├── Bank_marketing.ipynb ├── Credit_Fraud_detection_with_autoencoders.ipynb ├── Customer_segmentation.ipynb ├── Example of image classification with neural network.ipynb ├── Fraud_detection.ipynb ├── Fraud_detection_ensembles.ipynb ├── Greek_NLP_example_clustering.ipynb ├── Greek_Spacy.ipynb ├── Image_Classification_with_and_without_convlolution.ipynb ├── NLP_example_clustering.ipynb ├── README.md ├── Simple neural network example.ipynb ├── Spacy_example.ipynb ├── Style_transfer.ipynb ├── convolution_example.xlsx └── data ├── README.md └── bank-additional-full_test.csv /Example of image classification with neural network.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "Example of image classification with neural network.ipynb", 7 | "provenance": [], 8 | "collapsed_sections": [], 9 | "include_colab_link": true 10 | }, 11 | "kernelspec": { 12 | "name": "python3", 13 | "display_name": "Python 3" 14 | } 15 | }, 16 | "cells": [ 17 | { 18 | "cell_type": "markdown", 19 | "metadata": { 20 | "id": "view-in-github", 21 | "colab_type": "text" 22 | }, 23 | "source": [ 24 | "\"Open" 25 | ] 26 | }, 27 | { 28 | "cell_type": "markdown", 29 | "metadata": { 30 | "id": "Ww3F3BuDkH_V", 31 | "colab_type": "text" 32 | }, 33 | "source": [ 34 | "#Example of image classification with neural network" 35 | ] 36 | }, 37 | { 38 | "cell_type": "markdown", 39 | "metadata": { 40 | "id": "HidJIZ8kkg1Q", 41 | "colab_type": "text" 42 | }, 43 | "source": [ 44 | "###First, we load the necessary libraries" 45 | ] 46 | }, 47 | { 48 | "cell_type": "code", 49 | "metadata": { 50 | "id": "QRhENDcTjx1S", 51 | "colab_type": "code", 52 | "outputId": "77348de5-0b40-45dc-f4dc-bf37ceef9694", 53 | "colab": { 54 | "base_uri": "https://localhost:8080/", 55 | "height": 65 56 | } 57 | }, 58 | "source": [ 59 | "import numpy as np\n", 60 | "import tensorflow as tf\n", 61 | "from tensorflow import keras\n", 62 | "import matplotlib.pyplot as plt" 63 | ], 64 | "execution_count": 0, 65 | "outputs": [ 66 | { 67 | "output_type": "display_data", 68 | "data": { 69 | "text/html": [ 70 | "

\n", 71 | "The default version of TensorFlow in Colab will soon switch to TensorFlow 2.x.
\n", 72 | "We recommend you upgrade now \n", 73 | "or ensure your notebook will continue to use TensorFlow 1.x via the %tensorflow_version 1.x magic:\n", 74 | "more info.

\n" 75 | ], 76 | "text/plain": [ 77 | "" 78 | ] 79 | }, 80 | "metadata": { 81 | "tags": [] 82 | } 83 | } 84 | ] 85 | }, 86 | { 87 | "cell_type": "markdown", 88 | "metadata": { 89 | "id": "x1dVuDBolRg7", 90 | "colab_type": "text" 91 | }, 92 | "source": [ 93 | "###Then, we load Fashion MINST dataset" 94 | ] 95 | }, 96 | { 97 | "cell_type": "code", 98 | "metadata": { 99 | "id": "akPbPBwplY8v", 100 | "colab_type": "code", 101 | "outputId": "5d504831-f824-4826-9528-6768e84bc744", 102 | "colab": { 103 | "base_uri": "https://localhost:8080/", 104 | "height": 164 105 | } 106 | }, 107 | "source": [ 108 | "fashion_mnist = keras.datasets.fashion_mnist\n", 109 | "(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()" 110 | ], 111 | "execution_count": 0, 112 | "outputs": [ 113 | { 114 | "output_type": "stream", 115 | "text": [ 116 | "Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz\n", 117 | "32768/29515 [=================================] - 0s 0us/step\n", 118 | "Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz\n", 119 | "26427392/26421880 [==============================] - 1s 0us/step\n", 120 | "Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz\n", 121 | "8192/5148 [===============================================] - 0s 0us/step\n", 122 | "Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz\n", 123 | "4423680/4422102 [==============================] - 0s 0us/step\n" 124 | ], 125 | "name": "stdout" 126 | } 127 | ] 128 | }, 129 | { 130 | "cell_type": "markdown", 131 | "metadata": { 132 | "id": "Xz_mDVy1ovUL", 133 | "colab_type": "text" 134 | }, 135 | "source": [ 136 | "###Label number correspond to:\n", 137 | "| Label| Class|\n", 138 | "|---------|----------|\n", 139 | "| 0 | T-shirt/top|\n", 140 | "| 1 | Trouser|\n", 141 | "| 2 | Pullover|\n", 142 | "| 3 | Dress|\n", 143 | "| 4 | Coat|\n", 144 | "| 5 | Sandal|\n", 145 | "| 6 | Shirt|\n", 146 | "| 7 | Sneaker|\n", 147 | "| 8 | bag|\n", 148 | "| 9 | Ankle boot|\n", 149 | "\n", 150 | "###We store correspondence in class_names variable" 151 | ] 152 | }, 153 | { 154 | "cell_type": "code", 155 | "metadata": { 156 | "id": "3jTUU9zPo_pY", 157 | "colab_type": "code", 158 | "colab": {} 159 | }, 160 | "source": [ 161 | "class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',\n", 162 | " 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']" 163 | ], 164 | "execution_count": 0, 165 | "outputs": [] 166 | }, 167 | { 168 | "cell_type": "markdown", 169 | "metadata": { 170 | "id": "Y_7uABuIpBEV", 171 | "colab_type": "text" 172 | }, 173 | "source": [ 174 | "###We can see an example" 175 | ] 176 | }, 177 | { 178 | "cell_type": "code", 179 | "metadata": { 180 | "id": "9ctTGeODlvt6", 181 | "colab_type": "code", 182 | "outputId": "46906eb1-11a1-4c01-f5d0-b7473bf5f08c", 183 | "colab": { 184 | "base_uri": "https://localhost:8080/", 185 | "height": 238 186 | } 187 | }, 188 | "source": [ 189 | "f, ax = plt.subplots(1,2)\n", 190 | "ax[0].imshow(train_images[40])\n", 191 | "ax[1].imshow(train_images[50])\n", 192 | "print(train_labels[40],train_labels[50])\n", 193 | "print(class_names[6],class_names[6])" 194 | ], 195 | "execution_count": 0, 196 | "outputs": [ 197 | { 198 | "output_type": "stream", 199 | "text": [ 200 | "6 3\n", 201 | "Shirt Shirt\n" 202 | ], 203 | "name": "stdout" 204 | }, 205 | { 206 | "output_type": "display_data", 207 | "data": { 208 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAC4CAYAAAD61bdSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAZpklEQVR4nO3da4yc5XUH8P+Zy1699np9w/gK9gJx\nAoFkyyUJghRCIEpEiFoEahFV0zhCSRQq+sFFihJFapU2CWkVJVRGtuxWKUkqINCKJk0dWpISLoYa\nMDbG2Biwsdf3vXh3Z+dy+mEnquGch329c32G/0+yvHv2mZn3nTnz7LtznouoKoiIKD6pRh8AERHN\nDDtwIqJIsQMnIooUO3AiokixAyciihQ7cCKiSFXUgYvI9SKyS0ReFZF11ToookZjblMMZKbjwEUk\nDeAVAJ8AsB/AMwBuVdUdodu0Sbt2oHtGjxelrg433LZ80sRypYyJlVTc28/K5ExsYm+b21Zz9rGq\nwju0Bk8pmMApTGrOf9LOAHN7epIKXPs5/Umlc02kLZDbkzXK7SYUym3bayR3KYBXVXUvAIjIjwHc\nCCCY5B3oxmVyTQUPWWfi9AVnkIxywfvd+OJ73zCxN0bnmthYPuve/rKFr5vYK7csd9sWd+99t0Oc\nnvccAJB02sS0UKjssSr0lG6p1l0xt6eRmtXj/yCfN6HSxETi+/Vklq5w44XX7PugVYVyu5KPUJYA\nePO07/eXY28jImtFZKuIbM3DXjkSNSHmNkWh5kVMVV2vqgOqOpBFe60fjqhumNvUaJV8hHIAwLLT\nvl9ajjW1VI/90680MuI3rvCzu11f8D8TXbfgf0zsKwdvMbFczn95vn3RUyY28O1+t+2SP5tnYsWj\nx9y2rsBz4H1cIhn/eBv90coMRJnbZ8R5XU/9wWVu0898/VcmdkX3NrfthdkxE+tK2Y8C81p0b98u\ntu2Jkn2/AMC9x3/PxDY/fqXbtv8r9j3TCiq5An8GQL+InCMibQBuAfBIdQ6LqKGY2xSFGV+Bq2pB\nRL4M4BcA0gA2qupLVTsyogZhblMsKvkIBar6KIBHq3QsRE2DuU0x4ExMIqJIsQMnIorUjGdizsRs\n6dOaTHaocFJCyNhNtip/8A/98b6bL99oYo+NrnHbvjlhJ+08tteOIkml/HP4zOrtJnbNbH+OyYTa\nqv5EyZ8g9P3XPm5io/9+ltt28Q+3mpjmGzsz7indgmE9XvFMzJmoWW7XivOe+fPdfg6tabOjlg4V\nkw+b7M/YyT35wLTdI0V7TXmk6I/m6krZ9+KarD+65eKf3Gliq+560m3bjEK5zStwIqJIsQMnIooU\nO3AiokixAyciilRrFDHPwBvf+IiJLb/Srg4IAJfPf83EhgqdbtuhvI13p/2i3kWz3jSxZ4bPMbGC\n+r9fr51ri01v5XvdtjtGzzaxYmCZ2qUdJ02sK3AOKacI9fOvXeW27Xz4aRsMrHJYSfGZRczkcjfY\naejf/MF9btvnx+1qgP3th9y2felRE8urXbmyGLh27BabbxPqT1fZPekX2D1ewXPDefY916xYxCQi\najHswImIIsUOnIgoUuzAiYgixQ6ciChSFa1G2MyG/vhyN37b5+zecs8NLXNaAk8cPdfEerL+/n6D\nY3ajiEvm+XsA5Jyp7CkpmVhfZty9/eu5+SZ2OO/vUThetI8V2ix528mlidsO9NmRO6v+cqfb9q2H\nnWAdRz+RNXSuzYsFKbsZAwAMFe0Iq905fwTIlV2vmFha7GsdGlnixb3lIADgSMHmfE/Kf3/un+wz\nsVSHv+l4pXt41hOvwImIIsUOnIgoUuzAiYgixQ6ciChSFRUxRWQfgBEARQAFVR2oxkFVQ++f2unq\nALBjdLGJjUz6xQyvYDlZ8p+yBZ2nTGzX8EK37RMHV5rYJQttwfO1CbujPAD819BqE1s1199p3itC\nFkp2ajMAtKXsWspz2/3C1oEJO3X/033Pu203nPcJEyu+ssdt2yyaOber4bY7fm5ivSlbSAeAK7p3\nm9hDx/2noy9jp9Kn4d+vxyvmbztlp/IDwEVd9j3e3zbott2TX2Bi/3LH77ttz/reE+92iE2lGqNQ\nPq6qR6twP0TNhrlNTY0foRARRarSDlwB/IeIPCsia6txQERNgrlNTa/Sj1A+pqoHRGQhgF+KyMuq\n+vjpDcrJvxYAOtBV4cMR1Q1zm5peRVfgqnqg/P9hAA8BuNRps15VB1R1IIvkG6ESNRJzm2Iw4ytw\nEekGkFLVkfLX1wH4ZtWOrEKXzdvnxvecstXobNrfydobcdKWKiRuG5p2n+2xjzc4YacFF0r+79cF\n3XbES6htypnGHNooIuOMAJjfZkcVAMBwwY7cOVVqc9ue+LB9zmc38SiUZs/tavjXu+wIjH/4kyvd\ntg9fca+Jnd/lb+gw4SwTkXby6lTJ/4XnjVhZ3u6PsHpydJWJ9ff5o1D+ZtcnTaz3Vf+9HJNKPkJZ\nBOAhmdpZJQPgn1XVjk0iig9zm6Iw4w5cVfcC+GAVj4WoKTC3KRYcRkhEFCl24EREkWrZ9cBnpf0C\n4kTRnvLizmG37YGxOc7t/bWJvWLhSN6fou8Vdbxp7KFfr+MFewyn8n5RqDtrd+P2ipUAsKDDFiwX\ntw25bd8cn2tipcABjy2y8dluS6qXtl9sNbFzfuG3/YuzbjKxv33yZ27bbTm7prxXmJyA/z4aKdn3\nzNre7W7bKzfcaGI7v+sXJufDrlPeCngFTkQUKXbgRESRYgdORBQpduBERJFiB05EFKmWHYXSl7bT\nzQF/84Y5gSnv3uiUPcN2R/iQ0I7u7RlbKfemt4dGi+SLzoYM/h4NGJq0O4qHNmlY2nHCxLyp0QAw\n6RxDKrBwf4HrPDWflJMwJX9JicIhOz19T97fbMRzrDjLxHKBvPJ2lc8GkjtvV58I8843JPA8NCNe\ngRMRRYodOBFRpNiBExFFih04EVGkWqKImZ7vFVT89YpzzlT6ocCU9wtnv2Vix3Ldbtuj4zbuTa8H\n/OKmV5gsiP/7NentAaDotJ3bM+627Urbafcn8v75uksHlGzBFADyPf7zQA2kyXeK92wfX+bGz26z\nhfDulM2rJVnbDgB25xaZ2COnbAwAMv44BZek7ftD85PJ76BJ8QqciChS7MCJiCLFDpyIKFLswImI\nIsUOnIgoUtOOQhGRjQA+DeCwqn6gHOsD8BMAKwHsA3Czqvpl5TrQJQtNrCO1zW07UbCnPLfNH5XR\n55S5M97GCwBmt9spwKOT/iYLHm90TFfWr5J7U/FDI15SsPHujB0VAAAdYu93Vcdht+0zx1e4cU+x\nszlHocSQ280gvci+v3rSu9y213btNbGlGTuVftOwvU8AGHLWXViQGXHbjl6QfBSJFvKJ28YkyRX4\nJgDXvyO2DsAWVe0HsKX8PVFsNoG5TRGbtgNX1ccBHH9H+EYAm8tfbwbw2SofF1HNMbcpdjOdyLNI\nVQ+Wvz4EwB9pD0BE1gJYCwAd4LJ01PSY2xSNiouYqqqA80Hr//98vaoOqOpAFsk/EyZqNOY2NbuZ\nXoEPishiVT0oIosB+JWuOsnP9adwe8Qp9uVK/jT03eO20HJ2p79L+64he6GWTfsFz2LJ/t4sOLF8\n4Li824dWMJ7VZguWQ3n/+Zpot+nw30f73bZpZ61yrwAFAJjnF02bVFPlds14yzSon0XHrltlYh/q\n/LnbdrDYZmJvFZMXEL2BA1nxj+s7V/7UxNbjXP+O1fk9HFoj/D2wHvgjAG4vf307gIerczhEDcfc\npmhM24GLyP0AfgvgfBHZLyKfB/AtAJ8Qkd0Ari1/TxQV5jbFbtqPUFT11sCPrqnysRDVFXObYseZ\nmEREkWIHTkQUqZbY0GFska18h6SdUSj7hv0dto8/ttjE/vrzm9y2LxxfYmLtaTs1HQCKzu9Nbyq8\nN9IDAEopu0nDmexgv6TjpNv21TE76ualLee5bf/oc78ysUOTs922H1yx38TOYC1+qoUzGGlx6qZh\nE/N2mgeA44H4O4VGlowU7eYqefVHi3Sl7FT69PvPd9sWX7JT/yXrd3+aa/1RKERE1GDswImIIsUO\nnIgoUuzAiYgi1RJFzGK7LeqdLPrTurudNbbntPvrgXf+yhZkLrjjiNs2VLD0pFO24FgK7Crv8Qqe\n3hIBIcvbj7nxxwdXm9jCZ/3zuuK23Sb24/HL3bYXznnLxJ5E9t0OkZrIHRc8bmKhYmWXswN9Se11\n4oT6r39X2t4+Vwq0dR7r4FX+gISFL9mY5pO/Z5sVr8CJiCLFDpyIKFLswImIIsUOnIgoUi1RxJyY\na4uYvz1p1zAGgM6MXZt4Yfuo23bo6RdNbMekv0FLT5vd1Hhk0s4qC/EKk6r2vAB/o+KOQBF1JG83\nGpiX9s/34LE5Jrb6NTsLDwDOcu5jpOBvarBr1HvO3rmTGTWrE4VuE8ul/MJin/NeOl5KNjsT8Aue\nXr4HfTKQVz/0HiyeGZchvAInIooUO3AiokixAyciihQ7cCKiSLEDJyKK1LSjUERkI4BPAzisqh8o\nx74B4AsAfjev/G5VfbRWBzmdSTt4AhNF/9QWdNgq+d5Rf/otYKeAHyv4FfWerJ3WGxqF4q7d7fwq\nLcEfhVIKjE7xeKNbetP+atyFnJ3OX9r+sts265xDoeRfD5zVMWJiJ9yW9RVDbteTfuSDbnx1+yMm\ntmvCrpVfDSknr0LrgXvxG5bvcNs+26LXqknOahOA653491T14vK/90SCU8vZBOY2RWzaDlxVHwcH\n7VILYm5T7Cr5u+LLIvKCiGwUkbmhRiKyVkS2isjWPOzHDERNiLlNUZhpB34vgFUALgZwEMB3Qw1V\ndb2qDqjqQBb+TD2iJsLcpmjMaCq9qg7+7msRuQ/Av1XtiGZAM7ZQVyj5hY/2lJ1yfnDY34x3oVPE\nHMw7FVMAPRk7lb6EXrett1mxd1xtKX+q76lC8k2cPaG1mNu77VrpIV1OcTT0nHem7f1K1j8HzSc/\nhlpottyup5Pn+Wvo96bHTCxUWCw514Teut0ni3Z6PgCknWnz7Sm7/AUAjJTsIIGTBf8cAPv+bAUz\nugIXkdNL0DcB2F6dwyFqLOY2xSTJMML7AVwNYL6I7AfwdQBXi8jFABTAPgBfrOExEtUEc5tiN20H\nrqq3OuENNTgWorpiblPsWnN0OxHRewA7cCKiSLXEhg6ZMTu1vOAsDA8AeSd+8kBoFIp1IlDlHinY\ninhoyns64Uz4tsAmDeOF5Du6e8cwUux0286f7U+x9zw/Od/EMoFRM94Im9Tq1W7b4k672z3Vx9hZ\nfmL2pMZNLJTbKTjLRMAfsZJUV8ofmTTkvBf7sn4O76nwGJoVr8CJiCLFDpyIKFLswImIIsUOnIgo\nUi1RxEyfwSxZb9fruS8mL3DMzdhpxQAwmOtJfhAOryg06uwoD/gF2lDRtjNjpyHvzXnlWeDieQdM\nLFRSfPDogInNyfovRFZscTO/0F9XPbUz8IBUc6dW+kXzDvHjlUi7xU6gGFgD370PZ0mKvoxfxEwv\nWGUf68gRp2VceAVORBQpduBERJFiB05EFCl24EREkWIHTkQUqZYYheJt8h7ibS6w6ImTblvvbtd0\n2pEaAPDCyBITywamlnvUGYUSmkrvjVhxd7qHP71995g/CuWq3l22Lc522/5637kmdt0qe3sAKDkj\nC3K9/nIA/iR/qoe+Jf77wBsZUgxc++XVdineJg0dgU0akPwt4/I2jwCAQr/NY+EoFCIiahR24ERE\nkWIHTkQUKXbgRESRSrIn5jIA/whgEab2CVyvqn8vIn0AfgJgJab2DrxZVU/U7lDDUpO2SBKSK9lT\nLr3wcuLbL0gPu/EJZ43ulLNzOxBeSzkpr+A5UfRfykxgir3nso59JnZ/oIiZ2W6nwqdWJ68mT84K\nTP1PfA+ViyG362nFHP8UvSJkaCq8N73dlfwt6y7FAPjrhPem/aUuxhbb9fq7kx9C00ry7i4AuEtV\n1wC4HMCXRGQNgHUAtqhqP4At5e+JYsLcpqhN24Gr6kFVfa789QiAnQCWALgRwOZys80APlurgySq\nBeY2xe6MxoGLyEoAlwB4CsAiVT1Y/tEhTP0Z6t1mLYC1ANABfzsyokZjblOMEn9AKiKzADwA4E5V\nfdsHwaqqCHyqparrVXVAVQey8JdHJWok5jbFKlEHLiJZTCX4j1T1wXJ4UEQWl3++GMDh2hwiUe0w\ntylmSUahCIANAHaq6j2n/egRALcD+Fb5/4drcoQJpJ3Zs6Gp5TfMfdHE7lV/h3RPb2CqbmgUSFLi\njFiZLPkbTXhT072RAgDQ5uwIXwjc77nZ5Lvdr/jZcRNr/1zyhf8LnZWNxKmGGHK7ns7u9EdYZZ33\n0mButts2Ncu2LTnXiXkN5LYzaio04sUTGrEyttDebyuMQknS63wUwG0AXhSRbeXY3ZhK7p+KyOcB\nvA7g5tocIlHNMLcpatN24Kr6GyC4z9E11T0covphblPsOBOTiChS7MCJiCLVEuuBp/O2gJcKFDGL\nZzC1XDL26UkFioXe9Pbg/ToFS2/afUc6sGayIzRtP5Oyz8NYwX/Z28UWMdOL/LXDi9vt8gO39T3p\ntn1g6MP29u2NL2LS213b+5Ib73F2pR8v+gVvr2DZITaPe1IT7u0HMefdDvFtvPd4d2CQgaZbM994\nBU5EFCl24EREkWIHTkQUKXbgRESRYgdORBSplhiFkpmwIzDa0v6U2v8dW5H4flO9tiI+osmnm4d4\nI1a8MTPeCBIA7s7d+aI/NflE0a6Sl3V2qgeAodK4vV9nN28ASA3a5UH25fvctrPSdsSBs68GNdiF\nbYcSt+0MjJDyNjzxprcPl+wGC6G2PWmblwDc90HWGTEDAIV67hRSR7wCJyKKFDtwIqJIsQMnIooU\nO3Aioki1RinJmUUeWg/8oT0XmdhS+FOISyOjJjYRKGJ60+NDvOn8pZKNDU/6hR6vCJoOFDzFK5gG\npv1vOPl++1jZ5L/j73ntOjf+sYV7TCw37wy2Jae6eHTUvv4AcGOPfX+EiphHinad8IlS8sK/V8T0\npuIDAJy6fWhd/MnZrZlvvAInIooUO3AiokixAyciihQ7cCKiSE3bgYvIMhF5TER2iMhLIvLVcvwb\nInJARLaV/32q9odLVD3MbYpdklEoBQB3qepzItID4FkR+WX5Z99T1e/U7vCSOdlvy9Efmv2G23bn\nMX+DAo/m7OLw6w9d7bb1NlTIBXaqzwU2VDDtAi+PV09PB0bBZJ0lBUIjdDztrx11496E5eGJdrft\n+zrfMrF8c4wKaPrcrqdlbcfcuLNfClZ0+nnhjTgpnsEf+u0pO+JkdmDzB2/kVmgqfarYmhs6JNnU\n+CCAg+WvR0RkJ4AltT4wolpjblPszugzcBFZCeASAE+VQ18WkRdEZKOIzA3cZq2IbBWRrXn42x0R\nNRpzm2KUuAMXkVkAHgBwp6oOA7gXwCoAF2PqKua73u1Udb2qDqjqQBb+n9hEjcTcplgl6sBFJIup\nBP+Rqj4IAKo6qKpFVS0BuA/ApbU7TKLaYG5TzKb9DFxEBMAGADtV9Z7T4ovLnyECwE0AttfmEKfX\nt9MWLn74/FVu2+K4LXjOP4PHOjI+y40vn3XCxEYK/lXZp+a9YNuW7ILFQwW7lndINuUXb54dsuuf\nL+u0xwoA/7TH9lML99nd50NGdvjrgX/t+GdNbM4rjR/BGkNu19OH2v31wBelbR6HdpW/sN0WrCfU\nvudOOvkO+MtM9KXH/LawhckVGb/tZG/ywn1MkgyH+CiA2wC8KCLbyrG7AdwqIhdjalDEPgBfrMkR\nEtUOc5uilmQUym8A51cd8Gj1D4eofpjbFLvG/x1LREQzwg6ciChS7MCJiCLVEhs6dD78tImterhG\nD3bNfjd84H39Jja+3O5qDwDfX3K+iU3OsR/Fpib9Q/AGp2RO+W3bRuw86BO77EYVALDw6Rf9O0no\n3HW/rej21Fjrj1/hxp87sczEzpt92G37n8feZ2LeBiIDvf5SF3lnxMqRyR637bKO4yb2ctofHdO7\nszWn0vMKnIgoUuzAiYgixQ6ciChS7MCJiCIlqvVbl1lEjgB4vfztfAD+osJx43k1zgpVXdCIBz4t\nt2N4nmaqVc8thvNyc7uuHfjbHlhkq6oONOTBa4jn9d7Wys9Tq55bzOfFj1CIiCLFDpyIKFKN7MDX\nN/Cxa4nn9d7Wys9Tq55btOfVsM/AiYioMvwIhYgoUuzAiYgiVfcOXESuF5FdIvKqiKyr9+NXU3nH\n8sMisv20WJ+I/FJEdpf/d3c0b2YiskxEHhORHSLykoh8tRyP/txqqVVym3kdz7nVtQMXkTSAHwC4\nAcAaTG1dtaaex1BlmwBc/47YOgBbVLUfwJby97EpALhLVdcAuBzAl8qvUyucW020WG5vAvM6CvW+\nAr8UwKuquldVJwH8GMCNdT6GqlHVxwG8c03LGwFsLn+9GYDd0bfJqepBVX2u/PUIgJ0AlqAFzq2G\nWia3mdfxnFu9O/AlAN487fv95VgrWXTajuaHACxq5MFUSkRWArgEwFNosXOrslbP7ZZ67Vslr1nE\nrCGdGqMZ7ThNEZkF4AEAd6rq8Ok/i/3caOZif+1bKa/r3YEfAHD69h5Ly7FWMigiiwGg/L+/dUmT\nE5EsppL8R6r6YDncEudWI62e2y3x2rdaXte7A38GQL+InCMibQBuAfBInY+h1h4BcHv569sB1Gpz\nt5oREQGwAcBOVb3ntB9Ff2411Oq5Hf1r34p5XfeZmCLyKQB/ByANYKOq/lVdD6CKROR+AFdjajnK\nQQBfB/AzAD8FsBxTy4verKp2874mJiIfA/BrAC8CKJXDd2Pq88Koz62WWiW3mdfxnBun0hMRRYpF\nTCKiSLEDJyKKFDtwIqJIsQMnIooUO3AiokixAyciihQ7cCKiSP0flE1E9ju8PfkAAAAASUVORK5C\nYII=\n", 209 | "text/plain": [ 210 | "
" 211 | ] 212 | }, 213 | "metadata": { 214 | "tags": [] 215 | } 216 | } 217 | ] 218 | }, 219 | { 220 | "cell_type": "markdown", 221 | "metadata": { 222 | "id": "84j2r_8qle4g", 223 | "colab_type": "text" 224 | }, 225 | "source": [ 226 | "###Next, we normalise data" 227 | ] 228 | }, 229 | { 230 | "cell_type": "code", 231 | "metadata": { 232 | "id": "ABSLwCLslpkI", 233 | "colab_type": "code", 234 | "colab": {} 235 | }, 236 | "source": [ 237 | "train_images = train_images / 255.0\n", 238 | "test_images = test_images / 255.0\n" 239 | ], 240 | "execution_count": 0, 241 | "outputs": [] 242 | }, 243 | { 244 | "cell_type": "markdown", 245 | "metadata": { 246 | "id": "1P3gPj5TnWvI", 247 | "colab_type": "text" 248 | }, 249 | "source": [ 250 | "###We create a neural net" 251 | ] 252 | }, 253 | { 254 | "cell_type": "code", 255 | "metadata": { 256 | "id": "EnO6W_uendrN", 257 | "colab_type": "code", 258 | "outputId": "4db42f2d-7f5a-4b1e-a388-2510f62eb8bb", 259 | "colab": { 260 | "base_uri": "https://localhost:8080/", 261 | "height": 92 262 | } 263 | }, 264 | "source": [ 265 | "model = keras.Sequential([\n", 266 | " keras.layers.Flatten(input_shape=(28, 28)),\n", 267 | " keras.layers.Dense(64, activation=tf.nn.relu),\n", 268 | " keras.layers.Dense(10, activation=tf.nn.softmax)\n", 269 | "])" 270 | ], 271 | "execution_count": 0, 272 | "outputs": [ 273 | { 274 | "output_type": "stream", 275 | "text": [ 276 | "WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/ops/resource_variable_ops.py:1630: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.\n", 277 | "Instructions for updating:\n", 278 | "If using Keras pass *_constraint arguments to layers.\n" 279 | ], 280 | "name": "stdout" 281 | } 282 | ] 283 | }, 284 | { 285 | "cell_type": "markdown", 286 | "metadata": { 287 | "id": "f4ZajpTGnkLd", 288 | "colab_type": "text" 289 | }, 290 | "source": [ 291 | "###Next, compile the model" 292 | ] 293 | }, 294 | { 295 | "cell_type": "code", 296 | "metadata": { 297 | "id": "cs-CinJAnjxy", 298 | "colab_type": "code", 299 | "colab": {} 300 | }, 301 | "source": [ 302 | "model.compile(optimizer='adam', \n", 303 | " loss='sparse_categorical_crossentropy', metrics=['accuracy'])" 304 | ], 305 | "execution_count": 0, 306 | "outputs": [] 307 | }, 308 | { 309 | "cell_type": "markdown", 310 | "metadata": { 311 | "id": "F-Cd-ptRns1w", 312 | "colab_type": "text" 313 | }, 314 | "source": [ 315 | "###Train model" 316 | ] 317 | }, 318 | { 319 | "cell_type": "code", 320 | "metadata": { 321 | "id": "8bfZQh8vnujg", 322 | "colab_type": "code", 323 | "outputId": "368fff7b-3aa3-4fe8-efd0-e33cfe3e47d9", 324 | "colab": { 325 | "base_uri": "https://localhost:8080/", 326 | "height": 421 327 | } 328 | }, 329 | "source": [ 330 | "model.fit(train_images, train_labels, epochs=10)" 331 | ], 332 | "execution_count": 0, 333 | "outputs": [ 334 | { 335 | "output_type": "stream", 336 | "text": [ 337 | "Train on 60000 samples\n", 338 | "Epoch 1/10\n", 339 | "60000/60000 [==============================] - 4s 68us/sample - loss: 0.5175 - acc: 0.8194\n", 340 | "Epoch 2/10\n", 341 | "60000/60000 [==============================] - 4s 62us/sample - loss: 0.3921 - acc: 0.8615\n", 342 | "Epoch 3/10\n", 343 | "60000/60000 [==============================] - 4s 61us/sample - loss: 0.3565 - acc: 0.8711\n", 344 | "Epoch 4/10\n", 345 | "60000/60000 [==============================] - 4s 60us/sample - loss: 0.3330 - acc: 0.8784\n", 346 | "Epoch 5/10\n", 347 | "60000/60000 [==============================] - 4s 61us/sample - loss: 0.3146 - acc: 0.8836\n", 348 | "Epoch 6/10\n", 349 | "60000/60000 [==============================] - 4s 61us/sample - loss: 0.3026 - acc: 0.8891\n", 350 | "Epoch 7/10\n", 351 | "60000/60000 [==============================] - 4s 61us/sample - loss: 0.2893 - acc: 0.8948\n", 352 | "Epoch 8/10\n", 353 | "60000/60000 [==============================] - 4s 61us/sample - loss: 0.2778 - acc: 0.8982\n", 354 | "Epoch 9/10\n", 355 | "60000/60000 [==============================] - 4s 61us/sample - loss: 0.2695 - acc: 0.9009\n", 356 | "Epoch 10/10\n", 357 | "60000/60000 [==============================] - 4s 61us/sample - loss: 0.2632 - acc: 0.9036\n" 358 | ], 359 | "name": "stdout" 360 | }, 361 | { 362 | "output_type": "execute_result", 363 | "data": { 364 | "text/plain": [ 365 | "" 366 | ] 367 | }, 368 | "metadata": { 369 | "tags": [] 370 | }, 371 | "execution_count": 8 372 | } 373 | ] 374 | }, 375 | { 376 | "cell_type": "markdown", 377 | "metadata": { 378 | "id": "Lb0BXV-6n7aJ", 379 | "colab_type": "text" 380 | }, 381 | "source": [ 382 | "###Predict class of second image in test dataset" 383 | ] 384 | }, 385 | { 386 | "cell_type": "code", 387 | "metadata": { 388 | "id": "s8jsni0bn_f1", 389 | "colab_type": "code", 390 | "outputId": "caca936e-c1f8-45bd-d572-5461e515a52c", 391 | "colab": { 392 | "base_uri": "https://localhost:8080/", 393 | "height": 90 394 | } 395 | }, 396 | "source": [ 397 | "prediction=model.predict(test_images[1].reshape(1, 28, 28))\n", 398 | "print(\"Probabilities of image in each class are\",prediction)\n", 399 | "print(\"Highest probability in place:\", prediction.argmax())\n", 400 | "print(\"Image is classified as a: \",class_names[prediction.argmax()])" 401 | ], 402 | "execution_count": 0, 403 | "outputs": [ 404 | { 405 | "output_type": "stream", 406 | "text": [ 407 | "Probabilities of image in each class are [[4.7269925e-05 6.7162512e-11 9.9416757e-01 7.9031757e-08 2.6153151e-03\n", 408 | " 7.7022203e-14 3.1697203e-03 3.2766182e-15 1.2217416e-08 4.0623840e-15]]\n", 409 | "Highest probability in place: 2\n", 410 | "Image is classified as a: Pullover\n" 411 | ], 412 | "name": "stdout" 413 | } 414 | ] 415 | }, 416 | { 417 | "cell_type": "markdown", 418 | "metadata": { 419 | "id": "NnRT1sg7rQHi", 420 | "colab_type": "text" 421 | }, 422 | "source": [ 423 | "" 424 | ] 425 | }, 426 | { 427 | "cell_type": "code", 428 | "metadata": { 429 | "id": "zslaJQ7VoZDu", 430 | "colab_type": "code", 431 | "outputId": "e2d9cd85-a5ac-4558-c83f-61b748a005ed", 432 | "colab": { 433 | "base_uri": "https://localhost:8080/", 434 | "height": 320 435 | } 436 | }, 437 | "source": [ 438 | "print(\"Actual label number is:\",test_labels[1])\n", 439 | "print(\"Image is a: \",class_names[test_labels[1]])\n", 440 | "plt.imshow(test_images[1])\n" 441 | ], 442 | "execution_count": 0, 443 | "outputs": [ 444 | { 445 | "output_type": "stream", 446 | "text": [ 447 | "Actual label number is: 2\n", 448 | "Image is a: Pullover\n" 449 | ], 450 | "name": "stdout" 451 | }, 452 | { 453 | "output_type": "execute_result", 454 | "data": { 455 | "text/plain": [ 456 | "" 457 | ] 458 | }, 459 | "metadata": { 460 | "tags": [] 461 | }, 462 | "execution_count": 10 463 | }, 464 | { 465 | "output_type": "display_data", 466 | "data": { 467 