├── GUI_picture
├── 1.gif
├── 2.gif
└── window.jpg
├── LICENSE
├── MouseLabel.py
├── README.md
├── __init__.py
├── __pycache__
├── MouseLabel.cpython-38.pyc
├── MouseLabel.cpython-39.pyc
├── __init__.cpython-38.pyc
├── apprcc.cpython-39.pyc
├── apprcc_rc.cpython-38.pyc
├── apprcc_rc.cpython-39.pyc
├── detector.cpython-38.pyc
├── detector.cpython-39.pyc
├── main.cpython-38.pyc
├── main0.cpython-38.pyc
├── mywin.cpython-38.pyc
├── show_license_plate.cpython-38.pyc
├── tracker.cpython-38.pyc
├── tracker.cpython-39.pyc
├── tracker.cpython-39.pyc.1645821883424
├── win.cpython-38.pyc
└── win.cpython-39.pyc
├── apprcc.qrc
├── apprcc_rc.py
├── config
├── fold.json
├── ip.json
└── setting.json
├── cover.jpg
├── data
├── Argoverse.yaml
├── Argoverse_HD.yaml
├── GlobalWheat2020.yaml
├── Objects365.yaml
├── SKU-110K.yaml
├── VOC.yaml
├── VisDrone.yaml
├── coco.yaml
├── coco128.yaml
├── hyps
│ ├── hyp.Objects365.yaml
│ ├── hyp.VOC.yaml
│ ├── hyp.finetune.yaml
│ ├── hyp.finetune_objects365.yaml
│ ├── hyp.scratch-high.yaml
│ ├── hyp.scratch-low.yaml
│ ├── hyp.scratch-med.yaml
│ ├── hyp.scratch-p6.yaml
│ └── hyp.scratch.yaml
├── icon
│ ├── 停止.png
│ ├── 图片1.png
│ ├── 图片2.png
│ ├── 开始.png
│ ├── 打开.png
│ ├── 摄像头关.png
│ ├── 摄像头开.png
│ ├── 数据探索.png
│ ├── 模.png
│ ├── 模型中心.png
│ └── 赞停.png
├── images
│ ├── bus.jpg
│ ├── zidane.jpg
│ └── zidane.png
├── scripts
│ ├── download_weights.sh
│ ├── get_coco.sh
│ └── get_coco128.sh
└── xView.yaml
├── detect.py
├── detector.py
├── dialog
├── __pycache__
│ ├── rtsp_dialog.cpython-38.pyc
│ ├── rtsp_dialog.cpython-39.pyc
│ └── rtsp_win.cpython-38.pyc
├── rtsp_dialog.py
├── rtsp_dialog.ui
└── rtsp_win.py
├── export.py
├── hubconf.py
├── icon
├── SYSU.jpg
├── SYSU0.png
├── background.jpg
├── button-off.png
├── button-on.png
├── doctor.png
├── evil.png
├── 下拉_白色.png
├── 中大.jpg
├── 停止.png
├── 关闭.png
├── 圆.png
├── 实时视频流解析.png
├── 打开.png
├── 摄像头关.png
├── 摄像头开.png
├── 数据探索.png
├── 暂停.png
├── 最大化.png
├── 最小化.png
├── 正方形.png
├── 笑脸.png
├── 箭头_列表展开.png
├── 箭头_列表收起.png
├── 终止.png
├── 背景.png
├── 表情.png
├── 赞停.png
├── 运行.png
├── 还原.png
└── 鸭.jpg
├── images
└── bus.jpg
├── main.py
├── main0.py
├── models
├── __init__.py
├── __pycache__
│ ├── __init__.cpython-38.pyc
│ ├── __init__.cpython-39.pyc
│ ├── common.cpython-38.pyc
│ ├── common.cpython-39.pyc
│ ├── experimental.cpython-38.pyc
│ ├── experimental.cpython-39.pyc
│ ├── yolo.cpython-38.pyc
│ └── yolo.cpython-39.pyc
├── common.py
├── experimental.py
├── export.py
├── hub
│ ├── anchors.yaml
│ ├── yolov3-spp.yaml
│ ├── yolov3-tiny.yaml
│ ├── yolov3.yaml
│ ├── yolov5-bifpn.yaml
│ ├── yolov5-fpn.yaml
│ ├── yolov5-p2.yaml
│ ├── yolov5-p34.yaml
│ ├── yolov5-p6.yaml
│ ├── yolov5-p7.yaml
│ ├── yolov5-panet.yaml
│ ├── yolov5l6.yaml
│ ├── yolov5m6.yaml
│ ├── yolov5n6.yaml
│ ├── yolov5s-ghost.yaml
│ ├── yolov5s-transformer.yaml
│ ├── yolov5s6.yaml
│ └── yolov5x6.yaml
├── tf.py
├── yolo.py
├── yolov5l.yaml
├── yolov5m.yaml
├── yolov5n.yaml
├── yolov5s.yaml
└── yolov5x.yaml
├── models0
├── __init__.py
├── __pycache__
│ ├── __init__.cpython-38.pyc
│ ├── __init__.cpython-39.pyc
│ ├── common.cpython-38.pyc
│ ├── common.cpython-39.pyc
│ ├── experimental.cpython-38.pyc
│ ├── experimental.cpython-39.pyc
│ ├── yolo.cpython-38.pyc
│ └── yolo.cpython-39.pyc
├── common.py
├── experimental.py
├── export.py
├── yolo.py
├── yolov5l.yaml
├── yolov5m.yaml
├── yolov5s.yaml
└── yolov5x.yaml
├── mymain.py
├── mywin.py
├── mywin.ui
├── platech.ttf
├── pt
└── yolov5s.pt
├── push.sh
├── requirements.txt
├── show_license_plate.py
├── te.py
├── tracker.py
├── utils0
├── __init__.py
├── __pycache__
│ ├── __init__.cpython-38.pyc
│ ├── __init__.cpython-39.pyc
│ ├── autoanchor.cpython-38.pyc
│ ├── autoanchor.cpython-39.pyc
│ ├── datasets.cpython-38.pyc
│ ├── datasets.cpython-39.pyc
│ ├── general.cpython-38.pyc
│ ├── general.cpython-39.pyc
│ ├── google_utils.cpython-38.pyc
│ ├── google_utils.cpython-39.pyc
│ ├── metrics.cpython-38.pyc
│ ├── metrics.cpython-39.pyc
│ ├── plots.cpython-38.pyc
│ ├── plots.cpython-39.pyc
│ ├── torch_utils.cpython-38.pyc
│ └── torch_utils.cpython-39.pyc
├── activations.py
├── autoanchor.py
├── aws
│ ├── __init__.py
│ ├── mime.sh
│ ├── resume.py
│ └── userdata.sh
├── datasets.py
├── general.py
├── google_app_engine
│ ├── Dockerfile
│ ├── additional_requirements.txt
│ └── app.yaml
├── google_utils.py
├── loss.py
├── metrics.py
├── plots.py
├── torch_utils.py
└── wandb_logging
│ ├── __init__.py
│ ├── log_dataset.py
│ └── wandb_utils.py
├── val.py
├── win.py
└── win.ui
/GUI_picture/1.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/GUI_picture/1.gif
--------------------------------------------------------------------------------
/GUI_picture/2.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/GUI_picture/2.gif
--------------------------------------------------------------------------------
/GUI_picture/window.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/GUI_picture/window.jpg
--------------------------------------------------------------------------------
/MouseLabel.py:
--------------------------------------------------------------------------------
1 | from PyQt5.QtWidgets import QLabel
2 | from PyQt5.QtCore import pyqtSignal
3 |
4 |
5 | class LabelMouse(QLabel):
6 | double_clicked = pyqtSignal()
7 |
8 | # 鼠标双击事件
9 | def mouseDoubleClickEvent(self, event):
10 | self.double_clicked.emit()
11 |
12 | def mouseMoveEvent(self):
13 | """
14 | 当鼠标划过标签label2时触发事件
15 | :return:
16 | """
17 | print('当鼠标划过标签label2时触发事件')
18 |
19 |
20 | class Label_click_Mouse(QLabel):
21 | clicked = pyqtSignal()
22 |
23 | # 鼠标点击事件
24 | def mousePressEvent(self, event):
25 | self.clicked.emit()
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # 中山大学深度学习大作业--yolov5+lpr3+deepsort交通识别检测系统
2 |
3 | 本次大作业,我们小组完成了基于[Yolov5](https://github.com/ultralytics/yolov5) 的车型、行人、车牌检测,基于[lpr3](https://github.com/szad670401/HyperLPR)的车牌号码识别以及基于[deepsort](https://github.com/dyh/unbox_yolov5_deepsort_counting)的车流量计数任务,并将所有功能集成为一体,完成了一个交互式的交通识别检测GUI系统。
4 |
5 | 
6 |
7 | 
8 |
9 | 
10 |
11 | ## Our Idea
12 |
13 | 我们首先选用了速度更快的Yolov5作为基模型,完成10种车型,行人的目标检测任务。在此基础上,我们使用了封装好的lpr3库完成了车牌的检测任务,并以deepsort为基础完成了4种类别的目标流量计数。最后我们将所有的功能封装进了该GUI系统中,以用于车辆实时计数。
14 |
15 | ## Installation
16 |
17 | **!!!注意!!!** 由于本项目过大,在此仅展示核心代码,请点击[此链接](https://drive.google.com/file/d/1U3-Bq-sWQ0DcAHOL3HjDh71Z-cffA2OS/view?usp=sharing)手动下载完整的项目
18 |
19 | 环境配置:
20 | ```
21 | cd traffic-detect-GUI
22 | pip install -r requirements.txt
23 | ```
24 |
25 | 若要在本地电脑运行GUI系统,还需要安装[QT Designer](https://blog.csdn.net/qq_32892383/article/details/108867482)。请依据连接中给出的参考下载步骤安装。
26 |
27 | ## How To Run?
28 |
29 | ### Quick Start
30 |
31 | 运行我们的GUI界面:
32 | ```
33 | python mymain.py
34 | ```
35 | 如果视频较长或视频中车流量较慢,在不使用GPU加速的情况下检测需要一定时间,待界面左下角提示 **Ready!** 时,便可点击 **开始** 查看结果。
36 |
37 | ### Pre-trained Models
38 |
39 | 您可以在[此处](https://drive.google.com/file/d/1qMw3ofK_nJauSrvDFTfoThprqvynLgB7/view?usp=sharing)下载我们的yolov5车型+行人识别预训练模型。
40 |
--------------------------------------------------------------------------------
/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/__init__.py
--------------------------------------------------------------------------------
/__pycache__/MouseLabel.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/__pycache__/MouseLabel.cpython-38.pyc
--------------------------------------------------------------------------------
/__pycache__/MouseLabel.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/__pycache__/MouseLabel.cpython-39.pyc
--------------------------------------------------------------------------------
/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/__pycache__/apprcc.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/__pycache__/apprcc.cpython-39.pyc
--------------------------------------------------------------------------------
/__pycache__/apprcc_rc.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/__pycache__/apprcc_rc.cpython-38.pyc
--------------------------------------------------------------------------------
/__pycache__/apprcc_rc.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/__pycache__/apprcc_rc.cpython-39.pyc
--------------------------------------------------------------------------------
/__pycache__/detector.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/__pycache__/detector.cpython-38.pyc
--------------------------------------------------------------------------------
/__pycache__/detector.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/__pycache__/detector.cpython-39.pyc
--------------------------------------------------------------------------------
/__pycache__/main.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/__pycache__/main.cpython-38.pyc
--------------------------------------------------------------------------------
/__pycache__/main0.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/__pycache__/main0.cpython-38.pyc
--------------------------------------------------------------------------------
/__pycache__/mywin.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/__pycache__/mywin.cpython-38.pyc
--------------------------------------------------------------------------------
/__pycache__/show_license_plate.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/__pycache__/show_license_plate.cpython-38.pyc
--------------------------------------------------------------------------------
/__pycache__/tracker.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/__pycache__/tracker.cpython-38.pyc
--------------------------------------------------------------------------------
/__pycache__/tracker.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/__pycache__/tracker.cpython-39.pyc
--------------------------------------------------------------------------------
/__pycache__/tracker.cpython-39.pyc.1645821883424:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/__pycache__/tracker.cpython-39.pyc.1645821883424
--------------------------------------------------------------------------------
/__pycache__/win.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/__pycache__/win.cpython-38.pyc
--------------------------------------------------------------------------------
/__pycache__/win.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/__pycache__/win.cpython-39.pyc
--------------------------------------------------------------------------------
/apprcc.qrc:
--------------------------------------------------------------------------------
1 |
2 |
3 | icon/SYSU0.png
4 | icon/SYSU.jpg
5 | icon/中大.jpg
6 | icon/button-off.png
7 | icon/button-on.png
8 | icon/暂停.png
9 | icon/笑脸.png
10 | icon/终止.png
11 | icon/下拉_白色.png
12 | icon/正方形.png
13 | icon/实时视频流解析.png
14 | icon/运行.png
15 | icon/还原.png
16 | icon/doctor.png
17 | icon/圆.png
18 | icon/evil.png
19 | icon/关闭.png
20 | icon/箭头_列表收起.png
21 | icon/箭头_列表展开.png
22 | icon/最小化.png
23 | icon/background.jpg
24 | icon/背景.png
25 | icon/打开.png
26 | icon/摄像头关.png
27 | icon/摄像头开.png
28 | icon/数据探索.png
29 | icon/停止.png
30 | icon/赞停.png
31 |
32 |
33 |
--------------------------------------------------------------------------------
/config/fold.json:
--------------------------------------------------------------------------------
1 | {
2 | "open_fold": "E:/images"
3 | }
--------------------------------------------------------------------------------
/config/ip.json:
--------------------------------------------------------------------------------
1 | {
2 | "ip": "rtsp://admin:admin888@192.168.1.67:555"
3 | }
4 |
--------------------------------------------------------------------------------
/config/setting.json:
--------------------------------------------------------------------------------
1 | {
2 | "iou": 0.32,
3 | "conf": 0.2,
4 | "rate": 6,
5 | "check": 2,
6 | "savecheck": 0
7 | }
--------------------------------------------------------------------------------
/cover.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/cover.jpg
--------------------------------------------------------------------------------
/data/Argoverse.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
3 | # Example usage: python train.py --data Argoverse.yaml
4 | # parent
5 | # ├── yolov5
6 | # └── datasets
7 | # └── Argoverse ← downloads here
8 |
9 |
10 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11 | path: ../datasets/Argoverse # dataset root dir
12 | train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
13 | val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
14 | test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
15 |
16 | # Classes
17 | nc: 8 # number of classes
18 | names: ['person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck', 'traffic_light', 'stop_sign'] # class names
19 |
20 |
21 | # Download script/URL (optional) ---------------------------------------------------------------------------------------
22 | download: |
23 | import json
24 |
25 | from tqdm import tqdm
26 | from utils.general import download, Path
27 |
28 |
29 | def argoverse2yolo(set):
30 | labels = {}
31 | a = json.load(open(set, "rb"))
32 | for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
33 | img_id = annot['image_id']
34 | img_name = a['images'][img_id]['name']
35 | img_label_name = img_name[:-3] + "txt"
36 |
37 | cls = annot['category_id'] # instance class id
38 | x_center, y_center, width, height = annot['bbox']
39 | x_center = (x_center + width / 2) / 1920.0 # offset and scale
40 | y_center = (y_center + height / 2) / 1200.0 # offset and scale
41 | width /= 1920.0 # scale
42 | height /= 1200.0 # scale
43 |
44 | img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
45 | if not img_dir.exists():
46 | img_dir.mkdir(parents=True, exist_ok=True)
47 |
48 | k = str(img_dir / img_label_name)
49 | if k not in labels:
50 | labels[k] = []
51 | labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
52 |
53 | for k in labels:
54 | with open(k, "w") as f:
55 | f.writelines(labels[k])
56 |
57 |
58 | # Download
59 | dir = Path('../datasets/Argoverse') # dataset root dir
60 | urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
61 | download(urls, dir=dir, delete=False)
62 |
63 | # Convert
64 | annotations_dir = 'Argoverse-HD/annotations/'
65 | (dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images'
66 | for d in "train.json", "val.json":
67 | argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels
68 |
--------------------------------------------------------------------------------
/data/Argoverse_HD.yaml:
--------------------------------------------------------------------------------
1 | # Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/
2 | # Train command: python train.py --data Argoverse_HD.yaml
3 | # Default dataset location is next to YOLOv5:
4 | # /parent
5 | # /datasets/Argoverse
6 | # /yolov5
7 |
8 |
9 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
10 | path: ../datasets/Argoverse # dataset root dir
11 | train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
12 | val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
13 | test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
14 |
15 | # Classes
16 | nc: 8 # number of classes
17 | names: [ 'person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck', 'traffic_light', 'stop_sign' ] # class names
18 |
19 |
20 | # Download script/URL (optional) ---------------------------------------------------------------------------------------
21 | download: |
22 | import json
23 |
24 | from tqdm import tqdm
25 | from utils.general import download, Path
26 |
27 |
28 | def argoverse2yolo(set):
29 | labels = {}
30 | a = json.load(open(set, "rb"))
31 | for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
32 | img_id = annot['image_id']
33 | img_name = a['images'][img_id]['name']
34 | img_label_name = img_name[:-3] + "txt"
35 |
36 | cls = annot['category_id'] # instance class id
37 | x_center, y_center, width, height = annot['bbox']
38 | x_center = (x_center + width / 2) / 1920.0 # offset and scale
39 | y_center = (y_center + height / 2) / 1200.0 # offset and scale
40 | width /= 1920.0 # scale
41 | height /= 1200.0 # scale
42 |
43 | img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
44 | if not img_dir.exists():
45 | img_dir.mkdir(parents=True, exist_ok=True)
46 |
47 | k = str(img_dir / img_label_name)
48 | if k not in labels:
49 | labels[k] = []
50 | labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
51 |
52 | for k in labels:
53 | with open(k, "w") as f:
54 | f.writelines(labels[k])
55 |
56 |
57 | # Download
58 | dir = Path('../datasets/Argoverse') # dataset root dir
59 | urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
60 | download(urls, dir=dir, delete=False)
61 |
62 | # Convert
63 | annotations_dir = 'Argoverse-HD/annotations/'
64 | (dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images'
65 | for d in "train.json", "val.json":
66 | argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels
67 |
--------------------------------------------------------------------------------
/data/GlobalWheat2020.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
3 | # Example usage: python train.py --data GlobalWheat2020.yaml
4 | # parent
5 | # ├── yolov5
6 | # └── datasets
7 | # └── GlobalWheat2020 ← downloads here
8 |
9 |
10 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11 | path: ../datasets/GlobalWheat2020 # dataset root dir
12 | train: # train images (relative to 'path') 3422 images
13 | - images/arvalis_1
14 | - images/arvalis_2
15 | - images/arvalis_3
16 | - images/ethz_1
17 | - images/rres_1
18 | - images/inrae_1
19 | - images/usask_1
20 | val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
21 | - images/ethz_1
22 | test: # test images (optional) 1276 images
23 | - images/utokyo_1
24 | - images/utokyo_2
25 | - images/nau_1
26 | - images/uq_1
27 |
28 | # Classes
29 | nc: 1 # number of classes
30 | names: ['wheat_head'] # class names
31 |
32 |
33 | # Download script/URL (optional) ---------------------------------------------------------------------------------------
34 | download: |
35 | from utils.general import download, Path
36 |
37 | # Download
38 | dir = Path(yaml['path']) # dataset root dir
39 | urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
40 | 'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
41 | download(urls, dir=dir)
42 |
43 | # Make Directories
44 | for p in 'annotations', 'images', 'labels':
45 | (dir / p).mkdir(parents=True, exist_ok=True)
46 |
47 | # Move
48 | for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
49 | 'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
50 | (dir / p).rename(dir / 'images' / p) # move to /images
51 | f = (dir / p).with_suffix('.json') # json file
52 | if f.exists():
53 | f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations
54 |
--------------------------------------------------------------------------------
/data/Objects365.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # Objects365 dataset https://www.objects365.org/ by Megvii
3 | # Example usage: python train.py --data Objects365.yaml
4 | # parent
5 | # ├── yolov5
6 | # └── datasets
7 | # └── Objects365 ← downloads here
8 |
9 |
10 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11 | path: ../datasets/Objects365 # dataset root dir
