├── .gitignore
├── LICENSE
├── README.md
├── conj_method.py
├── constrained_optimized.py
├── line_program
├── sample_by_cvxopt.py
├── simplex.py
├── simplex_alg.py
└── simplex_orginal.py
├── line_search.py
├── newton_method.py
├── optimal_grandient.py
├── sample
├── sample_by_cvxopt.py
└── sample_by_scipy.py
└── uncostrained_optimize.py
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | env/
12 | build/
13 | develop-eggs/
14 | dist/
15 | downloads/
16 | eggs/
17 | .eggs/
18 | lib/
19 | lib64/
20 | parts/
21 | sdist/
22 | var/
23 | wheels/
24 | *.egg-info/
25 | .installed.cfg
26 | *.egg
27 |
28 | # PyInstaller
29 | # Usually these files are written by a python script from a template
30 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
31 | *.manifest
32 | *.spec
33 |
34 | # Installer logs
35 | pip-log.txt
36 | pip-delete-this-directory.txt
37 |
38 | # Unit test / coverage reports
39 | htmlcov/
40 | .tox/
41 | .coverage
42 | .coverage.*
43 | .cache
44 | nosetests.xml
45 | coverage.xml
46 | *.cover
47 | .hypothesis/
48 |
49 | # Translations
50 | *.mo
51 | *.pot
52 |
53 | # Django stuff:
54 | *.log
55 | local_settings.py
56 |
57 | # Flask stuff:
58 | instance/
59 | .webassets-cache
60 |
61 | # Scrapy stuff:
62 | .scrapy
63 |
64 | # Sphinx documentation
65 | docs/_build/
66 |
67 | # PyBuilder
68 | target/
69 |
70 | # Jupyter Notebook
71 | .ipynb_checkpoints
72 |
73 | # pyenv
74 | .python-version
75 |
76 | # celery beat schedule file
77 | celerybeat-schedule
78 |
79 | # SageMath parsed files
80 | *.sage.py
81 |
82 | # dotenv
83 | .env
84 |
85 | # virtualenv
86 | .venv
87 | venv/
88 | ENV/
89 |
90 | # Spyder project settings
91 | .spyderproject
92 | .spyproject
93 |
94 | # Rope project settings
95 | .ropeproject
96 |
97 | # mkdocs documentation
98 | /site
99 |
100 | # mypy
101 | .mypy_cache/
102 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 | {one line to give the program's name and a brief idea of what it does.}
635 | Copyright (C) {year} {name of author}
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | {project} Copyright (C) {year} {fullname}
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | ### optimize
2 | > 用python写了一些最优化相关的算法。包括线性规划、线搜索、无约束优化、约束优化等. 主要是为了加深对算法的理解,细节没考虑
3 |
4 | #### 1. 线性规划(line program)
5 | > 采用单纯形法解线性规划。在写的时候,部分实现有些小差异,这儿也保留下来了
6 |
7 | > 相比非线性约束的优化问题,线性规划研究得比较透,这也是单独放到一个目录下的原因
8 |
9 | > [line_program](line_program)
10 |
11 | #### 2. 线搜索法(line search)
12 | > 实现了二等分、四等分、fibonacci搜索、黄金分割等精确搜索法
13 | >
14 | > 实现了二次多项式拟合等非精确搜索
15 | >
16 | > [line_search](line_search)
17 |
18 | #### 3. 牛顿法、拟牛顿法(newton_method)
19 | > 实现了几个无约束优化的算法。包括 newton_method, DFP, bfgs, l-bfgs(没有实现)
20 | > 正定二次型直接求解也丢到这里了(solve_direct)
21 |
22 | > [newton_method.py](newton_method.py)
23 |
24 | #### 4. 最优梯度法(optimal_grandient)
25 | > 实现了最优梯度, 二次多项式直接求解等
26 |
27 | > [optimal_grandient.py](optimal_grandient.py)
28 |
29 | #### 5. 共轭方向、共轭梯度法(newton_method)
30 | > 包括 共轭方向法(Fletcher_Reeves_conj, powell_conj, 已知共轭方向的二次多项式直接求解)
31 |
32 | > [conj_method.py](conj_method.py)
33 |
34 | #### 6. 约束优化(constrained optimized)
35 | > 实现了几个约束优化的算法。
36 |
37 | > 包括几个原理性的程序,如 lagrange 等式、不等式优化, kkt 条件(不等式)
38 |
39 | > 基于梯度的算法:hemstitching, combined_direction, 可行方向法
40 |
41 | > 罚函数法(外点法)
42 |
43 | > 内点法(未实现)
44 |
45 | > [costrained_optimize.py](costrained_optimize.py)
46 |
47 | #### 7. 外部库写的小例子
48 | > 调用cvxopt,scipy实现的线性规划示例和非线性优化示例
49 |
50 | > [sample](sample)
51 |
52 | #### 8. 待补充内容
53 | > 1. 线性搜索wolf条件
54 | > 2. lagrange对偶问题
55 | > 3. 共轭梯度&共轭方向的区别?
56 | > 4. 在线梯度下降法
57 | > 5. 随机算法:模拟退火、遗传算法
58 |
--------------------------------------------------------------------------------
/conj_method.py:
--------------------------------------------------------------------------------
1 | #encoding: utf8
2 |
3 | import numpy as np
4 | import pdb
5 |
6 | '''
7 | 1. 共轭方向下降法
8 | 共轭方向法,开始用来求解 Ax=b方程组. 而在求解二次函数最优解时,其梯度函数为 Ax+b=0的解,
9 | 于是也用这个方法来求解二次函数的最优解。其它非二次的凸函数,则可以用二次函数来近似
10 |
11 | (x, Ay) = 0, 称x,y为共轭向量 (正交是共轭的特殊形式,A为单位阵)
12 | 3.1 找到n个共轭向量 ui
13 | 3.2 沿共轭向量方向进行最优搜索, 得到每次搜索的最优步长列表 lbi
14 | 3.3 得到最优点:
15 | x_star = x0 + sum(lbi * ui)
16 |
17 | 对非二次函数,可以这样逼近最优解
18 |
19 | 2. 共轭梯度法
20 | 使用梯度函数构造共轭方向
21 | '''
22 |
23 | from newton_method import f_value
24 | from newton_method import solve_direct
25 |
26 | '''
27 | f = 1 + x1 -x2 + x1**2 + 2x2**2
28 | u1 = [1,0]
29 | u2 = [0,1]
30 | x0 = [0,0]
31 |
32 | lambda1 = -1/2, lambda2 = 1/4
33 | '''
34 | def f2():
35 | c = 1.
36 | b = np.matrix('1.; -1.')
37 | A = np.matrix('2, 0; 0,4')
38 |
39 | return c, b, A
40 |
41 | from line_search import golden_section_search
42 |
43 | '''
44 | 共轭方向法:
45 | 沿共轭方向,最多n次搜索,可以找到最优值
46 | 1. 使用黄金搜索找lambda
47 | '''
48 | def conj_grandient_method_for_f2():
49 | u1 = np.matrix('1.;0.')
50 | u2 = np.matrix('0.;1.')
51 | x0 = np.matrix('0.;0.')
52 |
53 | def_field = [-1,1]
54 | esplison = 0.005
55 | c,b, A = f2()
56 |
57 | '''
58 | 线性搜索用的一次函数, 参数为k
59 | f = f(xi + kui)
60 | '''
61 | k1 = golden_section_search(lambda k:f_value(f2, x0 + k*u1), def_field, esplison)
62 | x1 = x0 + k1[0] * x0
63 |
64 | k2 = golden_section_search(lambda k:f_value(f2, x1 + k*u2), def_field, esplison)
65 | x2 = x0 + k1[0] * u1 + k2[0] * u2
66 |
67 | return x2, f_value(f2, x2)
68 |
69 | '''
70 | 共轭方向法:
71 | 2. 对二次函数直接求解lambda
72 | lamb_i+1 = (u(i+1), Ax0 + b) / (u(i+1), Au(u+1))
73 | '''
74 | def conj_grandient_method_for_f2_direct():
75 | u1 = np.matrix('1.;0.')
76 | u2 = np.matrix('0.;1.')
77 | x0 = np.matrix('0.;0.')
78 |
79 | c,b, A = f2()
80 | lamb1 = -1. * (u1.T * (A*x0 + b))/(u1.T * (A*u1))
81 | lamb2 = -1. * (u2.T * (A*x0 + b))/(u2.T * (A*u2))
82 |
83 | x2 = x0 + lamb1[0,0] * u1 + lamb2[0,0] * u2
84 |
85 | return x2, f_value(f2, x2)
86 |
87 |
88 | def conj_f3():
89 | A = np.matrix('1,1;1,2')
90 | c = 0
91 | b = np.matrix('0;0')
92 |
93 | return c,b,A
94 |
95 | '''
96 | Fletcher_Reeves_conj
97 | 关于v0,v1,...vn共轭,最好推导一次
98 | x0, x1, ...
99 | v0, v1,....
100 | xi = xi_1 + lambda * vi_1
101 | vi = -gi + ||gi||/||gi_1|| * vi_1
102 | 沿共轭方向求极小值:
103 | gi, 第xi点的梯度值
104 |
105 | example:
106 |
107 | f=1/2x.TAx
108 | A=[1,1;1,2]
109 | x0 = [10.;-5.]
110 | v0 = g0
111 |
112 | lamb0 = 0.75
113 | x1 = [1.25,-3.75]
114 | v1=[-4.36,3.75]
115 | lamb1 = 1.34
116 |
117 | x2 = [0.4, 0.01]
118 | 再迭代一次?
119 | 讲义上似乎算错了。有空算一下
120 | '''
121 | def Fletcher_Reeves_conj():
122 | f = conj_f3
123 | c,b,A = f()
124 | x0 = np.matrix('10.;-5.')
125 | g0 = A * x0 + b
126 | v0 = -g0
127 |
128 | #pdb.set_trace()
129 | lamb0, f_x0 = golden_section_search(lambda k:f_value(f, x0 + k*v0), [0,2], 0.001)
130 |
131 | x1 = x0 + lamb0 * v0
132 | g1 = A*x1 + b
133 | v1 = -g1 + np.dot(g1.T, g1)[0,0]/np.dot(g0.T, g0)[0,0] * v0
134 | lamb1, f_x1 = golden_section_search(lambda k:f_value(f, x1 + k*v1), [0,2], 0.001)
135 | x2 = x1 + lamb1 * v1
136 | return x2, f_x1
137 |
138 | '''
139 | '''
140 | def f_powell():
141 | c = 0
142 | b = np.matrix('0.;0.')