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAATxUlEQVR4nO3de3Bc5XkG8OddaXWxLCPLMkJgcbGx\nIYQQQ1UTLmWgNMShUy6dlluTQofGbgcKaTItDEnH/NMp7YQkpGkg4hKcDrWHaUKgGUMhnrQOaWMs\nqDE2Bt/AwbItC4wvsrzWavftHzowCui8n7xnd8/C+/xmPJL33bP76diPzu6+53yfqCqI6OMvk/YA\niKg6GHYiJxh2IicYdiInGHYiJ+qr+WQN0qhNaKnmU34sSH2dWS+0NsXWMu8eKvdwjk7rlPhaoWhv\nO5wr71gcyOEQRvSITFRLFHYRWQjgPgB1AB5S1Xus+zehBefKpUme0qW6tnazfuCSubG1ln9fXe7h\nHJXCb58TW6s/cMTcVl/cUO7hfOyt1pWxtZJfxotIHYB/AfB5AGcAuF5Ezij18YiospK8Z18AYIuq\nblPVEQDLAVxZnmERUbklCfsJAN4a9/cd0W2/QUQWiUifiPTlYb9sI6LKqfin8araq6o9qtqTRWOl\nn46IYiQJez+A7nF/nxXdRkQ1KEnY1wCYKyKniEgDgOsAPFWeYRFRuZXcelPVURG5FcB/Yqz19oiq\nuuyVZFrscwe2/t1ZZv3m3/+ZWT+z+TWzfm7jf8TWdn7D7tGf1RDfoy+Htwu/jK0NFOxjTU7tsd/2\n+nVmvbj02NjatGW/Mrf9OErUZ1fVFQBWlGksRFRBPF2WyAmGncgJhp3ICYadyAmGncgJhp3ICanm\n7LLTpF0/qpe4bnpgQWxtxcJvm9vOzmbN+kDBvmZgd8E+zfhgMb5XflzdkLntMZmCWW+QCS+Nft++\nwCXpO0dbY2tZGTW3bc/Y17MfZ7fh0SjxneXb+y8xt/31uSnPA1Ci1boSB3TvhP9oPLITOcGwEznB\nsBM5wbATOcGwEznBsBM5UdWppGtZ/x3nm/U3rvhebG1VzpguGcBbh+3WWxFTzXoGdn9rmtGiGizY\nl98O2p03FGC33gpqHy9aMqVPRTZYtPfr9lG7JZnT+P3+3Vn/ZW57xcqrzTou3WHXaxCP7EROMOxE\nTjDsRE4w7EROMOxETjDsRE4w7EROsM8eeWjxP5v1rfnDsbW8HmNu25TJm/WLEs7mvGFkJLY2UrSv\nAx0u2r3q7vp9Zn1mnX0OwNojbbG1BrGb/FafHADaA5fv1iH+8u3nc83mtt87dblZv23WtWZ9dEft\nrZfCIzuREww7kRMMO5ETDDuREww7kRMMO5ETDDuRE+yzR07L2tdd7zXaydlAvzjUR5+z8s/M+uxe\ne/ufLo+/Q3/gWvqFU+yf+428/bP9ZGieWb+geWtsbV+gx39xs93Df3bYvt59sDAttja3Ybe5bWed\nHY3DZ3SZ9WwN9tkThV1E3gRwEEABwKiq9pRjUERUfuU4sl+iqm+X4XGIqIL4np3IiaRhVwDPisiL\nIrJoojuIyCIR6RORvjxKn4+MiJJJ+jL+QlXtF5FjATwnIq+p6qrxd1DVXgC9wNhabwmfj4hKlOjI\nrqr90dc9AJ4AEL/6IRGlquSwi0iLiLS+9z2AywCsL9fAiKi8kryM7wTwhIwt6VsP4N9U9ZmyjCoF\n0+sCPdti/BK+dYF53UO/U0/7ij0HeWFw0Kw3Snwv/bj6g+a2f7r9MrM+cN4Bsx6SfzX+evpb2t4y\nt738U79r1jffcZpd/8L9sbUXAh8fZcWeB2Dnhfb5Cyc9az9+GkoOu6puA/DpMo6FiCqIrTciJxh2\nIicYdiInGHYiJxh2IifcXOKaaUo2X3PeWJq43VgyeYzd1juyzJ7WuP73Ag9vOKvB/rlDrbXN933G\nrGcP2ks6/2Rx/L5ZPrPB3LZ5nr1f5ywLtAW/EF9qCLRLc2rXs5/abz93DeKRncgJhp3ICYadyAmG\nncgJhp3ICYadyAmGncgJN312mXNS4B6/MqtWn72zzl6SOeS8jjfM+hrYl1taepb8pVmfgf816/Me\ntS+RzRwKnGNQHz/2zC/+z9509slmXfcnu/w2iUtP3GTWN1ZpHEeDR3YiJxh2IicYdiInGHYiJxh2\nIicYdiInGHYiJ9z02XNdUyv22K0ZezcOFe1e9GXTXjHrazK/ddRjek/nM/Z0zaOB7W9avsKsX9f6\nrllfeyR+zuavLL7F3PbRh75t1v9hzyVm/dejQ7G10FTRw0V7qerfaQ312Web9TTwyE7kBMNO5ATD\nTuQEw07kBMNO5ATDTuQEw07khJs++8Fue47ykIxoydvuLNg924sCU9r/faDn+7nj58fWpKfN3Hb7\nvdPN+g/sVZHxA9jzBFz9avxy0+98wv43+fPzrzXrr/91t1n/zvVrYmvrRuxzH/YV7ePg56bsMeu9\nH8U+u4g8IiJ7RGT9uNvaReQ5EdkcfbX/xxBR6ibzMv5RAAs/cNudAFaq6lwAK6O/E1ENC4ZdVVcB\n2PuBm68EsDT6fimAq8o8LiIqs1Lfs3eq6q7o+90AOuPuKCKLACwCgKbAmmdEVDmJP41XVQUQ++mV\nqvaqao+q9mTRmPTpiKhEpYZ9QES6ACD6an80SUSpKzXsTwG4Mfr+RgBPlmc4RFQpwffsIrIMwMUA\nOkRkB4AlAO4B8LiI3AxgO4BrKjnIcsjNtNcRD7HmjW8MXBs9Reyrxq3rrgFg83fPNetaH38OwJfO\n/29z22c6Xjfrf/PS2Wb95Ka3zfpftPXH1k6/7QFz23980F4b/vgzSz93oknscxesf28AmJoJnBxR\ng4JhV9XrY0qXlnksRFRBPF2WyAmGncgJhp3ICYadyAmGncgJN5e4Hu4sJto+r/HttdC0xC1i/059\nPW+fWbjtD79v1i2b8ofM+i9zzWb9rzp+UfJzA8CqXPwU3gsa7ctMn97yP4meu6Dx/+ZNgUuW86Vf\n0QwAkHo7WjoamsS7/HhkJ3KCYSdygmEncoJhJ3KCYSdygmEncoJhJ3LCTZ+92DFSscfeXzxs1v9k\nyx+Z9QfmPG7WnxmeYdZzmo2ttWXs3+dTMvFLKgPAtvw0sx7SmonvpT+fazG3nVFnnyOwNT/TrG/K\ndcXWvt7xmrmttdT0ZMgn55p1fXljoscvBY/sRE4w7EROMOxETjDsRE4w7EROMOxETjDsRE646bNP\nPcbuhYecVB+//dOH7KWDB5bbyxqfuCT+mm8A2Dk6bNYt2cCUyXXxi/mMCfThQwqIn8K7JfDY7Rn7\n3IhD9fvN+l3Pxk2MDHz9BrvPnlTuOPscgoaXK/r0E+KRncgJhp3ICYadyAmGncgJhp3ICYadyAmG\nncgJN332WcfYPVlrjnEA6KqP74WvGTrF3Lbp3WSTkB8o2ssDW/3qjNHnroaisfRxU2Ap69BM/23G\ntfIAcOwao3iD/djW+QEAsKdgX2uvmXT3+0SCR3YReURE9ojI+nG33S0i/SKyNvpzeWWHSURJTeZl\n/KMAFk5w+7dUdX70Z0V5h0VE5RYMu6quArC3CmMhogpK8gHdrSKyLnqZPz3uTiKySET6RKQvj2Tn\nWRNR6UoN+/0A5gCYD2AXgHvj7qiqvarao6o9WdgLGBJR5ZQUdlUdUNWCqhYBPAhgQXmHRUTlVlLY\nRWT8HL1XA1gfd18iqg3BPruILANwMYAOEdkBYAmAi0VkPgAF8CaAxRUcY1nMnvqOWX83MPd7R138\n9cn9uTZz272nJzt3aVjttz/TYPebLaF+clIZie+Wh547VP9ENn6+fAAILMFuCl3nnw2M7fBMO1pp\nvKENhl1VJ5oB4OEKjIWIKoinyxI5wbATOcGwEznBsBM5wbATOeHmEtfGTN6shy6ntKzZZk8VXTwl\n4XTMxmWigD1ddKh9FZxKOiHr+ZsC01zvLdiX9s7L1pn1KbtK3++NgbFlJNR6s+t2s7YyeGQncoJh\nJ3KCYSdygmEncoJhJ3KCYSdygmEncsJNn725zu6z57T0fnPDlmazPuO83SU/NhBe2tgS6qOH6kkv\ngbUePxs4u+GQNgQe3e6FN2wbiK09M2xfZHpOoz1VNAL7JW+v2JwKHtmJnGDYiZxg2ImcYNiJnGDY\niZxg2ImcYNiJnHDTZ98baHzmtPR+sjFbMgDg2u4XzfpQ0Z4KOiv2ddtpygZ++KKxX/OBY01O7ami\nQ3324TOPj62tOniaue1FTX1mfX9xxKwXplR2noBS8MhO5ATDTuQEw07kBMNO5ATDTuQEw07kBMNO\n5ISbPvvhgt2zbUqwvm8xa297TvMbZn1nwe4XN4l9LX4lha5nD3XCLfnAfPhJf+7tV8Sfn5DbPdfc\ndsmx9rkR9r8YkG8L3aP6gkd2EekWkZ+LyKsiskFEbo9ubxeR50Rkc/R1euWHS0SlmszL+FEAX1XV\nMwB8BsAtInIGgDsBrFTVuQBWRn8nohoVDLuq7lLVl6LvDwLYCOAEAFcCWBrdbSmAqyo1SCJK7qje\ns4vIyQDOBrAaQKeq7opKuwF0xmyzCMAiAGjClFLHSUQJTfrTeBGZCuBHAL6sqgfG11RVgYlnFlTV\nXlXtUdWeLOxJ/oiociYVdhHJYizoj6nqj6ObB0SkK6p3AdhTmSESUTkEX8aLiAB4GMBGVf3muNJT\nAG4EcE/09cmKjLBMjhTsH7UjE5q2OF5x7rBZbwtMBR1amrgl0IIaMX5nJ12SOelU1MUEU1GHW2/2\nsaqte19sbXDDTHPbxk/bTcUiAtN71ydZBLwyJvOe/QIAXwTwioisjW67C2Mhf1xEbgawHcA1lRki\nEZVDMOyq+jziZ8S/tLzDIaJK4emyRE4w7EROMOxETjDsRE4w7EROuLnEdWjUPnuvTkrvB89oGzLr\nnXV2z3Vf0X5uq48ekld7GupQJzt0iWuoXjQuY80EpqEO9fA35e1llb92+tOxtb/deoO5bUghcPpC\nXfNH8BJXIvp4YNiJnGDYiZxg2ImcYNiJnGDYiZxg2ImccNNnPzxqX588ULCvTz6xPn77xu+02499\nv/079bg6+3r4XKBXbgqcPhDuk9v1TGgKbonvNzcZNSD8c8+pbzbrizddEls7+aeBMwyutcu5wDTY\n9dlR+wFSwCM7kRMMO5ETDDuREww7kRMMO5ETDDuREww7kRNu+uwzmuxrn3OBfvJQMRdbKzbY267J\nnWTWb5pmr6/x2MEZZj0rlevpJp533rhmfSTQRx8u2nMQnNVg77f+t9tia6futucgCDkSGPv8E/rN\n+ruJnr00PLITOcGwEznBsBM5wbATOcGwEznBsBM5wbATOTGZ9dm7AfwQQCcABdCrqveJyN0AvgRg\nMLrrXaq6olIDTeqFvnlmvbXb7icPFuJ72a3rBsxtl51+vF2HXaeJhfbbKXg5tqZnnW5u+0be7sN3\nBKYYWP3yqWZ9Hl6wH6ACJnNSzSiAr6rqSyLSCuBFEXkuqn1LVb9RueERUblMZn32XQB2Rd8fFJGN\nAE6o9MCIqLyO6j27iJwM4GwAq6ObbhWRdSLyiIhMj9lmkYj0iUhfHvbUT0RUOZMOu4hMBfAjAF9W\n1QMA7gcwB8B8jB35751oO1XtVdUeVe3Jwj7XmYgqZ1JhF5EsxoL+mKr+GABUdUBVC6paBPAggAWV\nGyYRJRUMu4gIgIcBbFTVb467vWvc3a4GsL78wyOicpnMp/EXAPgigFdEZG10210ArheR+Rhrx70J\nYHFFRlgmM/vsy1C7/niqWd9fPBxfLNpLD1Pt0Qb7v357nd1bOyZjT2NdP5Rg+u8Kmcyn8c9j4tnH\na7anTkQfxjPoiJxg2ImcYNiJnGDYiZxg2ImcYNiJnHAzlXTrW/Z5+UsGP2nW3xmJ78Pr/gMljek9\nkm0w6zoaWF5YfP7Olox97oSOGlNsr33N3PYPNtxg1mdN3WfWO1+ovXMvfP4vIXKIYSdygmEncoJh\nJ3KCYSdygmEncoJhJ3JCVJMtyXtUTyYyCGD7uJs6ALxdtQEcnVodW62OC+DYSlXOsZ2kqjMnKlQ1\n7B96cpE+Ve1JbQCGWh1brY4L4NhKVa2x8WU8kRMMO5ETaYe9N+Xnt9Tq2Gp1XADHVqqqjC3V9+xE\nVD1pH9mJqEoYdiInUgm7iCwUkddFZIuI3JnGGOKIyJsi8oqIrBWRvpTH8oiI7BGR9eNuaxeR50Rk\nc/R1wjX2Uhrb3SLSH+27tSJyeUpj6xaRn4vIqyKyQURuj25Pdd8Z46rKfqv6e3YRqQOwCcBnAewA\nsAbA9ar6alUHEkNE3gTQo6qpn4AhIhcBGALwQ1U9M7rtnwDsVdV7ol+U01X1jhoZ290AhtJexjta\nrahr/DLjAK4CcBNS3HfGuK5BFfZbGkf2BQC2qOo2VR0BsBzAlSmMo+ap6ioAez9w85UAlkbfL8XY\nf5aqixlbTVDVXar6UvT9QQDvLTOe6r4zxlUVaYT9BABvjfv7DtTWeu8K4FkReVFEFqU9mAl0ququ\n6PvdADrTHMwEgst4V9MHlhmvmX1XyvLnSfEDug+7UFXPAfB5ALdEL1drko69B6ul3umklvGulgmW\nGX9fmvuu1OXPk0oj7P0Ausf9fVZ0W01Q1f7o6x4AT6D2lqIeeG8F3ejrnpTH875aWsZ7omXGUQP7\nLs3lz9MI+xoAc0XkFBFpAHAdgKdSGMeHiEhL9MEJRKQFwGWovaWonwJwY/T9jQCeTHEsv6FWlvGO\nW2YcKe+71Jc/V9Wq/wFwOcY+kd8K4GtpjCFmXLMBvBz92ZD22AAsw9jLujzGPtu4GcAMACsBbAbw\nMwDtNTS2fwXwCoB1GAtWV0pjuxBjL9HXAVgb/bk87X1njKsq+42nyxI5wQ/oiJxg2ImcYNiJnGDY\niZxg2ImcYNiJnGDYiZz4f4SixgHCORlKAAAAAElFTkSuQmCC\n", 468 | "text/plain": [ 469 | "
" 470 | ] 471 | }, 472 | "metadata": { 473 | "tags": [] 474 | } 475 | } 476 | ] 477 | }, 478 | { 479 | "cell_type": "markdown", 480 | "metadata": { 481 | "id": "KaJlvr76sOtB", 482 | "colab_type": "text" 483 | }, 484 | "source": [ 485 | "###Evaluate models accuracy" 486 | ] 487 | }, 488 | { 489 | "cell_type": "code", 490 | "metadata": { 491 | "id": "iyCJ4rDzsRx8", 492 | "colab_type": "code", 493 | "outputId": "32613819-27fa-4aa7-d611-9ce66e2cd5de", 494 | "colab": { 495 | "base_uri": "https://localhost:8080/", 496 | "height": 54 497 | } 498 | }, 499 | "source": [ 500 | "test_acc = model.evaluate(test_images, test_labels)\n", 501 | "print('Test loss, accuracy:', test_acc)\n" 502 | ], 503 | "execution_count": 0, 504 | "outputs": [ 505 | { 506 | "output_type": "stream", 507 | "text": [ 508 | "10000/10000 [==============================] - 0s 34us/sample - loss: 0.3430 - acc: 0.8819\n", 509 | "Test loss, accuracy: [0.34303882870674135, 0.8819]\n" 510 | ], 511 | "name": "stdout" 512 | } 513 | ] 514 | }, 515 | { 516 | "cell_type": "code", 517 | "metadata": { 518 | "id": "GQMgOE88CFNZ", 519 | "colab_type": "code", 520 | "outputId": "2fbe7902-26de-41de-9c19-6f9e204ffd92", 521 | "colab": { 522 | "base_uri": "https://localhost:8080/", 523 | "height": 394 524 | } 525 | }, 526 | "source": [ 527 | "prediction=model.predict(test_images[12].reshape(1, 28, 28))\n", 528 | "print(\"Probabilities of image in each class are\",prediction)\n", 529 | "print(\"Highest probability in place:\", prediction.argmax())\n", 530 | "print(\"Image is classified as a: \",class_names[prediction.argmax()])\n", 531 | "print(\"Actual label number is:\",test_labels[12])\n", 532 | "print(\"Image is a: \",class_names[test_labels[12]])\n", 533 | "plt.imshow(test_images[12])" 534 | ], 535 | "execution_count": 0, 536 | "outputs": [ 537 | { 538 | "output_type": "stream", 539 | "text": [ 540 | "Probabilities of image in each class are [[2.9833541e-07 3.4984214e-07 5.2938790e-06 2.2196046e-07 3.0843472e-05\n", 541 | " 1.4087908e-01 5.4214041e-08 2.2918980e-01 6.2989372e-01 2.9229400e-07]]\n", 542 | "Highest probability in place: 8\n", 543 | "Image is classified as a: Bag\n", 544 | "Actual label number is: 7\n", 545 | "Image is a: Sneaker\n" 546 | ], 547 | "name": "stdout" 548 | }, 549 | { 550 | "output_type": "execute_result", 551 | "data": { 552 | "text/plain": [ 553 | "" 554 | ] 555 | }, 556 | "metadata": { 557 | "tags": [] 558 | }, 559 | "execution_count": 12 560 | }, 561 | { 562 | "output_type": "display_data", 563 | "data": { 564 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAPs0lEQVR4nO3dW4xV93XH8d+aK7cBz4CBMSZ14lDZ\nJGlIO8VpbFWOrLgOaoXz4gbJEZWskkq2lEh5qOWqstUnt2pi9SGKSmoU2qZOLSWOkeqmocgtjdRS\nDy41GIwhLtTcwThch7mcWX2Y7WiM5//fw7k36/uRRnNmr7P3XmzOb86Z8z97/83dBeAXX0erGwDQ\nHIQdCIKwA0EQdiAIwg4E0dXMnfVYr8/R/GbuEgjlmq5ozEdtplpNYTezByT9haROSX/l7k/n7j9H\n83WX3VfLLgFk7PIdyVrVL+PNrFPSNyV9XtJqSRvMbHW12wPQWLX8zb5W0mF3f8vdxyR9T9L6+rQF\noN5qCfsKSW9P+/lYsex9zGyTmQ2b2fC4RmvYHYBaNPzdeHff7O5D7j7Urd5G7w5AQi1hPy5p5bSf\nby2WAWhDtYT9FUmrzOzDZtYj6YuSttWnLQD1VvXQm7tPmNljkv5JU0NvW9z99bp1BqCuahpnd/eX\nJL1Up14ANBAflwWCIOxAEIQdCIKwA0EQdiAIwg4EQdiBIAg7EARhB4Ig7EAQhB0IgrADQRB2IAjC\nDgRB2IEgCDsQBGEHgiDsQBCEHQiCsANBEHYgCMIOBEHYgSAIOxAEYQeCIOxAEIQdCIKwA0EQdiAI\nwg4EUdOUzWZ2RNIlSRVJE+4+VI+mANRfTWEvfNbdz9VhOwAaiJfxQBC1ht0l/djMdpvZppnuYGab\nzGzYzIbHNVrj7gBUq9aX8fe4+3EzWyppu5m94e47p9/B3TdL2ixJC23Aa9wfgCrV9Mzu7seL72ck\nvSBpbT2aAlB/VYfdzOabWd97tyXdL2lfvRoDUF+1vIxfJukFM3tvO3/n7j+qS1cA6q7qsLv7W5I+\nWcdeADQQQ29AEIQdCIKwA0EQdiAIwg4EQdiBIAg7EARhB4Ig7EAQhB0IgrADQRB2IAjCDgRB2IEg\nCDsQBGEHgiDsQBCEHQiCsANBEHYgCMIOBFGPiR3RYsee+Eyydm31SHbdjz78X/Vu5/2mLjU+M2eC\noGbimR0IgrADQRB2IAjCDgRB2IEgCDsQBGEHgmircfaOvr5sffLSpYZt20fy49G18ImJmta/8PCn\ns/WRwUqyZmd7s+ueeGF1tr7y8bFsvXLwcLZey1i6ddX28Kz1uP+iKX1mN7MtZnbGzPZNWzZgZtvN\n7FDxvb+xbQKo1Wxexn9H0gPXLXtc0g53XyVpR/EzgDZWGnZ33ynp/HWL10vaWtzeKunBOvcFoM6q\n/aNombufLG6fkrQsdUcz2yRpkyTN0bwqdwegVjW/G+/uLin5Loy7b3b3IXcf6lb+zSIAjVNt2E+b\n2aAkFd/P1K8lAI1Qbdi3SdpY3N4o6cX6tAOgUcxLxkHN7DlJ90paIum0pCcl/VDS85I+JOmopIfc\n/fo38T5goQ34XXZfsn7xH2/Prt/9l4uTtbk//M+y3f+/1fnyLdn6wT0fStY6xjLnk0uqLJjM1rvf\nzT8fzDmb3/6Kv30jve93Sh8yWWXj8F5Jf/6g4Vp0rv4u36GLfn7G/5TSN+jcfUOilE4tgLbDx2WB\nIAg7EARhB4Ig7EAQhB0IoqmnuFpnpzoXLkrW71p6NLv+i+sGkrXl8/KngfbvPpdv7vTZbLly4WKy\nZp2d2XXtjo9m6wd//6ZsvffclXz9nfTv7DvuP5Tf949WZetji/JDSD2fyx/XN345vf35R/LHbeU/\n5Ldd2f9mtt5IpaffljwmlBkWbNSpuTyzA0EQdiAIwg4EQdiBIAg7EARhB4Ig7EAQTR1nn5zfq5G7\ncuO6e7Lrdy4YT9auPnQ5u+47H785v+2xpdl6R+aKylc/kr/c8q/f8T/Z+me7jmXrL7/ysWy995Pp\nS2zv/5f8GH9vyRW0O8bzp7CO7ViSrXfdnB6nv3x7fjz5p0/OydZ16Dey5YH96X0P/Fv+mE+8na+X\njoW34WWseWYHgiDsQBCEHQiCsANBEHYgCMIOBEHYgSCaOs7uXabR/vQuPzEvP7a5beJXkrXlffnp\nnO/8rfx53W9ezI+zL+geTdZOXE6foy9Jw7vz54wvPJz/nbsof7Vn2f4Fydq1xflx8om5+W33vps/\nn320P7/9rqvpetfVkoffsfS/S5LG+/K9nb47XT/7a7dm1+0cWZmt91zI/7sXHs3/p807mX48de0+\nmF138urVbD2FZ3YgCMIOBEHYgSAIOxAEYQeCIOxAEIQdCKK5142vuHoupa+X/ciiU9n1//REb7J2\n5H/z46KH+ldk696bn96380L6UHWM5sdcO3rz48EXPlbbuc+dV9K/sztLzlef7M7XR5ble8+d5y9J\n3ZfSx2ayJ7/tsnH03PXyJannZyXXbs+YTD/UJEnXluR7G1meX79zJH2u/sATg9l1K3+f/kxIZdt/\nJGulz+xmtsXMzpjZvmnLnjKz42a2p/haV7YdAK01m5fx35H0wAzLn3H3NcXXS/VtC0C9lYbd3XdK\nOt+EXgA0UC1v0D1mZq8VL/P7U3cys01mNmxmw+Nj+TnLADROtWH/lqTbJa2RdFLS11N3dPfN7j7k\n7kPdPfOr3B2AWlUVdnc/7e4Vd5+U9G1Ja+vbFoB6qyrsZjZ9bOALkval7gugPZSOs5vZc5LulbTE\nzI5JelLSvWa2RpJLOiLpy7PZ2dgi6ejvpMddd4zkx0UnlqcHdef2XcuuWznSl633HuvJ1j3T2rXB\n/Bi9d5eckN6VH7MtU+lKb7/Sl/8MgCr5eu/Z/P9Jx1h+/e7sZQaqPxdekuaeyR+33P9ZpSe/bc8/\nnEo/WzGef7hpbHl6DgT3/LY/8Qd7k7Uj/57+YEVp2N19wwyLny1bD0B74eOyQBCEHQiCsANBEHYg\nCMIOBNHUU1y7eye04rZzyfrz7+Q/mzPvQPq8w6t35vfddUv+XM/RwfxwRyV32eMaf2VaR8lppD35\nob3u7nR9crLkUtLj+aE1H8iPQY2WrD+SO24lw35lRhfnD7xnypPz86cV9yxKX+pZkvr78pdzvnAl\nf43uBb3pYeTfvjX/sZU755xI1nZ2pR/nPLMDQRB2IAjCDgRB2IEgCDsQBGEHgiDsQBBNHWevTHbo\n0rX0WPkzt/xrdv0nfzc95nt+LH8VnL7u/HjxYM+FbP2tkSXJ2sGfLcuuu3RefjrpLis5BbbERGZA\n+Volf63o0Yn8QyC3bUm6Ol5yLerFmX2P5/d9+Ur6csuS1Lkkf9wWzE2Pld88/3J23Zt68p/LKHs8\njfTnj8vczvQprku68o+XP/nmw8naiTPfSNZ4ZgeCIOxAEIQdCIKwA0EQdiAIwg4EQdiBIMy9tssY\n34hFPUv9M0seStYP/PFt2fW7303/bhpbnD/nW2WXcx7P/96zuent992UP7d5suTSwN2d+d4rk/ne\nJirpekfJufIL5uTP2y67rPHIWMl4ck96PLls3cuX8+PspdcBsHS9kjlmkuQX8pcW77iWPy49mceq\nJPW/mX48Lng+Pe1ymV2+Qxf9/IzN8cwOBEHYgSAIOxAEYQeCIOxAEIQdCIKwA0E09Xx2H5/QxKnT\nyfqqR9M1tKdFLVoXN670md3MVprZy2a238xeN7OvFMsHzGy7mR0qvvc3vl0A1ZrNy/gJSV9z99WS\nPi3pUTNbLelxSTvcfZWkHcXPANpUadjd/aS7v1rcviTpgKQVktZL2lrcbaukBxvVJIDa3dDf7GZ2\nm6RPSdolaZm7nyxKpyTNeCE2M9skaZMkzdG8avsEUKNZvxtvZgskfV/SV9394vSaT51NM+NZB+6+\n2d2H3H2oW+mLTQJorFmF3cy6NRX077r7D4rFp81ssKgPSjrTmBYB1MNs3o03Sc9KOuDu069Tu03S\nxuL2Rkkv1r89APUym7/Z75b0JUl7zWxPsewJSU9Let7MHpF0VFL6RHUALVcadnf/iaTUmfr31bcd\nAI3Cx2WBIAg7EARhB4Ig7EAQhB0IgrADQRB2IAjCDgRB2IEgCDsQBGEHgiDsQBCEHQiCsANBEHYg\nCMIOBEHYgSAIOxAEYQeCIOxAEIQdCIKwA0EQdiAIwg4EQdiBIAg7EARhB4Ig7EAQhB0IYjbzs680\ns5fNbL+ZvW5mXymWP2Vmx81sT/G1rvHtAqjWbOZnn5D0NXd/1cz6JO02s+1F7Rl3//PGtQegXmYz\nP/tJSSeL25fM7ICkFY1uDEB93dDf7GZ2m6RPSdpVLHrMzF4zsy1m1p9YZ5OZDZvZ8LhGa2oWQPVm\nHXYzWyDp+5K+6u4XJX1L0u2S1mjqmf/rM63n7pvdfcjdh7rVW4eWAVRjVmE3s25NBf277v4DSXL3\n0+5ecfdJSd+WtLZxbQKo1WzejTdJz0o64O7fmLZ8cNrdviBpX/3bA1Avs3k3/m5JX5K018z2FMue\nkLTBzNZIcklHJH25IR0CqIvZvBv/E0k2Q+ml+rcDoFH4BB0QBGEHgiDsQBCEHQiCsANBEHYgCMIO\nBEHYgSAIOxAEYQeCIOxAEIQdCIKwA0EQdiAIc/fm7czsrKSj0xYtkXSuaQ3cmHbtrV37kuitWvXs\n7Zfc/eaZCk0N+wd2bjbs7kMtayCjXXtr174keqtWs3rjZTwQBGEHgmh12De3eP857dpbu/Yl0Vu1\nmtJbS/9mB9A8rX5mB9AkhB0IoiVhN7MHzOygmR02s8db0UOKmR0xs73FNNTDLe5li5mdMbN905YN\nmNl2MztUfJ9xjr0W9dYW03hnphlv6bFr9fTnTf+b3cw6Jb0p6XOSjkl6RdIGd9/f1EYSzOyIpCF3\nb/kHMMzsNyVdlvTX7v7xYtmfSTrv7k8Xvyj73f0P26S3pyRdbvU03sVsRYPTpxmX9KCk31MLj12m\nr4fUhOPWimf2tZIOu/tb7j4m6XuS1regj7bn7jslnb9u8XpJW4vbWzX1YGm6RG9twd1Puvurxe1L\nkt6bZrylxy7TV1O0IuwrJL097edjaq/53l3Sj81st5ltanUzM1jm7ieL26ckLWtlMzMonca7ma6b\nZrxtjl0105/XijfoPuged/9VSZ+X9GjxcrUt+dTfYO00djqrabybZYZpxn+ulceu2unPa9WKsB+X\ntHLaz7cWy9qCux8vvp+R9ILabyrq0+/NoFt8P9Pifn6unabxnmmacbXBsWvl9OetCPsrklaZ2YfN\nrEfSFyVta0EfH2Bm84s3TmRm8yXdr/abinqbpI3F7Y2SXmxhL+/TLtN4p6YZV4uPXcunP3f3pn9J\nWqepd+R/KumPWtFDoq+PSPrv4uv1Vvcm6TlNvawb19R7G49IWixph6RDkv5Z0kAb9fY3kvZKek1T\nwRpsUW/3aOol+muS9hRf61p97DJ9NeW48XFZIAjeoAOCIOxAEIQdCIKwA0EQdiAIwg4EQdiBIP4P\nKF7GlmsGXKMAAAAASUVORK5CYII=\n", 565 | "text/plain": [ 566 | "
" 567 | ] 568 | }, 569 | "metadata": { 570 | "tags": [] 571 | } 572 | } 573 | ] 574 | }, 575 | { 576 | "cell_type": "code", 577 | "metadata": { 578 | "id": "y8Tane_mDHI-", 579 | "colab_type": "code", 580 | "outputId": "caa88df2-0a13-4083-dc1b-b88c2b78db19", 581 | "colab": { 582 | "base_uri": "https://localhost:8080/", 583 | "height": 394 584 | } 585 | }, 586 | "source": [ 587 | "prediction=model.predict(test_images[17].reshape(1, 28, 28))\n", 588 | "print(\"Probabilities of image in each class are\",prediction)\n", 589 | "print(\"Highest probability in place:\", prediction.argmax())\n", 590 | "print(\"Image is classified as a: \",class_names[prediction.argmax()])\n", 591 | "print(\"Actual label number is:\",test_labels[17])\n", 592 | "print(\"Image is a: \",class_names[test_labels[17]])\n", 593 | "plt.imshow(test_images[17])" 594 | ], 595 | "execution_count": 0, 596 | "outputs": [ 597 | { 598 | "output_type": "stream", 599 | "text": [ 600 | "Probabilities of image in each class are [[2.6976159e-03 2.6915019e-09 9.8906553e-01 4.8810068e-07 3.9343471e-03\n", 601 | " 4.9612314e-10 4.2868727e-03 5.2282022e-11 1.5191695e-05 1.4628523e-10]]\n", 602 | "Highest probability in place: 2\n", 603 | "Image is classified as a: Pullover\n", 604 | "Actual label number is: 4\n", 605 | "Image is a: Coat\n" 606 | ], 607 | "name": "stdout" 608 | }, 609 | { 610 | "output_type": "execute_result", 611 | "data": { 612 | "text/plain": [ 613 | "" 614 | ] 615 | }, 616 | "metadata": { 617 | "tags": [] 618 | }, 619 | "execution_count": 13 620 | }, 621 | { 622 | "output_type": "display_data", 623 | "data": { 624 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAWe0lEQVR4nO3de3DdZZ0G8Oebe+9pmjZNS216g7aw\n0EIorRQoUG7VtVYRwRURWequMIOj4+iy64AzrouuoOzq0i1SLo4iOogiggsUgbJgJdT0fi+9JG3S\nlpb0kpLrd//IqVMg73PCueRk+z6fmU6S8+Q95+0v+eZ3znl/7/uau0NETn55ue6AiPQOFbtIJFTs\nIpFQsYtEQsUuEomC3nywIiv2EgzozYeMXscwfrwLjrTRvH1gIc09yenCLZxZkoGggn1H+TfI+7yD\no2j1lm6PelrFbmZXArgXQD6An7j7Xez7SzAA59ml6TykfEAH5s+i+fBlDTTfd8FImncW8cdvLwlX\ne34Lr/bhi17jdy7vs9yXBrOUn8abWT6AHwO4CsBUANeZ2dRU709Esiud1+wzAGxx923u3grgFwDm\nZ6ZbIpJp6RT7aAC7Tvi6LnHbu5jZQjOrMbOaNrSk8XAiko6svxvv7ovdvdrdqwtRnO2HE5GAdIq9\nHsCYE74+JXGbiPRB6RT76wAmmdk4MysCcC2AJzPTLRHJtJSH3ty93cxuBfA/6Bp6W+LuazPWs95m\nZEAYgOXnBzPvTDJg3NmRSo/+asLrJTR/bXdVMPv26Q/Stoc7+tE8zzppfkEJfzJXWTAwmM3bOI+2\nbbn6QzTP+9Ywni/7SzCzYv6S0tvaaZ7uzzQX0hpnd/enATydob6ISBbpclmRSKjYRSKhYheJhIpd\nJBIqdpFIqNhFItGr89n7tCSr7Hp7knHXNOSXDqH5v1X+geY3t3w0mN3252tp2y+d+TLNrxjIL534\n4Vuzaf52W3gcf/sLVbTtwJn7aI4J/PqDocvCmbfEN09DZ3aRSKjYRSKhYheJhIpdJBIqdpFIqNhF\nImG9ubHjYCvzrK0umxeeggog7SmJBeOrglnT2RW0beERPk10+6d5PnQ5X8J1UH34/9av4Rhtu+2T\n4SmoALDpc/fR/Nb682i+/WhZMFtQEZ6CCgCPf+zDNG+eyKe4Hjw1vAz2iFp+XPJe4n3rq5b7Uhzy\nA93O19aZXSQSKnaRSKjYRSKhYheJhIpdJBIqdpFIqNhFInHyTHFNcxx905JqmucVhe9/8J/4GH/n\n3EP8wQ/25zlf5Rr96sJbG/tfkqzu/Qm+y+u390+meV1zKc2fOvWZYPbiMX6u6Szl20239+ftV379\nv4LZm21HaNu/3/wZmhf/3Ts072jcS/Nc0JldJBIqdpFIqNhFIqFiF4mEil0kEip2kUio2EUicfKM\nsydx8PN8PHni2DqaNy8aFcyu+uYLtG3NwbE0X7uBj1W3DuYD7WwsvWDsGNp24oN8PPiaz7xB81kD\nNtN8wgs3BrP+q/h20aNra2g+uHkczaf/65eC2ZHzm2nb/AJ+3cblv99D863zw78vANBev5vm2ZBW\nsZvZdgCHAXQAaHd3fmWKiORMJs7sF7v7/gzcj4hkkV6zi0Qi3WJ3AM+a2RtmtrC7bzCzhWZWY2Y1\nbYhvyx2RviLdp/Gz3b3ezEYAeM7MNrj7uzYPc/fFABYDXQtOpvl4IpKitM7s7l6f+LgXwBMAZmSi\nUyKSeSkXu5kNMLNBxz8HcDmANZnqmIhkVjpP4ysAPGFmx+/n5+7O9xbOoZZSPlY9aTDfHnj/beFx\n2T8d4OO9azfwse7CsXzMt3AKf68jb9rUYLZ1AR/DH3vHqzR/sXkSzds8yXr9e4uD0ZgH+Rg9xo6m\ncXPVYJqPenJnMFt3ZiVt+9BlS2g+vYhv4T3z2i/TvPLu/0fj7O6+DcBZGeyLiGSRht5EIqFiF4mE\nil0kEip2kUio2EUiEc0U1wF7+LbIycwrXx3MFm27kLYtreRLSU8o4/OIHhv/LM3Pq74lmFVdsIO2\nRXF4aAwA7t86m+aHjpbQfOu1i4LZ1IPhKagAkGxU79KP8Om3Pxq9nN8BcePOi2j+6g4+3No2Lr2l\nzbNBZ3aRSKjYRSKhYheJhIpdJBIqdpFIqNhFIqFiF4lENOPsTeP537XSAj7NtLFtSDA7v2IbbZts\nGugVpeExfAD4XTOfyvn2JceCWc3k3/PHbpnG7/sQ3066s4GPsz/QNDKYPfSFe2nbGcWFNE/m/FWf\nCGb7aito24k/aaD59b/+M80f3DOH5rmgM7tIJFTsIpFQsYtEQsUuEgkVu0gkVOwikVCxi0QimnH2\n4llv0bwwj88/XrTs4mB2xyW/oW3ZGD0AjM5vovnO9qE0//ms+4PZ1xvPpW2TKUyyZPLSq79P823t\n4XH6c4r49Qef3T6H5hsenELzYfe/Fsz2fYePs2/6Fl+C++nyDTR/7e6JNOdHNTt0ZheJhIpdJBIq\ndpFIqNhFIqFiF4mEil0kEip2kUhEM86+ovoxml+8dj7NJy8Kr/3ecTH/m3ljaS3NHzsU3nIZAEYV\nHqT5imNVweyP986ibUvPD8+FB4Bbpi6leWXBQJo/11wezK5f9jHa9rR/52sMDKlopfm+fwz/3wec\nzo/poBK+TfZ33+JbWbfvqqN5LiQ9s5vZEjPba2ZrTritzMyeM7PNiY/8qg8RybmePI1/CMCV77nt\nGwCWuvskAEsTX4tIH5a02N39ZQAH3nPzfAAPJz5/GMDHM9wvEcmwVF+zV7j7nsTnDQCCFxqb2UIA\nCwGgBHw9MxHJnrTfjXd3B+AkX+zu1e5eXQi+iaCIZE+qxd5oZpUAkPi4N3NdEpFsSLXYnwRwQ+Lz\nGwD8NjPdEZFsSfqa3cweBTAHQLmZ1QG4A8BdAH5pZjcB2AHgmmx2sjfUrRhF8/GrwnOjL+i/lbbd\n3c4P82O7zqH590/9Fc2/9ofrgtmY/Xyefv2F/H2UCUX8Sdu8jfNovumNDwUzL+OzupvO4HPK9003\nmldVh8e6PzWK7+3+vRVX0HxRPd+/fexVvG/Fz7xO82xIWuzuHvpNujTDfRGRLNLlsiKRULGLRELF\nLhIJFbtIJFTsIpGIZorrb47yqZijX+LDQG1zw8NjYwv4MMrkZ/+B5nOn8mWJn2jiQ3ODtoWXZK67\nlk9hHfRn/iuw/OgEmn+n6gma/3RweJrpm0eH0ba1x8bTfMmVi2k+quBwMNvVzrfB9k4a49E5/03z\nz5bcRPMJz/D7zwad2UUioWIXiYSKXSQSKnaRSKjYRSKhYheJhIpdJBInzTh7/lC+wO0/1S6g+bhX\nN9F8xwOnBLPlLYW0bUFjEc2bJpXQ/MUXz6R5Pvmv9+vPl1se9fxRmv/hKr4t8nWl/BqD68vCU4M/\nuZ5ffzBiHN9m+6yiIzQ/d9ktwewLZ4T7BQAFO/nP5OdTZtJ8y5yHaH7VWeFpyZ0r19O2qdKZXSQS\nKnaRSKjYRSKhYheJhIpdJBIqdpFIqNhFInHSjLO3njWO5h0dfL56x9tNNF8766VgNv31a2nb9iRL\nJq/73Wk0r9jKl4N+e2J4Pnvh0iG0Ld7aQuOWNn79wlfevJrmT50anrjtHXy55SlljTRv4IcFE+8J\nH/e6+/j/K+9UPoa/bMm5NK/92is03/HR8OOPWUmbpkxndpFIqNhFIqFiF4mEil0kEip2kUio2EUi\noWIXicRJM87ePJLPGZ87YR3N+abLXP5TfMx2YCkfT85/h9//sbIkf5M9HBU38QXQOxr5lsxD+/N5\n3WvXjaH5zObwOHx+QzFtWzWNz2df2TKa5p1F4esPXnhmOm0747K1NF9tZ9D8nobLaN5aSn5oWZL0\nzG5mS8xsr5mtOeG2O82s3sxqE//4Jt0iknM9eRr/EIAru7n9B+4+LfHv6cx2S0QyLWmxu/vLAA70\nQl9EJIvSeYPuVjNblXiaH3zRamYLzazGzGra0JLGw4lIOlIt9vsATAAwDcAeAHeHvtHdF7t7tbtX\nF4K/ISMi2ZNSsbt7o7t3uHsngPsBzMhst0Qk01IqdjOrPOHLBQDWhL5XRPqGpOPsZvYogDkAys2s\nDsAdAOaY2TR0jfBuB/DFLPaxRwZt4+uf57HBaADtl/A90O/Y1xbMhv+MT0Bu/NxZND82go/Dt0zk\n73X40fCPsagpPNbcEweb+9F84Hb+K9TUMCKYlW/m1wC8ePYkmr+Sx/eO3/LZ8MvGKffuo23/dxy/\n74H8sg5sOFBB82GreftsSFrs7t7davYPZKEvIpJFulxWJBIqdpFIqNhFIqFiF4mEil0kEifNFNdj\nlXyI6Eejl9P89Jl86K28ILy0cGcz37K5dQgfWps5j4/DDCrgc2APtA4IZqs2T6VtmxecR/OmQ3zL\n58mP7qR5R3l4KeumyYNo251rKmlecJQfV5SF15ru2MiX0K6q/BDN9/QPb+ENAP7CcJqP3NpM82zQ\nmV0kEip2kUio2EUioWIXiYSKXSQSKnaRSKjYRSJx0oyz57XxKawtHp6iCgALrllG80sGbAhmT2EW\nbdvJh+FxXfmfaN7sfIWflc3hMeFXx/HtoA9P5MetdNAxmnvTIZ7vqgtmBVV8jH/IJn4uGlHDt1V+\nc/5AmjP9Cvjvy8TLt9G89SvDaJ6/O7xMNt/gO3U6s4tEQsUuEgkVu0gkVOwikVCxi0RCxS4SCRW7\nSCROmnH2/Ba+LPHzx/jc6TuG19L8gaaJH7hPx7WW8r6V5PEx3TF5TTT/8f6Lg9nMszfRthcO5fkP\n11xCc+Ql2Y66PDze3DaAtx24OzwfHQDyjvIltturUv/1PnfoDppvP8bH0VdPH0fz8jV8Pn026Mwu\nEgkVu0gkVOwikVCxi0RCxS4SCRW7SCRU7CKROGnG2TtK+N+tlc1jab6rlc+N/sHqS4NZFVbRth2D\n+XhxdRFfm/2Z5pE0P9wSnu8+pIjPR//0oM003zyBbz28vric5u+cFZ5r//Yk/jMr5V3Dphv5WPd/\nzHwwnGEybbvxCP9/nzU4PE8fAF6cwe+/4qnSYNbe0Ejbpirpmd3MxpjZH81snZmtNbPbEreXmdlz\nZrY58XFoVnooIhnRk6fx7QC+6u5TAcwEcIuZTQXwDQBL3X0SgKWJr0Wkj0pa7O6+x91XJD4/DGA9\ngNEA5gN4OPFtDwP4eLY6KSLp+0Cv2c2sCsB0AMsBVLj7nkTUAKDbFzlmthDAQgAoQf9U+ykiaerx\nu/FmNhDA4wC+7O7vWmXQ3R1AtysXuvtid6929+pC8IUTRSR7elTsZlaIrkL/mbv/OnFzo5lVJvJK\nAHuz00URyYSkT+PNzAA8AGC9u99zQvQkgBsA3JX4+Nus9LCn+IrIaGgdTPPaQ3wL3sqHUn9Wct7p\nW2n+yCE+HfJXu/l20o17wsM4ZvzArGsrofmnhr5O829OuonmOy8P/4oVh1dTBgAcK+fnok/OfZXm\n9W1l/AGI19byKc0fuYgPt5aP4tOSUZhkffEs6Mlr9vMBXA9gtZkdn/R9O7qK/JdmdhOAHQCuyU4X\nRSQTkha7u78CILTKQPhKExHpU3S5rEgkVOwikVCxi0RCxS4SCRW7SCROmimuJY3NNJ89mC+ZfPtL\n19F84vMrglmSIX6M6XeQ5mz6LADkredbDw/bFe5Bw4f5ZMR/KVhA87+tXE3zXZf3o3nniPByz6XL\n+VjzO5/jxy0ffInu0YUHSDqCth24hfft3Ct20vy0Mn6N2c5zTg1m/cg21+nQmV0kEip2kUio2EUi\noWIXiYSKXSQSKnaRSKjYRSJx0oyz5791mOavHAqPawJA8X7+d8/b+bbKzIoDY2jeuWMAzcs28vHk\n/FYy0t/G/187NvJlqjsq19DcpvAluAe/HN4q+8go2hSfHruS5sm2uh6Zf4jmzPBavrx3fpKrK64e\nXkPzbw+fEsz4lQup05ldJBIqdpFIqNhFIqFiF4mEil0kEip2kUio2EUicdKMsx+dyrfYrWvmWxe3\nDk0yK92TzVoPa+vIp3m/xtDivV0KWvg4e/1F4fajqvbRtm+/xMfZk40nt23nc+2HHAz3feTNb9K2\n44v5nPCqwv00v7dhLkn5GHzJNr6o/fb2ITRvdf4zPzg1fFz5RtSp05ldJBIqdpFIqNhFIqFiF4mE\nil0kEip2kUio2EUi0ZP92ccAeARABbqWSF/s7vea2Z0AbgZwfCD3dnd/OlsdTebgaXyd7x0bq2ie\n7EDknxber7tj4xba9p12fu8D5jbSvL4xvP86AIwdHR5vbmwKzycHgP77+Tj6KUV8vLm8lrc/ND58\nPrl5BJ+vvq99MM0/NZD37ZGxLwezKzCNtu3Ywq8BaGjnP5OL+u2geekGfm1FNvTkopp2AF919xVm\nNgjAG2b2XCL7gbt/P3vdE5FM6cn+7HsA7El8ftjM1gMYne2OiUhmfaDX7GZWBWA6gOWJm241s1Vm\ntsTMut1nyMwWmlmNmdW0IbwVkIhkV4+L3cwGAngcwJfd/RCA+wBMADANXWf+u7tr5+6L3b3a3asL\nUZyBLotIKnpU7GZWiK5C/5m7/xoA3L3R3TvcvRPA/QBmZK+bIpKupMVuZgbgAQDr3f2eE26vPOHb\nFgDgy5CKSE715N348wFcD2C1mdUmbrsdwHVmNg1dw3HbAXwxKz3soZYkU1RPn8S3wT3SmuQlRkfq\nQyXDrtlN843fPYPmZ/7NdpqvqQuvyZy3s4S2PTCbv49yTnE9zY+cws8Xx0a3B7MNxyqDGQA8/hp/\nsniP8Z/55EVsGusG2jaZo5389+U/35pN8+Km1KdMp6on78a/AqC73/ScjamLyAenK+hEIqFiF4mE\nil0kEip2kUio2EUioWIXiYR5Gkskf1CDrczPs0t77fFEYrPcl+KQH+j2ohCd2UUioWIXiYSKXSQS\nKnaRSKjYRSKhYheJhIpdJBK9Os5uZvsAnLjGbjkAvu9u7vTVvvXVfgHqW6oy2bex7j68u6BXi/19\nD25W4+7VOesA0Vf71lf7BahvqeqtvulpvEgkVOwikch1sS/O8eMzfbVvfbVfgPqWql7pW05fs4tI\n78n1mV1EeomKXSQSOSl2M7vSzDaa2RYz+0Yu+hBiZtvNbLWZ1ZpZTY77ssTM9prZmhNuKzOz58xs\nc+Jjt3vs5ahvd5pZfeLY1ZrZvBz1bYyZ/dHM1pnZWjO7LXF7To8d6VevHLdef81uZvkANgG4DEAd\ngNcBXOfu63q1IwFmth1Atbvn/AIMM7sQwBEAj7j7GYnbvgfggLvflfhDOdTdv95H+nYngCO53sY7\nsVtR5YnbjAP4OIDPI4fHjvTrGvTCccvFmX0GgC3uvs3dWwH8AsD8HPSjz3P3lwEceM/N8wE8nPj8\nYXT9svS6QN/6BHff4+4rEp8fBnB8m/GcHjvSr16Ri2IfDWDXCV/XoW/t9+4AnjWzN8xsYa47040K\nd9+T+LwBQEUuO9ONpNt496b3bDPeZ45dKtufp0tv0L3fbHc/G8BVAG5JPF3tk7zrNVhfGjvt0Tbe\nvaWbbcb/KpfHLtXtz9OVi2KvBzDmhK9PSdzWJ7h7feLjXgBPoO9tRd14fAfdxMe9Oe7PX/Wlbby7\n22YcfeDY5XL781wU++sAJpnZODMrAnAtgCdz0I/3MbMBiTdOYGYDAFyOvrcV9ZMAbkh8fgOA3+aw\nL+/SV7bxDm0zjhwfu5xvf+7uvf4PwDx0vSO/FcA/56IPgX6NB7Ay8W9trvsG4FF0Pa1rQ9d7GzcB\nGAZgKYDNAJ4HUNaH+vZTAKsBrEJXYVXmqG+z0fUUfRWA2sS/ebk+dqRfvXLcdLmsSCT0Bp1IJFTs\nIpFQsYtEQsUuEgkVu0gkVOwikVCxi0Ti/wB8uYzDnmnErwAAAABJRU5ErkJggg==\n", 625 | "text/plain": [ 626 | "