12 | train: images/train # train images (relative to 'path') 1742289 images
13 | val: images/val # val images (relative to 'path') 80000 images
14 | test: # test images (optional)
15 |
16 | # Classes
17 | nc: 365 # number of classes
18 | names: ['Person', 'Sneakers', 'Chair', 'Other Shoes', 'Hat', 'Car', 'Lamp', 'Glasses', 'Bottle', 'Desk', 'Cup',
19 | 'Street Lights', 'Cabinet/shelf', 'Handbag/Satchel', 'Bracelet', 'Plate', 'Picture/Frame', 'Helmet', 'Book',
20 | 'Gloves', 'Storage box', 'Boat', 'Leather Shoes', 'Flower', 'Bench', 'Potted Plant', 'Bowl/Basin', 'Flag',
21 | 'Pillow', 'Boots', 'Vase', 'Microphone', 'Necklace', 'Ring', 'SUV', 'Wine Glass', 'Belt', 'Monitor/TV',
22 | 'Backpack', 'Umbrella', 'Traffic Light', 'Speaker', 'Watch', 'Tie', 'Trash bin Can', 'Slippers', 'Bicycle',
23 | 'Stool', 'Barrel/bucket', 'Van', 'Couch', 'Sandals', 'Basket', 'Drum', 'Pen/Pencil', 'Bus', 'Wild Bird',
24 | 'High Heels', 'Motorcycle', 'Guitar', 'Carpet', 'Cell Phone', 'Bread', 'Camera', 'Canned', 'Truck',
25 | 'Traffic cone', 'Cymbal', 'Lifesaver', 'Towel', 'Stuffed Toy', 'Candle', 'Sailboat', 'Laptop', 'Awning',
26 | 'Bed', 'Faucet', 'Tent', 'Horse', 'Mirror', 'Power outlet', 'Sink', 'Apple', 'Air Conditioner', 'Knife',
27 | 'Hockey Stick', 'Paddle', 'Pickup Truck', 'Fork', 'Traffic Sign', 'Balloon', 'Tripod', 'Dog', 'Spoon', 'Clock',
28 | 'Pot', 'Cow', 'Cake', 'Dinning Table', 'Sheep', 'Hanger', 'Blackboard/Whiteboard', 'Napkin', 'Other Fish',
29 | 'Orange/Tangerine', 'Toiletry', 'Keyboard', 'Tomato', 'Lantern', 'Machinery Vehicle', 'Fan',
30 | 'Green Vegetables', 'Banana', 'Baseball Glove', 'Airplane', 'Mouse', 'Train', 'Pumpkin', 'Soccer', 'Skiboard',
31 | 'Luggage', 'Nightstand', 'Tea pot', 'Telephone', 'Trolley', 'Head Phone', 'Sports Car', 'Stop Sign',
32 | 'Dessert', 'Scooter', 'Stroller', 'Crane', 'Remote', 'Refrigerator', 'Oven', 'Lemon', 'Duck', 'Baseball Bat',
33 | 'Surveillance Camera', 'Cat', 'Jug', 'Broccoli', 'Piano', 'Pizza', 'Elephant', 'Skateboard', 'Surfboard',
34 | 'Gun', 'Skating and Skiing shoes', 'Gas stove', 'Donut', 'Bow Tie', 'Carrot', 'Toilet', 'Kite', 'Strawberry',
35 | 'Other Balls', 'Shovel', 'Pepper', 'Computer Box', 'Toilet Paper', 'Cleaning Products', 'Chopsticks',
36 | 'Microwave', 'Pigeon', 'Baseball', 'Cutting/chopping Board', 'Coffee Table', 'Side Table', 'Scissors',
37 | 'Marker', 'Pie', 'Ladder', 'Snowboard', 'Cookies', 'Radiator', 'Fire Hydrant', 'Basketball', 'Zebra', 'Grape',
38 | 'Giraffe', 'Potato', 'Sausage', 'Tricycle', 'Violin', 'Egg', 'Fire Extinguisher', 'Candy', 'Fire Truck',
39 | 'Billiards', 'Converter', 'Bathtub', 'Wheelchair', 'Golf Club', 'Briefcase', 'Cucumber', 'Cigar/Cigarette',
40 | 'Paint Brush', 'Pear', 'Heavy Truck', 'Hamburger', 'Extractor', 'Extension Cord', 'Tong', 'Tennis Racket',
41 | 'Folder', 'American Football', 'earphone', 'Mask', 'Kettle', 'Tennis', 'Ship', 'Swing', 'Coffee Machine',
42 | 'Slide', 'Carriage', 'Onion', 'Green beans', 'Projector', 'Frisbee', 'Washing Machine/Drying Machine',
43 | 'Chicken', 'Printer', 'Watermelon', 'Saxophone', 'Tissue', 'Toothbrush', 'Ice cream', 'Hot-air balloon',
44 | 'Cello', 'French Fries', 'Scale', 'Trophy', 'Cabbage', 'Hot dog', 'Blender', 'Peach', 'Rice', 'Wallet/Purse',
45 | 'Volleyball', 'Deer', 'Goose', 'Tape', 'Tablet', 'Cosmetics', 'Trumpet', 'Pineapple', 'Golf Ball',
46 | 'Ambulance', 'Parking meter', 'Mango', 'Key', 'Hurdle', 'Fishing Rod', 'Medal', 'Flute', 'Brush', 'Penguin',
47 | 'Megaphone', 'Corn', 'Lettuce', 'Garlic', 'Swan', 'Helicopter', 'Green Onion', 'Sandwich', 'Nuts',
48 | 'Speed Limit Sign', 'Induction Cooker', 'Broom', 'Trombone', 'Plum', 'Rickshaw', 'Goldfish', 'Kiwi fruit',
49 | 'Router/modem', 'Poker Card', 'Toaster', 'Shrimp', 'Sushi', 'Cheese', 'Notepaper', 'Cherry', 'Pliers', 'CD',
50 | 'Pasta', 'Hammer', 'Cue', 'Avocado', 'Hamimelon', 'Flask', 'Mushroom', 'Screwdriver', 'Soap', 'Recorder',
51 | 'Bear', 'Eggplant', 'Board Eraser', 'Coconut', 'Tape Measure/Ruler', 'Pig', 'Showerhead', 'Globe', 'Chips',
52 | 'Steak', 'Crosswalk Sign', 'Stapler', 'Camel', 'Formula 1', 'Pomegranate', 'Dishwasher', 'Crab',
53 | 'Hoverboard', 'Meat ball', 'Rice Cooker', 'Tuba', 'Calculator', 'Papaya', 'Antelope', 'Parrot', 'Seal',
54 | 'Butterfly', 'Dumbbell', 'Donkey', 'Lion', 'Urinal', 'Dolphin', 'Electric Drill', 'Hair Dryer', 'Egg tart',
55 | 'Jellyfish', 'Treadmill', 'Lighter', 'Grapefruit', 'Game board', 'Mop', 'Radish', 'Baozi', 'Target', 'French',
56 | 'Spring Rolls', 'Monkey', 'Rabbit', 'Pencil Case', 'Yak', 'Red Cabbage', 'Binoculars', 'Asparagus', 'Barbell',
57 | 'Scallop', 'Noddles', 'Comb', 'Dumpling', 'Oyster', 'Table Tennis paddle', 'Cosmetics Brush/Eyeliner Pencil',
58 | 'Chainsaw', 'Eraser', 'Lobster', 'Durian', 'Okra', 'Lipstick', 'Cosmetics Mirror', 'Curling', 'Table Tennis']
59 |
60 |
61 | # Download script/URL (optional) ---------------------------------------------------------------------------------------
62 | download: |
63 | from pycocotools.coco import COCO
64 | from tqdm import tqdm
65 |
66 | from utils.general import Path, download, np, xyxy2xywhn
67 |
68 | # Make Directories
69 | dir = Path(yaml['path']) # dataset root dir
70 | for p in 'images', 'labels':
71 | (dir / p).mkdir(parents=True, exist_ok=True)
72 | for q in 'train', 'val':
73 | (dir / p / q).mkdir(parents=True, exist_ok=True)
74 |
75 | # Train, Val Splits
76 | for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
77 | print(f"Processing {split} in {patches} patches ...")
78 | images, labels = dir / 'images' / split, dir / 'labels' / split
79 |
80 | # Download
81 | url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
82 | if split == 'train':
83 | download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir, delete=False) # annotations json
84 | download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, delete=False, threads=8)
85 | elif split == 'val':
86 | download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir, delete=False) # annotations json
87 | download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, delete=False, threads=8)
88 | download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, delete=False, threads=8)
89 |
90 | # Move
91 | for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
92 | f.rename(images / f.name) # move to /images/{split}
93 |
94 | # Labels
95 | coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
96 | names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
97 | for cid, cat in enumerate(names):
98 | catIds = coco.getCatIds(catNms=[cat])
99 | imgIds = coco.getImgIds(catIds=catIds)
100 | for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
101 | width, height = im["width"], im["height"]
102 | path = Path(im["file_name"]) # image filename
103 | try:
104 | with open(labels / path.with_suffix('.txt').name, 'a') as file:
105 | annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
106 | for a in coco.loadAnns(annIds):
107 | x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
108 | xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
109 | x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
110 | file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
111 | except Exception as e:
112 | print(e)
113 |
--------------------------------------------------------------------------------
/data/SKU-110K.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
3 | # Example usage: python train.py --data SKU-110K.yaml
4 | # parent
5 | # ├── yolov5
6 | # └── datasets
7 | # └── SKU-110K ← downloads here
8 |
9 |
10 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11 | path: ../datasets/SKU-110K # dataset root dir
12 | train: train.txt # train images (relative to 'path') 8219 images
13 | val: val.txt # val images (relative to 'path') 588 images
14 | test: test.txt # test images (optional) 2936 images
15 |
16 | # Classes
17 | nc: 1 # number of classes
18 | names: ['object'] # class names
19 |
20 |
21 | # Download script/URL (optional) ---------------------------------------------------------------------------------------
22 | download: |
23 | import shutil
24 | from tqdm import tqdm
25 | from utils.general import np, pd, Path, download, xyxy2xywh
26 |
27 | # Download
28 | dir = Path(yaml['path']) # dataset root dir
29 | parent = Path(dir.parent) # download dir
30 | urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
31 | download(urls, dir=parent, delete=False)
32 |
33 | # Rename directories
34 | if dir.exists():
35 | shutil.rmtree(dir)
36 | (parent / 'SKU110K_fixed').rename(dir) # rename dir
37 | (dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir
38 |
39 | # Convert labels
40 | names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names
41 | for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
42 | x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations
43 | images, unique_images = x[:, 0], np.unique(x[:, 0])
44 | with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
45 | f.writelines(f'./images/{s}\n' for s in unique_images)
46 | for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
47 | cls = 0 # single-class dataset
48 | with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
49 | for r in x[images == im]:
50 | w, h = r[6], r[7] # image width, height
51 | xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
52 | f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label
53 |
--------------------------------------------------------------------------------
/data/VOC.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
3 | # Example usage: python train.py --data VOC.yaml
4 | # parent
5 | # ├── yolov5
6 | # └── datasets
7 | # └── VOC ← downloads here
8 |
9 |
10 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11 | path: ../datasets/VOC
12 | train: # train images (relative to 'path') 16551 images
13 | - images/train2012
14 | - images/train2007
15 | - images/val2012
16 | - images/val2007
17 | val: # val images (relative to 'path') 4952 images
18 | - images/test2007
19 | test: # test images (optional)
20 | - images/test2007
21 |
22 | # Classes
23 | nc: 20 # number of classes
24 | names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
25 | 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] # class names
26 |
27 |
28 | # Download script/URL (optional) ---------------------------------------------------------------------------------------
29 | download: |
30 | import xml.etree.ElementTree as ET
31 |
32 | from tqdm import tqdm
33 | from utils.general import download, Path
34 |
35 |
36 | def convert_label(path, lb_path, year, image_id):
37 | def convert_box(size, box):
38 | dw, dh = 1. / size[0], 1. / size[1]
39 | x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
40 | return x * dw, y * dh, w * dw, h * dh
41 |
42 | in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
43 | out_file = open(lb_path, 'w')
44 | tree = ET.parse(in_file)
45 | root = tree.getroot()
46 | size = root.find('size')
47 | w = int(size.find('width').text)
48 | h = int(size.find('height').text)
49 |
50 | for obj in root.iter('object'):
51 | cls = obj.find('name').text
52 | if cls in yaml['names'] and not int(obj.find('difficult').text) == 1:
53 | xmlbox = obj.find('bndbox')
54 | bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
55 | cls_id = yaml['names'].index(cls) # class id
56 | out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
57 |
58 |
59 | # Download
60 | dir = Path(yaml['path']) # dataset root dir
61 | url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
62 | urls = [url + 'VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
63 | url + 'VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
64 | url + 'VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
65 | download(urls, dir=dir / 'images', delete=False)
66 |
67 | # Convert
68 | path = dir / f'images/VOCdevkit'
69 | for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
70 | imgs_path = dir / 'images' / f'{image_set}{year}'
71 | lbs_path = dir / 'labels' / f'{image_set}{year}'
72 | imgs_path.mkdir(exist_ok=True, parents=True)
73 | lbs_path.mkdir(exist_ok=True, parents=True)
74 |
75 | image_ids = open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt').read().strip().split()
76 | for id in tqdm(image_ids, desc=f'{image_set}{year}'):
77 | f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path
78 | lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path
79 | f.rename(imgs_path / f.name) # move image
80 | convert_label(path, lb_path, year, id) # convert labels to YOLO format
81 |
--------------------------------------------------------------------------------
/data/VisDrone.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
3 | # Example usage: python train.py --data VisDrone.yaml
4 | # parent
5 | # ├── yolov5
6 | # └── datasets
7 | # └── VisDrone ← downloads here
8 |
9 |
10 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11 | path: ../datasets/VisDrone # dataset root dir
12 | train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
13 | val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
14 | test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
15 |
16 | # Classes
17 | nc: 10 # number of classes
18 | names: ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']
19 |
20 |
21 | # Download script/URL (optional) ---------------------------------------------------------------------------------------
22 | download: |
23 | from utils.general import download, os, Path
24 |
25 | def visdrone2yolo(dir):
26 | from PIL import Image
27 | from tqdm import tqdm
28 |
29 | def convert_box(size, box):
30 | # Convert VisDrone box to YOLO xywh box
31 | dw = 1. / size[0]
32 | dh = 1. / size[1]
33 | return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
34 |
35 | (dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory
36 | pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
37 | for f in pbar:
38 | img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
39 | lines = []
40 | with open(f, 'r') as file: # read annotation.txt
41 | for row in [x.split(',') for x in file.read().strip().splitlines()]:
42 | if row[4] == '0': # VisDrone 'ignored regions' class 0
43 | continue
44 | cls = int(row[5]) - 1
45 | box = convert_box(img_size, tuple(map(int, row[:4])))
46 | lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
47 | with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
48 | fl.writelines(lines) # write label.txt
49 |
50 |
51 | # Download
52 | dir = Path(yaml['path']) # dataset root dir
53 | urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
54 | 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
55 | 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
56 | 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
57 | download(urls, dir=dir)
58 |
59 | # Convert
60 | for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
61 | visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels
62 |
--------------------------------------------------------------------------------
/data/coco.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # COCO 2017 dataset http://cocodataset.org by Microsoft
3 | # Example usage: python train.py --data coco.yaml
4 | # parent
5 | # ├── yolov5
6 | # └── datasets
7 | # └── coco ← downloads here
8 |
9 |
10 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11 | path: ../datasets/coco # dataset root dir
12 | train: train2017.txt # train images (relative to 'path') 118287 images
13 | val: val2017.txt # val images (relative to 'path') 5000 images
14 | test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
15 |
16 | # Classes
17 | nc: 80 # number of classes
18 | names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
19 | 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
20 | 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
21 | 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
22 | 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
23 | 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
24 | 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
25 | 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
26 | 'hair drier', 'toothbrush'] # class names
27 |
28 |
29 | # Download script/URL (optional)
30 | download: |
31 | from utils.general import download, Path
32 |
33 | # Download labels
34 | segments = False # segment or box labels
35 | dir = Path(yaml['path']) # dataset root dir
36 | url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
37 | urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
38 | download(urls, dir=dir.parent)
39 |
40 | # Download data
41 | urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
42 | 'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
43 | 'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
44 | download(urls, dir=dir / 'images', threads=3)
45 |
--------------------------------------------------------------------------------
/data/coco128.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
3 | # Example usage: python train.py --data coco128.yaml
4 | # parent
5 | # ├── yolov5
6 | # └── datasets
7 | # └── coco128 ← downloads here
8 |
9 |
10 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11 | path: ../datasets/coco128 # dataset root dir
12 | train: images/train2017 # train images (relative to 'path') 128 images
13 | val: images/train2017 # val images (relative to 'path') 128 images
14 | test: # test images (optional)
15 |
16 | # Classes
17 | nc: 80 # number of classes
18 | names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
19 | 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
20 | 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
21 | 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
22 | 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
23 | 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
24 | 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
25 | 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
26 | 'hair drier', 'toothbrush'] # class names
27 |
28 |
29 | # Download script/URL (optional)
30 | download: https://ultralytics.com/assets/coco128.zip
31 |
--------------------------------------------------------------------------------
/data/hyps/hyp.Objects365.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # Hyperparameters for Objects365 training
3 | # python train.py --weights yolov5m.pt --data Objects365.yaml --evolve
4 | # See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
5 |
6 | lr0: 0.00258
7 | lrf: 0.17
8 | momentum: 0.779
9 | weight_decay: 0.00058
10 | warmup_epochs: 1.33
11 | warmup_momentum: 0.86
12 | warmup_bias_lr: 0.0711
13 | box: 0.0539
14 | cls: 0.299
15 | cls_pw: 0.825
16 | obj: 0.632
17 | obj_pw: 1.0
18 | iou_t: 0.2
19 | anchor_t: 3.44
20 | anchors: 3.2
21 | fl_gamma: 0.0
22 | hsv_h: 0.0188
23 | hsv_s: 0.704
24 | hsv_v: 0.36
25 | degrees: 0.0
26 | translate: 0.0902
27 | scale: 0.491
28 | shear: 0.0
29 | perspective: 0.0
30 | flipud: 0.0
31 | fliplr: 0.5
32 | mosaic: 1.0
33 | mixup: 0.0
34 | copy_paste: 0.0
35 |
--------------------------------------------------------------------------------
/data/hyps/hyp.VOC.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # Hyperparameters for VOC training