143 | A = np.matrix('2,0;0,4')
144 |
145 | return c,b,A
146 |
147 | '''
148 | 相比于fletcher算法,powell算不需要计算梯度。但需要有n个线性无关的初始向量,
149 |
150 | 1. 每一步的过程
151 | xi = xi_1 + lambda * vi_1, lambda线性搜索后的最小值
152 | vi --> vi_1
153 | xn-x0 --> vn
154 | u0 = xn-x0
155 | x0 = xn + lambda * (xn - x0), 为新的x0值
156 |
157 | 算法本身所需要的步数,并不比fletcher小
158 |
159 | 2. 重复上述步骤,直到收敛
160 | 留意下收敛条件:如 ||xi - xi_1|| < epsilon, |fi - fi_1| < esplilon, max_steps
161 |
162 |
163 | 这种产生共轭向量的方法,并没有推导,只有实现。最好去推一下
164 |
165 |
166 | 这两个算法,和DFP/BFGS关系密切。具体参考 newton算法相关内容
167 |
168 | '''
169 | def powell_conj():
170 | '''
171 | u1=[-11.14, -24.46]
172 | u2=[-1.8, -0.28]
173 | '''
174 | x0 = np.matrix('20.;20.')
175 | #v1,v2线性无关
176 | v = np.matrix('1.,1.;-1.,1.')
177 |
178 | c,b,A = f_powell()
179 | u = np.matrix('0.,0.;0.,0.')
180 | lamb = np.matrix('0.;0.')
181 |
182 | id = 0
183 | total = 0
184 | while total < 3:
185 | k,min_fk = golden_section_search(lambda k:f_value(f_powell, x0 + k*v[:,0]), [-100., 100], 0.001)
186 | x1 = x0 + k * v[:,0]
187 |
188 | k,min_fk = golden_section_search(lambda k:f_value(f_powell, x1 + k*v[:,1]), [-100., 100], 0.001)
189 | x2 = x1 + k * v[:,1]
190 |
191 | #找到u向量
192 | u[:,id] = x2 - x0
193 | k,min_fk = golden_section_search(lambda k:f_value(f_powell, x2 + k*u[:, id]), [-100., 100], 0.001)
194 |
195 | x0 = x2 + k*u[:,id]
196 | v[:,0] = v[:,1]
197 | v[:,1] = u[:,id]
198 |
199 | id = (id+1) % len(lamb)
200 | total += 1
201 |
202 | conj = u[:,0].T * A * u[:,1]
203 | #print "conj: ", conj
204 |
205 | x_star = x0
206 |
207 | return x_star, f_value(f_powell, x_star)
208 |
209 | from line_search import newton_search_for_quad
210 |
211 | from newton_method import newton_search_for_quad
212 |
213 | if __name__ == "__main__":
214 | conj_rst = conj_grandient_method_for_f2()
215 | print "\nconj_grandient_method_for_f2:", conj_rst
216 |
217 | conj_rst = conj_grandient_method_for_f2_direct()
218 |
219 | print "\nconj_grandient_method_for_f2_direct:", conj_rst
220 |
221 | frs = Fletcher_Reeves_conj()
222 | print "Fletcher_Reeves_conj.\nexpect: x2 = [0.4, 0.01]. \nReal:", frs
223 |
224 | frs = powell_conj()
225 | print "Fletcher_Reeves_conj.\nexpect: x2 = [0.4, 0.01]. \nReal:", frs
226 |
--------------------------------------------------------------------------------
/constrained_optimized.py:
--------------------------------------------------------------------------------
1 | # encoding: utf8
2 |
3 | import numpy as np
4 | import pdb
5 |
6 | '''
7 | 本文件主要包括一些算法的示例,并不是完整的实现。仅用来做为加强学习用
8 |
9 | 包括等式、不等式优化。
10 | 1. lagrange 等式、不等式优化
11 | 2. kkt 条件(不等式)
12 | 3. 梯度下降
13 | 4. 罚函数法
14 | 5. 外点法
15 | 6. 内点法(未实现)
16 | '''
17 |
18 | # equal constrained
19 | '''
20 | 示例1:
21 | 必要条件: lagrange_fun对应的梯度分量为0.
22 | 注: 并不是原问题有最优解,lagrange函数就能求出该最优解
23 | 比如这个函数:
24 | min sqrt(x^2 + y^2)
25 | s.t y^2 - (x-1)^3 = 0
26 | 这个最优解为 (0, 1), 但这个解并不是lagrange函数的解
27 |
28 | min x**2 + y**2
29 | s.t x + y =1
30 | 这个解是x + y = 1直线和上述出线等高线的切点
31 | 观察可得:
32 | x_star = [1/2, 1/2]
33 |
34 | L(x,lambd) = x^2 + y^2 + lambd * (x + y - 1)
35 | = x^2 + y^2 + x*lambd + y*lambd - lambd
36 |
37 | x = [x,y,lambd].T
38 | A = [2,0,1; 0,2,1; 1,1,0]
39 | b = [0,0,-1]
40 | c = 0
41 | '''
42 |
43 | def f1():
44 | A = np.matrix('2.,0.,1.; 0,2,1; 1,1,0')
45 | b = np.matrix('0.;0.;-1.')
46 | c = 0
47 |
48 | return c,b,A
49 |
50 | '''
51 | min x1^2 + 4x2^2
52 | s.t x1 + 2x2 = 6
53 |
54 | x_star = [3., 3./2]
55 |
56 | L(x, lamb) = x1^2 + 4x2^2 + lamb * (x1 + 2x2 - 6)
57 | = x1^2 + 4x2^2 + x1*lamb + 2x2 * lamb - 6*lamb
58 |
59 | '''
60 | def f2():
61 | A = np.matrix('2.,0,1;0,8,2;1,2,0')
62 | b = np.matrix('0.; 0.; -6.')
63 | c = 0
64 |
65 | return c,b,A
66 |
67 | def equal_constrained_by_lagrange(f):
68 | c,b,A = f()
69 | #梯度方程: Ax = -b
70 | x = np.linalg.solve(A, -b)
71 |
72 | return x, 1/2. * x.T * A * x + b.T * x
73 |
74 |
75 | # inequality_constrained
76 | '''
77 |
78 | 针对 lamb, seta 等于0分别讨论.
79 | lamb_i == 0: seta_i^2 > 0, h_i(x) > 0, 即最优解在可行域里
80 | seta_i == 0: h_i(x) = 0, 最优解在可行域边界上, 即和等式优化问题一样
81 | lamb_i,seta_i == 0: f_i' = 0, h_i = 0, 最优解在 h_i边界上,由h_i的边界穿过f_i的最小点
82 |
83 | L = f + sum(lamb_i * (h_i(x) - seta^2))
84 |
85 | min (x-a)^2
86 | s.t x>=c
87 |
88 | l = (x-a)^2 - lamb*(x-c - seta^2)
89 | = x^2 - 2ax + a^2 - lamb*x + lamb*c + lamb * seta^2
90 |
91 | l是一个三次方程,不太好解。以下为简化解法:约束了 lamb == 0 (l1) or seta == 0 (l2)
92 |
93 | l_x = 2(x-a) - lamb
94 | l_lambda = x - c - theta^2
95 | l_theta = 2 * lamb * theta
96 |
97 | '''
98 |
99 | def inequality_constrained_by_lagrange(a, c):
100 | # lamb == 0
101 | x = a
102 | if x >= c: #x > 0, l_lambda < 0
103 | return x, (x-a)**2
104 |
105 | #seta == 0
106 | x = c
107 | lamb = 2*(x - a)
108 |
109 | return x, (x-a)**2
110 |
111 | '''
112 | 相比于lagrange不等式约束,
113 | KT约束不需要 theta参数,但有四个约束条件(本质上和 lagrange是一致的)
114 |
115 | min f(x)
116 | s.t. gi(x) <= 0
117 |
118 | 解法:
119 | L(x, lamb) = f(x) + sum(lamb_i * g_i(x))
120 | 满足如下四个条件:
121 | partial_L/x = 0
122 | partial_L/lamb <= 0 (g_i(x) = 0)
123 | lamb_i >= 0
124 | lamb * g = 0
125 |
126 | min (x-a)^2
127 | s.t x>=c
128 |
129 | L(x, lamb) = (x-a)^2 - lamb * (c-x)
130 |
131 | partial_L/x = 2(x-a) - lamb * c
132 | partial_L/lamb = c-x
133 |
134 | '''
135 | def inequality_constrained_by_KT(a, c):
136 | lamb = 0 #条件4,3
137 | x = a #条件1
138 | g = c - x
139 | if g < 0: #条件2
140 | return x, (x-a) ** 2
141 |
142 | x = c #g==0, 条件2,4
143 | lamb = 2. * (x - a) / c #条件1
144 |
145 | if lamb >= 0:
146 | return x, (x-a) ** 2
147 |
148 | return None
149 |
150 |
151 | '''
152 | lagrange, kkt条件一般理论分析用。以下介绍工业界常用算法
153 |
154 | min f(x)
155 | s.t. g(x) >= 0 #注意是 >= 0
156 | '''
157 |
158 | '''
159 | min x1^2 + 2*x2^2
160 | s.t. x1 + x2 >= 4
161 | '''
162 | def cons_f1(x, lt=False):
163 | coef = np.matrix('1.;2')
164 |
165 | f = np.sum(coef.T * np.multiply(x, x))
166 | deriv_f = 2 * np.multiply(coef, x)
167 | deriv_f = deriv_f / np.sqrt(deriv_f.T * deriv_f) #归一化
168 |
169 | g = np.sum(x) - 4.
170 | deriv_g = np.matrix('1.;1.')
