assign it to a variable called df."
43 | ]
44 | },
45 | {
46 | "cell_type": "code",
47 | "execution_count": null,
48 | "metadata": {},
49 | "outputs": [],
50 | "source": []
51 | },
52 | {
53 | "cell_type": "markdown",
54 | "metadata": {},
55 | "source": [
56 | "### Step 4. For the purpose of this exercise slice the dataframe from 'school' until the 'guardian' column"
57 | ]
58 | },
59 | {
60 | "cell_type": "code",
61 | "execution_count": null,
62 | "metadata": {},
63 | "outputs": [],
64 | "source": []
65 | },
66 | {
67 | "cell_type": "markdown",
68 | "metadata": {},
69 | "source": [
70 | "### Step 5. Create a lambda function that will capitalize strings."
71 | ]
72 | },
73 | {
74 | "cell_type": "code",
75 | "execution_count": null,
76 | "metadata": {},
77 | "outputs": [],
78 | "source": []
79 | },
80 | {
81 | "cell_type": "markdown",
82 | "metadata": {},
83 | "source": [
84 | "### Step 6. Capitalize both Mjob and Fjob"
85 | ]
86 | },
87 | {
88 | "cell_type": "code",
89 | "execution_count": null,
90 | "metadata": {},
91 | "outputs": [],
92 | "source": []
93 | },
94 | {
95 | "cell_type": "markdown",
96 | "metadata": {},
97 | "source": [
98 | "### Step 7. Print the last elements of the data set."
99 | ]
100 | },
101 | {
102 | "cell_type": "code",
103 | "execution_count": null,
104 | "metadata": {},
105 | "outputs": [],
106 | "source": []
107 | },
108 | {
109 | "cell_type": "markdown",
110 | "metadata": {},
111 | "source": [
112 | "### Step 8. Did you notice the original dataframe is still lowercase? Why is that? Fix it and capitalize Mjob and Fjob."
113 | ]
114 | },
115 | {
116 | "cell_type": "code",
117 | "execution_count": null,
118 | "metadata": {},
119 | "outputs": [],
120 | "source": []
121 | },
122 | {
123 | "cell_type": "markdown",
124 | "metadata": {},
125 | "source": [
126 | "### Step 9. Create a function called majority that returns a boolean value to a new column called legal_drinker (Consider majority as older than 17 years old)"
127 | ]
128 | },
129 | {
130 | "cell_type": "code",
131 | "execution_count": null,
132 | "metadata": {},
133 | "outputs": [],
134 | "source": []
135 | },
136 | {
137 | "cell_type": "code",
138 | "execution_count": null,
139 | "metadata": {},
140 | "outputs": [],
141 | "source": []
142 | },
143 | {
144 | "cell_type": "markdown",
145 | "metadata": {},
146 | "source": [
147 | "### Step 10. Multiply every number of the dataset by 10. \n",
148 | "##### I know this makes no sense, don't forget it is just an exercise"
149 | ]
150 | },
151 | {
152 | "cell_type": "code",
153 | "execution_count": null,
154 | "metadata": {},
155 | "outputs": [],
156 | "source": []
157 | },
158 | {
159 | "cell_type": "code",
160 | "execution_count": null,
161 | "metadata": {},
162 | "outputs": [],
163 | "source": []
164 | }
165 | ],
166 | "metadata": {
167 | "anaconda-cloud": {},
168 | "kernelspec": {
169 | "display_name": "Python 3",
170 | "language": "python",
171 | "name": "python3"
172 | },
173 | "language_info": {
174 | "codemirror_mode": {
175 | "name": "ipython",
176 | "version": 3
177 | },
178 | "file_extension": ".py",
179 | "mimetype": "text/x-python",
180 | "name": "python",
181 | "nbconvert_exporter": "python",
182 | "pygments_lexer": "ipython3",
183 | "version": "3.7.6"
184 | }
185 | },
186 | "nbformat": 4,
187 | "nbformat_minor": 1
188 | }
189 |
--------------------------------------------------------------------------------
/04_Apply/US_Crime_Rates/Exercises.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# United States - Crime Rates - 1960 - 2014"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Step 1. Import the necessary libraries"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": 1,
20 | "metadata": {},
21 | "outputs": [],
22 | "source": []
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "### Step 2. Import the dataset : US_Crime_Rates_1960_2014.csv"
29 | ]
30 | },
31 | {
32 | "cell_type": "code",
33 | "execution_count": null,
34 | "metadata": {},
35 | "outputs": [],
36 | "source": []
37 | },
38 | {
39 | "cell_type": "markdown",
40 | "metadata": {},
41 | "source": [
42 | "### Step 3. Assign it to a variable called crime."
43 | ]
44 | },
45 | {
46 | "cell_type": "code",
47 | "execution_count": null,
48 | "metadata": {},
49 | "outputs": [],
50 | "source": []
51 | },
52 | {
53 | "cell_type": "markdown",
54 | "metadata": {},
55 | "source": [
56 | "### Step 4. What is the type of the columns?"
57 | ]
58 | },
59 | {
60 | "cell_type": "code",
61 | "execution_count": null,
62 | "metadata": {},
63 | "outputs": [],
64 | "source": []
65 | },
66 | {
67 | "cell_type": "markdown",
68 | "metadata": {},
69 | "source": [
70 | "##### Have you noticed that the type of Year is int64. But pandas has a different type to work with Time Series. Let's see it now.\n",
71 | "\n",
72 | "### Step 5. Convert the type of the column Year to datetime64"
73 | ]
74 | },
75 | {
76 | "cell_type": "code",
77 | "execution_count": null,
78 | "metadata": {},
79 | "outputs": [],
80 | "source": []
81 | },
82 | {
83 | "cell_type": "markdown",
84 | "metadata": {},
85 | "source": [
86 | "### Step 6. Set the Year column as the index of the dataframe"
87 | ]
88 | },
89 | {
90 | "cell_type": "code",
91 | "execution_count": null,
92 | "metadata": {},
93 | "outputs": [],
94 | "source": []
95 | },
96 | {
97 | "cell_type": "markdown",
98 | "metadata": {},
99 | "source": [
100 | "### Step 7. Delete the Total column"
101 | ]
102 | },
103 | {
104 | "cell_type": "code",
105 | "execution_count": null,
106 | "metadata": {},
107 | "outputs": [],
108 | "source": []
109 | },
110 | {
111 | "cell_type": "markdown",
112 | "metadata": {},
113 | "source": [
114 | "### Step 8. Group the year by decades and sum the values\n",
115 | "\n",
116 | "#### Pay attention to the Population column number, summing this column is a mistake"
117 | ]
118 | },
119 | {
120 | "cell_type": "code",
121 | "execution_count": null,
122 | "metadata": {
123 | "scrolled": true
124 | },
125 | "outputs": [],
126 | "source": []
127 | },
128 | {
129 | "cell_type": "markdown",
130 | "metadata": {},
131 | "source": [
132 | "### Step 9. What is the most dangerous decade to live in the US?"
133 | ]
134 | },
135 | {
136 | "cell_type": "code",
137 | "execution_count": null,
138 | "metadata": {},
139 | "outputs": [],
140 | "source": []
141 | }
142 | ],
143 | "metadata": {
144 | "anaconda-cloud": {},
145 | "kernelspec": {
146 | "display_name": "Python 3",
147 | "language": "python",
148 | "name": "python3"
149 | },
150 | "language_info": {
151 | "codemirror_mode": {
152 | "name": "ipython",
153 | "version": 3
154 | },
155 | "file_extension": ".py",
156 | "mimetype": "text/x-python",
157 | "name": "python",
158 | "nbconvert_exporter": "python",
159 | "pygments_lexer": "ipython3",
160 | "version": "3.7.6"
161 | }
162 | },
163 | "nbformat": 4,
164 | "nbformat_minor": 1
165 | }
166 |
--------------------------------------------------------------------------------
/04_Apply/US_Crime_Rates/US_Crime_Rates_1960_2014.csv:
--------------------------------------------------------------------------------
1 | Year,Population,Total,Violent,Property,Murder,Forcible_Rape,Robbery,Aggravated_assault,Burglary,Larceny_Theft,Vehicle_Theft
1960,179323175,3384200,288460,3095700,9110,17190,107840,154320,912100,1855400,328200
1961,182992000,3488000,289390,3198600,8740,17220,106670,156760,949600,1913000,336000
1962,185771000,3752200,301510,3450700,8530,17550,110860,164570,994300,2089600,366800
1963,188483000,4109500,316970,3792500,8640,17650,116470,174210,1086400,2297800,408300
1964,191141000,4564600,364220,4200400,9360,21420,130390,203050,1213200,2514400,472800
1965,193526000,4739400,387390,4352000,9960,23410,138690,215330,1282500,2572600,496900
1966,195576000,5223500,430180,4793300,11040,25820,157990,235330,1410100,2822000,561200
1967,197457000,5903400,499930,5403500,12240,27620,202910,257160,1632100,3111600,659800
1968,199399000,6720200,595010,6125200,13800,31670,262840,286700,1858900,3482700,783600
1969,201385000,7410900,661870,6749000,14760,37170,298850,311090,1981900,3888600,878500
1970,203235298,8098000,738820,7359200,16000,37990,349860,334970,2205000,4225800,928400
1971,206212000,8588200,816500,7771700,17780,42260,387700,368760,2399300,4424200,948200
1972,208230000,8248800,834900,7413900,18670,46850,376290,393090,2375500,4151200,887200
1973,209851000,8718100,875910,7842200,19640,51400,384220,420650,2565500,4347900,928800
1974,211392000,10253400,974720,9278700,20710,55400,442400,456210,3039200,5262500,977100
1975,213124000,11292400,1039710,10252700,20510,56090,470500,492620,3265300,5977700,1009600
1976,214659000,11349700,1004210,10345500,18780,57080,427810,500530,3108700,6270800,966000
1977,216332000,10984500,1029580,9955000,19120,63500,412610,534350,3071500,5905700,977700
1978,218059000,11209000,1085550,10123400,19560,67610,426930,571460,3128300,5991000,1004100
1979,220099000,12249500,1208030,11041500,21460,76390,480700,629480,3327700,6601000,1112800
1980,225349264,13408300,1344520,12063700,23040,82990,565840,672650,3795200,7136900,1131700
1981,229146000,13423800,1361820,12061900,22520,82500,592910,663900,3779700,7194400,1087800
1982,231534000,12974400,1322390,11652000,21010,78770,553130,669480,3447100,7142500,1062400
1983,233981000,12108600,1258090,10850500,19310,78920,506570,653290,3129900,6712800,1007900
1984,236158000,11881800,1273280,10608500,18690,84230,485010,685350,2984400,6591900,1032200
1985,238740000,12431400,1328800,11102600,18980,88670,497870,723250,3073300,6926400,1102900
1986,240132887,13211869,1489169,11722700,20613,91459,542775,834322,3241410,7257153,1224137
1987,242282918,13508700,1483999,12024700,20096,91110,517704,855088,3236184,7499900,1288674
1988,245807000,13923100,1566220,12356900,20680,92490,542970,910090,3218100,7705900,1432900
1989,248239000,14251400,1646040,12605400,21500,94500,578330,951710,3168200,7872400,1564800
1990,248709873,14475600,1820130,12655500,23440,102560,639270,1054860,3073900,7945700,1635900
1991,252177000,14872900,1911770,12961100,24700,106590,687730,1092740,3157200,8142200,1661700
1992,255082000,14438200,1932270,12505900,23760,109060,672480,1126970,2979900,7915200,1610800
1993,257908000,14144800,1926020,12218800,24530,106010,659870,1135610,2834800,7820900,1563100
1994,260341000,13989500,1857670,12131900,23330,102220,618950,1113180,2712800,7879800,1539300
1995,262755000,13862700,1798790,12063900,21610,97470,580510,1099210,2593800,7997700,1472400
1996,265228572,13493863,1688540,11805300,19650,96250,535590,1037050,2506400,7904700,1394200
1997,267637000,13194571,1634770,11558175,18208,96153,498534,1023201,2460526,7743760,1354189
1998,270296000,12475634,1531044,10944590,16914,93103,446625,974402,2329950,7373886,1240754
1999,272690813,11634378,1426044,10208334,15522,89411,409371,911740,2100739,6955520,1152075
2000,281421906,11608072,1425486,10182586,15586,90178,408016,911706,2050992,6971590,1160002
2001,285317559,11876669,1439480,10437480,16037,90863,423557,909023,2116531,7092267,1228391
2002,287973924,11878954,1423677,10455277,16229,95235,420806,891407,2151252,7057370,1246646
2003,290690788,11826538,1383676,10442862,16528,93883,414235,859030,2154834,7026802,1261226
2004,293656842,11679474,1360088,10319386,16148,95089,401470,847381,2144446,6937089,1237851
2005,296507061,11565499,1390745,10174754,16740,94347,417438,862220,2155448,6783447,1235859
2006,299398484,11401511,1418043,9983568,17030,92757,447403,860853,2183746,6607013,1192809
2007,301621157,11251828,1408337,9843481,16929,90427,445125,855856,2176140,6568572,1095769
2008,304374846,11160543,1392628,9767915,16442,90479,443574,842134,2228474,6588046,958629
2009,307006550,10762956,1325896,9337060,15399,89241,408742,812514,2203313,6338095,795652
2010,309330219,10363873,1251248,9112625,14772,85593,369089,781844,2168457,6204601,739565
2011,311587816,10258774,1206031,9052743,14661,84175,354772,752423,2185140,6151095,716508
2012,313873685,10219059,1217067,9001992,14866,85141,355051,762009,2109932,6168874,723186
2013,316497531,9850445,1199684,8650761,14319,82109,345095,726575,1931835,6018632,700294
2014,318857056,9475816,1197987,8277829,14249,84041,325802,741291,1729806,5858496,689527
--------------------------------------------------------------------------------
/05_Merge/Auto_MPG/Exercises.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# MPG Cars"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Step 1. Import the necessary libraries"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": null,
20 | "metadata": {},
21 | "outputs": [],
22 | "source": []
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "### Step 2. Import the first dataset : cars1.csv, cars2.csv"
29 | ]
30 | },
31 | {
32 | "cell_type": "markdown",
33 | "metadata": {},
34 | "source": [
35 | " ### Step 3. Assign each to a variable called cars1 and cars2"
36 | ]
37 | },
38 | {
39 | "cell_type": "code",
40 | "execution_count": null,
41 | "metadata": {},
42 | "outputs": [],
43 | "source": []
44 | },
45 | {
46 | "cell_type": "markdown",
47 | "metadata": {},
48 | "source": [
49 | "### Step 4. Oops, it seems our first dataset has some unnamed blank columns, fix cars1"
50 | ]
51 | },
52 | {
53 | "cell_type": "code",
54 | "execution_count": null,
55 | "metadata": {},
56 | "outputs": [],
57 | "source": []
58 | },
59 | {
60 | "cell_type": "markdown",
61 | "metadata": {},
62 | "source": [
63 | "### Step 5. What is the number of observations in each dataset?"
64 | ]
65 | },
66 | {
67 | "cell_type": "code",
68 | "execution_count": null,
69 | "metadata": {},
70 | "outputs": [],
71 | "source": []
72 | },
73 | {
74 | "cell_type": "markdown",
75 | "metadata": {},
76 | "source": [
77 | "### Step 6. Join cars1 and cars2 into a single DataFrame called cars"
78 | ]
79 | },
80 | {
81 | "cell_type": "code",
82 | "execution_count": null,
83 | "metadata": {},
84 | "outputs": [],
85 | "source": []
86 | },
87 | {
88 | "cell_type": "markdown",
89 | "metadata": {},
90 | "source": [
91 | "### Step 7. Oops, there is a column missing, called owners. Create a random number Series from 15,000 to 73,000."
92 | ]
93 | },
94 | {
95 | "cell_type": "code",
96 | "execution_count": null,
97 | "metadata": {},
98 | "outputs": [],
99 | "source": []
100 | },
101 | {
102 | "cell_type": "markdown",
103 | "metadata": {},
104 | "source": [
105 | "### Step 8. Add the column owners to cars"
106 | ]
107 | },
108 | {
109 | "cell_type": "code",
110 | "execution_count": null,
111 | "metadata": {},
112 | "outputs": [],
113 | "source": []
114 | }
115 | ],
116 | "metadata": {
117 | "anaconda-cloud": {},
118 | "kernelspec": {
119 | "display_name": "Python 3",
120 | "language": "python",
121 | "name": "python3"
122 | },
123 | "language_info": {
124 | "codemirror_mode": {
125 | "name": "ipython",
126 | "version": 3
127 | },
128 | "file_extension": ".py",
129 | "mimetype": "text/x-python",
130 | "name": "python",
131 | "nbconvert_exporter": "python",
132 | "pygments_lexer": "ipython3",
133 | "version": "3.7.6"
134 | }
135 | },
136 | "nbformat": 4,
137 | "nbformat_minor": 1
138 | }
139 |
--------------------------------------------------------------------------------
/05_Merge/Auto_MPG/cars1.csv:
--------------------------------------------------------------------------------
1 | mpg,cylinders,displacement,horsepower,weight,acceleration,model,origin,car,,,,,
18.0,8,307,130,3504,12.0,70,1,chevrolet chevelle malibu,,,,,
15.0,8,350,165,3693,11.5,70,1,buick skylark 320,,,,,
18.0,8,318,150,3436,11.0,70,1,plymouth satellite,,,,,
16.0,8,304,150,3433,12.0,70,1,amc rebel sst,,,,,
17.0,8,302,140,3449,10.5,70,1,ford torino,,,,,
15.0,8,429,198,4341,10.0,70,1,ford galaxie 500,,,,,
14.0,8,454,220,4354,9.0,70,1,chevrolet impala,,,,,
14.0,8,440,215,4312,8.5,70,1,plymouth fury iii,,,,,
14.0,8,455,225,4425,10.0,70,1,pontiac catalina,,,,,
15.0,8,390,190,3850,8.5,70,1,amc ambassador dpl,,,,,
15.0,8,383,170,3563,10.0,70,1,dodge challenger se,,,,,
14.0,8,340,160,3609,8.0,70,1,plymouth 'cuda 340,,,,,
15.0,8,400,150,3761,9.5,70,1,chevrolet monte carlo,,,,,
14.0,8,455,225,3086,10.0,70,1,buick estate wagon (sw),,,,,
24.0,4,113,95,2372,15.0,70,3,toyota corona mark ii,,,,,
22.0,6,198,95,2833,15.5,70,1,plymouth duster,,,,,
18.0,6,199,97,2774,15.5,70,1,amc hornet,,,,,
21.0,6,200,85,2587,16.0,70,1,ford maverick,,,,,
27.0,4,97,88,2130,14.5,70,3,datsun pl510,,,,,
26.0,4,97,46,1835,20.5,70,2,volkswagen 1131 deluxe sedan,,,,,
25.0,4,110,87,2672,17.5,70,2,peugeot 504,,,,,
24.0,4,107,90,2430,14.5,70,2,audi 100 ls,,,,,
25.0,4,104,95,2375,17.5,70,2,saab 99e,,,,,
26.0,4,121,113,2234,12.5,70,2,bmw 2002,,,,,
21.0,6,199,90,2648,15.0,70,1,amc gremlin,,,,,
10.0,8,360,215,4615,14.0,70,1,ford f250,,,,,
10.0,8,307,200,4376,15.0,70,1,chevy c20,,,,,
11.0,8,318,210,4382,13.5,70,1,dodge d200,,,,,
9.0,8,304,193,4732,18.5,70,1,hi 1200d,,,,,
27.0,4,97,88,2130,14.5,71,3,datsun pl510,,,,,
28.0,4,140,90,2264,15.5,71,1,chevrolet vega 2300,,,,,
25.0,4,113,95,2228,14.0,71,3,toyota corona,,,,,
25.0,4,98,?,2046,19.0,71,1,ford pinto,,,,,
19.0,6,232,100,2634,13.0,71,1,amc gremlin,,,,,
16.0,6,225,105,3439,15.5,71,1,plymouth satellite custom,,,,,
17.0,6,250,100,3329,15.5,71,1,chevrolet chevelle malibu,,,,,
19.0,6,250,88,3302,15.5,71,1,ford torino 500,,,,,
18.0,6,232,100,3288,15.5,71,1,amc matador,,,,,
14.0,8,350,165,4209,12.0,71,1,chevrolet impala,,,,,
14.0,8,400,175,4464,11.5,71,1,pontiac catalina brougham,,,,,
14.0,8,351,153,4154,13.5,71,1,ford galaxie 500,,,,,
14.0,8,318,150,4096,13.0,71,1,plymouth fury iii,,,,,
12.0,8,383,180,4955,11.5,71,1,dodge monaco (sw),,,,,
13.0,8,400,170,4746,12.0,71,1,ford country squire (sw),,,,,
13.0,8,400,175,5140,12.0,71,1,pontiac safari (sw),,,,,
18.0,6,258,110,2962,13.5,71,1,amc hornet sportabout (sw),,,,,
22.0,4,140,72,2408,19.0,71,1,chevrolet vega (sw),,,,,
19.0,6,250,100,3282,15.0,71,1,pontiac firebird,,,,,
18.0,6,250,88,3139,14.5,71,1,ford mustang,,,,,
23.0,4,122,86,2220,14.0,71,1,mercury capri 2000,,,,,
28.0,4,116,90,2123,14.0,71,2,opel 1900,,,,,
30.0,4,79,70,2074,19.5,71,2,peugeot 304,,,,,
30.0,4,88,76,2065,14.5,71,2,fiat 124b,,,,,
31.0,4,71,65,1773,19.0,71,3,toyota corolla 1200,,,,,
35.0,4,72,69,1613,18.0,71,3,datsun 1200,,,,,
27.0,4,97,60,1834,19.0,71,2,volkswagen model 111,,,,,
26.0,4,91,70,1955,20.5,71,1,plymouth cricket,,,,,
24.0,4,113,95,2278,15.5,72,3,toyota corona hardtop,,,,,
25.0,4,98,80,2126,17.0,72,1,dodge colt hardtop,,,,,
23.0,4,97,54,2254,23.5,72,2,volkswagen type 3,,,,,
20.0,4,140,90,2408,19.5,72,1,chevrolet vega,,,,,
21.0,4,122,86,2226,16.5,72,1,ford pinto runabout,,,,,
13.0,8,350,165,4274,12.0,72,1,chevrolet impala,,,,,
14.0,8,400,175,4385,12.0,72,1,pontiac catalina,,,,,
15.0,8,318,150,4135,13.5,72,1,plymouth fury iii,,,,,
14.0,8,351,153,4129,13.0,72,1,ford galaxie 500,,,,,
17.0,8,304,150,3672,11.5,72,1,amc ambassador sst,,,,,
11.0,8,429,208,4633,11.0,72,1,mercury marquis,,,,,
13.0,8,350,155,4502,13.5,72,1,buick lesabre custom,,,,,
12.0,8,350,160,4456,13.5,72,1,oldsmobile delta 88 royale,,,,,
13.0,8,400,190,4422,12.5,72,1,chrysler newport royal,,,,,
19.0,3,70,97,2330,13.5,72,3,mazda rx2 coupe,,,,,
15.0,8,304,150,3892,12.5,72,1,amc matador (sw),,,,,
13.0,8,307,130,4098,14.0,72,1,chevrolet chevelle concours (sw),,,,,
13.0,8,302,140,4294,16.0,72,1,ford gran torino (sw),,,,,
14.0,8,318,150,4077,14.0,72,1,plymouth satellite custom (sw),,,,,
18.0,4,121,112,2933,14.5,72,2,volvo 145e (sw),,,,,
22.0,4,121,76,2511,18.0,72,2,volkswagen 411 (sw),,,,,
21.0,4,120,87,2979,19.5,72,2,peugeot 504 (sw),,,,,
26.0,4,96,69,2189,18.0,72,2,renault 12 (sw),,,,,
22.0,4,122,86,2395,16.0,72,1,ford pinto (sw),,,,,
28.0,4,97,92,2288,17.0,72,3,datsun 510 (sw),,,,,
23.0,4,120,97,2506,14.5,72,3,toyouta corona mark ii (sw),,,,,
28.0,4,98,80,2164,15.0,72,1,dodge colt (sw),,,,,
27.0,4,97,88,2100,16.5,72,3,toyota corolla 1600 (sw),,,,,
13.0,8,350,175,4100,13.0,73,1,buick century 350,,,,,
14.0,8,304,150,3672,11.5,73,1,amc matador,,,,,
13.0,8,350,145,3988,13.0,73,1,chevrolet malibu,,,,,
14.0,8,302,137,4042,14.5,73,1,ford gran torino,,,,,
15.0,8,318,150,3777,12.5,73,1,dodge coronet custom,,,,,
12.0,8,429,198,4952,11.5,73,1,mercury marquis brougham,,,,,
13.0,8,400,150,4464,12.0,73,1,chevrolet caprice classic,,,,,
13.0,8,351,158,4363,13.0,73,1,ford ltd,,,,,
14.0,8,318,150,4237,14.5,73,1,plymouth fury gran sedan,,,,,
13.0,8,440,215,4735,11.0,73,1,chrysler new yorker brougham,,,,,
12.0,8,455,225,4951,11.0,73,1,buick electra 225 custom,,,,,
13.0,8,360,175,3821,11.0,73,1,amc ambassador brougham,,,,,
18.0,6,225,105,3121,16.5,73,1,plymouth valiant,,,,,
16.0,6,250,100,3278,18.0,73,1,chevrolet nova custom,,,,,
18.0,6,232,100,2945,16.0,73,1,amc hornet,,,,,
18.0,6,250,88,3021,16.5,73,1,ford maverick,,,,,
23.0,6,198,95,2904,16.0,73,1,plymouth duster,,,,,
26.0,4,97,46,1950,21.0,73,2,volkswagen super beetle,,,,,
11.0,8,400,150,4997,14.0,73,1,chevrolet impala,,,,,
12.0,8,400,167,4906,12.5,73,1,ford country,,,,,
13.0,8,360,170,4654,13.0,73,1,plymouth custom suburb,,,,,
12.0,8,350,180,4499,12.5,73,1,oldsmobile vista cruiser,,,,,
18.0,6,232,100,2789,15.0,73,1,amc gremlin,,,,,
20.0,4,97,88,2279,19.0,73,3,toyota carina,,,,,
21.0,4,140,72,2401,19.5,73,1,chevrolet vega,,,,,
22.0,4,108,94,2379,16.5,73,3,datsun 610,,,,,
18.0,3,70,90,2124,13.5,73,3,maxda rx3,,,,,
19.0,4,122,85,2310,18.5,73,1,ford pinto,,,,,
21.0,6,155,107,2472,14.0,73,1,mercury capri v6,,,,,
26.0,4,98,90,2265,15.5,73,2,fiat 124 sport coupe,,,,,
15.0,8,350,145,4082,13.0,73,1,chevrolet monte carlo s,,,,,
