├── 173
├── 173.json
├── ColistinMeropenem_Interaction_original_simulated.mod
├── Command.txt
├── DDMODEL00000173.rdf
├── Executable_ColistinMeropenem_Interaction.mod
├── Output_real_ColistinMeropenem_interaction.lst
├── Output_simulated_ColistinMeropenem_Interaction.lst
└── Simulated_ColistinMeropenem_Interaction.csv
├── 186
├── 186.json
├── Command.txt
├── DDMODEL00000186.rdf
├── Executable_Myelosuppression.mdl
├── Executable_Myelosuppression.xml
├── Model_Accommodations.txt
├── Neutrophils time profile.tiff
├── Neutrophils_VPC.tiff
├── Output_simulated_SEE_MONOLIX.txt
├── Output_simulated_SEE_NONMEM.lst
└── Simulated_WBC_pacl_ddmore.csv
├── 192
├── 192.json
├── Command.txt
├── DDMODEL00000192.rdf
├── Executable_PKPD.mlxtran
├── Model_Accommodations.txt
├── Output_simulated_PKPD.txt
├── Simulated_PKPD.txt
└── pkpd_model.txt
├── 194
├── 194.json
├── Command.txt
├── DDMODEL00000194.rdf
├── Executable_likert_pain_count.mod
├── Output_real_likert_pain_count.lst
├── Output_simulated_likert_pain_count.lst
└── Simulated_likert_pain_count.csv
├── 195
├── 195.json
├── Command.txt
├── DDMODEL00000195.rdf
├── Executable_sibrotuzumab.mdl
├── Executable_sibrotuzumab.xml
├── Model_Accommodations.txt
├── Output_simulated_nca_simulation.1.lst
└── Simulated_sibrotuzumab.csv
├── 197
├── 197.json
├── Command.txt
├── DDMODEL00000197.rdf
├── Executable_Biomarker_GIST.mod
├── Output_real_Biomarker_GIST.lst
├── Output_simulated_Biomarker_GIST.lst
└── Simulated_Biomarker_GIST.csv
├── 198
├── 198.json
├── Command.txt
├── DDMODEL00000198.rdf
├── Executable_TGI_GIST.mod
├── Output_real_TGI_GIST.lst
├── Output_simulated_TGI_GIST.lst
└── Simulated_TGI_GIST.csv
├── 212
├── 212.json
├── Command.txt
├── DDMODEL00000212.rdf
├── Executable_tamoxifen.mdl
├── Executable_tamoxifen.xml
├── Model_Accommodations.txt
├── Output_real_tamoxifen.pdf
├── Output_simulated_tamoxifen.lst
├── Output_simulated_tamoxifen_SO.xml
└── Simulated_tamoxifen.csv
├── 213
├── 213.json
├── Command.txt
├── DDMODEL00000213.rdf
├── Executable_Meropenem_MDL.mdl
├── Executable_Meropenem_MDL.xml
├── Model_Accommodations.txt
├── Output_simulated_Meropenem.SO.xml
├── Output_simulated_Meropenem.lst
└── Simulated_DatasetMeropenem.csv
├── 214
├── 214.json
├── Command.txt
├── DDMODEL00000214.rdf
├── Executable_HFSmodel.mod
├── Model_Accommodations.txt
├── Output_real_HFSmodel.lst
├── Output_simulated_HFSmodel.lst
└── Simulated_GHFS_HFSmodel.csv
├── 215
├── 215.json
├── Command.txt
├── DDMODEL00000215.rdf
├── Executable_Pimasertib_AeDropout.mod
├── Model_Accommodations.txt
├── Output_real_Pimasertib_AeDropout.lst
├── Output_simulated_Pimasertib_AeDropout.lst
└── Simulated_Pimasertib_AeDropout.csv
├── 217
├── 217.json
├── Command.txt
├── DDMODEL00000217.rdf
├── Executable_SLD.mod
├── Output_real_SLD.lst
├── Output_simulated_SLD.lst
└── Simulated_SLD.csv
├── 218
├── 218.json
├── Command.txt
├── DDMODEL00000218.rdf
├── Executable_OS.mod
├── Output_real_OS.lst
├── Output_simulated_OS.lst
└── Simulated_OS.csv
├── 219
├── 219.json
├── Command.txt
├── Executable_BDQ_M2_PK_plus_WT_ALB_in_MDR-TB_patients.mod
├── Output_real_BDQ_M2_PK_plus_WT_ALB_in_MDR-TB_patients.lst
├── Output_simulated_executable_BDQ_M2_PK_plus_WT_ALB_in_MDR-TB_patients.lst
└── Simulated_data_BDQ_M2_PK_plus_WT_ALB_in_MDR-TB_patients.csv
├── 220
├── 220.json
├── Command.txt
├── DDMODEL00000220.rdf
├── Executable_run32150.mod
├── Finmod_7_3.lst
├── Output_real_run32150.lst
├── Output_simulated_Executable_run32150.lst
└── Simulated_data.csv
├── 221
├── 221.json
├── Command.txt
├── DDMODEL00000221.rdf
├── Executable_SLD_SUV_OS_GIST.mod
├── Output_real_SLD_SUV_OS_GIST.lst
├── Output_simulated_SLD_SUV_OS_GIST.lst