3 | # python train.py --batch 128 --weights yolov5m6.pt --data VOC.yaml --epochs 50 --img 512 --hyp hyp.scratch-med.yaml --evolve
4 | # See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
5 |
6 | # YOLOv5 Hyperparameter Evolution Results
7 | # Best generation: 319
8 | # Last generation: 434
9 | # metrics/precision, metrics/recall, metrics/mAP_0.5, metrics/mAP_0.5:0.95, val/box_loss, val/obj_loss, val/cls_loss
10 | # 0.86236, 0.86184, 0.91274, 0.72647, 0.0077056, 0.0042449, 0.0013846
11 |
12 | lr0: 0.0033
13 | lrf: 0.15184
14 | momentum: 0.74747
15 | weight_decay: 0.00025
16 | warmup_epochs: 3.4278
17 | warmup_momentum: 0.59032
18 | warmup_bias_lr: 0.18742
19 | box: 0.02
20 | cls: 0.21563
21 | cls_pw: 0.5
22 | obj: 0.50843
23 | obj_pw: 0.6729
24 | iou_t: 0.2
25 | anchor_t: 3.4172
26 | fl_gamma: 0.0
27 | hsv_h: 0.01032
28 | hsv_s: 0.5562
29 | hsv_v: 0.28255
30 | degrees: 0.0
31 | translate: 0.04575
32 | scale: 0.73711
33 | shear: 0.0
34 | perspective: 0.0
35 | flipud: 0.0
36 | fliplr: 0.5
37 | mosaic: 0.87158
38 | mixup: 0.04294
39 | copy_paste: 0.0
40 | anchors: 3.3556
41 |
--------------------------------------------------------------------------------
/data/hyps/hyp.finetune.yaml:
--------------------------------------------------------------------------------
1 | # Hyperparameters for VOC finetuning
2 | # python train.py --batch 64 --weights yolov5m.pt --data VOC.yaml --img 512 --epochs 50
3 | # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
4 |
5 |
6 | # Hyperparameter Evolution Results
7 | # Generations: 306
8 | # P R mAP.5 mAP.5:.95 box obj cls
9 | # Metrics: 0.6 0.936 0.896 0.684 0.0115 0.00805 0.00146
10 |
11 | lr0: 0.0032
12 | lrf: 0.12
13 | momentum: 0.843
14 | weight_decay: 0.00036
15 | warmup_epochs: 2.0
16 | warmup_momentum: 0.5
17 | warmup_bias_lr: 0.05
18 | box: 0.0296
19 | cls: 0.243
20 | cls_pw: 0.631
21 | obj: 0.301
22 | obj_pw: 0.911
23 | iou_t: 0.2
24 | anchor_t: 2.91
25 | # anchors: 3.63
26 | fl_gamma: 0.0
27 | hsv_h: 0.0138
28 | hsv_s: 0.664
29 | hsv_v: 0.464
30 | degrees: 0.373
31 | translate: 0.245
32 | scale: 0.898
33 | shear: 0.602
34 | perspective: 0.0
35 | flipud: 0.00856
36 | fliplr: 0.5
37 | mosaic: 1.0
38 | mixup: 0.243
39 | copy_paste: 0.0
40 |
--------------------------------------------------------------------------------
/data/hyps/hyp.finetune_objects365.yaml:
--------------------------------------------------------------------------------
1 | lr0: 0.00258
2 | lrf: 0.17
3 | momentum: 0.779
4 | weight_decay: 0.00058
5 | warmup_epochs: 1.33
6 | warmup_momentum: 0.86
7 | warmup_bias_lr: 0.0711
8 | box: 0.0539
9 | cls: 0.299
10 | cls_pw: 0.825
11 | obj: 0.632
12 | obj_pw: 1.0
13 | iou_t: 0.2
14 | anchor_t: 3.44
15 | anchors: 3.2
16 | fl_gamma: 0.0
17 | hsv_h: 0.0188
18 | hsv_s: 0.704
19 | hsv_v: 0.36
20 | degrees: 0.0
21 | translate: 0.0902
22 | scale: 0.491
23 | shear: 0.0
24 | perspective: 0.0
25 | flipud: 0.0
26 | fliplr: 0.5
27 | mosaic: 1.0
28 | mixup: 0.0
29 | copy_paste: 0.0
30 |
--------------------------------------------------------------------------------
/data/hyps/hyp.scratch-high.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # Hyperparameters for high-augmentation COCO training from scratch
3 | # python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
4 | # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
5 |
6 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7 | lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
8 | momentum: 0.937 # SGD momentum/Adam beta1
9 | weight_decay: 0.0005 # optimizer weight decay 5e-4
10 | warmup_epochs: 3.0 # warmup epochs (fractions ok)
11 | warmup_momentum: 0.8 # warmup initial momentum
12 | warmup_bias_lr: 0.1 # warmup initial bias lr
13 | box: 0.05 # box loss gain
14 | cls: 0.3 # cls loss gain
15 | cls_pw: 1.0 # cls BCELoss positive_weight
16 | obj: 0.7 # obj loss gain (scale with pixels)
17 | obj_pw: 1.0 # obj BCELoss positive_weight
18 | iou_t: 0.20 # IoU training threshold
19 | anchor_t: 4.0 # anchor-multiple threshold
20 | # anchors: 3 # anchors per output layer (0 to ignore)
21 | fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
22 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
23 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
24 | hsv_v: 0.4 # image HSV-Value augmentation (fraction)
25 | degrees: 0.0 # image rotation (+/- deg)
26 | translate: 0.1 # image translation (+/- fraction)
27 | scale: 0.9 # image scale (+/- gain)
28 | shear: 0.0 # image shear (+/- deg)
29 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
30 | flipud: 0.0 # image flip up-down (probability)
31 | fliplr: 0.5 # image flip left-right (probability)
32 | mosaic: 1.0 # image mosaic (probability)
33 | mixup: 0.1 # image mixup (probability)
34 | copy_paste: 0.1 # segment copy-paste (probability)
35 |
--------------------------------------------------------------------------------
/data/hyps/hyp.scratch-low.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # Hyperparameters for low-augmentation COCO training from scratch
3 | # python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear
4 | # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
5 |
6 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7 | lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
8 | momentum: 0.937 # SGD momentum/Adam beta1
9 | weight_decay: 0.0005 # optimizer weight decay 5e-4
10 | warmup_epochs: 3.0 # warmup epochs (fractions ok)
11 | warmup_momentum: 0.8 # warmup initial momentum
12 | warmup_bias_lr: 0.1 # warmup initial bias lr
13 | box: 0.05 # box loss gain
14 | cls: 0.5 # cls loss gain
15 | cls_pw: 1.0 # cls BCELoss positive_weight
16 | obj: 1.0 # obj loss gain (scale with pixels)
17 | obj_pw: 1.0 # obj BCELoss positive_weight
18 | iou_t: 0.20 # IoU training threshold
19 | anchor_t: 4.0 # anchor-multiple threshold
20 | # anchors: 3 # anchors per output layer (0 to ignore)
21 | fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
22 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
23 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
24 | hsv_v: 0.4 # image HSV-Value augmentation (fraction)
25 | degrees: 0.0 # image rotation (+/- deg)
26 | translate: 0.1 # image translation (+/- fraction)
27 | scale: 0.5 # image scale (+/- gain)
28 | shear: 0.0 # image shear (+/- deg)
29 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
30 | flipud: 0.0 # image flip up-down (probability)
31 | fliplr: 0.5 # image flip left-right (probability)
32 | mosaic: 1.0 # image mosaic (probability)
33 | mixup: 0.0 # image mixup (probability)
34 | copy_paste: 0.0 # segment copy-paste (probability)
35 |
--------------------------------------------------------------------------------
/data/hyps/hyp.scratch-med.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # Hyperparameters for medium-augmentation COCO training from scratch
3 | # python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
4 | # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
5 |
6 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7 | lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
8 | momentum: 0.937 # SGD momentum/Adam beta1
9 | weight_decay: 0.0005 # optimizer weight decay 5e-4
10 | warmup_epochs: 3.0 # warmup epochs (fractions ok)
11 | warmup_momentum: 0.8 # warmup initial momentum
12 | warmup_bias_lr: 0.1 # warmup initial bias lr
13 | box: 0.05 # box loss gain
14 | cls: 0.3 # cls loss gain
15 | cls_pw: 1.0 # cls BCELoss positive_weight
16 | obj: 0.7 # obj loss gain (scale with pixels)
17 | obj_pw: 1.0 # obj BCELoss positive_weight
18 | iou_t: 0.20 # IoU training threshold
19 | anchor_t: 4.0 # anchor-multiple threshold
20 | # anchors: 3 # anchors per output layer (0 to ignore)
21 | fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
22 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
23 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
24 | hsv_v: 0.4 # image HSV-Value augmentation (fraction)
25 | degrees: 0.0 # image rotation (+/- deg)
26 | translate: 0.1 # image translation (+/- fraction)
27 | scale: 0.9 # image scale (+/- gain)
28 | shear: 0.0 # image shear (+/- deg)
29 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
30 | flipud: 0.0 # image flip up-down (probability)
31 | fliplr: 0.5 # image flip left-right (probability)
32 | mosaic: 1.0 # image mosaic (probability)
33 | mixup: 0.1 # image mixup (probability)
34 | copy_paste: 0.0 # segment copy-paste (probability)
35 |
--------------------------------------------------------------------------------
/data/hyps/hyp.scratch-p6.yaml:
--------------------------------------------------------------------------------
1 | # Hyperparameters for COCO training from scratch
2 | # python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
3 | # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
4 |
5 |
6 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7 | lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
8 | momentum: 0.937 # SGD momentum/Adam beta1
9 | weight_decay: 0.0005 # optimizer weight decay 5e-4
10 | warmup_epochs: 3.0 # warmup epochs (fractions ok)
11 | warmup_momentum: 0.8 # warmup initial momentum
12 | warmup_bias_lr: 0.1 # warmup initial bias lr
13 | box: 0.05 # box loss gain
14 | cls: 0.3 # cls loss gain
15 | cls_pw: 1.0 # cls BCELoss positive_weight
16 | obj: 0.7 # obj loss gain (scale with pixels)
17 | obj_pw: 1.0 # obj BCELoss positive_weight
18 | iou_t: 0.20 # IoU training threshold
19 | anchor_t: 4.0 # anchor-multiple threshold
20 | # anchors: 3 # anchors per output layer (0 to ignore)
21 | fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
22 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
23 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
24 | hsv_v: 0.4 # image HSV-Value augmentation (fraction)
25 | degrees: 0.0 # image rotation (+/- deg)
26 | translate: 0.1 # image translation (+/- fraction)
27 | scale: 0.9 # image scale (+/- gain)
28 | shear: 0.0 # image shear (+/- deg)
29 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
30 | flipud: 0.0 # image flip up-down (probability)
31 | fliplr: 0.5 # image flip left-right (probability)
32 | mosaic: 1.0 # image mosaic (probability)
33 | mixup: 0.0 # image mixup (probability)
34 | copy_paste: 0.0 # segment copy-paste (probability)
35 |
--------------------------------------------------------------------------------
/data/hyps/hyp.scratch.yaml:
--------------------------------------------------------------------------------
1 | # Hyperparameters for COCO training from scratch
2 | # python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300
3 | # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
4 |
5 |
6 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7 | lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
8 | momentum: 0.937 # SGD momentum/Adam beta1
9 | weight_decay: 0.0005 # optimizer weight decay 5e-4
10 | warmup_epochs: 3.0 # warmup epochs (fractions ok)
11 | warmup_momentum: 0.8 # warmup initial momentum
12 | warmup_bias_lr: 0.1 # warmup initial bias lr
13 | box: 0.05 # box loss gain
14 | cls: 0.5 # cls loss gain
15 | cls_pw: 1.0 # cls BCELoss positive_weight
16 | obj: 1.0 # obj loss gain (scale with pixels)
17 | obj_pw: 1.0 # obj BCELoss positive_weight
18 | iou_t: 0.20 # IoU training threshold
19 | anchor_t: 4.0 # anchor-multiple threshold
20 | # anchors: 3 # anchors per output layer (0 to ignore)
21 | fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
22 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
23 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
24 | hsv_v: 0.4 # image HSV-Value augmentation (fraction)
25 | degrees: 0.0 # image rotation (+/- deg)
26 | translate: 0.1 # image translation (+/- fraction)
27 | scale: 0.5 # image scale (+/- gain)
28 | shear: 0.0 # image shear (+/- deg)
29 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
30 | flipud: 0.0 # image flip up-down (probability)
31 | fliplr: 0.5 # image flip left-right (probability)
32 | mosaic: 1.0 # image mosaic (probability)
33 | mixup: 0.0 # image mixup (probability)
34 | copy_paste: 0.0 # segment copy-paste (probability)
35 |
--------------------------------------------------------------------------------
/data/icon/停止.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/data/icon/停止.png
--------------------------------------------------------------------------------
/data/icon/图片1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/data/icon/图片1.png
--------------------------------------------------------------------------------
/data/icon/图片2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/data/icon/图片2.png
--------------------------------------------------------------------------------
/data/icon/开始.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/data/icon/开始.png
--------------------------------------------------------------------------------
/data/icon/打开.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/data/icon/打开.png
--------------------------------------------------------------------------------
/data/icon/摄像头关.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/data/icon/摄像头关.png
--------------------------------------------------------------------------------
/data/icon/摄像头开.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/data/icon/摄像头开.png
--------------------------------------------------------------------------------
/data/icon/数据探索.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/data/icon/数据探索.png
--------------------------------------------------------------------------------
/data/icon/模.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/data/icon/模.png
--------------------------------------------------------------------------------
/data/icon/模型中心.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/data/icon/模型中心.png
--------------------------------------------------------------------------------
/data/icon/赞停.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/data/icon/赞停.png
--------------------------------------------------------------------------------
/data/images/bus.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/data/images/bus.jpg
--------------------------------------------------------------------------------
/data/images/zidane.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/data/images/zidane.jpg
--------------------------------------------------------------------------------
/data/images/zidane.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/data/images/zidane.png
--------------------------------------------------------------------------------
/data/scripts/download_weights.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
3 | # Download latest models from https://github.com/ultralytics/yolov5/releases
4 | # Example usage: bash path/to/download_weights.sh
5 | # parent
6 | # └── yolov5
7 | # ├── yolov5s.pt ← downloads here
8 | # ├── yolov5m.pt
9 | # └── ...
10 |
11 | python - <= cls >= 0, f'incorrect class index {cls}'
74 |
75 | # Write YOLO label
76 | if id not in shapes:
77 | shapes[id] = Image.open(file).size
78 | box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
79 | with open((labels / id).with_suffix('.txt'), 'a') as f:
80 | f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
81 | except Exception as e:
82 | print(f'WARNING: skipping one label for {file}: {e}')
83 |
84 |
85 | # Download manually from https://challenge.xviewdataset.org
86 | dir = Path(yaml['path']) # dataset root dir
87 | # urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels
88 | # 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images
89 | # 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels)
90 | # download(urls, dir=dir, delete=False)
91 |
92 | # Convert labels
93 | convert_labels(dir / 'xView_train.geojson')
94 |
95 | # Move images
96 | images = Path(dir / 'images')
97 | images.mkdir(parents=True, exist_ok=True)
98 | Path(dir / 'train_images').rename(dir / 'images' / 'train')
99 | Path(dir / 'val_images').rename(dir / 'images' / 'val')
100 |
101 | # Split
102 | autosplit(dir / 'images' / 'train')
103 |
--------------------------------------------------------------------------------
/detector.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import numpy as np
3 |
4 | from models.experimental import attempt_load
5 | from utils.datasets import letterbox
6 | from utils.general import non_max_suppression, scale_coords
7 | from utils.torch_utils import select_device
8 |
9 |
10 | class Detector:
11 |
12 | def __init__(self):
13 | self.img_size = 640
14 | self.threshold = 0.3
15 | self.stride = 1
16 |
17 | self.weights = './weights/yolov5m.pt'
18 |
19 | self.device = '0' if torch.cuda.is_available() else 'cpu'
20 | self.device = select_device(self.device)
21 | model = attempt_load(self.weights, map_location=self.device)
22 | model.to(self.device).eval()
23 | model.float()
24 |
25 | self.m = model
26 | self.names = model.module.names if hasattr(
27 | model, 'module') else model.names
28 |
29 | def preprocess(self, img):
30 |
31 | img0 = img.copy()
32 | img = letterbox(img, new_shape=self.img_size)[0]
33 | img = img[:, :, ::-1].transpose(2, 0, 1)
34 | img = np.ascontiguousarray(img)
35 | img = torch.from_numpy(img).to(self.device)
36 | img = img.float()
37 | img /= 255.0
38 | if img.ndimension() == 3:
39 | img = img.unsqueeze(0)
40 |
41 | return img0, img
42 |
43 | def detect(self, im):
44 |
45 | im0, img = self.preprocess(im)
46 |
47 | pred = self.m(img, augment=False)[0]
48 | pred = pred.float()
49 | pred = non_max_suppression(pred, self.threshold, 0.4)
50 |
51 | boxes = []
52 | for det in pred:
53 |
54 | if det is not None and len(det):
55 | det[:, :4] = scale_coords(
56 | img.shape[2:], det[:, :4], im0.shape).round()
57 |
58 | for *x, conf, cls_id in det:
59 | lbl = self.names[int(cls_id)]
60 | if lbl not in ['person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck']:
61 | continue
62 | pass
63 | x1, y1 = int(x[0]), int(x[1])
64 | x2, y2 = int(x[2]), int(x[3])
65 | boxes.append(
66 | (x1, y1, x2, y2, lbl, conf))
67 |
68 | return boxes
--------------------------------------------------------------------------------
/dialog/__pycache__/rtsp_dialog.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/dialog/__pycache__/rtsp_dialog.cpython-38.pyc
--------------------------------------------------------------------------------
/dialog/__pycache__/rtsp_dialog.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/dialog/__pycache__/rtsp_dialog.cpython-39.pyc
--------------------------------------------------------------------------------
/dialog/__pycache__/rtsp_win.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/dialog/__pycache__/rtsp_win.cpython-38.pyc
--------------------------------------------------------------------------------
/dialog/rtsp_dialog.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 |
3 | # Form implementation generated from reading ui file 'rtsp_dialog.ui'
4 | #
5 | # Created by: PyQt5 UI code generator 5.15.2
6 | #
7 | # WARNING: Any manual changes made to this file will be lost when pyuic5 is
8 | # run again. Do not edit this file unless you know what you are doing.