16.0,8,400,230,4278,9.5,73,1,pontiac grand prix,,,,,
29.0,4,68,49,1867,19.5,73,2,fiat 128,,,,,
24.0,4,116,75,2158,15.5,73,2,opel manta,,,,,
20.0,4,114,91,2582,14.0,73,2,audi 100ls,,,,,
19.0,4,121,112,2868,15.5,73,2,volvo 144ea,,,,,
15.0,8,318,150,3399,11.0,73,1,dodge dart custom,,,,,
24.0,4,121,110,2660,14.0,73,2,saab 99le,,,,,
20.0,6,156,122,2807,13.5,73,3,toyota mark ii,,,,,
11.0,8,350,180,3664,11.0,73,1,oldsmobile omega,,,,,
20.0,6,198,95,3102,16.5,74,1,plymouth duster,,,,,
21.0,6,200,?,2875,17.0,74,1,ford maverick,,,,,
19.0,6,232,100,2901,16.0,74,1,amc hornet,,,,,
15.0,6,250,100,3336,17.0,74,1,chevrolet nova,,,,,
31.0,4,79,67,1950,19.0,74,3,datsun b210,,,,,
26.0,4,122,80,2451,16.5,74,1,ford pinto,,,,,
32.0,4,71,65,1836,21.0,74,3,toyota corolla 1200,,,,,
25.0,4,140,75,2542,17.0,74,1,chevrolet vega,,,,,
16.0,6,250,100,3781,17.0,74,1,chevrolet chevelle malibu classic,,,,,
16.0,6,258,110,3632,18.0,74,1,amc matador,,,,,
18.0,6,225,105,3613,16.5,74,1,plymouth satellite sebring,,,,,
16.0,8,302,140,4141,14.0,74,1,ford gran torino,,,,,
13.0,8,350,150,4699,14.5,74,1,buick century luxus (sw),,,,,
14.0,8,318,150,4457,13.5,74,1,dodge coronet custom (sw),,,,,
14.0,8,302,140,4638,16.0,74,1,ford gran torino (sw),,,,,
14.0,8,304,150,4257,15.5,74,1,amc matador (sw),,,,,
29.0,4,98,83,2219,16.5,74,2,audi fox,,,,,
26.0,4,79,67,1963,15.5,74,2,volkswagen dasher,,,,,
26.0,4,97,78,2300,14.5,74,2,opel manta,,,,,
31.0,4,76,52,1649,16.5,74,3,toyota corona,,,,,
32.0,4,83,61,2003,19.0,74,3,datsun 710,,,,,
28.0,4,90,75,2125,14.5,74,1,dodge colt,,,,,
24.0,4,90,75,2108,15.5,74,2,fiat 128,,,,,
26.0,4,116,75,2246,14.0,74,2,fiat 124 tc,,,,,
24.0,4,120,97,2489,15.0,74,3,honda civic,,,,,
26.0,4,108,93,2391,15.5,74,3,subaru,,,,,
31.0,4,79,67,2000,16.0,74,2,fiat x1.9,,,,,
19.0,6,225,95,3264,16.0,75,1,plymouth valiant custom,,,,,
18.0,6,250,105,3459,16.0,75,1,chevrolet nova,,,,,
15.0,6,250,72,3432,21.0,75,1,mercury monarch,,,,,
15.0,6,250,72,3158,19.5,75,1,ford maverick,,,,,
16.0,8,400,170,4668,11.5,75,1,pontiac catalina,,,,,
15.0,8,350,145,4440,14.0,75,1,chevrolet bel air,,,,,
16.0,8,318,150,4498,14.5,75,1,plymouth grand fury,,,,,
14.0,8,351,148,4657,13.5,75,1,ford ltd,,,,,
17.0,6,231,110,3907,21.0,75,1,buick century,,,,,
16.0,6,250,105,3897,18.5,75,1,chevroelt chevelle malibu,,,,,
15.0,6,258,110,3730,19.0,75,1,amc matador,,,,,
18.0,6,225,95,3785,19.0,75,1,plymouth fury,,,,,
21.0,6,231,110,3039,15.0,75,1,buick skyhawk,,,,,
20.0,8,262,110,3221,13.5,75,1,chevrolet monza 2+2,,,,,
13.0,8,302,129,3169,12.0,75,1,ford mustang ii,,,,,
29.0,4,97,75,2171,16.0,75,3,toyota corolla,,,,,
23.0,4,140,83,2639,17.0,75,1,ford pinto,,,,,
20.0,6,232,100,2914,16.0,75,1,amc gremlin,,,,,
23.0,4,140,78,2592,18.5,75,1,pontiac astro,,,,,
24.0,4,134,96,2702,13.5,75,3,toyota corona,,,,,
25.0,4,90,71,2223,16.5,75,2,volkswagen dasher,,,,,
24.0,4,119,97,2545,17.0,75,3,datsun 710,,,,,
18.0,6,171,97,2984,14.5,75,1,ford pinto,,,,,
29.0,4,90,70,1937,14.0,75,2,volkswagen rabbit,,,,,
19.0,6,232,90,3211,17.0,75,1,amc pacer,,,,,
23.0,4,115,95,2694,15.0,75,2,audi 100ls,,,,,
23.0,4,120,88,2957,17.0,75,2,peugeot 504,,,,,
22.0,4,121,98,2945,14.5,75,2,volvo 244dl,,,,,
25.0,4,121,115,2671,13.5,75,2,saab 99le,,,,,
33.0,4,91,53,1795,17.5,75,3,honda civic cvcc,,,,,
28.0,4,107,86,2464,15.5,76,2,fiat 131,,,,,
25.0,4,116,81,2220,16.9,76,2,opel 1900,,,,,
25.0,4,140,92,2572,14.9,76,1,capri ii,,,,,
26.0,4,98,79,2255,17.7,76,1,dodge colt,,,,,
27.0,4,101,83,2202,15.3,76,2,renault 12tl,,,,,
17.5,8,305,140,4215,13.0,76,1,chevrolet chevelle malibu classic,,,,,
16.0,8,318,150,4190,13.0,76,1,dodge coronet brougham,,,,,
15.5,8,304,120,3962,13.9,76,1,amc matador,,,,,
14.5,8,351,152,4215,12.8,76,1,ford gran torino,,,,,
22.0,6,225,100,3233,15.4,76,1,plymouth valiant,,,,,
22.0,6,250,105,3353,14.5,76,1,chevrolet nova,,,,,
24.0,6,200,81,3012,17.6,76,1,ford maverick,,,,,
22.5,6,232,90,3085,17.6,76,1,amc hornet,,,,,
29.0,4,85,52,2035,22.2,76,1,chevrolet chevette,,,,,
24.5,4,98,60,2164,22.1,76,1,chevrolet woody,,,,,
29.0,4,90,70,1937,14.2,76,2,vw rabbit,,,,,
--------------------------------------------------------------------------------
/05_Merge/Auto_MPG/cars2.csv:
--------------------------------------------------------------------------------
1 | mpg,cylinders,displacement,horsepower,weight,acceleration,model,origin,car
33.0,4,91,53,1795,17.4,76,3,honda civic
20.0,6,225,100,3651,17.7,76,1,dodge aspen se
18.0,6,250,78,3574,21.0,76,1,ford granada ghia
18.5,6,250,110,3645,16.2,76,1,pontiac ventura sj
17.5,6,258,95,3193,17.8,76,1,amc pacer d/l
29.5,4,97,71,1825,12.2,76,2,volkswagen rabbit
32.0,4,85,70,1990,17.0,76,3,datsun b-210
28.0,4,97,75,2155,16.4,76,3,toyota corolla
26.5,4,140,72,2565,13.6,76,1,ford pinto
20.0,4,130,102,3150,15.7,76,2,volvo 245
13.0,8,318,150,3940,13.2,76,1,plymouth volare premier v8
19.0,4,120,88,3270,21.9,76,2,peugeot 504
19.0,6,156,108,2930,15.5,76,3,toyota mark ii
16.5,6,168,120,3820,16.7,76,2,mercedes-benz 280s
16.5,8,350,180,4380,12.1,76,1,cadillac seville
13.0,8,350,145,4055,12.0,76,1,chevy c10
13.0,8,302,130,3870,15.0,76,1,ford f108
13.0,8,318,150,3755,14.0,76,1,dodge d100
31.5,4,98,68,2045,18.5,77,3,honda accord cvcc
30.0,4,111,80,2155,14.8,77,1,buick opel isuzu deluxe
36.0,4,79,58,1825,18.6,77,2,renault 5 gtl
25.5,4,122,96,2300,15.5,77,1,plymouth arrow gs
33.5,4,85,70,1945,16.8,77,3,datsun f-10 hatchback
17.5,8,305,145,3880,12.5,77,1,chevrolet caprice classic
17.0,8,260,110,4060,19.0,77,1,oldsmobile cutlass supreme
15.5,8,318,145,4140,13.7,77,1,dodge monaco brougham
15.0,8,302,130,4295,14.9,77,1,mercury cougar brougham
17.5,6,250,110,3520,16.4,77,1,chevrolet concours
20.5,6,231,105,3425,16.9,77,1,buick skylark
19.0,6,225,100,3630,17.7,77,1,plymouth volare custom
18.5,6,250,98,3525,19.0,77,1,ford granada
16.0,8,400,180,4220,11.1,77,1,pontiac grand prix lj
15.5,8,350,170,4165,11.4,77,1,chevrolet monte carlo landau
15.5,8,400,190,4325,12.2,77,1,chrysler cordoba
16.0,8,351,149,4335,14.5,77,1,ford thunderbird
29.0,4,97,78,1940,14.5,77,2,volkswagen rabbit custom
24.5,4,151,88,2740,16.0,77,1,pontiac sunbird coupe
26.0,4,97,75,2265,18.2,77,3,toyota corolla liftback
25.5,4,140,89,2755,15.8,77,1,ford mustang ii 2+2
30.5,4,98,63,2051,17.0,77,1,chevrolet chevette
33.5,4,98,83,2075,15.9,77,1,dodge colt m/m
30.0,4,97,67,1985,16.4,77,3,subaru dl
30.5,4,97,78,2190,14.1,77,2,volkswagen dasher
22.0,6,146,97,2815,14.5,77,3,datsun 810
21.5,4,121,110,2600,12.8,77,2,bmw 320i
21.5,3,80,110,2720,13.5,77,3,mazda rx-4
43.1,4,90,48,1985,21.5,78,2,volkswagen rabbit custom diesel
36.1,4,98,66,1800,14.4,78,1,ford fiesta
32.8,4,78,52,1985,19.4,78,3,mazda glc deluxe
39.4,4,85,70,2070,18.6,78,3,datsun b210 gx
36.1,4,91,60,1800,16.4,78,3,honda civic cvcc
19.9,8,260,110,3365,15.5,78,1,oldsmobile cutlass salon brougham
19.4,8,318,140,3735,13.2,78,1,dodge diplomat
20.2,8,302,139,3570,12.8,78,1,mercury monarch ghia
19.2,6,231,105,3535,19.2,78,1,pontiac phoenix lj
20.5,6,200,95,3155,18.2,78,1,chevrolet malibu
20.2,6,200,85,2965,15.8,78,1,ford fairmont (auto)
25.1,4,140,88,2720,15.4,78,1,ford fairmont (man)
20.5,6,225,100,3430,17.2,78,1,plymouth volare
19.4,6,232,90,3210,17.2,78,1,amc concord
20.6,6,231,105,3380,15.8,78,1,buick century special
20.8,6,200,85,3070,16.7,78,1,mercury zephyr
18.6,6,225,110,3620,18.7,78,1,dodge aspen
18.1,6,258,120,3410,15.1,78,1,amc concord d/l
19.2,8,305,145,3425,13.2,78,1,chevrolet monte carlo landau
17.7,6,231,165,3445,13.4,78,1,buick regal sport coupe (turbo)
18.1,8,302,139,3205,11.2,78,1,ford futura
17.5,8,318,140,4080,13.7,78,1,dodge magnum xe
30.0,4,98,68,2155,16.5,78,1,chevrolet chevette
27.5,4,134,95,2560,14.2,78,3,toyota corona
27.2,4,119,97,2300,14.7,78,3,datsun 510
30.9,4,105,75,2230,14.5,78,1,dodge omni
21.1,4,134,95,2515,14.8,78,3,toyota celica gt liftback
23.2,4,156,105,2745,16.7,78,1,plymouth sapporo
23.8,4,151,85,2855,17.6,78,1,oldsmobile starfire sx
23.9,4,119,97,2405,14.9,78,3,datsun 200-sx
20.3,5,131,103,2830,15.9,78,2,audi 5000
17.0,6,163,125,3140,13.6,78,2,volvo 264gl
21.6,4,121,115,2795,15.7,78,2,saab 99gle
16.2,6,163,133,3410,15.8,78,2,peugeot 604sl
31.5,4,89,71,1990,14.9,78,2,volkswagen scirocco
29.5,4,98,68,2135,16.6,78,3,honda accord lx
21.5,6,231,115,3245,15.4,79,1,pontiac lemans v6
19.8,6,200,85,2990,18.2,79,1,mercury zephyr 6
22.3,4,140,88,2890,17.3,79,1,ford fairmont 4
20.2,6,232,90,3265,18.2,79,1,amc concord dl 6
20.6,6,225,110,3360,16.6,79,1,dodge aspen 6
17.0,8,305,130,3840,15.4,79,1,chevrolet caprice classic
17.6,8,302,129,3725,13.4,79,1,ford ltd landau
16.5,8,351,138,3955,13.2,79,1,mercury grand marquis
18.2,8,318,135,3830,15.2,79,1,dodge st. regis
16.9,8,350,155,4360,14.9,79,1,buick estate wagon (sw)
15.5,8,351,142,4054,14.3,79,1,ford country squire (sw)
19.2,8,267,125,3605,15.0,79,1,chevrolet malibu classic (sw)
18.5,8,360,150,3940,13.0,79,1,chrysler lebaron town @ country (sw)
31.9,4,89,71,1925,14.0,79,2,vw rabbit custom
34.1,4,86,65,1975,15.2,79,3,maxda glc deluxe
35.7,4,98,80,1915,14.4,79,1,dodge colt hatchback custom
27.4,4,121,80,2670,15.0,79,1,amc spirit dl
25.4,5,183,77,3530,20.1,79,2,mercedes benz 300d
23.0,8,350,125,3900,17.4,79,1,cadillac eldorado
27.2,4,141,71,3190,24.8,79,2,peugeot 504
23.9,8,260,90,3420,22.2,79,1,oldsmobile cutlass salon brougham
34.2,4,105,70,2200,13.2,79,1,plymouth horizon
34.5,4,105,70,2150,14.9,79,1,plymouth horizon tc3
31.8,4,85,65,2020,19.2,79,3,datsun 210
37.3,4,91,69,2130,14.7,79,2,fiat strada custom
28.4,4,151,90,2670,16.0,79,1,buick skylark limited
28.8,6,173,115,2595,11.3,79,1,chevrolet citation
26.8,6,173,115,2700,12.9,79,1,oldsmobile omega brougham
33.5,4,151,90,2556,13.2,79,1,pontiac phoenix
41.5,4,98,76,2144,14.7,80,2,vw rabbit
38.1,4,89,60,1968,18.8,80,3,toyota corolla tercel
32.1,4,98,70,2120,15.5,80,1,chevrolet chevette
37.2,4,86,65,2019,16.4,80,3,datsun 310
28.0,4,151,90,2678,16.5,80,1,chevrolet citation
26.4,4,140,88,2870,18.1,80,1,ford fairmont
24.3,4,151,90,3003,20.1,80,1,amc concord
19.1,6,225,90,3381,18.7,80,1,dodge aspen
34.3,4,97,78,2188,15.8,80,2,audi 4000
29.8,4,134,90,2711,15.5,80,3,toyota corona liftback
31.3,4,120,75,2542,17.5,80,3,mazda 626
37.0,4,119,92,2434,15.0,80,3,datsun 510 hatchback
32.2,4,108,75,2265,15.2,80,3,toyota corolla
46.6,4,86,65,2110,17.9,80,3,mazda glc
27.9,4,156,105,2800,14.4,80,1,dodge colt
40.8,4,85,65,2110,19.2,80,3,datsun 210
44.3,4,90,48,2085,21.7,80,2,vw rabbit c (diesel)
43.4,4,90,48,2335,23.7,80,2,vw dasher (diesel)
36.4,5,121,67,2950,19.9,80,2,audi 5000s (diesel)
30.0,4,146,67,3250,21.8,80,2,mercedes-benz 240d
44.6,4,91,67,1850,13.8,80,3,honda civic 1500 gl
40.9,4,85,?,1835,17.3,80,2,renault lecar deluxe
33.8,4,97,67,2145,18.0,80,3,subaru dl
29.8,4,89,62,1845,15.3,80,2,vokswagen rabbit
32.7,6,168,132,2910,11.4,80,3,datsun 280-zx
23.7,3,70,100,2420,12.5,80,3,mazda rx-7 gs
35.0,4,122,88,2500,15.1,80,2,triumph tr7 coupe
23.6,4,140,?,2905,14.3,80,1,ford mustang cobra
32.4,4,107,72,2290,17.0,80,3,honda accord
27.2,4,135,84,2490,15.7,81,1,plymouth reliant
26.6,4,151,84,2635,16.4,81,1,buick skylark
25.8,4,156,92,2620,14.4,81,1,dodge aries wagon (sw)
23.5,6,173,110,2725,12.6,81,1,chevrolet citation
30.0,4,135,84,2385,12.9,81,1,plymouth reliant
39.1,4,79,58,1755,16.9,81,3,toyota starlet
39.0,4,86,64,1875,16.4,81,1,plymouth champ
35.1,4,81,60,1760,16.1,81,3,honda civic 1300
32.3,4,97,67,2065,17.8,81,3,subaru
37.0,4,85,65,1975,19.4,81,3,datsun 210 mpg
37.7,4,89,62,2050,17.3,81,3,toyota tercel
34.1,4,91,68,1985,16.0,81,3,mazda glc 4
34.7,4,105,63,2215,14.9,81,1,plymouth horizon 4
34.4,4,98,65,2045,16.2,81,1,ford escort 4w
29.9,4,98,65,2380,20.7,81,1,ford escort 2h
33.0,4,105,74,2190,14.2,81,2,volkswagen jetta
34.5,4,100,?,2320,15.8,81,2,renault 18i
33.7,4,107,75,2210,14.4,81,3,honda prelude
32.4,4,108,75,2350,16.8,81,3,toyota corolla
32.9,4,119,100,2615,14.8,81,3,datsun 200sx
31.6,4,120,74,2635,18.3,81,3,mazda 626
28.1,4,141,80,3230,20.4,81,2,peugeot 505s turbo diesel
30.7,6,145,76,3160,19.6,81,2,volvo diesel
25.4,6,168,116,2900,12.6,81,3,toyota cressida
24.2,6,146,120,2930,13.8,81,3,datsun 810 maxima
22.4,6,231,110,3415,15.8,81,1,buick century
26.6,8,350,105,3725,19.0,81,1,oldsmobile cutlass ls
20.2,6,200,88,3060,17.1,81,1,ford granada gl
17.6,6,225,85,3465,16.6,81,1,chrysler lebaron salon
28.0,4,112,88,2605,19.6,82,1,chevrolet cavalier
27.0,4,112,88,2640,18.6,82,1,chevrolet cavalier wagon
34.0,4,112,88,2395,18.0,82,1,chevrolet cavalier 2-door
31.0,4,112,85,2575,16.2,82,1,pontiac j2000 se hatchback
29.0,4,135,84,2525,16.0,82,1,dodge aries se
27.0,4,151,90,2735,18.0,82,1,pontiac phoenix
24.0,4,140,92,2865,16.4,82,1,ford fairmont futura
23.0,4,151,?,3035,20.5,82,1,amc concord dl
36.0,4,105,74,1980,15.3,82,2,volkswagen rabbit l
37.0,4,91,68,2025,18.2,82,3,mazda glc custom l
31.0,4,91,68,1970,17.6,82,3,mazda glc custom
38.0,4,105,63,2125,14.7,82,1,plymouth horizon miser
36.0,4,98,70,2125,17.3,82,1,mercury lynx l
36.0,4,120,88,2160,14.5,82,3,nissan stanza xe
36.0,4,107,75,2205,14.5,82,3,honda accord
34.0,4,108,70,2245,16.9,82,3,toyota corolla
38.0,4,91,67,1965,15.0,82,3,honda civic
32.0,4,91,67,1965,15.7,82,3,honda civic (auto)
38.0,4,91,67,1995,16.2,82,3,datsun 310 gx
25.0,6,181,110,2945,16.4,82,1,buick century limited
38.0,6,262,85,3015,17.0,82,1,oldsmobile cutlass ciera (diesel)
26.0,4,156,92,2585,14.5,82,1,chrysler lebaron medallion
22.0,6,232,112,2835,14.7,82,1,ford granada l
32.0,4,144,96,2665,13.9,82,3,toyota celica gt
36.0,4,135,84,2370,13.0,82,1,dodge charger 2.2
27.0,4,151,90,2950,17.3,82,1,chevrolet camaro
27.0,4,140,86,2790,15.6,82,1,ford mustang gl
44.0,4,97,52,2130,24.6,82,2,vw pickup
32.0,4,135,84,2295,11.6,82,1,dodge rampage
28.0,4,120,79,2625,18.6,82,1,ford ranger
31.0,4,119,82,2720,19.4,82,1,chevy s-10
--------------------------------------------------------------------------------
/05_Merge/Fictitous Names/Exercises.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Fictitious Names"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Step 1. Import the necessary libraries"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": null,
20 | "metadata": {},
21 | "outputs": [],
22 | "source": []
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "### Step 2. Create the 3 DataFrames based on the following raw data"
29 | ]
30 | },
31 | {
32 | "cell_type": "code",
33 | "execution_count": 1,
34 | "metadata": {
35 | "collapsed": true
36 | },
37 | "outputs": [],
38 | "source": [
39 | "raw_data_1 = {\n",
40 | " 'subject_id': ['1', '2', '3', '4', '5'],\n",
41 | " 'first_name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], \n",
42 | " 'last_name': ['Anderson', 'Ackerman', 'Ali', 'Aoni', 'Atiches']}\n",
43 | "\n",
44 | "raw_data_2 = {\n",
45 | " 'subject_id': ['4', '5', '6', '7', '8'],\n",
46 | " 'first_name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], \n",
47 | " 'last_name': ['Bonder', 'Black', 'Balwner', 'Brice', 'Btisan']}\n",
48 | "\n",
49 | "raw_data_3 = {\n",
50 | " 'subject_id': ['1', '2', '3', '4', '5', '7', '8', '9', '10', '11'],\n",
51 | " 'test_id': [51, 15, 15, 61, 16, 14, 15, 1, 61, 16]}"
52 | ]
53 | },
54 | {
55 | "cell_type": "markdown",
56 | "metadata": {},
57 | "source": [
58 | "### Step 3. Assign each to a variable called data1, data2, data3"
59 | ]
60 | },
61 | {
62 | "cell_type": "code",
63 | "execution_count": null,
64 | "metadata": {},
65 | "outputs": [],
66 | "source": []
67 | },
68 | {
69 | "cell_type": "markdown",
70 | "metadata": {},
71 | "source": [
72 | "### Step 4. Join the two dataframes along rows and assign all_data"
73 | ]
74 | },
75 | {
76 | "cell_type": "code",
77 | "execution_count": null,
78 | "metadata": {},
79 | "outputs": [],
80 | "source": []
81 | },
82 | {
83 | "cell_type": "markdown",
84 | "metadata": {},
85 | "source": [
86 | "### Step 5. Join the two dataframes along columns and assing to all_data_col"
87 | ]
88 | },
89 | {
90 | "cell_type": "code",
91 | "execution_count": null,
92 | "metadata": {},
93 | "outputs": [],
94 | "source": []
95 | },
96 | {
97 | "cell_type": "markdown",
98 | "metadata": {},
99 | "source": [
100 | "### Step 6. Print data3"
101 | ]
102 | },
103 | {
104 | "cell_type": "code",
105 | "execution_count": null,
106 | "metadata": {},
107 | "outputs": [],
108 | "source": []
109 | },
110 | {
111 | "cell_type": "markdown",
112 | "metadata": {},
113 | "source": [
114 | "### Step 7. Merge all_data and data3 along the subject_id value"
115 | ]
116 | },
117 | {
118 | "cell_type": "code",
119 | "execution_count": null,
120 | "metadata": {},
121 | "outputs": [],
122 | "source": []
123 | },
124 | {
125 | "cell_type": "markdown",
126 | "metadata": {},
127 | "source": [
128 | "### Step 8. Merge only the data that has the same 'subject_id' on both data1 and data2"
129 | ]
130 | },
131 | {
132 | "cell_type": "code",
133 | "execution_count": null,
134 | "metadata": {},
135 | "outputs": [],
136 | "source": []
137 | },
138 | {
139 | "cell_type": "markdown",
140 | "metadata": {},
141 | "source": [
142 | "### Step 9. Merge all values in data1 and data2, with matching records from both sides where available."
143 | ]
144 | },
145 | {
146 | "cell_type": "code",
147 | "execution_count": null,
148 | "metadata": {},
149 | "outputs": [],
150 | "source": []
151 | }
152 | ],
153 | "metadata": {
154 | "kernelspec": {
155 | "display_name": "Python 3",
156 | "language": "python",
157 | "name": "python3"
158 | },
159 | "language_info": {
160 | "codemirror_mode": {
161 | "name": "ipython",
162 | "version": 3
163 | },
164 | "file_extension": ".py",
165 | "mimetype": "text/x-python",
166 | "name": "python",
167 | "nbconvert_exporter": "python",
168 | "pygments_lexer": "ipython3",
169 | "version": "3.7.6"
170 | }
171 | },
172 | "nbformat": 4,
173 | "nbformat_minor": 1
174 | }
175 |
--------------------------------------------------------------------------------
/05_Merge/Housing Market/Exercises.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Housing Market"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Step 1. Import the necessary libraries"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": null,
20 | "metadata": {},
21 | "outputs": [],
22 | "source": []
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "### Step 2. Create 3 differents Series, each of length 100, as follows: \n",
29 | "1. The first a random number from 1 to 4 \n",
30 | "2. The second a random number from 1 to 3\n",
31 | "3. The third a random number from 10,000 to 30,000"
32 | ]
33 | },
34 | {
35 | "cell_type": "code",
36 | "execution_count": null,
37 | "metadata": {},
38 | "outputs": [],
39 | "source": []
40 | },
41 | {
42 | "cell_type": "markdown",
43 | "metadata": {},
44 | "source": [
45 | "### Step 3. Let's create a DataFrame by joinning the Series by column"
46 | ]
47 | },
48 | {
49 | "cell_type": "code",
50 | "execution_count": null,
51 | "metadata": {},
52 | "outputs": [],
53 | "source": []
54 | },
55 | {
56 | "cell_type": "markdown",
57 | "metadata": {},
58 | "source": [
59 | "### Step 4. Change the name of the columns to bedrs, bathrs, price_sqr_meter"
60 | ]
61 | },
62 | {
63 | "cell_type": "code",
64 | "execution_count": null,
65 | "metadata": {},
66 | "outputs": [],
67 | "source": []
68 | },
69 | {
70 | "cell_type": "markdown",
71 | "metadata": {},
72 | "source": [
73 | "### Step 5. Create a one column DataFrame with the values of the 3 Series and assign it to 'bigcolumn'"
74 | ]
75 | },
76 | {
77 | "cell_type": "code",
78 | "execution_count": null,
79 | "metadata": {},
80 | "outputs": [],
81 | "source": []
82 | },
83 | {
84 | "cell_type": "markdown",
85 | "metadata": {},
86 | "source": [
87 | "### Step 6. Oops, it seems it is going only until index 99. Is it true?"
88 | ]
89 | },
90 | {
91 | "cell_type": "code",
92 | "execution_count": null,
93 | "metadata": {},
94 | "outputs": [],
95 | "source": []
96 | },
97 | {
98 | "cell_type": "markdown",
99 | "metadata": {},
100 | "source": [
101 | "### Step 7. Reindex the DataFrame so it goes from 0 to 299"
102 | ]
103 | },
104 | {
105 | "cell_type": "code",
106 | "execution_count": null,
107 | "metadata": {},
108 | "outputs": [],
109 | "source": []
110 | }
111 | ],
112 | "metadata": {
113 | "kernelspec": {
114 | "display_name": "Python 3",
115 | "language": "python",
116 | "name": "python3"
117 | },
118 | "language_info": {
119 | "codemirror_mode": {
120 | "name": "ipython",
121 | "version": 3
122 | },
123 | "file_extension": ".py",
124 | "mimetype": "text/x-python",
125 | "name": "python",
126 | "nbconvert_exporter": "python",
127 | "pygments_lexer": "ipython3",
128 | "version": "3.7.6"
129 | }
130 | },
131 | "nbformat": 4,
132 | "nbformat_minor": 1
133 | }
134 |
--------------------------------------------------------------------------------
/06_Stats/US_Baby_Names/Exercises.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# US - Baby Names"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Step 1. Import the necessary libraries"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": null,
20 | "metadata": {},
21 | "outputs": [],
22 | "source": []
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "### Step 2. Import the dataset : US_Baby_Names_right.csv"
29 | ]
30 | },
31 | {
32 | "cell_type": "code",
33 | "execution_count": 5,
34 | "metadata": {},
35 | "outputs": [],
36 | "source": [
37 | "c.to_csv(\"US_Baby_Names_right.csv\",index=0)"
38 | ]
39 | },
40 | {
41 | "cell_type": "markdown",
42 | "metadata": {},
43 | "source": [
44 | "### Step 3. Assign it to a variable called baby_names."