└── Simulated_SLD_SUV_OS_GIST.csv
├── 222
├── 222.json
├── Command.txt
├── DDMODEL00000222.rdf
├── Executable_Fatigue_GIST.mod
├── Output_real_Fatigue_GIST.lst_Fatigue_PSP_2014
├── Output_simulated_Fatigue_GIST.lst
└── Simulated_Fatigue_GIST.txt
├── 223
├── 223.json
├── Command.txt
├── DDMODEL00000223.rdf
├── Executable_Novakovic_2016_multiplesclerosis_cladribine_irt.mod
├── Output_real_Novakovic_2016_multiplesclerosis_cladribine_irt.lst
├── Output_simulated_Novakovic_2016_multiplesclerosis_cladribine_irt.lst
└── Simulated_Novakovic_2016_multiplesclerosis_cladribine_irt.csv
├── 224
├── 224.json
├── Command.txt
├── DDMODEL00000224.rdf
├── Executable_myelosuppression_dailyANC.mod
├── Model_Accommodations.txt
├── Output_simulated_Executable_myelosuppression_dailyANC.lst
└── Simulated_myelosuppression_dailyANC.csv
├── 225
├── 225.json
├── Command_target.txt
├── DDMODEL00000225.rdf
├── HO_Bacteria_PKPD _script.r
├── Model_Accommodations.txt
├── cipro202.csv
├── cipro202_VPC.mdl
├── cipro378.csv
├── cipro378_VPC.mdl
├── cipro_simulated.csv
├── executeable_cipro.xml
├── executeable_cipro_pkpd.mod
└── output_simulated.lst
├── 227
├── 227.json
├── Command.txt
├── DDMODEL00000227.rdf
├── Executable_glucoseKinetics.mlxtran
├── Executable_glucoseKinetics.txt
├── Executable_glucoseKinetics_algorithms.xmlx
├── Long_technical_model_description_glucoseKinetics.txt
├── Model_Accommodations.txt
├── Output_real_glucoseKinetics.txt
├── Output_simulated_glucoseKinetics.txt
├── Simulated_glucoseKinetics.csv
├── glucoseKinetics.mdl
├── glucoseKinetics.xml
├── glucoseKineticsPLOT.pdf
├── original_model.txt
└── original_project.mlxtran
├── 228
├── 228.json
├── Command.txt
├── DDMODEL00000228.rdf
├── Executable_run126h.mod
├── Output_real_run126c.lst
├── Output_simulated_run126h.lst
└── Simulated_ddmoremockdata2.txt
├── 229
├── 229.json
├── DDMODEL00000229.rdf
├── GO_PK_model.mdl
├── GO_PK_model.xml
└── Model_Accommodations.txt
├── 230
├── 230.json
├── DDMODEL00000230.rdf
├── IL_21_PK_mode.xml
├── IL_21_PK_model.mdl
└── Model_Accommodations.txt
├── 231
├── 231.json
├── DDMODEL00000231.rdf
├── Sunitinib_MPD6_model.mdl
└── Sunitinib_MPD6_model.xml
├── 233
├── 233.json
├── Command.txt
├── DDMODEL00000233.rdf
├── Executable_opg.R
├── Fc_opg_uNTx_PKPD.mdl
├── Fc_opg_uNTx_PKPD.xml
├── Input_real_opg.R
├── Input_real_opg.pdf
├── Model_Accommodations.txt
├── Output_simulated_opg.pdf
├── Simulated_opg.txt
├── Vignette_opg.R
├── Vignette_opg.pdf
├── opg.cpp
└── opgpost.RDS
├── 237
├── 237.json
├── Command.txt
├── DDMODEL00000237.rdf
├── Executable_APAP.model
├── FigOutput.png
├── Forward_APAP1.in
├── Model_Accommodations.txt
├── Output_real_APAP.txt
├── RawData.R
└── Real_APAP_data.csv
├── 238
├── 238.json
├── Command.txt
├── DDMODEL00000238.rdf
├── Executable_run35b_ddm2.mod
├── Output_real_run35b.lst
├── Output_simulated_run35b_ddm2.lst
├── Readme_ddmore.txt
└── Simulated_simdataDDM.csv
├── 239
├── 239.json
├── Command.txt
├── DDMODEL00000239.rdf
├── Executable_P241.ctl
├── Output_real_P241.res
├── Output_simulated_P241.res
├── Simulate_P241.ctl
└── Simulated_P241.csv
├── 240
├── 240.json
├── Command.txt
├── DDMODEL00000240.rdf
├── Executable_MTP.mod
├── Model_Accomodations.txt
├── Output_real_MTP.lst
├── Output_simulated_MTP.lst
└── Simulated_Mtb-H37Rv_In-vitro-NATG.csv
├── 243
├── 243.json
├── BAST_PTTE_modelling.pdf
├── BAST_surv_functions.R
├── Command.txt
├── DDMODEL00000243.rdf
├── Executable_runCOMPEV1_101.mod
├── Executable_runCOMPEV2_005.mod
├── Executable_runEV1_201.mod
├── Executable_runEV2_105.ctl
├── Executable_runEV2_105.mod
├── Model_Accommodations.txt
├── Output_simulated_runCOMPEV1_101.res
├── Output_simulated_runCOMPEV2_005.res
