├── .DS_Store
├── README.md
├── SRGCNN_demo.ipynb
└── airbnb
└── regression_db.geojson
/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dizhu-gis/SRGCNN/c17fc33c64b2929cf09c5f2cec57efa5f8c28a1f/.DS_Store
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # SRGCNN
2 | Spatial regression graph convolutional neural networks (SRGCNNs) as a deep learning paradigm that is capable of handling a wide range of geographical tasks
3 | where multivariate geographic data needs spatial regression modeling and prediction.
4 |
5 | Spatial regression analysis conducted in the manner of graph convolutional neural network.
6 | Two versions of SRGCNN model are provided in the initial post: a) global regression model (SRGCNN) and b) geographically weighted regression model (SRGCNN-GW)
7 |
8 | Details can be found in the original paper:
9 | [Zhu, D., Liu, Y., Yao, X., & Fischer, M. M. (2021). Spatial regression graph convolutional neural networks: A deep learning paradigm for spatial multivariate distributions. GeoInformatica, 1-32.](https://link.springer.com/article/10.1007/s10707-021-00454-x).
10 |
11 |
12 |
13 |
14 |
15 |
--------------------------------------------------------------------------------