45 | ]
46 | },
47 | {
48 | "cell_type": "code",
49 | "execution_count": null,
50 | "metadata": {},
51 | "outputs": [],
52 | "source": []
53 | },
54 | {
55 | "cell_type": "markdown",
56 | "metadata": {},
57 | "source": [
58 | "### Step 4. See the first 10 entries"
59 | ]
60 | },
61 | {
62 | "cell_type": "code",
63 | "execution_count": null,
64 | "metadata": {},
65 | "outputs": [],
66 | "source": []
67 | },
68 | {
69 | "cell_type": "markdown",
70 | "metadata": {},
71 | "source": [
72 | "### Step 5. Delete the column 'Unnamed: 0' and 'Id'"
73 | ]
74 | },
75 | {
76 | "cell_type": "code",
77 | "execution_count": null,
78 | "metadata": {},
79 | "outputs": [],
80 | "source": []
81 | },
82 | {
83 | "cell_type": "markdown",
84 | "metadata": {},
85 | "source": [
86 | "### Step 6. Is there more male or female names in the dataset?"
87 | ]
88 | },
89 | {
90 | "cell_type": "code",
91 | "execution_count": null,
92 | "metadata": {},
93 | "outputs": [],
94 | "source": []
95 | },
96 | {
97 | "cell_type": "markdown",
98 | "metadata": {},
99 | "source": [
100 | "### Step 7. Group the dataset by name and assign to names"
101 | ]
102 | },
103 | {
104 | "cell_type": "code",
105 | "execution_count": null,
106 | "metadata": {},
107 | "outputs": [],
108 | "source": []
109 | },
110 | {
111 | "cell_type": "markdown",
112 | "metadata": {},
113 | "source": [
114 | "### Step 8. How many different names exist in the dataset?"
115 | ]
116 | },
117 | {
118 | "cell_type": "code",
119 | "execution_count": null,
120 | "metadata": {},
121 | "outputs": [],
122 | "source": []
123 | },
124 | {
125 | "cell_type": "markdown",
126 | "metadata": {},
127 | "source": [
128 | "### Step 9. What is the name with most occurrences?"
129 | ]
130 | },
131 | {
132 | "cell_type": "code",
133 | "execution_count": null,
134 | "metadata": {},
135 | "outputs": [],
136 | "source": []
137 | },
138 | {
139 | "cell_type": "markdown",
140 | "metadata": {},
141 | "source": [
142 | "### Step 10. How many different names have the least occurrences?"
143 | ]
144 | },
145 | {
146 | "cell_type": "code",
147 | "execution_count": null,
148 | "metadata": {},
149 | "outputs": [],
150 | "source": []
151 | },
152 | {
153 | "cell_type": "markdown",
154 | "metadata": {},
155 | "source": [
156 | "### Step 11. What is the median name occurrence?"
157 | ]
158 | },
159 | {
160 | "cell_type": "code",
161 | "execution_count": null,
162 | "metadata": {},
163 | "outputs": [],
164 | "source": []
165 | },
166 | {
167 | "cell_type": "markdown",
168 | "metadata": {},
169 | "source": [
170 | "### Step 12. What is the standard deviation of names?"
171 | ]
172 | },
173 | {
174 | "cell_type": "code",
175 | "execution_count": null,
176 | "metadata": {},
177 | "outputs": [],
178 | "source": []
179 | },
180 | {
181 | "cell_type": "markdown",
182 | "metadata": {},
183 | "source": [
184 | "### Step 13. Get a summary with the mean, min, max, std and quartiles."
185 | ]
186 | },
187 | {
188 | "cell_type": "code",
189 | "execution_count": null,
190 | "metadata": {},
191 | "outputs": [],
192 | "source": []
193 | }
194 | ],
195 | "metadata": {
196 | "anaconda-cloud": {},
197 | "kernelspec": {
198 | "display_name": "Python 3",
199 | "language": "python",
200 | "name": "python3"
201 | },
202 | "language_info": {
203 | "codemirror_mode": {
204 | "name": "ipython",
205 | "version": 3
206 | },
207 | "file_extension": ".py",
208 | "mimetype": "text/x-python",
209 | "name": "python",
210 | "nbconvert_exporter": "python",
211 | "pygments_lexer": "ipython3",
212 | "version": "3.7.6"
213 | }
214 | },
215 | "nbformat": 4,
216 | "nbformat_minor": 1
217 | }
218 |
--------------------------------------------------------------------------------
/07_Visualization/Chipotle/Exercises.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Visualizing Chipotle's Data"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Step 1. Import the necessary libraries"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": 1,
20 | "metadata": {},
21 | "outputs": [],
22 | "source": []
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "### Step 2. Import the dataset : chipotle.csv"
29 | ]
30 | },
31 | {
32 | "cell_type": "markdown",
33 | "metadata": {},
34 | "source": [
35 | "### Step 3. Assign it to a variable called chipo."
36 | ]
37 | },
38 | {
39 | "cell_type": "code",
40 | "execution_count": null,
41 | "metadata": {},
42 | "outputs": [],
43 | "source": []
44 | },
45 | {
46 | "cell_type": "markdown",
47 | "metadata": {},
48 | "source": [
49 | "### Step 4. See the first 10 entries"
50 | ]
51 | },
52 | {
53 | "cell_type": "code",
54 | "execution_count": null,
55 | "metadata": {
56 | "scrolled": false
57 | },
58 | "outputs": [],
59 | "source": []
60 | },
61 | {
62 | "cell_type": "markdown",
63 | "metadata": {},
64 | "source": [
65 | "### Step 5. Create a histogram of the top 5 items bought"
66 | ]
67 | },
68 | {
69 | "cell_type": "code",
70 | "execution_count": null,
71 | "metadata": {},
72 | "outputs": [],
73 | "source": []
74 | },
75 | {
76 | "cell_type": "markdown",
77 | "metadata": {},
78 | "source": [
79 | "### Step 6. Create a scatterplot with the number of items orderered per order price\n",
80 | "#### Hint: Price should be in the X-axis and Items ordered in the Y-axis"
81 | ]
82 | },
83 | {
84 | "cell_type": "code",
85 | "execution_count": null,
86 | "metadata": {},
87 | "outputs": [],
88 | "source": []
89 | },
90 | {
91 | "cell_type": "markdown",
92 | "metadata": {},
93 | "source": [
94 | "### Step 7. BONUS: Create a question and a graph to answer your own question."
95 | ]
96 | },
97 | {
98 | "cell_type": "code",
99 | "execution_count": null,
100 | "metadata": {},
101 | "outputs": [],
102 | "source": []
103 | }
104 | ],
105 | "metadata": {
106 | "kernelspec": {
107 | "display_name": "Python 3",
108 | "language": "python",
109 | "name": "python3"
110 | },
111 | "language_info": {
112 | "codemirror_mode": {
113 | "name": "ipython",
114 | "version": 3
115 | },
116 | "file_extension": ".py",
117 | "mimetype": "text/x-python",
118 | "name": "python",
119 | "nbconvert_exporter": "python",
120 | "pygments_lexer": "ipython3",
121 | "version": "3.7.6"
122 | }
123 | },
124 | "nbformat": 4,
125 | "nbformat_minor": 1
126 | }
127 |
--------------------------------------------------------------------------------
/07_Visualization/Online_Retail/Exercises.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Online Retails Purchase"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Introduction:\n",
15 | "\n",
16 | "\n",
17 | "\n",
18 | "### Step 1. Import the necessary libraries"
19 | ]
20 | },
21 | {
22 | "cell_type": "code",
23 | "execution_count": 1,
24 | "metadata": {},
25 | "outputs": [],
26 | "source": []
27 | },
28 | {
29 | "cell_type": "markdown",
30 | "metadata": {},
31 | "source": [
32 | "### Step 2. Import the dataset : Online_Retail.csv"
33 | ]
34 | },
35 | {
36 | "cell_type": "code",
37 | "execution_count": null,
38 | "metadata": {},
39 | "outputs": [],
40 | "source": []
41 | },
42 | {
43 | "cell_type": "markdown",
44 | "metadata": {},
45 | "source": [
46 | "### Step 3. Assign it to a variable called online_rt"
47 | ]
48 | },
49 | {
50 | "cell_type": "code",
51 | "execution_count": null,
52 | "metadata": {},
53 | "outputs": [],
54 | "source": []
55 | },
56 | {
57 | "cell_type": "markdown",
58 | "metadata": {},
59 | "source": [
60 | "### Step 4. Create a histogram with the 10 countries that have the most 'Quantity' ordered except UK"
61 | ]
62 | },
63 | {
64 | "cell_type": "code",
65 | "execution_count": null,
66 | "metadata": {},
67 | "outputs": [],
68 | "source": []
69 | },
70 | {
71 | "cell_type": "markdown",
72 | "metadata": {},
73 | "source": [
74 | "### Step 5. Exclude negative Quantity entries"
75 | ]
76 | },
77 | {
78 | "cell_type": "code",
79 | "execution_count": null,
80 | "metadata": {},
81 | "outputs": [],
82 | "source": []
83 | },
84 | {
85 | "cell_type": "markdown",
86 | "metadata": {},
87 | "source": [
88 | "### Step 6. Create a scatterplot with the Quantity per UnitPrice by CustomerID for the top 3 Countries (except UK)"
89 | ]
90 | },
91 | {
92 | "cell_type": "code",
93 | "execution_count": null,
94 | "metadata": {},
95 | "outputs": [],
96 | "source": []
97 | },
98 | {
99 | "cell_type": "markdown",
100 | "metadata": {},
101 | "source": [
102 | "### Step 7. Investigate why the previous results look so uninformative.\n",
103 | "\n",
104 | "#### Step 7.1 Look at the first line of code in Step 6. And try to figure out if it leads to any kind of problem.\n",
105 | "##### Step 7.1.1 Display the first few rows of that DataFrame."
106 | ]
107 | },
108 | {
109 | "cell_type": "code",
110 | "execution_count": null,
111 | "metadata": {},
112 | "outputs": [],
113 | "source": []
114 | },
115 | {
116 | "cell_type": "markdown",
117 | "metadata": {},
118 | "source": [
119 | "##### Step 7.1.2 Think about what that piece of code does and display the dtype of `UnitPrice`"
120 | ]
121 | },
122 | {
123 | "cell_type": "code",
124 | "execution_count": null,
125 | "metadata": {},
126 | "outputs": [],
127 | "source": []
128 | },
129 | {
130 | "cell_type": "markdown",
131 | "metadata": {},
132 | "source": [
133 | "##### Step 7.1.3 Pull data from `online_rt`for `CustomerID`s 12346.0 and 12347.0."
134 | ]
135 | },
136 | {
137 | "cell_type": "code",
138 | "execution_count": null,
139 | "metadata": {},
140 | "outputs": [],
141 | "source": []
142 | },
143 | {
144 | "cell_type": "markdown",
145 | "metadata": {},
146 | "source": [
147 | "#### Step 7.2 Reinterpreting the initial problem.\n",
148 | "\n",
149 | "##### Step 7.2.1 Find out the top 3 countries in terms of sales volume."
150 | ]
151 | },
152 | {
153 | "cell_type": "code",
154 | "execution_count": null,
155 | "metadata": {},
156 | "outputs": [],
157 | "source": []
158 | },
159 | {
160 | "cell_type": "markdown",
161 | "metadata": {},
162 | "source": [
163 | "##### Step 7.2.2 \n",
164 | "\n",
165 | "Now that we have the top 3 countries, we can focus on the rest of the problem: \n",
166 | "\"Quantity per UnitPrice by CustomerID\". \n",
167 | "We need to unpack that.\n",
168 | "\n",
169 | "\"by CustomerID\" part is easy. That means we're going to be plotting one dot per CustomerID's on our plot. In other words, we're going to be grouping by CustomerID.\n",
170 | "\n",
171 | "\"Quantity per UnitPrice\" is trickier. Here's what we know: \n",
172 | "*One axis will represent a Quantity assigned to a given customer. This is easy; we can just plot the total Quantity for each customer. \n",
173 | "*The other axis will represent a UnitPrice assigned to a given customer. Remember a single customer can have any number of orders with different prices, so summing up prices isn't quite helpful. Besides it's not quite clear what we mean when we say \"unit price per customer\"; it sounds like price of the customer! A reasonable alternative is that we assign each customer the average amount each has paid per item. So let's settle that question in that manner.\n",
174 | "\n",
175 | "#### Step 7.3 Modify, select and plot data\n",
176 | "##### Step 7.3.1 Add a column to online_rt called `Revenue` calculate the revenue (Quantity * UnitPrice) from each sale.\n",
177 | "We will use this later to figure out an average price per customer."
178 | ]
179 | },
180 | {
181 | "cell_type": "code",
182 | "execution_count": null,
183 | "metadata": {},
184 | "outputs": [],
185 | "source": []
186 | },
187 | {
188 | "cell_type": "markdown",
189 | "metadata": {},
190 | "source": [
191 | "##### Step 7.3.2 Group by `CustomerID` and `Country` and find out the average price (`AvgPrice`) each customer spends per unit."
192 | ]
193 | },
194 | {
195 | "cell_type": "code",
196 | "execution_count": null,
197 | "metadata": {},
198 | "outputs": [],
199 | "source": []
200 | },
201 | {
202 | "cell_type": "markdown",
203 | "metadata": {},
204 | "source": [
205 | "##### Step 7.3.3 Plot"
206 | ]
207 | },
208 | {
209 | "cell_type": "code",
210 | "execution_count": null,
211 | "metadata": {},
212 | "outputs": [],
213 | "source": []
214 | },
215 | {
216 | "cell_type": "markdown",
217 | "metadata": {},
218 | "source": [
219 | "#### Step 7.4 What to do now?\n",
220 | "We aren't much better-off than what we started with. The data are still extremely scattered around and don't seem quite informative.\n",
221 | "\n",
222 | "But we shouldn't despair!\n",
223 | "There are two things to realize:\n",
224 | "1) The data seem to be skewed towaards the axes (e.g. we don't have any values where Quantity = 50000 and AvgPrice = 5). So that might suggest a trend.\n",
225 | "2) We have more data! We've only been looking at the data from 3 different countries and they are plotted on different graphs.\n",
226 | "\n",
227 | "So: we should plot the data regardless of `Country` and hopefully see a less scattered graph.\n",
228 | "\n",
229 | "##### Step 7.4.1 Plot the data for each `CustomerID` on a single graph"
230 | ]
231 | },
232 | {
233 | "cell_type": "code",
234 | "execution_count": null,
235 | "metadata": {},
236 | "outputs": [],
237 | "source": []
238 | },
239 | {
240 | "cell_type": "markdown",
241 | "metadata": {},
242 | "source": [
243 | "##### Step 7.4.2 Zoom in so we can see that curve more clearly"
244 | ]
245 | },
246 | {
247 | "cell_type": "code",
248 | "execution_count": null,
249 | "metadata": {},
250 | "outputs": [],
251 | "source": []
252 | },
253 | {
254 | "cell_type": "markdown",
255 | "metadata": {},
256 | "source": [
257 | "### 8. Plot a line chart showing revenue (y) per UnitPrice (x).\n",
258 | "\n",
259 | "#### 8.1 Group `UnitPrice` by intervals of 1 for prices [0,50), and sum `Quantity` and `Revenue`."
260 | ]
261 | },
262 | {
263 | "cell_type": "code",
264 | "execution_count": null,
265 | "metadata": {},
266 | "outputs": [],
267 | "source": []
268 | },
269 | {
270 | "cell_type": "markdown",
271 | "metadata": {},
272 | "source": [
273 | "#### 8.3 Plot."
274 | ]
275 | },
276 | {
277 | "cell_type": "code",
278 | "execution_count": null,
279 | "metadata": {},
280 | "outputs": [],
281 | "source": []
282 | },
283 | {
284 | "cell_type": "markdown",
285 | "metadata": {},
286 | "source": [
287 | "#### 8.4 Make it look nicer.\n",
288 | "x-axis needs values. \n",
289 | "y-axis isn't that easy to read; show in terms of millions."
290 | ]
291 | },
292 | {
293 | "cell_type": "code",
294 | "execution_count": null,
295 | "metadata": {},
296 | "outputs": [],
297 | "source": []
298 | },
299 | {
300 | "cell_type": "markdown",
301 | "metadata": {},
302 | "source": [
303 | "### BONUS: Create your own question and answer it."
304 | ]
305 | },
306 | {
307 | "cell_type": "code",
308 | "execution_count": null,
309 | "metadata": {},
310 | "outputs": [],
311 | "source": []
312 | }
313 | ],
314 | "metadata": {
315 | "kernelspec": {
316 | "display_name": "Python 3",
317 | "language": "python",
318 | "name": "python3"
319 | },
320 | "language_info": {
321 | "codemirror_mode": {
322 | "name": "ipython",
323 | "version": 3
324 | },
325 | "file_extension": ".py",
326 | "mimetype": "text/x-python",
327 | "name": "python",
328 | "nbconvert_exporter": "python",
329 | "pygments_lexer": "ipython3",
330 | "version": "3.7.6"
331 | }
332 | },
333 | "nbformat": 4,
334 | "nbformat_minor": 1
335 | }
336 |
--------------------------------------------------------------------------------
/08_Creating_Series_and_DataFrames/Pokemon/Exercises-with-solutions-and-code.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Pokemon"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Introduction:\n",
15 | "\n",
16 | "This time you will create the data.\n",
17 | "\n",
18 | "\n",
19 | "\n",
20 | "### Step 1. Import the necessary libraries"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 2,
26 | "metadata": {},
27 | "outputs": [],
28 | "source": [
29 | "import pandas as pd"
30 | ]
31 | },
32 | {
33 | "cell_type": "markdown",
34 | "metadata": {},
35 | "source": [
36 | "### Step 2. Create a data dictionary"
37 | ]
38 | },
39 | {
40 | "cell_type": "code",
41 | "execution_count": 3,
42 | "metadata": {
43 | "collapsed": true
44 | },
45 | "outputs": [],
46 | "source": [
47 | "raw_data = {\"name\": ['Bulbasaur', 'Charmander','Squirtle','Caterpie'],\n",
48 | " \"evolution\": ['Ivysaur','Charmeleon','Wartortle','Metapod'],\n",
49 | " \"type\": ['grass', 'fire', 'water', 'bug'],\n",
50 | " \"hp\": [45, 39, 44, 45],\n",
51 | " \"pokedex\": ['yes', 'no','yes','no'] \n",
52 | " }"
53 | ]
54 | },
55 | {
56 | "cell_type": "markdown",
57 | "metadata": {},
58 | "source": [
59 | "### Step 3. Assign it to a variable called pokemon"
60 | ]
61 | },
62 | {
63 | "cell_type": "code",
64 | "execution_count": 5,
65 | "metadata": {},
66 | "outputs": [
67 | {
68 | "data": {
69 | "text/html": [
70 | "
\n",
71 | "
\n",
72 | " \n",
73 | " \n",
74 | " | \n",
75 | " evolution | \n",
76 | " hp | \n",
77 | " name | \n",
78 | " pokedex | \n",
79 | " type | \n",
80 | "
\n",
81 | " \n",
82 | " \n",
83 | " \n",
84 | " 0 | \n",
85 | " Ivysaur | \n",
86 | " 45 | \n",
87 | " Bulbasaur | \n",
88 | " yes | \n",
89 | " grass | \n",
90 | "
\n",
91 | " \n",
92 | " 1 | \n",
93 | " Charmeleon | \n",
94 | " 39 | \n",
95 | " Charmander | \n",
96 | " no | \n",
97 | " fire | \n",
98 | "
\n",
99 | " \n",
100 | " 2 | \n",
101 | " Wartortle | \n",
102 | " 44 | \n",
103 | " Squirtle | \n",
104 | " yes | \n",
105 | " water | \n",
106 | "
\n",
107 | " \n",
108 | " 3 | \n",
109 | " Metapod | \n",
110 | " 45 | \n",
111 | " Caterpie | \n",
112 | " no | \n",
113 | " bug | \n",
114 | "
\n",
115 | " \n",
116 | "
\n",
117 | "
"
118 | ],
119 | "text/plain": [
120 | " evolution hp name pokedex type\n",
121 | "0 Ivysaur 45 Bulbasaur yes grass\n",
122 | "1 Charmeleon 39 Charmander no fire\n",
123 | "2 Wartortle 44 Squirtle yes water\n",
124 | "3 Metapod 45 Caterpie no bug"
125 | ]
126 | },
127 | "execution_count": 5,
128 | "metadata": {},
129 | "output_type": "execute_result"
130 | }
131 | ],
132 | "source": [
133 | "pokemon = pd.DataFrame(raw_data)\n",
134 | "pokemon.head()"
135 | ]
136 | },
137 | {
138 | "cell_type": "markdown",
139 | "metadata": {},
140 | "source": [
141 | "### Step 4. Ops...it seems the DataFrame columns are in alphabetical order. Place the order of the columns as name, type, hp, evolution, pokedex"
142 | ]
143 | },
144 | {
145 | "cell_type": "code",
146 | "execution_count": 8,
147 | "metadata": {},
148 | "outputs": [
149 | {
150 | "data": {
151 | "text/html": [
152 | "\n",
153 | "
\n",
154 | " \n",
155 | " \n",
156 | " | \n",
157 | " name | \n",
158 | " type | \n",
159 | " hp | \n",
160 | " evolution | \n",
161 | " pokedex | \n",
162 | "
\n",
163 | " \n",
164 | " \n",
165 | " \n",
166 | " 0 | \n",
167 | " Bulbasaur | \n",
168 | " grass | \n",
169 | " 45 | \n",
170 | " Ivysaur | \n",
171 | " yes | \n",
172 | "
\n",
173 | " \n",
174 | " 1 | \n",
175 | " Charmander | \n",
176 | " fire | \n",
177 | " 39 | \n",
178 | " Charmeleon | \n",
179 | " no | \n",
180 | "
\n",
181 | " \n",
182 | " 2 | \n",
183 | " Squirtle | \n",
184 | " water | \n",
185 | " 44 | \n",
186 | " Wartortle | \n",
187 | " yes | \n",
188 | "
\n",
189 | " \n",
190 | " 3 | \n",
191 | " Caterpie | \n",
192 | " bug | \n",
193 | " 45 | \n",
194 | " Metapod | \n",
195 | " no | \n",
196 | "
\n",
197 | " \n",
198 | "
\n",
199 | "
"
200 | ],
201 | "text/plain": [
202 | " name type hp evolution pokedex\n",
203 | "0 Bulbasaur grass 45 Ivysaur yes\n",
204 | "1 Charmander fire 39 Charmeleon no\n",
205 | "2 Squirtle water 44 Wartortle yes\n",
206 | "3 Caterpie bug 45 Metapod no"
207 | ]
208 | },
209 | "execution_count": 8,
210 | "metadata": {},
211 | "output_type": "execute_result"
212 | }
213 | ],
214 | "source": [
215 | "pokemon = pokemon[['name', 'type', 'hp', 'evolution','pokedex']]\n",
216 | "pokemon"
217 | ]
218 | },
219 | {
220 | "cell_type": "markdown",
221 | "metadata": {},
222 | "source": [
223 | "### Step 5. Add another column called place, and insert what you have in mind."
224 | ]
225 | },
226 | {
227 | "cell_type": "code",
228 | "execution_count": 13,
229 | "metadata": {},
230 | "outputs": [
231 | {
232 | "data": {
233 | "text/html": [
234 | "\n",
235 | "
\n",
236 | " \n",
237 | " \n",
238 | " | \n",
239 | " name | \n",
240 | " type | \n",
241 | " hp | \n",
242 | " evolution | \n",
243 | " pokedex | \n",
244 | " place | \n",
245 | "
\n",
246 | " \n",
247 | " \n",
248 | " \n",
249 | " 0 | \n",
250 | " Bulbasaur | \n",
251 | " grass | \n",
252 | " 45 | \n",
253 | " Ivysaur | \n",
254 | " yes | \n",
255 | " park | \n",
256 | "
\n",
257 | " \n",
258 | " 1 | \n",
259 | " Charmander | \n",
260 | " fire | \n",
261 | " 39 | \n",
262 | " Charmeleon | \n",
263 | " no | \n",
264 | " street | \n",
265 | "
\n",
266 | " \n",
267 | " 2 | \n",
268 | " Squirtle | \n",
269 | " water | \n",
270 | " 44 | \n",
271 | " Wartortle | \n",
272 | " yes | \n",
273 | " lake | \n",
274 | "
\n",
275 | " \n",
276 | " 3 | \n",
277 | " Caterpie | \n",
278 | " bug | \n",
279 | " 45 | \n",
280 | " Metapod | \n",
281 | " no | \n",
282 | " forest | \n",
283 | "
\n",
284 | " \n",
285 | "
\n",
286 | "
"
287 | ],
288 | "text/plain": [
289 | " name type hp evolution pokedex place\n",
290 | "0 Bulbasaur grass 45 Ivysaur yes park\n",
291 | "1 Charmander fire 39 Charmeleon no street\n",
292 | "2 Squirtle water 44 Wartortle yes lake\n",
293 | "3 Caterpie bug 45 Metapod no forest"
294 | ]
295 | },
296 | "execution_count": 13,
297 | "metadata": {},
298 | "output_type": "execute_result"
299 | }
300 | ],
301 | "source": [
302 | "pokemon['place'] = ['park','street','lake','forest']\n",
303 | "pokemon"
304 | ]
305 | },
306 | {
307 | "cell_type": "markdown",
308 | "metadata": {},
309 | "source": [
310 | "### Step 6. Present the type of each column"
311 | ]
312 | },
313 | {
314 | "cell_type": "code",
315 | "execution_count": 9,
316 | "metadata": {},
317 | "outputs": [
318 | {
319 | "data": {
320 | "text/plain": [
321 | "name object\n",
322 | "type object\n",
323 | "hp int64\n",
324 | "evolution object\n",
325 | "pokedex object\n",
326 | "dtype: object"
327 | ]
328 | },
329 | "execution_count": 9,
330 | "metadata": {},
331 | "output_type": "execute_result"
332 | }
333 | ],
334 | "source": [
335 | "pokemon.dtypes"
336 | ]
337 | },
338 | {
339 | "cell_type": "markdown",
340 | "metadata": {},
341 | "source": [
342 | "### BONUS: Create your own question and answer it."