├── Output_simulated_runEV1_201.res
├── Output_simulated_runEV2_105.res
├── Simulated_event_data.csv
├── VPC_EV1_1.png
├── VPC_EV1_1_dis.png
└── VPCs.R
├── 244
├── 244.json
├── Command.txt
├── DDMODEL00000244.rdf
├── Executable_Rif_PK.mod
├── Output_real_Rif_PK.lst
├── Output_simulated_Rif_PK.lst
└── Simulated_Rif_PK_data.csv
├── 245
├── 245.json
├── Command.txt
├── DDMODEL00000245.rdf
├── Executable_run111.mod
├── Output_real_run111.lst
├── Output_simulated_Executable_run111.lst
└── Simulated_comb2.dta
├── 247
├── 247.json
├── Command.txt
├── DDMODEL00000247.rdf
├── Executable_OriginalModelCode.mod
├── Output_real_OriginalModelCode.lst
├── Output_simulated_OriginalModelCode.lst
└── Simulated_MidaCriticallyIll.csv
├── 248
├── 248.json
├── Command.txt
├── DDMODEL00000248.rdf
├── Executable_OriginalModelCode.mod
├── Output_real_run4.lst
├── Output_simulated_OriginalModel Code.lst
└── Simulated_PaediatricMorphinePK.csv
├── 249
├── 249.json
├── Command.txt
├── DDMODEL00000249.rdf
├── Executable_OriginalModelCode.mod
├── Output_real_OriginalModelCode.lst
├── Output_simulated_OriginalModelCode.lst
└── Simulated_MidaCriticallyIll.csv
├── 250
├── 250.json
├── Command.txt
├── DDMODEL00000250.rdf
├── Executable_AccessWeightModelCode.mod
├── Executable_FinalModelCode.mod
├── Output_real_AccessWeightModelCode.lst
├── Output_real_FinalModelCode.lst
├── Output_simulated_AccessWeightModelCode.lst
├── Output_simulated_FinalModelCode.lst
└── Simulated_DatafileMidaObesity.csv
├── 256
├── 256.json
├── Command.txt
├── DDMODEL00000256.rdf
├── Executable_OriginalModelCode.mod
├── Output_real_run522.lst
├── Output_simulated_OriginalModelCode.lst
└── Simulated_PhenobarbitalNewbornsPK.csv
├── 259
├── 259.json
├── Command.txt
├── DDMODEL00000259.rdf
├── Executable_MTP-GPDI.mod
├── Model_Accomodations.txt
├── Output_real_MTP-GPDI.lst
├── Output_simulated_MTP-GPDI.lst
└── Simulated_Mtb-B1585_In-vitro-NATG-RIF-INH-EMB.csv
├── 261
├── 261.json
├── Command.txt
├── DDMODEL00000261.rdf
├── Executable_simulated_KPD_CTC.count_PSA.mod
├── Output_real_COV_KPD_CTC.count_PSA.lst
├── Output_real_SAEM_KPD_CTC.count_PSA.lst
├── Output_simulated_KPD_CTC.count_PSA.lst
└── Simulated_KPD_CTC.count_PSA.csv
├── 262
├── 262.json
├── Command.txt
├── DDMODEL00000262.rdf
├── Executable_simulated_CPHPC_dataset.ctl
├── Output_real_CPHPC.lst
├── Output_simulated_CPHPC_dataset.lst
└── Simulated_CPHPC_dataset.csv
├── 267
├── 267.json
├── Command.txt
├── DDMODEL00000267.rdf
├── Executable_OriginalModelCode.mod
├── Output_real_OriginalModelCode.lst
├── Output_simulated_OriginalModelCode.lst
└── Simulated_APAP_YoungWomen.csv
├── 268
├── 20120910- DDMORE-WP1.3. Specificationdocument_remoxipride ECMdL.doc
├── 268.json
├── Command.txt
├── DDMODEL00000268.rdf
├── Executable_PK_rats.txt
├── Output_real_PK_rats.lst
├── Output_simulated_PK_rats.lst
└── Simulated_PK_rats.csv
├── 269
├── 269.json
├── Command.txt
├── DDMODEL00000269.rdf
├── Executable_ModelI1_Morphine.mod
├── Executable_ModelII_MM3G.mod
├── Output_real_ModelII_MM3G.lst
├── Output_real_ModelI_Morphine.lst
├── Output_simulated_ModelII_MM3G.lst
├── Output_simulated_ModelI_Morphine.lst
├── Simulated_DataModel1_Morphine.csv
└── Simulated_DataModel2_MM3G.csv
├── 271
├── 271.json
├── Command.txt
├── DDMODEL00000271.rdf
├── Executable_ParacetamolInNewborns.mod
├── Model_Accommodations.txt
├── Output_real_ParacetamolInNewborns.lst
├── Output_simulated_ParacetamolInNewborns.lst
└── Simulated_ParacetamolPKnewborns.csv
├── 273
├── 273.json
├── Command.txt
├── DDMODEL00000273.rdf
├── Executable_Simulated_Dupilumab.ctl
├── Output_simulated_Dupilumab.lst
└── Simulated_Dupilumab.CSV
├── 274
├── 274.json