171 | if lt:
172 | g = -g
173 | deriv_g = -deriv_g
174 |
175 | deriv_g = deriv_g / np.sqrt(deriv_g.T * deriv_g) #归一化
176 |
177 | return f,deriv_f, g, deriv_g
178 |
179 |
180 | '''
181 | hemstitching方法(绣花算法)
182 | 1. 如果在可行域里,走负梯度方向
183 | 2. 如果不在,则走约束函数梯度方向, 回走(注:约束函数 gi >= 0)
184 |
185 | 算法:
186 | 1. 求 grad(f), grad(gi)
187 | 2. 如果 x_p在可行域里,走f负梯度方向;如果在外,走 g梯度方向,拉回到可行域里
188 | 3. 如果两次差值很少,则结束
189 | '''
190 |
191 | def hemstitching_method(f_fun, x0, epsilon):
192 | x = x0
193 | f_pre = None
194 | x_pre = None
195 | max_iter = 1000
196 | cur_iter = 0
197 | k=1 #这个步长太大,问题多多
198 | k=0.1
199 |
200 | while True:
201 | f,deriv_f, g, deriv_g = f_fun(x)
202 | #pdb.set_trace()
203 | cur_iter += 1
204 |
205 | if f_pre != None and np.abs(f - f_pre) < epsilon:
206 | break
207 |
208 | d = None
209 | if g >= 0: #可行域里
210 | d = -deriv_f
211 | #不能停。只好加一个这个限制。加一个步长应该会好一些
212 | if cur_iter > max_iter:
213 | print "max itered"
214 | break
215 |
216 | if x_pre != None:
217 | dis = np.abs(np.sum((x_pre - x).T * (x_pre - x)))
218 | if np.sqrt(dis) < epsilon:
219 | break
220 |
221 | x_pre = x
222 | else:
223 | d = deriv_g
224 |
225 | x = x + k * d
226 |
227 | f_pre = f
228 |
229 | return x, f
230 |
231 | '''
232 | 合成方向法
233 | 如果在可行点外,d = -deriv_f + sum(deriv_gi)
234 | '''
235 | def combined_method(f_fun, x0, epsilon):
236 | x = x0
237 | f_pre = None
238 | x_pre = None
239 | max_iter = 1000
240 | cur_iter = 0
241 | k=1 #这个步长太大,问题多多
242 | k=0.1
243 |
244 | while True:
245 | f,deriv_f, g, deriv_g = f_fun(x)
246 | #pdb.set_trace()
247 | cur_iter += 1
248 |
249 | d = None
250 | if g >= 0: #可行域里
251 | d = -deriv_f
252 | #不能停。只好加一个这个限制。加一个步长应该会好一些
253 | if cur_iter > max_iter:
254 | print "max itered"
255 | break
256 |
257 | if x_pre != None:
258 | dis = np.abs(np.sum((x_pre - x).T * (x_pre - x)))
259 | if np.sqrt(dis) < epsilon:
260 | break
261 |
262 | if f_pre != None and np.abs(f - f_pre) < epsilon:
263 | break
264 |
265 | x_pre = x
266 | f_pre = f
267 | else:
268 | #pdb.set_trace()
269 | # 用 d = -deriv_f + deriv_g, 出不来
270 | d = -deriv_f + 2 * deriv_g
271 |
272 | x = x + k * d
273 |
274 | return x, f
275 |
276 |
277 |
278 | '''
279 | 上述两个方法,最好算一下步长。要不然一直收敛不了
280 |
281 | 可行方向法
282 | 保证方向是下降的
283 |
284 | max x0
285 | s.t. x0 + deriv_f.T * dp <= 0 #目标值下降
286 | x0 + deriv_g.T * dp - g(x0) <= 0 #在可行域内
287 | |dj| <= 1, x0 >= 0
288 | '''
289 |
290 | from scipy.optimize import linprog
291 |
292 | def fliable_direction_method(f_fun, x0, esplison):
293 | x = x0
294 | f_pre = None
295 | x_pre = None
296 | max_iter = 1000
297 | cur_iter = 0
298 | k=1 #这个步长太大,问题多多
299 | k = 0.1
300 | k = 0.01 #这儿给的是固定步长。应该动态算一下:即在可行域里的最大k
301 |
302 | while True:
303 | f,deriv_f, g, deriv_g = f_fun(x, lt=True)
304 |
305 | if x_pre != None and np.sqrt(np.abs(np.sum((x_pre - x).T * (x_pre - x)))) < epsilon:
306 | break
307 |
308 | if f_pre != None and np.abs(f - f_pre) < epsilon:
309 | break
310 |
311 | c=np.array([-1., 0, 0])
312 | '''
313 | A = np.array([[1, deriv_f[0], deriv_f[1]],
314 | [1, deriv_g[0], deriv_g[1]]])
315 | b = np.array([0., -g])
316 | '''
317 | A = np.array([[1, deriv_f[0], deriv_f[1]],
318 | [0, deriv_g[0], deriv_g[1]]])
319 | b = np.array([0., -g])
320 |
321 | x0_bounds = (0, None)
322 | d0_bounds = (-1., 1.)
323 | d1_bounds = (-1., 1.)
324 |
325 | #res = linprog(c, A_ub = A, b_ub = b, bounds=(x0_bounds, d0_bounds, d1_bounds), options={"disp":True})
326 | res = linprog(c, A_ub = A, b_ub = b, bounds=(x0_bounds, d0_bounds, d1_bounds))
327 |
328 | if res.success:
329 | x0, d0, d1 = res.x
330 | x[0] += d0 * k
331 | x[1] += d1 * k
332 |
333 | if x0 < esplison:
334 | f, deriv_f, g, deriv_g = f_fun(x)
335 | return x, f
336 | else:
337 | return None
338 |
339 | return None
340 |
341 | '''
342 | 罚函数法(内点法)
343 | 1. 等式约束
344 | min x1^2 + x2^2
345 | s.t. x2 = 1
346 |
347 | 定义罚函数:
348 | P(x, K) = x1 ^2 + x2^2 + K * (x2-1)^2
349 | deriv(P) = [2x1, 2x2 + 2(x2-1)K] = 0
350 | x1 = 0
351 | x2 = 1. * K/(K+1)
352 | '''
353 |
354 | def penity_method_1(K):
355 | x1 = 0.
356 | x2 = 1.0 * K/(K+1)
357 |
358 | return [x1,x2], x1*x1 + x2*x2
359 |
360 |
361 | if __name__ == "__main__":
362 | x_star = [1./2, 1./2]
363 | rs = equal_constrained_by_lagrange(f1)
364 |
365 | print "\nequality_constrained_by_lagrange:"
366 | print "\nexpect:", x_star
367 | print "\nreal:", rs
368 |
369 | x_star = [3., 3./2]
370 | rs = equal_constrained_by_lagrange(f2)
371 |
372 | print "\ninequality_constrained_by_lagrange:"
373 | print "\nexpect:", x_star
374 | print "\nreal:", rs
375 |
376 | a = 2
377 | c = 0
378 | rs = inequality_constrained_by_lagrange(a, c)
379 | print "\ninequality_constrained_by_lagrange:"
380 | print "a,c, expect:", a, c, a
381 | print "real:", rs
382 |
383 | a = 2
384 | c = 2
385 | rs = inequality_constrained_by_lagrange(a, c)
386 | print "\ninequality_constrained_by_lagrange:"
387 | print "a,c, expect:", a, c, a
388 | print "real:", rs
389 |
390 | a = 2
391 | c = 4
392 | rs = inequality_constrained_by_lagrange(a, c)
393 | print "\ninequality_constrained_by_lagrange:"
394 | print "a,c, expect:", a, c, c
395 | print "real:", rs
396 |
397 | a = 2
398 | c = 0
399 | rs = inequality_constrained_by_KT(a, c)
400 | print "\ninequality_constrained_by_KT:"
401 | print "a,c, expect:", a, c, a
402 | print "real:", rs
403 |
404 | a = 2
405 | c = 2
406 | rs = inequality_constrained_by_KT(a, c)
407 | print "\ninequality_constrained_by_KT:"
408 | print "a,c, expect:", a, c, a
409 | print "real:", rs
410 |
411 | a = 2
412 | c = 4
413 | rs = inequality_constrained_by_KT(a, c)
414 | print "\ninequality_constrained_by_KT:"
415 | print "a,c, expect:", a, c, c
416 | print "real:", rs
417 |
418 | x_star = [2.667,1.333]
419 | x_bar = np.matrix('1; 4.5')
420 | rst = hemstitching_method(cons_f1, x_bar, 0.001)
421 | print "\ninequality_constrained_ hemstitching_method:"
422 | print "\nexpect:", x_star
423 | print "\nreal:", rst
424 |
425 | rst = combined_method(cons_f1, x_bar, 0.001)
426 | print "\ninequality_constrained_ combined_method:"
427 | print "\nexpect:", x_star
428 | print "\nreal:", rst
429 |
430 | x_star = [2.667,1.333]
431 | x_bar = np.matrix('0.85; 3.15')
432 | rst = fliable_direction_method(cons_f1, x_bar, 0.01)
433 | print "\ninequality_constrained_ fliable_direction_method:"
434 | print "\nexpect:", x_star
435 | print "\nreal:", rst
436 |
437 | x_star = [0, 1]
438 | print "\npenity_method for equal constrained. x_star:", x_star
439 |
440 | K=1
441 | rst = penity_method_1(K)
442 | print "rst for K:%s; rst: %s" % (K, rst)
443 |
444 | K=10
445 | rst = penity_method_1(K)
446 | print "rst for K:%s; rst: %s" % (K, rst)
447 |
448 | K=100
449 | rst = penity_method_1(K)
450 | print "rst for K:%s; rst: %s" % (K, rst)
451 |
452 | K=10000
453 | rst = penity_method_1(K)
454 | print "rst for K:%s; rst: %s" % (K, rst)
455 |
456 |
--------------------------------------------------------------------------------
/line_program/sample_by_cvxopt.py:
--------------------------------------------------------------------------------
1 | from cvxopt import matrix, solvers
2 |
3 | ########################################################################
4 |
5 | ## mimimize 2 x1 + x2
6 |
7 | ##subject to
8 |
9 | ## -x1 +x2 <= 1
10 |
11 | ## x1 + x2 >= 2
12 |
13 | ## x2 >= 0
14 |
15 | ## x1 - 2 x2 <= 4
16 |
17 | ########################################################################
18 |
19 | c = matrix([2.0, 1.0])
20 |