343 | ]
344 | },
345 | {
346 | "cell_type": "code",
347 | "execution_count": null,
348 | "metadata": {
349 | "collapsed": true
350 | },
351 | "outputs": [],
352 | "source": []
353 | }
354 | ],
355 | "metadata": {
356 | "kernelspec": {
357 | "display_name": "Python 3",
358 | "language": "python",
359 | "name": "python3"
360 | },
361 | "language_info": {
362 | "codemirror_mode": {
363 | "name": "ipython",
364 | "version": 3
365 | },
366 | "file_extension": ".py",
367 | "mimetype": "text/x-python",
368 | "name": "python",
369 | "nbconvert_exporter": "python",
370 | "pygments_lexer": "ipython3",
371 | "version": "3.7.6"
372 | }
373 | },
374 | "nbformat": 4,
375 | "nbformat_minor": 1
376 | }
377 |
--------------------------------------------------------------------------------
/08_Creating_Series_and_DataFrames/Pokemon/Exercises.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Pokemon"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Step 1. Import the necessary libraries"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": null,
20 | "metadata": {},
21 | "outputs": [],
22 | "source": []
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "### Step 2. Create a data dictionary that looks like the DataFrame below"
29 | ]
30 | },
31 | {
32 | "cell_type": "code",
33 | "execution_count": 3,
34 | "metadata": {
35 | "collapsed": true
36 | },
37 | "outputs": [],
38 | "source": []
39 | },
40 | {
41 | "cell_type": "markdown",
42 | "metadata": {},
43 | "source": [
44 | "### Step 3. Assign it to a variable called pokemon"
45 | ]
46 | },
47 | {
48 | "cell_type": "code",
49 | "execution_count": 5,
50 | "metadata": {},
51 | "outputs": [
52 | {
53 | "data": {
54 | "text/html": [
55 | "\n",
56 | "
\n",
57 | " \n",
58 | " \n",
59 | " | \n",
60 | " evolution | \n",
61 | " hp | \n",
62 | " name | \n",
63 | " pokedex | \n",
64 | " type | \n",
65 | "
\n",
66 | " \n",
67 | " \n",
68 | " \n",
69 | " 0 | \n",
70 | " Ivysaur | \n",
71 | " 45 | \n",
72 | " Bulbasaur | \n",
73 | " yes | \n",
74 | " grass | \n",
75 | "
\n",
76 | " \n",
77 | " 1 | \n",
78 | " Charmeleon | \n",
79 | " 39 | \n",
80 | " Charmander | \n",
81 | " no | \n",
82 | " fire | \n",
83 | "
\n",
84 | " \n",
85 | " 2 | \n",
86 | " Wartortle | \n",
87 | " 44 | \n",
88 | " Squirtle | \n",
89 | " yes | \n",
90 | " water | \n",
91 | "
\n",
92 | " \n",
93 | " 3 | \n",
94 | " Metapod | \n",
95 | " 45 | \n",
96 | " Caterpie | \n",
97 | " no | \n",
98 | " bug | \n",
99 | "
\n",
100 | " \n",
101 | "
\n",
102 | "
"
103 | ],
104 | "text/plain": [
105 | " evolution hp name pokedex type\n",
106 | "0 Ivysaur 45 Bulbasaur yes grass\n",
107 | "1 Charmeleon 39 Charmander no fire\n",
108 | "2 Wartortle 44 Squirtle yes water\n",
109 | "3 Metapod 45 Caterpie no bug"
110 | ]
111 | },
112 | "execution_count": 5,
113 | "metadata": {},
114 | "output_type": "execute_result"
115 | }
116 | ],
117 | "source": []
118 | },
119 | {
120 | "cell_type": "markdown",
121 | "metadata": {},
122 | "source": [
123 | "### Step 4. Ops...it seems the DataFrame columns are in alphabetical order. Place the order of the columns as name, type, hp, evolution, pokedex"
124 | ]
125 | },
126 | {
127 | "cell_type": "code",
128 | "execution_count": null,
129 | "metadata": {},
130 | "outputs": [],
131 | "source": []
132 | },
133 | {
134 | "cell_type": "markdown",
135 | "metadata": {},
136 | "source": [
137 | "### Step 5. Add another column called place, and insert what you have in mind."
138 | ]
139 | },
140 | {
141 | "cell_type": "code",
142 | "execution_count": null,
143 | "metadata": {},
144 | "outputs": [],
145 | "source": []
146 | },
147 | {
148 | "cell_type": "markdown",
149 | "metadata": {},
150 | "source": [
151 | "### Step 6. Present the type of each column"
152 | ]
153 | },
154 | {
155 | "cell_type": "code",
156 | "execution_count": null,
157 | "metadata": {},
158 | "outputs": [],
159 | "source": []
160 | },
161 | {
162 | "cell_type": "markdown",
163 | "metadata": {},
164 | "source": [
165 | "### BONUS: Create your own question and answer it."
166 | ]
167 | },
168 | {
169 | "cell_type": "code",
170 | "execution_count": null,
171 | "metadata": {
172 | "collapsed": true
173 | },
174 | "outputs": [],
175 | "source": []
176 | }
177 | ],
178 | "metadata": {
179 | "kernelspec": {
180 | "display_name": "Python 3",
181 | "language": "python",
182 | "name": "python3"
183 | },
184 | "language_info": {
185 | "codemirror_mode": {
186 | "name": "ipython",
187 | "version": 3
188 | },
189 | "file_extension": ".py",
190 | "mimetype": "text/x-python",
191 | "name": "python",
192 | "nbconvert_exporter": "python",
193 | "pygments_lexer": "ipython3",
194 | "version": "3.7.6"
195 | }
196 | },
197 | "nbformat": 4,
198 | "nbformat_minor": 1
199 | }
200 |
--------------------------------------------------------------------------------
/08_Creating_Series_and_DataFrames/Pokemon/Solutions.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Pokemon"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Introduction:\n",
15 | "\n",
16 | "This time you will create the data.\n",
17 | "\n",
18 | "\n",
19 | "\n",
20 | "### Step 1. Import the necessary libraries"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 2,
26 | "metadata": {
27 | "collapsed": false
28 | },
29 | "outputs": [],
30 | "source": []
31 | },
32 | {
33 | "cell_type": "markdown",
34 | "metadata": {},
35 | "source": [
36 | "### Step 2. Create a data dictionary"
37 | ]
38 | },
39 | {
40 | "cell_type": "code",
41 | "execution_count": 3,
42 | "metadata": {
43 | "collapsed": true
44 | },
45 | "outputs": [],
46 | "source": []
47 | },
48 | {
49 | "cell_type": "markdown",
50 | "metadata": {},
51 | "source": [
52 | "### Step 3. Assign it to a variable called pokemon"
53 | ]
54 | },
55 | {
56 | "cell_type": "code",
57 | "execution_count": 5,
58 | "metadata": {
59 | "collapsed": false
60 | },
61 | "outputs": [
62 | {
63 | "data": {
64 | "text/html": [
65 | "\n",
66 | "
\n",
67 | " \n",
68 | " \n",
69 | " | \n",
70 | " evolution | \n",
71 | " hp | \n",
72 | " name | \n",
73 | " pokedex | \n",
74 | " type | \n",
75 | "
\n",
76 | " \n",
77 | " \n",
78 | " \n",
79 | " 0 | \n",
80 | " Ivysaur | \n",
81 | " 45 | \n",
82 | " Bulbasaur | \n",
83 | " yes | \n",
84 | " grass | \n",
85 | "
\n",
86 | " \n",
87 | " 1 | \n",
88 | " Charmeleon | \n",
89 | " 39 | \n",
90 | " Charmander | \n",
91 | " no | \n",
92 | " fire | \n",
93 | "
\n",
94 | " \n",
95 | " 2 | \n",
96 | " Wartortle | \n",
97 | " 44 | \n",
98 | " Squirtle | \n",
99 | " yes | \n",
100 | " water | \n",
101 | "
\n",
102 | " \n",
103 | " 3 | \n",
104 | " Metapod | \n",
105 | " 45 | \n",
106 | " Caterpie | \n",
107 | " no | \n",
108 | " bug | \n",
109 | "
\n",
110 | " \n",
111 | "
\n",
112 | "
"
113 | ],
114 | "text/plain": [
115 | " evolution hp name pokedex type\n",
116 | "0 Ivysaur 45 Bulbasaur yes grass\n",
117 | "1 Charmeleon 39 Charmander no fire\n",
118 | "2 Wartortle 44 Squirtle yes water\n",
119 | "3 Metapod 45 Caterpie no bug"
120 | ]
121 | },
122 | "execution_count": 5,
123 | "metadata": {},
124 | "output_type": "execute_result"
125 | }
126 | ],
127 | "source": []
128 | },
129 | {
130 | "cell_type": "markdown",
131 | "metadata": {},
132 | "source": [
133 | "### Step 4. Ops...it seems the DataFrame columns are in alphabetical order. Place the order of the columns as name, type, hp, evolution, pokedex"
134 | ]
135 | },
136 | {
137 | "cell_type": "code",
138 | "execution_count": 8,
139 | "metadata": {
140 | "collapsed": false
141 | },
142 | "outputs": [
143 | {
144 | "data": {
145 | "text/html": [
146 | "\n",
147 | "
\n",
148 | " \n",
149 | " \n",
150 | " | \n",
151 | " name | \n",
152 | " type | \n",
153 | " hp | \n",
154 | " evolution | \n",
155 | " pokedex | \n",
156 | "
\n",
157 | " \n",
158 | " \n",
159 | " \n",
160 | " 0 | \n",
161 | " Bulbasaur | \n",
162 | " grass | \n",
163 | " 45 | \n",
164 | " Ivysaur | \n",
165 | " yes | \n",
166 | "
\n",
167 | " \n",
168 | " 1 | \n",
169 | " Charmander | \n",
170 | " fire | \n",
171 | " 39 | \n",
172 | " Charmeleon | \n",
173 | " no | \n",
174 | "
\n",
175 | " \n",
176 | " 2 | \n",
177 | " Squirtle | \n",
178 | " water | \n",
179 | " 44 | \n",
180 | " Wartortle | \n",
181 | " yes | \n",
182 | "
\n",
183 | " \n",
184 | " 3 | \n",
185 | " Caterpie | \n",
186 | " bug | \n",
187 | " 45 | \n",
188 | " Metapod | \n",
189 | " no | \n",
190 | "
\n",
191 | " \n",
192 | "
\n",
193 | "
"
194 | ],
195 | "text/plain": [
196 | " name type hp evolution pokedex\n",
197 | "0 Bulbasaur grass 45 Ivysaur yes\n",
198 | "1 Charmander fire 39 Charmeleon no\n",
199 | "2 Squirtle water 44 Wartortle yes\n",
200 | "3 Caterpie bug 45 Metapod no"
201 | ]
202 | },
203 | "execution_count": 8,
204 | "metadata": {},
205 | "output_type": "execute_result"
206 | }
207 | ],
208 | "source": []
209 | },
210 | {
211 | "cell_type": "markdown",
212 | "metadata": {},
213 | "source": [
214 | "### Step 5. Add another column called place, and insert what you have in mind."
215 | ]
216 | },
217 | {
218 | "cell_type": "code",
219 | "execution_count": 13,
220 | "metadata": {
221 | "collapsed": false
222 | },
223 | "outputs": [
224 | {
225 | "data": {
226 | "text/html": [
227 | "\n",
228 | "
\n",
229 | " \n",
230 | " \n",
231 | " | \n",
232 | " name | \n",
233 | " type | \n",
234 | " hp | \n",
235 | " evolution | \n",
236 | " pokedex | \n",
237 | " place | \n",
238 | "
\n",
239 | " \n",
240 | " \n",
241 | " \n",
242 | " 0 | \n",
243 | " Bulbasaur | \n",
244 | " grass | \n",
245 | " 45 | \n",
246 | " Ivysaur | \n",
247 | " yes | \n",
248 | " park | \n",
249 | "
\n",
250 | " \n",
251 | " 1 | \n",
252 | " Charmander | \n",
253 | " fire | \n",
254 | " 39 | \n",
255 | " Charmeleon | \n",
256 | " no | \n",
257 | " street | \n",
258 | "
\n",
259 | " \n",
260 | " 2 | \n",
261 | " Squirtle | \n",
262 | " water | \n",
263 | " 44 | \n",
264 | " Wartortle | \n",
265 | " yes | \n",
266 | " lake | \n",
267 | "
\n",
268 | " \n",
269 | " 3 | \n",
270 | " Caterpie | \n",
271 | " bug | \n",
272 | " 45 | \n",
273 | " Metapod | \n",
274 | " no | \n",
275 | " forest | \n",
276 | "
\n",
277 | " \n",
278 | "
\n",
279 | "
"
280 | ],
281 | "text/plain": [
282 | " name type hp evolution pokedex place\n",
283 | "0 Bulbasaur grass 45 Ivysaur yes park\n",
284 | "1 Charmander fire 39 Charmeleon no street\n",
285 | "2 Squirtle water 44 Wartortle yes lake\n",
286 | "3 Caterpie bug 45 Metapod no forest"
287 | ]
288 | },
289 | "execution_count": 13,
290 | "metadata": {},
291 | "output_type": "execute_result"
292 | }
293 | ],
294 | "source": []
295 | },
296 | {
297 | "cell_type": "markdown",
298 | "metadata": {},
299 | "source": [
300 | "### Step 6. Present the type of each column"
301 | ]
302 | },
303 | {
304 | "cell_type": "code",
305 | "execution_count": 9,
306 | "metadata": {
307 | "collapsed": false
308 | },
309 | "outputs": [
310 | {
311 | "data": {
312 | "text/plain": [
313 | "name object\n",
314 | "type object\n",
315 | "hp int64\n",
316 | "evolution object\n",
317 | "pokedex object\n",
318 | "dtype: object"
319 | ]
320 | },
321 | "execution_count": 9,
322 | "metadata": {},
323 | "output_type": "execute_result"
324 | }
325 | ],
326 | "source": []
327 | },
328 | {
329 | "cell_type": "markdown",
330 | "metadata": {},
331 | "source": [
332 | "### BONUS: Create your own question and answer it."
333 | ]
334 | },
335 | {
336 | "cell_type": "code",
337 | "execution_count": null,
338 | "metadata": {
339 | "collapsed": true
340 | },
341 | "outputs": [],
342 | "source": []
343 | }
344 | ],
345 | "metadata": {
346 | "kernelspec": {
347 | "display_name": "Python 2",
348 | "language": "python",
349 | "name": "python2"
350 | },
351 | "language_info": {
352 | "codemirror_mode": {
353 | "name": "ipython",
354 | "version": 2
355 | },
356 | "file_extension": ".py",
357 | "mimetype": "text/x-python",
358 | "name": "python",
359 | "nbconvert_exporter": "python",
360 | "pygments_lexer": "ipython2",
361 | "version": "2.7.11"
362 | }
363 | },
364 | "nbformat": 4,
365 | "nbformat_minor": 0
366 | }
367 |
--------------------------------------------------------------------------------
/09_Time_Series/Apple_Stock/Exercises.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Apple Stock"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Step 1. Import the necessary libraries"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": 2,
20 | "metadata": {},
21 | "outputs": [],
22 | "source": []
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "### Step 2. Import the dataset : appl_1980_2014.csv"
29 | ]
30 | },
31 | {
32 | "cell_type": "code",
33 | "execution_count": null,
34 | "metadata": {},
35 | "outputs": [],
36 | "source": []
37 | },
38 | {
39 | "cell_type": "markdown",
40 | "metadata": {},
41 | "source": [
42 | "### Step 3. Assign it to a variable apple"
43 | ]
44 | },
45 | {
46 | "cell_type": "code",
47 | "execution_count": null,
48 | "metadata": {},
49 | "outputs": [],
50 | "source": []
51 | },
52 | {
53 | "cell_type": "markdown",
54 | "metadata": {},
55 | "source": [
56 | "### Step 4. Check out the type of the columns"
57 | ]
58 | },
59 | {
60 | "cell_type": "code",
61 | "execution_count": null,
62 | "metadata": {},
63 | "outputs": [],
64 | "source": []
65 | },
66 | {
67 | "cell_type": "markdown",
68 | "metadata": {},
69 | "source": [
70 | "### Step 5. Transform the Date column as a datetime type"
71 | ]
72 | },
73 | {
74 | "cell_type": "code",
75 | "execution_count": null,
76 | "metadata": {},
77 | "outputs": [],
78 | "source": []
79 | },
80 | {
81 | "cell_type": "markdown",
82 | "metadata": {},
83 | "source": [
84 | "### Step 6. Set the date as the index"
85 | ]
86 | },
87 | {
88 | "cell_type": "code",
89 | "execution_count": null,
90 | "metadata": {},
91 | "outputs": [],
92 | "source": []
93 | },
94 | {
95 | "cell_type": "markdown",
96 | "metadata": {},
97 | "source": [
98 | "### Step 7. Is there any duplicate dates?"
99 | ]
100 | },
101 | {
102 | "cell_type": "code",
103 | "execution_count": null,
104 | "metadata": {},
105 | "outputs": [],
106 | "source": []
107 | },
108 | {
109 | "cell_type": "markdown",
110 | "metadata": {},
111 | "source": [
112 | "### Step 8. Ops...it seems the index is from the most recent date. Make the first entry the oldest date."
113 | ]
114 | },
115 | {
116 | "cell_type": "code",
117 | "execution_count": null,
118 | "metadata": {},
119 | "outputs": [],
120 | "source": []
121 | },
122 | {
123 | "cell_type": "markdown",
124 | "metadata": {},
125 | "source": [
126 | "### Step 9. Get the last business day of each month"
127 | ]
128 | },
129 | {
130 | "cell_type": "code",
131 | "execution_count": null,
132 | "metadata": {},
133 | "outputs": [],
134 | "source": []
135 | },
136 | {
137 | "cell_type": "markdown",
138 | "metadata": {},
139 | "source": [
140 | "### Step 10. What is the difference in days between the first day and the oldest"
141 | ]
142 | },
143 | {
144 | "cell_type": "code",
145 | "execution_count": null,
146 | "metadata": {},
147 | "outputs": [],
148 | "source": []
149 | },
150 | {
151 | "cell_type": "markdown",
152 | "metadata": {},
153 | "source": [
154 | "### Step 11. How many months in the data we have?"
155 | ]
156 | },
157 | {
158 | "cell_type": "code",
159 | "execution_count": null,
160 | "metadata": {},
161 | "outputs": [],
162 | "source": []
163 | },
164 | {
165 | "cell_type": "markdown",
166 | "metadata": {},
167 | "source": [
168 | "### Step 12. Plot the 'Adj Close' value. Set the size of the figure to 13.5 x 9 inches"
169 | ]
170 | },
171 | {
172 | "cell_type": "code",
173 | "execution_count": null,
174 | "metadata": {},
175 | "outputs": [],
176 | "source": []
177 | },
178 | {
179 | "cell_type": "markdown",
180 | "metadata": {},
181 | "source": [
182 | "### BONUS: Create your own question and answer it."
183 | ]
184 | },
185 | {
186 | "cell_type": "code",
187 | "execution_count": null,
188 | "metadata": {
189 | "collapsed": true
190 | },
191 | "outputs": [],
192 | "source": []
193 | }
194 | ],
195 | "metadata": {
196 | "anaconda-cloud": {},
197 | "kernelspec": {
198 | "display_name": "Python 3",
199 | "language": "python",
200 | "name": "python3"
201 | },
202 | "language_info": {
203 | "codemirror_mode": {
204 | "name": "ipython",
205 | "version": 3
206 | },
207 | "file_extension": ".py",
208 | "mimetype": "text/x-python",
209 | "name": "python",
210 | "nbconvert_exporter": "python",
211 | "pygments_lexer": "ipython3",
212 | "version": "3.7.6"
213 | }
214 | },
215 | "nbformat": 4,
216 | "nbformat_minor": 1
217 | }
218 |
--------------------------------------------------------------------------------
/09_Time_Series/Investor_Flow_of_Funds_US/Exercises.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Investor - Flow of Funds - US"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Step 1. Import the necessary libraries"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": 1,
20 | "metadata": {},
21 | "outputs": [],
22 | "source": []
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "### Step 2. Import the dataset : weekly.csv"
29 | ]
30 | },
31 | {
32 | "cell_type": "code",
33 | "execution_count": 2,
34 | "metadata": {},
35 | "outputs": [],
36 | "source": []
37 | },
38 | {
39 | "cell_type": "markdown",
40 | "metadata": {},
41 | "source": [
42 | "### Step 3. Assign it to a variable called "
43 | ]
44 | },
45 | {
46 | "cell_type": "code",
47 | "execution_count": null,
48 | "metadata": {},
49 | "outputs": [],
50 | "source": []
51 | },
52 | {
53 | "cell_type": "markdown",
54 | "metadata": {},
55 | "source": [
56 | "### Step 4. What is the frequency of the dataset?"
57 | ]
58 | },
59 | {
60 | "cell_type": "code",
61 | "execution_count": null,
62 | "metadata": {},
63 | "outputs": [],
64 | "source": []
65 | },
66 | {
67 | "cell_type": "markdown",
68 | "metadata": {},
69 | "source": [
70 | "### Step 5. Set the column Date as the index."
71 | ]
72 | },
73 | {
74 | "cell_type": "code",
75 | "execution_count": null,
76 | "metadata": {},
77 | "outputs": [],
78 | "source": []
79 | },
80 | {
81 | "cell_type": "markdown",
82 | "metadata": {},
83 | "source": [
84 | "### Step 6. What is the type of the index?"
85 | ]
86 | },
87 | {
88 | "cell_type": "code",
89 | "execution_count": null,
90 | "metadata": {},
91 | "outputs": [],
92 | "source": []
93 | },
94 | {
95 | "cell_type": "markdown",
96 | "metadata": {},
97 | "source": [
98 | "### Step 7. Set the index to a DatetimeIndex type"
99 | ]
100 | },
101 | {
102 | "cell_type": "code",
103 | "execution_count": null,
104 | "metadata": {},
105 | "outputs": [],
106 | "source": []
107 | },
108 | {
109 | "cell_type": "markdown",
110 | "metadata": {},
111 | "source": [
112 | "### Step 8. Change the frequency to monthly, sum the values and assign it to monthly."
113 | ]
114 | },
115 | {
116 | "cell_type": "code",
117 | "execution_count": null,
118 | "metadata": {},
119 | "outputs": [],
120 | "source": []
121 | },
122 | {
123 | "cell_type": "markdown",
124 | "metadata": {},
125 | "source": [
126 | "### Step 9. You will notice that it filled the dataFrame with months that don't have any data with NaN. Let's drop these rows."
127 | ]
128 | },
129 | {
130 | "cell_type": "code",
131 | "execution_count": null,
132 | "metadata": {},
133 | "outputs": [],
134 | "source": []
135 | },
136 | {
137 | "cell_type": "markdown",
138 | "metadata": {},
139 | "source": [
140 | "### Step 10. Good, now we have the monthly data. Now change the frequency to year."
141 | ]
142 | },
143 | {
144 | "cell_type": "code",
145 | "execution_count": null,
146 | "metadata": {},
147 | "outputs": [],
148 | "source": []
149 | },
150 | {
151 | "cell_type": "markdown",
152 | "metadata": {},
153 | "source": [
154 | "### BONUS: Create your own question and answer it."
155 | ]
156 | },
157 | {
158 | "cell_type": "code",
159 | "execution_count": null,
160 | "metadata": {
161 | "collapsed": true
162 | },
163 | "outputs": [],
164 | "source": []
165 | }
166 | ],
167 | "metadata": {
168 | "kernelspec": {
169 | "display_name": "Python 3",
170 | "language": "python",
171 | "name": "python3"
172 | },
173 | "language_info": {
174 | "codemirror_mode": {
175 | "name": "ipython",
176 | "version": 3
177 | },
178 | "file_extension": ".py",
179 | "mimetype": "text/x-python",
180 | "name": "python",
181 | "nbconvert_exporter": "python",
182 | "pygments_lexer": "ipython3",
183 | "version": "3.7.6"
184 | }
185 | },
186 | "nbformat": 4,
187 | "nbformat_minor": 1
188 | }
189 |
--------------------------------------------------------------------------------
/09_Time_Series/Investor_Flow_of_Funds_US/weekly.csv:
--------------------------------------------------------------------------------
1 | Date,Total Equity,Domestic Equity,World Equity,Hybrid,Total Bond,Taxable Bond,Municipal Bond,Total
2 | 2012-12-05,-7426,-6060,-1367,-74,5317,4210,1107,-2183
3 | 2012-12-12,-8783,-7520,-1263,123,1818,1598,219,-6842
4 | 2012-12-19,-5496,-5470,-26,-73,103,3472,-3369,-5466
5 | 2012-12-26,-4451,-4076,-375,550,2610,3333,-722,-1291
6 | 2013-01-02,-11156,-9622,-1533,-158,2383,2103,280,-8931
7 | 2013-01-09,14817,7995,6821,2888,9766,7311,2455,27471
8 | 2014-04-02,3155,938,2217,265,3379,3129,250,6799
9 | 2014-04-09,5761,2080,3681,1482,1609,1448,161,8852
10 | 2014-04-16,2286,634,1652,1186,633,604,29,4105
11 | 2014-04-23,3530,1392,2138,1239,1984,1453,531,6753
12 | 2014-04-30,-3890,-3996,106,759,888,559,329,-2242
13 | 2014-05-07,632,-2006,2639,-340,5493,4417,1076,5785
14 | 2014-05-14,-1079,-2321,1242,1188,4037,3141,897,4146
15 | 2014-05-21,697,-1790,2487,1216,2196,1398,798,4109
16 | 2014-05-28,-2453,-2603,150,1108,2041,1236,805,696
17 | 2014-06-04,2098,-1148,3246,1123,188,-470,658,3409
18 | 2014-06-11,1236,-1840,3075,1159,2112,1587,524,4506
19 | 2014-06-18,-922,-2204,1282,1060,4159,3740,419,4297
20 | 2014-06-25,-93,-1354,1262,1246,3256,2694,562,4409
21 | 2014-07-02,-7835,-8887,1052,636,2979,2704,276,-4220
22 | 2014-07-09,666,-1070,1736,1006,2721,3203,-482,4393
23 | 2014-07-30,118,-1171,1290,1024,1806,1119,687,2949
24 | 2014-08-06,-471,-3073,2602,-375,-8193,-8658,465,-9040
25 | 2014-08-13,320,-974,1294,496,1436,539,897,2252
26 | 2014-08-20,2671,738,1933,821,4999,4185,814,8490
27 | 2014-08-27,-577,-2199,1623,943,3655,2921,734,4021
28 | 2014-09-03,-4024,-5305,1281,544,2430,1768,661,-1050
29 | 2014-09-10,1257,-1291,2548,1055,1554,711,843,3866
30 | 2014-11-05,-32,-1634,1602,-176,5813,5284,529,5604
31 | 2014-11-12,1464,61,1403,963,3596,2703,893,6023
32 | 2014-11-19,-3010,-3622,611,99,2529,1758,771,-383
33 | 2014-11-25,-1175,-2044,869,-157,2590,1821,769,1258
34 | 2015-01-07,-3913,-5438,1525,-1057,-3403,-4729,1326,-8373
35 | 2015-01-14,1774,-37,1811,248,3549,2582,967,5572
36 | 2015-01-21,1267,856,411,790,1258,220,1038,3315
37 | 2015-01-28,4343,3455,888,1748,5964,4689,1275,12055
38 | 2015-02-04,4240,3536,703,793,3237,2274,963,8270
39 | 2015-02-11,1268,-27,1296,959,5862,5169,693,8089
40 | 2015-03-04,999,-1933,2932,528,4984,4309,675,6511
41 | 2015-03-11,3911,-7,3918,851,1298,999,298,6059
42 | 2015-03-18,1948,-1758,3706,912,452,258,194,3312
43 | 2015-03-25,-1167,-4478,3311,538,2404,1701,703,1775
44 | 2015-04-01,-1527,-3307,1780,720,-1296,-1392,96,-2103
45 | 2015-04-08,1906,-1321,3227,250,1719,1906,-187,3875
46 |
--------------------------------------------------------------------------------
/10_Deleting/Iris/Exercises.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Iris"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Step 1. Import the necessary libraries"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": null,
20 | "metadata": {},
21 | "outputs": [],
22 | "source": []
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "### Step 2. Import the dataset : iris.data"
29 | ]
30 | },
31 | {
32 | "cell_type": "markdown",
33 | "metadata": {},
34 | "source": [
35 | "### Step 3. Assign it to a variable called iris"
36 | ]
37 | },
38 | {
39 | "cell_type": "code",
40 | "execution_count": null,
41 | "metadata": {},
42 | "outputs": [],
43 | "source": []
44 | },
45 | {
46 | "cell_type": "markdown",
47 | "metadata": {},
48 | "source": [
49 | "### Step 4. Create columns for the dataset"
50 | ]
51 | },
52 | {
53 | "cell_type": "code",
54 | "execution_count": 57,
55 | "metadata": {},
56 | "outputs": [],
57 | "source": [
58 | "# 1. sepal_length (in cm)\n",
59 | "# 2. sepal_width (in cm)\n",
60 | "# 3. petal_length (in cm)\n",
61 | "# 4. petal_width (in cm)\n",
62 | "# 5. class"
63 | ]
64 | },
65 | {
66 | "cell_type": "markdown",
67 | "metadata": {},
68 | "source": [
69 | "### Step 5. Is there any missing value in the dataframe?"