├── Command.txt
├── DDMODEL00000274.rdf
├── Executable_Terranova_2017_oncology_TGI_HM.ctl
├── Model_Accomodations.txt
├── Output_simulated_Terranova_2017.pdf
├── Simulated_DEB_TGI_data.csv
├── Terranova_2017_oncology_TGI.ctl
├── Terranova_2017_oncology_TGI.mdl
└── Terranova_2017_oncology_TGI.xml
├── 280
├── 280.json
├── Command.txt
├── DDMODEL00000280.rdf
├── Executable_real_TB_Rifampicin_PK_Wilkins_2008.mod
├── Executable_simulated_TB_Rifampicin_PK_Wilkins_2008.mod
├── Output_real_TB_Rifampicin_PK_Wilkins_2008
├── Output_simulated_TB_Rifampicin_PK_Wilkins_2008
├── Simulated_TB_Rifampicin_PK_Wilkins_2008.csv
├── TB_Rifampicin_PK_Wilkins_2008_real.lst
├── TB_Rifampicin_PK_Wilkins_2008_simulated.coi
├── TB_Rifampicin_PK_Wilkins_2008_simulated.cor
├── TB_Rifampicin_PK_Wilkins_2008_simulated.cov
├── TB_Rifampicin_PK_Wilkins_2008_simulated.ext
├── TB_Rifampicin_PK_Wilkins_2008_simulated.lst
├── TB_Rifampicin_PK_Wilkins_2008_simulated.phi
├── TB_Rifampicin_PK_Wilkins_2008_simulated.shk
├── TB_Rifampicin_PK_Wilkins_2008_simulated.shm
├── TB_Rifampicin_PK_Wilkins_2008_simulated.xml
├── catab.simulated_TB_Rifampicin_PK_Wilkins_2008
├── cotab.simulated_TB_Rifampicin_PK_Wilkins_2008
├── patab.simulated_TB_Rifampicin_PK_Wilkins_2008
└── sdtab.simulated_TB_Rifampicin_PK_Wilkins_2008
├── 281
├── 281.json
├── Command.txt
├── DDMODEL00000281.rdf
├── Executable_ddmore_final_run249.ctl
├── Model_Accommodations.txt
├── Output_real_data_original_final_run249.res
├── Output_simulated_ddmore_final_run249.res
└── Simulated_Lid_B04_ddmore.csv
├── 284
├── 284.json
├── Command.txt
├── DDMODEL00000284.rdf
├── Executable_Simulated_IMNIVO_PPK.CTL
├── NIVO-PPKFinalModel-CPT.CTL
├── Output_real_Nivo-PPK.lst
├── Output_simulated_SIMNIVO_PPK.lst
└── Simulated_pkdata1_dataset.csv
├── 285
├── 285.json
├── Command.txt
├── DDMODEL00000285.rdf
├── Executable_Laouenant_2015_CPTPSP_hb_RBV
├── Output_real_Laouenant_2015_CPTPSP_hb_RBV
├── Output_simulated_Laouenant_2015_CPTPSP_hb_RBV
└── Simulated_Laouenant_2015_CPTPSP_hb_RBV.txt
├── 290
├── 290.json
├── Command.txt
├── DDMODEL00000290.rdf
├── Executable_simulated_CPathAD.mod
├── Output_real_CPathAD.lst
├── Output_simulated_CPathAD.lst
└── Simulated_data_CPathAD.csv
├── 294
├── 294.json
├── Command.txt
├── DDMODEL00000294.rdf
├── Executable_Paracetamol_Zebrafish_345dpf.mod
├── Output_real_Paracetamol_Zebrafish_345dpf.lst
└── Real_Paracetamol_Zebrafish_345dpf.csv
├── 295
├── 295.json
├── Command.txt
├── DDMODEL00000295.rdf
├── Executable_CMS_colistin_PK_CRRT.mod
├── Model_Accommodations.txt
├── Output_real_CMS_colistin_PK_CRRT.lst
├── Output_simulated_CMS_colistin_PK_CRRT - Copie.lst
└── Simulated_Data_CMS_colistin_PK_CRRT.csv
├── 297
├── 297.json
├── Command.txt
├── DDMODEL00000297.rdf
├── Executable_run1.mod
├── Output_simulated_run1.lst
└── Simulated_run1.csv
├── 298
├── 298.json
├── Command.txt
├── DDMODEL00000298.rdf
├── Executable_sultiame_nonlinear_PK.mod
├── Model_Accomodations.txt
├── Output_real_sultiame_nonlinear_PK.lst
├── Output_simulated_sultiame_nonlinear_PK.lst
└── Simulated_data_PK_sultiame.csv
├── 299
├── 299.json
├── Command.txt
├── DDMODEL00000299.rdf
├── Description_files.txt
├── Executable_Misspecification Example using LMEM V3.sas
├── Executable_Misspecification Example using Nonlinear MEM V3.sas
├── Misspecification Example Using LMEM V3.htm
├── Misspecification Example Using LMEM V3.log
├── Misspecification Example Using Nonlinear MEM V3.htm
├── Misspecification Example Using Nonlinear MEM V3.log
├── Output_simulated_Misspecification Example Using LMEM V3.lst
├── Output_simulated_Misspecification Example Using Nonlinear MEM V3.lst
├── ReadMe-Case Study of a Misspecified Model V5.docx