21 | b = matrix([1.0, -2.0, 0.0, 4.0])
22 |
23 | A = matrix([[-1.0, -1.0, 0.0, 1.0],[1.0, -1.0, 1.0, -2.0]])
24 |
25 | sol = solvers.lp(c,A,b)
26 |
27 | print sol['x']
28 |
--------------------------------------------------------------------------------
/line_program/simplex.py:
--------------------------------------------------------------------------------
1 | # encoding: utf8
2 |
3 | '''
4 | 线性规划的单纯型方法实现
5 |
6 | z = c.T * x_b
7 | min z
8 | s.t. D*x_b <= b,
9 | x_b >= 0
10 |
11 | 引入松驰变量(向量)xp, x_n = b - A*x_b >= 0,
12 | D * x_b + I * x_n = b
13 | [D I][x_b;x_n] = b
14 |
15 | 简写为:
16 | min z = c.T * x
17 | s.t. Ax = b,
18 | x >= 0
19 |
20 | A = [D I],
21 | x = [x_b; x_n]
22 |
23 |
24 | 其中对A要求行满秩(如果非行满秩,则约束条件行相关,Ax = b可能无解,需要把线性相关的线束去掉)
25 |
26 | 单纯形法,上式转为如下线性方程组:
27 | [1 -c.T 0; 0 D I] * [z;x_b;x_n] = [0;b]
28 | x >= 0
29 | 或
30 | [1 -c.T 0; 0 A] * [z;x] = [0;b]
31 |
32 | x >= 0
33 |
34 | 求满足上式z的最小值
35 |
36 |
37 | 以下解法中,只考虑 约束条件 <= b, 不考虑等式情况
38 | 引入松驰变量后的系数矩阵,其秩为m (m个松驰变量构成了m * m单位阵)
39 |
40 | 等式情况, 可以通过类似增加松驰变量的方式解决
41 |
42 | 选主元算法,两种:
43 | 1. dantzig规则
44 | 最大正判别数对应的列,正判别数最小标为列标
45 | 最小比值行标出基
46 | 对退化问题,可能会死循环,无最优解
47 |
48 | 2. Bland规则
49 | 正判别数最小下标进基, 即
50 | l = min{j|seta_j > 0, 1<=j <=n}
51 |
52 | '''
53 |
54 | import numpy as np
55 | import sys
56 | import pdb
57 |
58 | class Simplex:
59 | def __init__(self, C, max_mode=False):
60 | self.mat = np.array([0] + C)
61 | if max_mode:
62 | self.mat *= -1
63 |
64 | def solve(self):
65 | '''
66 | 松驰后的增广矩阵 [z C;b A]
67 | '''
68 | m,n = self.mat.shape
69 | temp = np.vstack((np.zeros(m-1), np.eye(m-1))) #第一行:z=c.T * x; 2 ..m: m-1 维限制条件
70 | self.mat = np.hstack((self.mat, temp))
71 | m,n = self.mat.shape
72 | B = np.array(range(m-1, n)) #B0, 初始基的列编号
73 |
74 | #判别数: C.T - Cb.T * B.inv * A,
75 | #Z.new - Z = (CN.T - Cb.T * B.inv * CN) * XN
76 | #theta0: B.inv = B = np.eye(m - 1)
77 | theta = np.array(self.mat[0])
78 | while theta.min() < 0:
79 | col = theta.argmin()
80 | #出基判别
81 | out_row = np.zeros(m)
82 | out_row[0] = sys.maxint
83 | for i in range(1,m):
84 | out_row[i] = sys.maxint
85 | if self.mat[i, col] > 1e-9: #如果全小于0, 需要处理
86 | out_row[i] = self.mat[i, 0] / self.mat[i, col]
87 |
88 | row = out_row.argmin()
89 |
90 | self.mat[row,:] = self.mat[row,:] / self.mat[row, col]
91 | for i in range(1,m):
92 | if np.abs(self.mat[i, col]) > 1e-9 and i != row:
93 | self.mat[i,:] -= self.mat[row,:] * self.mat[i, col]
94 |
95 | B[row-1] = col
96 | pdb.set_trace()
97 | theta[1:] = self.mat[0,1:] - np.dot(self.mat[0,:].take(B), self.mat[1:, 1:]) # theta = C - (Cb.T * B.inv * A) = C - Cb.T * A
98 |
99 | pdb.set_trace()
100 |
101 | z = np.dot(self.mat[0].take(B) * self.mat[1:, 0])
102 |
103 | return z
104 |
105 | '''
106 | ax <= b
107 | x >= 0
108 | '''
109 | def add_constraint(self, a, b):
110 | self.mat = np.vstack((self.mat, [b] + a))
111 |
112 |
113 | '''
114 | min z=-x1 - 14x2 - 6x3
115 | s.t. x1 + x2 + x3 <= 4
116 | x1 <= 2
117 | x3 <= 3
118 | 3x2 + x3 <= 6
119 |
120 | answer: -32.0
121 | '''
122 |
123 | if __name__ == "__main__":
124 | z = [-1, -14, -6]
125 | t1 = Simplex(z)
126 | t1.add_constraint([1,1,1], 4)
127 | t1.add_constraint([1,0,0], 2)
128 | t1.add_constraint([0,0,1], 3)
129 | t1.add_constraint([0,3,1], 6)
130 |
131 | result = t1.solve()
132 |
133 | print "expect result -24; real result:", result
134 |
135 |
--------------------------------------------------------------------------------
/line_program/simplex_alg.py:
--------------------------------------------------------------------------------
1 | # encoding: utf8
2 |
3 | '''
4 | 线性规划的单纯型方法实现
5 |
6 | z = c.T * x_b
7 | min z
8 | s.t. D*x_b <= b,
9 | x_b >= 0
10 |
11 | 引入松驰变量(向量)xp, x_n = b - A*x_b >= 0,
12 | D * x_b + I * x_n = b
13 | [D I][x_b;x_n] = b
14 |
15 | 简写为:
16 | min z = c.T * x
17 | s.t. Ax = b,
18 | x >= 0
19 |
20 | A = [D I],
21 | x = [x_b; x_n]
22 |
23 |
24 | 其中对A要求行满秩(如果非行满秩,则约束条件行相关,Ax = b可能无解,需要把线性相关的线束去掉)
25 |
26 | 单纯形法,上式转为如下线性方程组:
27 | [1 -c.T 0; 0 D I] * [z;x_b;x_n] = [0;b]
28 | x >= 0
29 | 或
30 | [1 -c.T 0; 0 A] * [z;x] = [0;b]
31 |
32 | x >= 0
33 |
34 | 求满足上式z的最小值
35 |
36 |
37 | 以下解法中,只考虑 约束条件 <= b, 不考虑等式情况
38 | 引入松驰变量后的系数矩阵,其秩为m (m个松驰变量构成了m * m单位阵)
39 |
40 | 等式情况, 可以通过类似增加松驰变量的方式解决
41 |
42 | 选主元算法,两种:
43 | 1. dantzig规则
44 | 最大正判别数对应的列,正判别数最小标为列标
45 | 最小比值行标出基
46 | 对退化问题,可能会死循环,无最优解
47 |
48 | 2. Bland规则
49 | 正判别数最小下标进基, 即
50 | l = min{j|seta_j > 0, 1<=j <=n}
51 |
52 | '''
53 |
54 | import numpy as np
55 | import sys
56 | import pdb
57 |
58 | class Simplex:
59 | def __init__(self, C, max_mode=False):
60 | self.mat = np.array([0] + C)
61 | if max_mode:
62 | self.mat *= -1
63 |
64 | '''
65 | ax <= b
66 | x >= 0
67 | '''
68 | def add_constraint(self, a, b):
69 | self.mat = np.vstack((self.mat, [b] + a))
70 |
71 | def solve(self):
72 | '''
73 | 松驰后的增广矩阵 [z C;b A]
74 | '''
75 | cm,cn = self.mat.shape
76 | B = np.array(range(cm-1, cm+cn-1)) #B0, 初始基的列编号
77 | temp = np.vstack((np.zeros(cm-1), np.eye(cm-1))) #第一行:z=c.T * x; 2 ..m: m-1 维限制条件
78 | self.mat = np.hstack((self.mat, temp))
79 | m,n = self.mat.shape
80 | #判别数: C.T - Cb.T * B.inv * A,
81 | #Z.new - Z = (CN.T - Cb.T * B.inv * CN) * XN
82 | #theta0: B.inv = B = np.eye(m - 1)
83 | theta = self.mat[0]
84 | while theta[1:].min() < 0:
85 | col = theta[1:].argmin() + 1
86 | #出基判别
87 | out_row = np.zeros(m)
88 | out_row[0] = sys.maxint
89 | for i in range(1,m):
90 | out_row[i] = sys.maxint
91 | if self.mat[i, col] > 1e-9: #如果全小于0, 需要处理
92 | out_row[i] = self.mat[i, 0] / self.mat[i, col]
93 |
94 | row = out_row.argmin()
95 |
96 | self.mat[row,:] = self.mat[row,:] / self.mat[row, col]
97 | for i in range(m):
98 | if np.abs(self.mat[i, col]) > 1e-9 and i != row:
99 | self.mat[i,:] -= self.mat[row,:] * self.mat[i, col]
100 |
101 | B[row-1] = col
102 |
103 | z = -1 * self.mat[0,0]
104 |
105 | sol=np.zeros(cn-1)
106 | for i in range(len(B)):
107 | if B[i] < cn:
108 | sol[B[i]-1] = self.mat[i+1,0]
109 |
110 |
111 | return z, sol
112 |
113 |
114 | '''
115 | min z=-x1 - 14x2 - 6x3
116 | s.t. x1 + x2 + x3 <= 4
117 | x1 <= 2
118 | x3 <= 3
119 | 3x2 + x3 <= 6
120 |
121 | answer: -32.0
122 | '''
123 |
124 | if __name__ == "__main__":
125 | z = [-1, -14, -6]
126 | t1 = Simplex(z)
127 | t1.add_constraint([1,1,1], 4)
128 | t1.add_constraint([1,0,0], 2)
129 | t1.add_constraint([0,0,1], 3)
130 | t1.add_constraint([0,3,1], 6)
131 |
132 | result,sol = t1.solve()
133 |
134 | print "expect result -32; real result:", result
135 |
136 |
--------------------------------------------------------------------------------
/line_program/simplex_orginal.py:
--------------------------------------------------------------------------------
1 | # encoding: utf8
2 |
3 | '''
4 | 线性规划的单纯型方法实现
5 |
6 | z = c.T * x_b
7 | min z
8 | s.t. D*x_b <= b,
9 | x_b >= 0
10 |
11 | 引入松驰变量(向量)xp, x_n = b - A*x_b >= 0,
12 | D * x_b + I * x_n = b
13 | [D I][x_b;x_n] = b
14 |
15 | 简写为:
16 | min z = c.T * x
17 | s.t. Ax = b,
18 | x >= 0
19 |
20 | A = [D I],
21 | x = [x_b; x_n]
22 |
23 |
24 | 其中对A要求行满秩(如果非行满秩,则约束条件行相关,Ax = b可能无解,需要把线性相关的线束去掉)
25 |
26 | 单纯形法,上式转为如下线性方程组:
27 | [1 -c.T 0; 0 D I] * [z;x_b;x_n] = [0;b]
28 | x >= 0
29 | 或
30 | [1 -c.T 0; 0 A] * [z;x] = [0;b]
31 |
32 | x >= 0
33 |
34 | 求满足上式z的最小值
35 |
36 |
37 | 以下解法中,只考虑 约束条件 <= b, 不考虑等式情况
38 | 引入松驰变量后的系数矩阵,其秩为m (m个松驰变量构成了m * m单位阵)
39 |
40 | 等式情况, 可以通过类似增加松驰变量的方式解决
41 |
42 | 选主元算法,两种:
43 | 1. dantzig规则
44 | 最大正判别数对应的列,正判别数最小标为列标
45 | 最小比值行标出基
46 | 对退化问题,可能会死循环,无最优解
47 |