" 627 | ] 628 | }, 629 | "metadata": { 630 | "tags": [] 631 | } 632 | } 633 | ] 634 | } 635 | ] 636 | } -------------------------------------------------------------------------------- /Greek_Spacy.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "Greek Spacy.ipynb", 7 | "provenance": [], 8 | "collapsed_sections": [], 9 | "include_colab_link": true 10 | }, 11 | "kernelspec": { 12 | "name": "python3", 13 | "display_name": "Python 3" 14 | } 15 | }, 16 | "cells": [ 17 | { 18 | "cell_type": "markdown", 19 | "metadata": { 20 | "id": "view-in-github", 21 | "colab_type": "text" 22 | }, 23 | "source": [ 24 | "\"Open" 25 | ] 26 | }, 27 | { 28 | "cell_type": "code", 29 | "metadata": { 30 | "id": "yIARIXVzyqZe", 31 | "colab_type": "code", 32 | "outputId": "0fe8fd77-c0fd-4699-96cb-4ecae7317b14", 33 | "colab": { 34 | "base_uri": "https://localhost:8080/", 35 | "height": 845 36 | } 37 | }, 38 | "source": [ 39 | "!pip install -U spacy" 40 | ], 41 | "execution_count": 0, 42 | "outputs": [ 43 | { 44 | "output_type": "stream", 45 | "text": [ 46 | "Collecting spacy\n", 47 | "\u001b[?25l Downloading https://files.pythonhosted.org/packages/47/13/80ad28ef7a16e2a86d16d73e28588be5f1085afd3e85e4b9b912bd700e8a/spacy-2.2.3-cp36-cp36m-manylinux1_x86_64.whl (10.4MB)\n", 48 | "\u001b[K |████████████████████████████████| 10.4MB 4.2MB/s \n", 49 | "\u001b[?25hRequirement already satisfied, skipping upgrade: cymem<2.1.0,>=2.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy) (2.0.3)\n", 50 | "Requirement already satisfied, skipping upgrade: srsly<1.1.0,>=0.1.0 in /usr/local/lib/python3.6/dist-packages (from spacy) (0.2.0)\n", 51 | "Requirement already satisfied, skipping upgrade: numpy>=1.15.0 in /usr/local/lib/python3.6/dist-packages (from spacy) (1.17.4)\n", 52 | "Collecting preshed<3.1.0,>=3.0.2\n", 53 | "\u001b[?25l Downloading https://files.pythonhosted.org/packages/db/6b/e07fad36913879757c90ba03d6fb7f406f7279e11dcefc105ee562de63ea/preshed-3.0.2-cp36-cp36m-manylinux1_x86_64.whl (119kB)\n", 54 | "\u001b[K |████████████████████████████████| 122kB 42.2MB/s \n", 55 | "\u001b[?25hCollecting thinc<7.4.0,>=7.3.0\n", 56 | "\u001b[?25l Downloading https://files.pythonhosted.org/packages/07/59/6bb553bc9a5f072d3cd479fc939fea0f6f682892f1f5cff98de5c9b615bb/thinc-7.3.1-cp36-cp36m-manylinux1_x86_64.whl (2.2MB)\n", 57 | "\u001b[K |████████████████████████████████| 2.2MB 30.3MB/s \n", 58 | "\u001b[?25hRequirement already satisfied, skipping upgrade: murmurhash<1.1.0,>=0.28.0 in /usr/local/lib/python3.6/dist-packages (from spacy) (1.0.2)\n", 59 | "Collecting catalogue<1.1.0,>=0.0.7\n", 60 | " Downloading https://files.pythonhosted.org/packages/4f/d5/46ff975f0d7d055cf95557b944fd5d29d9dfb37a4341038e070f212b24fe/catalogue-0.0.8-py2.py3-none-any.whl\n", 61 | "Requirement already satisfied, skipping upgrade: setuptools in /usr/local/lib/python3.6/dist-packages (from spacy) (41.6.0)\n", 62 | "Requirement already satisfied, skipping upgrade: wasabi<1.1.0,>=0.4.0 in /usr/local/lib/python3.6/dist-packages (from spacy) (0.4.0)\n", 63 | "Requirement already satisfied, skipping upgrade: plac<1.2.0,>=0.9.6 in /usr/local/lib/python3.6/dist-packages (from spacy) (0.9.6)\n", 64 | "Requirement already satisfied, skipping upgrade: requests<3.0.0,>=2.13.0 in /usr/local/lib/python3.6/dist-packages (from spacy) (2.21.0)\n", 65 | "Collecting blis<0.5.0,>=0.4.0\n", 66 | "\u001b[?25l Downloading https://files.pythonhosted.org/packages/41/19/f95c75562d18eb27219df3a3590b911e78d131b68466ad79fdf5847eaac4/blis-0.4.1-cp36-cp36m-manylinux1_x86_64.whl (3.7MB)\n", 67 | "\u001b[K |████████████████████████████████| 3.7MB 41.9MB/s \n", 68 | "\u001b[?25hRequirement already satisfied, skipping upgrade: tqdm<5.0.0,>=4.10.0 in /usr/local/lib/python3.6/dist-packages (from thinc<7.4.0,>=7.3.0->spacy) (4.28.1)\n", 69 | "Requirement already satisfied, skipping upgrade: importlib-metadata>=0.20; python_version < \"3.8\" in /usr/local/lib/python3.6/dist-packages (from catalogue<1.1.0,>=0.0.7->spacy) (0.23)\n", 70 | "Requirement already satisfied, skipping upgrade: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy) (2019.9.11)\n", 71 | "Requirement already satisfied, skipping upgrade: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy) (3.0.4)\n", 72 | "Requirement already satisfied, skipping upgrade: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy) (1.24.3)\n", 73 | "Requirement already satisfied, skipping upgrade: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy) (2.8)\n", 74 | "Requirement already satisfied, skipping upgrade: zipp>=0.5 in /usr/local/lib/python3.6/dist-packages (from importlib-metadata>=0.20; python_version < \"3.8\"->catalogue<1.1.0,>=0.0.7->spacy) (0.6.0)\n", 75 | "Requirement already satisfied, skipping upgrade: more-itertools in /usr/local/lib/python3.6/dist-packages (from zipp>=0.5->importlib-metadata>=0.20; python_version < \"3.8\"->catalogue<1.1.0,>=0.0.7->spacy) (7.2.0)\n", 76 | "Installing collected packages: preshed, blis, thinc, catalogue, spacy\n", 77 | " Found existing installation: preshed 2.0.1\n", 78 | " Uninstalling preshed-2.0.1:\n", 79 | " Successfully uninstalled preshed-2.0.1\n", 80 | " Found existing installation: blis 0.2.4\n", 81 | " Uninstalling blis-0.2.4:\n", 82 | " Successfully uninstalled blis-0.2.4\n", 83 | " Found existing installation: thinc 7.0.8\n", 84 | " Uninstalling thinc-7.0.8:\n", 85 | " Successfully uninstalled thinc-7.0.8\n", 86 | " Found existing installation: spacy 2.1.9\n", 87 | " Uninstalling spacy-2.1.9:\n", 88 | " Successfully uninstalled spacy-2.1.9\n", 89 | "Successfully installed blis-0.4.1 catalogue-0.0.8 preshed-3.0.2 spacy-2.2.3 thinc-7.3.1\n" 90 | ], 91 | "name": "stdout" 92 | } 93 | ] 94 | }, 95 | { 96 | "cell_type": "code", 97 | "metadata": { 98 | "id": "LXpmvaPijt4w", 99 | "colab_type": "code", 100 | "outputId": "8b9850b6-c137-4982-fb82-697212c64d06", 101 | "colab": { 102 | "base_uri": "https://localhost:8080/", 103 | "height": 717 104 | } 105 | }, 106 | "source": [ 107 | "!python -m spacy download el" 108 | ], 109 | "execution_count": 0, 110 | "outputs": [ 111 | { 112 | "output_type": "stream", 113 | "text": [ 114 | "Collecting el_core_news_sm==2.2.5\n", 115 | "\u001b[?25l Downloading https://github.com/explosion/spacy-models/releases/download/el_core_news_sm-2.2.5/el_core_news_sm-2.2.5.tar.gz (11.4MB)\n", 116 | "\u001b[K |████████████████████████████████| 11.4MB 790kB/s \n", 117 | "\u001b[?25hRequirement already satisfied: spacy>=2.2.2 in /usr/local/lib/python3.6/dist-packages (from el_core_news_sm==2.2.5) (2.2.3)\n", 118 | "Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->el_core_news_sm==2.2.5) (2.0.3)\n", 119 | "Requirement already satisfied: numpy>=1.15.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->el_core_news_sm==2.2.5) (1.17.4)\n", 120 | "Requirement already satisfied: catalogue<1.1.0,>=0.0.7 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->el_core_news_sm==2.2.5) (0.0.8)\n", 121 | "Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->el_core_news_sm==2.2.5) (41.6.0)\n", 122 | "Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->el_core_news_sm==2.2.5) (3.0.2)\n", 123 | "Requirement already satisfied: thinc<7.4.0,>=7.3.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->el_core_news_sm==2.2.5) (7.3.1)\n", 124 | "Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->el_core_news_sm==2.2.5) (1.0.2)\n", 125 | "Requirement already satisfied: wasabi<1.1.0,>=0.4.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->el_core_news_sm==2.2.5) (0.4.0)\n", 126 | "Requirement already satisfied: plac<1.2.0,>=0.9.6 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->el_core_news_sm==2.2.5) (0.9.6)\n", 127 | "Requirement already satisfied: requests<3.0.0,>=2.13.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->el_core_news_sm==2.2.5) (2.21.0)\n", 128 | "Requirement already satisfied: blis<0.5.0,>=0.4.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->el_core_news_sm==2.2.5) (0.4.1)\n", 129 | "Requirement already satisfied: srsly<1.1.0,>=0.1.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->el_core_news_sm==2.2.5) (0.2.0)\n", 130 | "Requirement already satisfied: importlib-metadata>=0.20; python_version < \"3.8\" in /usr/local/lib/python3.6/dist-packages (from catalogue<1.1.0,>=0.0.7->spacy>=2.2.2->el_core_news_sm==2.2.5) (0.23)\n", 131 | "Requirement already satisfied: tqdm<5.0.0,>=4.10.0 in /usr/local/lib/python3.6/dist-packages (from thinc<7.4.0,>=7.3.0->spacy>=2.2.2->el_core_news_sm==2.2.5) (4.28.1)\n", 132 | "Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=2.2.2->el_core_news_sm==2.2.5) (1.24.3)\n", 133 | "Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=2.2.2->el_core_news_sm==2.2.5) (3.0.4)\n", 134 | "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=2.2.2->el_core_news_sm==2.2.5) (2019.9.11)\n", 135 | "Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=2.2.2->el_core_news_sm==2.2.5) (2.8)\n", 136 | "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.6/dist-packages (from importlib-metadata>=0.20; python_version < \"3.8\"->catalogue<1.1.0,>=0.0.7->spacy>=2.2.2->el_core_news_sm==2.2.5) (0.6.0)\n", 137 | "Requirement already satisfied: more-itertools in /usr/local/lib/python3.6/dist-packages (from zipp>=0.5->importlib-metadata>=0.20; python_version < \"3.8\"->catalogue<1.1.0,>=0.0.7->spacy>=2.2.2->el_core_news_sm==2.2.5) (7.2.0)\n", 138 | "Building wheels for collected packages: el-core-news-sm\n", 139 | " Building wheel for el-core-news-sm (setup.py) ... \u001b[?25l\u001b[?25hdone\n", 140 | " Created wheel for el-core-news-sm: filename=el_core_news_sm-2.2.5-cp36-none-any.whl size=11422786 sha256=a2e4fd3c86575b7c8ae7a4ec4211ae68a7c27a748573477b9b43a831742e2b44\n", 141 | " Stored in directory: /tmp/pip-ephem-wheel-cache-634wxpxz/wheels/70/a1/c5/6690d6b524d87e287a8070cf957f834fb1b1665b9ede11348b\n", 142 | "Successfully built el-core-news-sm\n", 143 | "Installing collected packages: el-core-news-sm\n", 144 | "Successfully installed el-core-news-sm-2.2.5\n", 145 | "\u001b[38;5;2m✔ Download and installation successful\u001b[0m\n", 146 | "You can now load the model via spacy.load('el_core_news_sm')\n", 147 | "\u001b[38;5;2m✔ Linking successful\u001b[0m\n", 148 | "/usr/local/lib/python3.6/dist-packages/el_core_news_sm -->\n", 149 | "/usr/local/lib/python3.6/dist-packages/spacy/data/el\n", 150 | "You can now load the model via spacy.load('el')\n" 151 | ], 152 | "name": "stdout" 153 | } 154 | ] 155 | }, 156 | { 157 | "cell_type": "code", 158 | "metadata": { 159 | "id": "Gc4rd8JJyS9Y", 160 | "colab_type": "code", 161 | "colab": {} 162 | }, 163 | "source": [ 164 | "import spacy\n", 165 | "#nlp = spacy.load(\"el_core_news_sm\")\n", 166 | "nlp = spacy.load(\"el\")" 167 | ], 168 | "execution_count": 0, 169 | "outputs": [] 170 | }, 171 | { 172 | "cell_type": "code", 173 | "metadata": { 174 | "colab_type": "code", 175 | "id": "p8dDdyS8kgXO", 176 | "colab": {} 177 | }, 178 | "source": [ 179 | "sample_text=\"Αυτό είναι ένα παράδειγμα για την επεξεργασία κειμένου. Δημιουργήθηκε από το Δημήτρη Παναγόπουλο τον Νoέμβριο του 2019 στην Αθήνα. Μπορείτε να το τρέξετε στο Colab της Google\"\n", 180 | "doc = nlp(sample_text)" 181 | ], 182 | "execution_count": 0, 183 | "outputs": [] 184 | }, 185 | { 186 | "cell_type": "code", 187 | "metadata": { 188 | "id": "ge3FRXSA0pQ0", 189 | "colab_type": "code", 190 | "outputId": "bfc246c1-736d-47fb-d4cc-651c333f1654", 191 | "colab": { 192 | "base_uri": "https://localhost:8080/", 193 | "height": 550 194 | } 195 | }, 196 | "source": [ 197 | "for token in doc:\n", 198 | " print(token.text, token.lemma_, token.pos_)" 199 | ], 200 | "execution_count": 0, 201 | "outputs": [ 202 | { 203 | "output_type": "stream", 204 | "text": [ 205 | "Αυτό αυτό PRON\n", 206 | "είναι είναι AUX\n", 207 | "ένα ένα DET\n", 208 | "παράδειγμα παράδειγμα NOUN\n", 209 | "για για ADP\n", 210 | "την την DET\n", 211 | "επεξεργασία επεξεργασίας NOUN\n", 212 | "κειμένου κειμένο NOUN\n", 213 | ". . PUNCT\n", 214 | "Δημιουργήθηκε δημιουργήθηκε VERB\n", 215 | "από από ADP\n", 216 | "το το DET\n", 217 | "Δημήτρη δημήτρη NOUN\n", 218 | "Παναγόπουλο παναγόπουλο NOUN\n", 219 | "τον τον DET\n", 220 | "Νoέμβριο νoέμβριο NOUN\n", 221 | "του του DET\n", 222 | "2019 2019 NUM\n", 223 | "στην στην ADJ\n", 224 | "Αθήνα Αθήνα PROPN\n", 225 | ". . PUNCT\n", 226 | "Μπορείτε μπορείτε VERB\n", 227 | "να να PART\n", 228 | "το το PRON\n", 229 | "τρέξετε τρέξω VERB\n", 230 | "στο στο ADV\n", 231 | "Colab colab X\n", 232 | "της της DET\n", 233 | "Google google X\n" 234 | ], 235 | "name": "stdout" 236 | } 237 | ] 238 | }, 239 | { 240 | "cell_type": "code", 241 | "metadata": { 242 | "id": "uwp80jJtlYUE", 243 | "colab_type": "code", 244 | "outputId": "a7270266-1e2d-4680-e732-eaf99c825f8b", 245 | "colab": { 246 | "base_uri": "https://localhost:8080/", 247 | "height": 122 248 | } 249 | }, 250 | "source": [ 251 | "from spacy import displacy\n", 252 | "displacy.render(doc, style=\"ent\", jupyter=True)" 253 | ], 254 | "execution_count": 0, 255 | "outputs": [ 256 | { 257 | "output_type": "display_data", 258 | "data": { 259 | "text/html": [ 260 | "
Αυτό είναι ένα παράδειγμα για την επεξεργασία κειμένου. Δημιουργήθηκε από το \n", 261 | "\n", 262 | " Δημήτρη Παναγόπουλο\n", 263 | " ORG\n", 264 | "\n", 265 | " τον Νoέμβριο του 2019 στην \n", 266 | "\n", 267 | " Αθήνα\n", 268 | " GPE\n", 269 | "\n", 270 | ". Μπορείτε να το τρέξετε στο Colab της \n", 271 | "\n", 272 | " Google\n", 273 | " ORG\n", 274 | "\n", 275 | "
" 276 | ], 277 | "text/plain": [ 278 | "" 279 | ] 280 | }, 281 | "metadata": { 282 | "tags": [] 283 | } 284 | } 285 | ] 286 | }, 287 | { 288 | "cell_type": "code", 289 | "metadata": { 290 | "id": "IZXd10Tnmefz", 291 | "colab_type": "code", 292 | "colab": {} 293 | }, 294 | "source": [ 295 | "sample_words=\"σκύλος γάτα βασιλιάς\"" 296 | ], 297 | "execution_count": 0, 298 | "outputs": [] 299 | }, 300 | { 301 | "cell_type": "code", 302 | "metadata": { 303 | "id": "Msv3wlgbpk_y", 304 | "colab_type": "code", 305 | "colab": {} 306 | }, 307 | "source": [ 308 | "tokens=nlp(sample_words)" 309 | ], 310 | "execution_count": 0, 311 | "outputs": [] 312 | }, 313 | { 314 | "cell_type": "code", 315 | "metadata": { 316 | "id": "-hacpD7rppfw", 317 | "colab_type": "code", 318 | "outputId": "ff897f43-b591-4b97-caa0-ca402550c2d1", 319 | "colab": { 320 | "base_uri": "https://localhost:8080/", 321 | "height": 35 322 | } 323 | }, 324 | "source": [ 325 | "print(tokens)" 326 | ], 327 | "execution_count": 0, 328 | "outputs": [ 329 | { 330 | "output_type": "stream", 331 | "text": [ 332 | "σκύλος γάτα βασιλιάς\n" 333 | ], 334 | "name": "stdout" 335 | } 336 | ] 337 | }, 338 | { 339 | "cell_type": "code", 340 | "metadata": { 341 | "id": "0uNtAMTNpq_i", 342 | "colab_type": "code", 343 | "outputId": "14f4ee3e-3bff-40aa-b488-be3cc7f93c3e", 344 | "colab": { 345 | "base_uri": "https://localhost:8080/", 346 | "height": 92 347 | } 348 | }, 349 | "source": [ 350 | "print(tokens[0].similarity(tokens[1]))" 351 | ], 352 | "execution_count": 0, 353 | "outputs": [ 354 | { 355 | "output_type": "stream", 356 | "text": [ 357 | "/usr/lib/python3.6/runpy.py:193: ModelsWarning: [W007] The model you're using has no word vectors loaded, so the result of the Token.similarity method will be based on the tagger, parser and NER, which may not give useful similarity judgements. This may happen if you're using one of the small models, e.g. `en_core_web_sm`, which don't ship with word vectors and only use context-sensitive tensors. You can always add your own word vectors, or use one of the larger models instead if available.\n", 358 | " \"__main__\", mod_spec)\n" 359 | ], 360 | "name": "stderr" 361 | }, 362 | { 363 | "output_type": "execute_result", 364 | "data": { 365 | "text/plain": [ 366 | "0.69062674" 367 | ] 368 | }, 369 | "metadata": { 370 | "tags": [] 371 | }, 372 | "execution_count": 31 373 | } 374 | ] 375 | }, 376 | { 377 | "cell_type": "code", 378 | "metadata": { 379 | "id": "6nWtntI7puNh", 380 | "colab_type": "code", 381 | "outputId": "cf44e0eb-8f76-45db-bd80-97a1716c0214", 382 | "colab": { 383 | "base_uri": "https://localhost:8080/", 384 | "height": 92 385 | } 386 | }, 387 | "source": [ 388 | "print(tokens[0].similarity(tokens[2]))" 389 | ], 390 | "execution_count": 0, 391 | "outputs": [ 392 | { 393 | "output_type": "stream", 394 | "text": [ 395 | "0.4917702\n" 396 | ], 397 | "name": "stdout" 398 | }, 399 | { 400 | "output_type": "stream", 401 | "text": [ 402 | "/usr/lib/python3.6/runpy.py:193: ModelsWarning: [W007] The model you're using has no word vectors loaded, so the result of the Token.similarity method will be based on the tagger, parser and NER, which may not give useful similarity judgements. This may happen if you're using one of the small models, e.g. `en_core_web_sm`, which don't ship with word vectors and only use context-sensitive tensors. You can always add your own word vectors, or use one of the larger models instead if available.\n", 403 | " \"__main__\", mod_spec)\n" 404 | ], 405 | "name": "stderr" 406 | } 407 | ] 408 | }, 409 | { 410 | "cell_type": "code", 411 | "metadata": { 412 | "id": "uflt2YADqmG0", 413 | "colab_type": "code", 414 | "colab": {} 415 | }, 416 | "source": [ 417 | "" 418 | ], 419 | "execution_count": 0, 420 | "outputs": [] 421 | } 422 | ] 423 | } -------------------------------------------------------------------------------- /Image_Classification_with_and_without_convlolution.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "Image Classification with and without convlolution.ipynb", 7 | "provenance": [], 8 | "collapsed_sections": [], 9 | "include_colab_link": true 10 | }, 11 | "kernelspec": { 12 | "name": "python3", 13 | "display_name": "Python 3" 14 | }, 15 | "accelerator": "TPU" 16 | }, 17 | "cells": [ 18 | { 19 | "cell_type": "markdown", 20 | "metadata": { 21 | "id": "view-in-github", 22 | "colab_type": "text" 23 | }, 24 | "source": [ 25 | "\"Open" 26 | ] 27 | }, 28 | { 29 | "cell_type": "markdown", 30 | "metadata": { 31 | "id": "Ww3F3BuDkH_V", 32 | "colab_type": "text" 33 | }, 34 | "source": [ 35 | "#Image Classification with and without convlolution" 36 | ] 37 | }, 38 | { 39 | "cell_type": "markdown", 40 | "metadata": { 41 | "id": "HidJIZ8kkg1Q", 42 | "colab_type": "text" 43 | }, 44 | "source": [ 45 | "###First, we load the necessary libraries" 46 | ] 47 | }, 48 | { 49 | "cell_type": "code", 50 | "metadata": { 51 | "id": "QRhENDcTjx1S", 52 | "colab_type": "code", 53 | "colab": {} 54 | }, 55 | "source": [ 56 | "import numpy as np\n", 57 | "import tensorflow as tf\n", 58 | "from tensorflow import keras\n", 59 | "import matplotlib.pyplot as plt" 60 | ], 61 | "execution_count": 0, 62 | "outputs": [] 63 | }, 64 | { 65 | "cell_type": "markdown", 66 | "metadata": { 67 | "id": "x1dVuDBolRg7", 68 | "colab_type": "text" 69 | }, 70 | "source": [ 71 | "###Then, we load Fashion MINST dataset" 72 | ] 73 | }, 74 | { 75 | "cell_type": "code", 76 | "metadata": { 77 | "id": "akPbPBwplY8v", 78 | "colab_type": "code", 79 | "outputId": "836eafb9-a6e8-4f21-ef89-cbb4ebcd98dc", 80 | "colab": { 81 | "base_uri": "https://localhost:8080/", 82 | "height": 164 83 | } 84 | }, 85 | "source": [ 86 | "fashion_mnist = keras.datasets.fashion_mnist\n", 87 | "(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()" 88 | ], 89 | "execution_count": 0, 90 | "outputs": [ 91 | { 92 | "output_type": "stream", 93 | "text": [ 94 | "Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz\n", 95 | "32768/29515 [=================================] - 0s 0us/step\n", 96 | "Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz\n", 97 | "26427392/26421880 [==============================] - 1s 0us/step\n", 98 | "Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz\n", 99 | "8192/5148 [===============================================] - 0s 0us/step\n", 100 | "Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz\n", 101 | "4423680/4422102 [==============================] - 0s 0us/step\n" 102 | ], 103 | "name": "stdout" 104 | } 105 | ] 106 | }, 107 | { 108 | "cell_type": "markdown", 109 | "metadata": { 110 | "id": "Xz_mDVy1ovUL", 111 | "colab_type": "text" 112 | }, 113 | "source": [ 114 | "###Label number correspond to:\n", 115 | "| Label| Class|\n", 116 | "|---------|----------|\n", 117 | "| 0 | T-shirt/top|\n", 118 | "| 1 | Trouser|\n", 119 | "| 2 | Pullover|\n", 120 | "| 3 | Dress|\n", 121 | "| 4 | Coat|\n", 122 | "| 5 | Sandal|\n", 123 | "| 6 | Shirt|\n", 124 | "| 7 | Sneaker|\n", 125 | "| 8 | bag|\n", 126 | "| 9 | Ankle boot|\n", 127 | "\n", 128 | "###We store correspondence in class_names variable" 129 | ] 130 | }, 131 | { 132 | "cell_type": "code", 133 | "metadata": { 134 | "id": "3jTUU9zPo_pY", 135 | "colab_type": "code", 136 | "colab": {} 137 | }, 138 | "source": [ 139 | "class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',\n", 140 | " 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']" 141 | ], 142 | "execution_count": 0, 143 | "outputs": [] 144 | }, 145 | { 146 | "cell_type": "markdown", 147 | "metadata": { 148 | "id": "Y_7uABuIpBEV", 149 | "colab_type": "text" 150 | }, 151 | "source": [ 152 | "###We can see an example" 153 | ] 154 | }, 155 | { 156 | "cell_type": "code", 157 | "metadata": { 158 | "id": "9ctTGeODlvt6", 159 | "colab_type": "code", 160 | "outputId": "49b94b1b-a1d9-4886-f132-f5abcf71a0a3", 161 | "colab": { 162 | "base_uri": "https://localhost:8080/", 163 | "height": 238 164 | } 165 | }, 166 | "source": [ 167 | "f, ax = plt.subplots(1,2)\n", 168 | "ax[0].imshow(train_images[40])\n", 169 | "ax[1].imshow(train_images[50])\n", 170 | "print(train_labels[40],train_labels[50])\n", 171 | "print(class_names[6],class_names[6])" 172 | ], 173 | "execution_count": 0, 174 | "outputs": [ 175 | { 176 | "output_type": "stream", 177 | "text": [ 178 | "6 3\n", 179 | "Shirt Shirt\n" 180 | ], 181 | "name": "stdout" 182 | }, 183 | { 184 | "output_type": "display_data", 185 | "data": { 186 