70 | ]
71 | },
72 | {
73 | "cell_type": "code",
74 | "execution_count": null,
75 | "metadata": {},
76 | "outputs": [],
77 | "source": []
78 | },
79 | {
80 | "cell_type": "markdown",
81 | "metadata": {},
82 | "source": [
83 | "### Step 6. Lets set the values of the rows 10 to 29 of the column 'petal_length' to NaN"
84 | ]
85 | },
86 | {
87 | "cell_type": "code",
88 | "execution_count": null,
89 | "metadata": {},
90 | "outputs": [],
91 | "source": []
92 | },
93 | {
94 | "cell_type": "markdown",
95 | "metadata": {},
96 | "source": [
97 | "### Step 7. Good, now lets substitute the NaN values to 1.0"
98 | ]
99 | },
100 | {
101 | "cell_type": "code",
102 | "execution_count": null,
103 | "metadata": {},
104 | "outputs": [],
105 | "source": []
106 | },
107 | {
108 | "cell_type": "markdown",
109 | "metadata": {},
110 | "source": [
111 | "### Step 8. Now let's delete the column class"
112 | ]
113 | },
114 | {
115 | "cell_type": "code",
116 | "execution_count": null,
117 | "metadata": {},
118 | "outputs": [],
119 | "source": []
120 | },
121 | {
122 | "cell_type": "markdown",
123 | "metadata": {},
124 | "source": [
125 | "### Step 9. Set the first 3 rows as NaN"
126 | ]
127 | },
128 | {
129 | "cell_type": "code",
130 | "execution_count": null,
131 | "metadata": {},
132 | "outputs": [],
133 | "source": []
134 | },
135 | {
136 | "cell_type": "markdown",
137 | "metadata": {},
138 | "source": [
139 | "### Step 10. Delete the rows that have NaN"
140 | ]
141 | },
142 | {
143 | "cell_type": "code",
144 | "execution_count": null,
145 | "metadata": {},
146 | "outputs": [],
147 | "source": []
148 | },
149 | {
150 | "cell_type": "markdown",
151 | "metadata": {},
152 | "source": [
153 | "### Step 11. Reset the index so it begins with 0 again"
154 | ]
155 | },
156 | {
157 | "cell_type": "code",
158 | "execution_count": null,
159 | "metadata": {},
160 | "outputs": [],
161 | "source": []
162 | },
163 | {
164 | "cell_type": "markdown",
165 | "metadata": {},
166 | "source": [
167 | "### BONUS: Create your own question and answer it."
168 | ]
169 | },
170 | {
171 | "cell_type": "code",
172 | "execution_count": null,
173 | "metadata": {
174 | "collapsed": true
175 | },
176 | "outputs": [],
177 | "source": []
178 | }
179 | ],
180 | "metadata": {
181 | "kernelspec": {
182 | "display_name": "Python 3",
183 | "language": "python",
184 | "name": "python3"
185 | },
186 | "language_info": {
187 | "codemirror_mode": {
188 | "name": "ipython",
189 | "version": 3
190 | },
191 | "file_extension": ".py",
192 | "mimetype": "text/x-python",
193 | "name": "python",
194 | "nbconvert_exporter": "python",
195 | "pygments_lexer": "ipython3",
196 | "version": "3.7.6"
197 | }
198 | },
199 | "nbformat": 4,
200 | "nbformat_minor": 1
201 | }
202 |
--------------------------------------------------------------------------------
/10_Deleting/Iris/iris.data:
--------------------------------------------------------------------------------
1 | 5.1,3.5,1.4,0.2,Iris-setosa
2 | 4.9,3.0,1.4,0.2,Iris-setosa
3 | 4.7,3.2,1.3,0.2,Iris-setosa
4 | 4.6,3.1,1.5,0.2,Iris-setosa
5 | 5.0,3.6,1.4,0.2,Iris-setosa
6 | 5.4,3.9,1.7,0.4,Iris-setosa
7 | 4.6,3.4,1.4,0.3,Iris-setosa
8 | 5.0,3.4,1.5,0.2,Iris-setosa
9 | 4.4,2.9,1.4,0.2,Iris-setosa
10 | 4.9,3.1,1.5,0.1,Iris-setosa
11 | 5.4,3.7,1.5,0.2,Iris-setosa
12 | 4.8,3.4,1.6,0.2,Iris-setosa
13 | 4.8,3.0,1.4,0.1,Iris-setosa
14 | 4.3,3.0,1.1,0.1,Iris-setosa
15 | 5.8,4.0,1.2,0.2,Iris-setosa
16 | 5.7,4.4,1.5,0.4,Iris-setosa
17 | 5.4,3.9,1.3,0.4,Iris-setosa
18 | 5.1,3.5,1.4,0.3,Iris-setosa
19 | 5.7,3.8,1.7,0.3,Iris-setosa
20 | 5.1,3.8,1.5,0.3,Iris-setosa
21 | 5.4,3.4,1.7,0.2,Iris-setosa
22 | 5.1,3.7,1.5,0.4,Iris-setosa
23 | 4.6,3.6,1.0,0.2,Iris-setosa
24 | 5.1,3.3,1.7,0.5,Iris-setosa
25 | 4.8,3.4,1.9,0.2,Iris-setosa
26 | 5.0,3.0,1.6,0.2,Iris-setosa
27 | 5.0,3.4,1.6,0.4,Iris-setosa
28 | 5.2,3.5,1.5,0.2,Iris-setosa
29 | 5.2,3.4,1.4,0.2,Iris-setosa
30 | 4.7,3.2,1.6,0.2,Iris-setosa
31 | 4.8,3.1,1.6,0.2,Iris-setosa
32 | 5.4,3.4,1.5,0.4,Iris-setosa
33 | 5.2,4.1,1.5,0.1,Iris-setosa
34 | 5.5,4.2,1.4,0.2,Iris-setosa
35 | 4.9,3.1,1.5,0.1,Iris-setosa
36 | 5.0,3.2,1.2,0.2,Iris-setosa
37 | 5.5,3.5,1.3,0.2,Iris-setosa
38 | 4.9,3.1,1.5,0.1,Iris-setosa
39 | 4.4,3.0,1.3,0.2,Iris-setosa
40 | 5.1,3.4,1.5,0.2,Iris-setosa
41 | 5.0,3.5,1.3,0.3,Iris-setosa
42 | 4.5,2.3,1.3,0.3,Iris-setosa
43 | 4.4,3.2,1.3,0.2,Iris-setosa
44 | 5.0,3.5,1.6,0.6,Iris-setosa
45 | 5.1,3.8,1.9,0.4,Iris-setosa
46 | 4.8,3.0,1.4,0.3,Iris-setosa
47 | 5.1,3.8,1.6,0.2,Iris-setosa
48 | 4.6,3.2,1.4,0.2,Iris-setosa
49 | 5.3,3.7,1.5,0.2,Iris-setosa
50 | 5.0,3.3,1.4,0.2,Iris-setosa
51 | 7.0,3.2,4.7,1.4,Iris-versicolor
52 | 6.4,3.2,4.5,1.5,Iris-versicolor
53 | 6.9,3.1,4.9,1.5,Iris-versicolor
54 | 5.5,2.3,4.0,1.3,Iris-versicolor
55 | 6.5,2.8,4.6,1.5,Iris-versicolor
56 | 5.7,2.8,4.5,1.3,Iris-versicolor
57 | 6.3,3.3,4.7,1.6,Iris-versicolor
58 | 4.9,2.4,3.3,1.0,Iris-versicolor
59 | 6.6,2.9,4.6,1.3,Iris-versicolor
60 | 5.2,2.7,3.9,1.4,Iris-versicolor
61 | 5.0,2.0,3.5,1.0,Iris-versicolor
62 | 5.9,3.0,4.2,1.5,Iris-versicolor
63 | 6.0,2.2,4.0,1.0,Iris-versicolor
64 | 6.1,2.9,4.7,1.4,Iris-versicolor
65 | 5.6,2.9,3.6,1.3,Iris-versicolor
66 | 6.7,3.1,4.4,1.4,Iris-versicolor
67 | 5.6,3.0,4.5,1.5,Iris-versicolor
68 | 5.8,2.7,4.1,1.0,Iris-versicolor
69 | 6.2,2.2,4.5,1.5,Iris-versicolor
70 | 5.6,2.5,3.9,1.1,Iris-versicolor
71 | 5.9,3.2,4.8,1.8,Iris-versicolor
72 | 6.1,2.8,4.0,1.3,Iris-versicolor
73 | 6.3,2.5,4.9,1.5,Iris-versicolor
74 | 6.1,2.8,4.7,1.2,Iris-versicolor
75 | 6.4,2.9,4.3,1.3,Iris-versicolor
76 | 6.6,3.0,4.4,1.4,Iris-versicolor
77 | 6.8,2.8,4.8,1.4,Iris-versicolor
78 | 6.7,3.0,5.0,1.7,Iris-versicolor
79 | 6.0,2.9,4.5,1.5,Iris-versicolor
80 | 5.7,2.6,3.5,1.0,Iris-versicolor
81 | 5.5,2.4,3.8,1.1,Iris-versicolor
82 | 5.5,2.4,3.7,1.0,Iris-versicolor
83 | 5.8,2.7,3.9,1.2,Iris-versicolor
84 | 6.0,2.7,5.1,1.6,Iris-versicolor
85 | 5.4,3.0,4.5,1.5,Iris-versicolor
86 | 6.0,3.4,4.5,1.6,Iris-versicolor
87 | 6.7,3.1,4.7,1.5,Iris-versicolor
88 | 6.3,2.3,4.4,1.3,Iris-versicolor
89 | 5.6,3.0,4.1,1.3,Iris-versicolor
90 | 5.5,2.5,4.0,1.3,Iris-versicolor
91 | 5.5,2.6,4.4,1.2,Iris-versicolor
92 | 6.1,3.0,4.6,1.4,Iris-versicolor
93 | 5.8,2.6,4.0,1.2,Iris-versicolor
94 | 5.0,2.3,3.3,1.0,Iris-versicolor
95 | 5.6,2.7,4.2,1.3,Iris-versicolor
96 | 5.7,3.0,4.2,1.2,Iris-versicolor
97 | 5.7,2.9,4.2,1.3,Iris-versicolor
98 | 6.2,2.9,4.3,1.3,Iris-versicolor
99 | 5.1,2.5,3.0,1.1,Iris-versicolor
100 | 5.7,2.8,4.1,1.3,Iris-versicolor
101 | 6.3,3.3,6.0,2.5,Iris-virginica
102 | 5.8,2.7,5.1,1.9,Iris-virginica
103 | 7.1,3.0,5.9,2.1,Iris-virginica
104 | 6.3,2.9,5.6,1.8,Iris-virginica
105 | 6.5,3.0,5.8,2.2,Iris-virginica
106 | 7.6,3.0,6.6,2.1,Iris-virginica
107 | 4.9,2.5,4.5,1.7,Iris-virginica
108 | 7.3,2.9,6.3,1.8,Iris-virginica
109 | 6.7,2.5,5.8,1.8,Iris-virginica
110 | 7.2,3.6,6.1,2.5,Iris-virginica
111 | 6.5,3.2,5.1,2.0,Iris-virginica
112 | 6.4,2.7,5.3,1.9,Iris-virginica
113 | 6.8,3.0,5.5,2.1,Iris-virginica
114 | 5.7,2.5,5.0,2.0,Iris-virginica
115 | 5.8,2.8,5.1,2.4,Iris-virginica
116 | 6.4,3.2,5.3,2.3,Iris-virginica
117 | 6.5,3.0,5.5,1.8,Iris-virginica
118 | 7.7,3.8,6.7,2.2,Iris-virginica
119 | 7.7,2.6,6.9,2.3,Iris-virginica
120 | 6.0,2.2,5.0,1.5,Iris-virginica
121 | 6.9,3.2,5.7,2.3,Iris-virginica
122 | 5.6,2.8,4.9,2.0,Iris-virginica
123 | 7.7,2.8,6.7,2.0,Iris-virginica
124 | 6.3,2.7,4.9,1.8,Iris-virginica
125 | 6.7,3.3,5.7,2.1,Iris-virginica
126 | 7.2,3.2,6.0,1.8,Iris-virginica
127 | 6.2,2.8,4.8,1.8,Iris-virginica
128 | 6.1,3.0,4.9,1.8,Iris-virginica
129 | 6.4,2.8,5.6,2.1,Iris-virginica
130 | 7.2,3.0,5.8,1.6,Iris-virginica
131 | 7.4,2.8,6.1,1.9,Iris-virginica
132 | 7.9,3.8,6.4,2.0,Iris-virginica
133 | 6.4,2.8,5.6,2.2,Iris-virginica
134 | 6.3,2.8,5.1,1.5,Iris-virginica
135 | 6.1,2.6,5.6,1.4,Iris-virginica
136 | 7.7,3.0,6.1,2.3,Iris-virginica
137 | 6.3,3.4,5.6,2.4,Iris-virginica
138 | 6.4,3.1,5.5,1.8,Iris-virginica
139 | 6.0,3.0,4.8,1.8,Iris-virginica
140 | 6.9,3.1,5.4,2.1,Iris-virginica
141 | 6.7,3.1,5.6,2.4,Iris-virginica
142 | 6.9,3.1,5.1,2.3,Iris-virginica
143 | 5.8,2.7,5.1,1.9,Iris-virginica
144 | 6.8,3.2,5.9,2.3,Iris-virginica
145 | 6.7,3.3,5.7,2.5,Iris-virginica
146 | 6.7,3.0,5.2,2.3,Iris-virginica
147 | 6.3,2.5,5.0,1.9,Iris-virginica
148 | 6.5,3.0,5.2,2.0,Iris-virginica
149 | 6.2,3.4,5.4,2.3,Iris-virginica
150 | 5.9,3.0,5.1,1.8,Iris-virginica
151 |
152 |
--------------------------------------------------------------------------------
/10_Deleting/Wine/Exercises.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Wine"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Introduction:\n",
15 | "\n",
16 | "This exercise is a adaptation from the UCI Wine dataset.\n",
17 | "The only pupose is to practice deleting data with pandas.\n",
18 | "\n",
19 | "### Step 1. Import the necessary libraries"
20 | ]
21 | },
22 | {
23 | "cell_type": "code",
24 | "execution_count": null,
25 | "metadata": {},
26 | "outputs": [],
27 | "source": []
28 | },
29 | {
30 | "cell_type": "markdown",
31 | "metadata": {},
32 | "source": [
33 | "### Step 2. Import the dataset : wine.data"
34 | ]
35 | },
36 | {
37 | "cell_type": "code",
38 | "execution_count": null,
39 | "metadata": {},
40 | "outputs": [],
41 | "source": []
42 | },
43 | {
44 | "cell_type": "markdown",
45 | "metadata": {},
46 | "source": [
47 | "### Step 3. Assign it to a variable called wine"
48 | ]
49 | },
50 | {
51 | "cell_type": "code",
52 | "execution_count": null,
53 | "metadata": {},
54 | "outputs": [],
55 | "source": []
56 | },
57 | {
58 | "cell_type": "markdown",
59 | "metadata": {},
60 | "source": [
61 | "### Step 4. Delete the first, fourth, seventh, nineth, eleventh, thirteenth and fourteenth columns"
62 | ]
63 | },
64 | {
65 | "cell_type": "code",
66 | "execution_count": null,
67 | "metadata": {},
68 | "outputs": [],
69 | "source": []
70 | },
71 | {
72 | "cell_type": "markdown",
73 | "metadata": {},
74 | "source": [
75 | "### Step 5. Assign the columns as below:\n",
76 | "\n",
77 | "The attributes are (donated by Riccardo Leardi, riclea '@' anchem.unige.it): \n",
78 | "1) alcohol \n",
79 | "2) malic_acid \n",
80 | "3) alcalinity_of_ash \n",
81 | "4) magnesium \n",
82 | "5) flavanoids \n",
83 | "6) proanthocyanins \n",
84 | "7) hue "
85 | ]
86 | },
87 | {
88 | "cell_type": "code",
89 | "execution_count": null,
90 | "metadata": {},
91 | "outputs": [],
92 | "source": []
93 | },
94 | {
95 | "cell_type": "markdown",
96 | "metadata": {},
97 | "source": [
98 | "### Step 6. Set the values of the first 3 rows from alcohol as NaN"
99 | ]
100 | },
101 | {
102 | "cell_type": "code",
103 | "execution_count": null,
104 | "metadata": {},
105 | "outputs": [],
106 | "source": []
107 | },
108 | {
109 | "cell_type": "markdown",
110 | "metadata": {},
111 | "source": [
112 | "### Step 7. Now set the value of the rows 3 and 4 of magnesium as NaN"
113 | ]
114 | },
115 | {
116 | "cell_type": "code",
117 | "execution_count": null,
118 | "metadata": {},
119 | "outputs": [],
120 | "source": []
121 | },
122 | {
123 | "cell_type": "markdown",
124 | "metadata": {},
125 | "source": [
126 | "### Step 8. Fill the value of NaN with the number 10 in alcohol and 100 in magnesium"
127 | ]
128 | },
129 | {
130 | "cell_type": "code",
131 | "execution_count": null,
132 | "metadata": {},
133 | "outputs": [],
134 | "source": []
135 | },
136 | {
137 | "cell_type": "markdown",
138 | "metadata": {},
139 | "source": [
140 | "### Step 9. Count the number of missing values"
141 | ]
142 | },
143 | {
144 | "cell_type": "code",
145 | "execution_count": null,
146 | "metadata": {},
147 | "outputs": [],
148 | "source": []
149 | },
150 | {
151 | "cell_type": "markdown",
152 | "metadata": {},
153 | "source": [
154 | "### Step 10. Create an array of 10 random numbers up until 10"
155 | ]
156 | },
157 | {
158 | "cell_type": "code",
159 | "execution_count": null,
160 | "metadata": {},
161 | "outputs": [],
162 | "source": []
163 | },
164 | {
165 | "cell_type": "markdown",
166 | "metadata": {},
167 | "source": [
168 | "### Step 11. Use random numbers you generated as an index and assign NaN value to each of cell."
169 | ]
170 | },
171 | {
172 | "cell_type": "code",
173 | "execution_count": null,
174 | "metadata": {},
175 | "outputs": [],
176 | "source": []
177 | },
178 | {
179 | "cell_type": "markdown",
180 | "metadata": {},
181 | "source": [
182 | "### Step 12. How many missing values do we have?"
183 | ]
184 | },
185 | {
186 | "cell_type": "code",
187 | "execution_count": null,
188 | "metadata": {},
189 | "outputs": [],
190 | "source": []
191 | },
192 | {
193 | "cell_type": "markdown",
194 | "metadata": {},
195 | "source": [
196 | "### Step 13. Delete the rows that contain missing values"
197 | ]
198 | },
199 | {
200 | "cell_type": "code",
201 | "execution_count": null,
202 | "metadata": {},
203 | "outputs": [],
204 | "source": []
205 | },
206 | {
207 | "cell_type": "markdown",
208 | "metadata": {},
209 | "source": [
210 | "### Step 14. Print only the non-null values in alcohol"
211 | ]
212 | },
213 | {
214 | "cell_type": "code",
215 | "execution_count": null,
216 | "metadata": {},
217 | "outputs": [],
218 | "source": []
219 | },
220 | {
221 | "cell_type": "code",
222 | "execution_count": null,
223 | "metadata": {
224 | "collapsed": true
225 | },
226 | "outputs": [],
227 | "source": []
228 | },
229 | {
230 | "cell_type": "markdown",
231 | "metadata": {},
232 | "source": [
233 | "### Step 15. Reset the index, so it starts with 0 again"
234 | ]
235 | },
236 | {
237 | "cell_type": "code",
238 | "execution_count": null,
239 | "metadata": {},
240 | "outputs": [],
241 | "source": []
242 | },
243 | {
244 | "cell_type": "markdown",
245 | "metadata": {},
246 | "source": [
247 | "### BONUS: Create your own question and answer it."
248 | ]
249 | },
250 | {
251 | "cell_type": "code",
252 | "execution_count": null,
253 | "metadata": {
254 | "collapsed": true
255 | },
256 | "outputs": [],
257 | "source": []
258 | }
259 | ],
260 | "metadata": {
261 | "kernelspec": {
262 | "display_name": "Python 3",
263 | "language": "python",
264 | "name": "python3"
265 | },
266 | "language_info": {
267 | "codemirror_mode": {
268 | "name": "ipython",
269 | "version": 3
270 | },
271 | "file_extension": ".py",
272 | "mimetype": "text/x-python",
273 | "name": "python",
274 | "nbconvert_exporter": "python",
275 | "pygments_lexer": "ipython3",
276 | "version": "3.7.6"
277 | }
278 | },
279 | "nbformat": 4,
280 | "nbformat_minor": 1
281 | }
282 |
--------------------------------------------------------------------------------
/11_Indexing/Exercises.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Ex - "
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Introduction:\n",
15 | "\n",
16 | "\n",
17 | "### Step 1. Import the necessary libraries"
18 | ]
19 | },
20 | {
21 | "cell_type": "code",
22 | "execution_count": 2,
23 | "metadata": {},
24 | "outputs": [],
25 | "source": [
26 | "import pandas as pd"
27 | ]
28 | },
29 | {
30 | "cell_type": "markdown",
31 | "metadata": {},
32 | "source": [
33 | "### Step 2. Import the dataset "
34 | ]
35 | },
36 | {
37 | "cell_type": "code",
38 | "execution_count": 3,
39 | "metadata": {},
40 | "outputs": [],
41 | "source": [
42 | "df = pd.read_csv(\"chipotle.csv\")"
43 | ]
44 | },
45 | {
46 | "cell_type": "markdown",
47 | "metadata": {},
48 | "source": [
49 | "### Step 3. Assign it to a variable called "
50 | ]
51 | },
52 | {
53 | "cell_type": "code",
54 | "execution_count": null,
55 | "metadata": {},
56 | "outputs": [],
57 | "source": []
58 | },
59 | {
60 | "cell_type": "markdown",
61 | "metadata": {},
62 | "source": [
63 | "### Step 4. "
64 | ]
65 | },
66 | {
67 | "cell_type": "code",
68 | "execution_count": null,
69 | "metadata": {},
70 | "outputs": [],
71 | "source": []
72 | },
73 | {
74 | "cell_type": "markdown",
75 | "metadata": {},
76 | "source": [
77 | "### Step 5. "
78 | ]
79 | },
80 | {
81 | "cell_type": "code",
82 | "execution_count": null,
83 | "metadata": {},
84 | "outputs": [],
85 | "source": []
86 | },
87 | {
88 | "cell_type": "markdown",
89 | "metadata": {},
90 | "source": [
91 | "### Step 6. "
92 | ]
93 | },
94 | {
95 | "cell_type": "code",
96 | "execution_count": null,
97 | "metadata": {
98 | "collapsed": true
99 | },
100 | "outputs": [],
101 | "source": []
102 | },
103 | {
104 | "cell_type": "markdown",
105 | "metadata": {},
106 | "source": [
107 | "### Step 7. "
108 | ]
109 | },
110 | {
111 | "cell_type": "code",
112 | "execution_count": null,
113 | "metadata": {},
114 | "outputs": [],
115 | "source": []
116 | },
117 | {
118 | "cell_type": "markdown",
119 | "metadata": {},
120 | "source": [
121 | "### Step 8. "
122 | ]
123 | },
124 | {
125 | "cell_type": "code",
126 | "execution_count": null,
127 | "metadata": {},
128 | "outputs": [],
129 | "source": []
130 | },
131 | {
132 | "cell_type": "markdown",
133 | "metadata": {},
134 | "source": [
135 | "### Step 9. "
136 | ]
137 | },
138 | {
139 | "cell_type": "code",
140 | "execution_count": null,
141 | "metadata": {},
142 | "outputs": [],
143 | "source": []
144 | },
145 | {
146 | "cell_type": "markdown",
147 | "metadata": {},
148 | "source": [
149 | "### Step 10. "
150 | ]
151 | },
152 | {
153 | "cell_type": "code",
154 | "execution_count": null,
155 | "metadata": {},
156 | "outputs": [],
157 | "source": []
158 | },
159 | {
160 | "cell_type": "markdown",
161 | "metadata": {},
162 | "source": [
163 | "### Step 11. "
164 | ]
165 | },
166 | {
167 | "cell_type": "code",
168 | "execution_count": null,
169 | "metadata": {},
170 | "outputs": [],
171 | "source": []
172 | },
173 | {
174 | "cell_type": "markdown",
175 | "metadata": {},
176 | "source": [
177 | "### Step 12. "
178 | ]
179 | },
180 | {
181 | "cell_type": "code",
182 | "execution_count": null,
183 | "metadata": {},
184 | "outputs": [],
185 | "source": []
186 | },
187 | {
188 | "cell_type": "markdown",
189 | "metadata": {},
190 | "source": [
191 | "### Step 13. "
192 | ]
193 | },
194 | {
195 | "cell_type": "code",
196 | "execution_count": null,
197 | "metadata": {},
198 | "outputs": [],
199 | "source": []
200 | },
201 | {
202 | "cell_type": "markdown",
203 | "metadata": {},
204 | "source": [
205 | "### Step 14. "
206 | ]
207 | },
208 | {
209 | "cell_type": "code",
210 | "execution_count": null,
211 | "metadata": {
212 | "collapsed": true
213 | },
214 | "outputs": [],
215 | "source": []
216 | },
217 | {
218 | "cell_type": "markdown",
219 | "metadata": {},
220 | "source": [
221 | "### Step 15. "
222 | ]
223 | },
224 | {
225 | "cell_type": "code",
226 | "execution_count": null,
227 | "metadata": {
228 | "collapsed": true
229 | },
230 | "outputs": [],
231 | "source": []
232 | },
233 | {
234 | "cell_type": "markdown",
235 | "metadata": {},
236 | "source": [
237 | "### Step 16. "
238 | ]
239 | },
240 | {
241 | "cell_type": "code",
242 | "execution_count": null,
243 | "metadata": {
244 | "collapsed": true
245 | },
246 | "outputs": [],
247 | "source": []
248 | },
249 | {
250 | "cell_type": "markdown",
251 | "metadata": {},
252 | "source": [
253 | "### BONUS: Create your own question and answer it."