48 | 2. Bland规则
49 | 正判别数最小下标进基, 即
50 | l = min{j|seta_j > 0, 1<=j <=n}
51 |
52 | '''
53 |
54 | import numpy as np
55 | import sys
56 | import pdb
57 |
58 | class Simplex:
59 | def __init__(self, C, max_mode=False):
60 | self.C = np.array(C)
61 | self.max_mode = max_mode
62 | self.constraints = []
63 | self.b = []
64 | #松驰后的增广矩阵 [A b;C z]
65 | self.cons_mat = None
66 | self.C_array = None
67 |
68 | '''
69 | ax <= b
70 | x >= 0
71 | '''
72 | def add_constraint(self, a, b):
73 | self.constraints.append(a)
74 | self.b.append(b)
75 |
76 | def solve(self):
77 | #条件矩阵,松也变量m*m, + 最后一列b
78 | self.cons_mat = np.hstack((np.array(self.constraints), np.eye(len(self.constraints)), np.mat(self.b).T))
79 | #最后一行:c.T * x, z
80 | self.C_array = np.hstack((np.array(self.C), np.zeros(len(self.b) + 1)))
81 |
82 | m,n = self.cons_mat.shape
83 | #Z.new - Z = (CN.T - Cb.T * B.inv * CN) * XN
84 | #判别数: C - Cb.T * B.inv * A, B.inv = B = np.eye(m - 1), theta0 = C - Cb.T * A = C
85 | theta = np.array(self.C_array[:-1])
86 | B = np.array(range(len(self.C), n-1)) #B0, 初始基的列编号
87 | while theta.min() < 0:
88 | col = theta.argmin()
89 | #出基判别
90 | out_row = np.full(m, sys.maxint, dtype='float')
91 | for i in range(m):
92 | if self.cons_mat[i, col] > 1e-9: #如果全小于0, 需要处理
93 | out_row[i] = self.cons_mat[i, 0] / self.cons_mat[i, col]
94 |
95 | row = out_row.argmin()
96 | self.cons_mat[row,:] = self.cons_mat[row,:] / self.cons_mat[row, col]
97 | for i in range(m):
98 | if np.abs(self.cons_mat[i, col]) > 1e-9 and i != row:
99 | self.cons_mat[i,:] -= self.cons_mat[row,:] * self.cons_mat[i, col]
100 |
101 | B[row] = col
102 | # theta = C - (Cb.T * B.inv * A) = C - Cb.T * A
103 | theta[:] = self.C_array[:-1] - np.dot(self.C_array.take(B), self.cons_mat[:, :-1])
104 |
105 | z = self.C_array.take(B) * self.cons_mat[:,-1]
106 |
107 | pdb.set_trace()
108 |
109 | return z[0,0]
110 |
111 |
112 | if __name__ == "__main__":
113 | '''
114 | min z=-x1 - 14x2 - 6x3
115 | s.t. x1 + x2 + x3 <= 4
116 | x1 <= 2
117 | x3 <= 3
118 | 3x2 + x3 <= 6
119 |
120 | answer: -32.0
121 | '''
122 | z = [-1, -14, -6]
123 | t1 = Simplex(z)
124 | t1.add_constraint([1,1,1], 4)
125 | t1.add_constraint([1,0,0], 2)
126 | t1.add_constraint([0,0,1], 3)
127 | t1.add_constraint([0,3,1], 6)
128 |
129 | result = t1.solve()
130 |
131 | print "expect result -32; real result:", result
132 |
133 |
--------------------------------------------------------------------------------
/line_search.py:
--------------------------------------------------------------------------------
1 | #encoding: utf8
2 |
3 | '''
4 | f = 8 * x**3 - 2*x**2 - 7*x + 3, x* = 0.63, epsilon = 0.1, 0=< 0 <= 1
5 |
6 | 主要方法:
7 | 1. 二分法
8 | 2. 等分法(四等分)
9 | 3.
10 |
11 | '''
12 |
13 | import numpy as np
14 | import pdb
15 |
16 | #二分法
17 | #x* = 0.63
18 | def f1(x):
19 | f = 8 * (x ** 3) - 2 * (x ** 2) - 7 * x + 3.0
20 | return f
21 |
22 | # def_field2 = [0, 10.0]
23 | # for fibonacci_search
24 | # x* = 2.98
25 | def f2(x):
26 | f = x ** 2 - 6 * x + 2
27 | return f
28 |
29 | # def_field3 = [1, 2.0]
30 | # for golden_section_search
31 | # x* = 1.609
32 | def f3(x):
33 | f = np.exp(x) - 5*x
34 | return f
35 |
36 | #二分
37 | def bisection_search(f, def_field, epsilon):
38 | half_epsilon = epsilon / 2.0
39 | lf = list(def_field)
40 | f_vals = [f(lf[0]), f(lf[1])]
41 |
42 | while True:
43 | mid_x = (lf[1] + lf[0])/2.0
44 | mid_esp = [mid_x - half_epsilon, mid_x + half_epsilon]
45 | tmp_f = [f(mid_esp[0]), f(mid_esp[1])]
46 | if tmp_f[0] > tmp_f[1]:
47 | f_vals[0] = tmp_f[0]
48 | lf[0] = mid_esp[0]
49 | else:
50 | f_vals[1] = tmp_f[1]
51 | lf[1] = mid_esp[1]
52 |
53 | if (lf[1] - lf[0]) <= epsilon * 1.000001:
54 | x_star = (lf[0] + lf[1]) / 2
55 | return x_star, f(x_star)
56 |
57 |
58 | #等分搜索法
59 | #四等分
60 | #取中间3个点的最小值点。该点两边两个点为新的区间,最小值落在该区间里
61 | #如果有两个相同的最小值,则最小值就在这两个最小值点之间。算法适用
62 | def equal_interval_search(f, def_field, epsilon):
63 | steps = np.linspace(def_field[0], def_field[1], 5)
64 | values = np.apply_along_axis(f, 0, steps)
65 |
66 | while True:
67 | min_id = values[1:4].argmin() + 1
68 | steps = np.linspace(steps[min_id-1], steps[min_id+1], 5)
69 | values = np.array([values[min_id-1], f(steps[1]), values[min_id], f(steps[3]), values[min_id+1]])
70 |
71 | if (steps[4] - steps[0]) < epsilon * 0.1:
72 | return steps[2], values[2]
73 |
74 | return None
75 |
76 |
77 | fib_const_list = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, \
78 | 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, \
79 | 75025, 121393, 196418, 317811, 514229, 832040, 1346269, \
80 | 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, \
81 | 39088169, 63245986, 102334155, 165580141,267914296, \
82 | 433494437, 701408733, 1134903170, 1836311903, 2971215073, \
83 | 4807526976, 7778742049]
84 |
85 | #fibonacci搜索
86 | def fibonacci_search(f, def_field, epsilon):
87 | fib_values = np.array(fib_const_list)
88 | num = (def_field[1] - def_field[0]) / epsilon
89 | fidx_n = np.where(fib_values >= num)[0][0]
90 |
91 | step = (def_field[1] - def_field[0]) * fib_values[fidx_n - 1] * 1.0/fib_values[fidx_n]
92 | points = [def_field[0], def_field[1] - step, def_field[0] + step, def_field[1]]
93 | f_values = np.apply_along_axis(f, 0, points)
94 |
95 | for i in range(fidx_n-1, 1, -1):
96 | step = points[2] - points[1]
97 | if f_values[1] < f_values[2]:
98 | min_point = 1
99 | points[3] = points[2]
100 | f_values[3] = f_values[2]
101 | points[2] = points[1]
102 | f_values[2] = f_values[1]
103 | points[1] = points[0] + step
104 | f_values[1] = f(points[1])
105 | else:
106 | min_point = 2
107 | points[0] = points[1]
108 | f_values[0] = f_values[1]
109 | points[1] = points[2]
110 | f_values[1] = f_values[2]
111 | points[2] = points[3] - step
112 | f_values[2] = f(points[2])
113 |
114 | dst_p = (points[2] + points[1]) / 2
115 |
116 | return (dst_p, f(dst_p))
117 |
118 | #黄金分割法
119 | def golden_section_search(f, def_field, epsilon, args=None):
120 | golden_const = 0.618
121 |
122 | step = (def_field[1] - def_field[0]) * 0.618
123 | points = [def_field[0], def_field[1] - step, def_field[0] + step, def_field[1]]
124 | f_values = np.zeros(len(points))
125 | for i in range(len(points)):
126 | f_values[i] = f(points[i])
127 |
128 | while (points[2] - points[1]) > epsilon:
129 | #step = (points[2] - points[1])
130 | step = (points[2] - points[0]) * (1 - golden_const)
131 | if f_values[1] < f_values[2]:
132 | min_point = 1
133 | points[3] = points[2]
134 | f_values[3] = f_values[2]
135 | points[2] = points[1]
136 | f_values[2] = f_values[1]
137 | points[1] = points[0] + step
138 | f_values[1] = f(points[1])
139 | else:
140 | min_point = 2
141 | points[0] = points[1]
142 | f_values[0] = f_values[1]
143 | points[1] = points[2]
144 | f_values[1] = f_values[2]
145 | points[2] = points[3] - step
146 | f_values[2] = f(points[2])
147 |
148 | dst_p = (points[2] + points[1]) / 2
149 |
150 | return dst_p, f(dst_p)
151 |
152 | def f4():
153 | # f = 4*x1**2 + 2*x1*x2 + 2 * x2**2 + x1 + x2
154 | # normal: f = c + b.T * x + 1/2 * x.T * A * x
155 | # dst_x = np.array([-1.0/14, -3.0/14])
156 | c = 2
157 | b = np.matrix('1;1')
158 | A = np.matrix('8,2;2,4')
159 |
160 | return c,b,A
161 |
162 | def quad_value(f, x):
163 | c,b,A = f
164 | return c + b.T * x + x.T * A * x
165 |
166 |
167 |
168 | #非精确搜索
169 | #多项式拟合法, 求出a,b,c三点
170 | #x0: 起始点,v: 梯度下降方向(负梯度单位方向)
171 | def quadratic_polynomial(f, x0, v):
172 | a = 0.