9 |
10 |
11 | from PyQt5 import QtCore, QtGui, QtWidgets
12 |
13 |
14 | class Ui_Form(object):
15 | def setupUi(self, Form):
16 | Form.setObjectName("Form")
17 | Form.resize(783, 40)
18 | Form.setMinimumSize(QtCore.QSize(0, 40))
19 | Form.setMaximumSize(QtCore.QSize(16777215, 41))
20 | icon = QtGui.QIcon()
21 | icon.addPixmap(QtGui.QPixmap(":/img/icon/实时视频流解析.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
22 | Form.setWindowIcon(icon)
23 | Form.setStyleSheet("#Form{background:rgba(120,120,120,255)}")
24 | self.horizontalLayout = QtWidgets.QHBoxLayout(Form)
25 | self.horizontalLayout.setContentsMargins(-1, 5, -1, 5)
26 | self.horizontalLayout.setObjectName("horizontalLayout")
27 | self.label = QtWidgets.QLabel(Form)
28 | self.label.setMinimumSize(QtCore.QSize(0, 30))
29 | self.label.setMaximumSize(QtCore.QSize(16777215, 30))
30 | self.label.setStyleSheet("QLabel{font-family: \"Microsoft YaHei\";\n"
31 | "font-size: 18px;\n"
32 | "font-weight: bold;\n"
33 | "color:white;}")
34 | self.label.setObjectName("label")
35 | self.horizontalLayout.addWidget(self.label)
36 | self.rtspEdit = QtWidgets.QLineEdit(Form)
37 | self.rtspEdit.setMinimumSize(QtCore.QSize(0, 31))
38 | self.rtspEdit.setStyleSheet("background-color: rgb(207, 207, 207);")
39 | self.rtspEdit.setObjectName("rtspEdit")
40 | self.horizontalLayout.addWidget(self.rtspEdit)
41 | self.rtspButton = QtWidgets.QPushButton(Form)
42 | self.rtspButton.setStyleSheet("QPushButton{font-family: \"Microsoft YaHei\";\n"
43 | "font-size: 18px;\n"
44 | "font-weight: bold;\n"
45 | "color:white;\n"
46 | "text-align: center center;\n"
47 | "padding-left: 5px;\n"
48 | "padding-right: 5px;\n"
49 | "padding-top: 4px;\n"
50 | "padding-bottom: 4px;\n"
51 | "border-style: solid;\n"
52 | "border-width: 0px;\n"
53 | "border-color: rgba(255, 255, 255, 255);\n"
54 | "border-radius: 3px;\n"
55 | "background-color: rgba(255,255,255,30);}\n"
56 | "\n"
57 | "QPushButton:focus{outline: none;}\n"
58 | "\n"
59 | "QPushButton::pressed{font-family: \"Microsoft YaHei\";\n"
60 | " font-size: 16px;\n"
61 | " font-weight: bold;\n"
62 | " color:rgb(200,200,200);\n"
63 | " text-align: center center;\n"
64 | " padding-left: 5px;\n"
65 | " padding-right: 5px;\n"
66 | " padding-top: 4px;\n"
67 | " padding-bottom: 4px;\n"
68 | " border-style: solid;\n"
69 | " border-width: 0px;\n"
70 | " border-color: rgba(255, 255, 255, 255);\n"
71 | " border-radius: 3px;\n"
72 | " background-color: rgba(255,255,255,150);}\n"
73 | "\n"
74 | "QPushButton::hover {\n"
75 | "border-style: solid;\n"
76 | "border-width: 0px;\n"
77 | "border-radius: 0px;\n"
78 | "background-color: rgba(255,255,255,50);}")
79 | self.rtspButton.setObjectName("rtspButton")
80 | self.horizontalLayout.addWidget(self.rtspButton)
81 |
82 | self.retranslateUi(Form)
83 | QtCore.QMetaObject.connectSlotsByName(Form)
84 |
85 | def retranslateUi(self, Form):
86 | _translate = QtCore.QCoreApplication.translate
87 | Form.setWindowTitle(_translate("Form", "Form"))
88 | self.label.setText(_translate("Form", "rtsp address:"))
89 | self.rtspButton.setText(_translate("Form", "confirm"))
90 | import apprcc_rc
91 |
--------------------------------------------------------------------------------
/dialog/rtsp_dialog.ui:
--------------------------------------------------------------------------------
1 |
2 |
3 | Form
4 |
5 |
6 |
7 | 0
8 | 0
9 | 783
10 | 40
11 |
12 |
13 |
14 |
15 | 0
16 | 40
17 |
18 |
19 |
20 |
21 | 16777215
22 | 41
23 |
24 |
25 |
26 | Form
27 |
28 |
29 |
30 | :/img/icon/实时视频流解析.png:/img/icon/实时视频流解析.png
31 |
32 |
33 | #Form{background:rgba(120,120,120,255)}
34 |
35 |
36 |
37 | 5
38 |
39 |
40 | 5
41 |
42 | -
43 |
44 |
45 |
46 | 0
47 | 30
48 |
49 |
50 |
51 |
52 | 16777215
53 | 30
54 |
55 |
56 |
57 | QLabel{font-family: "Microsoft YaHei";
58 | font-size: 18px;
59 | font-weight: bold;
60 | color:white;}
61 |
62 |
63 | rtsp address:
64 |
65 |
66 |
67 | -
68 |
69 |
70 |
71 | 0
72 | 31
73 |
74 |
75 |
76 | background-color: rgb(207, 207, 207);
77 |
78 |
79 |
80 | -
81 |
82 |
83 | QPushButton{font-family: "Microsoft YaHei";
84 | font-size: 18px;
85 | font-weight: bold;
86 | color:white;
87 | text-align: center center;
88 | padding-left: 5px;
89 | padding-right: 5px;
90 | padding-top: 4px;
91 | padding-bottom: 4px;
92 | border-style: solid;
93 | border-width: 0px;
94 | border-color: rgba(255, 255, 255, 255);
95 | border-radius: 3px;
96 | background-color: rgba(255,255,255,30);}
97 |
98 | QPushButton:focus{outline: none;}
99 |
100 | QPushButton::pressed{font-family: "Microsoft YaHei";
101 | font-size: 16px;
102 | font-weight: bold;
103 | color:rgb(200,200,200);
104 | text-align: center center;
105 | padding-left: 5px;
106 | padding-right: 5px;
107 | padding-top: 4px;
108 | padding-bottom: 4px;
109 | border-style: solid;
110 | border-width: 0px;
111 | border-color: rgba(255, 255, 255, 255);
112 | border-radius: 3px;
113 | background-color: rgba(255,255,255,150);}
114 |
115 | QPushButton::hover {
116 | border-style: solid;
117 | border-width: 0px;
118 | border-radius: 0px;
119 | background-color: rgba(255,255,255,50);}
120 |
121 |
122 | confirm
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
--------------------------------------------------------------------------------
/dialog/rtsp_win.py:
--------------------------------------------------------------------------------
1 | import sys
2 | from PyQt5.QtWidgets import QApplication, QWidget
3 | from dialog.rtsp_dialog import Ui_Form
4 |
5 |
6 | class Window(QWidget, Ui_Form):
7 | def __init__(self):
8 | super(Window, self).__init__()
9 | self.setupUi(self)
10 |
11 |
12 | if __name__ == '__main__':
13 | app = QApplication(sys.argv)
14 | window = Window()
15 | window.show()
16 | sys.exit(app.exec_())
17 |
--------------------------------------------------------------------------------
/export.py:
--------------------------------------------------------------------------------
1 | """Export a YOLOv5 *.pt model to TorchScript, ONNX, CoreML formats
2 |
3 | Usage:
4 | $ python path/to/export.py --weights yolov5s.pt --img 640 --batch 1
5 | """
6 |
7 | import argparse
8 | import sys
9 | import time
10 | from pathlib import Path
11 |
12 | import torch
13 | import torch.nn as nn
14 | from torch.utils.mobile_optimizer import optimize_for_mobile
15 |
16 | FILE = Path(__file__).absolute()
17 | sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
18 |
19 | from models.common import Conv
20 | from models.yolo import Detect
21 | from models.experimental import attempt_load
22 | from utils.activations import Hardswish, SiLU
23 | from utils.general import colorstr, check_img_size, check_requirements, file_size, set_logging
24 | from utils.torch_utils import select_device
25 |
26 |
27 | def run(weights='./yolov5s.pt', # weights path
28 | img_size=(640, 640), # image (height, width)
29 | batch_size=1, # batch size
30 | device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
31 | include=('torchscript', 'onnx', 'coreml'), # include formats
32 | half=False, # FP16 half-precision export
33 | inplace=False, # set YOLOv5 Detect() inplace=True
34 | train=False, # model.train() mode
35 | optimize=False, # TorchScript: optimize for mobile
36 | dynamic=False, # ONNX: dynamic axes
37 | simplify=False, # ONNX: simplify model
38 | opset_version=12, # ONNX: opset version
39 | ):
40 | t = time.time()
41 | include = [x.lower() for x in include]
42 | img_size *= 2 if len(img_size) == 1 else 1 # expand
43 |
44 | # Load PyTorch model
45 | device = select_device(device)
46 | assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
47 | model = attempt_load(weights, map_location=device) # load FP32 model
48 | labels = model.names
49 |
50 | # Input
51 | gs = int(max(model.stride)) # grid size (max stride)
52 | img_size = [check_img_size(x, gs) for x in img_size] # verify img_size are gs-multiples
53 | img = torch.zeros(batch_size, 3, *img_size).to(device) # image size(1,3,320,192) iDetection
54 |
55 | # Update model
56 | if half:
57 | img, model = img.half(), model.half() # to FP16
58 | model.train() if train else model.eval() # training mode = no Detect() layer grid construction
59 | for k, m in model.named_modules():
60 | m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
61 | if isinstance(m, Conv): # assign export-friendly activations
62 | if isinstance(m.act, nn.Hardswish):
63 | m.act = Hardswish()
64 | elif isinstance(m.act, nn.SiLU):
65 | m.act = SiLU()
66 | elif isinstance(m, Detect):
67 | m.inplace = inplace
68 | m.onnx_dynamic = dynamic
69 | # m.forward = m.forward_export # assign forward (optional)
70 |
71 | for _ in range(2):
72 | y = model(img) # dry runs
73 | print(f"\n{colorstr('PyTorch:')} starting from {weights} ({file_size(weights):.1f} MB)")
74 |
75 | # TorchScript export -----------------------------------------------------------------------------------------------
76 | if 'torchscript' in include or 'coreml' in include:
77 | prefix = colorstr('TorchScript:')
78 | try:
79 | print(f'\n{prefix} starting export with torch {torch.__version__}...')
80 | f = weights.replace('.pt', '.torchscript.pt') # filename
81 | ts = torch.jit.trace(model, img, strict=False)
82 | (optimize_for_mobile(ts) if optimize else ts).save(f)
83 | print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
84 | except Exception as e:
85 | print(f'{prefix} export failure: {e}')
86 |
87 | # ONNX export ------------------------------------------------------------------------------------------------------
88 | if 'onnx' in include:
89 | prefix = colorstr('ONNX:')
90 | try:
91 | import onnx
92 |
93 | print(f'{prefix} starting export with onnx {onnx.__version__}...')
94 | f = weights.replace('.pt', '.onnx') # filename
95 | torch.onnx.export(model, img, f, verbose=False, opset_version=opset_version,
96 | training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
97 | do_constant_folding=not train,
98 | input_names=['images'],
99 | output_names=['output'],
100 | dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
101 | 'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
102 | } if dynamic else None)
103 |
104 | # Checks
105 | model_onnx = onnx.load(f) # load onnx model
106 | onnx.checker.check_model(model_onnx) # check onnx model
107 | # print(onnx.helper.printable_graph(model_onnx.graph)) # print
108 |
109 | # Simplify
110 | if simplify:
111 | try:
112 | check_requirements(['onnx-simplifier'])
113 | import onnxsim
114 |
115 | print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
116 | model_onnx, check = onnxsim.simplify(
117 | model_onnx,
118 | dynamic_input_shape=dynamic,
119 | input_shapes={'images': list(img.shape)} if dynamic else None)
120 | assert check, 'assert check failed'
121 | onnx.save(model_onnx, f)
122 | except Exception as e:
123 | print(f'{prefix} simplifier failure: {e}')
124 | print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
125 | except Exception as e:
126 | print(f'{prefix} export failure: {e}')
127 |
128 | # CoreML export ----------------------------------------------------------------------------------------------------
129 | if 'coreml' in include:
130 | prefix = colorstr('CoreML:')
131 | try:
132 | import coremltools as ct
133 |
134 | print(f'{prefix} starting export with coremltools {ct.__version__}...')
135 | assert train, 'CoreML exports should be placed in model.train() mode with `python export.py --train`'
136 | model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
137 | f = weights.replace('.pt', '.mlmodel') # filename
138 | model.save(f)
139 | print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
140 | except Exception as e:
141 | print(f'{prefix} export failure: {e}')
142 |
143 | # Finish
144 | print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.')
145 |
146 |
147 | def parse_opt():
148 | parser = argparse.ArgumentParser()
149 | parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
150 | parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image (height, width)')
151 | parser.add_argument('--batch-size', type=int, default=1, help='batch size')
152 | parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
153 | parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx', 'coreml'], help='include formats')
154 | parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
155 | parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
156 | parser.add_argument('--train', action='store_true', help='model.train() mode')
157 | parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
158 | parser.add_argument('--dynamic', action='store_true', help='ONNX: dynamic axes')
159 | parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
160 | parser.add_argument('--opset-version', type=int, default=12, help='ONNX: opset version')
161 | opt = parser.parse_args()
162 | return opt
163 |
164 |
165 | def main(opt):
166 | set_logging()
167 | print(colorstr('export: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
168 | run(**vars(opt))
169 |
170 |
171 | if __name__ == "__main__":
172 | opt = parse_opt()
173 | main(opt)
174 |
--------------------------------------------------------------------------------
/hubconf.py:
--------------------------------------------------------------------------------
1 | """YOLOv5 PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
2 |
3 | Usage:
4 | import torch
5 | model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
6 | """
7 |
8 | import torch
9 |
10 |
11 | def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
12 | """Creates a specified YOLOv5 model
13 |
14 | Arguments:
15 | name (str): name of model, i.e. 'yolov5s'
16 | pretrained (bool): load pretrained weights into the model
17 | channels (int): number of input channels
18 | classes (int): number of model classes
19 | autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
20 | verbose (bool): print all information to screen
21 | device (str, torch.device, None): device to use for model parameters
22 |
23 | Returns:
24 | YOLOv5 pytorch model
25 | """
26 | from pathlib import Path
27 |
28 | from models.yolo import Model, attempt_load
29 | from utils.general import check_requirements, set_logging
30 | from utils.google_utils import attempt_download
31 | from utils.torch_utils import select_device
32 |
33 | file = Path(__file__).absolute()
34 | check_requirements(requirements=file.parent / 'requirements.txt', exclude=('tensorboard', 'thop', 'opencv-python'))
35 | set_logging(verbose=verbose)
36 |
37 | save_dir = Path('') if str(name).endswith('.pt') else file.parent
38 | path = (save_dir / name).with_suffix('.pt') # checkpoint path
39 | try:
40 | device = select_device(('0' if torch.cuda.is_available() else 'cpu') if device is None else device)
41 |
42 | if pretrained and channels == 3 and classes == 80:
43 | model = attempt_load(path, map_location=device) # download/load FP32 model
44 | else:
45 | cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path
46 | model = Model(cfg, channels, classes) # create model
47 | if pretrained:
48 | ckpt = torch.load(attempt_download(path), map_location=device) # load
49 | msd = model.state_dict() # model state_dict
50 | csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
51 | csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
52 | model.load_state_dict(csd, strict=False) # load
53 | if len(ckpt['model'].names) == classes:
54 | model.names = ckpt['model'].names # set class names attribute
55 | if autoshape:
56 | model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
57 | return model.to(device)
58 |
59 | except Exception as e:
60 | help_url = 'https://github.com/ultralytics/yolov5/issues/36'
61 | s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url
62 | raise Exception(s) from e
63 |
64 |
65 | def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None):
66 | # YOLOv5 custom or local model
67 | return _create(path, autoshape=autoshape, verbose=verbose, device=device)
68 |
69 |
70 | def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
71 | # YOLOv5-small model https://github.com/ultralytics/yolov5
72 | return _create('yolov5s', pretrained, channels, classes, autoshape, verbose, device)
73 |
74 |
75 | def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
76 | # YOLOv5-medium model https://github.com/ultralytics/yolov5
77 | return _create('yolov5m', pretrained, channels, classes, autoshape, verbose, device)
78 |
79 |
80 | def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
81 | # YOLOv5-large model https://github.com/ultralytics/yolov5
82 | return _create('yolov5l', pretrained, channels, classes, autoshape, verbose, device)
83 |
84 |
85 | def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
86 | # YOLOv5-xlarge model https://github.com/ultralytics/yolov5
87 | return _create('yolov5x', pretrained, channels, classes, autoshape, verbose, device)
88 |
89 |
90 | def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
91 | # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
92 | return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose, device)
93 |
94 |
95 | def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
96 | # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
97 | return _create('yolov5m6', pretrained, channels, classes, autoshape, verbose, device)
98 |
99 |
100 | def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
101 | # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
102 | return _create('yolov5l6', pretrained, channels, classes, autoshape, verbose, device)
103 |
104 |
105 | def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
106 | # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
107 | return _create('yolov5x6', pretrained, channels, classes, autoshape, verbose, device)
108 |
109 |
110 | if __name__ == '__main__':
111 | model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
112 | # model = custom(path='path/to/model.pt') # custom
113 |
114 | # Verify inference
115 | import cv2
116 | import numpy as np
117 | from PIL import Image
118 |
119 | imgs = ['data/images/zidane.jpg', # filename
120 | 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg', # URI
121 | cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
122 | Image.open('data/images/bus.jpg'), # PIL
123 | np.zeros((320, 640, 3))] # numpy
124 |
125 | results = model(imgs) # batched inference
126 | results.print()
127 | results.save()
128 |
--------------------------------------------------------------------------------
/icon/SYSU.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/SYSU.jpg
--------------------------------------------------------------------------------
/icon/SYSU0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/SYSU0.png
--------------------------------------------------------------------------------
/icon/background.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/background.jpg
--------------------------------------------------------------------------------
/icon/button-off.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/button-off.png
--------------------------------------------------------------------------------
/icon/button-on.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/button-on.png
--------------------------------------------------------------------------------
/icon/doctor.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/doctor.png
--------------------------------------------------------------------------------
/icon/evil.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/evil.png
--------------------------------------------------------------------------------
/icon/下拉_白色.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/下拉_白色.png
--------------------------------------------------------------------------------
/icon/中大.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/中大.jpg
--------------------------------------------------------------------------------
/icon/停止.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/停止.png
--------------------------------------------------------------------------------
/icon/关闭.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/关闭.png
--------------------------------------------------------------------------------
/icon/圆.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/圆.png
--------------------------------------------------------------------------------
/icon/实时视频流解析.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/实时视频流解析.png
--------------------------------------------------------------------------------
/icon/打开.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/打开.png
--------------------------------------------------------------------------------
/icon/摄像头关.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/摄像头关.png
--------------------------------------------------------------------------------
/icon/摄像头开.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/摄像头开.png
--------------------------------------------------------------------------------
/icon/数据探索.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/数据探索.png
--------------------------------------------------------------------------------
/icon/暂停.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/暂停.png
--------------------------------------------------------------------------------
/icon/最大化.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/最大化.png
--------------------------------------------------------------------------------
/icon/最小化.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/最小化.png
--------------------------------------------------------------------------------
/icon/正方形.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/正方形.png
--------------------------------------------------------------------------------
/icon/笑脸.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/笑脸.png
--------------------------------------------------------------------------------
/icon/箭头_列表展开.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/箭头_列表展开.png
--------------------------------------------------------------------------------
/icon/箭头_列表收起.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/箭头_列表收起.png
--------------------------------------------------------------------------------
/icon/终止.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/终止.png
--------------------------------------------------------------------------------
/icon/背景.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/背景.png
--------------------------------------------------------------------------------
/icon/表情.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/表情.png
--------------------------------------------------------------------------------
/icon/赞停.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/赞停.png
--------------------------------------------------------------------------------
/icon/运行.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/运行.png
--------------------------------------------------------------------------------
/icon/还原.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/还原.png
--------------------------------------------------------------------------------
/icon/鸭.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/icon/鸭.jpg
--------------------------------------------------------------------------------
/images/bus.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/images/bus.jpg
--------------------------------------------------------------------------------
/models/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/models/__init__.py
--------------------------------------------------------------------------------
/models/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/models/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/models/__pycache__/__init__.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/models/__pycache__/__init__.cpython-39.pyc
--------------------------------------------------------------------------------
/models/__pycache__/common.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/models/__pycache__/common.cpython-38.pyc
--------------------------------------------------------------------------------
/models/__pycache__/common.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/models/__pycache__/common.cpython-39.pyc
--------------------------------------------------------------------------------
/models/__pycache__/experimental.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/models/__pycache__/experimental.cpython-38.pyc
--------------------------------------------------------------------------------
/models/__pycache__/experimental.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/models/__pycache__/experimental.cpython-39.pyc
--------------------------------------------------------------------------------
/models/__pycache__/yolo.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/models/__pycache__/yolo.cpython-38.pyc
--------------------------------------------------------------------------------
/models/__pycache__/yolo.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/models/__pycache__/yolo.cpython-39.pyc