254 | ]
255 | },
256 | {
257 | "cell_type": "code",
258 | "execution_count": null,
259 | "metadata": {
260 | "collapsed": true
261 | },
262 | "outputs": [],
263 | "source": []
264 | }
265 | ],
266 | "metadata": {
267 | "anaconda-cloud": {},
268 | "kernelspec": {
269 | "display_name": "Python 3",
270 | "language": "python",
271 | "name": "python3"
272 | },
273 | "language_info": {
274 | "codemirror_mode": {
275 | "name": "ipython",
276 | "version": 3
277 | },
278 | "file_extension": ".py",
279 | "mimetype": "text/x-python",
280 | "name": "python",
281 | "nbconvert_exporter": "python",
282 | "pygments_lexer": "ipython3",
283 | "version": "3.7.6"
284 | }
285 | },
286 | "nbformat": 4,
287 | "nbformat_minor": 1
288 | }
289 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Pandas_Exercise (In progress)
2 | The purpose of this repository to show various Excel tasks that can be executed using Pandas library in python
3 |
4 | Note: Few datasets still need to add
5 |
--------------------------------------------------------------------------------
/dataset/Euro_2012_stats_TEAM.csv:
--------------------------------------------------------------------------------
1 | ,Team,Goals,Shots on target,Shots off target,Shooting Accuracy,% Goals-to-shots,Total shots (inc. Blocked),Hit Woodwork,Penalty goals,Penalties not scored,Headed goals,Passes,Passes completed,Passing Accuracy,Touches,Crosses,Dribbles,Corners Taken,Tackles,Clearances,Interceptions,Clearances off line,Clean Sheets,Blocks,Goals conceded,Saves made,Saves-to-shots ratio,Fouls Won,Fouls Conceded,Offsides,Yellow Cards,Red Cards,Subs on,Subs off,Players Used
2 | 0,Croatia,4,13,12,51.9%,16.0%,32,0,0,0,2,1076,828,76.9%,1706,60,42,14,49,83,56,,0,10,3,13,81.3%,41,62,2,9,0,9,9,16
3 | 1,Czech Republic,4,13,18,41.9%,12.9%,39,0,0,0,0,1565,1223,78.1%,2358,46,68,21,62,98,37,2.0,1,10,6,9,60.1%,53,73,8,7,0,11,11,19
4 | 2,Denmark,4,10,10,50.0%,20.0%,27,1,0,0,3,1298,1082,83.3%,1873,43,32,16,40,61,59,0.0,1,10,5,10,66.7%,25,38,8,4,0,7,7,15
5 | 3,England,5,11,18,50.0%,17.2%,40,0,0,0,3,1488,1200,80.6%,2440,58,60,16,86,106,72,1.0,2,29,3,22,88.1%,43,45,6,5,0,11,11,16
6 | 4,France,3,22,24,37.9%,6.5%,65,1,0,0,0,2066,1803,87.2%,2909,55,76,28,71,76,58,0.0,1,7,5,6,54.6%,36,51,5,6,0,11,11,19
7 | 5,Germany,10,32,32,47.8%,15.6%,80,2,1,0,2,2774,2427,87.4%,3761,101,60,35,91,73,69,0.0,1,11,6,10,62.6%,63,49,12,4,0,15,15,17
8 | 6,Greece,5,8,18,30.7%,19.2%,32,1,1,1,0,1187,911,76.7%,2016,52,53,10,65,123,87,0.0,1,23,7,13,65.1%,67,48,12,9,1,12,12,20
9 | 7,Italy,6,34,45,43.0%,7.5%,110,2,0,0,2,3016,2531,83.9%,4363,75,75,30,98,137,136,1.0,2,18,7,20,74.1%,101,89,16,16,0,18,18,19
10 | 8,Netherlands,2,12,36,25.0%,4.1%,60,2,0,0,0,1556,1381,88.7%,2163,50,49,22,34,41,41,0.0,0,9,5,12,70.6%,35,30,3,5,0,7,7,15
11 | 9,Poland,2,15,23,39.4%,5.2%,48,0,0,0,1,1059,852,80.4%,1724,55,39,14,67,87,62,0.0,0,8,3,6,66.7%,48,56,3,7,1,7,7,17
12 | 10,Portugal,6,22,42,34.3%,9.3%,82,6,0,0,2,1891,1461,77.2%,2958,91,64,41,78,92,86,0.0,2,11,4,10,71.5%,73,90,10,12,0,14,14,16
13 | 11,Republic of Ireland,1,7,12,36.8%,5.2%,28,0,0,0,1,851,606,71.2%,1433,43,18,8,45,78,43,1.0,0,23,9,17,65.4%,43,51,11,6,1,10,10,17
14 | 12,Russia,5,9,31,22.5%,12.5%,59,2,0,0,1,1602,1345,83.9%,2278,40,40,21,65,74,58,0.0,0,8,3,10,77.0%,34,43,4,6,0,7,7,16
15 | 13,Spain,12,42,33,55.9%,16.0%,100,0,1,0,2,4317,3820,88.4%,5585,69,106,44,122,102,79,0.0,5,8,1,15,93.8%,102,83,19,11,0,17,17,18
16 | 14,Sweden,5,17,19,47.2%,13.8%,39,3,0,0,1,1192,965,80.9%,1806,44,29,7,56,54,45,0.0,1,12,5,8,61.6%,35,51,7,7,0,9,9,18
17 | 15,Ukraine,2,7,26,21.2%,6.0%,38,0,0,0,2,1276,1043,81.7%,1894,33,26,18,65,97,29,0.0,0,4,4,13,76.5%,48,31,4,5,0,9,9,18
18 |
--------------------------------------------------------------------------------
/dataset/US_Crime_Rates_1960_2014.csv:
--------------------------------------------------------------------------------
1 | Year,Population,Total,Violent,Property,Murder,Forcible_Rape,Robbery,Aggravated_assault,Burglary,Larceny_Theft,Vehicle_Theft
1960,179323175,3384200,288460,3095700,9110,17190,107840,154320,912100,1855400,328200
1961,182992000,3488000,289390,3198600,8740,17220,106670,156760,949600,1913000,336000
1962,185771000,3752200,301510,3450700,8530,17550,110860,164570,994300,2089600,366800
1963,188483000,4109500,316970,3792500,8640,17650,116470,174210,1086400,2297800,408300
1964,191141000,4564600,364220,4200400,9360,21420,130390,203050,1213200,2514400,472800
1965,193526000,4739400,387390,4352000,9960,23410,138690,215330,1282500,2572600,496900
1966,195576000,5223500,430180,4793300,11040,25820,157990,235330,1410100,2822000,561200
1967,197457000,5903400,499930,5403500,12240,27620,202910,257160,1632100,3111600,659800
1968,199399000,6720200,595010,6125200,13800,31670,262840,286700,1858900,3482700,783600
1969,201385000,7410900,661870,6749000,14760,37170,298850,311090,1981900,3888600,878500
1970,203235298,8098000,738820,7359200,16000,37990,349860,334970,2205000,4225800,928400
1971,206212000,8588200,816500,7771700,17780,42260,387700,368760,2399300,4424200,948200
1972,208230000,8248800,834900,7413900,18670,46850,376290,393090,2375500,4151200,887200
1973,209851000,8718100,875910,7842200,19640,51400,384220,420650,2565500,4347900,928800
1974,211392000,10253400,974720,9278700,20710,55400,442400,456210,3039200,5262500,977100
1975,213124000,11292400,1039710,10252700,20510,56090,470500,492620,3265300,5977700,1009600
1976,214659000,11349700,1004210,10345500,18780,57080,427810,500530,3108700,6270800,966000
1977,216332000,10984500,1029580,9955000,19120,63500,412610,534350,3071500,5905700,977700
1978,218059000,11209000,1085550,10123400,19560,67610,426930,571460,3128300,5991000,1004100
1979,220099000,12249500,1208030,11041500,21460,76390,480700,629480,3327700,6601000,1112800
1980,225349264,13408300,1344520,12063700,23040,82990,565840,672650,3795200,7136900,1131700
1981,229146000,13423800,1361820,12061900,22520,82500,592910,663900,3779700,7194400,1087800
1982,231534000,12974400,1322390,11652000,21010,78770,553130,669480,3447100,7142500,1062400
1983,233981000,12108600,1258090,10850500,19310,78920,506570,653290,3129900,6712800,1007900
1984,236158000,11881800,1273280,10608500,18690,84230,485010,685350,2984400,6591900,1032200
1985,238740000,12431400,1328800,11102600,18980,88670,497870,723250,3073300,6926400,1102900
1986,240132887,13211869,1489169,11722700,20613,91459,542775,834322,3241410,7257153,1224137
1987,242282918,13508700,1483999,12024700,20096,91110,517704,855088,3236184,7499900,1288674
1988,245807000,13923100,1566220,12356900,20680,92490,542970,910090,3218100,7705900,1432900
1989,248239000,14251400,1646040,12605400,21500,94500,578330,951710,3168200,7872400,1564800
1990,248709873,14475600,1820130,12655500,23440,102560,639270,1054860,3073900,7945700,1635900
1991,252177000,14872900,1911770,12961100,24700,106590,687730,1092740,3157200,8142200,1661700
1992,255082000,14438200,1932270,12505900,23760,109060,672480,1126970,2979900,7915200,1610800
1993,257908000,14144800,1926020,12218800,24530,106010,659870,1135610,2834800,7820900,1563100
1994,260341000,13989500,1857670,12131900,23330,102220,618950,1113180,2712800,7879800,1539300
1995,262755000,13862700,1798790,12063900,21610,97470,580510,1099210,2593800,7997700,1472400
1996,265228572,13493863,1688540,11805300,19650,96250,535590,1037050,2506400,7904700,1394200
1997,267637000,13194571,1634770,11558175,18208,96153,498534,1023201,2460526,7743760,1354189
1998,270296000,12475634,1531044,10944590,16914,93103,446625,974402,2329950,7373886,1240754
1999,272690813,11634378,1426044,10208334,15522,89411,409371,911740,2100739,6955520,1152075
2000,281421906,11608072,1425486,10182586,15586,90178,408016,911706,2050992,6971590,1160002
2001,285317559,11876669,1439480,10437480,16037,90863,423557,909023,2116531,7092267,1228391
2002,287973924,11878954,1423677,10455277,16229,95235,420806,891407,2151252,7057370,1246646
2003,290690788,11826538,1383676,10442862,16528,93883,414235,859030,2154834,7026802,1261226
2004,293656842,11679474,1360088,10319386,16148,95089,401470,847381,2144446,6937089,1237851
2005,296507061,11565499,1390745,10174754,16740,94347,417438,862220,2155448,6783447,1235859
2006,299398484,11401511,1418043,9983568,17030,92757,447403,860853,2183746,6607013,1192809
2007,301621157,11251828,1408337,9843481,16929,90427,445125,855856,2176140,6568572,1095769
2008,304374846,11160543,1392628,9767915,16442,90479,443574,842134,2228474,6588046,958629
2009,307006550,10762956,1325896,9337060,15399,89241,408742,812514,2203313,6338095,795652
2010,309330219,10363873,1251248,9112625,14772,85593,369089,781844,2168457,6204601,739565
2011,311587816,10258774,1206031,9052743,14661,84175,354772,752423,2185140,6151095,716508
2012,313873685,10219059,1217067,9001992,14866,85141,355051,762009,2109932,6168874,723186
2013,316497531,9850445,1199684,8650761,14319,82109,345095,726575,1931835,6018632,700294
2014,318857056,9475816,1197987,8277829,14249,84041,325802,741291,1729806,5858496,689527
--------------------------------------------------------------------------------
/dataset/cars1.csv:
--------------------------------------------------------------------------------
1 | mpg,cylinders,displacement,horsepower,weight,acceleration,model,origin,car,,,,,
18.0,8,307,130,3504,12.0,70,1,chevrolet chevelle malibu,,,,,
15.0,8,350,165,3693,11.5,70,1,buick skylark 320,,,,,
18.0,8,318,150,3436,11.0,70,1,plymouth satellite,,,,,
16.0,8,304,150,3433,12.0,70,1,amc rebel sst,,,,,
17.0,8,302,140,3449,10.5,70,1,ford torino,,,,,
15.0,8,429,198,4341,10.0,70,1,ford galaxie 500,,,,,
14.0,8,454,220,4354,9.0,70,1,chevrolet impala,,,,,
14.0,8,440,215,4312,8.5,70,1,plymouth fury iii,,,,,
14.0,8,455,225,4425,10.0,70,1,pontiac catalina,,,,,
15.0,8,390,190,3850,8.5,70,1,amc ambassador dpl,,,,,
15.0,8,383,170,3563,10.0,70,1,dodge challenger se,,,,,
14.0,8,340,160,3609,8.0,70,1,plymouth 'cuda 340,,,,,
15.0,8,400,150,3761,9.5,70,1,chevrolet monte carlo,,,,,
14.0,8,455,225,3086,10.0,70,1,buick estate wagon (sw),,,,,
24.0,4,113,95,2372,15.0,70,3,toyota corona mark ii,,,,,
22.0,6,198,95,2833,15.5,70,1,plymouth duster,,,,,
18.0,6,199,97,2774,15.5,70,1,amc hornet,,,,,
21.0,6,200,85,2587,16.0,70,1,ford maverick,,,,,
27.0,4,97,88,2130,14.5,70,3,datsun pl510,,,,,
26.0,4,97,46,1835,20.5,70,2,volkswagen 1131 deluxe sedan,,,,,
25.0,4,110,87,2672,17.5,70,2,peugeot 504,,,,,
24.0,4,107,90,2430,14.5,70,2,audi 100 ls,,,,,
25.0,4,104,95,2375,17.5,70,2,saab 99e,,,,,
26.0,4,121,113,2234,12.5,70,2,bmw 2002,,,,,
21.0,6,199,90,2648,15.0,70,1,amc gremlin,,,,,
10.0,8,360,215,4615,14.0,70,1,ford f250,,,,,
10.0,8,307,200,4376,15.0,70,1,chevy c20,,,,,
11.0,8,318,210,4382,13.5,70,1,dodge d200,,,,,
9.0,8,304,193,4732,18.5,70,1,hi 1200d,,,,,
27.0,4,97,88,2130,14.5,71,3,datsun pl510,,,,,
28.0,4,140,90,2264,15.5,71,1,chevrolet vega 2300,,,,,
25.0,4,113,95,2228,14.0,71,3,toyota corona,,,,,
25.0,4,98,?,2046,19.0,71,1,ford pinto,,,,,
19.0,6,232,100,2634,13.0,71,1,amc gremlin,,,,,
16.0,6,225,105,3439,15.5,71,1,plymouth satellite custom,,,,,
17.0,6,250,100,3329,15.5,71,1,chevrolet chevelle malibu,,,,,
19.0,6,250,88,3302,15.5,71,1,ford torino 500,,,,,
18.0,6,232,100,3288,15.5,71,1,amc matador,,,,,
14.0,8,350,165,4209,12.0,71,1,chevrolet impala,,,,,
14.0,8,400,175,4464,11.5,71,1,pontiac catalina brougham,,,,,
14.0,8,351,153,4154,13.5,71,1,ford galaxie 500,,,,,
14.0,8,318,150,4096,13.0,71,1,plymouth fury iii,,,,,
12.0,8,383,180,4955,11.5,71,1,dodge monaco (sw),,,,,
13.0,8,400,170,4746,12.0,71,1,ford country squire (sw),,,,,
13.0,8,400,175,5140,12.0,71,1,pontiac safari (sw),,,,,
18.0,6,258,110,2962,13.5,71,1,amc hornet sportabout (sw),,,,,
22.0,4,140,72,2408,19.0,71,1,chevrolet vega (sw),,,,,
19.0,6,250,100,3282,15.0,71,1,pontiac firebird,,,,,
18.0,6,250,88,3139,14.5,71,1,ford mustang,,,,,
23.0,4,122,86,2220,14.0,71,1,mercury capri 2000,,,,,
28.0,4,116,90,2123,14.0,71,2,opel 1900,,,,,
30.0,4,79,70,2074,19.5,71,2,peugeot 304,,,,,
30.0,4,88,76,2065,14.5,71,2,fiat 124b,,,,,
31.0,4,71,65,1773,19.0,71,3,toyota corolla 1200,,,,,
35.0,4,72,69,1613,18.0,71,3,datsun 1200,,,,,
27.0,4,97,60,1834,19.0,71,2,volkswagen model 111,,,,,
26.0,4,91,70,1955,20.5,71,1,plymouth cricket,,,,,
24.0,4,113,95,2278,15.5,72,3,toyota corona hardtop,,,,,
25.0,4,98,80,2126,17.0,72,1,dodge colt hardtop,,,,,
23.0,4,97,54,2254,23.5,72,2,volkswagen type 3,,,,,
20.0,4,140,90,2408,19.5,72,1,chevrolet vega,,,,,
21.0,4,122,86,2226,16.5,72,1,ford pinto runabout,,,,,
13.0,8,350,165,4274,12.0,72,1,chevrolet impala,,,,,
14.0,8,400,175,4385,12.0,72,1,pontiac catalina,,,,,
15.0,8,318,150,4135,13.5,72,1,plymouth fury iii,,,,,
14.0,8,351,153,4129,13.0,72,1,ford galaxie 500,,,,,
17.0,8,304,150,3672,11.5,72,1,amc ambassador sst,,,,,
11.0,8,429,208,4633,11.0,72,1,mercury marquis,,,,,
13.0,8,350,155,4502,13.5,72,1,buick lesabre custom,,,,,
12.0,8,350,160,4456,13.5,72,1,oldsmobile delta 88 royale,,,,,
13.0,8,400,190,4422,12.5,72,1,chrysler newport royal,,,,,
19.0,3,70,97,2330,13.5,72,3,mazda rx2 coupe,,,,,
15.0,8,304,150,3892,12.5,72,1,amc matador (sw),,,,,
13.0,8,307,130,4098,14.0,72,1,chevrolet chevelle concours (sw),,,,,
13.0,8,302,140,4294,16.0,72,1,ford gran torino (sw),,,,,
14.0,8,318,150,4077,14.0,72,1,plymouth satellite custom (sw),,,,,
18.0,4,121,112,2933,14.5,72,2,volvo 145e (sw),,,,,
22.0,4,121,76,2511,18.0,72,2,volkswagen 411 (sw),,,,,
21.0,4,120,87,2979,19.5,72,2,peugeot 504 (sw),,,,,
26.0,4,96,69,2189,18.0,72,2,renault 12 (sw),,,,,
22.0,4,122,86,2395,16.0,72,1,ford pinto (sw),,,,,
28.0,4,97,92,2288,17.0,72,3,datsun 510 (sw),,,,,
23.0,4,120,97,2506,14.5,72,3,toyouta corona mark ii (sw),,,,,
28.0,4,98,80,2164,15.0,72,1,dodge colt (sw),,,,,
27.0,4,97,88,2100,16.5,72,3,toyota corolla 1600 (sw),,,,,
13.0,8,350,175,4100,13.0,73,1,buick century 350,,,,,
14.0,8,304,150,3672,11.5,73,1,amc matador,,,,,
13.0,8,350,145,3988,13.0,73,1,chevrolet malibu,,,,,
14.0,8,302,137,4042,14.5,73,1,ford gran torino,,,,,
15.0,8,318,150,3777,12.5,73,1,dodge coronet custom,,,,,
12.0,8,429,198,4952,11.5,73,1,mercury marquis brougham,,,,,
13.0,8,400,150,4464,12.0,73,1,chevrolet caprice classic,,,,,
13.0,8,351,158,4363,13.0,73,1,ford ltd,,,,,
14.0,8,318,150,4237,14.5,73,1,plymouth fury gran sedan,,,,,
13.0,8,440,215,4735,11.0,73,1,chrysler new yorker brougham,,,,,
12.0,8,455,225,4951,11.0,73,1,buick electra 225 custom,,,,,
13.0,8,360,175,3821,11.0,73,1,amc ambassador brougham,,,,,
18.0,6,225,105,3121,16.5,73,1,plymouth valiant,,,,,
16.0,6,250,100,3278,18.0,73,1,chevrolet nova custom,,,,,
18.0,6,232,100,2945,16.0,73,1,amc hornet,,,,,
18.0,6,250,88,3021,16.5,73,1,ford maverick,,,,,
23.0,6,198,95,2904,16.0,73,1,plymouth duster,,,,,
26.0,4,97,46,1950,21.0,73,2,volkswagen super beetle,,,,,
11.0,8,400,150,4997,14.0,73,1,chevrolet impala,,,,,
12.0,8,400,167,4906,12.5,73,1,ford country,,,,,
13.0,8,360,170,4654,13.0,73,1,plymouth custom suburb,,,,,
12.0,8,350,180,4499,12.5,73,1,oldsmobile vista cruiser,,,,,
18.0,6,232,100,2789,15.0,73,1,amc gremlin,,,,,
20.0,4,97,88,2279,19.0,73,3,toyota carina,,,,,
21.0,4,140,72,2401,19.5,73,1,chevrolet vega,,,,,
22.0,4,108,94,2379,16.5,73,3,datsun 610,,,,,
18.0,3,70,90,2124,13.5,73,3,maxda rx3,,,,,
19.0,4,122,85,2310,18.5,73,1,ford pinto,,,,,
21.0,6,155,107,2472,14.0,73,1,mercury capri v6,,,,,
26.0,4,98,90,2265,15.5,73,2,fiat 124 sport coupe,,,,,
15.0,8,350,145,4082,13.0,73,1,chevrolet monte carlo s,,,,,
16.0,8,400,230,4278,9.5,73,1,pontiac grand prix,,,,,
29.0,4,68,49,1867,19.5,73,2,fiat 128,,,,,
24.0,4,116,75,2158,15.5,73,2,opel manta,,,,,
20.0,4,114,91,2582,14.0,73,2,audi 100ls,,,,,
19.0,4,121,112,2868,15.5,73,2,volvo 144ea,,,,,
15.0,8,318,150,3399,11.0,73,1,dodge dart custom,,,,,
24.0,4,121,110,2660,14.0,73,2,saab 99le,,,,,
20.0,6,156,122,2807,13.5,73,3,toyota mark ii,,,,,
11.0,8,350,180,3664,11.0,73,1,oldsmobile omega,,,,,
20.0,6,198,95,3102,16.5,74,1,plymouth duster,,,,,
21.0,6,200,?,2875,17.0,74,1,ford maverick,,,,,
19.0,6,232,100,2901,16.0,74,1,amc hornet,,,,,
15.0,6,250,100,3336,17.0,74,1,chevrolet nova,,,,,
31.0,4,79,67,1950,19.0,74,3,datsun b210,,,,,
26.0,4,122,80,2451,16.5,74,1,ford pinto,,,,,
32.0,4,71,65,1836,21.0,74,3,toyota corolla 1200,,,,,
25.0,4,140,75,2542,17.0,74,1,chevrolet vega,,,,,
16.0,6,250,100,3781,17.0,74,1,chevrolet chevelle malibu classic,,,,,
16.0,6,258,110,3632,18.0,74,1,amc matador,,,,,
18.0,6,225,105,3613,16.5,74,1,plymouth satellite sebring,,,,,
16.0,8,302,140,4141,14.0,74,1,ford gran torino,,,,,
13.0,8,350,150,4699,14.5,74,1,buick century luxus (sw),,,,,
14.0,8,318,150,4457,13.5,74,1,dodge coronet custom (sw),,,,,
14.0,8,302,140,4638,16.0,74,1,ford gran torino (sw),,,,,
14.0,8,304,150,4257,15.5,74,1,amc matador (sw),,,,,
29.0,4,98,83,2219,16.5,74,2,audi fox,,,,,
26.0,4,79,67,1963,15.5,74,2,volkswagen dasher,,,,,
26.0,4,97,78,2300,14.5,74,2,opel manta,,,,,
31.0,4,76,52,1649,16.5,74,3,toyota corona,,,,,
32.0,4,83,61,2003,19.0,74,3,datsun 710,,,,,
28.0,4,90,75,2125,14.5,74,1,dodge colt,,,,,
24.0,4,90,75,2108,15.5,74,2,fiat 128,,,,,
26.0,4,116,75,2246,14.0,74,2,fiat 124 tc,,,,,
24.0,4,120,97,2489,15.0,74,3,honda civic,,,,,
26.0,4,108,93,2391,15.5,74,3,subaru,,,,,
31.0,4,79,67,2000,16.0,74,2,fiat x1.9,,,,,
19.0,6,225,95,3264,16.0,75,1,plymouth valiant custom,,,,,
18.0,6,250,105,3459,16.0,75,1,chevrolet nova,,,,,
15.0,6,250,72,3432,21.0,75,1,mercury monarch,,,,,
15.0,6,250,72,3158,19.5,75,1,ford maverick,,,,,
16.0,8,400,170,4668,11.5,75,1,pontiac catalina,,,,,
15.0,8,350,145,4440,14.0,75,1,chevrolet bel air,,,,,
16.0,8,318,150,4498,14.5,75,1,plymouth grand fury,,,,,
14.0,8,351,148,4657,13.5,75,1,ford ltd,,,,,
17.0,6,231,110,3907,21.0,75,1,buick century,,,,,
16.0,6,250,105,3897,18.5,75,1,chevroelt chevelle malibu,,,,,
15.0,6,258,110,3730,19.0,75,1,amc matador,,,,,
18.0,6,225,95,3785,19.0,75,1,plymouth fury,,,,,
21.0,6,231,110,3039,15.0,75,1,buick skyhawk,,,,,
20.0,8,262,110,3221,13.5,75,1,chevrolet monza 2+2,,,,,
13.0,8,302,129,3169,12.0,75,1,ford mustang ii,,,,,
29.0,4,97,75,2171,16.0,75,3,toyota corolla,,,,,
23.0,4,140,83,2639,17.0,75,1,ford pinto,,,,,
20.0,6,232,100,2914,16.0,75,1,amc gremlin,,,,,