├── Simulated_Dataset generator.sas
├── Simulated_concqt.sas7bdat
└── Simulated_dataset generator output.log
├── 301
├── 301.json
├── Command.txt
├── DDMODEL00000301.rdf
├── Executable_merop_PK_run3.mod
├── Model_Accomodations.text
├── Output_real_merop_PK_run3.lst
├── Output_simulated_merop_PK_run3.lst
└── Simulated_dataset.csv
├── .gitignore
├── index.js
├── missingModels.txt
├── nmoutputs
├── Finmod_7_3.lst
├── Output_real_AccessWeightModelCode.lst
├── Output_real_BDQ_M2_PK_plus_WT_ALB_in_MDR-TB_patients.lst
├── Output_real_Biomarker_GIST.lst
├── Output_real_CMS_colistin_PK_CRRT.lst
├── Output_real_COV_KPD_CTC.count_PSA.lst
├── Output_real_CPHPC.lst
├── Output_real_CPathAD.lst
├── Output_real_ColistinMeropenem_interaction.lst
├── Output_real_FinalModelCode.lst
├── Output_real_HFSmodel.lst
├── Output_real_MTP-GPDI.lst
├── Output_real_MTP.lst
├── Output_real_ModelII_MM3G.lst
├── Output_real_ModelI_Morphine.lst
├── Output_real_Nivo-PPK.lst
├── Output_real_Novakovic_2016_multiplesclerosis_cladribine_irt.lst
├── Output_real_OS.lst
├── Output_real_OriginalModelCode.lst
├── Output_real_PK_rats.lst
├── Output_real_ParacetamolInNewborns.lst
├── Output_real_Paracetamol_Zebrafish_345dpf.lst
├── Output_real_Pimasertib_AeDropout.lst
├── Output_real_Rif_PK.lst
├── Output_real_SAEM_KPD_CTC.count_PSA.lst
├── Output_real_SLD.lst
├── Output_real_SLD_SUV_OS_GIST.lst
├── Output_real_TGI_GIST.lst
├── Output_real_likert_pain_count.lst
├── Output_real_merop_PK_run3.lst
├── Output_real_run111.lst
├── Output_real_run126c.lst
├── Output_real_run32150.lst
├── Output_real_run35b.lst
├── Output_real_run4.lst
├── Output_real_run522.lst
├── Output_real_sultiame_nonlinear_PK.lst
├── Output_simulated_AccessWeightModelCode.lst
├── Output_simulated_Biomarker_GIST.lst
├── Output_simulated_CMS_colistin_PK_CRRT - Copie.lst
├── Output_simulated_CPHPC_dataset.lst
├── Output_simulated_CPathAD.lst
├── Output_simulated_ColistinMeropenem_Interaction.lst
├── Output_simulated_Dupilumab.lst
├── Output_simulated_Executable_myelosuppression_dailyANC.lst
├── Output_simulated_Executable_run111.lst
├── Output_simulated_Executable_run32150.lst
├── Output_simulated_Fatigue_GIST.lst
├── Output_simulated_FinalModelCode.lst
├── Output_simulated_HFSmodel.lst
├── Output_simulated_KPD_CTC.count_PSA.lst
├── Output_simulated_MTP-GPDI.lst
├── Output_simulated_MTP.lst
├── Output_simulated_Meropenem.lst
├── Output_simulated_Misspecification Example Using LMEM V3.lst
├── Output_simulated_Misspecification Example Using Nonlinear MEM V3.lst
├── Output_simulated_ModelII_MM3G.lst
├── Output_simulated_ModelI_Morphine.lst
├── Output_simulated_Novakovic_2016_multiplesclerosis_cladribine_irt.lst
├── Output_simulated_OS.lst
├── Output_simulated_OriginalModel Code.lst
├── Output_simulated_OriginalModelCode.lst
├── Output_simulated_PK_rats.lst
├── Output_simulated_ParacetamolInNewborns.lst
├── Output_simulated_Pimasertib_AeDropout.lst
├── Output_simulated_Rif_PK.lst
├── Output_simulated_SEE_NONMEM.lst
├── Output_simulated_SIMNIVO_PPK.lst
├── Output_simulated_SLD.lst
├── Output_simulated_SLD_SUV_OS_GIST.lst
├── Output_simulated_TGI_GIST.lst
├── Output_simulated_executable_BDQ_M2_PK_plus_WT_ALB_in_MDR-TB_patients.lst
├── Output_simulated_likert_pain_count.lst
├── Output_simulated_merop_PK_run3.lst
├── Output_simulated_nca_simulation.1.lst
├── Output_simulated_run1.lst
├── Output_simulated_run126h.lst
├── Output_simulated_run35b_ddm2.lst
├── Output_simulated_sultiame_nonlinear_PK.lst
├── Output_simulated_tamoxifen.lst
├── TB_Rifampicin_PK_Wilkins_2008_real.lst
├── TB_Rifampicin_PK_Wilkins_2008_simulated.lst
└── output_simulated.lst
├── package-lock.json