--------------------------------------------------------------------------------
/models/experimental.py:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | """
3 | Experimental modules
4 | """
5 | import math
6 |
7 | import numpy as np
8 | import torch
9 | import torch.nn as nn
10 |
11 | from models.common import Conv
12 | from utils.downloads import attempt_download
13 |
14 |
15 | class CrossConv(nn.Module):
16 | # Cross Convolution Downsample
17 | def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
18 | # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
19 | super().__init__()
20 | c_ = int(c2 * e) # hidden channels
21 | self.cv1 = Conv(c1, c_, (1, k), (1, s))
22 | self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
23 | self.add = shortcut and c1 == c2
24 |
25 | def forward(self, x):
26 | return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
27 |
28 |
29 | class Sum(nn.Module):
30 | # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
31 | def __init__(self, n, weight=False): # n: number of inputs
32 | super().__init__()
33 | self.weight = weight # apply weights boolean
34 | self.iter = range(n - 1) # iter object
35 | if weight:
36 | self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
37 |
38 | def forward(self, x):
39 | y = x[0] # no weight
40 | if self.weight:
41 | w = torch.sigmoid(self.w) * 2
42 | for i in self.iter:
43 | y = y + x[i + 1] * w[i]
44 | else:
45 | for i in self.iter:
46 | y = y + x[i + 1]
47 | return y
48 |
49 |
50 | class MixConv2d(nn.Module):
51 | # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
52 | def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
53 | super().__init__()
54 | n = len(k) # number of convolutions
55 | if equal_ch: # equal c_ per group
56 | i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
57 | c_ = [(i == g).sum() for g in range(n)] # intermediate channels
58 | else: # equal weight.numel() per group
59 | b = [c2] + [0] * n
60 | a = np.eye(n + 1, n, k=-1)
61 | a -= np.roll(a, 1, axis=1)
62 | a *= np.array(k) ** 2
63 | a[0] = 1
64 | c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
65 |
66 | self.m = nn.ModuleList(
67 | [nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
68 | self.bn = nn.BatchNorm2d(c2)
69 | self.act = nn.SiLU()
70 |
71 | def forward(self, x):
72 | return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
73 |
74 |
75 | class Ensemble(nn.ModuleList):
76 | # Ensemble of models
77 | def __init__(self):
78 | super().__init__()
79 |
80 | def forward(self, x, augment=False, profile=False, visualize=False):
81 | y = []
82 | for module in self:
83 | y.append(module(x, augment, profile, visualize)[0])
84 | # y = torch.stack(y).max(0)[0] # max ensemble
85 | # y = torch.stack(y).mean(0) # mean ensemble
86 | y = torch.cat(y, 1) # nms ensemble
87 | return y, None # inference, train output
88 |
89 |
90 | def attempt_load(weights, map_location=None, inplace=True, fuse=True):
91 | from models.yolo import Detect, Model
92 |
93 | # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
94 | model = Ensemble()
95 | for w in weights if isinstance(weights, list) else [weights]:
96 | ckpt = torch.load(attempt_download(w), map_location=map_location) # load
97 | if fuse:
98 | model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
99 | else:
100 | model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().eval()) # without layer fuse
101 |
102 | # Compatibility updates
103 | for m in model.modules():
104 | if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]:
105 | m.inplace = inplace # pytorch 1.7.0 compatibility
106 | if type(m) is Detect:
107 | if not isinstance(m.anchor_grid, list): # new Detect Layer compatibility
108 | delattr(m, 'anchor_grid')
109 | setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
110 | elif type(m) is Conv:
111 | m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
112 |
113 | if len(model) == 1:
114 | return model[-1] # return model
115 | else:
116 | print(f'Ensemble created with {weights}\n')
117 | for k in ['names']:
118 | setattr(model, k, getattr(model[-1], k))
119 | model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
120 | return model # return ensemble
121 |
--------------------------------------------------------------------------------
/models/export.py:
--------------------------------------------------------------------------------
1 | """Exports a YOLOv5 *.pt model to ONNX and TorchScript formats
2 |
3 | Usage:
4 | $ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
5 | """
6 |
7 | import argparse
8 | import sys
9 | import time
10 |
11 | sys.path.append('./') # to run '$ python *.py' files in subdirectories
12 |
13 | import torch
14 | import torch.nn as nn
15 |
16 | import models
17 | from models.experimental import attempt_load
18 | from utils.activations import Hardswish, SiLU
19 | from utils.general import set_logging, check_img_size
20 | from utils.torch_utils import select_device
21 |
22 | if __name__ == '__main__':
23 | parser = argparse.ArgumentParser()
24 | parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/
25 | parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
26 | parser.add_argument('--batch-size', type=int, default=1, help='batch size')
27 | parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
28 | parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
29 | parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
30 | opt = parser.parse_args()
31 | opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
32 | print(opt)
33 | set_logging()
34 | t = time.time()
35 |
36 | # Load PyTorch model
37 | device = select_device(opt.device)
38 | model = attempt_load(opt.weights, map_location=device) # load FP32 model
39 | labels = model.names
40 |
41 | # Checks
42 | gs = int(max(model.stride)) # grid size (max stride)
43 | opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
44 |
45 | # Input
46 | img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
47 |
48 | # Update model
49 | for k, m in model.named_modules():
50 | m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
51 | if isinstance(m, models.common.Conv): # assign export-friendly activations
52 | if isinstance(m.act, nn.Hardswish):
53 | m.act = Hardswish()
54 | elif isinstance(m.act, nn.SiLU):
55 | m.act = SiLU()
56 | # elif isinstance(m, models.yolo.Detect):
57 | # m.forward = m.forward_export # assign forward (optional)
58 | model.model[-1].export = not opt.grid # set Detect() layer grid export
59 | y = model(img) # dry run
60 |
61 | # TorchScript export
62 | try:
63 | print('\nStarting TorchScript export with torch %s...' % torch.__version__)
64 | f = opt.weights.replace('.pt', '.torchscript.pt') # filename
65 | ts = torch.jit.trace(model, img, strict=False)
66 | ts.save(f)
67 | print('TorchScript export success, saved as %s' % f)
68 | except Exception as e:
69 | print('TorchScript export failure: %s' % e)
70 |
71 | # ONNX export
72 | try:
73 | import onnx
74 |
75 | print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
76 | f = opt.weights.replace('.pt', '.onnx') # filename
77 | torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
78 | output_names=['classes', 'boxes'] if y is None else ['output'],
79 | dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
80 | 'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None)
81 |
82 | # Checks
83 | onnx_model = onnx.load(f) # load onnx model
84 | onnx.checker.check_model(onnx_model) # check onnx model
85 | # print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
86 | print('ONNX export success, saved as %s' % f)
87 | except Exception as e:
88 | print('ONNX export failure: %s' % e)
89 |
90 | # CoreML export
91 | try:
92 | import coremltools as ct
93 |
94 | print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
95 | # convert model from torchscript and apply pixel scaling as per detect.py
96 | model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
97 | f = opt.weights.replace('.pt', '.mlmodel') # filename
98 | model.save(f)
99 | print('CoreML export success, saved as %s' % f)
100 | except Exception as e:
101 | print('CoreML export failure: %s' % e)
102 |
103 | # Finish
104 | print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
105 |
--------------------------------------------------------------------------------
/models/hub/anchors.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # Default anchors for COCO data
3 |
4 |
5 | # P5 -------------------------------------------------------------------------------------------------------------------
6 | # P5-640:
7 | anchors_p5_640:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 |
13 | # P6 -------------------------------------------------------------------------------------------------------------------
14 | # P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
15 | anchors_p6_640:
16 | - [9,11, 21,19, 17,41] # P3/8
17 | - [43,32, 39,70, 86,64] # P4/16
18 | - [65,131, 134,130, 120,265] # P5/32
19 | - [282,180, 247,354, 512,387] # P6/64
20 |
21 | # P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
22 | anchors_p6_1280:
23 | - [19,27, 44,40, 38,94] # P3/8
24 | - [96,68, 86,152, 180,137] # P4/16
25 | - [140,301, 303,264, 238,542] # P5/32
26 | - [436,615, 739,380, 925,792] # P6/64
27 |
28 | # P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
29 | anchors_p6_1920:
30 | - [28,41, 67,59, 57,141] # P3/8
31 | - [144,103, 129,227, 270,205] # P4/16
32 | - [209,452, 455,396, 358,812] # P5/32
33 | - [653,922, 1109,570, 1387,1187] # P6/64
34 |
35 |
36 | # P7 -------------------------------------------------------------------------------------------------------------------
37 | # P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
38 | anchors_p7_640:
39 | - [11,11, 13,30, 29,20] # P3/8
40 | - [30,46, 61,38, 39,92] # P4/16
41 | - [78,80, 146,66, 79,163] # P5/32
42 | - [149,150, 321,143, 157,303] # P6/64
43 | - [257,402, 359,290, 524,372] # P7/128
44 |
45 | # P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
46 | anchors_p7_1280:
47 | - [19,22, 54,36, 32,77] # P3/8
48 | - [70,83, 138,71, 75,173] # P4/16
49 | - [165,159, 148,334, 375,151] # P5/32
50 | - [334,317, 251,626, 499,474] # P6/64
51 | - [750,326, 534,814, 1079,818] # P7/128
52 |
53 | # P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
54 | anchors_p7_1920:
55 | - [29,34, 81,55, 47,115] # P3/8
56 | - [105,124, 207,107, 113,259] # P4/16
57 | - [247,238, 222,500, 563,227] # P5/32
58 | - [501,476, 376,939, 749,711] # P6/64
59 | - [1126,489, 801,1222, 1618,1227] # P7/128
60 |
--------------------------------------------------------------------------------
/models/hub/yolov3-spp.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # darknet53 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [32, 3, 1]], # 0
16 | [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17 | [-1, 1, Bottleneck, [64]],
18 | [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19 | [-1, 2, Bottleneck, [128]],
20 | [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21 | [-1, 8, Bottleneck, [256]],
22 | [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23 | [-1, 8, Bottleneck, [512]],
24 | [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25 | [-1, 4, Bottleneck, [1024]], # 10
26 | ]
27 |
28 | # YOLOv3-SPP head
29 | head:
30 | [[-1, 1, Bottleneck, [1024, False]],
31 | [-1, 1, SPP, [512, [5, 9, 13]]],
32 | [-1, 1, Conv, [1024, 3, 1]],
33 | [-1, 1, Conv, [512, 1, 1]],
34 | [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35 |
36 | [-2, 1, Conv, [256, 1, 1]],
37 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38 | [[-1, 8], 1, Concat, [1]], # cat backbone P4
39 | [-1, 1, Bottleneck, [512, False]],
40 | [-1, 1, Bottleneck, [512, False]],
41 | [-1, 1, Conv, [256, 1, 1]],
42 | [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43 |
44 | [-2, 1, Conv, [128, 1, 1]],
45 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46 | [[-1, 6], 1, Concat, [1]], # cat backbone P3
47 | [-1, 1, Bottleneck, [256, False]],
48 | [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49 |
50 | [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51 | ]
52 |
--------------------------------------------------------------------------------
/models/hub/yolov3-tiny.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors:
8 | - [10,14, 23,27, 37,58] # P4/16
9 | - [81,82, 135,169, 344,319] # P5/32
10 |
11 | # YOLOv3-tiny backbone
12 | backbone:
13 | # [from, number, module, args]
14 | [[-1, 1, Conv, [16, 3, 1]], # 0
15 | [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
16 | [-1, 1, Conv, [32, 3, 1]],
17 | [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
18 | [-1, 1, Conv, [64, 3, 1]],
19 | [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
20 | [-1, 1, Conv, [128, 3, 1]],
21 | [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
22 | [-1, 1, Conv, [256, 3, 1]],
23 | [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
24 | [-1, 1, Conv, [512, 3, 1]],
25 | [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
26 | [-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
27 | ]
28 |
29 | # YOLOv3-tiny head
30 | head:
31 | [[-1, 1, Conv, [1024, 3, 1]],
32 | [-1, 1, Conv, [256, 1, 1]],
33 | [-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
34 |
35 | [-2, 1, Conv, [128, 1, 1]],
36 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37 | [[-1, 8], 1, Concat, [1]], # cat backbone P4
38 | [-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
39 |
40 | [[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
41 | ]
42 |
--------------------------------------------------------------------------------
/models/hub/yolov3.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # darknet53 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [32, 3, 1]], # 0
16 | [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17 | [-1, 1, Bottleneck, [64]],
18 | [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19 | [-1, 2, Bottleneck, [128]],
20 | [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21 | [-1, 8, Bottleneck, [256]],
22 | [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23 | [-1, 8, Bottleneck, [512]],
24 | [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25 | [-1, 4, Bottleneck, [1024]], # 10
26 | ]
27 |
28 | # YOLOv3 head
29 | head:
30 | [[-1, 1, Bottleneck, [1024, False]],
31 | [-1, 1, Conv, [512, 1, 1]],
32 | [-1, 1, Conv, [1024, 3, 1]],
33 | [-1, 1, Conv, [512, 1, 1]],
34 | [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35 |
36 | [-2, 1, Conv, [256, 1, 1]],
37 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38 | [[-1, 8], 1, Concat, [1]], # cat backbone P4
39 | [-1, 1, Bottleneck, [512, False]],
40 | [-1, 1, Bottleneck, [512, False]],
41 | [-1, 1, Conv, [256, 1, 1]],
42 | [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43 |
44 | [-2, 1, Conv, [128, 1, 1]],
45 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46 | [[-1, 6], 1, Concat, [1]], # cat backbone P3
47 | [-1, 1, Bottleneck, [256, False]],
48 | [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49 |
50 | [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51 | ]
52 |
--------------------------------------------------------------------------------
/models/hub/yolov5-bifpn.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 v6.0 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 6, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 3, C3, [1024]],
24 | [-1, 1, SPPF, [1024, 5]], # 9
25 | ]
26 |
27 | # YOLOv5 v6.0 BiFPN head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14, 6], 1, Concat, [1]], # cat P4 <--- BiFPN change
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models/hub/yolov5-fpn.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 v6.0 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 6, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 3, C3, [1024]],
24 | [-1, 1, SPPF, [1024, 5]], # 9
25 | ]
26 |
27 | # YOLOv5 v6.0 FPN head
28 | head:
29 | [[-1, 3, C3, [1024, False]], # 10 (P5/32-large)
30 |
31 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
33 | [-1, 1, Conv, [512, 1, 1]],
34 | [-1, 3, C3, [512, False]], # 14 (P4/16-medium)
35 |
36 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
38 | [-1, 1, Conv, [256, 1, 1]],
39 | [-1, 3, C3, [256, False]], # 18 (P3/8-small)
40 |
41 | [[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
42 | ]
43 |
--------------------------------------------------------------------------------
/models/hub/yolov5-p2.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
8 |
9 | # YOLOv5 v6.0 backbone
10 | backbone:
11 | # [from, number, module, args]
12 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
13 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
14 | [-1, 3, C3, [128]],
15 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
16 | [-1, 6, C3, [256]],
17 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
18 | [-1, 9, C3, [512]],
19 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
20 | [-1, 3, C3, [1024]],
21 | [-1, 1, SPPF, [1024, 5]], # 9
22 | ]
23 |
24 | # YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs
25 | head:
26 | [[-1, 1, Conv, [512, 1, 1]],
27 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
28 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
29 | [-1, 3, C3, [512, False]], # 13
30 |
31 | [-1, 1, Conv, [256, 1, 1]],
32 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
33 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
34 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
35 |
36 | [-1, 1, Conv, [128, 1, 1]],
37 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38 | [[-1, 2], 1, Concat, [1]], # cat backbone P2
39 | [-1, 1, C3, [128, False]], # 21 (P2/4-xsmall)
40 |
41 | [-1, 1, Conv, [128, 3, 2]],
42 | [[-1, 18], 1, Concat, [1]], # cat head P3
43 | [-1, 3, C3, [256, False]], # 24 (P3/8-small)
44 |
45 | [-1, 1, Conv, [256, 3, 2]],
46 | [[-1, 14], 1, Concat, [1]], # cat head P4
47 | [-1, 3, C3, [512, False]], # 27 (P4/16-medium)
48 |
49 | [-1, 1, Conv, [512, 3, 2]],
50 | [[-1, 10], 1, Concat, [1]], # cat head P5
51 | [-1, 3, C3, [1024, False]], # 30 (P5/32-large)
52 |
53 | [[21, 24, 27, 30], 1, Detect, [nc, anchors]], # Detect(P2, P3, P4, P5)
54 | ]
55 |
--------------------------------------------------------------------------------
/models/hub/yolov5-p34.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 0.33 # model depth multiple
6 | width_multiple: 0.50 # layer channel multiple
7 | anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
8 |
9 | # YOLOv5 v6.0 backbone
10 | backbone:
11 | # [from, number, module, args]
12 | [ [ -1, 1, Conv, [ 64, 6, 2, 2 ] ], # 0-P1/2
13 | [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
14 | [ -1, 3, C3, [ 128 ] ],
15 | [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
16 | [ -1, 6, C3, [ 256 ] ],
17 | [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
18 | [ -1, 9, C3, [ 512 ] ],
19 | [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32
20 | [ -1, 3, C3, [ 1024 ] ],
21 | [ -1, 1, SPPF, [ 1024, 5 ] ], # 9
22 | ]
23 |
24 | # YOLOv5 v6.0 head with (P3, P4) outputs
25 | head:
26 | [ [ -1, 1, Conv, [ 512, 1, 1 ] ],
27 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
28 | [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
29 | [ -1, 3, C3, [ 512, False ] ], # 13
30 |
31 | [ -1, 1, Conv, [ 256, 1, 1 ] ],
32 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
33 | [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
34 | [ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small)
35 |
36 | [ -1, 1, Conv, [ 256, 3, 2 ] ],
37 | [ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4
38 | [ -1, 3, C3, [ 512, False ] ], # 20 (P4/16-medium)
39 |
40 | [ [ 17, 20 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4)
41 | ]
42 |
--------------------------------------------------------------------------------
/models/hub/yolov5-p6.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
8 |
9 | # YOLOv5 v6.0 backbone
10 | backbone:
11 | # [from, number, module, args]
12 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
13 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
14 | [-1, 3, C3, [128]],
15 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
16 | [-1, 6, C3, [256]],
17 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
18 | [-1, 9, C3, [512]],
19 | [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
20 | [-1, 3, C3, [768]],
21 | [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
22 | [-1, 3, C3, [1024]],
23 | [-1, 1, SPPF, [1024, 5]], # 11
24 | ]
25 |
26 | # YOLOv5 v6.0 head with (P3, P4, P5, P6) outputs
27 | head:
28 | [[-1, 1, Conv, [768, 1, 1]],
29 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
30 | [[-1, 8], 1, Concat, [1]], # cat backbone P5
31 | [-1, 3, C3, [768, False]], # 15
32 |
33 | [-1, 1, Conv, [512, 1, 1]],
34 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
36 | [-1, 3, C3, [512, False]], # 19
37 |
38 | [-1, 1, Conv, [256, 1, 1]],
39 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
40 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
41 | [-1, 3, C3, [256, False]], # 23 (P3/8-small)
42 |
43 | [-1, 1, Conv, [256, 3, 2]],
44 | [[-1, 20], 1, Concat, [1]], # cat head P4
45 | [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
46 |
47 | [-1, 1, Conv, [512, 3, 2]],
48 | [[-1, 16], 1, Concat, [1]], # cat head P5
49 | [-1, 3, C3, [768, False]], # 29 (P5/32-large)
50 |
51 | [-1, 1, Conv, [768, 3, 2]],
52 | [[-1, 12], 1, Concat, [1]], # cat head P6
53 | [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
54 |
55 | [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
56 | ]
57 |
--------------------------------------------------------------------------------
/models/hub/yolov5-p7.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
8 |
9 | # YOLOv5 v6.0 backbone
10 | backbone:
11 | # [from, number, module, args]
12 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
13 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
14 | [-1, 3, C3, [128]],
15 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
16 | [-1, 6, C3, [256]],
17 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
18 | [-1, 9, C3, [512]],
19 | [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
20 | [-1, 3, C3, [768]],
21 | [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
22 | [-1, 3, C3, [1024]],
23 | [-1, 1, Conv, [1280, 3, 2]], # 11-P7/128
24 | [-1, 3, C3, [1280]],
25 | [-1, 1, SPPF, [1280, 5]], # 13
26 | ]
27 |
28 | # YOLOv5 v6.0 head with (P3, P4, P5, P6, P7) outputs
29 | head:
30 | [[-1, 1, Conv, [1024, 1, 1]],
31 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32 | [[-1, 10], 1, Concat, [1]], # cat backbone P6
33 | [-1, 3, C3, [1024, False]], # 17
34 |
35 | [-1, 1, Conv, [768, 1, 1]],
36 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37 | [[-1, 8], 1, Concat, [1]], # cat backbone P5
38 | [-1, 3, C3, [768, False]], # 21
39 |
40 | [-1, 1, Conv, [512, 1, 1]],
41 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
42 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
43 | [-1, 3, C3, [512, False]], # 25
44 |
45 | [-1, 1, Conv, [256, 1, 1]],
46 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
47 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
48 | [-1, 3, C3, [256, False]], # 29 (P3/8-small)
49 |
50 | [-1, 1, Conv, [256, 3, 2]],
51 | [[-1, 26], 1, Concat, [1]], # cat head P4
52 | [-1, 3, C3, [512, False]], # 32 (P4/16-medium)
53 |
54 | [-1, 1, Conv, [512, 3, 2]],
55 | [[-1, 22], 1, Concat, [1]], # cat head P5
56 | [-1, 3, C3, [768, False]], # 35 (P5/32-large)
57 |
58 | [-1, 1, Conv, [768, 3, 2]],
59 | [[-1, 18], 1, Concat, [1]], # cat head P6
60 | [-1, 3, C3, [1024, False]], # 38 (P6/64-xlarge)
61 |
62 | [-1, 1, Conv, [1024, 3, 2]],
63 | [[-1, 14], 1, Concat, [1]], # cat head P7
64 | [-1, 3, C3, [1280, False]], # 41 (P7/128-xxlarge)
65 |
66 | [[29, 32, 35, 38, 41], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6, P7)
67 | ]
68 |
--------------------------------------------------------------------------------
/models/hub/yolov5-panet.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 v6.0 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 6, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 3, C3, [1024]],
24 | [-1, 1, SPPF, [1024, 5]], # 9
25 | ]
26 |
27 | # YOLOv5 v6.0 PANet head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models/hub/yolov5l6.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors:
8 | - [19,27, 44,40, 38,94] # P3/8
9 | - [96,68, 86,152, 180,137] # P4/16
10 | - [140,301, 303,264, 238,542] # P5/32
11 | - [436,615, 739,380, 925,792] # P6/64
12 |
13 | # YOLOv5 v6.0 backbone
14 | backbone:
15 | # [from, number, module, args]
16 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18 | [-1, 3, C3, [128]],
19 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20 | [-1, 6, C3, [256]],
21 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22 | [-1, 9, C3, [512]],
23 | [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24 | [-1, 3, C3, [768]],
25 | [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26 | [-1, 3, C3, [1024]],