23.0,4,140,78,2592,18.5,75,1,pontiac astro,,,,,
24.0,4,134,96,2702,13.5,75,3,toyota corona,,,,,
25.0,4,90,71,2223,16.5,75,2,volkswagen dasher,,,,,
24.0,4,119,97,2545,17.0,75,3,datsun 710,,,,,
18.0,6,171,97,2984,14.5,75,1,ford pinto,,,,,
29.0,4,90,70,1937,14.0,75,2,volkswagen rabbit,,,,,
19.0,6,232,90,3211,17.0,75,1,amc pacer,,,,,
23.0,4,115,95,2694,15.0,75,2,audi 100ls,,,,,
23.0,4,120,88,2957,17.0,75,2,peugeot 504,,,,,
22.0,4,121,98,2945,14.5,75,2,volvo 244dl,,,,,
25.0,4,121,115,2671,13.5,75,2,saab 99le,,,,,
33.0,4,91,53,1795,17.5,75,3,honda civic cvcc,,,,,
28.0,4,107,86,2464,15.5,76,2,fiat 131,,,,,
25.0,4,116,81,2220,16.9,76,2,opel 1900,,,,,
25.0,4,140,92,2572,14.9,76,1,capri ii,,,,,
26.0,4,98,79,2255,17.7,76,1,dodge colt,,,,,
27.0,4,101,83,2202,15.3,76,2,renault 12tl,,,,,
17.5,8,305,140,4215,13.0,76,1,chevrolet chevelle malibu classic,,,,,
16.0,8,318,150,4190,13.0,76,1,dodge coronet brougham,,,,,
15.5,8,304,120,3962,13.9,76,1,amc matador,,,,,
14.5,8,351,152,4215,12.8,76,1,ford gran torino,,,,,
22.0,6,225,100,3233,15.4,76,1,plymouth valiant,,,,,
22.0,6,250,105,3353,14.5,76,1,chevrolet nova,,,,,
24.0,6,200,81,3012,17.6,76,1,ford maverick,,,,,
22.5,6,232,90,3085,17.6,76,1,amc hornet,,,,,
29.0,4,85,52,2035,22.2,76,1,chevrolet chevette,,,,,
24.5,4,98,60,2164,22.1,76,1,chevrolet woody,,,,,
29.0,4,90,70,1937,14.2,76,2,vw rabbit,,,,,
--------------------------------------------------------------------------------
/dataset/cars2.csv:
--------------------------------------------------------------------------------
1 | mpg,cylinders,displacement,horsepower,weight,acceleration,model,origin,car
33.0,4,91,53,1795,17.4,76,3,honda civic
20.0,6,225,100,3651,17.7,76,1,dodge aspen se
18.0,6,250,78,3574,21.0,76,1,ford granada ghia
18.5,6,250,110,3645,16.2,76,1,pontiac ventura sj
17.5,6,258,95,3193,17.8,76,1,amc pacer d/l
29.5,4,97,71,1825,12.2,76,2,volkswagen rabbit
32.0,4,85,70,1990,17.0,76,3,datsun b-210
28.0,4,97,75,2155,16.4,76,3,toyota corolla
26.5,4,140,72,2565,13.6,76,1,ford pinto
20.0,4,130,102,3150,15.7,76,2,volvo 245
13.0,8,318,150,3940,13.2,76,1,plymouth volare premier v8
19.0,4,120,88,3270,21.9,76,2,peugeot 504
19.0,6,156,108,2930,15.5,76,3,toyota mark ii
16.5,6,168,120,3820,16.7,76,2,mercedes-benz 280s
16.5,8,350,180,4380,12.1,76,1,cadillac seville
13.0,8,350,145,4055,12.0,76,1,chevy c10
13.0,8,302,130,3870,15.0,76,1,ford f108
13.0,8,318,150,3755,14.0,76,1,dodge d100
31.5,4,98,68,2045,18.5,77,3,honda accord cvcc
30.0,4,111,80,2155,14.8,77,1,buick opel isuzu deluxe
36.0,4,79,58,1825,18.6,77,2,renault 5 gtl
25.5,4,122,96,2300,15.5,77,1,plymouth arrow gs
33.5,4,85,70,1945,16.8,77,3,datsun f-10 hatchback
17.5,8,305,145,3880,12.5,77,1,chevrolet caprice classic
17.0,8,260,110,4060,19.0,77,1,oldsmobile cutlass supreme
15.5,8,318,145,4140,13.7,77,1,dodge monaco brougham
15.0,8,302,130,4295,14.9,77,1,mercury cougar brougham
17.5,6,250,110,3520,16.4,77,1,chevrolet concours
20.5,6,231,105,3425,16.9,77,1,buick skylark
19.0,6,225,100,3630,17.7,77,1,plymouth volare custom
18.5,6,250,98,3525,19.0,77,1,ford granada
16.0,8,400,180,4220,11.1,77,1,pontiac grand prix lj
15.5,8,350,170,4165,11.4,77,1,chevrolet monte carlo landau
15.5,8,400,190,4325,12.2,77,1,chrysler cordoba
16.0,8,351,149,4335,14.5,77,1,ford thunderbird
29.0,4,97,78,1940,14.5,77,2,volkswagen rabbit custom
24.5,4,151,88,2740,16.0,77,1,pontiac sunbird coupe
26.0,4,97,75,2265,18.2,77,3,toyota corolla liftback
25.5,4,140,89,2755,15.8,77,1,ford mustang ii 2+2
30.5,4,98,63,2051,17.0,77,1,chevrolet chevette
33.5,4,98,83,2075,15.9,77,1,dodge colt m/m
30.0,4,97,67,1985,16.4,77,3,subaru dl
30.5,4,97,78,2190,14.1,77,2,volkswagen dasher
22.0,6,146,97,2815,14.5,77,3,datsun 810
21.5,4,121,110,2600,12.8,77,2,bmw 320i
21.5,3,80,110,2720,13.5,77,3,mazda rx-4
43.1,4,90,48,1985,21.5,78,2,volkswagen rabbit custom diesel
36.1,4,98,66,1800,14.4,78,1,ford fiesta
32.8,4,78,52,1985,19.4,78,3,mazda glc deluxe
39.4,4,85,70,2070,18.6,78,3,datsun b210 gx
36.1,4,91,60,1800,16.4,78,3,honda civic cvcc
19.9,8,260,110,3365,15.5,78,1,oldsmobile cutlass salon brougham
19.4,8,318,140,3735,13.2,78,1,dodge diplomat
20.2,8,302,139,3570,12.8,78,1,mercury monarch ghia
19.2,6,231,105,3535,19.2,78,1,pontiac phoenix lj
20.5,6,200,95,3155,18.2,78,1,chevrolet malibu
20.2,6,200,85,2965,15.8,78,1,ford fairmont (auto)
25.1,4,140,88,2720,15.4,78,1,ford fairmont (man)
20.5,6,225,100,3430,17.2,78,1,plymouth volare
19.4,6,232,90,3210,17.2,78,1,amc concord
20.6,6,231,105,3380,15.8,78,1,buick century special
20.8,6,200,85,3070,16.7,78,1,mercury zephyr
18.6,6,225,110,3620,18.7,78,1,dodge aspen
18.1,6,258,120,3410,15.1,78,1,amc concord d/l
19.2,8,305,145,3425,13.2,78,1,chevrolet monte carlo landau
17.7,6,231,165,3445,13.4,78,1,buick regal sport coupe (turbo)
18.1,8,302,139,3205,11.2,78,1,ford futura
17.5,8,318,140,4080,13.7,78,1,dodge magnum xe
30.0,4,98,68,2155,16.5,78,1,chevrolet chevette
27.5,4,134,95,2560,14.2,78,3,toyota corona
27.2,4,119,97,2300,14.7,78,3,datsun 510
30.9,4,105,75,2230,14.5,78,1,dodge omni
21.1,4,134,95,2515,14.8,78,3,toyota celica gt liftback
23.2,4,156,105,2745,16.7,78,1,plymouth sapporo
23.8,4,151,85,2855,17.6,78,1,oldsmobile starfire sx
23.9,4,119,97,2405,14.9,78,3,datsun 200-sx
20.3,5,131,103,2830,15.9,78,2,audi 5000
17.0,6,163,125,3140,13.6,78,2,volvo 264gl
21.6,4,121,115,2795,15.7,78,2,saab 99gle
16.2,6,163,133,3410,15.8,78,2,peugeot 604sl
31.5,4,89,71,1990,14.9,78,2,volkswagen scirocco
29.5,4,98,68,2135,16.6,78,3,honda accord lx
21.5,6,231,115,3245,15.4,79,1,pontiac lemans v6
19.8,6,200,85,2990,18.2,79,1,mercury zephyr 6
22.3,4,140,88,2890,17.3,79,1,ford fairmont 4
20.2,6,232,90,3265,18.2,79,1,amc concord dl 6
20.6,6,225,110,3360,16.6,79,1,dodge aspen 6
17.0,8,305,130,3840,15.4,79,1,chevrolet caprice classic
17.6,8,302,129,3725,13.4,79,1,ford ltd landau
16.5,8,351,138,3955,13.2,79,1,mercury grand marquis
18.2,8,318,135,3830,15.2,79,1,dodge st. regis
16.9,8,350,155,4360,14.9,79,1,buick estate wagon (sw)
15.5,8,351,142,4054,14.3,79,1,ford country squire (sw)
19.2,8,267,125,3605,15.0,79,1,chevrolet malibu classic (sw)
18.5,8,360,150,3940,13.0,79,1,chrysler lebaron town @ country (sw)
31.9,4,89,71,1925,14.0,79,2,vw rabbit custom
34.1,4,86,65,1975,15.2,79,3,maxda glc deluxe
35.7,4,98,80,1915,14.4,79,1,dodge colt hatchback custom
27.4,4,121,80,2670,15.0,79,1,amc spirit dl
25.4,5,183,77,3530,20.1,79,2,mercedes benz 300d
23.0,8,350,125,3900,17.4,79,1,cadillac eldorado
27.2,4,141,71,3190,24.8,79,2,peugeot 504
23.9,8,260,90,3420,22.2,79,1,oldsmobile cutlass salon brougham
34.2,4,105,70,2200,13.2,79,1,plymouth horizon
34.5,4,105,70,2150,14.9,79,1,plymouth horizon tc3
31.8,4,85,65,2020,19.2,79,3,datsun 210
37.3,4,91,69,2130,14.7,79,2,fiat strada custom
28.4,4,151,90,2670,16.0,79,1,buick skylark limited
28.8,6,173,115,2595,11.3,79,1,chevrolet citation
26.8,6,173,115,2700,12.9,79,1,oldsmobile omega brougham
33.5,4,151,90,2556,13.2,79,1,pontiac phoenix
41.5,4,98,76,2144,14.7,80,2,vw rabbit
38.1,4,89,60,1968,18.8,80,3,toyota corolla tercel
32.1,4,98,70,2120,15.5,80,1,chevrolet chevette
37.2,4,86,65,2019,16.4,80,3,datsun 310
28.0,4,151,90,2678,16.5,80,1,chevrolet citation
26.4,4,140,88,2870,18.1,80,1,ford fairmont
24.3,4,151,90,3003,20.1,80,1,amc concord
19.1,6,225,90,3381,18.7,80,1,dodge aspen
34.3,4,97,78,2188,15.8,80,2,audi 4000
29.8,4,134,90,2711,15.5,80,3,toyota corona liftback
31.3,4,120,75,2542,17.5,80,3,mazda 626
37.0,4,119,92,2434,15.0,80,3,datsun 510 hatchback
32.2,4,108,75,2265,15.2,80,3,toyota corolla
46.6,4,86,65,2110,17.9,80,3,mazda glc
27.9,4,156,105,2800,14.4,80,1,dodge colt
40.8,4,85,65,2110,19.2,80,3,datsun 210
44.3,4,90,48,2085,21.7,80,2,vw rabbit c (diesel)
43.4,4,90,48,2335,23.7,80,2,vw dasher (diesel)
36.4,5,121,67,2950,19.9,80,2,audi 5000s (diesel)
30.0,4,146,67,3250,21.8,80,2,mercedes-benz 240d
44.6,4,91,67,1850,13.8,80,3,honda civic 1500 gl
40.9,4,85,?,1835,17.3,80,2,renault lecar deluxe
33.8,4,97,67,2145,18.0,80,3,subaru dl
29.8,4,89,62,1845,15.3,80,2,vokswagen rabbit
32.7,6,168,132,2910,11.4,80,3,datsun 280-zx
23.7,3,70,100,2420,12.5,80,3,mazda rx-7 gs
35.0,4,122,88,2500,15.1,80,2,triumph tr7 coupe
23.6,4,140,?,2905,14.3,80,1,ford mustang cobra
32.4,4,107,72,2290,17.0,80,3,honda accord
27.2,4,135,84,2490,15.7,81,1,plymouth reliant
26.6,4,151,84,2635,16.4,81,1,buick skylark
25.8,4,156,92,2620,14.4,81,1,dodge aries wagon (sw)
23.5,6,173,110,2725,12.6,81,1,chevrolet citation
30.0,4,135,84,2385,12.9,81,1,plymouth reliant
39.1,4,79,58,1755,16.9,81,3,toyota starlet
39.0,4,86,64,1875,16.4,81,1,plymouth champ
35.1,4,81,60,1760,16.1,81,3,honda civic 1300
32.3,4,97,67,2065,17.8,81,3,subaru
37.0,4,85,65,1975,19.4,81,3,datsun 210 mpg
37.7,4,89,62,2050,17.3,81,3,toyota tercel
34.1,4,91,68,1985,16.0,81,3,mazda glc 4
34.7,4,105,63,2215,14.9,81,1,plymouth horizon 4
34.4,4,98,65,2045,16.2,81,1,ford escort 4w
29.9,4,98,65,2380,20.7,81,1,ford escort 2h
33.0,4,105,74,2190,14.2,81,2,volkswagen jetta
34.5,4,100,?,2320,15.8,81,2,renault 18i
33.7,4,107,75,2210,14.4,81,3,honda prelude
32.4,4,108,75,2350,16.8,81,3,toyota corolla
32.9,4,119,100,2615,14.8,81,3,datsun 200sx
31.6,4,120,74,2635,18.3,81,3,mazda 626
28.1,4,141,80,3230,20.4,81,2,peugeot 505s turbo diesel
30.7,6,145,76,3160,19.6,81,2,volvo diesel
25.4,6,168,116,2900,12.6,81,3,toyota cressida
24.2,6,146,120,2930,13.8,81,3,datsun 810 maxima
22.4,6,231,110,3415,15.8,81,1,buick century
26.6,8,350,105,3725,19.0,81,1,oldsmobile cutlass ls
20.2,6,200,88,3060,17.1,81,1,ford granada gl
17.6,6,225,85,3465,16.6,81,1,chrysler lebaron salon
28.0,4,112,88,2605,19.6,82,1,chevrolet cavalier
27.0,4,112,88,2640,18.6,82,1,chevrolet cavalier wagon
34.0,4,112,88,2395,18.0,82,1,chevrolet cavalier 2-door
31.0,4,112,85,2575,16.2,82,1,pontiac j2000 se hatchback
29.0,4,135,84,2525,16.0,82,1,dodge aries se
27.0,4,151,90,2735,18.0,82,1,pontiac phoenix
24.0,4,140,92,2865,16.4,82,1,ford fairmont futura
23.0,4,151,?,3035,20.5,82,1,amc concord dl
36.0,4,105,74,1980,15.3,82,2,volkswagen rabbit l
37.0,4,91,68,2025,18.2,82,3,mazda glc custom l
31.0,4,91,68,1970,17.6,82,3,mazda glc custom
38.0,4,105,63,2125,14.7,82,1,plymouth horizon miser
36.0,4,98,70,2125,17.3,82,1,mercury lynx l
36.0,4,120,88,2160,14.5,82,3,nissan stanza xe
36.0,4,107,75,2205,14.5,82,3,honda accord
34.0,4,108,70,2245,16.9,82,3,toyota corolla
38.0,4,91,67,1965,15.0,82,3,honda civic
32.0,4,91,67,1965,15.7,82,3,honda civic (auto)
38.0,4,91,67,1995,16.2,82,3,datsun 310 gx
25.0,6,181,110,2945,16.4,82,1,buick century limited
38.0,6,262,85,3015,17.0,82,1,oldsmobile cutlass ciera (diesel)
26.0,4,156,92,2585,14.5,82,1,chrysler lebaron medallion
22.0,6,232,112,2835,14.7,82,1,ford granada l
32.0,4,144,96,2665,13.9,82,3,toyota celica gt
36.0,4,135,84,2370,13.0,82,1,dodge charger 2.2
27.0,4,151,90,2950,17.3,82,1,chevrolet camaro
27.0,4,140,86,2790,15.6,82,1,ford mustang gl
44.0,4,97,52,2130,24.6,82,2,vw pickup
32.0,4,135,84,2295,11.6,82,1,dodge rampage
28.0,4,120,79,2625,18.6,82,1,ford ranger
31.0,4,119,82,2720,19.4,82,1,chevy s-10
--------------------------------------------------------------------------------
/dataset/drinks.csv:
--------------------------------------------------------------------------------
1 | country,beer_servings,spirit_servings,wine_servings,total_litres_of_pure_alcohol,continent
2 | Afghanistan,0,0,0,0.0,AS
3 | Albania,89,132,54,4.9,EU
4 | Algeria,25,0,14,0.7,AF
5 | Andorra,245,138,312,12.4,EU
6 | Angola,217,57,45,5.9,AF
7 | Antigua & Barbuda,102,128,45,4.9,
8 | Argentina,193,25,221,8.3,SA
9 | Armenia,21,179,11,3.8,EU
10 | Australia,261,72,212,10.4,OC
11 | Austria,279,75,191,9.7,EU
12 | Azerbaijan,21,46,5,1.3,EU
13 | Bahamas,122,176,51,6.3,
14 | Bahrain,42,63,7,2.0,AS
15 | Bangladesh,0,0,0,0.0,AS
16 | Barbados,143,173,36,6.3,
17 | Belarus,142,373,42,14.4,EU
18 | Belgium,295,84,212,10.5,EU
19 | Belize,263,114,8,6.8,
20 | Benin,34,4,13,1.1,AF
21 | Bhutan,23,0,0,0.4,AS
22 | Bolivia,167,41,8,3.8,SA
23 | Bosnia-Herzegovina,76,173,8,4.6,EU
24 | Botswana,173,35,35,5.4,AF
25 | Brazil,245,145,16,7.2,SA
26 | Brunei,31,2,1,0.6,AS
27 | Bulgaria,231,252,94,10.3,EU
28 | Burkina Faso,25,7,7,4.3,AF
29 | Burundi,88,0,0,6.3,AF
30 | Cote d'Ivoire,37,1,7,4.0,AF
31 | Cabo Verde,144,56,16,4.0,AF
32 | Cambodia,57,65,1,2.2,AS
33 | Cameroon,147,1,4,5.8,AF
34 | Canada,240,122,100,8.2,
35 | Central African Republic,17,2,1,1.8,AF
36 | Chad,15,1,1,0.4,AF
37 | Chile,130,124,172,7.6,SA
38 | China,79,192,8,5.0,AS
39 | Colombia,159,76,3,4.2,SA
40 | Comoros,1,3,1,0.1,AF
41 | Congo,76,1,9,1.7,AF
42 | Cook Islands,0,254,74,5.9,OC
43 | Costa Rica,149,87,11,4.4,
44 | Croatia,230,87,254,10.2,EU
45 | Cuba,93,137,5,4.2,
46 | Cyprus,192,154,113,8.2,EU
47 | Czech Republic,361,170,134,11.8,EU
48 | North Korea,0,0,0,0.0,AS
49 | DR Congo,32,3,1,2.3,AF
50 | Denmark,224,81,278,10.4,EU
51 | Djibouti,15,44,3,1.1,AF
52 | Dominica,52,286,26,6.6,
53 | Dominican Republic,193,147,9,6.2,
54 | Ecuador,162,74,3,4.2,SA
55 | Egypt,6,4,1,0.2,AF
56 | El Salvador,52,69,2,2.2,
57 | Equatorial Guinea,92,0,233,5.8,AF
58 | Eritrea,18,0,0,0.5,AF
59 | Estonia,224,194,59,9.5,EU
60 | Ethiopia,20,3,0,0.7,AF
61 | Fiji,77,35,1,2.0,OC
62 | Finland,263,133,97,10.0,EU
63 | France,127,151,370,11.8,EU
64 | Gabon,347,98,59,8.9,AF
65 | Gambia,8,0,1,2.4,AF
66 | Georgia,52,100,149,5.4,EU
67 | Germany,346,117,175,11.3,EU
68 | Ghana,31,3,10,1.8,AF
69 | Greece,133,112,218,8.3,EU
70 | Grenada,199,438,28,11.9,
71 | Guatemala,53,69,2,2.2,
72 | Guinea,9,0,2,0.2,AF
73 | Guinea-Bissau,28,31,21,2.5,AF
74 | Guyana,93,302,1,7.1,SA
75 | Haiti,1,326,1,5.9,
76 | Honduras,69,98,2,3.0,
77 | Hungary,234,215,185,11.3,EU
78 | Iceland,233,61,78,6.6,EU
79 | India,9,114,0,2.2,AS
80 | Indonesia,5,1,0,0.1,AS
81 | Iran,0,0,0,0.0,AS
82 | Iraq,9,3,0,0.2,AS
83 | Ireland,313,118,165,11.4,EU
84 | Israel,63,69,9,2.5,AS
85 | Italy,85,42,237,6.5,EU
86 | Jamaica,82,97,9,3.4,
87 | Japan,77,202,16,7.0,AS
88 | Jordan,6,21,1,0.5,AS
89 | Kazakhstan,124,246,12,6.8,AS
90 | Kenya,58,22,2,1.8,AF
91 | Kiribati,21,34,1,1.0,OC
92 | Kuwait,0,0,0,0.0,AS
93 | Kyrgyzstan,31,97,6,2.4,AS
94 | Laos,62,0,123,6.2,AS
95 | Latvia,281,216,62,10.5,EU
96 | Lebanon,20,55,31,1.9,AS
97 | Lesotho,82,29,0,2.8,AF
98 | Liberia,19,152,2,3.1,AF
99 | Libya,0,0,0,0.0,AF
100 | Lithuania,343,244,56,12.9,EU
101 | Luxembourg,236,133,271,11.4,EU
102 | Madagascar,26,15,4,0.8,AF
103 | Malawi,8,11,1,1.5,AF
104 | Malaysia,13,4,0,0.3,AS
105 | Maldives,0,0,0,0.0,AS
106 | Mali,5,1,1,0.6,AF
107 | Malta,149,100,120,6.6,EU
108 | Marshall Islands,0,0,0,0.0,OC
109 | Mauritania,0,0,0,0.0,AF
110 | Mauritius,98,31,18,2.6,AF
111 | Mexico,238,68,5,5.5,
112 | Micronesia,62,50,18,2.3,OC
113 | Monaco,0,0,0,0.0,EU
114 | Mongolia,77,189,8,4.9,AS
115 | Montenegro,31,114,128,4.9,EU
116 | Morocco,12,6,10,0.5,AF
117 | Mozambique,47,18,5,1.3,AF
118 | Myanmar,5,1,0,0.1,AS
119 | Namibia,376,3,1,6.8,AF
120 | Nauru,49,0,8,1.0,OC
121 | Nepal,5,6,0,0.2,AS
122 | Netherlands,251,88,190,9.4,EU
123 | New Zealand,203,79,175,9.3,OC
124 | Nicaragua,78,118,1,3.5,
125 | Niger,3,2,1,0.1,AF
126 | Nigeria,42,5,2,9.1,AF
127 | Niue,188,200,7,7.0,OC
128 | Norway,169,71,129,6.7,EU
129 | Oman,22,16,1,0.7,AS
130 | Pakistan,0,0,0,0.0,AS
131 | Palau,306,63,23,6.9,OC
132 | Panama,285,104,18,7.2,
133 | Papua New Guinea,44,39,1,1.5,OC
134 | Paraguay,213,117,74,7.3,SA
135 | Peru,163,160,21,6.1,SA
136 | Philippines,71,186,1,4.6,AS
137 | Poland,343,215,56,10.9,EU
138 | Portugal,194,67,339,11.0,EU
139 | Qatar,1,42,7,0.9,AS
140 | South Korea,140,16,9,9.8,AS
141 | Moldova,109,226,18,6.3,EU
142 | Romania,297,122,167,10.4,EU
143 | Russian Federation,247,326,73,11.5,AS
144 | Rwanda,43,2,0,6.8,AF
145 | St. Kitts & Nevis,194,205,32,7.7,
146 | St. Lucia,171,315,71,10.1,
147 | St. Vincent & the Grenadines,120,221,11,6.3,
148 | Samoa,105,18,24,2.6,OC
149 | San Marino,0,0,0,0.0,EU
150 | Sao Tome & Principe,56,38,140,4.2,AF
151 | Saudi Arabia,0,5,0,0.1,AS
152 | Senegal,9,1,7,0.3,AF
153 | Serbia,283,131,127,9.6,EU
154 | Seychelles,157,25,51,4.1,AF
155 | Sierra Leone,25,3,2,6.7,AF
156 | Singapore,60,12,11,1.5,AS
157 | Slovakia,196,293,116,11.4,EU
158 | Slovenia,270,51,276,10.6,EU
159 | Solomon Islands,56,11,1,1.2,OC
160 | Somalia,0,0,0,0.0,AF
161 | South Africa,225,76,81,8.2,AF
162 | Spain,284,157,112,10.0,EU
163 | Sri Lanka,16,104,0,2.2,AS
164 | Sudan,8,13,0,1.7,AF
165 | Suriname,128,178,7,5.6,SA
166 | Swaziland,90,2,2,4.7,AF
167 | Sweden,152,60,186,7.2,EU
168 | Switzerland,185,100,280,10.2,EU
169 | Syria,5,35,16,1.0,AS
170 | Tajikistan,2,15,0,0.3,AS
171 | Thailand,99,258,1,6.4,AS
172 | Macedonia,106,27,86,3.9,EU
173 | Timor-Leste,1,1,4,0.1,AS
174 | Togo,36,2,19,1.3,AF
175 | Tonga,36,21,5,1.1,OC
176 | Trinidad & Tobago,197,156,7,6.4,
177 | Tunisia,51,3,20,1.3,AF
178 | Turkey,51,22,7,1.4,AS
179 | Turkmenistan,19,71,32,2.2,AS
180 | Tuvalu,6,41,9,1.0,OC
181 | Uganda,45,9,0,8.3,AF
182 | Ukraine,206,237,45,8.9,EU
183 | United Arab Emirates,16,135,5,2.8,AS
184 | United Kingdom,219,126,195,10.4,EU
185 | Tanzania,36,6,1,5.7,AF
186 | USA,249,158,84,8.7,
187 | Uruguay,115,35,220,6.6,SA
188 | Uzbekistan,25,101,8,2.4,AS
189 | Vanuatu,21,18,11,0.9,OC
190 | Venezuela,333,100,3,7.7,SA
191 | Vietnam,111,2,1,2.0,AS
192 | Yemen,6,0,0,0.1,AS
193 | Zambia,32,19,4,2.5,AF
194 | Zimbabwe,64,18,4,4.7,AF
195 |
--------------------------------------------------------------------------------
/dataset/iris.data:
--------------------------------------------------------------------------------
1 | 5.1,3.5,1.4,0.2,Iris-setosa
2 | 4.9,3.0,1.4,0.2,Iris-setosa
3 | 4.7,3.2,1.3,0.2,Iris-setosa
4 | 4.6,3.1,1.5,0.2,Iris-setosa
5 | 5.0,3.6,1.4,0.2,Iris-setosa
6 | 5.4,3.9,1.7,0.4,Iris-setosa
7 | 4.6,3.4,1.4,0.3,Iris-setosa
8 | 5.0,3.4,1.5,0.2,Iris-setosa
9 | 4.4,2.9,1.4,0.2,Iris-setosa
10 | 4.9,3.1,1.5,0.1,Iris-setosa
11 | 5.4,3.7,1.5,0.2,Iris-setosa
12 | 4.8,3.4,1.6,0.2,Iris-setosa
13 | 4.8,3.0,1.4,0.1,Iris-setosa
14 | 4.3,3.0,1.1,0.1,Iris-setosa
15 | 5.8,4.0,1.2,0.2,Iris-setosa
16 | 5.7,4.4,1.5,0.4,Iris-setosa
17 | 5.4,3.9,1.3,0.4,Iris-setosa
18 | 5.1,3.5,1.4,0.3,Iris-setosa
19 | 5.7,3.8,1.7,0.3,Iris-setosa