173 | fa = f(x0)
174 | b=1.
175 | fb = f(x0 + b*v)
176 | c = 0.
177 | fc = 0.
178 |
179 | st = 1.
180 |
181 | if fa > fb:
182 | #c: the first point f(c) > f(b)
183 | # lambda = 2, 4,8,...,a,b,c
184 | while True:
185 | c = b + st
186 | fc = f(x0 + c*v)
187 | if fc >= fb:
188 | break
189 |
190 | fa = fb
191 | fb = fc
192 | a = b
193 | b = c
194 | st *= 2.
195 | else:
196 | #a=0,b=lambda, c=2*lambda, lambda=1/2, 1/4, ...
197 | c = b
198 | fc = fb
199 | while True:
200 | st *= 1./2
201 | b = a * st
202 |
203 | fb = f(x0 + b*v)
204 | if fb < fc:
205 | break
206 | fc = fb
207 | c = b
208 |
209 | #pdb.set_trace()
210 | lambd = 1/2.0 * (fa*(c**2 - b**2) + fb*(a**2 - c**2) + fc*(b**2 - a**2))
211 | lambd /= (fa*(c - b) + fb*(a - c) + fc*(b - a))
212 |
213 | f_lamb = f(lambd)
214 | if f_lamb < fb:
215 | return lambd
216 |
217 | return b
218 |
219 |
220 | from newton_method import newton_search_for_quad
221 |
222 | if __name__ == "__main__":
223 | # x* = 2.98
224 | def_field2 = [0, 10.0]
225 | fr = fibonacci_search(f2, def_field2, 0.05)
226 | print "fr: expect 2.98; real:", fr
227 |
228 | # x* = 1.609
229 | def_field3 = [1, 2.0]
230 | gr = golden_section_search(f3, def_field3, 0.01)
231 | print "gr: expect 1.609; real:", gr
232 |
233 | def_fd = [0.,1.]
234 | br = bisection_search(f1, def_fd, 0.1)
235 |
236 | print "br:", br
237 | er = equal_interval_search(f1, def_fd, 0.1)
238 | print "er:", er
239 |
240 | x0 = np.matrix('0.0;0.0')
241 | rst = newton_search_for_quad(f4, x0, 0.01)
242 | dst_x = np.array([-1.0/14, -3.0/14])
243 |
244 | print "expect x:0.63"
245 | print "nr: dst:", dst_x
246 | print "nr: rst:", rst
247 |
248 | # x* = 0.63
249 | #rst: 0.52
250 | rst = quadratic_polynomial(f1, 0, 1)
251 | print "quadratic_polynomial, expect x: 0.63, 0.52; real:", rst
252 |
253 | # x* = 0.609
254 | #rst: 0.531
255 | rst = quadratic_polynomial(f3, 1, 1)
256 | print "quadratic_polynomial, expect x: 0.609, 0.531; real:", rst
257 |
--------------------------------------------------------------------------------
/newton_method.py:
--------------------------------------------------------------------------------
1 | #encoding: utf8
2 |
3 | import numpy as np
4 | import pdb
5 |
6 | '''
7 | 求二次型函数在指定点的值
8 | 其梯度值为: Gx + b
9 | '''
10 | def f_value(f, x):
11 | c,b,A = f()
12 | val = c + b.T * x + 1./2.*x.T * A * x
13 |
14 | return np.sum(val)
15 |
16 | def f4():
17 | # f = 4*x1**2 + 2*x1*x2 + 2 * x2**2 + x1 + x2
18 | # normal: f = c + b.T * x + 1/2 * x.T * A * x
19 | # dst_x = np.array([-1.0/14, -3.0/14])
20 | c = 2
21 | b = np.matrix('1;1')
22 | A = np.matrix('8,2;2,4')
23 |
24 | return c,b,A
25 |
26 | '''
27 | 牛顿法、拟牛顿法用在非线性优化上
28 | 不过因为牛顿法、拟牛顿法在非线性优化上用得比较广,单独写一个文件
29 | 包括: 直接求解、牛顿法、dsp、bfgs, l-bfgs(稍晚点实现)
30 | '''
31 |
32 | '''
33 | 对正定型二次型函数,直接求解最优点
34 | Gx + b = 0
35 | x = -G.inv * b
36 | Ax = -b, 求解x
37 | '''
38 | def solve_direct(f):
39 | c,b,A = f()
40 |
41 | eigs = np.linalg.eigvals(A)
42 | less_zero = np.take(eigs, np.where(eigs < 0))
43 | if less_zero.shape[1] > 0:
44 | #非正定,不能求解。
45 | return None
46 |
47 | #x_star = -1. * np.linalg.inv(A) * b
48 | # 不用求逆. 用求解线性方程线的方法求解: x=A.inv * b ==> Ax = -b
49 | x_star = np.linalg.solve(A, -b)
50 |
51 | return x_star, f_value(f, x_star)
52 |
53 |
54 | '''
55 | 牛顿法. 要求f有二阶导数
56 | 牛顿法非区间搜索法。只要给到起始点,就可以下降(对凸函数是这样子)
57 |
58 | 算法大致如下:
59 | 对原函数二阶tayler展开,然后用二次多项式近似:
60 | f(x) = f(x0) + g(x)(x - x0) + 1/2(x-x0).T * H * (x - x0) + O((x-x0).T(x-x0))
61 | f_sim(x) = f(x0) + g(x)(x - x0) + 1/2(x-x0).T * H * (x - x0)
62 | f_sim'(x) = g(x) + H(x-x0) = 0
63 | x = x0 - H.inv * g(x)
64 |
65 | dk = -H.inv * f', 称为牛顿方向
66 |
67 | 牛顿法求解,计算量比较大,还要求H正定
68 | H为海森矩阵, 要求是非奇异的
69 |
70 | 阻尼牛顿法
71 | 由于牛顿法并不能保证收敛.于是改为沿dk方向进行一维搜索求,xk+1 = xk + lambk * dk,
72 |
73 | 实际上并不直接求H.inv, 而改为解线性方程:
74 | H*dk = f'
75 |
76 | '''
77 | def newton_search_for_quad(f, x0, epsilon):
78 | c,b,A = f()
79 | x_n_1 = x0
80 | x = x0
81 | f_n_1 = c + b.T * x + 1/2.0 * x.T * A * x
82 |
83 | while True:
84 | H_f = A
85 | deriv_f = A * x_n_1 + b
86 |
87 | x_n = x_n_1 - np.dot(np.linalg.inv(H_f), deriv_f)
88 | x = x_n
89 | f_n = c + b.T * x + 1/2.0 * x.T * A * x
90 |
91 | if np.abs(f_n - f_n_1) < epsilon:
92 | return x_n, f_n
93 |
94 | x_n_1 = x_n
95 | f_n_1 = f_n
96 |
97 | return None
98 |
99 | '''
100 | 拟牛顿条件
101 | 如上式:
102 | ~=: sim_eq
103 | f(x)在x_k+1点处理展开
104 | f(x) ~= f(x_k1) + f'(x_k1)(x-xk) + 1/2*(x_k1-x).T * H * (x_k1-x)
105 | 两边同时作用一个梯度算子,则:
106 | f'(x) ~= f'(x_k1) + H(x_k1)*(x_k1 - x)
107 | 记 x=x_k
108 | f'(x_k) ~= f'(x_k1) + H(x_k1) * (x_k1 - x_k)
109 | f'(x_k1) - f'(x_k) ~= H(x_k1) * (x_k1 - x_k)
110 |
111 | 记 B=H, D=H.inv, y_k = f'(x_k1) - f'(x_k), s_k = (x_k1 - x_k),则
112 | y_k ~= H*s_k
113 | s_k ~= H.inv * y_k
114 | 上述即为拟牛顿条件,
115 | 对 H(k+1)或H(k+1).inv做近似
116 | y_k = B(k+1)*s_k
117 | 或:
118 | s_k = D(k+1) * y_k
119 |
120 | 即用梯度近似计算H或H的逆.
121 | '''
122 |
123 | '''
124 | Dk_1=Dk + deltaD
125 | dletaD = alpha * u * u.T + beta * v * v.T
126 | u = sk
127 | v = Dk*yk
128 | alpha = 1/(u.T * yk)
129 | beta = -1/(v.T * yk)
130 | deltaD = 1/(sk.T * yk) * sk * sk.T - 1/((Dk * yk).T * yk) * (Dk * yk).T * (Dk * yk)
131 | '''
132 |
133 | from line_search import golden_section_search
134 |
135 | def DFP(f, f_deriv, x0, epsilon):
136 | x_k = x0
137 | D_k = np.eye(x0.shape[0])
138 | g_k = f_deriv(x0)
139 |
140 | while True:
141 | def_field = [-100., 100.]
142 | d = -1. * D_k * g_k
143 | k,min_fk = golden_section_search(lambda k:f(x_k + k*d), def_field, epsilon)
144 | x_k1 = x_k + k*d
145 | g_k1 = f_deriv(x_k1)
146 |
147 | #pdb.set_trace()
148 | g_sum = np.sum((g_k1.T * g_k1))
149 | g_sum = np.sqrt(g_sum)
150 |
151 | if g_sum < epsilon:
152 | break
153 |
154 | sk = x_k1 - x_k
155 | yk = g_k1 - g_k
156 |
157 | v = sk
158 | u = D_k * yk
159 |
160 | alpha = 1. / (v.T * yk)[0,0]
161 | beta = -1. / (u.T * yk)[0,0]
162 |
163 | delta_D = alpha * v * v.T + beta * u * u.T
164 |
165 | #下一个点的D
166 | D_k = D_k + delta_D
167 | x_k = x_k1
168 | g_k = g_k1
169 |
170 | return x_k1, f(x_k1)
171 |
172 | '''
173 | BFGS: 近似求H, 这样在计算下降方向时,需要求H的逆。求逆时会有优化方法. 而不是直接调用
174 | 方法1: 求解线性方程组:dk = -Bk * gk ---> Bk * dk = -gk,
175 | 方法2: B_k1.inv = (I - sk*yk.T/(yk.T *sk) Bk.inv (I - yk*sk.T/(yk.T*sk)) + sk*sk.T/(yk.T*sk)
176 | np.linalg.inv(B_k)
177 | '''
178 | def BFGS_simple(f, f_deriv, x0, epsilon):
179 | x_k = x0
180 | B_k = np.eye(x0.shape[0])
181 | g_k = f_deriv(x0)
182 |
183 | while True:
184 | def_field = [-100., 100.]