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAC4CAYAAAD61bdSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAZpklEQVR4nO3da4yc5XUH8P+Zy1699np9w/gK9gJx\nAoFkyyUJghRCIEpEiFoEahFV0zhCSRQq+sFFihJFapU2CWkVJVRGtuxWKUkqINCKJk0dWpISLoYa\nMDbG2Biwsdf3vXh3Z+dy+mEnquGch329c32G/0+yvHv2mZn3nTnz7LtznouoKoiIKD6pRh8AERHN\nDDtwIqJIsQMnIooUO3AiokixAyciihQ7cCKiSFXUgYvI9SKyS0ReFZF11ToookZjblMMZKbjwEUk\nDeAVAJ8AsB/AMwBuVdUdodu0Sbt2oHtGjxelrg433LZ80sRypYyJlVTc28/K5ExsYm+b21Zz9rGq\nwju0Bk8pmMApTGrOf9LOAHN7epIKXPs5/Umlc02kLZDbkzXK7SYUym3bayR3KYBXVXUvAIjIjwHc\nCCCY5B3oxmVyTQUPWWfi9AVnkIxywfvd+OJ73zCxN0bnmthYPuve/rKFr5vYK7csd9sWd+99t0Oc\nnvccAJB02sS0UKjssSr0lG6p1l0xt6eRmtXj/yCfN6HSxETi+/Vklq5w44XX7PugVYVyu5KPUJYA\nePO07/eXY28jImtFZKuIbM3DXjkSNSHmNkWh5kVMVV2vqgOqOpBFe60fjqhumNvUaJV8hHIAwLLT\nvl9ajjW1VI/90680MuI3rvCzu11f8D8TXbfgf0zsKwdvMbFczn95vn3RUyY28O1+t+2SP5tnYsWj\nx9y2rsBz4H1cIhn/eBv90coMRJnbZ8R5XU/9wWVu0898/VcmdkX3NrfthdkxE+tK2Y8C81p0b98u\ntu2Jkn2/AMC9x3/PxDY/fqXbtv8r9j3TCiq5An8GQL+InCMibQBuAfBIdQ6LqKGY2xSFGV+Bq2pB\nRL4M4BcA0gA2qupLVTsyogZhblMsKvkIBar6KIBHq3QsRE2DuU0x4ExMIqJIsQMnIorUjGdizsRs\n6dOaTHaocFJCyNhNtip/8A/98b6bL99oYo+NrnHbvjlhJ+08tteOIkml/HP4zOrtJnbNbH+OyYTa\nqv5EyZ8g9P3XPm5io/9+ltt28Q+3mpjmGzsz7indgmE9XvFMzJmoWW7XivOe+fPdfg6tabOjlg4V\nkw+b7M/YyT35wLTdI0V7TXmk6I/m6krZ9+KarD+65eKf3Gliq+560m3bjEK5zStwIqJIsQMnIooU\nO3AiokixAyciilRrFDHPwBvf+IiJLb/Srg4IAJfPf83EhgqdbtuhvI13p/2i3kWz3jSxZ4bPMbGC\n+r9fr51ri01v5XvdtjtGzzaxYmCZ2qUdJ02sK3AOKacI9fOvXeW27Xz4aRsMrHJYSfGZRczkcjfY\naejf/MF9btvnx+1qgP3th9y2felRE8urXbmyGLh27BabbxPqT1fZPekX2D1ewXPDefY916xYxCQi\najHswImIIsUOnIgoUuzAiYgixQ6ciChSFa1G2MyG/vhyN37b5+zecs8NLXNaAk8cPdfEerL+/n6D\nY3ajiEvm+XsA5Jyp7CkpmVhfZty9/eu5+SZ2OO/vUThetI8V2ix528mlidsO9NmRO6v+cqfb9q2H\nnWAdRz+RNXSuzYsFKbsZAwAMFe0Iq905fwTIlV2vmFha7GsdGlnixb3lIADgSMHmfE/Kf3/un+wz\nsVSHv+l4pXt41hOvwImIIsUOnIgoUuzAiYgixQ6ciChSFRUxRWQfgBEARQAFVR2oxkFVQ++f2unq\nALBjdLGJjUz6xQyvYDlZ8p+yBZ2nTGzX8EK37RMHV5rYJQttwfO1CbujPAD819BqE1s1199p3itC\nFkp2ajMAtKXsWspz2/3C1oEJO3X/033Pu203nPcJEyu+ssdt2yyaOber4bY7fm5ivSlbSAeAK7p3\nm9hDx/2noy9jp9Kn4d+vxyvmbztlp/IDwEVd9j3e3zbott2TX2Bi/3LH77ttz/reE+92iE2lGqNQ\nPq6qR6twP0TNhrlNTY0foRARRarSDlwB/IeIPCsia6txQERNgrlNTa/Sj1A+pqoHRGQhgF+KyMuq\n+vjpDcrJvxYAOtBV4cMR1Q1zm5peRVfgqnqg/P9hAA8BuNRps15VB1R1IIvkG6ESNRJzm2Iw4ytw\nEekGkFLVkfLX1wH4ZtWOrEKXzdvnxvecstXobNrfydobcdKWKiRuG5p2n+2xjzc4YacFF0r+79cF\n3XbES6htypnGHNooIuOMAJjfZkcVAMBwwY7cOVVqc9ue+LB9zmc38SiUZs/tavjXu+wIjH/4kyvd\ntg9fca+Jnd/lb+gw4SwTkXby6lTJ/4XnjVhZ3u6PsHpydJWJ9ff5o1D+ZtcnTaz3Vf+9HJNKPkJZ\nBOAhmdpZJQPgn1XVjk0iig9zm6Iw4w5cVfcC+GAVj4WoKTC3KRYcRkhEFCl24EREkWrZ9cBnpf0C\n4kTRnvLizmG37YGxOc7t/bWJvWLhSN6fou8Vdbxp7KFfr+MFewyn8n5RqDtrd+P2ipUAsKDDFiwX\ntw25bd8cn2tipcABjy2y8dluS6qXtl9sNbFzfuG3/YuzbjKxv33yZ27bbTm7prxXmJyA/z4aKdn3\nzNre7W7bKzfcaGI7v+sXJufDrlPeCngFTkQUKXbgRESRYgdORBQpduBERJFiB05EFKmWHYXSl7bT\nzQF/84Y5gSnv3uiUPcN2R/iQ0I7u7RlbKfemt4dGi+SLzoYM/h4NGJq0O4qHNmlY2nHCxLyp0QAw\n6RxDKrBwf4HrPDWflJMwJX9JicIhOz19T97fbMRzrDjLxHKBvPJ2lc8GkjtvV58I8843JPA8NCNe\ngRMRRYodOBFRpNiBExFFih04EVGkWqKImZ7vFVT89YpzzlT6ocCU9wtnv2Vix3Ldbtuj4zbuTa8H\n/OKmV5gsiP/7NentAaDotJ3bM+627Urbafcn8v75uksHlGzBFADyPf7zQA2kyXeK92wfX+bGz26z\nhfDulM2rJVnbDgB25xaZ2COnbAwAMv44BZek7ftD85PJ76BJ8QqciChS7MCJiCLFDpyIKFLswImI\nIsUOnIgoUtOOQhGRjQA+DeCwqn6gHOsD8BMAKwHsA3Czqvpl5TrQJQtNrCO1zW07UbCnPLfNH5XR\n55S5M97GCwBmt9spwKOT/iYLHm90TFfWr5J7U/FDI15SsPHujB0VAAAdYu93Vcdht+0zx1e4cU+x\nszlHocSQ280gvci+v3rSu9y213btNbGlGTuVftOwvU8AGHLWXViQGXHbjl6QfBSJFvKJ28YkyRX4\nJgDXvyO2DsAWVe0HsKX8PVFsNoG5TRGbtgNX1ccBHH9H+EYAm8tfbwbw2SofF1HNMbcpdjOdyLNI\nVQ+Wvz4EwB9pD0BE1gJYCwAd4LJ01PSY2xSNiouYqqqA80Hr//98vaoOqOpAFsk/EyZqNOY2NbuZ\nXoEPishiVT0oIosB+JWuOsnP9adwe8Qp9uVK/jT03eO20HJ2p79L+64he6GWTfsFz2LJ/t4sOLF8\n4Li824dWMJ7VZguWQ3n/+Zpot+nw30f73bZpZ61yrwAFAJjnF02bVFPlds14yzSon0XHrltlYh/q\n/LnbdrDYZmJvFZMXEL2BA1nxj+s7V/7UxNbjXP+O1fk9HFoj/D2wHvgjAG4vf307gIerczhEDcfc\npmhM24GLyP0AfgvgfBHZLyKfB/AtAJ8Qkd0Ari1/TxQV5jbFbtqPUFT11sCPrqnysRDVFXObYseZ\nmEREkWIHTkQUqZbY0GFska18h6SdUSj7hv0dto8/ttjE/vrzm9y2LxxfYmLtaTs1HQCKzu9Nbyq8\nN9IDAEopu0nDmexgv6TjpNv21TE76ualLee5bf/oc78ysUOTs922H1yx38TOYC1+qoUzGGlx6qZh\nE/N2mgeA44H4O4VGlowU7eYqefVHi3Sl7FT69PvPd9sWX7JT/yXrd3+aa/1RKERE1GDswImIIsUO\nnIgoUuzAiYgi1RJFzGK7LeqdLPrTurudNbbntPvrgXf+yhZkLrjjiNs2VLD0pFO24FgK7Crv8Qqe\n3hIBIcvbj7nxxwdXm9jCZ/3zuuK23Sb24/HL3bYXznnLxJ5E9t0OkZrIHRc8bmKhYmWXswN9Se11\n4oT6r39X2t4+Vwq0dR7r4FX+gISFL9mY5pO/Z5sVr8CJiCLFDpyIKFLswImIIsUOnIgoUi1RxJyY\na4uYvz1p1zAGgM6MXZt4Yfuo23bo6RdNbMekv0FLT5vd1Hhk0s4qC/EKk6r2vAB/o+KOQBF1JG83\nGpiX9s/34LE5Jrb6NTsLDwDOcu5jpOBvarBr1HvO3rmTGTWrE4VuE8ul/MJin/NeOl5KNjsT8Aue\nXr4HfTKQVz/0HiyeGZchvAInIooUO3AiokixAyciihQ7cCKiSLEDJyKK1LSjUERkI4BPAzisqh8o\nx74B4AsAfjev/G5VfbRWBzmdSTt4AhNF/9QWdNgq+d5Rf/otYKeAHyv4FfWerJ3WGxqF4q7d7fwq\nLcEfhVIKjE7xeKNbetP+atyFnJ3OX9r+sts265xDoeRfD5zVMWJiJ9yW9RVDbteTfuSDbnx1+yMm\ntmvCrpVfDSknr0LrgXvxG5bvcNs+26LXqknOahOA653491T14vK/90SCU8vZBOY2RWzaDlxVHwcH\n7VILYm5T7Cr5u+LLIvKCiGwUkbmhRiKyVkS2isjWPOzHDERNiLlNUZhpB34vgFUALgZwEMB3Qw1V\ndb2qDqjqQBb+TD2iJsLcpmjMaCq9qg7+7msRuQ/Av1XtiGZAM7ZQVyj5hY/2lJ1yfnDY34x3oVPE\nHMw7FVMAPRk7lb6EXrett1mxd1xtKX+q76lC8k2cPaG1mNu77VrpIV1OcTT0nHem7f1K1j8HzSc/\nhlpottyup5Pn+Wvo96bHTCxUWCw514Teut0ni3Z6PgCknWnz7Sm7/AUAjJTsIIGTBf8cAPv+bAUz\nugIXkdNL0DcB2F6dwyFqLOY2xSTJMML7AVwNYL6I7AfwdQBXi8jFABTAPgBfrOExEtUEc5tiN20H\nrqq3OuENNTgWorpiblPsWnN0OxHRewA7cCKiSLXEhg6ZMTu1vOAsDA8AeSd+8kBoFIp1IlDlHinY\ninhoyns64Uz4tsAmDeOF5Du6e8cwUux0286f7U+x9zw/Od/EMoFRM94Im9Tq1W7b4k672z3Vx9hZ\nfmL2pMZNLJTbKTjLRMAfsZJUV8ofmTTkvBf7sn4O76nwGJoVr8CJiCLFDpyIKFLswImIIsUOnIgo\nUi1RxEyfwSxZb9fruS8mL3DMzdhpxQAwmOtJfhAOryg06uwoD/gF2lDRtjNjpyHvzXnlWeDieQdM\nLFRSfPDogInNyfovRFZscTO/0F9XPbUz8IBUc6dW+kXzDvHjlUi7xU6gGFgD370PZ0mKvoxfxEwv\nWGUf68gRp2VceAVORBQpduBERJFiB05EFCl24EREkWIHTkQUqZYYheJt8h7ibS6w6ImTblvvbtd0\n2pEaAPDCyBITywamlnvUGYUSmkrvjVhxd7qHP71995g/CuWq3l22Lc522/5637kmdt0qe3sAKDkj\nC3K9/nIA/iR/qoe+Jf77wBsZUgxc++XVdineJg0dgU0akPwt4/I2jwCAQr/NY+EoFCIiahR24ERE\nkWIHTkQUKXbgRESRSrIn5jIA/whgEab2CVyvqn8vIn0AfgJgJab2DrxZVU/U7lDDUpO2SBKSK9lT\nLr3wcuLbL0gPu/EJZ43ulLNzOxBeSzkpr+A5UfRfykxgir3nso59JnZ/oIiZ2W6nwqdWJ68mT84K\nTP1PfA+ViyG362nFHP8UvSJkaCq8N73dlfwt6y7FAPjrhPem/aUuxhbb9fq7kx9C00ry7i4AuEtV\n1wC4HMCXRGQNgHUAtqhqP4At5e+JYsLcpqhN24Gr6kFVfa789QiAnQCWALgRwOZys80APlurgySq\nBeY2xe6MxoGLyEoAlwB4CsAiVT1Y/tEhTP0Z6t1mLYC1ANABfzsyokZjblOMEn9AKiKzADwA4E5V\nfdsHwaqqCHyqparrVXVAVQey8JdHJWok5jbFKlEHLiJZTCX4j1T1wXJ4UEQWl3++GMDh2hwiUe0w\ntylmSUahCIANAHaq6j2n/egRALcD+Fb5/4drcoQJpJ3Zs6Gp5TfMfdHE7lV/h3RPb2CqbmgUSFLi\njFiZLPkbTXhT072RAgDQ5uwIXwjc77nZ5Lvdr/jZcRNr/1zyhf8LnZWNxKmGGHK7ns7u9EdYZZ33\n0mButts2Ncu2LTnXiXkN5LYzaio04sUTGrEyttDebyuMQknS63wUwG0AXhSRbeXY3ZhK7p+KyOcB\nvA7g5tocIlHNMLcpatN24Kr6GyC4z9E11T0covphblPsOBOTiChS7MCJiCLVEuuBp/O2gJcKFDGL\nZzC1XDL26UkFioXe9Pbg/ToFS2/afUc6sGayIzRtP5Oyz8NYwX/Z28UWMdOL/LXDi9vt8gO39T3p\ntn1g6MP29u2NL2LS213b+5Ib73F2pR8v+gVvr2DZITaPe1IT7u0HMefdDvFtvPd4d2CQgaZbM994\nBU5EFCl24EREkWIHTkQUKXbgRESRYgdORBSplhiFkpmwIzDa0v6U2v8dW5H4flO9tiI+osmnm4d4\nI1a8MTPeCBIA7s7d+aI/NflE0a6Sl3V2qgeAodK4vV9nN28ASA3a5UH25fvctrPSdsSBs68GNdiF\nbYcSt+0MjJDyNjzxprcPl+wGC6G2PWmblwDc90HWGTEDAIV67hRSR7wCJyKKFDtwIqJIsQMnIooU\nO3Aioki1RinJmUUeWg/8oT0XmdhS+FOISyOjJjYRKGJ60+NDvOn8pZKNDU/6hR6vCJoOFDzFK5gG\npv1vOPl++1jZ5L/j73ntOjf+sYV7TCw37wy2Jae6eHTUvv4AcGOPfX+EiphHinad8IlS8sK/V8T0\npuIDAJy6fWhd/MnZrZlvvAInIooUO3AiokixAyciihQ7cCKiSE3bgYvIMhF5TER2iMhLIvLVcvwb\nInJARLaV/32q9odLVD3MbYpdklEoBQB3qepzItID4FkR+WX5Z99T1e/U7vCSOdlvy9Efmv2G23bn\nMX+DAo/m7OLw6w9d7bb1NlTIBXaqzwU2VDDtAi+PV09PB0bBZJ0lBUIjdDztrx11496E5eGJdrft\n+zrfMrF8c4wKaPrcrqdlbcfcuLNfClZ0+nnhjTgpnsEf+u0pO+JkdmDzB2/kVmgqfarYmhs6JNnU\n+CCAg+WvR0RkJ4AltT4wolpjblPszugzcBFZCeASAE+VQ18WkRdEZKOIzA3cZq2IbBWRrXn42x0R\nNRpzm2KUuAMXkVkAHgBwp6oOA7gXwCoAF2PqKua73u1Udb2qDqjqQBb+n9hEjcTcplgl6sBFJIup\nBP+Rqj4IAKo6qKpFVS0BuA/ApbU7TKLaYG5TzKb9DFxEBMAGADtV9Z7T4ovLnyECwE0AttfmEKfX\nt9MWLn74/FVu2+K4LXjOP4PHOjI+y40vn3XCxEYK/lXZp+a9YNuW7ILFQwW7lndINuUXb54dsuuf\nL+u0xwoA/7TH9lML99nd50NGdvjrgX/t+GdNbM4rjR/BGkNu19OH2v31wBelbR6HdpW/sN0WrCfU\nvudOOvkO+MtM9KXH/LawhckVGb/tZG/ywn1MkgyH+CiA2wC8KCLbyrG7AdwqIhdjalDEPgBfrMkR\nEtUOc5uilmQUym8A51cd8Gj1D4eofpjbFLvG/x1LREQzwg6ciChS7MCJiCLVEhs6dD78tImterhG\nD3bNfjd84H39Jja+3O5qDwDfX3K+iU3OsR/Fpib9Q/AGp2RO+W3bRuw86BO77EYVALDw6Rf9O0no\n3HW/rej21Fjrj1/hxp87sczEzpt92G37n8feZ2LeBiIDvf5SF3lnxMqRyR637bKO4yb2ctofHdO7\nszWn0vMKnIgoUuzAiYgixQ6ciChS7MCJiCIlqvVbl1lEjgB4vfztfAD+osJx43k1zgpVXdCIBz4t\nt2N4nmaqVc8thvNyc7uuHfjbHlhkq6oONOTBa4jn9d7Wys9Tq55bzOfFj1CIiCLFDpyIKFKN7MDX\nN/Cxa4nn9d7Wys9Tq55btOfVsM/AiYioMvwIhYgoUuzAiYgiVfcOXESuF5FdIvKqiKyr9+NXU3nH\n8sMisv20WJ+I/FJEdpf/d3c0b2YiskxEHhORHSLykoh8tRyP/txqqVVym3kdz7nVtQMXkTSAHwC4\nAcAaTG1dtaaex1BlmwBc/47YOgBbVLUfwJby97EpALhLVdcAuBzAl8qvUyucW020WG5vAvM6CvW+\nAr8UwKuquldVJwH8GMCNdT6GqlHVxwG8c03LGwFsLn+9GYDd0bfJqepBVX2u/PUIgJ0AlqAFzq2G\nWia3mdfxnFu9O/AlAN487fv95VgrWXTajuaHACxq5MFUSkRWArgEwFNosXOrslbP7ZZ67Vslr1nE\nrCGdGqMZ7ThNEZkF4AEAd6rq8Ok/i/3caOZif+1bKa/r3YEfAHD69h5Ly7FWMigiiwGg/L+/dUmT\nE5EsppL8R6r6YDncEudWI62e2y3x2rdaXte7A38GQL+InCMibQBuAfBInY+h1h4BcHv569sB1Gpz\nt5oREQGwAcBOVb3ntB9Ff2411Oq5Hf1r34p5XfeZmCLyKQB/ByANYKOq/lVdD6CKROR+AFdjajnK\nQQBfB/AzAD8FsBxTy4verKp2874mJiIfA/BrAC8CKJXDd2Pq88Koz62WWiW3mdfxnBun0hMRRYpF\nTCKiSLEDJyKKFDtwIqJIsQMnIooUO3AiokixAyciihQ7cCKiSP0flE1E9ju8PfkAAAAASUVORK5C\nYII=\n", 187 | "text/plain": [ 188 | "
" 189 | ] 190 | }, 191 | "metadata": { 192 | "tags": [] 193 | } 194 | } 195 | ] 196 | }, 197 | { 198 | "cell_type": "markdown", 199 | "metadata": { 200 | "id": "84j2r_8qle4g", 201 | "colab_type": "text" 202 | }, 203 | "source": [ 204 | "###Next, we normalise data" 205 | ] 206 | }, 207 | { 208 | "cell_type": "code", 209 | "metadata": { 210 | "id": "ABSLwCLslpkI", 211 | "colab_type": "code", 212 | "colab": {} 213 | }, 214 | "source": [ 215 | "train_images = train_images / 255.0\n", 216 | "test_images = test_images / 255.0\n" 217 | ], 218 | "execution_count": 0, 219 | "outputs": [] 220 | }, 221 | { 222 | "cell_type": "markdown", 223 | "metadata": { 224 | "id": "1P3gPj5TnWvI", 225 | "colab_type": "text" 226 | }, 227 | "source": [ 228 | "#Simple neural net" 229 | ] 230 | }, 231 | { 232 | "cell_type": "code", 233 | "metadata": { 234 | "id": "EnO6W_uendrN", 235 | "colab_type": "code", 236 | "colab": {} 237 | }, 238 | "source": [ 239 | "model = keras.Sequential([\n", 240 | " keras.layers.Flatten(),\n", 241 | " keras.layers.Dense(128, activation=tf.nn.relu),\n", 242 | " keras.layers.Dense(10, activation=tf.nn.softmax)\n", 243 | "])" 244 | ], 245 | "execution_count": 0, 246 | "outputs": [] 247 | }, 248 | { 249 | "cell_type": "markdown", 250 | "metadata": { 251 | "id": "f4ZajpTGnkLd", 252 | "colab_type": "text" 253 | }, 254 | "source": [ 255 | "###Next, compile the model" 256 | ] 257 | }, 258 | { 259 | "cell_type": "code", 260 | "metadata": { 261 | "id": "cs-CinJAnjxy", 262 | "colab_type": "code", 263 | "colab": {} 264 | }, 265 | "source": [ 266 | "model.compile(optimizer='adam', \n", 267 | " loss='sparse_categorical_crossentropy', metrics=['accuracy'])" 268 | ], 269 | "execution_count": 0, 270 | "outputs": [] 271 | }, 272 | { 273 | "cell_type": "markdown", 274 | "metadata": { 275 | "id": "F-Cd-ptRns1w", 276 | "colab_type": "text" 277 | }, 278 | "source": [ 279 | "###Train model" 280 | ] 281 | }, 282 | { 283 | "cell_type": "code", 284 | "metadata": { 285 | "id": "8bfZQh8vnujg", 286 | "colab_type": "code", 287 | "outputId": "cea87abe-2111-4981-ee8d-69baf82ca6be", 288 | "colab": { 289 | "base_uri": "https://localhost:8080/", 290 | "height": 421 291 | } 292 | }, 293 | "source": [ 294 | "model.fit(train_images, train_labels, epochs=10)" 295 | ], 296 | "execution_count": 0, 297 | "outputs": [ 298 | { 299 | "output_type": "stream", 300 | "text": [ 301 | "Train on 60000 samples\n", 302 | "Epoch 1/10\n", 303 | "60000/60000 [==============================] - 4s 68us/sample - loss: 0.1739 - acc: 0.9341\n", 304 | "Epoch 2/10\n", 305 | "60000/60000 [==============================] - 4s 67us/sample - loss: 0.1711 - acc: 0.9362\n", 306 | "Epoch 3/10\n", 307 | "60000/60000 [==============================] - 4s 68us/sample - loss: 0.1671 - acc: 0.9366\n", 308 | "Epoch 4/10\n", 309 | "60000/60000 [==============================] - 4s 69us/sample - loss: 0.1649 - acc: 0.9383\n", 310 | "Epoch 5/10\n", 311 | "60000/60000 [==============================] - 4s 68us/sample - loss: 0.1578 - acc: 0.9410\n", 312 | "Epoch 6/10\n", 313 | "60000/60000 [==============================] - 4s 68us/sample - loss: 0.1566 - acc: 0.9410\n", 314 | "Epoch 7/10\n", 315 | "60000/60000 [==============================] - 4s 68us/sample - loss: 0.1504 - acc: 0.9447\n", 316 | "Epoch 8/10\n", 317 | "60000/60000 [==============================] - 4s 68us/sample - loss: 0.1476 - acc: 0.9449\n", 318 | "Epoch 9/10\n", 319 | "60000/60000 [==============================] - 4s 68us/sample - loss: 0.1454 - acc: 0.9447\n", 320 | "Epoch 10/10\n", 321 | "60000/60000 [==============================] - 4s 67us/sample - loss: 0.1442 - acc: 0.9456\n" 322 | ], 323 | "name": "stdout" 324 | }, 325 | { 326 | "output_type": "execute_result", 327 | "data": { 328 | "text/plain": [ 329 | "" 330 | ] 331 | }, 332 | "metadata": { 333 | "tags": [] 334 | }, 335 | "execution_count": 32 336 | } 337 | ] 338 | }, 339 | { 340 | "cell_type": "markdown", 341 | "metadata": { 342 | "id": "Lb0BXV-6n7aJ", 343 | "colab_type": "text" 344 | }, 345 | "source": [ 346 | "###Predict class of second image in test dataset" 347 | ] 348 | }, 349 | { 350 | "cell_type": "code", 351 | "metadata": { 352 | "id": "s8jsni0bn_f1", 353 | "colab_type": "code", 354 | "outputId": "12838771-6576-4398-d046-5305204fd42e", 355 | "colab": { 356 | "base_uri": "https://localhost:8080/", 357 | "height": 90 358 | } 359 | }, 360 | "source": [ 361 | "prediction=model.predict(test_images[1].reshape(1, 28, 28))\n", 362 | "print(\"Probabilities of image in each class are\",prediction)\n", 363 | "print(\"Highest probability in place:\", prediction.argmax())\n", 364 | "print(\"Image is classified as a: \",class_names[prediction.argmax()])" 365 | ], 366 | "execution_count": 0, 367 | "outputs": [ 368 | { 369 | "output_type": "stream", 370 | "text": [ 371 | "Probabilities of image in each class are [[1.4792593e-05 7.4572272e-15 9.9984133e-01 1.0109936e-13 9.9008597e-05\n", 372 | " 8.3782468e-15 4.4799071e-05 7.3859103e-23 1.0118387e-09 6.3930431e-16]]\n", 373 | "Highest probability in place: 2\n", 374 | "Image is classified as a: Pullover\n" 375 | ], 376 | "name": "stdout" 377 | } 378 | ] 379 | }, 380 | { 381 | "cell_type": "code", 382 | "metadata": { 383 | "id": "zslaJQ7VoZDu", 384 | "colab_type": "code", 385 | "outputId": "d103fa5e-cecf-430c-f94d-42962e2a8c61", 386 | "colab": { 387 | "base_uri": "https://localhost:8080/", 388 | "height": 320 389 | } 390 | }, 391 | "source": [ 392 | "print(\"Actual label number is:\",test_labels[1])\n", 393 | "print(\"Image is a: \",class_names[test_labels[1]])\n", 394 | "plt.imshow(test_images[1])\n" 395 | ], 396 | "execution_count": 0, 397 | "outputs": [ 398 | { 399 | "output_type": "stream", 400 | "text": [ 401 | "Actual label number is: 2\n", 402 | "Image is a: Pullover\n" 403 | ], 404 | "name": "stdout" 405 | }, 406 | { 407 | "output_type": "execute_result", 408 | "data": { 409 | "text/plain": [ 410 | "" 411 | ] 412 | }, 413 | "metadata": { 414 | "tags": [] 415 | }, 416 | "execution_count": 10 417 | }, 418 | { 419 | "output_type": "display_data", 420 | "data": { 421 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAATxUlEQVR4nO3de3Bc5XkG8OddaXWxLCPLMkJgcbGx\nIYQQQ1UTLmWgNMShUy6dlluTQofGbgcKaTItDEnH/NMp7YQkpGkg4hKcDrWHaUKgGUMhnrQOaWMs\nqDE2Bt/AwbItC4wvsrzWavftHzowCui8n7xnd8/C+/xmPJL33bP76diPzu6+53yfqCqI6OMvk/YA\niKg6GHYiJxh2IicYdiInGHYiJ+qr+WQN0qhNaKnmU34sSH2dWS+0NsXWMu8eKvdwjk7rlPhaoWhv\nO5wr71gcyOEQRvSITFRLFHYRWQjgPgB1AB5S1Xus+zehBefKpUme0qW6tnazfuCSubG1ln9fXe7h\nHJXCb58TW6s/cMTcVl/cUO7hfOyt1pWxtZJfxotIHYB/AfB5AGcAuF5Ezij18YiospK8Z18AYIuq\nblPVEQDLAVxZnmERUbklCfsJAN4a9/cd0W2/QUQWiUifiPTlYb9sI6LKqfin8araq6o9qtqTRWOl\nn46IYiQJez+A7nF/nxXdRkQ1KEnY1wCYKyKniEgDgOsAPFWeYRFRuZXcelPVURG5FcB/Yqz19oiq\nuuyVZFrscwe2/t1ZZv3m3/+ZWT+z+TWzfm7jf8TWdn7D7tGf1RDfoy+Htwu/jK0NFOxjTU7tsd/2\n+nVmvbj02NjatGW/Mrf9OErUZ1fVFQBWlGksRFRBPF2WyAmGncgJhp3ICYadyAmGncgJhp3ICanm\n7LLTpF0/qpe4bnpgQWxtxcJvm9vOzmbN+kDBvmZgd8E+zfhgMb5XflzdkLntMZmCWW+QCS+Nft++\nwCXpO0dbY2tZGTW3bc/Y17MfZ7fh0SjxneXb+y8xt/31uSnPA1Ci1boSB3TvhP9oPLITOcGwEznB\nsBM5wbATOcGwEznBsBM5UdWppGtZ/x3nm/U3rvhebG1VzpguGcBbh+3WWxFTzXoGdn9rmtGiGizY\nl98O2p03FGC33gpqHy9aMqVPRTZYtPfr9lG7JZnT+P3+3Vn/ZW57xcqrzTou3WHXaxCP7EROMOxE\nTjDsRE4w7EROMOxETjDsRE4w7EROsM8eeWjxP5v1rfnDsbW8HmNu25TJm/WLEs7mvGFkJLY2UrSv\nAx0u2r3q7vp9Zn1mnX0OwNojbbG1BrGb/FafHADaA5fv1iH+8u3nc83mtt87dblZv23WtWZ9dEft\nrZfCIzuREww7kRMMO5ETDDuREww7kRMMO5ETDDuRE+yzR07L2tdd7zXaydlAvzjUR5+z8s/M+uxe\ne/ufLo+/Q3/gWvqFU+yf+428/bP9ZGieWb+geWtsbV+gx39xs93Df3bYvt59sDAttja3Ybe5bWed\nHY3DZ3SZ9WwN9tkThV1E3gRwEEABwKiq9pRjUERUfuU4sl+iqm+X4XGIqIL4np3IiaRhVwDPisiL\nIrJoojuIyCIR6RORvjxKn4+MiJJJ+jL+QlXtF5FjATwnIq+p6qrxd1DVXgC9wNhabwmfj4hKlOjI\nrqr90dc9AJ4AEL/6IRGlquSwi0iLiLS+9z2AywCsL9fAiKi8kryM7wTwhIwt6VsP4N9U9ZmyjCoF\n0+sCPdti/BK+dYF53UO/U0/7ij0HeWFw0Kw3Snwv/bj6g+a2f7r9MrM+cN4Bsx6SfzX+evpb2t4y\nt738U79r1jffcZpd/8L9sbUXAh8fZcWeB2Dnhfb5Cyc9az9+GkoOu6puA/DpMo6FiCqIrTciJxh2\nIicYdiInGHYiJxh2IifcXOKaaUo2X3PeWJq43VgyeYzd1juyzJ7WuP73Ag9vOKvB/rlDrbXN933G\nrGcP2ks6/2Rx/L5ZPrPB3LZ5nr1f5ywLtAW/EF9qCLRLc2rXs5/abz93DeKRncgJhp3ICYadyAmG\nncgJhp3ICYadyAmGncgJN312mXNS4B6/MqtWn72zzl6SOeS8jjfM+hrYl1taepb8pVmfgf816/Me\ntS+RzRwKnGNQHz/2zC/+z9509slmXfcnu/w2iUtP3GTWN1ZpHEeDR3YiJxh2IicYdiInGHYiJxh2\nIicYdiInGHYiJ9z02XNdUyv22K0ZezcOFe1e9GXTXjHrazK/ddRjek/nM/Z0zaOB7W9avsKsX9f6\nrllfeyR+zuavLL7F3PbRh75t1v9hzyVm/dejQ7G10FTRw0V7qerfaQ312Web9TTwyE7kBMNO5ATD\nTuQEw07kBMNO5ATDTuQEw07khJs++8Fue47ykIxoydvuLNg924sCU9r/faDn+7nj58fWpKfN3Hb7\nvdPN+g/sVZHxA9jzBFz9avxy0+98wv43+fPzrzXrr/91t1n/zvVrYmvrRuxzH/YV7ePg56bsMeu9\nH8U+u4g8IiJ7RGT9uNvaReQ5EdkcfbX/xxBR6ibzMv5RAAs/cNudAFaq6lwAK6O/E1ENC4ZdVVcB\n2PuBm68EsDT6fimAq8o8LiIqs1Lfs3eq6q7o+90AOuPuKCKLACwCgKbAmmdEVDmJP41XVQUQ++mV\nqvaqao+q9mTRmPTpiKhEpYZ9QES6ACD6an80SUSpKzXsTwG4Mfr+RgBPlmc4RFQpwffsIrIMwMUA\nOkRkB4AlAO4B8LiI3AxgO4BrKjnIcsjNtNcRD7HmjW8MXBs9Reyrxq3rrgFg83fPNetaH38OwJfO\n/29z22c6Xjfrf/PS2Wb95Ka3zfpftPXH1k6/7QFz23980F4b/vgzSz93oknscxesf28AmJoJnBxR\ng4JhV9XrY0qXlnksRFRBPF2WyAmGncgJhp3ICYadyAmGncgJN5e4Hu4sJto+r/HttdC0xC1i/059\nPW+fWbjtD79v1i2b8ofM+i9zzWb9rzp+UfJzA8CqXPwU3gsa7ctMn97yP4meu6Dx/+ZNgUuW86Vf\n0QwAkHo7WjoamsS7/HhkJ3KCYSdygmEncoJhJ3KCYSdygmEncoJhJ3LCTZ+92DFSscfeXzxs1v9k\nyx+Z9QfmPG7WnxmeYdZzmo2ttWXs3+dTMvFLKgPAtvw0sx7SmonvpT+fazG3nVFnnyOwNT/TrG/K\ndcXWvt7xmrmttdT0ZMgn55p1fXljoscvBY/sRE4w7EROMOxETjDsRE4w7EROMOxETjDsRE646bNP\nPcbuhYecVB+//dOH7KWDB5bbyxqfuCT+mm8A2Dk6bNYt2cCUyXXxi/mMCfThQwqIn8K7JfDY7Rn7\n3IhD9fvN+l3Pxk2MDHz9BrvPnlTuOPscgoaXK/r0E+KRncgJhp3ICYadyAmGncgJhp3ICYadyAmG\nncgJN332WcfYPVlrjnEA6KqP74WvGTrF3Lbp3WSTkB8o2ssDW/3qjNHnroaisfRxU2Ap69BM/23G\ntfIAcOwao3iD/djW+QEAsKdgX2uvmXT3+0SCR3YReURE9ojI+nG33S0i/SKyNvpzeWWHSURJTeZl\n/KMAFk5w+7dUdX70Z0V5h0VE5RYMu6quArC3CmMhogpK8gHdrSKyLnqZPz3uTiKySET6RKQvj2Tn\nWRNR6UoN+/0A5gCYD2AXgHvj7qiqvarao6o9WdgLGBJR5ZQUdlUdUNWCqhYBPAhgQXmHRUTlVlLY\nRWT8HL1XA1gfd18iqg3BPruILANwMYAOEdkBYAmAi0VkPgAF8CaAxRUcY1nMnvqOWX83MPd7R138\n9cn9uTZz272nJzt3aVjttz/TYPebLaF+clIZie+Wh547VP9ENn6+fAAILMFuCl3nnw2M7fBMO1pp\nvKENhl1VJ5oB4OEKjIWIKoinyxI5wbATOcGwEznBsBM5wbATOeHmEtfGTN6shy6ntKzZZk8VXTwl\n4XTMxmWigD1ddKh9FZxKOiHr+ZsC01zvLdiX9s7L1pn1KbtK3++NgbFlJNR6s+t2s7YyeGQncoJh\nJ3KCYSdygmEncoJhJ3KCYSdygmEncsJNn725zu6z57T0fnPDlmazPuO83SU/NhBe2tgS6qOH6kkv\ngbUePxs4u+GQNgQe3e6FN2wbiK09M2xfZHpOoz1VNAL7JW+v2JwKHtmJnGDYiZxg2ImcYNiJnGDY\niZxg2ImcYNiJnHDTZ98baHzmtPR+sjFbMgDg2u4XzfpQ0Z4KOiv2ddtpygZ++KKxX/OBY01O7ami\nQ3324TOPj62tOniaue1FTX1mfX9xxKwXplR2noBS8MhO5ATDTuQEw07kBMNO5ATDTuQEw07kBMNO\n5ISbPvvhgt2zbUqwvm8xa297TvMbZn1nwe4XN4l9LX4lha5nD3XCLfnAfPhJf+7tV8Sfn5DbPdfc\ndsmx9rkR9r8YkG8L3aP6gkd2EekWkZ+LyKsiskFEbo9ubxeR50Rkc/R1euWHS0SlmszL+FEAX1XV\nMwB8BsAtInIGgDsBrFTVuQBWRn8nohoVDLuq7lLVl6LvDwLYCOAEAFcCWBrdbSmAqyo1SCJK7qje\ns4vIyQDOBrAaQKeq7opKuwF0xmyzCMAiAGjClFLHSUQJTfrTeBGZCuBHAL6sqgfG11RVgYlnFlTV\nXlXtUdWeLOxJ/oiociYVdhHJYizoj6nqj6ObB0SkK6p3AdhTmSESUTkEX8aLiAB4GMBGVf3muNJT\nAG4EcE/09cmKjLBMjhTsH7UjE5q2OF5x7rBZbwtMBR1amrgl0IIaMX5nJ12SOelU1MUEU1GHW2/2\nsaqte19sbXDDTHPbxk/bTcUiAtN71ydZBLwyJvOe/QIAXwTwioisjW67C2Mhf1xEbgawHcA1lRki\nEZVDMOyq+jziZ8S/tLzDIaJK4emyRE4w7EROMOxETjDsRE4w7EROuLnEdWjUPnuvTkrvB89oGzLr\nnXV2z3Vf0X5uq48ekld7GupQJzt0iWuoXjQuY80EpqEO9fA35e1llb92+tOxtb/deoO5bUghcPpC\nXfNH8BJXIvp4YNiJnGDYiZxg2ImcYNiJnGDYiZxg2ImccNNnPzxqX588ULCvTz6xPn77xu+02499\nv/079bg6+3r4XKBXbgqcPhDuk9v1TGgKbonvNzcZNSD8c8+pbzbrizddEls7+aeBMwyutcu5wDTY\n9dlR+wFSwCM7kRMMO5ETDDuREww7kRMMO5ETDDuREww7kRNu+uwzmuxrn3OBfvJQMRdbKzbY267J\nnWTWb5pmr6/x2MEZZj0rlevpJp533rhmfSTQRx8u2nMQnNVg77f+t9tia6futucgCDkSGPv8E/rN\n+ruJnr00PLITOcGwEznBsBM5wbATOcGwEznBsBM5wbATOTGZ9dm7AfwQQCcABdCrqveJyN0AvgRg\nMLrrXaq6olIDTeqFvnlmvbXb7icPFuJ72a3rBsxtl51+vF2HXaeJhfbbKXg5tqZnnW5u+0be7sN3\nBKYYWP3yqWZ9Hl6wH6ACJnNSzSiAr6rqSyLSCuBFEXkuqn1LVb9RueERUblMZn32XQB2Rd8fFJGN\nAE6o9MCIqLyO6j27iJwM4GwAq6ObbhWRdSLyiIhMj9lmkYj0iUhfHvbUT0RUOZMOu4hMBfAjAF9W\n1QMA7gcwB8B8jB35751oO1XtVdUeVe3Jwj7XmYgqZ1JhF5EsxoL+mKr+GABUdUBVC6paBPAggAWV\nGyYRJRUMu4gIgIcBbFTVb467vWvc3a4GsL78wyOicpnMp/EXAPgigFdEZG10210ArheR+Rhrx70J\nYHFFRlgmM/vsy1C7/niqWd9fPBxfLNpLD1Pt0Qb7v357nd1bOyZjT2NdP5Rg+u8Kmcyn8c9j4tnH\na7anTkQfxjPoiJxg2ImcYNiJnGDYiZxg2ImcYNiJnHAzlXTrW/Z5+UsGP2nW3xmJ78Pr/gMljek9\nkm0w6zoaWF5YfP7Olox97oSOGlNsr33N3PYPNtxg1mdN3WfWO1+ovXMvfP4vIXKIYSdygmEncoJh\nJ3KCYSdygmEncoJhJ3JCVJMtyXtUTyYyCGD7uJs6ALxdtQEcnVodW62OC+DYSlXOsZ2kqjMnKlQ1\n7B96cpE+Ve1JbQCGWh1brY4L4NhKVa2x8WU8kRMMO5ETaYe9N+Xnt9Tq2Gp1XADHVqqqjC3V9+xE\nVD1pH9mJqEoYdiInUgm7iCwUkddFZIuI3JnGGOKIyJsi8oqIrBWRvpTH8oiI7BGR9eNuaxeR50Rk\nc/R1wjX2Uhrb3SLSH+27tSJyeUpj6xaRn4vIqyKyQURuj25Pdd8Z46rKfqv6e3YRqQOwCcBnAewA\nsAbA9ar6alUHEkNE3gTQo6qpn4AhIhcBGALwQ1U9M7rtnwDsVdV7ol+U01X1jhoZ290AhtJexjta\nrahr/DLjAK4CcBNS3HfGuK5BFfZbGkf2BQC2qOo2VR0BsBzAlSmMo+ap6ioAez9w85UAlkbfL8XY\nf5aqixlbTVDVXar6UvT9QQDvLTOe6r4zxlUVaYT9BABvjfv7DtTWeu8K4FkReVFEFqU9mAl0ququ\n6PvdADrTHMwEgst4V9MHlhmvmX1XyvLnSfEDug+7UFXPAfB5ALdEL1drko69B6ul3umklvGulgmW\nGX9fmvuu1OXPk0oj7P0Ausf9fVZ0W01Q1f7o6x4AT6D2lqIeeG8F3ejrnpTH875aWsZ7omXGUQP7\nLs3lz9MI+xoAc0XkFBFpAHAdgKdSGMeHiEhL9MEJRKQFwGWovaWonwJwY/T9jQCeTHEsv6FWlvGO\nW2YcKe+71Jc/V9Wq/wFwOcY+kd8K4GtpjCFmXLMBvBz92ZD22AAsw9jLujzGPtu4GcAMACsBbAbw\nMwDtNTS2fwXwCoB1GAtWV0pjuxBjL9HXAVgb/bk87X1njKsq+42nyxI5wQ/oiJxg2ImcYNiJnGDY\niZxg2ImcYNiJnGDYiZz4f4SixgHCORlKAAAAAElFTkSuQmCC\n", 422 | "text/plain": [ 423 | "