27 | [-1, 1, SPPF, [1024, 5]], # 11
28 | ]
29 |
30 | # YOLOv5 v6.0 head
31 | head:
32 | [[-1, 1, Conv, [768, 1, 1]],
33 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34 | [[-1, 8], 1, Concat, [1]], # cat backbone P5
35 | [-1, 3, C3, [768, False]], # 15
36 |
37 | [-1, 1, Conv, [512, 1, 1]],
38 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
40 | [-1, 3, C3, [512, False]], # 19
41 |
42 | [-1, 1, Conv, [256, 1, 1]],
43 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
45 | [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46 |
47 | [-1, 1, Conv, [256, 3, 2]],
48 | [[-1, 20], 1, Concat, [1]], # cat head P4
49 | [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50 |
51 | [-1, 1, Conv, [512, 3, 2]],
52 | [[-1, 16], 1, Concat, [1]], # cat head P5
53 | [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54 |
55 | [-1, 1, Conv, [768, 3, 2]],
56 | [[-1, 12], 1, Concat, [1]], # cat head P6
57 | [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58 |
59 | [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60 | ]
61 |
--------------------------------------------------------------------------------
/models/hub/yolov5m6.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 0.67 # model depth multiple
6 | width_multiple: 0.75 # layer channel multiple
7 | anchors:
8 | - [19,27, 44,40, 38,94] # P3/8
9 | - [96,68, 86,152, 180,137] # P4/16
10 | - [140,301, 303,264, 238,542] # P5/32
11 | - [436,615, 739,380, 925,792] # P6/64
12 |
13 | # YOLOv5 v6.0 backbone
14 | backbone:
15 | # [from, number, module, args]
16 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18 | [-1, 3, C3, [128]],
19 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20 | [-1, 6, C3, [256]],
21 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22 | [-1, 9, C3, [512]],
23 | [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24 | [-1, 3, C3, [768]],
25 | [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26 | [-1, 3, C3, [1024]],
27 | [-1, 1, SPPF, [1024, 5]], # 11
28 | ]
29 |
30 | # YOLOv5 v6.0 head
31 | head:
32 | [[-1, 1, Conv, [768, 1, 1]],
33 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34 | [[-1, 8], 1, Concat, [1]], # cat backbone P5
35 | [-1, 3, C3, [768, False]], # 15
36 |
37 | [-1, 1, Conv, [512, 1, 1]],
38 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
40 | [-1, 3, C3, [512, False]], # 19
41 |
42 | [-1, 1, Conv, [256, 1, 1]],
43 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
45 | [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46 |
47 | [-1, 1, Conv, [256, 3, 2]],
48 | [[-1, 20], 1, Concat, [1]], # cat head P4
49 | [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50 |
51 | [-1, 1, Conv, [512, 3, 2]],
52 | [[-1, 16], 1, Concat, [1]], # cat head P5
53 | [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54 |
55 | [-1, 1, Conv, [768, 3, 2]],
56 | [[-1, 12], 1, Concat, [1]], # cat head P6
57 | [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58 |
59 | [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60 | ]
61 |
--------------------------------------------------------------------------------
/models/hub/yolov5n6.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 0.33 # model depth multiple
6 | width_multiple: 0.25 # layer channel multiple
7 | anchors:
8 | - [19,27, 44,40, 38,94] # P3/8
9 | - [96,68, 86,152, 180,137] # P4/16
10 | - [140,301, 303,264, 238,542] # P5/32
11 | - [436,615, 739,380, 925,792] # P6/64
12 |
13 | # YOLOv5 v6.0 backbone
14 | backbone:
15 | # [from, number, module, args]
16 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18 | [-1, 3, C3, [128]],
19 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20 | [-1, 6, C3, [256]],
21 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22 | [-1, 9, C3, [512]],
23 | [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24 | [-1, 3, C3, [768]],
25 | [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26 | [-1, 3, C3, [1024]],
27 | [-1, 1, SPPF, [1024, 5]], # 11
28 | ]
29 |
30 | # YOLOv5 v6.0 head
31 | head:
32 | [[-1, 1, Conv, [768, 1, 1]],
33 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34 | [[-1, 8], 1, Concat, [1]], # cat backbone P5
35 | [-1, 3, C3, [768, False]], # 15
36 |
37 | [-1, 1, Conv, [512, 1, 1]],
38 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
40 | [-1, 3, C3, [512, False]], # 19
41 |
42 | [-1, 1, Conv, [256, 1, 1]],
43 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
45 | [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46 |
47 | [-1, 1, Conv, [256, 3, 2]],
48 | [[-1, 20], 1, Concat, [1]], # cat head P4
49 | [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50 |
51 | [-1, 1, Conv, [512, 3, 2]],
52 | [[-1, 16], 1, Concat, [1]], # cat head P5
53 | [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54 |
55 | [-1, 1, Conv, [768, 3, 2]],
56 | [[-1, 12], 1, Concat, [1]], # cat head P6
57 | [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58 |
59 | [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60 | ]
61 |
--------------------------------------------------------------------------------
/models/hub/yolov5s-ghost.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 0.33 # model depth multiple
6 | width_multiple: 0.50 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 v6.0 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16 | [-1, 1, GhostConv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3Ghost, [128]],
18 | [-1, 1, GhostConv, [256, 3, 2]], # 3-P3/8
19 | [-1, 6, C3Ghost, [256]],
20 | [-1, 1, GhostConv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3Ghost, [512]],
22 | [-1, 1, GhostConv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 3, C3Ghost, [1024]],
24 | [-1, 1, SPPF, [1024, 5]], # 9
25 | ]
26 |
27 | # YOLOv5 v6.0 head
28 | head:
29 | [[-1, 1, GhostConv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3Ghost, [512, False]], # 13
33 |
34 | [-1, 1, GhostConv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3Ghost, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, GhostConv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3Ghost, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, GhostConv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3Ghost, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models/hub/yolov5s-transformer.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 0.33 # model depth multiple
6 | width_multiple: 0.50 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 v6.0 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 6, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 3, C3TR, [1024]], # 9 <--- C3TR() Transformer module
24 | [-1, 1, SPPF, [1024, 5]], # 9
25 | ]
26 |
27 | # YOLOv5 v6.0 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models/hub/yolov5s6.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 0.33 # model depth multiple
6 | width_multiple: 0.50 # layer channel multiple
7 | anchors:
8 | - [19,27, 44,40, 38,94] # P3/8
9 | - [96,68, 86,152, 180,137] # P4/16
10 | - [140,301, 303,264, 238,542] # P5/32
11 | - [436,615, 739,380, 925,792] # P6/64
12 |
13 | # YOLOv5 v6.0 backbone
14 | backbone:
15 | # [from, number, module, args]
16 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18 | [-1, 3, C3, [128]],
19 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20 | [-1, 6, C3, [256]],
21 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22 | [-1, 9, C3, [512]],
23 | [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24 | [-1, 3, C3, [768]],
25 | [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26 | [-1, 3, C3, [1024]],
27 | [-1, 1, SPPF, [1024, 5]], # 11
28 | ]
29 |
30 | # YOLOv5 v6.0 head
31 | head:
32 | [[-1, 1, Conv, [768, 1, 1]],
33 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34 | [[-1, 8], 1, Concat, [1]], # cat backbone P5
35 | [-1, 3, C3, [768, False]], # 15
36 |
37 | [-1, 1, Conv, [512, 1, 1]],
38 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
40 | [-1, 3, C3, [512, False]], # 19
41 |
42 | [-1, 1, Conv, [256, 1, 1]],
43 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
45 | [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46 |
47 | [-1, 1, Conv, [256, 3, 2]],
48 | [[-1, 20], 1, Concat, [1]], # cat head P4
49 | [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50 |
51 | [-1, 1, Conv, [512, 3, 2]],
52 | [[-1, 16], 1, Concat, [1]], # cat head P5
53 | [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54 |
55 | [-1, 1, Conv, [768, 3, 2]],
56 | [[-1, 12], 1, Concat, [1]], # cat head P6
57 | [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58 |
59 | [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60 | ]
61 |
--------------------------------------------------------------------------------
/models/hub/yolov5x6.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.33 # model depth multiple
6 | width_multiple: 1.25 # layer channel multiple
7 | anchors:
8 | - [19,27, 44,40, 38,94] # P3/8
9 | - [96,68, 86,152, 180,137] # P4/16
10 | - [140,301, 303,264, 238,542] # P5/32
11 | - [436,615, 739,380, 925,792] # P6/64
12 |
13 | # YOLOv5 v6.0 backbone
14 | backbone:
15 | # [from, number, module, args]
16 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18 | [-1, 3, C3, [128]],
19 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20 | [-1, 6, C3, [256]],
21 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22 | [-1, 9, C3, [512]],
23 | [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24 | [-1, 3, C3, [768]],
25 | [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26 | [-1, 3, C3, [1024]],
27 | [-1, 1, SPPF, [1024, 5]], # 11
28 | ]
29 |
30 | # YOLOv5 v6.0 head
31 | head:
32 | [[-1, 1, Conv, [768, 1, 1]],
33 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34 | [[-1, 8], 1, Concat, [1]], # cat backbone P5
35 | [-1, 3, C3, [768, False]], # 15
36 |
37 | [-1, 1, Conv, [512, 1, 1]],
38 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
40 | [-1, 3, C3, [512, False]], # 19
41 |
42 | [-1, 1, Conv, [256, 1, 1]],
43 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
45 | [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46 |
47 | [-1, 1, Conv, [256, 3, 2]],
48 | [[-1, 20], 1, Concat, [1]], # cat head P4
49 | [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50 |
51 | [-1, 1, Conv, [512, 3, 2]],
52 | [[-1, 16], 1, Concat, [1]], # cat head P5
53 | [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54 |
55 | [-1, 1, Conv, [768, 3, 2]],
56 | [[-1, 12], 1, Concat, [1]], # cat head P6
57 | [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58 |
59 | [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60 | ]
61 |
--------------------------------------------------------------------------------
/models/yolov5l.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 v6.0 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 6, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 3, C3, [1024]],
24 | [-1, 1, SPPF, [1024, 5]], # 9
25 | ]
26 |
27 | # YOLOv5 v6.0 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models/yolov5m.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 0.67 # model depth multiple
6 | width_multiple: 0.75 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 v6.0 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 6, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 3, C3, [1024]],
24 | [-1, 1, SPPF, [1024, 5]], # 9
25 | ]
26 |
27 | # YOLOv5 v6.0 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models/yolov5n.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 0.33 # model depth multiple
6 | width_multiple: 0.25 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 v6.0 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 6, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 3, C3, [1024]],
24 | [-1, 1, SPPF, [1024, 5]], # 9
25 | ]
26 |
27 | # YOLOv5 v6.0 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models/yolov5s.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 0.33 # model depth multiple
6 | width_multiple: 0.50 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 v6.0 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 6, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 3, C3, [1024]],
24 | [-1, 1, SPPF, [1024, 5]], # 9
25 | ]
26 |
27 | # YOLOv5 v6.0 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models/yolov5x.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.33 # model depth multiple
6 | width_multiple: 1.25 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 v6.0 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 6, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 3, C3, [1024]],
24 | [-1, 1, SPPF, [1024, 5]], # 9
25 | ]
26 |
27 | # YOLOv5 v6.0 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models0/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/models0/__init__.py
--------------------------------------------------------------------------------
/models0/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/models0/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/models0/__pycache__/__init__.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/models0/__pycache__/__init__.cpython-39.pyc
--------------------------------------------------------------------------------
/models0/__pycache__/common.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/models0/__pycache__/common.cpython-38.pyc
--------------------------------------------------------------------------------
/models0/__pycache__/common.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/models0/__pycache__/common.cpython-39.pyc
--------------------------------------------------------------------------------
/models0/__pycache__/experimental.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/models0/__pycache__/experimental.cpython-38.pyc
--------------------------------------------------------------------------------
/models0/__pycache__/experimental.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/models0/__pycache__/experimental.cpython-39.pyc
--------------------------------------------------------------------------------
/models0/__pycache__/yolo.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/models0/__pycache__/yolo.cpython-38.pyc
--------------------------------------------------------------------------------
/models0/__pycache__/yolo.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/models0/__pycache__/yolo.cpython-39.pyc
--------------------------------------------------------------------------------
/models0/experimental.py:
--------------------------------------------------------------------------------
1 | # YOLOv5 experimental modules
2 |
3 | import numpy as np
4 | import torch
5 | import torch.nn as nn
6 |
7 | from models.common import Conv, DWConv
8 | from utils.google_utils import attempt_download
9 |
10 |
11 | class CrossConv(nn.Module):
12 | # Cross Convolution Downsample
13 | def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
14 | # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
15 | super(CrossConv, self).__init__()
16 | c_ = int(c2 * e) # hidden channels
17 | self.cv1 = Conv(c1, c_, (1, k), (1, s))
18 | self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
19 | self.add = shortcut and c1 == c2
20 |
21 | def forward(self, x):
22 | return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
23 |
24 |
25 | class Sum(nn.Module):
26 | # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
27 | def __init__(self, n, weight=False): # n: number of inputs
28 | super(Sum, self).__init__()
29 | self.weight = weight # apply weights boolean
30 | self.iter = range(n - 1) # iter object
31 | if weight:
32 | self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
33 |
34 | def forward(self, x):
35 | y = x[0] # no weight
36 | if self.weight:
37 | w = torch.sigmoid(self.w) * 2
38 | for i in self.iter:
39 | y = y + x[i + 1] * w[i]
40 | else:
41 | for i in self.iter:
42 | y = y + x[i + 1]
43 | return y
44 |
45 |
46 | class GhostConv(nn.Module):
47 | # Ghost Convolution https://github.com/huawei-noah/ghostnet
48 | def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
49 | super(GhostConv, self).__init__()
50 | c_ = c2 // 2 # hidden channels
51 | self.cv1 = Conv(c1, c_, k, s, None, g, act)
52 | self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
53 |
54 | def forward(self, x):
55 | y = self.cv1(x)
56 | return torch.cat([y, self.cv2(y)], 1)
57 |
58 |
59 | class GhostBottleneck(nn.Module):
60 | # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
61 | def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
62 | super(GhostBottleneck, self).__init__()
63 | c_ = c2 // 2
64 | self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
65 | DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
66 | GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
67 | self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
68 | Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
69 |
70 | def forward(self, x):
71 | return self.conv(x) + self.shortcut(x)
72 |
73 |
74 | class MixConv2d(nn.Module):
75 | # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
76 | def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
77 | super(MixConv2d, self).__init__()
78 | groups = len(k)
79 | if equal_ch: # equal c_ per group
80 | i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
81 | c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
82 | else: # equal weight.numel() per group
83 | b = [c2] + [0] * groups
84 | a = np.eye(groups + 1, groups, k=-1)
85 | a -= np.roll(a, 1, axis=1)
86 | a *= np.array(k) ** 2
87 | a[0] = 1
88 | c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
89 |
90 | self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
91 | self.bn = nn.BatchNorm2d(c2)
92 | self.act = nn.LeakyReLU(0.1, inplace=True)
93 |
94 | def forward(self, x):
95 | return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
96 |
97 |
98 | class Ensemble(nn.ModuleList):
99 | # Ensemble of models
100 | def __init__(self):
101 | super(Ensemble, self).__init__()
102 |
103 | def forward(self, x, augment=False):
104 | y = []
105 | for module in self:
106 | y.append(module(x, augment)[0])
107 | # y = torch.stack(y).max(0)[0] # max ensemble
108 | # y = torch.stack(y).mean(0) # mean ensemble
109 | y = torch.cat(y, 1) # nms ensemble
110 | return y, None # inference, train output
111 |
112 |
113 | def attempt_load(weights, map_location=None):
114 | # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
115 | model = Ensemble()
116 | for w in weights if isinstance(weights, list) else [weights]:
117 | attempt_download(w)
118 | ckpt = torch.load(w, map_location=map_location) # load
119 | model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
120 |
121 | # Compatibility updates
122 | for m in model.modules():
123 | if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
124 | m.inplace = True # pytorch 1.7.0 compatibility
125 | elif type(m) is Conv:
126 | m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
127 |
128 | if len(model) == 1:
129 | return model[-1] # return model
130 | else:
131 | print('Ensemble created with %s\n' % weights)
132 | for k in ['names', 'stride']:
133 | setattr(model, k, getattr(model[-1], k))
134 | return model # return ensemble
135 |
--------------------------------------------------------------------------------
/models0/export.py:
--------------------------------------------------------------------------------
1 | """Exports a YOLOv5 *.pt model to ONNX and TorchScript formats
2 |
3 | Usage:
4 | $ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
5 | """
6 |
7 | import argparse
8 | import sys
9 | import time
10 |
11 | sys.path.append('./') # to run '$ python *.py' files in subdirectories
12 |
13 | import torch
14 | import torch.nn as nn
15 |
16 | import models
17 | from models.experimental import attempt_load
18 | from utils.activations import Hardswish, SiLU
19 | from utils.general import set_logging, check_img_size
20 | from utils.torch_utils import select_device
21 |
22 | if __name__ == '__main__':
23 | parser = argparse.ArgumentParser()
24 | parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/
25 | parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
26 | parser.add_argument('--batch-size', type=int, default=1, help='batch size')
27 | parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
28 | parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
29 | parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
30 | opt = parser.parse_args()
31 | opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
32 | print(opt)
33 | set_logging()
34 | t = time.time()
35 |
36 | # Load PyTorch model
37 | device = select_device(opt.device)
38 | model = attempt_load(opt.weights, map_location=device) # load FP32 model
39 | labels = model.names
40 |
41 | # Checks
42 | gs = int(max(model.stride)) # grid size (max stride)
43 | opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
44 |
45 | # Input
46 | img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
47 |
48 | # Update model
49 | for k, m in model.named_modules():
50 | m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
51 | if isinstance(m, models.common.Conv): # assign export-friendly activations
52 | if isinstance(m.act, nn.Hardswish):
53 | m.act = Hardswish()
54 | elif isinstance(m.act, nn.SiLU):
55 | m.act = SiLU()
56 | # elif isinstance(m, models.yolo.Detect):
57 | # m.forward = m.forward_export # assign forward (optional)
58 | model.model[-1].export = not opt.grid # set Detect() layer grid export
59 | y = model(img) # dry run
60 |
61 | # TorchScript export
62 | try:
63 | print('\nStarting TorchScript export with torch %s...' % torch.__version__)
64 | f = opt.weights.replace('.pt', '.torchscript.pt') # filename
65 | ts = torch.jit.trace(model, img, strict=False)
66 | ts.save(f)
67 | print('TorchScript export success, saved as %s' % f)
68 | except Exception as e:
69 | print('TorchScript export failure: %s' % e)
70 |
71 | # ONNX export
72 | try:
73 | import onnx
74 |
75 | print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
76 | f = opt.weights.replace('.pt', '.onnx') # filename
77 | torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
78 | output_names=['classes', 'boxes'] if y is None else ['output'],
79 | dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
80 | 'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None)
81 |
82 | # Checks
83 | onnx_model = onnx.load(f) # load onnx model
84 | onnx.checker.check_model(onnx_model) # check onnx model
85 | # print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
86 | print('ONNX export success, saved as %s' % f)
87 | except Exception as e:
88 | print('ONNX export failure: %s' % e)
89 |
90 | # CoreML export
91 | try:
92 | import coremltools as ct
93 |
94 | print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
95 | # convert model from torchscript and apply pixel scaling as per detect.py
96 | model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
97 | f = opt.weights.replace('.pt', '.mlmodel') # filename
98 | model.save(f)
99 | print('CoreML export success, saved as %s' % f)
100 | except Exception as e:
101 | print('CoreML export failure: %s' % e)
102 |
103 | # Finish
104 | print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
105 |
--------------------------------------------------------------------------------
/models0/yolov5l.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 3, C3, [1024, False]], # 9
25 | ]
26 |
27 | # YOLOv5 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models0/yolov5m.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 0.67 # model depth multiple
4 | width_multiple: 0.75 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 3, C3, [1024, False]], # 9
25 | ]
26 |
27 | # YOLOv5 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models0/yolov5s.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 0.33 # model depth multiple
4 | width_multiple: 0.50 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 3, C3, [1024, False]], # 9
25 | ]
26 |
27 | # YOLOv5 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models0/yolov5x.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.33 # model depth multiple
4 | width_multiple: 1.25 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 3, C3, [1024, False]], # 9
25 | ]
26 |
27 | # YOLOv5 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/platech.ttf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/platech.ttf
--------------------------------------------------------------------------------
/pt/yolov5s.pt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/pt/yolov5s.pt
--------------------------------------------------------------------------------
/push.sh:
--------------------------------------------------------------------------------
1 | echo "#################### config global user name & email ####################"
2 | git config --global user.email "1358366+dyh@users.noreply.github.com"
3 | git config --global user.name "dyh"
4 |
5 | echo "#################### git add . ####################"
6 | git add .