└── package.json
/.gitignore:
--------------------------------------------------------------------------------
1 | node_modules/
2 | .DS_Store
3 |
4 |
--------------------------------------------------------------------------------
/173/173.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_ColistinMeropenem_Interaction.mod",
4 | "Command.txt",
5 | "Output_real_ColistinMeropenem_interaction.lst",
6 | "Simulated_ColistinMeropenem_Interaction.csv",
7 | "DDMODEL00000173.rdf",
8 | "ColistinMeropenem_Interaction_original_simulated.mod",
9 | "Output_simulated_ColistinMeropenem_Interaction.lst"
10 | ],
11 | "version": 12
12 | }
--------------------------------------------------------------------------------
/173/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Scenario = 4
2 | ###### PsN version (if any) = 4.5.2
3 | ###### Original tool version= 7.3
4 | ###### Input data= ColistinMeropenem_Interaction_simulated.csv.csv
5 | ###### Executable model= ColistinMeropenem_Interaction_original.mod
6 | ###### Output= ColistinMeropenem_Interaction_original_real.lst
7 | ColistinMeropenem_Interaction_original_simulated.lst
8 | ###### Script used as execution command for NONMEM via PsN: #############
9 |
10 | execute ColistinMeropenem_Interaction_original.mod
--------------------------------------------------------------------------------
/186/186.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_Myelosuppression.xml",
4 | "Output_simulated_SEE_NONMEM.lst",
5 | "Neutrophils_VPC.tiff",
6 | "DDMODEL00000186.rdf",
7 | "Simulated_WBC_pacl_ddmore.csv",
8 | "Executable_Myelosuppression.mdl",
9 | "Neutrophils time profile.tiff",
10 | "Model_Accommodations.txt",
11 | "Output_simulated_SEE_MONOLIX.txt",
12 | "Command.txt"
13 | ],
14 | "version": 11
15 | }
--------------------------------------------------------------------------------
/186/DDMODEL00000186.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 | chemotherapy-induced myelosuppression through drug-specific parameters and system-related parameters, common to all drugs
11 | The model consists of one compartment representing drug-sensitive cells in the bone marrow, three compartments representing the maturation of the white blood cells and one compartment for the circulating cells, where the measurements had been done. A feedback mechanism triggered by the number of circulting cells was implemented over the proliferation rate constant. The drug effect was described by Emax-model.
12 |
13 | Yes
14 | No
15 | The model is the same, some accomodations on the dataset were needed
16 |
17 |
18 |
19 |
--------------------------------------------------------------------------------
/186/Model_Accommodations.txt:
--------------------------------------------------------------------------------
1 | # Model represented
2 | 6 different drugs (Docetaxel, Paclitaxel, Etoposide, DMDC, CPT-11, Vinflunine)
3 | were used to developed the myelosuppression model for neutrophils and leukocites
4 | as described in the publication. The model available at the repository illustrates
5 | the myelosuppresion model for the case of leukocites and paclitaxel chemotherapy
6 |
7 | # Dataset
8 | In order to support model estimation in Monolix and NONMEM 7.3, the following
9 | changes to the dataset were performed. No change to the structure of the model
10 | was done. Thses changes produced only a minor impact on the OBJ function
11 | evaluated as MAXEVAL 0)
12 | 1. EVID column is not supported therefore rows with EVID==2 were removed and
13 | EVID==4 was changed to EVID==1 and the column was used as MDV
14 | 2. Administration of dummy doses to initialise compartments is not supported.