" 424 | ] 425 | }, 426 | "metadata": { 427 | "tags": [] 428 | } 429 | } 430 | ] 431 | }, 432 | { 433 | "cell_type": "markdown", 434 | "metadata": { 435 | "id": "NnRT1sg7rQHi", 436 | "colab_type": "text" 437 | }, 438 | "source": [ 439 | "Second image is a pullover and it is classified correctly." 440 | ] 441 | }, 442 | { 443 | "cell_type": "markdown", 444 | "metadata": { 445 | "id": "KaJlvr76sOtB", 446 | "colab_type": "text" 447 | }, 448 | "source": [ 449 | "###Evaluate models accuracy" 450 | ] 451 | }, 452 | { 453 | "cell_type": "code", 454 | "metadata": { 455 | "id": "iyCJ4rDzsRx8", 456 | "colab_type": "code", 457 | "outputId": "210ea44e-d8f0-44a1-d3dc-2875c7f923fa", 458 | "colab": { 459 | "base_uri": "https://localhost:8080/", 460 | "height": 54 461 | } 462 | }, 463 | "source": [ 464 | "test_acc = model.evaluate(test_images, test_labels)\n", 465 | "print('Test loss, accuracy:', test_acc)\n" 466 | ], 467 | "execution_count": 0, 468 | "outputs": [ 469 | { 470 | "output_type": "stream", 471 | "text": [ 472 | "10000/10000 [==============================] - 0s 32us/sample - loss: 0.4091 - acc: 0.8865\n", 473 | "Test accuracy: [0.4091187917113304, 0.8865]\n" 474 | ], 475 | "name": "stdout" 476 | } 477 | ] 478 | }, 479 | { 480 | "cell_type": "markdown", 481 | "metadata": { 482 | "id": "Xnki0uOpxoKz", 483 | "colab_type": "text" 484 | }, 485 | "source": [ 486 | "The overal model's accuracy is very low. This in part because of the low number of training epochs. Next, we will create a convolution neural network and compare the performance of the two models." 487 | ] 488 | }, 489 | { 490 | "cell_type": "markdown", 491 | "metadata": { 492 | "id": "Z_Eli9ZX0Yio", 493 | "colab_type": "text" 494 | }, 495 | "source": [ 496 | "## Convolution Neural Network" 497 | ] 498 | }, 499 | { 500 | "cell_type": "code", 501 | "metadata": { 502 | "id": "15ZvqCtO1R39", 503 | "colab_type": "code", 504 | "colab": {} 505 | }, 506 | "source": [ 507 | "cnn_train_images=train_images.reshape(60000, 28, 28, 1)\n", 508 | "cnn_test_images = test_images.reshape(10000, 28, 28, 1)" 509 | ], 510 | "execution_count": 0, 511 | "outputs": [] 512 | }, 513 | { 514 | "cell_type": "code", 515 | "metadata": { 516 | "id": "tNfabnuzxTmz", 517 | "colab_type": "code", 518 | "colab": {} 519 | }, 520 | "source": [ 521 | "cnn_model = tf.keras.models.Sequential([\n", 522 | " tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(28, 28,1)),\n", 523 | " tf.keras.layers.MaxPooling2D(2, 2),\n", 524 | " tf.keras.layers.Flatten(),\n", 525 | " keras.layers.Dense(128, activation=tf.nn.relu),\n", 526 | " keras.layers.Dense(10, activation=tf.nn.softmax)\n", 527 | "])" 528 | ], 529 | "execution_count": 0, 530 | "outputs": [] 531 | }, 532 | { 533 | "cell_type": "code", 534 | "metadata": { 535 | "id": "3SfRYTO40tzN", 536 | "colab_type": "code", 537 | "colab": {} 538 | }, 539 | "source": [ 540 | "cnn_model.compile(optimizer='adam', \n", 541 | " loss='sparse_categorical_crossentropy', metrics=['accuracy'])" 542 | ], 543 | "execution_count": 0, 544 | "outputs": [] 545 | }, 546 | { 547 | "cell_type": "code", 548 | "metadata": { 549 | "id": "l7ASxW-70zIN", 550 | "colab_type": "code", 551 | "outputId": "c37abb7d-5419-40db-a6d0-82fdd4e0ab17", 552 | "colab": { 553 | "base_uri": "https://localhost:8080/", 554 | "height": 421 555 | } 556 | }, 557 | "source": [ 558 | "cnn_model.fit(cnn_train_images, train_labels, epochs=10)" 559 | ], 560 | "execution_count": 0, 561 | "outputs": [ 562 | { 563 | "output_type": "stream", 564 | "text": [ 565 | "Train on 60000 samples\n", 566 | "Epoch 1/10\n", 567 | "60000/60000 [==============================] - 36s 604us/sample - loss: 0.3938 - acc: 0.8609\n", 568 | "Epoch 2/10\n", 569 | "60000/60000 [==============================] - 36s 596us/sample - loss: 0.2643 - acc: 0.9043\n", 570 | "Epoch 3/10\n", 571 | "60000/60000 [==============================] - 36s 595us/sample - loss: 0.2214 - acc: 0.9185\n", 572 | "Epoch 4/10\n", 573 | "60000/60000 [==============================] - 36s 596us/sample - loss: 0.1910 - acc: 0.9294\n", 574 | "Epoch 5/10\n", 575 | "60000/60000 [==============================] - 36s 592us/sample - loss: 0.1613 - acc: 0.9407\n", 576 | "Epoch 6/10\n", 577 | "60000/60000 [==============================] - 35s 591us/sample - loss: 0.1386 - acc: 0.9488\n", 578 | "Epoch 7/10\n", 579 | "60000/60000 [==============================] - 35s 590us/sample - loss: 0.1174 - acc: 0.9567\n", 580 | "Epoch 8/10\n", 581 | "60000/60000 [==============================] - 36s 594us/sample - loss: 0.1005 - acc: 0.9628\n", 582 | "Epoch 9/10\n", 583 | "60000/60000 [==============================] - 36s 597us/sample - loss: 0.0848 - acc: 0.9688\n", 584 | "Epoch 10/10\n", 585 | "60000/60000 [==============================] - 36s 607us/sample - loss: 0.0727 - acc: 0.9743\n" 586 | ], 587 | "name": "stdout" 588 | }, 589 | { 590 | "output_type": "execute_result", 591 | "data": { 592 | "text/plain": [ 593 | "" 594 | ] 595 | }, 596 | "metadata": { 597 | "tags": [] 598 | }, 599 | "execution_count": 36 600 | } 601 | ] 602 | }, 603 | { 604 | "cell_type": "code", 605 | "metadata": { 606 | "id": "88D3VU7O672K", 607 | "colab_type": "code", 608 | "outputId": "db316b9c-dcfd-4285-d8b5-e824b0bc8c06", 609 | "colab": { 610 | "base_uri": "https://localhost:8080/", 611 | "height": 54 612 | } 613 | }, 614 | "source": [ 615 | "test_cnn_acc = cnn_model.evaluate(cnn_test_images, test_labels)\n", 616 | "print('Test loss, accuracy:', test_cnn_acc)\n" 617 | ], 618 | "execution_count": 0, 619 | "outputs": [ 620 | { 621 | "output_type": "stream", 622 | "text": [ 623 | "10000/10000 [==============================] - 2s 200us/sample - loss: 0.3218 - acc: 0.9175\n", 624 | "Test loss, accuracy: [0.32177444730997085, 0.9175]\n" 625 | ], 626 | "name": "stdout" 627 | } 628 | ] 629 | } 630 | ] 631 | } -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Examples of Machine Learning and Artificial Inteligence in Python 2 | 3 | This repository contains examples of Machine learining and AI in Python jupyter notebooks. In most cases, a link at the top of the top notebook opens the notebook in [Google's Colab](https://colab.research.google.com/notebooks/intro.ipynb). In that way it is easy for everyone to experiment with the code without having to go through the pain of setting up a Python envoronment. If for some reason github fails to render the notebook (it happens from time to time), you can use [nbviewer](https://nbviewer.jupyter.org/). 4 | 5 | Below is a short description of the available notebooks. 6 | 7 | * **[Customer_segmentation](https://github.com/dpanagop/ML_and_AI_examples/blob/master/Customer_segmentation.ipynb)** Example of customer segmentation. A demonstration of hierarchical clustering. 8 | * **[Bank_marketing](https://github.com/dpanagop/ML_and_AI_examples/blob/master/Bank_marketing.ipynb)** Example of classification in unbalanced datasets using logistic regression. SMOTE - Synthetic Minority Over-sampling Technique is used as an example of how to deal with the imbalance. 9 | * **[Fraud_detection](https://github.com/dpanagop/ML_and_AI_examples/blob/master/Fraud_detection.ipynb)** Example of Fraud detection. Detection of fraudulent credit card transactions. This set is also (highly) unbalanced. Logistic regresion with SMOTE and decission trees are demonstrated. 10 | * **[Fraud_detection_ensembles](https://github.com/dpanagop/ML_and_AI_examples/blob/master/Fraud_detection_ensembles.ipynb)** A continuation of Fraud_detection above. Random forests, xgboost and ensebles are used. 11 | * **[Simple neural network example](https://github.com/dpanagop/ML_and_AI_examples/blob/master/Simple%20neural%20network%20example.ipynb)** A simple neural network with tensorflow. Nothing special other than introducing basic Python/Tensorflow syntax. 12 | * **[Example of image classification with neural network](https://github.com/dpanagop/ML_and_AI_examples/blob/master/Example%20of%20image%20classification%20with%20neural%20network.ipynb)** Example of classification of images taken from Fashion MNIST using neural nets. 13 | * **[Image_Classification_with_and_without_convlolution](https://github.com/dpanagop/ML_and_AI_examples/blob/master/Image_Classification_with_and_without_convlolution.ipynb)** Image classification of Fashion MNIST images with neural nets and convolutional layers. There is also the excel file [convolution_example.xlsx](https://github.com/dpanagop/ML_and_AI_examples/blob/master/convolution_example.xlsx) which you can use to play with the notion of convolutions. 14 | * **[Credit_Fraud_detection_with_autoencoders](https://github.com/dpanagop/ML_and_AI_examples/blob/master/Credit_Fraud_detection_with_autoencoders.ipynb)** Here we revisit Credit- Fraud Detection with the help of autoencoders, a special kind of neural networks. Two different methods are shown: 15 | 1. using the autoenconder's reconstruction error, 16 | 2. using the autenconder for mapping data in a vector space and using the vector distance. 17 | * **[Style_transfer](https://github.com/dpanagop/ML_and_AI_examples/blob/master/Style_transfer.ipynb)** demonstrates how one can use neural nets to transfer image style from one picture to an other. The nice thing with this one is that if you run it in Colab (better use Chrome as a browser), then you can transfer style to an image that you upload. It is Raymond Yuan's code. You can read his post in [medium](https://medium.com/tensorflow/neural-style-transfer-creating-art-with-deep-learning-using-tf-keras-and-eager-execution-7d541ac31398) for more info. 18 | * **[NLP_example_clustering](https://github.com/dpanagop/ML_and_AI_examples/blob/master/NLP_example_clustering.ipynb)** Text classification using term frequency/inverse term frequency (TF-IDF) and k-means. Text classified is articles downloaded from wikipedia. A wordcloud is created for each cluster. (Note: It is best to view this one in nbviewer). 19 | * **[Greek_NLP_example_clustering](https://github.com/dpanagop/ML_and_AI_examples/blob/master/Greek_NLP_example_clustering.ipynb)** Like but for greek language. (Note: Is is best to view this one in nbviewer). 20 | * **[Spacy_example](https://github.com/dpanagop/ML_and_AI_examples/blob/master/Spacy_example.ipynb)** Simple SpaCy example. (Note: It is best to view this one in nbviewer). 21 | * **[Greek_Spacy](https://github.com/dpanagop/ML_and_AI_examples/blob/master/Greek_Spacy.ipynb)** Simple SpaCy example in Greek. (Note: It is best to view this one in nbviewer). 22 | -------------------------------------------------------------------------------- /Simple neural network example.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "Untitled6.ipynb", 7 | "version": "0.3.2", 8 | "provenance": [], 9 | "include_colab_link": true 10 | }, 11 | "kernelspec": { 12 | "name": "python3", 13 | "display_name": "Python 3" 14 | } 15 | }, 16 | "cells": [ 17 | { 18 | "cell_type": "markdown", 19 | "metadata": { 20 | "id": "view-in-github", 21 | "colab_type": "text" 22 | }, 23 | "source": [ 24 | "\"Open" 25 | ] 26 | }, 27 | { 28 | "cell_type": "markdown", 29 | "metadata": { 30 | "id": "cowX9NMVcf0V", 31 | "colab_type": "text" 32 | }, 33 | "source": [ 34 | "#Simple neural network example " 35 | ] 36 | }, 37 | { 38 | "cell_type": "markdown", 39 | "metadata": { 40 | "id": "Oh-dLc9TdApN", 41 | "colab_type": "text" 42 | }, 43 | "source": [ 44 | "###First, we load the necessary libraries" 45 | ] 46 | }, 47 | { 48 | "cell_type": "code", 49 | "metadata": { 50 | "id": "wVBEHrxTc0EQ", 51 | "colab_type": "code", 52 | "colab": {} 53 | }, 54 | "source": [ 55 | "import numpy as np\n", 56 | "import tensorflow as tf\n", 57 | "from tensorflow import keras" 58 | ], 59 | "execution_count": 0, 60 | "outputs": [] 61 | }, 62 | { 63 | "cell_type": "markdown", 64 | "metadata": { 65 | "id": "eSgP4smidKoK", 66 | "colab_type": "text" 67 | }, 68 | "source": [ 69 | "###Then, we create a simple neural network" 70 | ] 71 | }, 72 | { 73 | "cell_type": "code", 74 | "metadata": { 75 | "id": "u1gTL06IegTe", 76 | "colab_type": "code", 77 | "outputId": "9b7af300-e2fa-43ca-b99f-ae6bfd932e34", 78 | "colab": { 79 | "base_uri": "https://localhost:8080/", 80 | "height": 110 81 | } 82 | }, 83 | "source": [ 84 | "model=keras.Sequential([keras.layers.Dense(units=1, input_shape=[1])])\n", 85 | "model.add(keras.layers.Dense(1))" 86 | ], 87 | "execution_count": 0, 88 | "outputs": [ 89 | { 90 | "output_type": "stream", 91 | "text": [ 92 | "WARNING: Logging before flag parsing goes to stderr.\n", 93 | "W0716 11:11:20.355340 140689434380160 deprecation.py:506] From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/init_ops.py:1251: calling VarianceScaling.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.\n", 94 | "Instructions for updating:\n", 95 | "Call initializer instance with the dtype argument instead of passing it to the constructor\n" 96 | ], 97 | "name": "stderr" 98 | } 99 | ] 100 | }, 101 | { 102 | "cell_type": "markdown", 103 | "metadata": { 104 | "id": "aUHRqW64ewY3", 105 | "colab_type": "text" 106 | }, 107 | "source": [ 108 | "###Next, compile the model" 109 | ] 110 | }, 111 | { 112 | "cell_type": "code", 113 | "metadata": { 114 | "id": "gltf5zKeeswG", 115 | "colab_type": "code", 116 | "colab": {} 117 | }, 118 | "source": [ 119 | "model.compile(optimizer='sgd', loss='mean_squared_error')" 120 | ], 121 | "execution_count": 0, 122 | "outputs": [] 123 | }, 124 | { 125 | "cell_type": "markdown", 126 | "metadata": { 127 | "id": "bMW3iNWqe5dw", 128 | "colab_type": "text" 129 | }, 130 | "source": [ 131 | "###Create \n", 132 | "1. input data, variable x\n", 133 | "2. target data, variable y\n", 134 | "\n", 135 | "Note that: $y=2x-1$" 136 | ] 137 | }, 138 | { 139 | "cell_type": "code", 140 | "metadata": { 141 | "id": "UtH9Nwj3e1_8", 142 | "colab_type": "code", 143 | "colab": {} 144 | }, 145 | "source": [ 146 | "x=np.array([-1, 0,1,2,3,4],dtype=float)\n", 147 | "y=np.array([-3,-1,1,3,5,7],dtype=float)" 148 | ], 149 | "execution_count": 0, 150 | "outputs": [] 151 | }, 152 | { 153 | "cell_type": "markdown", 154 | "metadata": { 155 | "id": "Lnw1qLqWfVFb", 156 | "colab_type": "text" 157 | }, 158 | "source": [ 159 | "###Train model" 160 | ] 161 | }, 162 | { 163 | "cell_type": "code", 164 | "metadata": { 165 | "id": "TD1rWVBBfYY0", 166 | "colab_type": "code", 167 | "outputId": "8802dd8f-3bf0-4f9f-c787-b3206f2d66ee", 168 | "colab": { 169 | "base_uri": "https://localhost:8080/", 170 | "height": 1000 171 | } 172 | }, 173 | "source": [ 174 | "model.fit(x,y,epochs=500)" 175 | ], 176 | "execution_count": 0, 177 | "outputs": [ 178 | { 179 | "output_type": "stream", 180 | "text": [ 181 | "Epoch 1/500\n", 182 | "6/6 [==============================] - 1s 83ms/sample - loss: 26.0347\n", 183 | "Epoch 2/500\n", 184 | "6/6 [==============================] - 0s 774us/sample - loss: 19.9218\n", 185 | "Epoch 3/500\n", 186 | "6/6 [==============================] - 0s 615us/sample - loss: 16.5734\n", 187 | "Epoch 4/500\n", 188 | "6/6 [==============================] - 0s 581us/sample - loss: 14.2282\n", 189 | "Epoch 5/500\n", 190 | "6/6 [==============================] - 0s 558us/sample - loss: 12.2851\n", 191 | "Epoch 6/500\n", 192 | "6/6 [==============================] - 0s 503us/sample - loss: 10.4984\n", 193 | "Epoch 7/500\n", 194 | "6/6 [==============================] - 0s 600us/sample - loss: 8.7823\n", 195 | "Epoch 8/500\n", 196 | "6/6 [==============================] - 0s 632us/sample - loss: 7.1440\n", 197 | "Epoch 9/500\n", 198 | "6/6 [==============================] - 0s 207us/sample - loss: 5.6455\n", 199 | "Epoch 10/500\n", 200 | "6/6 [==============================] - 0s 209us/sample - loss: 4.3646\n", 201 | "Epoch 11/500\n", 202 | "6/6 [==============================] - 0s 210us/sample - loss: 3.3553\n", 203 | "Epoch 12/500\n", 204 | "6/6 [==============================] - 0s 364us/sample - loss: 2.6236\n", 205 | "Epoch 13/500\n", 206 | "6/6 [==============================] - 0s 324us/sample - loss: 2.1296\n", 207 | "Epoch 14/500\n", 208 | "6/6 [==============================] - 0s 338us/sample - loss: 1.8097\n", 209 | "Epoch 15/500\n", 210 | "6/6 [==============================] - 0s 365us/sample - loss: 1.6019\n", 211 | "Epoch 16/500\n", 212 | "6/6 [==============================] - 0s 189us/sample - loss: 1.4595\n", 213 | "Epoch 17/500\n", 214 | "6/6 [==============================] - 0s 416us/sample - loss: 1.3528\n", 215 | "Epoch 18/500\n", 216 | "6/6 [==============================] - 0s 191us/sample - loss: 1.2655\n", 217 | "Epoch 19/500\n", 218 | "6/6 [==============================] - 0s 251us/sample - loss: 1.1890\n", 219 | "Epoch 20/500\n", 220 | "6/6 [==============================] - 0s 243us/sample - loss: 1.1193\n", 221 | "Epoch 21/500\n", 222 | "6/6 [==============================] - 0s 599us/sample - loss: 1.0543\n", 223 | "Epoch 22/500\n", 224 | "6/6 [==============================] - 0s 234us/sample - loss: 0.9932\n", 225 | "Epoch 23/500\n", 226 | "6/6 [==============================] - 0s 441us/sample - loss: 0.9353\n", 227 | "Epoch 24/500\n", 228 | "6/6 [==============================] - 0s 200us/sample - loss: 0.8806\n", 229 | "Epoch 25/500\n", 230 | "6/6 [==============================] - 0s 215us/sample - loss: 0.8287\n", 231 | "Epoch 26/500\n", 232 | "6/6 [==============================] - 0s 308us/sample - loss: 0.7795\n", 233 | "Epoch 27/500\n", 234 | "6/6 [==============================] - 0s 277us/sample - loss: 0.7329\n", 235 | "Epoch 28/500\n", 236 | "6/6 [==============================] - 0s 277us/sample - loss: 0.6888\n", 237 | "Epoch 29/500\n", 238 | "6/6 [==============================] - 0s 256us/sample - loss: 0.6470\n", 239 | "Epoch 30/500\n", 240 | "6/6 [==============================] - 0s 281us/sample - loss: 0.6075\n", 241 | "Epoch 31/500\n", 242 | "6/6 [==============================] - 0s 365us/sample - loss: 0.5701\n", 243 | "Epoch 32/500\n", 244 | "6/6 [==============================] - 0s 387us/sample - loss: 0.5348\n", 245 | "Epoch 33/500\n", 246 | "6/6 [==============================] - 0s 506us/sample - loss: 0.5014\n", 247 | "Epoch 34/500\n", 248 | "6/6 [==============================] - 0s 536us/sample - loss: 0.4699\n", 249 | "Epoch 35/500\n", 250 | "6/6 [==============================] - 0s 315us/sample - loss: 0.4402\n", 251 | "Epoch 36/500\n", 252 | "6/6 [==============================] - 0s 384us/sample - loss: 0.4122\n", 253 | "Epoch 37/500\n", 254 | "6/6 [==============================] - 0s 544us/sample - loss: 0.3857\n", 255 | "Epoch 38/500\n", 256 | "6/6 [==============================] - 0s 442us/sample - loss: 0.3608\n", 257 | "Epoch 39/500\n", 258 | "6/6 [==============================] - 0s 311us/sample - loss: 0.3374\n", 259 | "Epoch 40/500\n", 260 | "6/6 [==============================] - 0s 291us/sample - loss: 0.3153\n", 261 | "Epoch 41/500\n", 262 | "6/6 [==============================] - 0s 480us/sample - loss: 0.2946\n", 263 | "Epoch 42/500\n", 264 | "6/6 [==============================] - 0s 665us/sample - loss: 0.2751\n", 265 | "Epoch 43/500\n", 266 | "6/6 [==============================] - 0s 347us/sample - loss: 0.2568\n", 267 | "Epoch 44/500\n", 268 | "6/6 [==============================] - 0s 218us/sample - loss: 0.2396\n", 269 | "Epoch 45/500\n", 270 | "6/6 [==============================] - 0s 213us/sample - loss: 0.2234\n", 271 | "Epoch 46/500\n", 272 | "6/6 [==============================] - 0s 283us/sample - loss: 0.2083\n", 273 | "Epoch 47/500\n", 274 | "6/6 [==============================] - 0s 309us/sample - loss: 0.1941\n", 275 | "Epoch 48/500\n", 276 | "6/6 [==============================] - 0s 300us/sample - loss: 0.1808\n", 277 | "Epoch 49/500\n", 278 | "6/6 [==============================] - 0s 252us/sample - loss: 0.1684\n", 279 | "Epoch 50/500\n", 280 | "6/6 [==============================] - 0s 284us/sample - loss: 0.1567\n", 281 | "Epoch 51/500\n", 282 | "6/6 [==============================] - 0s 385us/sample - loss: 0.1458\n", 283 | "Epoch 52/500\n", 284 | "6/6 [==============================] - 0s 279us/sample - loss: 0.1356\n", 285 | "Epoch 53/500\n", 286 | "6/6 [==============================] - 0s 291us/sample - loss: 0.1261\n", 287 | "Epoch 54/500\n", 288 | "6/6 [==============================] - 0s 292us/sample - loss: 0.1172\n", 289 | "Epoch 55/500\n", 290 | "6/6 [==============================] - 0s 257us/sample - loss: 0.1089\n", 291 | "Epoch 56/500\n", 292 | "6/6 [==============================] - 0s 315us/sample - loss: 0.1012\n", 293 | "Epoch 57/500\n", 294 | "6/6 [==============================] - 0s 281us/sample - loss: 0.0940\n", 295 | "Epoch 58/500\n", 296 | "6/6 [==============================] - 0s 228us/sample - loss: 0.0872\n", 297 | "Epoch 59/500\n", 298 | "6/6 [==============================] - 0s 510us/sample - loss: 0.0810\n", 299 | "Epoch 60/500\n", 300 | "6/6 [==============================] - 0s 284us/sample - loss: 0.0751\n", 301 | "Epoch 61/500\n", 302 | "6/6 [==============================] - 0s 470us/sample - loss: 0.0697\n", 303 | "Epoch 62/500\n", 304 | "6/6 [==============================] - 0s 328us/sample - loss: 0.0646\n", 305 | "Epoch 63/500\n", 306 | "6/6 [==============================] - 0s 1ms/sample - loss: 0.0599\n", 307 | "Epoch 64/500\n", 308 | "6/6 [==============================] - 0s 355us/sample - loss: 0.0555\n", 309 | "Epoch 65/500\n", 310 | "6/6 [==============================] - 0s 314us/sample - loss: 0.0514\n", 311 | "Epoch 66/500\n", 312 | "6/6 [==============================] - 0s 302us/sample - loss: 0.0476\n", 313 | "Epoch 67/500\n", 314 | "6/6 [==============================] - 0s 361us/sample - loss: 0.0441\n", 315 | "Epoch 68/500\n", 316 | "6/6 [==============================] - 0s 276us/sample - loss: 0.0408\n", 317 | "Epoch 69/500\n", 318 | "6/6 [==============================] - 0s 352us/sample - loss: 0.0378\n", 319 | "Epoch 70/500\n", 320 | "6/6 [==============================] - 0s 270us/sample - loss: 0.0350\n", 321 | "Epoch 71/500\n", 322 | "6/6 [==============================] - 0s 272us/sample - loss: 0.0324\n", 323 | "Epoch 72/500\n", 324 | "6/6 [==============================] - 0s 246us/sample - loss: 0.0299\n", 325 | "Epoch 73/500\n", 326 | "6/6 [==============================] - 0s 379us/sample - loss: 0.0277\n", 327 | "Epoch 74/500\n", 328 | "6/6 [==============================] - 0s 267us/sample - loss: 0.0256\n", 329 | "Epoch 75/500\n", 330 | "6/6 [==============================] - 0s 299us/sample - loss: 0.0237\n", 331 | "Epoch 76/500\n", 332 | "6/6 [==============================] - 0s 369us/sample - loss: 0.0219\n", 333 | "Epoch 77/500\n", 334 | "6/6 [==============================] - 0s 458us/sample - loss: 0.0202\n", 335 | "Epoch 78/500\n", 336 | "6/6 [==============================] - 0s 288us/sample - loss: 0.0187\n", 337 | "Epoch 79/500\n", 338 | "6/6 [==============================] - 0s 400us/sample - loss: 0.0173\n", 339 | "Epoch 80/500\n", 340 | "6/6 [==============================] - 0s 440us/sample - loss: 0.0159\n", 341 | "Epoch 81/500\n", 342 | "6/6 [==============================] - 0s 337us/sample - loss: 0.0147\n", 343 | "Epoch 82/500\n", 344 | "6/6 [==============================] - 0s 630us/sample - loss: 0.0136\n", 345 | "Epoch 83/500\n", 346 | "6/6 [==============================] - 0s 425us/sample - loss: 0.0126\n", 347 | "Epoch 84/500\n", 348 | "6/6 [==============================] - 0s 452us/sample - loss: 0.0116\n", 349 | "Epoch 85/500\n", 350 | "6/6 [==============================] - 0s 364us/sample - loss: 0.0107\n", 351 | "Epoch 86/500\n", 352 | "6/6 [==============================] - 0s 418us/sample - loss: 0.0099\n", 353 | "Epoch 87/500\n", 354 | "6/6 [==============================] - 0s 411us/sample - loss: 0.0091\n", 355 | "Epoch 88/500\n", 356 | "6/6 [==============================] - 0s 286us/sample - loss: 0.0084\n", 357 | "Epoch 89/500\n", 358 | "6/6 [==============================] - 0s 260us/sample - loss: 0.0078\n", 359 | "Epoch 90/500\n", 360 | "6/6 [==============================] - 0s 242us/sample - loss: 0.0072\n", 361 | "Epoch 91/500\n", 362 | "6/6 [==============================] - 0s 264us/sample - loss: 0.0066\n", 363 | "Epoch 92/500\n", 364 | "6/6 [==============================] - 0s 288us/sample - loss: 0.0061\n", 365 | "Epoch 93/500\n", 366 | "6/6 [==============================] - 0s 285us/sample - loss: 0.0056\n", 367 | "Epoch 94/500\n", 368 | "6/6 [==============================] - 0s 271us/sample - loss: 0.0052\n", 369 | "Epoch 95/500\n", 370 | "6/6 [==============================] - 0s 276us/sample - loss: 0.0048\n", 371 | "Epoch 96/500\n", 372 | "6/6 [==============================] - 0s 265us/sample - loss: 0.0044\n", 373 | "Epoch 97/500\n", 374 | "6/6 [==============================] - 0s 262us/sample - loss: 0.0041\n", 375 | "Epoch 98/500\n", 376 | "6/6 [==============================] - 0s 259us/sample - loss: 0.0037\n", 377 | "Epoch 99/500\n", 378 | "6/6 [==============================] - 0s 298us/sample - loss: 0.0034\n", 379 | "Epoch 100/500\n", 380 | "6/6 [==============================] - 0s 298us/sample - loss: 0.0032\n", 381 | "Epoch 101/500\n", 382 | "6/6 [==============================] - 0s 263us/sample - loss: 0.0029\n", 383 | "Epoch 102/500\n", 384 | "6/6 [==============================] - 0s 269us/sample - loss: 0.0027\n", 385 | "Epoch 103/500\n", 386 | "6/6 [==============================] - 0s 272us/sample - loss: 0.0025\n", 387 | "Epoch 104/500\n", 388 | "6/6 [==============================] - 0s 378us/sample - loss: 0.0023\n", 389 | "Epoch 105/500\n", 390 | "6/6 [==============================] - 0s 310us/sample - loss: 0.0021\n", 391 | "Epoch 106/500\n", 392 | "6/6 [==============================] - 0s 270us/sample - loss: 0.0019\n", 393 | "Epoch 107/500\n", 394 | "6/6 [==============================] - 0s 428us/sample - loss: 0.0018\n", 395 | "Epoch 108/500\n", 396 | "6/6 [==============================] - 0s 240us/sample - loss: 0.0017\n", 397 | "Epoch 109/500\n", 398 | "6/6 [==============================] - 0s 233us/sample - loss: 0.0015\n", 399 | "Epoch 110/500\n", 400 | "6/6 [==============================] - 0s 234us/sample - loss: 0.0014\n", 401 | "Epoch 111/500\n", 402 | "6/6 [==============================] - 0s 344us/sample - loss: 0.0013\n", 403 | "Epoch 112/500\n", 404 | "6/6 [==============================] - 0s 277us/sample - loss: 0.0012\n", 405 | "Epoch 113/500\n", 406 | "6/6 [==============================] - 0s 279us/sample - loss: 0.0011\n", 407 | "Epoch 114/500\n", 408 | "6/6 [==============================] - 0s 235us/sample - loss: 0.0010\n", 409 | "Epoch 115/500\n", 410 | "6/6 [==============================] - 0s 263us/sample - loss: 9.2830e-04\n", 411 | "Epoch 116/500\n", 412 | "6/6 [==============================] - 0s 225us/sample - loss: 8.5486e-04\n", 413 | "Epoch 117/500\n", 414 | "6/6 [==============================] - 0s 222us/sample - loss: 7.8720e-04\n", 415 | "Epoch 118/500\n", 416 | "6/6 [==============================] - 0s 303us/sample - loss: 7.2487e-04\n", 417 | "Epoch 119/500\n", 418 | "6/6 [==============================] - 0s 276us/sample - loss: 6.6744e-04\n", 419 | "Epoch 120/500\n", 420 | "6/6 [==============================] - 0s 222us/sample - loss: 6.1455e-04\n", 421 | "Epoch 121/500\n", 422 | "6/6 [==============================] - 0s 274us/sample - loss: 5.6583e-04\n", 423 | "Epoch 122/500\n", 424 | "6/6 [==============================] - 0s 427us/sample - loss: 5.2095e-04\n", 425 | "Epoch 123/500\n", 426 | "6/6 [==============================] - 0s 307us/sample - loss: 4.7963e-04\n", 427 | "Epoch 124/500\n", 428 | "6/6 [==============================] - 0s 225us/sample - loss: 4.4156e-04\n", 429 | "Epoch 125/500\n", 430 | "6/6 [==============================] - 0s 309us/sample - loss: 4.0651e-04\n", 431 | "Epoch 126/500\n", 432 | "6/6 [==============================] - 0s 234us/sample - loss: 3.7423e-04\n", 433 | "Epoch 127/500\n", 434 | "6/6 [==============================] - 0s 204us/sample - loss: 3.4450e-04\n", 435 | "Epoch 128/500\n", 436 | "6/6 [==============================] - 0s 288us/sample - loss: 3.1713e-04\n", 437 | "Epoch 129/500\n", 438 | "6/6 [==============================] - 0s 1ms/sample - loss: 2.9193e-04\n", 439 | "Epoch 130/500\n", 440 | "6/6 [==============================] - 0s 239us/sample - loss: 2.6872e-04\n", 441 | "Epoch 131/500\n", 442 | "6/6 [==============================] - 0s 238us/sample - loss: 2.4735e-04\n", 443 | "Epoch 132/500\n", 444 | "6/6 [==============================] - 0s 226us/sample - loss: 2.2768e-04\n", 445 | "Epoch 133/500\n", 446 | "6/6 [==============================] - 0s 213us/sample - loss: 2.0956e-04\n", 447 | "Epoch 134/500\n", 448 | "6/6 [==============================] - 0s 222us/sample - loss: 1.9289e-04\n", 449 | "Epoch 135/500\n", 450 | "6/6 [==============================] - 0s 277us/sample - loss: 1.7754e-04\n", 451 | "Epoch 136/500\n", 452 | "6/6 [==============================] - 0s 223us/sample - loss: 1.6340e-04\n", 453 | "Epoch 137/500\n", 454 | "6/6 [==============================] - 0s 224us/sample - loss: 1.5039e-04\n", 455 | "Epoch 138/500\n", 456 | "6/6 [==============================] - 0s 205us/sample - loss: 1.3842e-04\n", 457 | "Epoch 139/500\n", 458 | "6/6 [==============================] - 0s 250us/sample - loss: 1.2739e-04\n", 459 | "Epoch 140/500\n", 460 | "6/6 [==============================] - 0s 275us/sample - loss: 1.1724e-04\n", 461 | "Epoch 141/500\n", 462 | "6/6 [==============================] - 0s 191us/sample - loss: 1.0790e-04\n", 463 | "Epoch 142/500\n", 464 | "6/6 [==============================] - 0s 197us/sample - loss: 9.9301e-05\n", 465 | "Epoch 143/500\n", 466 | "6/6 [==============================] - 0s 191us/sample - loss: 9.1387e-05\n", 467 | "Epoch 144/500\n", 468 | "6/6 [==============================] - 0s 194us/sample - loss: 8.4100e-05\n", 469 | "Epoch 145/500\n", 470 | "6/6 [==============================] - 0s 193us/sample - loss: 7.7397e-05\n", 471 | "Epoch 146/500\n", 472 | "6/6 [==============================] - 0s 234us/sample - loss: 7.1224e-05\n", 473 | "Epoch 147/500\n", 474 | "6/6 [==============================] - 0s 194us/sample - loss: 6.5544e-05\n", 475 | "Epoch 148/500\n", 476 | "6/6 [==============================] - 0s 182us/sample - loss: 6.0316e-05\n", 477 | "Epoch 149/500\n", 478 | "6/6 [==============================] - 0s 194us/sample - loss: 5.5503e-05\n", 479 | "Epoch 150/500\n", 480 | "6/6 [==============================] - 0s 196us/sample - loss: 5.1077e-05\n", 481 | "Epoch 151/500\n", 482 | "6/6 [==============================] - 0s 199us/sample - loss: 4.7001e-05\n", 483 | "Epoch 152/500\n", 484 | "6/6 [==============================] - 0s 196us/sample - loss: 4.3251e-05\n", 485 | "Epoch 153/500\n", 486 | "6/6 [==============================] - 0s 195us/sample - loss: 3.9799e-05\n", 487 | "Epoch 154/500\n", 488 | "6/6 [==============================] - 0s 195us/sample - loss: 3.6622e-05\n", 489 | "Epoch 155/500\n", 490 | "6/6 [==============================] - 0s 204us/sample - loss: 3.3699e-05\n", 491 | "Epoch 156/500\n", 492 | "6/6 [==============================] - 0s 192us/sample - loss: 3.1010e-05\n", 493 | "Epoch 157/500\n", 494 | "6/6 [==============================] - 0s 200us/sample - loss: 2.8533e-05\n", 495 | "Epoch 158/500\n", 496 | "6/6 [==============================] - 0s 160us/sample - loss: 2.6256e-05\n", 497 | "Epoch 159/500\n", 498 | "6/6 [==============================] - 0s 254us/sample - loss: 2.4159e-05\n", 499 | "Epoch 160/500\n", 500 | "6/6 [==============================] - 0s 193us/sample - loss: 2.2231e-05\n", 501 | "Epoch 161/500\n", 502 | "6/6 [==============================] - 0s 188us/sample - loss: 2.0455e-05\n", 503 | "Epoch 162/500\n", 504 | "6/6 [==============================] - 0s 267us/sample - loss: 1.8822e-05\n", 505 | "Epoch 163/500\n", 506 | "6/6 [==============================] - 0s 199us/sample - loss: 1.7319e-05\n", 507 | "Epoch 164/500\n", 508 | "6/6 [==============================] - 0s 163us/sample - loss: 1.5935e-05\n", 509 | "Epoch 165/500\n", 510 | "6/6 [==============================] - 0s 315us/sample - loss: 1.4662e-05\n", 511 | "Epoch 166/500\n", 512 | "6/6 [==============================] - 0s 256us/sample - loss: 1.3491e-05\n", 513 | "Epoch 167/500\n", 514 | "6/6 [==============================] - 0s 202us/sample - loss: 1.2413e-05\n", 515 | "Epoch 168/500\n", 516 | "6/6 [==============================] - 0s 205us/sample - loss: 1.1422e-05\n", 517 | "Epoch 169/500\n", 518 | "6/6 [==============================] - 0s 169us/sample - loss: 1.0509e-05\n", 519 | "Epoch 170/500\n", 520 | "6/6 [==============================] - 0s 168us/sample - loss: 9.6697e-06\n", 521 | "Epoch 171/500\n", 522 | "6/6 [==============================] - 0s 201us/sample - loss: 8.8971e-06\n", 523 | "Epoch 172/500\n", 524 | "6/6 [==============================] - 0s 196us/sample - loss: 8.1860e-06\n", 525 | "Epoch 173/500\n", 526 | "6/6 [==============================] - 0s 294us/sample - loss: 7.5324e-06\n", 527 | "Epoch 174/500\n", 528 | "6/6 [==============================] - 0s 196us/sample - loss: 6.9304e-06\n", 529 | "Epoch 175/500\n", 530 | "6/6 [==============================] - 0s 227us/sample - loss: 6.3762e-06\n", 531 | "Epoch 176/500\n", 532 | "6/6 [==============================] - 0s 197us/sample - loss: 5.8664e-06\n", 533 | "Epoch 177/500\n", 534 | "6/6 [==============================] - 0s 203us/sample - loss: 5.3972e-06\n", 535 | "Epoch 178/500\n", 536 | "6/6 [==============================] - 0s 233us/sample - loss: 4.9662e-06\n", 537 | "Epoch 179/500\n", 538 | "6/6 [==============================] - 0s 207us/sample - loss: 4.5692e-06\n", 539 | "Epoch 180/500\n", 540 | "6/6 [==============================] - 0s 195us/sample - loss: 4.2041e-06\n", 541 | "Epoch 181/500\n", 542 | "6/6 [==============================] - 0s 208us/sample - loss: 3.8676e-06\n", 543 | "Epoch 182/500\n", 544 | "6/6 [==============================] - 0s 204us/sample - loss: 3.5589e-06\n", 545 | "Epoch 183/500\n", 546 | "6/6 [==============================] - 0s 272us/sample - loss: 3.2744e-06\n", 547 | "Epoch 184/500\n", 548 | "6/6 [==============================] - 0s 270us/sample - loss: 3.0123e-06\n", 549 | "Epoch 185/500\n", 550 | "6/6 [==============================] - 0s 173us/sample - loss: 2.7716e-06\n", 551 | "Epoch 186/500\n", 552 | "6/6 [==============================] - 0s 200us/sample - loss: 2.5499e-06\n", 553 | "Epoch 187/500\n", 554 | "6/6 [==============================] - 0s 205us/sample - loss: 2.3458e-06\n", 555 | "Epoch 188/500\n", 556 | "6/6 [==============================] - 0s 198us/sample - loss: 2.1582e-06\n", 557 | "Epoch 189/500\n", 558 | "6/6 [==============================] - 0s 194us/sample - loss: 1.9860e-06\n", 559 | "Epoch 190/500\n", 560 | "6/6 [==============================] - 0s 166us/sample - loss: 1.8270e-06\n", 561 | "Epoch 191/500\n", 562 | "6/6 [==============================] - 0s 165us/sample - loss: 1.6809e-06\n", 563 | "Epoch 192/500\n", 564 | "6/6 [==============================] - 0s 173us/sample - loss: 1.5465e-06\n", 565 | "Epoch 193/500\n", 566 | "6/6 [==============================] - 0s 290us/sample - loss: 1.4232e-06\n", 567 | "Epoch 194/500\n", 568 | "6/6 [==============================] - 0s 205us/sample - loss: 1.3093e-06\n", 569 | "Epoch 195/500\n", 570 | "6/6 [==============================] - 0s 198us/sample - loss: 1.2047e-06\n", 571 | "Epoch 196/500\n", 572 | "6/6 [==============================] - 0s 203us/sample - loss: 1.1081e-06\n", 573 | "Epoch 197/500\n", 574 | "6/6 [==============================] - 0s 206us/sample - loss: 1.0197e-06\n", 575 | "Epoch 198/500\n", 576 | "6/6 [==============================] - 0s 260us/sample - loss: 9.3804e-07\n", 577 | "Epoch 199/500\n", 578 | "6/6 [==============================] - 0s 196us/sample - loss: 8.6302e-07\n", 579 | "Epoch 200/500\n", 580 | "6/6 [==============================] - 0s 277us/sample - loss: 7.9411e-07\n", 581 | "Epoch 201/500\n", 582 | "6/6 [==============================] - 0s 297us/sample - loss: 7.3066e-07\n", 583 | "Epoch 202/500\n", 584 | "6/6 [==============================] - 0s 261us/sample - loss: 6.7218e-07\n", 585 | "Epoch 203/500\n", 586 | "6/6 [==============================] - 0s 270us/sample - loss: 6.1840e-07\n", 587 | "Epoch 204/500\n", 588 | "6/6 [==============================] - 0s 191us/sample - loss: 5.6893e-07\n", 589 | "Epoch 205/500\n", 590 | "6/6 [==============================] - 0s 202us/sample - loss: 5.2350e-07\n", 591 | "Epoch 206/500\n", 592 | "6/6 [==============================] - 0s 185us/sample - loss: 4.8157e-07\n", 593 | "Epoch 207/500\n", 594 | "6/6 [==============================] - 0s 197us/sample - loss: 4.4306e-07\n", 595 | "Epoch 208/500\n", 596 | "6/6 [==============================] - 0s 168us/sample - loss: 4.0759e-07\n", 597 | "Epoch 209/500\n", 598 | "6/6 [==============================] - 0s 265us/sample - loss: 3.7508e-07\n", 599 | "Epoch 210/500\n", 600 | "6/6 [==============================] - 0s 267us/sample - loss: 3.4518e-07\n", 601 | "Epoch 211/500\n", 602 | "6/6 [==============================] - 0s 222us/sample - loss: 3.1746e-07\n", 603 | "Epoch 212/500\n", 604 | "6/6 [==============================] - 0s 262us/sample - loss: 2.9209e-07\n", 605 | "Epoch 213/500\n", 606 | "6/6 [==============================] - 0s 195us/sample - loss: 2.6875e-07\n", 607 | "Epoch 214/500\n", 608 | "6/6 [==============================] - 0s 271us/sample - loss: 2.4723e-07\n", 609 | "Epoch 215/500\n", 610 | "6/6 [==============================] - 0s 252us/sample - loss: 2.2746e-07\n", 611 | "Epoch 216/500\n", 612 | "6/6 [==============================] - 0s 258us/sample - loss: 2.0927e-07\n", 613 | "Epoch 217/500\n", 614 | "6/6 [==============================] - 0s 269us/sample - loss: 1.9251e-07\n", 615 | "Epoch 218/500\n", 616 | "6/6 [==============================] - 0s 166us/sample - loss: 1.7710e-07\n", 617 | "Epoch 219/500\n", 618 | "6/6 [==============================] - 0s 317us/sample - loss: 1.6291e-07\n", 619 | "Epoch 220/500\n", 620 | "6/6 [==============================] - 0s 201us/sample - loss: 1.4988e-07\n", 621 | "Epoch 221/500\n", 622 | "6/6 [==============================] - 0s 168us/sample - loss: 1.3789e-07\n", 623 | "Epoch 222/500\n", 624 | "6/6 [==============================] - 0s 167us/sample - loss: 1.2688e-07\n", 625 | "Epoch 223/500\n", 626 | "6/6 [==============================] - 0s 250us/sample - loss: 1.1677e-07\n", 627 | "Epoch 224/500\n", 628 | "6/6 [==============================] - 0s 172us/sample - loss: 1.0739e-07\n", 629 | "Epoch 225/500\n", 630 | "6/6 [==============================] - 0s 196us/sample - loss: 9.8760e-08\n", 631 | "Epoch 226/500\n", 632 | "6/6 [==============================] - 0s 301us/sample - loss: 9.0924e-08\n", 633 | "Epoch 227/500\n", 634 | "6/6 [==============================] - 0s 202us/sample - loss: 8.3661e-08\n", 635 | "Epoch 228/500\n", 636 | "6/6 [==============================] - 0s 294us/sample - loss: 7.6935e-08\n", 637 | "Epoch 229/500\n", 638 | "6/6 [==============================] - 0s 190us/sample - loss: 7.0760e-08\n", 639 | "Epoch 230/500\n", 640 | "6/6 [==============================] - 0s 257us/sample - loss: 6.5102e-08\n", 641 | "Epoch 231/500\n", 642 | "6/6 [==============================] - 0s 248us/sample - loss: 5.9931e-08\n", 643 | "Epoch 232/500\n", 644 | "6/6 [==============================] - 0s 272us/sample - loss: 5.5135e-08\n", 645 | "Epoch 233/500\n", 646 | "6/6 [==============================] - 0s 197us/sample - loss: 5.0742e-08\n", 647 | "Epoch 234/500\n", 648 | "6/6 [==============================] - 0s 201us/sample - loss: 4.6624e-08\n", 649 | "Epoch 235/500\n", 650 | "6/6 [==============================] - 0s 200us/sample - loss: 4.2910e-08\n", 651 | "Epoch 236/500\n", 652 | "6/6 [==============================] - 0s 201us/sample - loss: 3.9502e-08\n", 653 | "Epoch 237/500\n", 654 | "6/6 [==============================] - 0s 205us/sample - loss: 3.6308e-08\n", 655 | "Epoch 238/500\n", 656 | "6/6 [==============================] - 0s 262us/sample - loss: 3.3432e-08\n", 657 | "Epoch 239/500\n", 658 | "6/6 [==============================] - 0s 197us/sample - loss: 3.0731e-08\n", 659 | "Epoch 240/500\n", 660 | "6/6 [==============================] - 0s 280us/sample - loss: 2.8310e-08\n", 661 | "Epoch 241/500\n", 662 | "6/6 [==============================] - 0s 262us/sample - loss: 2.6046e-08\n", 663 | "Epoch 242/500\n", 664 | "6/6 [==============================] - 0s 201us/sample - loss: 2.3968e-08\n", 665 | "Epoch 243/500\n", 666 | "6/6 [==============================] - 0s 315us/sample - loss: 2.2020e-08\n", 667 | "Epoch 244/500\n", 668 | "6/6 [==============================] - 0s 206us/sample - loss: 2.0253e-08\n", 669 | "Epoch 245/500\n", 670 | "6/6 [==============================] - 0s 259us/sample - loss: 1.8659e-08\n", 671 | "Epoch 246/500\n", 672 | "6/6 [==============================] - 0s 269us/sample - loss: 1.7149e-08\n", 673 | "Epoch 247/500\n", 674 | "6/6 [==============================] - 0s 223us/sample - loss: 1.5799e-08\n", 675 | "Epoch 248/500\n", 676 | "6/6 [==============================] - 0s 202us/sample - loss: 1.4530e-08\n", 677 | "Epoch 249/500\n", 678 | "6/6 [==============================] - 0s 208us/sample - loss: 1.3376e-08\n", 679 | "Epoch 250/500\n", 680 | "6/6 [==============================] - 0s 203us/sample - loss: 1.2297e-08\n", 681 | "Epoch 251/500\n", 682 | "6/6 [==============================] - 0s 208us/sample - loss: 1.1315e-08\n", 683 | "Epoch 252/500\n", 684 | "6/6 [==============================] - 0s 195us/sample - loss: 1.0409e-08\n", 685 | "Epoch 253/500\n", 686 | "6/6 [==============================] - 0s 192us/sample - loss: 9.5717e-09\n", 687 | "Epoch 254/500\n", 688 | "6/6 [==============================] - 0s 202us/sample - loss: 8.8057e-09\n", 689 | "Epoch 255/500\n", 690 | "6/6 [==============================] - 0s 189us/sample - loss: 8.1160e-09\n", 691 | "Epoch 256/500\n", 692 | "6/6 [==============================] - 0s 252us/sample - loss: 7.4598e-09\n", 693 | "Epoch 257/500\n", 694 | "6/6 [==============================] - 0s 326us/sample - loss: 6.8711e-09\n", 695 | "Epoch 258/500\n", 696 | "6/6 [==============================] - 0s 267us/sample - loss: 6.3167e-09\n", 697 | "Epoch 259/500\n", 698 | "6/6 [==============================] - 0s 1ms/sample - loss: 5.8123e-09\n", 699 | "Epoch 260/500\n", 700 | "6/6 [==============================] - 0s 218us/sample - loss: 5.3382e-09\n", 701 | "Epoch 261/500\n", 702 | "6/6 [==============================] - 0s 209us/sample - loss: 4.9115e-09\n", 703 | "Epoch 262/500\n", 704 | "6/6 [==============================] - 0s 305us/sample - loss: 4.5189e-09\n", 705 | "Epoch 263/500\n", 706 | "6/6 [==============================] - 0s 207us/sample - loss: 4.1606e-09\n", 707 | "Epoch 264/500\n", 708 | "6/6 [==============================] - 0s 264us/sample - loss: 3.8249e-09\n", 709 | "Epoch 265/500\n", 710 | "6/6 [==============================] - 0s 220us/sample - loss: 3.5184e-09\n", 711 | "Epoch 266/500\n", 712 | "6/6 [==============================] - 0s 214us/sample - loss: 3.2300e-09\n", 713 | "Epoch 267/500\n", 714 | "6/6 [==============================] - 0s 264us/sample - loss: 2.9778e-09\n", 715 | "Epoch 268/500\n", 716 | "6/6 [==============================] - 0s 297us/sample - loss: 2.7494e-09\n", 717 | "Epoch 269/500\n", 718 | "6/6 [==============================] - 0s 188us/sample - loss: 2.5152e-09\n", 719 | "Epoch 270/500\n", 720 | "6/6 [==============================] - 0s 202us/sample - loss: 2.3199e-09\n", 721 | "Epoch 271/500\n", 722 | "6/6 [==============================] - 0s 196us/sample - loss: 2.1375e-09\n", 723 | "Epoch 272/500\n", 724 | "6/6 [==============================] - 0s 202us/sample - loss: 1.9731e-09\n", 725 | "Epoch 273/500\n", 726 | "6/6 [==============================] - 0s 318us/sample - loss: 1.8056e-09\n", 727 | "Epoch 274/500\n", 728 | "6/6 [==============================] - 0s 238us/sample - loss: 1.6582e-09\n", 729 | "Epoch 275/500\n", 730 | "6/6 [==============================] - 0s 205us/sample - loss: 1.5355e-09\n", 731 | "Epoch 276/500\n", 732 | "6/6 [==============================] - 0s 238us/sample - loss: 1.4176e-09\n", 733 | "Epoch 277/500\n", 734 | "6/6 [==============================] - 0s 204us/sample - loss: 1.2955e-09\n", 735 | "Epoch 278/500\n", 736 | "6/6 [==============================] - 0s 273us/sample - loss: 1.1932e-09\n", 737 | "Epoch 279/500\n", 738 | "6/6 [==============================] - 0s 287us/sample - loss: 1.0982e-09\n", 739 | "Epoch 280/500\n", 740 | "6/6 [==============================] - 0s 289us/sample - loss: 1.0128e-09\n", 741 | "Epoch 281/500\n", 742 | "6/6 [==============================] - 0s 207us/sample - loss: 9.3499e-10\n", 743 | "Epoch 282/500\n", 744 | "6/6 [==============================] - 0s 266us/sample - loss: 8.5961e-10\n", 745 | "Epoch 283/500\n", 746 | "6/6 [==============================] - 0s 288us/sample - loss: 7.9097e-10\n", 747 | "Epoch 284/500\n", 748 | "6/6 [==============================] - 0s 300us/sample - loss: 7.2965e-10\n", 749 | "Epoch 285/500\n", 750 | "6/6 [==============================] - 0s 272us/sample - loss: 6.6897e-10\n", 751 | "Epoch 286/500\n", 752 | "6/6 [==============================] - 0s 282us/sample - loss: 6.1333e-10\n", 753 | "Epoch 287/500\n", 754 | "6/6 [==============================] - 0s 242us/sample - loss: 5.6922e-10\n", 755 | "Epoch 288/500\n", 756 | "6/6 [==============================] - 0s 306us/sample - loss: 5.1862e-10\n", 757 | "Epoch 289/500\n", 758 | "6/6 [==============================] - 0s 212us/sample - loss: 4.8086e-10\n", 759 | "Epoch 290/500\n", 760 | "6/6 [==============================] - 0s 267us/sample - loss: 4.4203e-10\n", 761 | "Epoch 291/500\n", 762 | "6/6 [==============================] - 0s 192us/sample - loss: 4.0309e-10\n", 763 | "Epoch 292/500\n", 764 | "6/6 [==============================] - 0s 201us/sample - loss: 3.7168e-10\n", 765 | "Epoch 293/500\n", 766 | "6/6 [==============================] - 0s 305us/sample - loss: 3.4139e-10\n", 767 | "Epoch 294/500\n", 768 | "6/6 [==============================] - 0s 169us/sample - loss: 3.1737e-10\n", 769 | "Epoch 295/500\n", 770 | "6/6 [==============================] - 0s 190us/sample - loss: 2.8630e-10\n", 771 | "Epoch 296/500\n", 772 | "6/6 [==============================] - 0s 257us/sample - loss: 2.6683e-10\n", 773 | "Epoch 297/500\n", 774 | "6/6 [==============================] - 0s 260us/sample - loss: 2.4443e-10\n", 775 | "Epoch 298/500\n", 776 | "6/6 [==============================] - 0s 296us/sample - loss: 2.2801e-10\n", 777 | "Epoch 299/500\n", 778 | "6/6 [==============================] - 0s 209us/sample - loss: 2.0742e-10\n", 779 | "Epoch 300/500\n", 780 | "6/6 [==============================] - 0s 274us/sample - loss: 1.9276e-10\n", 781 | "Epoch 301/500\n", 782 | "6/6 [==============================] - 0s 267us/sample - loss: 1.7687e-10\n", 783 | "Epoch 302/500\n", 784 | "6/6 [==============================] - 0s 275us/sample - loss: 1.6151e-10\n", 785 | "Epoch 303/500\n", 786 | "6/6 [==============================] - 0s 304us/sample - loss: 1.5130e-10\n", 787 | "Epoch 304/500\n", 788 | "6/6 [==============================] - 0s 169us/sample - loss: 1.3725e-10\n", 789 | "Epoch 305/500\n", 790 | "6/6 [==============================] - 0s 207us/sample - loss: 1.2639e-10\n", 791 | "Epoch 306/500\n", 792 | "6/6 [==============================] - 0s 262us/sample - loss: 1.1742e-10\n", 793 | "Epoch 307/500\n", 794 | "6/6 [==============================] - 0s 212us/sample - loss: 1.0780e-10\n", 795 | "Epoch 308/500\n", 796 | "6/6 [==============================] - 0s 203us/sample - loss: 9.9273e-11\n", 797 | "Epoch 309/500\n", 798 | "6/6 [==============================] - 0s 211us/sample - loss: 9.1340e-11\n", 