7 |
8 | echo "#################### git pull ####################"
9 | git pull
10 |
11 | echo "#################### git commit -m \"daily\" ####################"
12 | git commit -m "unbox"
13 |
14 | echo "#################### git push -u origin main ####################"
15 | git push -u origin main
16 |
17 | echo "#################### done ####################"
18 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | chardet
2 | dataclasses
3 | pkg-resources
4 | typing-extensions
5 | absl-py 0.15.0
6 | anyio 3.7.0
7 | appdirs 1.4.4
8 | asttokens 2.2.1
9 | astunparse 1.6.3
10 | backcall 0.2.0
11 | bleach 1.5.0
12 | cachetools 5.3.1
13 | certifi 2023.5.7
14 | cffi 1.15.1
15 | charset-normalizer 3.1.0
16 | click 8.1.3
17 | cmake 3.26.3
18 | coloredlogs 15.0.1
19 | contourpy 1.0.7
20 | cycler 0.11.0
21 | decorator 5.1.1
22 | DNN-printer 0.0.2
23 | docker-pycreds 0.4.0
24 | easydict 1.10
25 | exceptiongroup 1.1.1
26 | executing 1.2.0
27 | fastapi 0.97.0
28 | filelock 3.12.0
29 | flatbuffers 1.12
30 | fonttools 4.39.4
31 | gast 0.3.3
32 | gitdb 4.0.10
33 | GitPython 3.1.31
34 | google-auth 2.19.1
35 | google-auth-oauthlib 1.0.0
36 | google-pasta 0.2.0
37 | grpcio 1.54.2
38 | h11 0.14.0
39 | h5py 2.10.0
40 | html5lib 0.9999999
41 | humanfriendly 10.0
42 | hyperlpr3 0.1.3
43 | idna 3.4
44 | importlib-metadata 6.6.0
45 | importlib-resources 5.12.0
46 | imutils 0.5.4
47 | ipython 8.12.2
48 | jedi 0.18.2
49 | Jinja2 3.1.2
50 | Keras-Preprocessing 1.1.2
51 | kiwisolver 1.4.4
52 | lit 16.0.5.post0
53 | loguru 0.7.0
54 | Markdown 3.4.3
55 | MarkupSafe 2.1.3
56 | matplotlib 3.7.1
57 | matplotlib-inline 0.1.6
58 | mpmath 1.3.0
59 | networkx 3.1
60 | numpy 1.22.3
61 | nvidia-cublas-cu11 11.10.3.66
62 | nvidia-cuda-cupti-cu11 11.7.101
63 | nvidia-cuda-nvrtc-cu11 11.7.99
64 | nvidia-cuda-runtime-cu11 11.7.99
65 | nvidia-cudnn-cu11 8.5.0.96
66 | nvidia-cufft-cu11 10.9.0.58
67 | nvidia-curand-cu11 10.2.10.91
68 | nvidia-cusolver-cu11 11.4.0.1
69 | nvidia-cusparse-cu11 11.7.4.91
70 | nvidia-nccl-cu11 2.14.3
71 | nvidia-nvtx-cu11 11.7.91
72 | oauthlib 3.2.2
73 | onnxruntime 1.15.1
74 | opencv-python 4.1.2.30
75 | opt-einsum 3.3.0
76 | packaging 23.1
77 | pandas 2.0.2
78 | parso 0.8.3
79 | pathtools 0.1.2
80 | pexpect 4.8.0
81 | pickleshare 0.7.5
82 | Pillow 9.5.0
83 | pip 23.0.1
84 | prompt-toolkit 3.0.38
85 | protobuf 3.20.3
86 | psutil 5.9.5
87 | ptyprocess 0.7.0
88 | pure-eval 0.2.2
89 | pyasn1 0.5.0
90 | pyasn1-modules 0.3.0
91 | pycparser 2.21
92 | pydantic 1.10.9
93 | Pygments 2.15.1
94 | pyparsing 3.0.9
95 | python-dateutil 2.8.2
96 | python-multipart 0.0.6
97 | pytz 2023.3
98 | PyYAML 6.0
99 | requests 2.31.0
100 | requests-oauthlib 1.3.1
101 | rsa 4.9
102 | scipy 1.10.1
103 | seaborn 0.12.2
104 | sentry-sdk 1.25.1
105 | setproctitle 1.3.2
106 | setuptools 67.8.0
107 | six 1.15.0
108 | smmap 5.0.0
109 | sniffio 1.3.0
110 | soundfile 0.12.1
111 | stack-data 0.6.2
112 | starlette 0.27.0
113 | sympy 1.12
114 | tensorboard 2.13.0
115 | tensorboard-data-server 0.7.1
116 | tensorboard-plugin-wit 1.8.1
117 | tensorflow-estimator 2.4.0
118 | termcolor 1.1.0
119 | thop 0.1.1.post2209072238
120 | torch 1.13.1+cu116
121 | torchaudio 0.13.1+cu116
122 | torchvision 0.14.1+cu116
123 | tqdm 4.65.0
124 | traitlets 5.9.0
125 | triton 2.0.0
126 | typing_extensions 4.6.3
127 | tzdata 2023.3
128 | ultralytics 8.0.114
129 | urllib3 1.26.16
130 | utils 1.0.1
131 | uvicorn 0.22.0
132 | wcwidth 0.2.6
133 | Werkzeug 2.3.6
134 | wheel 0.38.4
135 | wrapt 1.12.1
136 | zipp 3.15.0
--------------------------------------------------------------------------------
/show_license_plate.py:
--------------------------------------------------------------------------------
1 | # 导入cv相关库
2 | import cv2
3 | import numpy as np
4 | from PIL import Image
5 | from PIL import ImageDraw
6 |
7 |
8 | def draw_plate_on_image(img, box, text, font):
9 | x1, y1, x2, y2 = box
10 | cv2.rectangle(img, (x1, y1), (x2, y2), (139, 139, 102), 2, cv2.LINE_AA)
11 | cv2.rectangle(img, (x1, y1 - 20), (x2, y1), (139, 139, 102), -1)
12 | data = Image.fromarray(img)
13 | draw = ImageDraw.Draw(data)
14 | draw.text((x1 + 1, y1 - 18), text, (255, 255, 255), font=font)
15 | res = np.asarray(data)
16 | # print("车牌",res)
17 | return res
18 |
--------------------------------------------------------------------------------
/te.py:
--------------------------------------------------------------------------------
1 | import cv2
2 | import numpy as np
3 |
4 | def on_mouse_click(event, x, y, flags, param):
5 | if event == cv2.EVENT_LBUTTONDOWN:
6 | print(f'鼠标坐标:({x},{y})')
7 |
8 | # 创建一个空白的窗口,并设置回调函数
9 | cv2.namedWindow('image')
10 | cv2.setMouseCallback('image', on_mouse_click)
11 |
12 | # 在窗口中显示一张图片
13 | img = np.zeros((300, 300, 3), np.uint8)
14 | while(True):
15 | cv2.imshow('image', img)
16 | if cv2.waitKey(1) & 0xFF == ord('q'):
17 | break
18 |
19 | # 释放窗口和资源
20 | cv2.destroyAllWindows()
--------------------------------------------------------------------------------
/tracker.py:
--------------------------------------------------------------------------------
1 | import cv2
2 | import torch
3 | import numpy as np
4 | import math
5 |
6 | from deep_sort.utils.parser import get_config
7 | from deep_sort.deep_sort import DeepSort
8 | import hyperlpr3 as lpr3
9 |
10 | cfg = get_config()
11 | cfg.merge_from_file("../GUI/deep_sort/configs/deep_sort.yaml")
12 | deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
13 | max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
14 | nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
15 | max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
16 | use_cuda=True)
17 |
18 |
19 | def draw_bboxes(i, image, bboxes, speed, line_thickness):
20 | catcher = lpr3.LicensePlateCatcher(detect_level=lpr3.DETECT_LEVEL_HIGH)
21 | with open(r"./result/num_" + str(i) + ".txt", 'w') as f:
22 | f.write('Num:\t' + str(len(bboxes)) + '\n')
23 | line_thickness = line_thickness or round(
24 | 0.002 * (image.shape[0] + image.shape[1]) * 0.5) + 1
25 |
26 | list_pts = []
27 | point_radius = 4
28 | index = 0
29 | for (x1, y1, x2, y2, cls_id, pos_id) in bboxes:
30 |
31 | if len(speed) > 0:
32 | speed_id = speed[index]
33 | else:
34 | speed_id = 0
35 | # print("speed: ", speed)
36 | # print("speed_id: ", speed_id)
37 | index += 1
38 | if index >= len(speed):
39 | index -= 1
40 | color = (0, 255, 0)
41 |
42 | # 撞线的点
43 | check_point_x = x1
44 | check_point_y = int(y1 + ((y2 - y1) * 0.6))
45 |
46 | c1, c2 = (x1, y1), (x2, y2)
47 | cv2.rectangle(image, c1, c2, color, thickness=line_thickness, lineType=cv2.LINE_AA)
48 |
49 | font_thickness = max(line_thickness - 1, 1)
50 | t_size = cv2.getTextSize(cls_id, 0, fontScale=line_thickness / 3, thickness=font_thickness)[0]
51 | c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
52 | cv2.rectangle(image, c1, c2, color, -1, cv2.LINE_AA) # filled
53 | if cls_id == 'person' or cls_id == 'bicycle' or cls_id == 'motorbicycle':
54 | cv2.putText(image, '{} ID-{}'.format(cls_id, pos_id), (c1[0], c1[1] - 2), 0,
55 | line_thickness / 3,
56 | [225, 255, 255], thickness=font_thickness, lineType=cv2.LINE_AA)
57 | else:
58 | cv2.putText(image, '{} ID-{},{}km/h'.format(cls_id, pos_id, speed_id), (c1[0], c1[1] - 2), 0, line_thickness / 3,
59 | [225, 255, 255], thickness=font_thickness, lineType=cv2.LINE_AA)
60 | # print("ssss: ", pos_id, speed_id)
61 | # results = catcher(image[x1:y1,x2:y2])
62 | # print('MMMMM: ',x1,y1,x2,y2)
63 | # cv2.imshow('car',image[y1:y2,x1:x2])
64 | results = catcher(image[y1:y2,x1:x2])
65 | # print('SSSS: ',results)
66 |
67 | if results != []:
68 | with open(r"./result/num_" + str(i) + ".txt", 'a') as f:
69 | f.write('ID' + str(pos_id) + ':\t' + cls_id + '\t' + str(speed_id) + '\t' + results[0][0] + '\t' + str(results[0][1]) + '\n')
70 | else:
71 | with open(r"./result/num_" + str(i) + ".txt", 'a') as f:
72 | f.write('ID' + str(pos_id) + ':\t' + cls_id + '\t' + str(speed_id) + '\t' + '0' + '\t' + '0' + '\n')
73 | # with open(r"./result/num_" + str(i) + ".txt", 'a') as f:
74 | # f.write('ID' + str(pos_id) + '\n')
75 |
76 | list_pts.append([check_point_x - point_radius, check_point_y - point_radius])
77 | list_pts.append([check_point_x - point_radius, check_point_y + point_radius])
78 | list_pts.append([check_point_x + point_radius, check_point_y + point_radius])
79 | list_pts.append([check_point_x + point_radius, check_point_y - point_radius])
80 |
81 | ndarray_pts = np.array(list_pts, np.int32)
82 |
83 | cv2.fillPoly(image, [ndarray_pts], color=(0, 0, 255))
84 |
85 | list_pts.clear()
86 |
87 | return image
88 |
89 |
90 | def update(bboxes, image):
91 | bbox_xywh = []
92 | confs = []
93 | bboxes2draw = []
94 |
95 | if len(bboxes) > 0:
96 | for x1, y1, x2, y2, lbl, conf in bboxes:
97 | obj = [
98 | int((x1 + x2) * 0.5), int((y1 + y2) * 0.5),
99 | x2 - x1, y2 - y1
100 | ]
101 | bbox_xywh.append(obj)
102 | confs.append(conf)
103 |
104 | xywhs = torch.Tensor(bbox_xywh)
105 | confss = torch.Tensor(confs)
106 |
107 | outputs = deepsort.update(xywhs, confss, image)
108 |
109 | for x1, y1, x2, y2, track_id in list(outputs):
110 | # x1, y1, x2, y2, track_id = value
111 | center_x = (x1 + x2) * 0.5
112 | center_y = (y1 + y2) * 0.5
113 |
114 | label = search_label(center_x=center_x, center_y=center_y,
115 | bboxes_xyxy=bboxes, max_dist_threshold=20.0)
116 |
117 | bboxes2draw.append((x1, y1, x2, y2, label, track_id))
118 | pass
119 | pass
120 |
121 | return bboxes2draw
122 |
123 |
124 | def search_label(center_x, center_y, bboxes_xyxy, max_dist_threshold):
125 | """
126 | 在 yolov5 的 bbox 中搜索中心点最接近的label
127 | :param center_x:
128 | :param center_y:
129 | :param bboxes_xyxy:
130 | :param max_dist_threshold:
131 | :return: 字符串
132 | """
133 | label = ''
134 | # min_label = ''
135 | min_dist = -1.0
136 |
137 | for x1, y1, x2, y2, lbl, conf in bboxes_xyxy:
138 | center_x2 = (x1 + x2) * 0.5
139 | center_y2 = (y1 + y2) * 0.5
140 |
141 | # 横纵距离都小于 max_dist
142 | min_x = abs(center_x2 - center_x)
143 | min_y = abs(center_y2 - center_y)
144 |
145 | if min_x < max_dist_threshold and min_y < max_dist_threshold:
146 | # 距离阈值,判断是否在允许误差范围内
147 | # 取 x, y 方向上的距离平均值
148 | avg_dist = (min_x + min_y) * 0.5
149 | if min_dist == -1.0:
150 | # 第一次赋值
151 | min_dist = avg_dist
152 | # 赋值label
153 | label = lbl
154 | pass
155 | else:
156 | # 若不是第一次,则距离小的优先
157 | if avg_dist < min_dist:
158 | min_dist = avg_dist
159 | # label
160 | label = lbl
161 | pass
162 | pass
163 | pass
164 |
165 | return label
166 |
167 | def Estimated_speed(locations, fps, width): # 基于 deepssort 的车速检测
168 | print("loca ", locations)
169 | present_IDs = []
170 | prev_IDs = []
171 | work_IDs = []
172 | work_IDs_index = []
173 | work_IDs_prev_index = []
174 | work_locations = [] # 当前帧数据:中心点x坐标、中心点y坐标、目标序号、车辆类别、车辆像素宽度
175 | work_prev_locations = [] # 上一帧数据,数据格式相同
176 | speed = []
177 | for i in range(len(locations[1])):
178 | present_IDs.append(locations[1][i][5]) # 获得当前帧中跟踪到车辆的ID locations[1][i][1] label locations[1][i][2] ID
179 | for i in range(len(locations[0])):
180 | prev_IDs.append(locations[0][i][5]) # 获得前一帧中跟踪到车辆的ID
181 | for m, n in enumerate(present_IDs):
182 | if n in prev_IDs: # 进行筛选,找到在两帧图像中均被检测到的有效车辆ID,存入work_IDs中
183 | work_IDs.append(n)
184 | work_IDs_index.append(m)
185 | for x in work_IDs_index: # 将当前帧有效检测车辆的信息存入work_locations中
186 | work_locations.append(locations[1][x])
187 | for y, z in enumerate(prev_IDs):
188 | if z in work_IDs: # 将前一帧有效检测车辆的ID索引存入work_IDs_prev_index中
189 | work_IDs_prev_index.append(y)
190 | for x in work_IDs_prev_index: # 将前一帧有效检测车辆的信息存入work_prev_locations中
191 | work_prev_locations.append(locations[0][x])
192 | print("work_locations: ", work_locations)
193 | print("work_prev_locations: ", work_prev_locations)
194 | for i in range(len(work_IDs)):
195 | ss = ((math.sqrt((work_locations[i][0] - work_prev_locations[i][0]) ** 2 + # 计算有效检测车辆的速度,采用线性的从像素距离到真实空间距离的映射
196 | (work_locations[i][1] - work_prev_locations[i][1]) ** 2) * # 当视频拍摄视角并不垂直于车辆移动轨迹时,测算出来的速度将比实际速度低
197 | 500 / (work_locations[i][3]) * fps / 5 * 3.6 * 2))
198 | speed.append(math.sqrt(ss)*1.5) # [work_locations[i][3]]
199 | for i in range(len(speed)):
200 | speed[i] = round(speed[i], 1) #work_locations[i][2]] # 将保留一位小数的单位为km/h的车辆速度及其ID存入speed二维列表中
201 | return speed
202 |
--------------------------------------------------------------------------------
/utils0/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/utils0/__init__.py
--------------------------------------------------------------------------------
/utils0/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/utils0/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/utils0/__pycache__/__init__.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/utils0/__pycache__/__init__.cpython-39.pyc
--------------------------------------------------------------------------------
/utils0/__pycache__/autoanchor.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/utils0/__pycache__/autoanchor.cpython-38.pyc
--------------------------------------------------------------------------------
/utils0/__pycache__/autoanchor.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/utils0/__pycache__/autoanchor.cpython-39.pyc
--------------------------------------------------------------------------------
/utils0/__pycache__/datasets.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/utils0/__pycache__/datasets.cpython-38.pyc
--------------------------------------------------------------------------------
/utils0/__pycache__/datasets.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/utils0/__pycache__/datasets.cpython-39.pyc
--------------------------------------------------------------------------------
/utils0/__pycache__/general.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/utils0/__pycache__/general.cpython-38.pyc
--------------------------------------------------------------------------------
/utils0/__pycache__/general.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/utils0/__pycache__/general.cpython-39.pyc
--------------------------------------------------------------------------------
/utils0/__pycache__/google_utils.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/utils0/__pycache__/google_utils.cpython-38.pyc
--------------------------------------------------------------------------------
/utils0/__pycache__/google_utils.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/utils0/__pycache__/google_utils.cpython-39.pyc
--------------------------------------------------------------------------------
/utils0/__pycache__/metrics.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/utils0/__pycache__/metrics.cpython-38.pyc
--------------------------------------------------------------------------------
/utils0/__pycache__/metrics.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/utils0/__pycache__/metrics.cpython-39.pyc
--------------------------------------------------------------------------------
/utils0/__pycache__/plots.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/utils0/__pycache__/plots.cpython-38.pyc
--------------------------------------------------------------------------------
/utils0/__pycache__/plots.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/utils0/__pycache__/plots.cpython-39.pyc
--------------------------------------------------------------------------------
/utils0/__pycache__/torch_utils.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/utils0/__pycache__/torch_utils.cpython-38.pyc
--------------------------------------------------------------------------------
/utils0/__pycache__/torch_utils.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/utils0/__pycache__/torch_utils.cpython-39.pyc
--------------------------------------------------------------------------------
/utils0/activations.py:
--------------------------------------------------------------------------------
1 | # Activation functions
2 |
3 | import torch
4 | import torch.nn as nn
5 | import torch.nn.functional as F
6 |
7 |
8 | # SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
9 | class SiLU(nn.Module): # export-friendly version of nn.SiLU()
10 | @staticmethod
11 | def forward(x):
12 | return x * torch.sigmoid(x)
13 |
14 |
15 | class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
16 | @staticmethod
17 | def forward(x):
18 | # return x * F.hardsigmoid(x) # for torchscript and CoreML
19 | return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
20 |
21 |
22 | class MemoryEfficientSwish(nn.Module):
23 | class F(torch.autograd.Function):
24 | @staticmethod
25 | def forward(ctx, x):
26 | ctx.save_for_backward(x)
27 | return x * torch.sigmoid(x)
28 |
29 | @staticmethod
30 | def backward(ctx, grad_output):
31 | x = ctx.saved_tensors[0]
32 | sx = torch.sigmoid(x)
33 | return grad_output * (sx * (1 + x * (1 - sx)))
34 |
35 | def forward(self, x):
36 | return self.F.apply(x)
37 |
38 |
39 | # Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
40 | class Mish(nn.Module):
41 | @staticmethod
42 | def forward(x):
43 | return x * F.softplus(x).tanh()
44 |
45 |
46 | class MemoryEfficientMish(nn.Module):
47 | class F(torch.autograd.Function):
48 | @staticmethod
49 | def forward(ctx, x):
50 | ctx.save_for_backward(x)
51 | return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
52 |
53 | @staticmethod
54 | def backward(ctx, grad_output):
55 | x = ctx.saved_tensors[0]
56 | sx = torch.sigmoid(x)
57 | fx = F.softplus(x).tanh()
58 | return grad_output * (fx + x * sx * (1 - fx * fx))
59 |
60 | def forward(self, x):
61 | return self.F.apply(x)
62 |
63 |
64 | # FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
65 | class FReLU(nn.Module):
66 | def __init__(self, c1, k=3): # ch_in, kernel
67 | super().__init__()
68 | self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
69 | self.bn = nn.BatchNorm2d(c1)
70 |
71 | def forward(self, x):
72 | return torch.max(x, self.bn(self.conv(x)))
73 |
--------------------------------------------------------------------------------
/utils0/autoanchor.py:
--------------------------------------------------------------------------------
1 | # Auto-anchor utils
2 |
3 | import numpy as np
4 | import torch
5 | import yaml
6 | from scipy.cluster.vq import kmeans
7 | from tqdm import tqdm
8 |
9 | from utils.general import colorstr
10 |
11 |
12 | def check_anchor_order(m):
13 | # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
14 | a = m.anchor_grid.prod(-1).view(-1) # anchor area
15 | da = a[-1] - a[0] # delta a
16 | ds = m.stride[-1] - m.stride[0] # delta s
17 | if da.sign() != ds.sign(): # same order
18 | print('Reversing anchor order')
19 | m.anchors[:] = m.anchors.flip(0)
20 | m.anchor_grid[:] = m.anchor_grid.flip(0)
21 |
22 |
23 | def check_anchors(dataset, model, thr=4.0, imgsz=640):
24 | # Check anchor fit to data, recompute if necessary
25 | prefix = colorstr('autoanchor: ')
26 | print(f'\n{prefix}Analyzing anchors... ', end='')
27 | m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
28 | shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
29 | scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
30 | wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
31 |
32 | def metric(k): # compute metric
33 | r = wh[:, None] / k[None]
34 | x = torch.min(r, 1. / r).min(2)[0] # ratio metric
35 | best = x.max(1)[0] # best_x
36 | aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
37 | bpr = (best > 1. / thr).float().mean() # best possible recall
38 | return bpr, aat
39 |
40 | anchors = m.anchor_grid.clone().cpu().view(-1, 2) # current anchors
41 | bpr, aat = metric(anchors)
42 | print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
43 | if bpr < 0.98: # threshold to recompute
44 | print('. Attempting to improve anchors, please wait...')