15 | Those rows were removed and compartments initialise using the initial
16 | conditions and note availability (note that model was developed with NONMEM v6,
17 | but is no longer needed since NONMEM 7)
18 |
19 |
--------------------------------------------------------------------------------
/186/Neutrophils time profile.tiff:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/186/Neutrophils time profile.tiff
--------------------------------------------------------------------------------
/186/Neutrophils_VPC.tiff:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/186/Neutrophils_VPC.tiff
--------------------------------------------------------------------------------
/186/Output_simulated_SEE_MONOLIX.txt:
--------------------------------------------------------------------------------
1 | ******************************************************************
2 | * Executable_Mielosupression_project.mlxtran
3 | * May 19, 2016 at 17:27:19
4 | * Monolix version: 4.3.2
5 | ******************************************************************
6 |
7 | Estimation of the population parameters
8 |
9 | parameter s.e. (lin) r.s.e.(%)
10 | GAMMA_pop : 0.553 0.007 1
11 | SLOPU_pop : 20.2 1.9 9
12 | CIRC0_pop : 5.88 0.33 6
13 | MTT_pop : 140 2 1
14 |
15 | omega2_GAMMA : 0 - -
16 | omega2_SLOPU : 0.212 0.071 33
17 | omega2_CIRC0 : 0.122 0.029 24
18 | omega2_MTT : 0.00508 0.0016 31
19 |
20 | b : 0.339 0.012 3
21 |
22 | ______________________________________________
23 | correlation matrix of the estimates(linearization)
24 |
25 | GAMMA_pop 1
26 | SLOPU_pop -0.14 1
27 | CIRC0_pop -0.06 0.01 1
28 | MTT_pop 0.28 -0.06 -0.01 1
29 |
30 | Eigenvalues (min, max, max/min): 0.7 1.4 1.9
31 |
32 | omega2_SLOPU 1
33 | omega2_CIRC0 -0.01 1
34 | omega2_MTT -0.01 -0 1
35 | b -0.07 -0.03 -0.06 1
36 |
37 | Eigenvalues (min, max, max/min): 0.9 1.1 1.2
38 |
39 |
40 | Population parameters and Fisher Information Matrix estimation...
41 |
42 | Elapsed time is 243 seconds.
43 | CPU time is 714 seconds.
44 | ______________________________________________________________
45 |
46 | Log-likelihood Estimation by linearization
47 |
48 | -2 x log-likelihood: 2362.41
49 | Akaike Information Criteria (AIC): 2378.41
50 | Bayesian Information Criteria (BIC): 2392.87
51 | ______________________________________________________________
52 |
--------------------------------------------------------------------------------
/192/192.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_PKPD.mlxtran",
4 | "Output_simulated_PKPD.txt",
5 | "Command.txt",
6 | "DDMODEL00000192.rdf",
7 | "pkpd_model.txt",
8 | "Simulated_PKPD.txt",
9 | "Model_Accommodations.txt"
10 | ],
11 | "version": 44
12 | }
--------------------------------------------------------------------------------
/192/Command.txt:
--------------------------------------------------------------------------------
1 | ##### Prepared and run by Giulia Lestini
2 | ##### Scenario= 4
3 | ##### MONOLIX version=4.3.0
4 | ##### Input data= simRich1.txt
5 | ##### Executable model=pkpd_model.txt
6 | ##### Output=pop_parameters1.txt
7 |
8 | ###### Project to be executed in MONOLIX: ##########
9 | ###### project_Step1.mat
--------------------------------------------------------------------------------
/192/DDMODEL00000192.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 | The PK is modelled by a one compartment first order absorption model. The inhibition of TGFbeta signalling by the treatment is represented by a turnover model, that is a simplification of the semi-mechanistic model developed by Bueno et al.
9 | Yes
10 |
11 | No
12 |
13 |
14 |
15 | PKPD model developed for a small molecule TGFbeta inhibitor.
16 | No discrepancy
17 |
18 |
19 |
--------------------------------------------------------------------------------
/192/Executable_PKPD.mlxtran:
--------------------------------------------------------------------------------
1 | ; this script is generated automatically
2 |
3 | DESCRIPTION:
4 | Executable_PKPD.mlxtran
5 |
6 | DATA:
7 | path = "%MLXPROJECT%/",
8 | file ="Simulated_PKPD.txt",
9 | headers = {ID,TIME,Y,EVID,MDV,AMT,YTYPE},
10 | columnDelimiter = "\t"
11 |
12 | INDIVIDUAL:
13 | C50 = {distribution=logNormal, iiv=yes},
14 | Cl = {distribution=logNormal, iiv=yes},
15 | V = {distribution=logNormal, iiv=yes},
16 | ka = {distribution=logNormal, iiv=no},
17 | kout = {distribution=logNormal, iiv=yes}
18 |
19 | STRUCTURAL_MODEL:
20 | file = "mlxt:pkpd_model",
21 | path = "%MLXPROJECT%",
22 | output = {Cc,E}
23 |
24 |
25 | OBSERVATIONS:
26 | y1 = {type=continuous, prediction=Cc, error=proportional},
27 | y2 = {type=continuous, prediction=E, error=constant}
28 |
29 | TASKS:
30 | ; settings
31 | globalSettings={
32 | withVariance=no,
33 | settingsAlgorithms="%MLXPROJECT%/Executable_PKPD_algorithms.xmlx",
34 | resultFolder="%MLXPROJECT%/Output_simulated_PKPD"},
35 | ; workflow
36 | estimatePopulationParameters(
37 | initialValues={
38 | pop_C50 = 0.3,
39 | pop_Cl = 40,
40 | pop_V = 100,
41 | pop_ka = 2,
42 | pop_kout = 2,
43 | b_y1 = 0.2,
44 | a_y2 = 0.2,
45 | omega_C50 = 0.7,
46 | omega_Cl = 0.7,
47 | omega_V = 0.7,
48 | omega_kout = 0.7
49 | } ),
50 |
51 |
--------------------------------------------------------------------------------
/192/Model_Accommodations.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/192/Model_Accommodations.txt
--------------------------------------------------------------------------------
/192/Output_simulated_PKPD.txt:
--------------------------------------------------------------------------------
1 | ******************************************************************
2 | * Executable_PKPD.mlxtran
3 | * May 31, 2016 at 09:50:54
4 | * Monolix version: 4.3.0
5 | ******************************************************************
6 |
7 | Estimation of the population parameters
8 |
9 | parameter
10 | ka : 1.97
11 | V : 95.1
12 | Cl : 9.91
13 | kout : 0.269
14 | C50 : 0.307
15 |
16 | omega_ka : 0
17 | omega_V : 0.744
18 | omega_Cl : 0.819
19 | omega_kout : 0.706
20 | omega_C50 : 0.822
21 |
22 | b_1 : 0.199
23 | a_2 : 0.196
24 |
25 |
26 | Population parameters estimation...