20 | 5.1,3.8,1.5,0.3,Iris-setosa
21 | 5.4,3.4,1.7,0.2,Iris-setosa
22 | 5.1,3.7,1.5,0.4,Iris-setosa
23 | 4.6,3.6,1.0,0.2,Iris-setosa
24 | 5.1,3.3,1.7,0.5,Iris-setosa
25 | 4.8,3.4,1.9,0.2,Iris-setosa
26 | 5.0,3.0,1.6,0.2,Iris-setosa
27 | 5.0,3.4,1.6,0.4,Iris-setosa
28 | 5.2,3.5,1.5,0.2,Iris-setosa
29 | 5.2,3.4,1.4,0.2,Iris-setosa
30 | 4.7,3.2,1.6,0.2,Iris-setosa
31 | 4.8,3.1,1.6,0.2,Iris-setosa
32 | 5.4,3.4,1.5,0.4,Iris-setosa
33 | 5.2,4.1,1.5,0.1,Iris-setosa
34 | 5.5,4.2,1.4,0.2,Iris-setosa
35 | 4.9,3.1,1.5,0.1,Iris-setosa
36 | 5.0,3.2,1.2,0.2,Iris-setosa
37 | 5.5,3.5,1.3,0.2,Iris-setosa
38 | 4.9,3.1,1.5,0.1,Iris-setosa
39 | 4.4,3.0,1.3,0.2,Iris-setosa
40 | 5.1,3.4,1.5,0.2,Iris-setosa
41 | 5.0,3.5,1.3,0.3,Iris-setosa
42 | 4.5,2.3,1.3,0.3,Iris-setosa
43 | 4.4,3.2,1.3,0.2,Iris-setosa
44 | 5.0,3.5,1.6,0.6,Iris-setosa
45 | 5.1,3.8,1.9,0.4,Iris-setosa
46 | 4.8,3.0,1.4,0.3,Iris-setosa
47 | 5.1,3.8,1.6,0.2,Iris-setosa
48 | 4.6,3.2,1.4,0.2,Iris-setosa
49 | 5.3,3.7,1.5,0.2,Iris-setosa
50 | 5.0,3.3,1.4,0.2,Iris-setosa
51 | 7.0,3.2,4.7,1.4,Iris-versicolor
52 | 6.4,3.2,4.5,1.5,Iris-versicolor
53 | 6.9,3.1,4.9,1.5,Iris-versicolor
54 | 5.5,2.3,4.0,1.3,Iris-versicolor
55 | 6.5,2.8,4.6,1.5,Iris-versicolor
56 | 5.7,2.8,4.5,1.3,Iris-versicolor
57 | 6.3,3.3,4.7,1.6,Iris-versicolor
58 | 4.9,2.4,3.3,1.0,Iris-versicolor
59 | 6.6,2.9,4.6,1.3,Iris-versicolor
60 | 5.2,2.7,3.9,1.4,Iris-versicolor
61 | 5.0,2.0,3.5,1.0,Iris-versicolor
62 | 5.9,3.0,4.2,1.5,Iris-versicolor
63 | 6.0,2.2,4.0,1.0,Iris-versicolor
64 | 6.1,2.9,4.7,1.4,Iris-versicolor
65 | 5.6,2.9,3.6,1.3,Iris-versicolor
66 | 6.7,3.1,4.4,1.4,Iris-versicolor
67 | 5.6,3.0,4.5,1.5,Iris-versicolor
68 | 5.8,2.7,4.1,1.0,Iris-versicolor
69 | 6.2,2.2,4.5,1.5,Iris-versicolor
70 | 5.6,2.5,3.9,1.1,Iris-versicolor
71 | 5.9,3.2,4.8,1.8,Iris-versicolor
72 | 6.1,2.8,4.0,1.3,Iris-versicolor
73 | 6.3,2.5,4.9,1.5,Iris-versicolor
74 | 6.1,2.8,4.7,1.2,Iris-versicolor
75 | 6.4,2.9,4.3,1.3,Iris-versicolor
76 | 6.6,3.0,4.4,1.4,Iris-versicolor
77 | 6.8,2.8,4.8,1.4,Iris-versicolor
78 | 6.7,3.0,5.0,1.7,Iris-versicolor
79 | 6.0,2.9,4.5,1.5,Iris-versicolor
80 | 5.7,2.6,3.5,1.0,Iris-versicolor
81 | 5.5,2.4,3.8,1.1,Iris-versicolor
82 | 5.5,2.4,3.7,1.0,Iris-versicolor
83 | 5.8,2.7,3.9,1.2,Iris-versicolor
84 | 6.0,2.7,5.1,1.6,Iris-versicolor
85 | 5.4,3.0,4.5,1.5,Iris-versicolor
86 | 6.0,3.4,4.5,1.6,Iris-versicolor
87 | 6.7,3.1,4.7,1.5,Iris-versicolor
88 | 6.3,2.3,4.4,1.3,Iris-versicolor
89 | 5.6,3.0,4.1,1.3,Iris-versicolor
90 | 5.5,2.5,4.0,1.3,Iris-versicolor
91 | 5.5,2.6,4.4,1.2,Iris-versicolor
92 | 6.1,3.0,4.6,1.4,Iris-versicolor
93 | 5.8,2.6,4.0,1.2,Iris-versicolor
94 | 5.0,2.3,3.3,1.0,Iris-versicolor
95 | 5.6,2.7,4.2,1.3,Iris-versicolor
96 | 5.7,3.0,4.2,1.2,Iris-versicolor
97 | 5.7,2.9,4.2,1.3,Iris-versicolor
98 | 6.2,2.9,4.3,1.3,Iris-versicolor
99 | 5.1,2.5,3.0,1.1,Iris-versicolor
100 | 5.7,2.8,4.1,1.3,Iris-versicolor
101 | 6.3,3.3,6.0,2.5,Iris-virginica
102 | 5.8,2.7,5.1,1.9,Iris-virginica
103 | 7.1,3.0,5.9,2.1,Iris-virginica
104 | 6.3,2.9,5.6,1.8,Iris-virginica
105 | 6.5,3.0,5.8,2.2,Iris-virginica
106 | 7.6,3.0,6.6,2.1,Iris-virginica
107 | 4.9,2.5,4.5,1.7,Iris-virginica
108 | 7.3,2.9,6.3,1.8,Iris-virginica
109 | 6.7,2.5,5.8,1.8,Iris-virginica
110 | 7.2,3.6,6.1,2.5,Iris-virginica
111 | 6.5,3.2,5.1,2.0,Iris-virginica
112 | 6.4,2.7,5.3,1.9,Iris-virginica
113 | 6.8,3.0,5.5,2.1,Iris-virginica
114 | 5.7,2.5,5.0,2.0,Iris-virginica
115 | 5.8,2.8,5.1,2.4,Iris-virginica
116 | 6.4,3.2,5.3,2.3,Iris-virginica
117 | 6.5,3.0,5.5,1.8,Iris-virginica
118 | 7.7,3.8,6.7,2.2,Iris-virginica
119 | 7.7,2.6,6.9,2.3,Iris-virginica
120 | 6.0,2.2,5.0,1.5,Iris-virginica
121 | 6.9,3.2,5.7,2.3,Iris-virginica
122 | 5.6,2.8,4.9,2.0,Iris-virginica
123 | 7.7,2.8,6.7,2.0,Iris-virginica
124 | 6.3,2.7,4.9,1.8,Iris-virginica
125 | 6.7,3.3,5.7,2.1,Iris-virginica
126 | 7.2,3.2,6.0,1.8,Iris-virginica
127 | 6.2,2.8,4.8,1.8,Iris-virginica
128 | 6.1,3.0,4.9,1.8,Iris-virginica
129 | 6.4,2.8,5.6,2.1,Iris-virginica
130 | 7.2,3.0,5.8,1.6,Iris-virginica
131 | 7.4,2.8,6.1,1.9,Iris-virginica
132 | 7.9,3.8,6.4,2.0,Iris-virginica
133 | 6.4,2.8,5.6,2.2,Iris-virginica
134 | 6.3,2.8,5.1,1.5,Iris-virginica
135 | 6.1,2.6,5.6,1.4,Iris-virginica
136 | 7.7,3.0,6.1,2.3,Iris-virginica
137 | 6.3,3.4,5.6,2.4,Iris-virginica
138 | 6.4,3.1,5.5,1.8,Iris-virginica
139 | 6.0,3.0,4.8,1.8,Iris-virginica
140 | 6.9,3.1,5.4,2.1,Iris-virginica
141 | 6.7,3.1,5.6,2.4,Iris-virginica
142 | 6.9,3.1,5.1,2.3,Iris-virginica
143 | 5.8,2.7,5.1,1.9,Iris-virginica
144 | 6.8,3.2,5.9,2.3,Iris-virginica
145 | 6.7,3.3,5.7,2.5,Iris-virginica
146 | 6.7,3.0,5.2,2.3,Iris-virginica
147 | 6.3,2.5,5.0,1.9,Iris-virginica
148 | 6.5,3.0,5.2,2.0,Iris-virginica
149 | 6.2,3.4,5.4,2.3,Iris-virginica
150 | 5.9,3.0,5.1,1.8,Iris-virginica
151 |
152 |
--------------------------------------------------------------------------------
/dataset/tips.csv:
--------------------------------------------------------------------------------
1 | ,total_bill,tip,sex,smoker,day,time,size
2 | 0,16.99,1.01,Female,No,Sun,Dinner,2
3 | 1,10.34,1.66,Male,No,Sun,Dinner,3
4 | 2,21.01,3.5,Male,No,Sun,Dinner,3
5 | 3,23.68,3.31,Male,No,Sun,Dinner,2
6 | 4,24.59,3.61,Female,No,Sun,Dinner,4
7 | 5,25.29,4.71,Male,No,Sun,Dinner,4
8 | 6,8.77,2.0,Male,No,Sun,Dinner,2
9 | 7,26.88,3.12,Male,No,Sun,Dinner,4
10 | 8,15.04,1.96,Male,No,Sun,Dinner,2
11 | 9,14.78,3.23,Male,No,Sun,Dinner,2
12 | 10,10.27,1.71,Male,No,Sun,Dinner,2
13 | 11,35.26,5.0,Female,No,Sun,Dinner,4
14 | 12,15.42,1.57,Male,No,Sun,Dinner,2
15 | 13,18.43,3.0,Male,No,Sun,Dinner,4
16 | 14,14.83,3.02,Female,No,Sun,Dinner,2
17 | 15,21.58,3.92,Male,No,Sun,Dinner,2
18 | 16,10.33,1.67,Female,No,Sun,Dinner,3
19 | 17,16.29,3.71,Male,No,Sun,Dinner,3
20 | 18,16.97,3.5,Female,No,Sun,Dinner,3
21 | 19,20.65,3.35,Male,No,Sat,Dinner,3
22 | 20,17.92,4.08,Male,No,Sat,Dinner,2
23 | 21,20.29,2.75,Female,No,Sat,Dinner,2
24 | 22,15.77,2.23,Female,No,Sat,Dinner,2
25 | 23,39.42,7.58,Male,No,Sat,Dinner,4
26 | 24,19.82,3.18,Male,No,Sat,Dinner,2
27 | 25,17.81,2.34,Male,No,Sat,Dinner,4
28 | 26,13.37,2.0,Male,No,Sat,Dinner,2
29 | 27,12.69,2.0,Male,No,Sat,Dinner,2
30 | 28,21.7,4.3,Male,No,Sat,Dinner,2
31 | 29,19.65,3.0,Female,No,Sat,Dinner,2
32 | 30,9.55,1.45,Male,No,Sat,Dinner,2
33 | 31,18.35,2.5,Male,No,Sat,Dinner,4
34 | 32,15.06,3.0,Female,No,Sat,Dinner,2
35 | 33,20.69,2.45,Female,No,Sat,Dinner,4
36 | 34,17.78,3.27,Male,No,Sat,Dinner,2
37 | 35,24.06,3.6,Male,No,Sat,Dinner,3
38 | 36,16.31,2.0,Male,No,Sat,Dinner,3
39 | 37,16.93,3.07,Female,No,Sat,Dinner,3
40 | 38,18.69,2.31,Male,No,Sat,Dinner,3
41 | 39,31.27,5.0,Male,No,Sat,Dinner,3
42 | 40,16.04,2.24,Male,No,Sat,Dinner,3
43 | 41,17.46,2.54,Male,No,Sun,Dinner,2
44 | 42,13.94,3.06,Male,No,Sun,Dinner,2
45 | 43,9.68,1.32,Male,No,Sun,Dinner,2
46 | 44,30.4,5.6,Male,No,Sun,Dinner,4
47 | 45,18.29,3.0,Male,No,Sun,Dinner,2
48 | 46,22.23,5.0,Male,No,Sun,Dinner,2
49 | 47,32.4,6.0,Male,No,Sun,Dinner,4
50 | 48,28.55,2.05,Male,No,Sun,Dinner,3
51 | 49,18.04,3.0,Male,No,Sun,Dinner,2
52 | 50,12.54,2.5,Male,No,Sun,Dinner,2
53 | 51,10.29,2.6,Female,No,Sun,Dinner,2
54 | 52,34.81,5.2,Female,No,Sun,Dinner,4
55 | 53,9.94,1.56,Male,No,Sun,Dinner,2
56 | 54,25.56,4.34,Male,No,Sun,Dinner,4
57 | 55,19.49,3.51,Male,No,Sun,Dinner,2
58 | 56,38.01,3.0,Male,Yes,Sat,Dinner,4
59 | 57,26.41,1.5,Female,No,Sat,Dinner,2
60 | 58,11.24,1.76,Male,Yes,Sat,Dinner,2
61 | 59,48.27,6.73,Male,No,Sat,Dinner,4
62 | 60,20.29,3.21,Male,Yes,Sat,Dinner,2
63 | 61,13.81,2.0,Male,Yes,Sat,Dinner,2
64 | 62,11.02,1.98,Male,Yes,Sat,Dinner,2
65 | 63,18.29,3.76,Male,Yes,Sat,Dinner,4
66 | 64,17.59,2.64,Male,No,Sat,Dinner,3
67 | 65,20.08,3.15,Male,No,Sat,Dinner,3
68 | 66,16.45,2.47,Female,No,Sat,Dinner,2
69 | 67,3.07,1.0,Female,Yes,Sat,Dinner,1
70 | 68,20.23,2.01,Male,No,Sat,Dinner,2
71 | 69,15.01,2.09,Male,Yes,Sat,Dinner,2
72 | 70,12.02,1.97,Male,No,Sat,Dinner,2
73 | 71,17.07,3.0,Female,No,Sat,Dinner,3
74 | 72,26.86,3.14,Female,Yes,Sat,Dinner,2
75 | 73,25.28,5.0,Female,Yes,Sat,Dinner,2
76 | 74,14.73,2.2,Female,No,Sat,Dinner,2
77 | 75,10.51,1.25,Male,No,Sat,Dinner,2
78 | 76,17.92,3.08,Male,Yes,Sat,Dinner,2
79 | 77,27.2,4.0,Male,No,Thur,Lunch,4
80 | 78,22.76,3.0,Male,No,Thur,Lunch,2
81 | 79,17.29,2.71,Male,No,Thur,Lunch,2
82 | 80,19.44,3.0,Male,Yes,Thur,Lunch,2
83 | 81,16.66,3.4,Male,No,Thur,Lunch,2
84 | 82,10.07,1.83,Female,No,Thur,Lunch,1
85 | 83,32.68,5.0,Male,Yes,Thur,Lunch,2
86 | 84,15.98,2.03,Male,No,Thur,Lunch,2
87 | 85,34.83,5.17,Female,No,Thur,Lunch,4
88 | 86,13.03,2.0,Male,No,Thur,Lunch,2
89 | 87,18.28,4.0,Male,No,Thur,Lunch,2
90 | 88,24.71,5.85,Male,No,Thur,Lunch,2
91 | 89,21.16,3.0,Male,No,Thur,Lunch,2
92 | 90,28.97,3.0,Male,Yes,Fri,Dinner,2
93 | 91,22.49,3.5,Male,No,Fri,Dinner,2
94 | 92,5.75,1.0,Female,Yes,Fri,Dinner,2
95 | 93,16.32,4.3,Female,Yes,Fri,Dinner,2
96 | 94,22.75,3.25,Female,No,Fri,Dinner,2
97 | 95,40.17,4.73,Male,Yes,Fri,Dinner,4
98 | 96,27.28,4.0,Male,Yes,Fri,Dinner,2
99 | 97,12.03,1.5,Male,Yes,Fri,Dinner,2
100 | 98,21.01,3.0,Male,Yes,Fri,Dinner,2
101 | 99,12.46,1.5,Male,No,Fri,Dinner,2
102 | 100,11.35,2.5,Female,Yes,Fri,Dinner,2
103 | 101,15.38,3.0,Female,Yes,Fri,Dinner,2
104 | 102,44.3,2.5,Female,Yes,Sat,Dinner,3
105 | 103,22.42,3.48,Female,Yes,Sat,Dinner,2
106 | 104,20.92,4.08,Female,No,Sat,Dinner,2
107 | 105,15.36,1.64,Male,Yes,Sat,Dinner,2
108 | 106,20.49,4.06,Male,Yes,Sat,Dinner,2
109 | 107,25.21,4.29,Male,Yes,Sat,Dinner,2
110 | 108,18.24,3.76,Male,No,Sat,Dinner,2
111 | 109,14.31,4.0,Female,Yes,Sat,Dinner,2
112 | 110,14.0,3.0,Male,No,Sat,Dinner,2
113 | 111,7.25,1.0,Female,No,Sat,Dinner,1
114 | 112,38.07,4.0,Male,No,Sun,Dinner,3
115 | 113,23.95,2.55,Male,No,Sun,Dinner,2
116 | 114,25.71,4.0,Female,No,Sun,Dinner,3
117 | 115,17.31,3.5,Female,No,Sun,Dinner,2
118 | 116,29.93,5.07,Male,No,Sun,Dinner,4
119 | 117,10.65,1.5,Female,No,Thur,Lunch,2
120 | 118,12.43,1.8,Female,No,Thur,Lunch,2
121 | 119,24.08,2.92,Female,No,Thur,Lunch,4
122 | 120,11.69,2.31,Male,No,Thur,Lunch,2
123 | 121,13.42,1.68,Female,No,Thur,Lunch,2
124 | 122,14.26,2.5,Male,No,Thur,Lunch,2
125 | 123,15.95,2.0,Male,No,Thur,Lunch,2
126 | 124,12.48,2.52,Female,No,Thur,Lunch,2
127 | 125,29.8,4.2,Female,No,Thur,Lunch,6
128 | 126,8.52,1.48,Male,No,Thur,Lunch,2
129 | 127,14.52,2.0,Female,No,Thur,Lunch,2
130 | 128,11.38,2.0,Female,No,Thur,Lunch,2
131 | 129,22.82,2.18,Male,No,Thur,Lunch,3
132 | 130,19.08,1.5,Male,No,Thur,Lunch,2
133 | 131,20.27,2.83,Female,No,Thur,Lunch,2
134 | 132,11.17,1.5,Female,No,Thur,Lunch,2
135 | 133,12.26,2.0,Female,No,Thur,Lunch,2
136 | 134,18.26,3.25,Female,No,Thur,Lunch,2
137 | 135,8.51,1.25,Female,No,Thur,Lunch,2
138 | 136,10.33,2.0,Female,No,Thur,Lunch,2
139 | 137,14.15,2.0,Female,No,Thur,Lunch,2
140 | 138,16.0,2.0,Male,Yes,Thur,Lunch,2
141 | 139,13.16,2.75,Female,No,Thur,Lunch,2
142 | 140,17.47,3.5,Female,No,Thur,Lunch,2
143 | 141,34.3,6.7,Male,No,Thur,Lunch,6
144 | 142,41.19,5.0,Male,No,Thur,Lunch,5
145 | 143,27.05,5.0,Female,No,Thur,Lunch,6
146 | 144,16.43,2.3,Female,No,Thur,Lunch,2
147 | 145,8.35,1.5,Female,No,Thur,Lunch,2
148 | 146,18.64,1.36,Female,No,Thur,Lunch,3
149 | 147,11.87,1.63,Female,No,Thur,Lunch,2
150 | 148,9.78,1.73,Male,No,Thur,Lunch,2
151 | 149,7.51,2.0,Male,No,Thur,Lunch,2
152 | 150,14.07,2.5,Male,No,Sun,Dinner,2
153 | 151,13.13,2.0,Male,No,Sun,Dinner,2
154 | 152,17.26,2.74,Male,No,Sun,Dinner,3
155 | 153,24.55,2.0,Male,No,Sun,Dinner,4
156 | 154,19.77,2.0,Male,No,Sun,Dinner,4
157 | 155,29.85,5.14,Female,No,Sun,Dinner,5
158 | 156,48.17,5.0,Male,No,Sun,Dinner,6
159 | 157,25.0,3.75,Female,No,Sun,Dinner,4
160 | 158,13.39,2.61,Female,No,Sun,Dinner,2
161 | 159,16.49,2.0,Male,No,Sun,Dinner,4
162 | 160,21.5,3.5,Male,No,Sun,Dinner,4
163 | 161,12.66,2.5,Male,No,Sun,Dinner,2
164 | 162,16.21,2.0,Female,No,Sun,Dinner,3
165 | 163,13.81,2.0,Male,No,Sun,Dinner,2
166 | 164,17.51,3.0,Female,Yes,Sun,Dinner,2
167 | 165,24.52,3.48,Male,No,Sun,Dinner,3
168 | 166,20.76,2.24,Male,No,Sun,Dinner,2
169 | 167,31.71,4.5,Male,No,Sun,Dinner,4
170 | 168,10.59,1.61,Female,Yes,Sat,Dinner,2
171 | 169,10.63,2.0,Female,Yes,Sat,Dinner,2
172 | 170,50.81,10.0,Male,Yes,Sat,Dinner,3
173 | 171,15.81,3.16,Male,Yes,Sat,Dinner,2
174 | 172,7.25,5.15,Male,Yes,Sun,Dinner,2
175 | 173,31.85,3.18,Male,Yes,Sun,Dinner,2
176 | 174,16.82,4.0,Male,Yes,Sun,Dinner,2
177 | 175,32.9,3.11,Male,Yes,Sun,Dinner,2
178 | 176,17.89,2.0,Male,Yes,Sun,Dinner,2
179 | 177,14.48,2.0,Male,Yes,Sun,Dinner,2
180 | 178,9.6,4.0,Female,Yes,Sun,Dinner,2
181 | 179,34.63,3.55,Male,Yes,Sun,Dinner,2
182 | 180,34.65,3.68,Male,Yes,Sun,Dinner,4
183 | 181,23.33,5.65,Male,Yes,Sun,Dinner,2
184 | 182,45.35,3.5,Male,Yes,Sun,Dinner,3
185 | 183,23.17,6.5,Male,Yes,Sun,Dinner,4
186 | 184,40.55,3.0,Male,Yes,Sun,Dinner,2
187 | 185,20.69,5.0,Male,No,Sun,Dinner,5
188 | 186,20.9,3.5,Female,Yes,Sun,Dinner,3
189 | 187,30.46,2.0,Male,Yes,Sun,Dinner,5
190 | 188,18.15,3.5,Female,Yes,Sun,Dinner,3
191 | 189,23.1,4.0,Male,Yes,Sun,Dinner,3
192 | 190,15.69,1.5,Male,Yes,Sun,Dinner,2
193 | 191,19.81,4.19,Female,Yes,Thur,Lunch,2
194 | 192,28.44,2.56,Male,Yes,Thur,Lunch,2
195 | 193,15.48,2.02,Male,Yes,Thur,Lunch,2
196 | 194,16.58,4.0,Male,Yes,Thur,Lunch,2
197 | 195,7.56,1.44,Male,No,Thur,Lunch,2
198 | 196,10.34,2.0,Male,Yes,Thur,Lunch,2
199 | 197,43.11,5.0,Female,Yes,Thur,Lunch,4
200 | 198,13.0,2.0,Female,Yes,Thur,Lunch,2
201 | 199,13.51,2.0,Male,Yes,Thur,Lunch,2
202 | 200,18.71,4.0,Male,Yes,Thur,Lunch,3
203 | 201,12.74,2.01,Female,Yes,Thur,Lunch,2
204 | 202,13.0,2.0,Female,Yes,Thur,Lunch,2
205 | 203,16.4,2.5,Female,Yes,Thur,Lunch,2
206 | 204,20.53,4.0,Male,Yes,Thur,Lunch,4
207 | 205,16.47,3.23,Female,Yes,Thur,Lunch,3
208 | 206,26.59,3.41,Male,Yes,Sat,Dinner,3
209 | 207,38.73,3.0,Male,Yes,Sat,Dinner,4
210 | 208,24.27,2.03,Male,Yes,Sat,Dinner,2
211 | 209,12.76,2.23,Female,Yes,Sat,Dinner,2
212 | 210,30.06,2.0,Male,Yes,Sat,Dinner,3
213 | 211,25.89,5.16,Male,Yes,Sat,Dinner,4
214 | 212,48.33,9.0,Male,No,Sat,Dinner,4
215 | 213,13.27,2.5,Female,Yes,Sat,Dinner,2
216 | 214,28.17,6.5,Female,Yes,Sat,Dinner,3
217 | 215,12.9,1.1,Female,Yes,Sat,Dinner,2
218 | 216,28.15,3.0,Male,Yes,Sat,Dinner,5
219 | 217,11.59,1.5,Male,Yes,Sat,Dinner,2
220 | 218,7.74,1.44,Male,Yes,Sat,Dinner,2
221 | 219,30.14,3.09,Female,Yes,Sat,Dinner,4
222 | 220,12.16,2.2,Male,Yes,Fri,Lunch,2
223 | 221,13.42,3.48,Female,Yes,Fri,Lunch,2
224 | 222,8.58,1.92,Male,Yes,Fri,Lunch,1
225 | 223,15.98,3.0,Female,No,Fri,Lunch,3
226 | 224,13.42,1.58,Male,Yes,Fri,Lunch,2
227 | 225,16.27,2.5,Female,Yes,Fri,Lunch,2
228 | 226,10.09,2.0,Female,Yes,Fri,Lunch,2
229 | 227,20.45,3.0,Male,No,Sat,Dinner,4
230 | 228,13.28,2.72,Male,No,Sat,Dinner,2
231 | 229,22.12,2.88,Female,Yes,Sat,Dinner,2
232 | 230,24.01,2.0,Male,Yes,Sat,Dinner,4
233 | 231,15.69,3.0,Male,Yes,Sat,Dinner,3
234 | 232,11.61,3.39,Male,No,Sat,Dinner,2
235 | 233,10.77,1.47,Male,No,Sat,Dinner,2
236 | 234,15.53,3.0,Male,Yes,Sat,Dinner,2
237 | 235,10.07,1.25,Male,No,Sat,Dinner,2
238 | 236,12.6,1.0,Male,Yes,Sat,Dinner,2
239 | 237,32.83,1.17,Male,Yes,Sat,Dinner,2
240 | 238,35.83,4.67,Female,No,Sat,Dinner,3
241 | 239,29.03,5.92,Male,No,Sat,Dinner,3
242 | 240,27.18,2.0,Female,Yes,Sat,Dinner,2
243 | 241,22.67,2.0,Male,Yes,Sat,Dinner,2
244 | 242,17.82,1.75,Male,No,Sat,Dinner,2
245 | 243,18.78,3.0,Female,No,Thur,Dinner,2
246 |
--------------------------------------------------------------------------------
/dataset/weekly.csv:
--------------------------------------------------------------------------------
1 | Date,Total Equity,Domestic Equity,World Equity,Hybrid,Total Bond,Taxable Bond,Municipal Bond,Total
2 | 2012-12-05,-7426,-6060,-1367,-74,5317,4210,1107,-2183
3 | 2012-12-12,-8783,-7520,-1263,123,1818,1598,219,-6842
4 | 2012-12-19,-5496,-5470,-26,-73,103,3472,-3369,-5466
5 | 2012-12-26,-4451,-4076,-375,550,2610,3333,-722,-1291
6 | 2013-01-02,-11156,-9622,-1533,-158,2383,2103,280,-8931
7 | 2013-01-09,14817,7995,6821,2888,9766,7311,2455,27471
8 | 2014-04-02,3155,938,2217,265,3379,3129,250,6799
9 | 2014-04-09,5761,2080,3681,1482,1609,1448,161,8852
10 | 2014-04-16,2286,634,1652,1186,633,604,29,4105
11 | 2014-04-23,3530,1392,2138,1239,1984,1453,531,6753
12 | 2014-04-30,-3890,-3996,106,759,888,559,329,-2242
13 | 2014-05-07,632,-2006,2639,-340,5493,4417,1076,5785
14 | 2014-05-14,-1079,-2321,1242,1188,4037,3141,897,4146
15 | 2014-05-21,697,-1790,2487,1216,2196,1398,798,4109
16 | 2014-05-28,-2453,-2603,150,1108,2041,1236,805,696
17 | 2014-06-04,2098,-1148,3246,1123,188,-470,658,3409
18 | 2014-06-11,1236,-1840,3075,1159,2112,1587,524,4506
19 | 2014-06-18,-922,-2204,1282,1060,4159,3740,419,4297
20 | 2014-06-25,-93,-1354,1262,1246,3256,2694,562,4409
21 | 2014-07-02,-7835,-8887,1052,636,2979,2704,276,-4220
22 | 2014-07-09,666,-1070,1736,1006,2721,3203,-482,4393
23 | 2014-07-30,118,-1171,1290,1024,1806,1119,687,2949
24 | 2014-08-06,-471,-3073,2602,-375,-8193,-8658,465,-9040
25 | 2014-08-13,320,-974,1294,496,1436,539,897,2252
26 | 2014-08-20,2671,738,1933,821,4999,4185,814,8490
27 | 2014-08-27,-577,-2199,1623,943,3655,2921,734,4021
28 | 2014-09-03,-4024,-5305,1281,544,2430,1768,661,-1050
29 | 2014-09-10,1257,-1291,2548,1055,1554,711,843,3866
30 | 2014-11-05,-32,-1634,1602,-176,5813,5284,529,5604
31 | 2014-11-12,1464,61,1403,963,3596,2703,893,6023
32 | 2014-11-19,-3010,-3622,611,99,2529,1758,771,-383
33 | 2014-11-25,-1175,-2044,869,-157,2590,1821,769,1258
34 | 2015-01-07,-3913,-5438,1525,-1057,-3403,-4729,1326,-8373
35 | 2015-01-14,1774,-37,1811,248,3549,2582,967,5572
36 | 2015-01-21,1267,856,411,790,1258,220,1038,3315
37 | 2015-01-28,4343,3455,888,1748,5964,4689,1275,12055
38 | 2015-02-04,4240,3536,703,793,3237,2274,963,8270
39 | 2015-02-11,1268,-27,1296,959,5862,5169,693,8089
40 | 2015-03-04,999,-1933,2932,528,4984,4309,675,6511
41 | 2015-03-11,3911,-7,3918,851,1298,999,298,6059
42 | 2015-03-18,1948,-1758,3706,912,452,258,194,3312
43 | 2015-03-25,-1167,-4478,3311,538,2404,1701,703,1775
44 | 2015-04-01,-1527,-3307,1780,720,-1296,-1392,96,-2103
45 | 2015-04-08,1906,-1321,3227,250,1719,1906,-187,3875
46 |
--------------------------------------------------------------------------------