185 | #D_k = np.linalg.inv(B_k)
186 | #d = -1. * D_k * g_k
187 | d = np.linalg.solve(B_k, g_k)
188 |
189 | k,min_fk = golden_section_search(lambda k:f(x_k + k*d), def_field, epsilon)
190 | x_k1 = x_k + k*d
191 | g_k1 = f_deriv(x_k1)
192 |
193 | #pdb.set_trace()
194 | g_sum = np.sum((g_k1.T * g_k1))
195 | g_sum = np.sqrt(g_sum)
196 |
197 | if g_sum < epsilon:
198 | break
199 |
200 | sk = x_k1 - x_k
201 | yk = g_k1 - g_k
202 |
203 | v = yk
204 | u = B_k * sk
205 |
206 | alpha = 1. / (v.T * sk)[0,0]
207 | beta = -1. / (u.T * sk)[0,0]
208 |
209 | delta_B = alpha * v * v.T + beta * u * u.T
210 |
211 | #下一个点的D
212 | B_k = B_k + delta_B
213 | x_k = x_k1
214 | g_k = g_k1
215 |
216 | return x_k1, f(x_k1)
217 |
218 | '''
219 | 方法2: B_k1.inv = (I - sk*yk.T/(yk.T *sk) Bk.inv (I - yk*sk.T/(yk.T*sk)) + sk*sk.T/(yk.T*sk)
220 | 该实现方法和原版算法书上的介绍不太一致,需要对一下
221 | '''
222 | def BFGS(f, f_deriv, x0, epsilon):
223 | x_k = x0
224 | B_k = np.eye(x0.shape[0])
225 | D_k = np.linalg.inv(B_k)
226 | g_k = f_deriv(x0)
227 |
228 | while True:
229 | def_field = [-100., 100.]
230 | d = -1. * D_k * g_k
231 |
232 | k,min_fk = golden_section_search(lambda k:f(x_k + k*d), def_field, epsilon)
233 | sk = k * d
234 | x_k1 = x_k + sk
235 | g_k1 = f_deriv(x_k1)
236 | yk = g_k1 - g_k
237 |
238 | g_sum = np.sqrt(np.sum((g_k1.T * g_k1)))
239 | if g_sum < epsilon:
240 | break
241 |
242 | #下一个点的D
243 | I = np.eye(x0.shape[0])
244 | rho = 1./(yk.T * sk)[0,0]
245 | V = I - sk * yk.T * rho
246 | #D_k1 = (I - rho * sk * yk.T) * D_k * (I - rho* yk*sk.T) + rho * sk * sk.T
247 | D_k1 = V * D_k * V.T + rho * sk * sk.T #与上式等价
248 |
249 | D_k = D_k1
250 | x_k = x_k1
251 | g_k = g_k1
252 |
253 | return x_k1, f(x_k1)
254 |
255 | '''
256 |
257 | '''
258 | def L_BFGS(f, f_deriv, x0, epsilon):
259 | return None
260 |
261 | if __name__ == "__main__":
262 | x0 = np.matrix('0.0;0.0')
263 | esplison = 0.005
264 | c,b,A = f4()
265 | dst_x = np.matrix(np.array([-1.0/14, -3.0/14]))
266 | print "\nnr: dst:", dst_x
267 |
268 | dr = solve_direct(f4)
269 | print "\ndr: rst:", dr
270 |
271 | rst = newton_search_for_quad(f4, x0, 0.01)
272 |
273 | print "\nnr: rst:", rst
274 |
275 | f = lambda x:f_value(f4, x)
276 | f_deriv = lambda x:(A*x + b)
277 |
278 | dfp_rs = DFP(f, f_deriv, x0, esplison)
279 | print "\ndfp rst:", dfp_rs
280 |
281 | bfgs_rs = BFGS_simple(f, f_deriv, x0, esplison)
282 | print "\nbfgs rst:", bfgs_rs
283 |
284 | bfgs2_rs = BFGS(f, f_deriv, x0, esplison)
285 | print "\nbfgs rst:", bfgs2_rs
286 |
287 |
--------------------------------------------------------------------------------
/optimal_grandient.py:
--------------------------------------------------------------------------------
1 | #encoding: utf8
2 |
3 | import numpy as np
4 | import pdb
5 |
6 | '''
7 | 1. 直接求解:对二次函数,直接求解
8 | x_star = A.inv * b
9 |
10 | 2. 最优梯度下降法
11 | 2.1. 给定起始点
12 | 2.2. 找到该方向的梯度
13 | 2.3. 沿负梯度方向,找到该方向最优值 (lambda 参数。)
14 | a. 一维搜索方法
15 | b. 对二次函数,如果A为正定矩阵,可以直接求解
16 | f = c + b.T * x + 1/2 * x.T * A * x
17 |
18 | 对纯二次函数:
19 | f = 1/2 * x.T * Q * x
20 | 其k_star = -1 * x'QQx/x'QQQx
21 |
22 | df(xp + kAxp)/dk = A(xp + kAxp)*Axp = AxpAxp + kAAxpAxp
23 | = xp'AAxp + kxp'AAAxp
24 |
25 | '''
26 |
27 | '''
28 | f = 1/2(x1 * x1 + 2x2 * x2)
29 | x0 = [4,4]
30 | k* = -5/9
31 | x1 = (16/9, -4/9)
32 | '''
33 | def f1():
34 | c = 0
35 | b = np.matrix('0;0')
36 | A = np.matrix('1, 0; 0,2')
37 |
38 | return (c, b, A)
39 |
40 | from newton_method import f_value
41 | from newton_method import solve_direct
42 |
43 | def optimal_grandient_for_f1(f,x0, epsilon):
44 | c,b,A = f()
45 | x = x0
46 | AA = A * A
47 | AAA = A * A * A
48 | f_deriv = A * x
49 | while True:
50 | #对纯二次函数,直接求解k的值,而不是用线性搜索方法。推导公式见上
51 | k = -1. * (x.T * AA * x) / (x.T * AAA * x)
52 | k = np.sum(k)
53 | x_n = x + k * f_deriv
54 |
55 | f_deriv_n = A * x_n
56 |
57 | if np.sum(np.abs(f_deriv_n)) < epsilon:
58 | break
59 |
60 | x = x_n
61 | f_deriv = f_deriv_n
62 |
63 | return x,f_value(f, x)
64 |
65 |
66 | from line_search import newton_search_for_quad
67 | from newton_method import newton_search_for_quad
68 | from newton_method import solve_direct
69 |
70 | if __name__ == "__main__":
71 | rs = solve_direct(f1)
72 | print "\nsolve_direct:", rs
73 |
74 | x0 = np.matrix('4;4')
75 | ors = optimal_grandient_for_f1(f1, x0, 0.01)
76 | print "\noptimal_grandient_for_f1:", ors
77 |
78 | nrs = newton_search_for_quad(f1, x0, 0.01)
79 | print "\nnewton_search_for_quad(f1):", nrs
80 |
--------------------------------------------------------------------------------
/sample/sample_by_cvxopt.py:
--------------------------------------------------------------------------------
1 | from cvxopt import matrix, solvers
2 |
3 | import pdb
4 |
5 | '''
6 | min 2*x1 + x2
7 | s.t -x1 + x2 <= 1
8 | x1 + x2 >= 2
9 | x1 - 2 x2 <= 4
10 | x2 >= 0
11 | '''
12 |
13 | c = matrix([2.0, 1.0])
14 | b = matrix([1.0, -2.0, 0.0, 4.0])
15 | A = matrix([[-1.0, -1.0, 0.0, 1.0],[1.0, -1.0, 1.0, -2.0]])
16 |
17 | sol = solvers.lp(c,A,b)
18 |
19 | print sol['x']
20 |
--------------------------------------------------------------------------------
/sample/sample_by_scipy.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from scipy.optimize import linprog
3 | import pdb
4 |
5 | '''
6 | c = [-1., 4]
7 | minimize c.T * x
8 | s.t. [-3., 1].T * x <= 6
9 | [1,2.].T * x <= 4
10 | x[1] + x[2] = 10
11 | x[1] >= -3
12 | '''
13 | c = np.array([-1, 4])
14 | A = np.array([[-3, 1], [1,2]])
15 | b = np.array([6,4])
16 |
17 | A_eq = np.array([[1,1]])
18 | b_eq = 6
19 | x0_bounds = (None, None)
20 | x1_bounds = (-3, None)
21 |
22 | res = linprog(c, A_ub=A, b_ub=b, A_eq=A_eq, b_eq=b_eq, bounds=(x0_bounds, x1_bounds),options={"disp": True})
23 |
24 | pdb.set_trace()
25 | print res
26 |
--------------------------------------------------------------------------------
/uncostrained_optimize.py:
--------------------------------------------------------------------------------
1 | #encoding: utf8
2 |
3 | import numpy as np
4 | import pdb
5 |
6 | '''
7 | 1. 直接求解:对二次函数,直接求解
8 | x_star = A.inv * b
9 |
10 | 2. 最优梯度下降法
11 | 2.1. 给定起始点
12 | 2.2. 找到该方向的梯度
13 | 2.3. 沿负梯度方向,找到该方向最优值 (lambda 参数。)
14 | a. 一维搜索方法
15 | b. 对二次函数,如果A为正定矩阵,可以直接求解
16 | f = c + b.T * x + 1/2 * x.T * A * x
17 |
18 | 对纯二次函数:
19 | f = 1/2 * x.T * Q * x
20 | 其k_star = -1 * x'QQx/x'QQQx
21 |
22 | df(xp + kAxp)/dk = A(xp + kAxp)*Axp = AxpAxp + kAAxpAxp
23 | = xp'AAxp + kxp'AAAxp
24 |
25 | 3. 共轭梯度方向下降法
26 | 共轭方向法,开始用来求解 Ax=b方程组. 而在求解二次函数最优解时,其梯度函数为 Ax+b=0的解,
27 | 于是也用这个方法来求解二次函数的最优解。其它非二次的凸函数,则可以用二次函数来近似
28 |
29 | (x, Ay) = 0, 称x,y为共轭向量 (正交是共轭的特殊形式,A为单位阵)
30 | 3.1 找到n个共轭向量 ui
31 | 3.2 沿共轭向量方向进行最优搜索, 得到每次搜索的最优步长列表 lbi
32 | 3.3 得到最优点:
33 | x_star = x0 + sum(lbi * ui)
34 |
35 | 对非二次函数,可以这样逼近最优解
36 | '''
37 |
38 |
39 | '''
40 | f = 1/2(x1 * x1 + 2x2 * x2)
41 | x0 = [4,4]
42 | k* = -5/9
43 | x1 = (16/9, -4/9)
44 | '''
45 | def f1():
46 | c = 0
47 | b = np.matrix('0;0')
48 | A = np.matrix('1, 0; 0,2')
49 |
50 | return (c, b, A)
51 |
52 | from newton_method import f_value
53 | from newton_method import solve_direct
54 |
55 | def optimal_grandient_for_f1(f,x0, epsilon):
56 | c,b,A = f()
57 | x = x0
58 | AA = A * A
59 | AAA = A * A * A
60 | f_deriv = A * x
61 | while True:
62 | #对纯二次函数,直接求解k的值,而不是用线性搜索方法。推导公式见上
63 | k = -1. * (x.T * AA * x) / (x.T * AAA * x)
64 | k = np.sum(k)
65 | x_n = x + k * f_deriv
66 |
67 | f_deriv_n = A * x_n
68 |
69 | if np.sum(np.abs(f_deriv_n)) < epsilon:
70 | break
71 |
72 | x = x_n
73 | f_deriv = f_deriv_n
74 |
75 | return x,f_value(f, x)
76 |
77 |
78 | '''
79 | f = 1 + x1 -x2 + x1**2 + 2x2**2
80 | u1 = [1,0]
81 | u2 = [0,1]
82 | x0 = [0,0]
83 |
84 | lambda1 = -1/2, lambda2 = 1/4
85 | '''
86 | def f2():
87 | c = 1.