799 | "Epoch 310/500\n", 800 | "6/6 [==============================] - 0s 265us/sample - loss: 8.3849e-11\n", 801 | "Epoch 311/500\n", 802 | "6/6 [==============================] - 0s 201us/sample - loss: 7.6223e-11\n", 803 | "Epoch 312/500\n", 804 | "6/6 [==============================] - 0s 170us/sample - loss: 7.1384e-11\n", 805 | "Epoch 313/500\n", 806 | "6/6 [==============================] - 0s 257us/sample - loss: 6.4340e-11\n", 807 | "Epoch 314/500\n", 808 | "6/6 [==============================] - 0s 261us/sample - loss: 6.0235e-11\n", 809 | "Epoch 315/500\n", 810 | "6/6 [==============================] - 0s 300us/sample - loss: 5.4162e-11\n", 811 | "Epoch 316/500\n", 812 | "6/6 [==============================] - 0s 172us/sample - loss: 4.8945e-11\n", 813 | "Epoch 317/500\n", 814 | "6/6 [==============================] - 0s 265us/sample - loss: 4.6366e-11\n", 815 | "Epoch 318/500\n", 816 | "6/6 [==============================] - 0s 223us/sample - loss: 4.0482e-11\n", 817 | "Epoch 319/500\n", 818 | "6/6 [==============================] - 0s 198us/sample - loss: 3.9130e-11\n", 819 | "Epoch 320/500\n", 820 | "6/6 [==============================] - 0s 321us/sample - loss: 3.5792e-11\n", 821 | "Epoch 321/500\n", 822 | "6/6 [==============================] - 0s 301us/sample - loss: 3.2583e-11\n", 823 | "Epoch 322/500\n", 824 | "6/6 [==============================] - 0s 250us/sample - loss: 3.0700e-11\n", 825 | "Epoch 323/500\n", 826 | "6/6 [==============================] - 0s 220us/sample - loss: 2.7359e-11\n", 827 | "Epoch 324/500\n", 828 | "6/6 [==============================] - 0s 281us/sample - loss: 2.5542e-11\n", 829 | "Epoch 325/500\n", 830 | "6/6 [==============================] - 0s 308us/sample - loss: 2.3801e-11\n", 831 | "Epoch 326/500\n", 832 | "6/6 [==============================] - 0s 190us/sample - loss: 2.2238e-11\n", 833 | "Epoch 327/500\n", 834 | "6/6 [==============================] - 0s 182us/sample - loss: 1.9808e-11\n", 835 | "Epoch 328/500\n", 836 | "6/6 [==============================] - 0s 168us/sample - loss: 1.8505e-11\n", 837 | "Epoch 329/500\n", 838 | "6/6 [==============================] - 0s 190us/sample - loss: 1.7497e-11\n", 839 | "Epoch 330/500\n", 840 | "6/6 [==============================] - 0s 267us/sample - loss: 1.6212e-11\n", 841 | "Epoch 331/500\n", 842 | "6/6 [==============================] - 0s 212us/sample - loss: 1.4533e-11\n", 843 | "Epoch 332/500\n", 844 | "6/6 [==============================] - 0s 199us/sample - loss: 1.3463e-11\n", 845 | "Epoch 333/500\n", 846 | "6/6 [==============================] - 0s 216us/sample - loss: 1.3084e-11\n", 847 | "Epoch 334/500\n", 848 | "6/6 [==============================] - 0s 211us/sample - loss: 1.1414e-11\n", 849 | "Epoch 335/500\n", 850 | "6/6 [==============================] - 0s 258us/sample - loss: 1.1210e-11\n", 851 | "Epoch 336/500\n", 852 | "6/6 [==============================] - 0s 302us/sample - loss: 9.7208e-12\n", 853 | "Epoch 337/500\n", 854 | "6/6 [==============================] - 0s 274us/sample - loss: 9.5077e-12\n", 855 | "Epoch 338/500\n", 856 | "6/6 [==============================] - 0s 259us/sample - loss: 9.0689e-12\n", 857 | "Epoch 339/500\n", 858 | "6/6 [==============================] - 0s 199us/sample - loss: 1.0128e-11\n", 859 | "Epoch 340/500\n", 860 | "6/6 [==============================] - 0s 216us/sample - loss: 7.7195e-12\n", 861 | "Epoch 341/500\n", 862 | "6/6 [==============================] - 0s 266us/sample - loss: 7.4139e-12\n", 863 | "Epoch 342/500\n", 864 | "6/6 [==============================] - 0s 172us/sample - loss: 6.7271e-12\n", 865 | "Epoch 343/500\n", 866 | "6/6 [==============================] - 0s 203us/sample - loss: 6.1586e-12\n", 867 | "Epoch 344/500\n", 868 | "6/6 [==============================] - 0s 459us/sample - loss: 5.9478e-12\n", 869 | "Epoch 345/500\n", 870 | "6/6 [==============================] - 0s 170us/sample - loss: 5.6938e-12\n", 871 | "Epoch 346/500\n", 872 | "6/6 [==============================] - 0s 262us/sample - loss: 5.6867e-12\n", 873 | "Epoch 347/500\n", 874 | "6/6 [==============================] - 0s 263us/sample - loss: 5.5547e-12\n", 875 | "Epoch 348/500\n", 876 | "6/6 [==============================] - 0s 302us/sample - loss: 5.0970e-12\n", 877 | "Epoch 349/500\n", 878 | "6/6 [==============================] - 0s 273us/sample - loss: 5.0407e-12\n", 879 | "Epoch 350/500\n", 880 | "6/6 [==============================] - 0s 262us/sample - loss: 5.5280e-12\n", 881 | "Epoch 351/500\n", 882 | "6/6 [==============================] - 0s 272us/sample - loss: 4.2372e-12\n", 883 | "Epoch 352/500\n", 884 | "6/6 [==============================] - 0s 313us/sample - loss: 3.5551e-12\n", 885 | "Epoch 353/500\n", 886 | "6/6 [==============================] - 0s 197us/sample - loss: 3.2022e-12\n", 887 | "Epoch 354/500\n", 888 | "6/6 [==============================] - 0s 260us/sample - loss: 3.0915e-12\n", 889 | "Epoch 355/500\n", 890 | "6/6 [==============================] - 0s 264us/sample - loss: 2.9866e-12\n", 891 | "Epoch 356/500\n", 892 | "6/6 [==============================] - 0s 298us/sample - loss: 2.9322e-12\n", 893 | "Epoch 357/500\n", 894 | "6/6 [==============================] - 0s 275us/sample - loss: 2.8445e-12\n", 895 | "Epoch 358/500\n", 896 | "6/6 [==============================] - 0s 285us/sample - loss: 2.8025e-12\n", 897 | "Epoch 359/500\n", 898 | "6/6 [==============================] - 0s 163us/sample - loss: 2.4751e-12\n", 899 | "Epoch 360/500\n", 900 | "6/6 [==============================] - 0s 206us/sample - loss: 2.7024e-12\n", 901 | "Epoch 361/500\n", 902 | "6/6 [==============================] - 0s 192us/sample - loss: 2.7095e-12\n", 903 | "Epoch 362/500\n", 904 | "6/6 [==============================] - 0s 268us/sample - loss: 2.4093e-12\n", 905 | "Epoch 363/500\n", 906 | "6/6 [==============================] - 0s 290us/sample - loss: 2.3329e-12\n", 907 | "Epoch 364/500\n", 908 | "6/6 [==============================] - 0s 208us/sample - loss: 2.2625e-12\n", 909 | "Epoch 365/500\n", 910 | "6/6 [==============================] - 0s 184us/sample - loss: 2.8351e-12\n", 911 | "Epoch 366/500\n", 912 | "6/6 [==============================] - 0s 308us/sample - loss: 1.7053e-12\n", 913 | "Epoch 367/500\n", 914 | "6/6 [==============================] - 0s 354us/sample - loss: 1.5964e-12\n", 915 | "Epoch 368/500\n", 916 | "6/6 [==============================] - 0s 356us/sample - loss: 1.3175e-12\n", 917 | "Epoch 369/500\n", 918 | "6/6 [==============================] - 0s 351us/sample - loss: 1.2885e-12\n", 919 | "Epoch 370/500\n", 920 | "6/6 [==============================] - 0s 341us/sample - loss: 1.2600e-12\n", 921 | "Epoch 371/500\n", 922 | "6/6 [==============================] - 0s 235us/sample - loss: 1.1700e-12\n", 923 | "Epoch 372/500\n", 924 | "6/6 [==============================] - 0s 350us/sample - loss: 9.7167e-13\n", 925 | "Epoch 373/500\n", 926 | "6/6 [==============================] - 0s 348us/sample - loss: 9.2134e-13\n", 927 | "Epoch 374/500\n", 928 | "6/6 [==============================] - 0s 287us/sample - loss: 9.2134e-13\n", 929 | "Epoch 375/500\n", 930 | "6/6 [==============================] - 0s 215us/sample - loss: 8.9824e-13\n", 931 | "Epoch 376/500\n", 932 | "6/6 [==============================] - 0s 355us/sample - loss: 8.9824e-13\n", 933 | "Epoch 377/500\n", 934 | "6/6 [==============================] - 0s 295us/sample - loss: 8.9824e-13\n", 935 | "Epoch 378/500\n", 936 | "6/6 [==============================] - 0s 285us/sample - loss: 8.7634e-13\n", 937 | "Epoch 379/500\n", 938 | "6/6 [==============================] - 0s 286us/sample - loss: 8.7634e-13\n", 939 | "Epoch 380/500\n", 940 | "6/6 [==============================] - 0s 487us/sample - loss: 8.5502e-13\n", 941 | "Epoch 381/500\n", 942 | "6/6 [==============================] - 0s 350us/sample - loss: 8.5502e-13\n", 943 | "Epoch 382/500\n", 944 | "6/6 [==============================] - 0s 462us/sample - loss: 8.5502e-13\n", 945 | "Epoch 383/500\n", 946 | "6/6 [==============================] - 0s 367us/sample - loss: 8.3430e-13\n", 947 | "Epoch 384/500\n", 948 | "6/6 [==============================] - 0s 355us/sample - loss: 7.0166e-13\n", 949 | "Epoch 385/500\n", 950 | "6/6 [==============================] - 0s 255us/sample - loss: 7.0166e-13\n", 951 | "Epoch 386/500\n", 952 | "6/6 [==============================] - 0s 347us/sample - loss: 7.0166e-13\n", 953 | "Epoch 387/500\n", 954 | "6/6 [==============================] - 0s 345us/sample - loss: 7.0166e-13\n", 955 | "Epoch 388/500\n", 956 | "6/6 [==============================] - 0s 258us/sample - loss: 7.0166e-13\n", 957 | "Epoch 389/500\n", 958 | "6/6 [==============================] - 0s 348us/sample - loss: 7.0166e-13\n", 959 | "Epoch 390/500\n", 960 | "6/6 [==============================] - 0s 329us/sample - loss: 7.0166e-13\n", 961 | "Epoch 391/500\n", 962 | "6/6 [==============================] - 0s 307us/sample - loss: 7.0166e-13\n", 963 | "Epoch 392/500\n", 964 | "6/6 [==============================] - 0s 331us/sample - loss: 7.0166e-13\n", 965 | "Epoch 393/500\n", 966 | "6/6 [==============================] - 0s 338us/sample - loss: 7.0166e-13\n", 967 | "Epoch 394/500\n", 968 | "6/6 [==============================] - 0s 308us/sample - loss: 7.0166e-13\n", 969 | "Epoch 395/500\n", 970 | "6/6 [==============================] - 0s 347us/sample - loss: 7.0166e-13\n", 971 | "Epoch 396/500\n", 972 | "6/6 [==============================] - 0s 289us/sample - loss: 7.0166e-13\n", 973 | "Epoch 397/500\n", 974 | "6/6 [==============================] - 0s 219us/sample - loss: 7.0166e-13\n", 975 | "Epoch 398/500\n", 976 | "6/6 [==============================] - 0s 662us/sample - loss: 7.0166e-13\n", 977 | "Epoch 399/500\n", 978 | "6/6 [==============================] - 0s 188us/sample - loss: 7.0166e-13\n", 979 | "Epoch 400/500\n", 980 | "6/6 [==============================] - 0s 254us/sample - loss: 7.0166e-13\n", 981 | "Epoch 401/500\n", 982 | "6/6 [==============================] - 0s 319us/sample - loss: 7.0166e-13\n", 983 | "Epoch 402/500\n", 984 | "6/6 [==============================] - 0s 228us/sample - loss: 7.0166e-13\n", 985 | "Epoch 403/500\n", 986 | "6/6 [==============================] - 0s 348us/sample - loss: 7.0166e-13\n", 987 | "Epoch 404/500\n", 988 | "6/6 [==============================] - 0s 347us/sample - loss: 7.0166e-13\n", 989 | "Epoch 405/500\n", 990 | "6/6 [==============================] - 0s 346us/sample - loss: 7.0166e-13\n", 991 | "Epoch 406/500\n", 992 | "6/6 [==============================] - 0s 289us/sample - loss: 7.0166e-13\n", 993 | "Epoch 407/500\n", 994 | "6/6 [==============================] - 0s 293us/sample - loss: 7.0166e-13\n", 995 | "Epoch 408/500\n", 996 | "6/6 [==============================] - 0s 338us/sample - loss: 7.0166e-13\n", 997 | "Epoch 409/500\n", 998 | "6/6 [==============================] - 0s 349us/sample - loss: 7.0166e-13\n", 999 | "Epoch 410/500\n", 1000 | "6/6 [==============================] - 0s 227us/sample - loss: 7.0166e-13\n", 1001 | "Epoch 411/500\n", 1002 | "6/6 [==============================] - 0s 774us/sample - loss: 7.0166e-13\n", 1003 | "Epoch 412/500\n", 1004 | "6/6 [==============================] - 0s 414us/sample - loss: 7.0166e-13\n", 1005 | "Epoch 413/500\n", 1006 | "6/6 [==============================] - 0s 365us/sample - loss: 7.0166e-13\n", 1007 | "Epoch 414/500\n", 1008 | "6/6 [==============================] - 0s 354us/sample - loss: 7.0166e-13\n", 1009 | "Epoch 415/500\n", 1010 | "6/6 [==============================] - 0s 360us/sample - loss: 7.0166e-13\n", 1011 | "Epoch 416/500\n", 1012 | "6/6 [==============================] - 0s 250us/sample - loss: 7.0166e-13\n", 1013 | "Epoch 417/500\n", 1014 | "6/6 [==============================] - 0s 219us/sample - loss: 7.0166e-13\n", 1015 | "Epoch 418/500\n", 1016 | "6/6 [==============================] - 0s 250us/sample - loss: 7.0166e-13\n", 1017 | "Epoch 419/500\n", 1018 | "6/6 [==============================] - 0s 311us/sample - loss: 7.0166e-13\n", 1019 | "Epoch 420/500\n", 1020 | "6/6 [==============================] - 0s 274us/sample - loss: 7.0166e-13\n", 1021 | "Epoch 421/500\n", 1022 | "6/6 [==============================] - 0s 200us/sample - loss: 7.0166e-13\n", 1023 | "Epoch 422/500\n", 1024 | "6/6 [==============================] - 0s 205us/sample - loss: 7.0166e-13\n", 1025 | "Epoch 423/500\n", 1026 | "6/6 [==============================] - 0s 305us/sample - loss: 7.0166e-13\n", 1027 | "Epoch 424/500\n", 1028 | "6/6 [==============================] - 0s 201us/sample - loss: 7.0166e-13\n", 1029 | "Epoch 425/500\n", 1030 | "6/6 [==============================] - 0s 207us/sample - loss: 7.0166e-13\n", 1031 | "Epoch 426/500\n", 1032 | "6/6 [==============================] - 0s 216us/sample - loss: 7.0166e-13\n", 1033 | "Epoch 427/500\n", 1034 | "6/6 [==============================] - 0s 288us/sample - loss: 7.0166e-13\n", 1035 | "Epoch 428/500\n", 1036 | "6/6 [==============================] - 0s 294us/sample - loss: 7.0166e-13\n", 1037 | "Epoch 429/500\n", 1038 | "6/6 [==============================] - 0s 236us/sample - loss: 7.0166e-13\n", 1039 | "Epoch 430/500\n", 1040 | "6/6 [==============================] - 0s 216us/sample - loss: 7.0166e-13\n", 1041 | "Epoch 431/500\n", 1042 | "6/6 [==============================] - 0s 276us/sample - loss: 7.0166e-13\n", 1043 | "Epoch 432/500\n", 1044 | "6/6 [==============================] - 0s 297us/sample - loss: 7.0166e-13\n", 1045 | "Epoch 433/500\n", 1046 | "6/6 [==============================] - 0s 205us/sample - loss: 7.0166e-13\n", 1047 | "Epoch 434/500\n", 1048 | "6/6 [==============================] - 0s 203us/sample - loss: 7.0166e-13\n", 1049 | "Epoch 435/500\n", 1050 | "6/6 [==============================] - 0s 264us/sample - loss: 7.0166e-13\n", 1051 | "Epoch 436/500\n", 1052 | "6/6 [==============================] - 0s 198us/sample - loss: 7.0166e-13\n", 1053 | "Epoch 437/500\n", 1054 | "6/6 [==============================] - 0s 220us/sample - loss: 7.0166e-13\n", 1055 | "Epoch 438/500\n", 1056 | "6/6 [==============================] - 0s 242us/sample - loss: 7.0166e-13\n", 1057 | "Epoch 439/500\n", 1058 | "6/6 [==============================] - 0s 235us/sample - loss: 7.0166e-13\n", 1059 | "Epoch 440/500\n", 1060 | "6/6 [==============================] - 0s 301us/sample - loss: 7.0166e-13\n", 1061 | "Epoch 441/500\n", 1062 | "6/6 [==============================] - 0s 249us/sample - loss: 7.0166e-13\n", 1063 | "Epoch 442/500\n", 1064 | "6/6 [==============================] - 0s 204us/sample - loss: 7.0166e-13\n", 1065 | "Epoch 443/500\n", 1066 | "6/6 [==============================] - 0s 259us/sample - loss: 7.0166e-13\n", 1067 | "Epoch 444/500\n", 1068 | "6/6 [==============================] - 0s 209us/sample - loss: 7.0166e-13\n", 1069 | "Epoch 445/500\n", 1070 | "6/6 [==============================] - 0s 206us/sample - loss: 7.0166e-13\n", 1071 | "Epoch 446/500\n", 1072 | "6/6 [==============================] - 0s 190us/sample - loss: 7.0166e-13\n", 1073 | "Epoch 447/500\n", 1074 | "6/6 [==============================] - 0s 356us/sample - loss: 7.0166e-13\n", 1075 | "Epoch 448/500\n", 1076 | "6/6 [==============================] - 0s 294us/sample - loss: 7.0166e-13\n", 1077 | "Epoch 449/500\n", 1078 | "6/6 [==============================] - 0s 291us/sample - loss: 7.0166e-13\n", 1079 | "Epoch 450/500\n", 1080 | "6/6 [==============================] - 0s 415us/sample - loss: 7.0166e-13\n", 1081 | "Epoch 451/500\n", 1082 | "6/6 [==============================] - 0s 331us/sample - loss: 7.0166e-13\n", 1083 | "Epoch 452/500\n", 1084 | "6/6 [==============================] - 0s 247us/sample - loss: 7.0166e-13\n", 1085 | "Epoch 453/500\n", 1086 | "6/6 [==============================] - 0s 312us/sample - loss: 7.0166e-13\n", 1087 | "Epoch 454/500\n", 1088 | "6/6 [==============================] - 0s 363us/sample - loss: 7.0166e-13\n", 1089 | "Epoch 455/500\n", 1090 | "6/6 [==============================] - 0s 357us/sample - loss: 7.0166e-13\n", 1091 | "Epoch 456/500\n", 1092 | "6/6 [==============================] - 0s 371us/sample - loss: 7.0166e-13\n", 1093 | "Epoch 457/500\n", 1094 | "6/6 [==============================] - 0s 411us/sample - loss: 7.0166e-13\n", 1095 | "Epoch 458/500\n", 1096 | "6/6 [==============================] - 0s 311us/sample - loss: 7.0166e-13\n", 1097 | "Epoch 459/500\n", 1098 | "6/6 [==============================] - 0s 410us/sample - loss: 7.0166e-13\n", 1099 | "Epoch 460/500\n", 1100 | "6/6 [==============================] - 0s 369us/sample - loss: 7.0166e-13\n", 1101 | "Epoch 461/500\n", 1102 | "6/6 [==============================] - 0s 404us/sample - loss: 7.0166e-13\n", 1103 | "Epoch 462/500\n", 1104 | "6/6 [==============================] - 0s 305us/sample - loss: 7.0166e-13\n", 1105 | "Epoch 463/500\n", 1106 | "6/6 [==============================] - 0s 369us/sample - loss: 7.0166e-13\n", 1107 | "Epoch 464/500\n", 1108 | "6/6 [==============================] - 0s 391us/sample - loss: 7.0166e-13\n", 1109 | "Epoch 465/500\n", 1110 | "6/6 [==============================] - 0s 356us/sample - loss: 7.0166e-13\n", 1111 | "Epoch 466/500\n", 1112 | "6/6 [==============================] - 0s 351us/sample - loss: 7.0166e-13\n", 1113 | "Epoch 467/500\n", 1114 | "6/6 [==============================] - 0s 311us/sample - loss: 7.0166e-13\n", 1115 | "Epoch 468/500\n", 1116 | "6/6 [==============================] - 0s 359us/sample - loss: 7.0166e-13\n", 1117 | "Epoch 469/500\n", 1118 | "6/6 [==============================] - 0s 460us/sample - loss: 7.0166e-13\n", 1119 | "Epoch 470/500\n", 1120 | "6/6 [==============================] - 0s 433us/sample - loss: 7.0166e-13\n", 1121 | "Epoch 471/500\n", 1122 | "6/6 [==============================] - 0s 497us/sample - loss: 7.0166e-13\n", 1123 | "Epoch 472/500\n", 1124 | "6/6 [==============================] - 0s 403us/sample - loss: 7.0166e-13\n", 1125 | "Epoch 473/500\n", 1126 | "6/6 [==============================] - 0s 469us/sample - loss: 7.0166e-13\n", 1127 | "Epoch 474/500\n", 1128 | "6/6 [==============================] - 0s 401us/sample - loss: 7.0166e-13\n", 1129 | "Epoch 475/500\n", 1130 | "6/6 [==============================] - 0s 445us/sample - loss: 7.0166e-13\n", 1131 | "Epoch 476/500\n", 1132 | "6/6 [==============================] - 0s 291us/sample - loss: 7.0166e-13\n", 1133 | "Epoch 477/500\n", 1134 | "6/6 [==============================] - 0s 326us/sample - loss: 7.0166e-13\n", 1135 | "Epoch 478/500\n", 1136 | "6/6 [==============================] - 0s 475us/sample - loss: 7.0166e-13\n", 1137 | "Epoch 479/500\n", 1138 | "6/6 [==============================] - 0s 282us/sample - loss: 7.0166e-13\n", 1139 | "Epoch 480/500\n", 1140 | "6/6 [==============================] - 0s 288us/sample - loss: 7.0166e-13\n", 1141 | "Epoch 481/500\n", 1142 | "6/6 [==============================] - 0s 390us/sample - loss: 7.0166e-13\n", 1143 | "Epoch 482/500\n", 1144 | "6/6 [==============================] - 0s 304us/sample - loss: 7.0166e-13\n", 1145 | "Epoch 483/500\n", 1146 | "6/6 [==============================] - 0s 435us/sample - loss: 7.0166e-13\n", 1147 | "Epoch 484/500\n", 1148 | "6/6 [==============================] - 0s 298us/sample - loss: 7.0166e-13\n", 1149 | "Epoch 485/500\n", 1150 | "6/6 [==============================] - 0s 298us/sample - loss: 7.0166e-13\n", 1151 | "Epoch 486/500\n", 1152 | "6/6 [==============================] - 0s 286us/sample - loss: 7.0166e-13\n", 1153 | "Epoch 487/500\n", 1154 | "6/6 [==============================] - 0s 273us/sample - loss: 7.0166e-13\n", 1155 | "Epoch 488/500\n", 1156 | "6/6 [==============================] - 0s 290us/sample - loss: 7.0166e-13\n", 1157 | "Epoch 489/500\n", 1158 | "6/6 [==============================] - 0s 280us/sample - loss: 7.0166e-13\n", 1159 | "Epoch 490/500\n", 1160 | "6/6 [==============================] - 0s 248us/sample - loss: 7.0166e-13\n", 1161 | "Epoch 491/500\n", 1162 | "6/6 [==============================] - 0s 279us/sample - loss: 7.0166e-13\n", 1163 | "Epoch 492/500\n", 1164 | "6/6 [==============================] - 0s 280us/sample - loss: 7.0166e-13\n", 1165 | "Epoch 493/500\n", 1166 | "6/6 [==============================] - 0s 234us/sample - loss: 7.0166e-13\n", 1167 | "Epoch 494/500\n", 1168 | "6/6 [==============================] - 0s 192us/sample - loss: 7.0166e-13\n", 1169 | "Epoch 495/500\n", 1170 | "6/6 [==============================] - 0s 198us/sample - loss: 7.0166e-13\n", 1171 | "Epoch 496/500\n", 1172 | "6/6 [==============================] - 0s 287us/sample - loss: 7.0166e-13\n", 1173 | "Epoch 497/500\n", 1174 | "6/6 [==============================] - 0s 210us/sample - loss: 7.0166e-13\n", 1175 | "Epoch 498/500\n", 1176 | "6/6 [==============================] - 0s 209us/sample - loss: 7.0166e-13\n", 1177 | "Epoch 499/500\n", 1178 | "6/6 [==============================] - 0s 227us/sample - loss: 7.0166e-13\n", 1179 | "Epoch 500/500\n", 1180 | "6/6 [==============================] - 0s 313us/sample - loss: 7.0166e-13\n" 1181 | ], 1182 | "name": "stdout" 1183 | }, 1184 | { 1185 | "output_type": "execute_result", 1186 | "data": { 1187 | "text/plain": [ 1188 | "" 1189 | ] 1190 | }, 1191 | "metadata": { 1192 | "tags": [] 1193 | }, 1194 | "execution_count": 6 1195 | } 1196 | ] 1197 | }, 1198 | { 1199 | "cell_type": "markdown", 1200 | "metadata": { 1201 | "id": "nVCCCLkjfeM7", 1202 | "colab_type": "text" 1203 | }, 1204 | "source": [ 1205 | "###Use model to predict responce with $x=3.5$ as input.\n", 1206 | "###Based on formula $y=2x-1$ the predicted value should be close to 6." 1207 | ] 1208 | }, 1209 | { 1210 | "cell_type": "code", 1211 | "metadata": { 1212 | "id": "cb6sV2vdfpZM", 1213 | "colab_type": "code", 1214 | "outputId": "7c9199ca-7ff6-4b2b-ec5d-f280ba22d97c", 1215 | "colab": { 1216 | "base_uri": "https://localhost:8080/", 1217 | "height": 35 1218 | } 1219 | }, 1220 | "source": [ 1221 | "print(model.predict([3.5]))" 1222 | ], 1223 | "execution_count": 0, 1224 | "outputs": [ 1225 | { 1226 | "output_type": "stream", 1227 | "text": [ 1228 | "[[5.9999995]]\n" 1229 | ], 1230 | "name": "stdout" 1231 | } 1232 | ] 1233 | }, 1234 | { 1235 | "cell_type": "markdown", 1236 | "metadata": { 1237 | "id": "WXNvJTWgf8o8", 1238 | "colab_type": "text" 1239 | }, 1240 | "source": [ 1241 | "###We can view a summary of the model " 1242 | ] 1243 | }, 1244 | { 1245 | "cell_type": "code", 1246 | "metadata": { 1247 | "id": "erbBOBL8gCYa", 1248 | "colab_type": "code", 1249 | "outputId": "81c64390-c155-43f1-8b0c-95837aa8493c", 1250 | "colab": { 1251 | "base_uri": "https://localhost:8080/", 1252 | "height": 237 1253 | } 1254 | }, 1255 | "source": [ 1256 | "model.summary()" 1257 | ], 1258 | "execution_count": 0, 1259 | "outputs": [ 1260 | { 1261 | "output_type": "stream", 1262 | "text": [ 1263 | "Model: \"sequential\"\n", 1264 | "_________________________________________________________________\n", 1265 | "Layer (type) Output Shape Param # \n", 1266 | "=================================================================\n", 1267 | "dense (Dense) (None, 1) 2 \n", 1268 | "_________________________________________________________________\n", 1269 | "dense_1 (Dense) (None, 1) 2 \n", 1270 | "=================================================================\n", 1271 | "Total params: 4\n", 1272 | "Trainable params: 4\n", 1273 | "Non-trainable params: 0\n", 1274 | "_________________________________________________________________\n" 1275 | ], 1276 | "name": "stdout" 1277 | } 1278 | ] 1279 | } 1280 | ] 1281 | } -------------------------------------------------------------------------------- /Spacy_example.