45 | na = m.anchor_grid.numel() // 2 # number of anchors
46 | try:
47 | anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
48 | except Exception as e:
49 | print(f'{prefix}ERROR: {e}')
50 | new_bpr = metric(anchors)[0]
51 | if new_bpr > bpr: # replace anchors
52 | anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
53 | m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) # for inference
54 | m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
55 | check_anchor_order(m)
56 | print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
57 | else:
58 | print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
59 | print('') # newline
60 |
61 |
62 | def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
63 | """ Creates kmeans-evolved anchors from training dataset
64 |
65 | Arguments:
66 | path: path to dataset *.yaml, or a loaded dataset
67 | n: number of anchors
68 | img_size: image size used for training
69 | thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
70 | gen: generations to evolve anchors using genetic algorithm
71 | verbose: print all results
72 |
73 | Return:
74 | k: kmeans evolved anchors
75 |
76 | Usage:
77 | from utils.autoanchor import *; _ = kmean_anchors()
78 | """
79 | thr = 1. / thr
80 | prefix = colorstr('autoanchor: ')
81 |
82 | def metric(k, wh): # compute metrics
83 | r = wh[:, None] / k[None]
84 | x = torch.min(r, 1. / r).min(2)[0] # ratio metric
85 | # x = wh_iou(wh, torch.tensor(k)) # iou metric
86 | return x, x.max(1)[0] # x, best_x
87 |
88 | def anchor_fitness(k): # mutation fitness
89 | _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
90 | return (best * (best > thr).float()).mean() # fitness
91 |
92 | def print_results(k):
93 | k = k[np.argsort(k.prod(1))] # sort small to large
94 | x, best = metric(k, wh0)
95 | bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
96 | print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
97 | print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
98 | f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
99 | for i, x in enumerate(k):
100 | print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
101 | return k
102 |
103 | if isinstance(path, str): # *.yaml file
104 | with open(path) as f:
105 | data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict
106 | from utils.datasets import LoadImagesAndLabels
107 | dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
108 | else:
109 | dataset = path # dataset
110 |
111 | # Get label wh
112 | shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
113 | wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
114 |
115 | # Filter
116 | i = (wh0 < 3.0).any(1).sum()
117 | if i:
118 | print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
119 | wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
120 | # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
121 |
122 | # Kmeans calculation
123 | print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
124 | s = wh.std(0) # sigmas for whitening
125 | k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
126 | assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}')
127 | k *= s
128 | wh = torch.tensor(wh, dtype=torch.float32) # filtered
129 | wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
130 | k = print_results(k)
131 |
132 | # Plot
133 | # k, d = [None] * 20, [None] * 20
134 | # for i in tqdm(range(1, 21)):
135 | # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
136 | # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
137 | # ax = ax.ravel()
138 | # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
139 | # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
140 | # ax[0].hist(wh[wh[:, 0]<100, 0],400)
141 | # ax[1].hist(wh[wh[:, 1]<100, 1],400)
142 | # fig.savefig('wh.png', dpi=200)
143 |
144 | # Evolve
145 | npr = np.random
146 | f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
147 | pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
148 | for _ in pbar:
149 | v = np.ones(sh)
150 | while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
151 | v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
152 | kg = (k.copy() * v).clip(min=2.0)
153 | fg = anchor_fitness(kg)
154 | if fg > f:
155 | f, k = fg, kg.copy()
156 | pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
157 | if verbose:
158 | print_results(k)
159 |
160 | return print_results(k)
161 |
--------------------------------------------------------------------------------
/utils0/aws/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/utils0/aws/__init__.py
--------------------------------------------------------------------------------
/utils0/aws/mime.sh:
--------------------------------------------------------------------------------
1 | # AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
2 | # This script will run on every instance restart, not only on first start
3 | # --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
4 |
5 | Content-Type: multipart/mixed; boundary="//"
6 | MIME-Version: 1.0
7 |
8 | --//
9 | Content-Type: text/cloud-config; charset="us-ascii"
10 | MIME-Version: 1.0
11 | Content-Transfer-Encoding: 7bit
12 | Content-Disposition: attachment; filename="cloud-config.txt"
13 |
14 | #cloud-config
15 | cloud_final_modules:
16 | - [scripts-user, always]
17 |
18 | --//
19 | Content-Type: text/x-shellscript; charset="us-ascii"
20 | MIME-Version: 1.0
21 | Content-Transfer-Encoding: 7bit
22 | Content-Disposition: attachment; filename="userdata.txt"
23 |
24 | #!/bin/bash
25 | # --- paste contents of userdata.sh here ---
26 | --//
27 |
--------------------------------------------------------------------------------
/utils0/aws/resume.py:
--------------------------------------------------------------------------------
1 | # Resume all interrupted trainings in yolov5/ dir including DDP trainings
2 | # Usage: $ python utils/aws/resume.py
3 |
4 | import os
5 | import sys
6 | from pathlib import Path
7 |
8 | import torch
9 | import yaml
10 |
11 | sys.path.append('./') # to run '$ python *.py' files in subdirectories
12 |
13 | port = 0 # --master_port
14 | path = Path('').resolve()
15 | for last in path.rglob('*/**/last.pt'):
16 | ckpt = torch.load(last)
17 | if ckpt['optimizer'] is None:
18 | continue
19 |
20 | # Load opt.yaml
21 | with open(last.parent.parent / 'opt.yaml') as f:
22 | opt = yaml.load(f, Loader=yaml.SafeLoader)
23 |
24 | # Get device count
25 | d = opt['device'].split(',') # devices
26 | nd = len(d) # number of devices
27 | ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel
28 |
29 | if ddp: # multi-GPU
30 | port += 1
31 | cmd = f'python -m torch.distributed.launch --nproc_per_node {nd} --master_port {port} train.py --resume {last}'
32 | else: # single-GPU
33 | cmd = f'python train.py --resume {last}'
34 |
35 | cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread
36 | print(cmd)
37 | os.system(cmd)
38 |
--------------------------------------------------------------------------------
/utils0/aws/userdata.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
3 | # This script will run only once on first instance start (for a re-start script see mime.sh)
4 | # /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
5 | # Use >300 GB SSD
6 |
7 | cd home/ubuntu
8 | if [ ! -d yolov5 ]; then
9 | echo "Running first-time script." # install dependencies, download COCO, pull Docker
10 | git clone https://github.com/ultralytics/yolov5 && sudo chmod -R 777 yolov5
11 | cd yolov5
12 | bash data/scripts/get_coco.sh && echo "Data done." &
13 | sudo docker pull ultralytics/yolov5:latest && echo "Docker done." &
14 | python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
15 | wait && echo "All tasks done." # finish background tasks
16 | else
17 | echo "Running re-start script." # resume interrupted runs
18 | i=0
19 | list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
20 | while IFS= read -r id; do
21 | ((i++))
22 | echo "restarting container $i: $id"
23 | sudo docker start $id
24 | # sudo docker exec -it $id python train.py --resume # single-GPU
25 | sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
26 | done <<<"$list"
27 | fi
28 |
--------------------------------------------------------------------------------
/utils0/google_app_engine/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM gcr.io/google-appengine/python
2 |
3 | # Create a virtualenv for dependencies. This isolates these packages from
4 | # system-level packages.
5 | # Use -p python3 or -p python3.7 to select python version. Default is version 2.
6 | RUN virtualenv /env -p python3
7 |
8 | # Setting these environment variables are the same as running
9 | # source /env/bin/activate.
10 | ENV VIRTUAL_ENV /env
11 | ENV PATH /env/bin:$PATH
12 |
13 | RUN apt-get update && apt-get install -y python-opencv
14 |
15 | # Copy the application's requirements.txt and run pip to install all
16 | # dependencies into the virtualenv.
17 | ADD requirements.txt /app/requirements.txt
18 | RUN pip install -r /app/requirements.txt
19 |
20 | # Add the application source code.
21 | ADD . /app
22 |
23 | # Run a WSGI server to serve the application. gunicorn must be declared as
24 | # a dependency in requirements.txt.
25 | CMD gunicorn -b :$PORT main:app
26 |
--------------------------------------------------------------------------------
/utils0/google_app_engine/additional_requirements.txt:
--------------------------------------------------------------------------------
1 | # add these requirements in your app on top of the existing ones
2 | pip==18.1
3 | Flask==1.0.2
4 | gunicorn==19.9.0
5 |
--------------------------------------------------------------------------------
/utils0/google_app_engine/app.yaml:
--------------------------------------------------------------------------------
1 | runtime: custom
2 | env: flex
3 |
4 | service: yolov5app
5 |
6 | liveness_check:
7 | initial_delay_sec: 600
8 |
9 | manual_scaling:
10 | instances: 1
11 | resources:
12 | cpu: 1
13 | memory_gb: 4
14 | disk_size_gb: 20
--------------------------------------------------------------------------------
/utils0/google_utils.py:
--------------------------------------------------------------------------------
1 | # Google utils: https://cloud.google.com/storage/docs/reference/libraries
2 |
3 | import os
4 | import platform
5 | import subprocess
6 | import time
7 | from pathlib import Path
8 |
9 | import requests
10 | import torch
11 |
12 |
13 | def gsutil_getsize(url=''):
14 | # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
15 | s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
16 | return eval(s.split(' ')[0]) if len(s) else 0 # bytes
17 |
18 |
19 | def attempt_download(file, repo='ultralytics/yolov5'):
20 | # Attempt file download if does not exist
21 | file = Path(str(file).strip().replace("'", '').lower())
22 |
23 | if not file.exists():
24 | try:
25 | response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
26 | assets = [x['name'] for x in response['assets']] # release assets, i.e. ['yolov5s.pt', 'yolov5m.pt', ...]
27 | tag = response['tag_name'] # i.e. 'v1.0'
28 | except: # fallback plan
29 | assets = ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']
30 | tag = subprocess.check_output('git tag', shell=True).decode().split()[-1]
31 |
32 | name = file.name
33 | if name in assets:
34 | msg = f'{file} missing, try downloading from https://github.com/{repo}/releases/'
35 | redundant = False # second download option
36 | try: # GitHub
37 | url = f'https://github.com/{repo}/releases/download/{tag}/{name}'
38 | print(f'Downloading {url} to {file}...')
39 | torch.hub.download_url_to_file(url, file)
40 | assert file.exists() and file.stat().st_size > 1E6 # check
41 | except Exception as e: # GCP
42 | print(f'Download error: {e}')
43 | assert redundant, 'No secondary mirror'
44 | url = f'https://storage.googleapis.com/{repo}/ckpt/{name}'
45 | print(f'Downloading {url} to {file}...')
46 | os.system(f'curl -L {url} -o {file}') # torch.hub.download_url_to_file(url, weights)
47 | finally:
48 | if not file.exists() or file.stat().st_size < 1E6: # check
49 | file.unlink(missing_ok=True) # remove partial downloads
50 | print(f'ERROR: Download failure: {msg}')
51 | print('')
52 | return
53 |
54 |
55 | def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'):
56 | # Downloads a file from Google Drive. from yolov5.utils.google_utils import *; gdrive_download()
57 | t = time.time()
58 | file = Path(file)
59 | cookie = Path('cookie') # gdrive cookie
60 | print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
61 | file.unlink(missing_ok=True) # remove existing file
62 | cookie.unlink(missing_ok=True) # remove existing cookie
63 |
64 | # Attempt file download
65 | out = "NUL" if platform.system() == "Windows" else "/dev/null"
66 | os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
67 | if os.path.exists('cookie'): # large file
68 | s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
69 | else: # small file
70 | s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
71 | r = os.system(s) # execute, capture return
72 | cookie.unlink(missing_ok=True) # remove existing cookie
73 |
74 | # Error check
75 | if r != 0:
76 | file.unlink(missing_ok=True) # remove partial
77 | print('Download error ') # raise Exception('Download error')
78 | return r
79 |
80 | # Unzip if archive
81 | if file.suffix == '.zip':
82 | print('unzipping... ', end='')
83 | os.system(f'unzip -q {file}') # unzip
84 | file.unlink() # remove zip to free space
85 |
86 | print(f'Done ({time.time() - t:.1f}s)')
87 | return r
88 |
89 |
90 | def get_token(cookie="./cookie"):
91 | with open(cookie) as f:
92 | for line in f:
93 | if "download" in line:
94 | return line.split()[-1]
95 | return ""
96 |
97 | # def upload_blob(bucket_name, source_file_name, destination_blob_name):
98 | # # Uploads a file to a bucket
99 | # # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
100 | #
101 | # storage_client = storage.Client()
102 | # bucket = storage_client.get_bucket(bucket_name)
103 | # blob = bucket.blob(destination_blob_name)
104 | #
105 | # blob.upload_from_filename(source_file_name)
106 | #
107 | # print('File {} uploaded to {}.'.format(
108 | # source_file_name,
109 | # destination_blob_name))
110 | #
111 | #
112 | # def download_blob(bucket_name, source_blob_name, destination_file_name):
113 | # # Uploads a blob from a bucket
114 | # storage_client = storage.Client()
115 | # bucket = storage_client.get_bucket(bucket_name)
116 | # blob = bucket.blob(source_blob_name)
117 | #
118 | # blob.download_to_filename(destination_file_name)
119 | #
120 | # print('Blob {} downloaded to {}.'.format(
121 | # source_blob_name,
122 | # destination_file_name))
123 |
--------------------------------------------------------------------------------
/utils0/wandb_logging/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/donahowe/traffic-detect-GUI/539724440508c46cad409ec602aae26e35f002b6/utils0/wandb_logging/__init__.py
--------------------------------------------------------------------------------
/utils0/wandb_logging/log_dataset.py:
--------------------------------------------------------------------------------
1 | import argparse
2 |
3 | import yaml
4 |
5 | from wandb_utils import WandbLogger
6 |
7 | WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
8 |
9 |
10 | def create_dataset_artifact(opt):
11 | with open(opt.data) as f:
12 | data = yaml.load(f, Loader=yaml.SafeLoader) # data dict
13 | logger = WandbLogger(opt, '', None, data, job_type='Dataset Creation')
14 |
15 |
16 | if __name__ == '__main__':
17 | parser = argparse.ArgumentParser()
18 | parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
19 | parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
20 | parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project')
21 | opt = parser.parse_args()
22 | opt.resume = False # Explicitly disallow resume check for dataset upload job
23 |
24 | create_dataset_artifact(opt)
25 |
--------------------------------------------------------------------------------