88 | b = np.matrix('1.; -1.')
89 | A = np.matrix('2, 0; 0,4')
90 |
91 | return c, b, A
92 |
93 | from line_search import golden_section_search
94 |
95 | '''
96 | 共轭方向法:
97 | 1. 使用黄金搜索找lambda
98 | '''
99 | def conj_grandient_method_for_f2():
100 | u1 = np.matrix('1.;0.')
101 | u2 = np.matrix('0.;1.')
102 | x0 = np.matrix('0.;0.')
103 |
104 | def_field = [-1,1]
105 | esplison = 0.005
106 | c,b, A = f2()
107 |
108 | '''
109 | 线性搜索用的一次函数, 参数为k
110 | f = f(xi + kui)
111 | '''
112 | k1 = golden_section_search(lambda k:f_value(f2, x0 + k*u1), def_field, esplison)
113 | x1 = x0 + k1[0] * x0
114 |
115 | k2 = golden_section_search(lambda k:f_value(f2, x1 + k*u2), def_field, esplison)
116 | x2 = x0 + k1[0] * u1 + k2[0] * u2
117 |
118 | return x2, f_value(f2, x2)
119 |
120 | '''
121 | 共轭方向法:
122 | 2. 对二次函数直接求解lambda
123 | lamb_i+1 = (u(i+1), Ax0 + b) / (u(i+1), Au(u+1))
124 | '''
125 | def conj_grandient_method_for_f2_direct():
126 | u1 = np.matrix('1.;0.')
127 | u2 = np.matrix('0.;1.')
128 | x0 = np.matrix('0.;0.')
129 |
130 | c,b, A = f2()
131 | lamb1 = -1. * (u1.T * (A*x0 + b))/(u1.T * (A*u1))
132 | lamb2 = -1. * (u2.T * (A*x0 + b))/(u2.T * (A*u2))
133 |
134 | x2 = x0 + lamb1[0,0] * u1 + lamb2[0,0] * u2
135 |
136 | return x2, f_value(f2, x2)
137 |
138 |
139 | def conj_f3():
140 | A = np.matrix('1,1;1,2')
141 | c = 0
142 | b = np.matrix('0;0')
143 |
144 | return c,b,A
145 |
146 | '''
147 | Fletcher_Reeves_conj
148 | 关于v0,v1,...vn共轭,最好推导一次
149 | x0, x1, ...
150 | v0, v1,....
151 | xi = xi_1 + lambda * vi_1
152 | vi = -gi + ||gi||/||gi_1|| * vi_1
153 | 沿共轭方向求极小值:
154 | gi, 第xi点的梯度值
155 |
156 | example:
157 |
158 | f=1/2x.TAx
159 | A=[1,1;1,2]
160 | x0 = [10.;-5.]
161 | v0 = g0
162 |
163 | lamb0 = 0.75
164 | x1 = [1.25,-3.75]
165 | v1=[-4.36,3.75]
166 | lamb1 = 1.34
167 |
168 | x2 = [0.4, 0.01]
169 | 再迭代一次?
170 | 讲义上似乎算错了。有空算一下
171 | '''
172 | def Fletcher_Reeves_conj():
173 | f = conj_f3
174 | c,b,A = f()
175 | x0 = np.matrix('10.;-5.')
176 | g0 = A * x0 + b
177 | v0 = -g0
178 |
179 | #pdb.set_trace()
180 | lamb0, f_x0 = golden_section_search(lambda k:f_value(f, x0 + k*v0), [0,2], 0.001)
181 |
182 | x1 = x0 + lamb0 * v0
183 | g1 = A*x1 + b
184 | v1 = -g1 + np.dot(g1.T, g1)[0,0]/np.dot(g0.T, g0)[0,0] * v0
185 | lamb1, f_x1 = golden_section_search(lambda k:f_value(f, x1 + k*v1), [0,2], 0.001)
186 | x2 = x1 + lamb1 * v1
187 | return x2, f_x1
188 |
189 | '''
190 | '''
191 | def f_powell():
192 | c = 0
193 | b = np.matrix('0.;0.')
194 | A = np.matrix('2,0;0,4')
195 |
196 | return c,b,A
197 |
198 | '''
199 | 相比于fletcher算法,powell算不需要计算梯度。但需要有n个线性无关的初始向量,
200 |
201 | 1. 每一步的过程
202 | xi = xi_1 + lambda * vi_1, lambda线性搜索后的最小值
203 | vi --> vi_1
204 | xn-x0 --> vn
205 | u0 = xn-x0
206 | x0 = xn + lambda * (xn - x0), 为新的x0值
207 |
208 | 算法本身所需要的步数,并不比fletcher小
209 |
210 | 2. 重复上述步骤,直到收敛
211 | 留意下收敛条件:如 ||xi - xi_1|| < espilon, |fi - fi_1| < esplilon, max_steps
212 |
213 |
214 | 这种产生共轭向量的方法,并没有推导,只有实现。最好去推一下
215 |
216 |
217 | 这两个算法,和DFP/BFGS关系密切。具体参考 newton算法相关内容
218 |
219 | '''
220 | def powell_conj():
221 | '''
222 | u1=[-11.14, -24.46]
223 | u2=[-1.8, -0.28]
224 | '''
225 | x0 = np.matrix('20.;20.')
226 | #v1,v2线性无关
227 | v = np.matrix('1.,1.;-1.,1.')
228 |
229 | c,b,A = f_powell()
230 | u = np.matrix('0.,0.;0.,0.')
231 | lamb = np.matrix('0.;0.')
232 |
233 | id = 0
234 | total = 0
235 | while total < 3:
236 | k,min_fk = golden_section_search(lambda k:f_value(f_powell, x0 + k*v[:,0]), [-100., 100], 0.001)
237 | x1 = x0 + k * v[:,0]
238 |
239 | k,min_fk = golden_section_search(lambda k:f_value(f_powell, x1 + k*v[:,1]), [-100., 100], 0.001)
240 | x2 = x1 + k * v[:,1]
241 |
242 | #找到u向量
243 | u[:,id] = x2 - x0
244 | k,min_fk = golden_section_search(lambda k:f_value(f_powell, x2 + k*u[:, id]), [-100., 100], 0.001)
245 |
246 | x0 = x2 + k*u[:,id]
247 | v[:,0] = v[:,1]
248 | v[:,1] = u[:,id]
249 |
250 | id = (id+1) % len(lamb)
251 | total += 1
252 |
253 | conj = u[:,0].T * A * u[:,1]
254 | #print "conj: ", conj
255 |
256 | x_star = x0
257 |
258 | return x_star, f_value(f_powell, x_star)
259 |
260 | from line_search import newton_search_for_quad
261 |
262 | from newton_method import newton_search_for_quad
263 |
264 | if __name__ == "__main__":
265 | rs = solve_direct(f1)
266 | print "\nsolve_direct:", rs
267 |
268 | x0 = np.matrix('4;4')
269 | ors = optimal_grandient_for_f1(f1, x0, 0.01)
270 | print "\noptimal_grandient_for_f1:", ors
271 |
272 | nrs = newton_search_for_quad(f1, x0, 0.01)
273 | print "\nnewton_search_for_quad(f1):", nrs
274 |
275 | conj_rst = conj_grandient_method_for_f2()
276 | print "\nconj_grandient_method_for_f2:", conj_rst
277 |
278 | conj_rst = conj_grandient_method_for_f2_direct()
279 |
280 | print "\nconj_grandient_method_for_f2_direct:", conj_rst
281 |
282 | nrs = newton_search_for_quad(f2, x0, 0.01)
283 | print "\nnewton_search_for_quad(f2):", nrs
284 |
285 | rs = solve_direct(f2)
286 | print "\nsolve_direct:", rs
287 |
288 | frs = Fletcher_Reeves_conj()
289 | print "Fletcher_Reeves_conj.\nexpect: x2 = [0.4, 0.01]. \nReal:", frs
290 |
291 | frs = powell_conj()
292 | print "Fletcher_Reeves_conj.\nexpect: x2 = [0.4, 0.01]. \nReal:", frs
293 |
--------------------------------------------------------------------------------