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "Spacy example.ipynb", 7 | "provenance": [], 8 | "collapsed_sections": [], 9 | "include_colab_link": true 10 | }, 11 | "kernelspec": { 12 | "name": "python3", 13 | "display_name": "Python 3" 14 | } 15 | }, 16 | "cells": [ 17 | { 18 | "cell_type": "markdown", 19 | "metadata": { 20 | "id": "view-in-github", 21 | "colab_type": "text" 22 | }, 23 | "source": [ 24 | "\"Open" 25 | ] 26 | }, 27 | { 28 | "cell_type": "code", 29 | "metadata": { 30 | "id": "yIARIXVzyqZe", 31 | "colab_type": "code", 32 | "outputId": "7291a9ba-b53c-4613-ba63-414c247377ed", 33 | "colab": { 34 | "base_uri": "https://localhost:8080/", 35 | "height": 845 36 | } 37 | }, 38 | "source": [ 39 | "!pip install -U spacy" 40 | ], 41 | "execution_count": 1, 42 | "outputs": [ 43 | { 44 | "output_type": "stream", 45 | "text": [ 46 | "Collecting spacy\n", 47 | "\u001b[?25l Downloading https://files.pythonhosted.org/packages/47/13/80ad28ef7a16e2a86d16d73e28588be5f1085afd3e85e4b9b912bd700e8a/spacy-2.2.3-cp36-cp36m-manylinux1_x86_64.whl (10.4MB)\n", 48 | "\u001b[K |████████████████████████████████| 10.4MB 1.4MB/s \n", 49 | "\u001b[?25hRequirement already satisfied, skipping upgrade: setuptools in /usr/local/lib/python3.6/dist-packages (from spacy) (41.6.0)\n", 50 | "Requirement already satisfied, skipping upgrade: plac<1.2.0,>=0.9.6 in /usr/local/lib/python3.6/dist-packages (from spacy) (0.9.6)\n", 51 | "Collecting preshed<3.1.0,>=3.0.2\n", 52 | "\u001b[?25l Downloading https://files.pythonhosted.org/packages/db/6b/e07fad36913879757c90ba03d6fb7f406f7279e11dcefc105ee562de63ea/preshed-3.0.2-cp36-cp36m-manylinux1_x86_64.whl (119kB)\n", 53 | "\u001b[K |████████████████████████████████| 122kB 52.2MB/s \n", 54 | "\u001b[?25hRequirement already satisfied, skipping upgrade: wasabi<1.1.0,>=0.4.0 in /usr/local/lib/python3.6/dist-packages (from spacy) (0.4.0)\n", 55 | "Requirement already satisfied, skipping upgrade: requests<3.0.0,>=2.13.0 in /usr/local/lib/python3.6/dist-packages (from spacy) (2.21.0)\n", 56 | "Requirement already satisfied, skipping upgrade: srsly<1.1.0,>=0.1.0 in /usr/local/lib/python3.6/dist-packages (from spacy) (0.2.0)\n", 57 | "Requirement already satisfied, skipping upgrade: numpy>=1.15.0 in /usr/local/lib/python3.6/dist-packages (from spacy) (1.17.4)\n", 58 | "Requirement already satisfied, skipping upgrade: murmurhash<1.1.0,>=0.28.0 in /usr/local/lib/python3.6/dist-packages (from spacy) (1.0.2)\n", 59 | "Collecting thinc<7.4.0,>=7.3.0\n", 60 | "\u001b[?25l Downloading https://files.pythonhosted.org/packages/07/59/6bb553bc9a5f072d3cd479fc939fea0f6f682892f1f5cff98de5c9b615bb/thinc-7.3.1-cp36-cp36m-manylinux1_x86_64.whl (2.2MB)\n", 61 | "\u001b[K |████████████████████████████████| 2.2MB 43.9MB/s \n", 62 | "\u001b[?25hCollecting catalogue<1.1.0,>=0.0.7\n", 63 | " Downloading https://files.pythonhosted.org/packages/4f/d5/46ff975f0d7d055cf95557b944fd5d29d9dfb37a4341038e070f212b24fe/catalogue-0.0.8-py2.py3-none-any.whl\n", 64 | "Collecting blis<0.5.0,>=0.4.0\n", 65 | "\u001b[?25l Downloading https://files.pythonhosted.org/packages/41/19/f95c75562d18eb27219df3a3590b911e78d131b68466ad79fdf5847eaac4/blis-0.4.1-cp36-cp36m-manylinux1_x86_64.whl (3.7MB)\n", 66 | "\u001b[K |████████████████████████████████| 3.7MB 48.6MB/s \n", 67 | "\u001b[?25hRequirement already satisfied, skipping upgrade: cymem<2.1.0,>=2.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy) (2.0.3)\n", 68 | "Requirement already satisfied, skipping upgrade: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy) (3.0.4)\n", 69 | "Requirement already satisfied, skipping upgrade: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy) (2.8)\n", 70 | "Requirement already satisfied, skipping upgrade: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy) (1.24.3)\n", 71 | "Requirement already satisfied, skipping upgrade: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy) (2019.9.11)\n", 72 | "Requirement already satisfied, skipping upgrade: tqdm<5.0.0,>=4.10.0 in /usr/local/lib/python3.6/dist-packages (from thinc<7.4.0,>=7.3.0->spacy) (4.28.1)\n", 73 | "Requirement already satisfied, skipping upgrade: importlib-metadata>=0.20; python_version < \"3.8\" in /usr/local/lib/python3.6/dist-packages (from catalogue<1.1.0,>=0.0.7->spacy) (0.23)\n", 74 | "Requirement already satisfied, skipping upgrade: zipp>=0.5 in /usr/local/lib/python3.6/dist-packages (from importlib-metadata>=0.20; python_version < \"3.8\"->catalogue<1.1.0,>=0.0.7->spacy) (0.6.0)\n", 75 | "Requirement already satisfied, skipping upgrade: more-itertools in /usr/local/lib/python3.6/dist-packages (from zipp>=0.5->importlib-metadata>=0.20; python_version < \"3.8\"->catalogue<1.1.0,>=0.0.7->spacy) (7.2.0)\n", 76 | "Installing collected packages: preshed, blis, thinc, catalogue, spacy\n", 77 | " Found existing installation: preshed 2.0.1\n", 78 | " Uninstalling preshed-2.0.1:\n", 79 | " Successfully uninstalled preshed-2.0.1\n", 80 | " Found existing installation: blis 0.2.4\n", 81 | " Uninstalling blis-0.2.4:\n", 82 | " Successfully uninstalled blis-0.2.4\n", 83 | " Found existing installation: thinc 7.0.8\n", 84 | " Uninstalling thinc-7.0.8:\n", 85 | " Successfully uninstalled thinc-7.0.8\n", 86 | " Found existing installation: spacy 2.1.9\n", 87 | " Uninstalling spacy-2.1.9:\n", 88 | " Successfully uninstalled spacy-2.1.9\n", 89 | "Successfully installed blis-0.4.1 catalogue-0.0.8 preshed-3.0.2 spacy-2.2.3 thinc-7.3.1\n" 90 | ], 91 | "name": "stdout" 92 | } 93 | ] 94 | }, 95 | { 96 | "cell_type": "code", 97 | "metadata": { 98 | "id": "LXpmvaPijt4w", 99 | "colab_type": "code", 100 | "outputId": "21263b86-21c2-48f9-e25b-bf2994de5526", 101 | "colab": { 102 | "base_uri": "https://localhost:8080/", 103 | "height": 772 104 | } 105 | }, 106 | "source": [ 107 | "!python -m spacy download en" 108 | ], 109 | "execution_count": 2, 110 | "outputs": [ 111 | { 112 | "output_type": "stream", 113 | "text": [ 114 | "Collecting en_core_web_sm==2.2.5\n", 115 | "\u001b[?25l Downloading https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.2.5/en_core_web_sm-2.2.5.tar.gz (12.0MB)\n", 116 | "\u001b[K |████████████████████████████████| 12.0MB 607kB/s \n", 117 | "\u001b[?25hRequirement already satisfied: spacy>=2.2.2 in /usr/local/lib/python3.6/dist-packages (from en_core_web_sm==2.2.5) (2.2.3)\n", 118 | "Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (3.0.2)\n", 119 | "Requirement already satisfied: plac<1.2.0,>=0.9.6 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (0.9.6)\n", 120 | "Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (2.0.3)\n", 121 | "Requirement already satisfied: requests<3.0.0,>=2.13.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (2.21.0)\n", 122 | "Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (1.0.2)\n", 123 | "Requirement already satisfied: catalogue<1.1.0,>=0.0.7 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (0.0.8)\n", 124 | "Requirement already satisfied: thinc<7.4.0,>=7.3.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (7.3.1)\n", 125 | "Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (41.6.0)\n", 126 | "Requirement already satisfied: wasabi<1.1.0,>=0.4.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (0.4.0)\n", 127 | "Requirement already satisfied: srsly<1.1.0,>=0.1.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (0.2.0)\n", 128 | "Requirement already satisfied: blis<0.5.0,>=0.4.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (0.4.1)\n", 129 | "Requirement already satisfied: numpy>=1.15.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_sm==2.2.5) (1.17.4)\n", 130 | "Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=2.2.2->en_core_web_sm==2.2.5) (1.24.3)\n", 131 | "Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=2.2.2->en_core_web_sm==2.2.5) (3.0.4)\n", 132 | "Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=2.2.2->en_core_web_sm==2.2.5) (2.8)\n", 133 | "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=2.2.2->en_core_web_sm==2.2.5) (2019.9.11)\n", 134 | "Requirement already satisfied: importlib-metadata>=0.20; python_version < \"3.8\" in /usr/local/lib/python3.6/dist-packages (from catalogue<1.1.0,>=0.0.7->spacy>=2.2.2->en_core_web_sm==2.2.5) (0.23)\n", 135 | "Requirement already satisfied: tqdm<5.0.0,>=4.10.0 in /usr/local/lib/python3.6/dist-packages (from thinc<7.4.0,>=7.3.0->spacy>=2.2.2->en_core_web_sm==2.2.5) (4.28.1)\n", 136 | "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.6/dist-packages (from importlib-metadata>=0.20; python_version < \"3.8\"->catalogue<1.1.0,>=0.0.7->spacy>=2.2.2->en_core_web_sm==2.2.5) (0.6.0)\n", 137 | "Requirement already satisfied: more-itertools in /usr/local/lib/python3.6/dist-packages (from zipp>=0.5->importlib-metadata>=0.20; python_version < \"3.8\"->catalogue<1.1.0,>=0.0.7->spacy>=2.2.2->en_core_web_sm==2.2.5) (7.2.0)\n", 138 | "Building wheels for collected packages: en-core-web-sm\n", 139 | " Building wheel for en-core-web-sm (setup.py) ... \u001b[?25l\u001b[?25hdone\n", 140 | " Created wheel for en-core-web-sm: filename=en_core_web_sm-2.2.5-cp36-none-any.whl size=12011741 sha256=3164e00eb94719adb5fc0229e4b43799309741207c8878e79d8cb1942f5d08d9\n", 141 | " Stored in directory: /tmp/pip-ephem-wheel-cache-7azvuuf_/wheels/6a/47/fb/6b5a0b8906d8e8779246c67d4658fd8a544d4a03a75520197a\n", 142 | "Successfully built en-core-web-sm\n", 143 | "Installing collected packages: en-core-web-sm\n", 144 | " Found existing installation: en-core-web-sm 2.1.0\n", 145 | " Uninstalling en-core-web-sm-2.1.0:\n", 146 | " Successfully uninstalled en-core-web-sm-2.1.0\n", 147 | "Successfully installed en-core-web-sm-2.2.5\n", 148 | "\u001b[38;5;2m✔ Download and installation successful\u001b[0m\n", 149 | "You can now load the model via spacy.load('en_core_web_sm')\n", 150 | "\u001b[38;5;2m✔ Linking successful\u001b[0m\n", 151 | "/usr/local/lib/python3.6/dist-packages/en_core_web_sm -->\n", 152 | "/usr/local/lib/python3.6/dist-packages/spacy/data/en\n", 153 | "You can now load the model via spacy.load('en')\n" 154 | ], 155 | "name": "stdout" 156 | } 157 | ] 158 | }, 159 | { 160 | "cell_type": "code", 161 | "metadata": { 162 | "id": "2pask3OOs1Bf", 163 | "colab_type": "code", 164 | "outputId": "8d69587f-12ae-401b-fb14-e87d710f625f", 165 | "colab": { 166 | "base_uri": "https://localhost:8080/", 167 | "height": 643 168 | } 169 | }, 170 | "source": [ 171 | "!python -m spacy download en_core_web_md" 172 | ], 173 | "execution_count": 3, 174 | "outputs": [ 175 | { 176 | "output_type": "stream", 177 | "text": [ 178 | "Collecting en_core_web_md==2.2.5\n", 179 | "\u001b[?25l Downloading https://github.com/explosion/spacy-models/releases/download/en_core_web_md-2.2.5/en_core_web_md-2.2.5.tar.gz (96.4MB)\n", 180 | "\u001b[K |████████████████████████████████| 96.4MB 7.9MB/s \n", 181 | "\u001b[?25hRequirement already satisfied: spacy>=2.2.2 in /usr/local/lib/python3.6/dist-packages (from en_core_web_md==2.2.5) (2.2.3)\n", 182 | "Requirement already satisfied: requests<3.0.0,>=2.13.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_md==2.2.5) (2.21.0)\n", 183 | "Requirement already satisfied: numpy>=1.15.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_md==2.2.5) (1.17.4)\n", 184 | "Requirement already satisfied: wasabi<1.1.0,>=0.4.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_md==2.2.5) (0.4.0)\n", 185 | "Requirement already satisfied: plac<1.2.0,>=0.9.6 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_md==2.2.5) (0.9.6)\n", 186 | "Requirement already satisfied: blis<0.5.0,>=0.4.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_md==2.2.5) (0.4.1)\n", 187 | "Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_md==2.2.5) (1.0.2)\n", 188 | "Requirement already satisfied: catalogue<1.1.0,>=0.0.7 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_md==2.2.5) (0.0.8)\n", 189 | "Requirement already satisfied: srsly<1.1.0,>=0.1.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_md==2.2.5) (0.2.0)\n", 190 | "Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_md==2.2.5) (3.0.2)\n", 191 | "Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_md==2.2.5) (41.6.0)\n", 192 | "Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_md==2.2.5) (2.0.3)\n", 193 | "Requirement already satisfied: thinc<7.4.0,>=7.3.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.2.2->en_core_web_md==2.2.5) (7.3.1)\n", 194 | "Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=2.2.2->en_core_web_md==2.2.5) (3.0.4)\n", 195 | "Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=2.2.2->en_core_web_md==2.2.5) (2.8)\n", 196 | "Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=2.2.2->en_core_web_md==2.2.5) (1.24.3)\n", 197 | "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=2.2.2->en_core_web_md==2.2.5) (2019.9.11)\n", 198 | "Requirement already satisfied: importlib-metadata>=0.20; python_version < \"3.8\" in /usr/local/lib/python3.6/dist-packages (from catalogue<1.1.0,>=0.0.7->spacy>=2.2.2->en_core_web_md==2.2.5) (0.23)\n", 199 | "Requirement already satisfied: tqdm<5.0.0,>=4.10.0 in /usr/local/lib/python3.6/dist-packages (from thinc<7.4.0,>=7.3.0->spacy>=2.2.2->en_core_web_md==2.2.5) (4.28.1)\n", 200 | "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.6/dist-packages (from importlib-metadata>=0.20; python_version < \"3.8\"->catalogue<1.1.0,>=0.0.7->spacy>=2.2.2->en_core_web_md==2.2.5) (0.6.0)\n", 201 | "Requirement already satisfied: more-itertools in /usr/local/lib/python3.6/dist-packages (from zipp>=0.5->importlib-metadata>=0.20; python_version < \"3.8\"->catalogue<1.1.0,>=0.0.7->spacy>=2.2.2->en_core_web_md==2.2.5) (7.2.0)\n", 202 | "Building wheels for collected packages: en-core-web-md\n", 203 | " Building wheel for en-core-web-md (setup.py) ... \u001b[?25l\u001b[?25hdone\n", 204 | " Created wheel for en-core-web-md: filename=en_core_web_md-2.2.5-cp36-none-any.whl size=98051304 sha256=fe0516b4fb10b1d02e66d83219266ba0a33bdabdaa7617a708ac952234ce8d75\n", 205 | " Stored in directory: /tmp/pip-ephem-wheel-cache-zwa3ymgo/wheels/df/94/ad/f5cf59224cea6b5686ac4fd1ad19c8a07bc026e13c36502d81\n", 206 | "Successfully built en-core-web-md\n", 207 | "Installing collected packages: en-core-web-md\n", 208 | "Successfully installed en-core-web-md-2.2.5\n", 209 | "\u001b[38;5;2m✔ Download and installation successful\u001b[0m\n", 210 | "You can now load the model via spacy.load('en_core_web_md')\n" 211 | ], 212 | "name": "stdout" 213 | } 214 | ] 215 | }, 216 | { 217 | "cell_type": "code", 218 | "metadata": { 219 | "id": "Gc4rd8JJyS9Y", 220 | "colab_type": "code", 221 | "colab": {} 222 | }, 223 | "source": [ 224 | "import spacy\n", 225 | "import en_core_web_md\n", 226 | "#nlp = spacy.load(\"en_core_web_md\") \n", 227 | "#nlp= spacy.load(\"en\")\n", 228 | "nlp=en_core_web_md.load()" 229 | ], 230 | "execution_count": 0, 231 | "outputs": [] 232 | }, 233 | { 234 | "cell_type": "code", 235 | "metadata": { 236 | "colab_type": "code", 237 | "id": "p8dDdyS8kgXO", 238 | "colab": {} 239 | }, 240 | "source": [ 241 | "sample_text=\"This is an example of language processing. It is created by Dimitrios Panagopoulos in November of 2019 at Athens, Greece. You can execute in Google's Colab.\"\n", 242 | "doc = nlp(sample_text)" 243 | ], 244 | "execution_count": 0, 245 | "outputs": [] 246 | }, 247 | { 248 | "cell_type": "code", 249 | "metadata": { 250 | "id": "ge3FRXSA0pQ0", 251 | "colab_type": "code", 252 | "outputId": "877f3d84-1135-4900-ba5b-5a70e243632f", 253 | "colab": { 254 | "base_uri": "https://localhost:8080/", 255 | "height": 586 256 | } 257 | }, 258 | "source": [ 259 | "for token in doc:\n", 260 | " print(token.text, token.lemma_, token.pos_)" 261 | ], 262 | "execution_count": 6, 263 | "outputs": [ 264 | { 265 | "output_type": "stream", 266 | "text": [ 267 | "This this DET\n", 268 | "is be AUX\n", 269 | "an an DET\n", 270 | "example example NOUN\n", 271 | "of of ADP\n", 272 | "language language NOUN\n", 273 | "processing processing NOUN\n", 274 | ". . PUNCT\n", 275 | "It -PRON- PRON\n", 276 | "is be AUX\n", 277 | "created create VERB\n", 278 | "by by ADP\n", 279 | "Dimitrios Dimitrios PROPN\n", 280 | "Panagopoulos Panagopoulos PROPN\n", 281 | "in in ADP\n", 282 | "November November PROPN\n", 283 | "of of ADP\n", 284 | "2019 2019 NUM\n", 285 | "at at ADP\n", 286 | "Athens Athens PROPN\n", 287 | ", , PUNCT\n", 288 | "Greece Greece PROPN\n", 289 | ". . PUNCT\n", 290 | "You -PRON- PRON\n", 291 | "can can VERB\n", 292 | "execute execute VERB\n", 293 | "in in ADP\n", 294 | "Google Google PROPN\n", 295 | "'s 's PART\n", 296 | "Colab Colab PROPN\n", 297 | ". . PUNCT\n" 298 | ], 299 | "name": "stdout" 300 | } 301 | ] 302 | }, 303 | { 304 | "cell_type": "code", 305 | "metadata": { 306 | "id": "uwp80jJtlYUE", 307 | "colab_type": "code", 308 | "outputId": "d2454316-4c35-4518-ce4e-69a38dd0675b", 309 | "colab": { 310 | "base_uri": "https://localhost:8080/", 311 | "height": 122 312 | } 313 | }, 314 | "source": [ 315 | "from spacy import displacy\n", 316 | "displacy.render(doc, style=\"ent\", jupyter=True)" 317 | ], 318 | "execution_count": 7, 319 | "outputs": [ 320 | { 321 | "output_type": "display_data", 322 | "data": { 323 | "text/html": [ 324 | "
This is an example of language processing. It is created by \n", 325 | "\n", 326 | " Dimitrios Panagopoulos\n", 327 | " ORG\n", 328 | "\n", 329 | " in \n", 330 | "\n", 331 | " November of 2019\n", 332 | " DATE\n", 333 | "\n", 334 | " at \n", 335 | "\n", 336 | " Athens\n", 337 | " GPE\n", 338 | "\n", 339 | ", \n", 340 | "\n", 341 | " Greece\n", 342 | " GPE\n", 343 | "\n", 344 | ". You can execute in \n", 345 | "\n", 346 | " Google\n", 347 | " ORG\n", 348 | "\n", 349 | "'s Colab.
" 350 | ], 351 | "text/plain": [ 352 | "" 353 | ] 354 | }, 355 | "metadata": { 356 | "tags": [] 357 | } 358 | } 359 | ] 360 | }, 361 | { 362 | "cell_type": "code", 363 | "metadata": { 364 | "id": "IZXd10Tnmefz", 365 | "colab_type": "code", 366 | "colab": {} 367 | }, 368 | "source": [ 369 | "sample_words=\"boy girl man\"" 370 | ], 371 | "execution_count": 0, 372 | "outputs": [] 373 | }, 374 | { 375 | "cell_type": "code", 376 | "metadata": { 377 | "id": "Msv3wlgbpk_y", 378 | "colab_type": "code", 379 | "colab": {} 380 | }, 381 | "source": [ 382 | "tokens=nlp(sample_words)" 383 | ], 384 | "execution_count": 0, 385 | "outputs": [] 386 | }, 387 | { 388 | "cell_type": "code", 389 | "metadata": { 390 | "id": "-hacpD7rppfw", 391 | "colab_type": "code", 392 | "outputId": "e514cbb6-b2be-4c40-d048-c5770fee2a82", 393 | "colab": { 394 | "base_uri": "https://localhost:8080/", 395 | "height": 35 396 | } 397 | }, 398 | "source": [ 399 | "print(tokens)" 400 | ], 401 | "execution_count": 86, 402 | "outputs": [ 403 | { 404 | "output_type": "stream", 405 | "text": [ 406 | "boy girl man\n" 407 | ], 408 | "name": "stdout" 409 | } 410 | ] 411 | }, 412 | { 413 | "cell_type": "code", 414 | "metadata": { 415 | "id": "0uNtAMTNpq_i", 416 | "colab_type": "code", 417 | "outputId": "fba8d6a0-7451-4f0a-cb2e-49bef4f0ff10", 418 | "colab": { 419 | "base_uri": "https://localhost:8080/", 420 | "height": 35 421 | } 422 | }, 423 | "source": [ 424 | "print(tokens[0].similarity(tokens[1]))" 425 | ], 426 | "execution_count": 41, 427 | "outputs": [ 428 | { 429 | "output_type": "stream", 430 | "text": [ 431 | "0.7401745\n" 432 | ], 433 | "name": "stdout" 434 | } 435 | ] 436 | }, 437 | { 438 | "cell_type": "code", 439 | "metadata": { 440 | "id": "6nWtntI7puNh", 441 | "colab_type": "code", 442 | "outputId": "093e7184-7e56-4266-920a-b4c6a216b189", 443 | "colab": { 444 | "base_uri": "https://localhost:8080/", 445 | "height": 35 446 | } 447 | }, 448 | "source": [ 449 | "print(tokens[0].similarity(tokens[2]))" 450 | ], 451 | "execution_count": 42, 452 | "outputs": [ 453 | { 454 | "output_type": "stream", 455 | "text": [ 456 | "0.7045701\n" 457 | ], 458 | "name": "stdout" 459 | } 460 | ] 461 | }, 462 | { 463 | "cell_type": "code", 464 | "metadata": { 465 | "id": "0e5GklwfvWFy", 466 | "colab_type": "code", 467 | "colab": {} 468 | }, 469 | "source": [ 470 | "import numpy as np\n", 471 | "from scipy.spatial import distance" 472 | ], 473 | "execution_count": 0, 474 | "outputs": [] 475 | }, 476 | { 477 | "cell_type": "code", 478 | "metadata": { 479 | "id": "RW384Fjsxj9i", 480 | "colab_type": "code", 481 | "colab": {} 482 | }, 483 | "source": [ 484 | "p=np.array([tokens[1].vector])-np.array([tokens[0].vector])+np.array([tokens[2].vector])\n", 485 | "#p=np.array(nlp.vocab['boy'])" 486 | ], 487 | "execution_count": 0, 488 | "outputs": [] 489 | }, 490 | { 491 | "cell_type": "code", 492 | "metadata": { 493 | "id": "fvEaCyDWx4xV", 494 | "colab_type": "code", 495 | "colab": {} 496 | }, 497 | "source": [ 498 | "# Format the vocabulary for use in the distance function\n", 499 | "ids = [x for x in nlp.vocab.vectors.keys()]\n", 500 | "vectors = [nlp.vocab.vectors[x] for x in ids]\n", 501 | "vectors = np.array(vectors)" 502 | ], 503 | "execution_count": 0, 504 | "outputs": [] 505 | }, 506 | { 507 | "cell_type": "code", 508 | "metadata": { 509 | "id": "i0EPtc3QxyOq", 510 | "colab_type": "code", 511 | "colab": {} 512 | }, 513 | "source": [ 514 | "closest_index = distance.cdist(p, vectors, metric='cosine').argmin() # change from argmin() because distance calculate distance not similariy\n", 515 | "word_id = ids[closest_index]\n", 516 | "output_word = nlp.vocab[word_id].text" 517 | ], 518 | "execution_count": 0, 519 | "outputs": [] 520 | }, 521 | { 522 | "cell_type": "code", 523 | "metadata": { 524 | "id": "aZE8zAVAyI2Z", 525 | "colab_type": "code", 526 | "outputId": "5ac6d065-d377-40bc-a114-afa3b1b427dc", 527 | "colab": { 528 | "base_uri": "https://localhost:8080/", 529 | "height": 35 530 | } 531 | }, 532 | "source": [ 533 | "print(output_word)" 534 | ], 535 | "execution_count": 89, 536 | "outputs": [ 537 | { 538 | "output_type": "stream", 539 | "text": [ 540 | "woman\n" 541 | ], 542 | "name": "stdout" 543 | } 544 | ] 545 | } 546 | ] 547 | } -------------------------------------------------------------------------------- /convolution_example.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dpanagop/ML_and_AI_examples/675bada7b9fa4c62035b0891d08cc32d0f7a195e/convolution_example.xlsx -------------------------------------------------------------------------------- /data/README.md: -------------------------------------------------------------------------------- 1 | 2 | --------------------------------------------------------------------------------