27 |
28 | Elapsed time is 120 seconds.
29 | CPU time is 594 seconds.
30 |
--------------------------------------------------------------------------------
/192/pkpd_model.txt:
--------------------------------------------------------------------------------
1 | DESCRIPTION:
2 | PK PD
3 |
4 | INPUT:
5 | parameter = {ka, V, Cl, kout, C50}
6 |
7 | EQUATION:
8 | Cc = pkmodel(ka, V, Cl)
9 | E_0 = 0
10 | Imax=1
11 | ddt_E = kout*Imax*Cc/(Cc+C50) - kout*E
12 |
13 | OUTPUT:
14 | output = {Cc,E}
--------------------------------------------------------------------------------
/194/194.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_likert_pain_count.mod",
4 | "Output_simulated_likert_pain_count.lst",
5 | "Output_real_likert_pain_count.lst",
6 | "Command.txt",
7 | "Simulated_likert_pain_count.csv",
8 | "DDMODEL00000194.rdf"
9 | ],
10 | "version": 14
11 | }
--------------------------------------------------------------------------------
/194/Command.txt:
--------------------------------------------------------------------------------
1 | ###################### if the executable model is written in original language #####
2 | ###################### please specify the block below
3 | ###### Scenario = NONMEM on linux cluster
4 | ###### PsNversion (if any) = 4.5.3
5 | ###### Original tool version = NONMEM version 7.3
6 | ###### Input data = likert_pain_count_simulated.csv
7 | ###### Executable model = likert_pain_count_original.mod
8 | ###### Output = likert_pain_count_output_original.lst
9 | ###################### end block
10 |
11 |
12 | ###### Script used as execution command for NONMEM via PsN: #############
13 |
14 | execute likert_pain_count_original.mod
--------------------------------------------------------------------------------
/195/195.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_sibrotuzumab.xml",
4 | "DDMODEL00000195.rdf",
5 | "Model_Accommodations.txt",
6 | "Output_simulated_nca_simulation.1.lst",
7 | "Command.txt",
8 | "Executable_sibrotuzumab.mdl",
9 | "Simulated_sibrotuzumab.csv"
10 | ],
11 | "version": 5
12 | }
--------------------------------------------------------------------------------
/195/Command.txt:
--------------------------------------------------------------------------------
1 | #' =========================================================================================
2 | #' Command for execution of Sibrotuzumab model
3 | #' -----------------------------------------------------------------------------------
4 |
5 | #' Initialisation
6 | #' =========================
7 | #' Clear workspace
8 | rm(list=ls(all=F))
9 |
10 | #' Set working directory
11 | setwd(file.path(Sys.getenv("MDLIDE_WORKSPACE_HOME"), "Repository", "Sibrotuzumab"))
12 |
13 | #' List files available in working directory
14 | list.files()
15 |
16 | #' Set name of placebo .mdl file and dataset for future tasks
17 | mdl <- "Executable_sibrotuzumab.mdl"
18 | datafile <- "Simulated_subrotuzumab.csv"
19 |
20 |
21 | newdat <- sim.PsN(mdl, samples = 20, seed = 123456) #simulate data from the model
22 |
23 |
24 | #' ESTIMATE model parameters using either Monolix or NONMEM
25 | #' -------------------------
26 | nm <- estimate(mdl, target="NONMEM", subfolder="NONMEM")
27 |
28 |
29 |
--------------------------------------------------------------------------------
/195/DDMODEL00000195.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 | Two-compartment PK model with combined linear and saturable elimination. Inter-individual variability on linear and nonlinear clearance and volumes of distribution. Inter-occasion variability on bioavailability after repeated IV dosing (also accounts for uncertainty in actual dose level). Body weight is used as a covariate on linear and nonlinear clearance and volumes of distribution.
9 |
10 | Contary to the original publication, inter-occasion variability on bioavailability was not implemented.
11 | To understand PK and variability in cancer patients of a new monoclonal antibody
12 |
13 |
14 | No
15 |
16 | No
17 |
18 |
19 |
--------------------------------------------------------------------------------
/195/Model_Accommodations.txt:
--------------------------------------------------------------------------------
1 | # Changes to the model:
2 |
3 | Inter-occasion variability on bioavailability was removed.
4 |
5 | In the current version of the DDMoRe framework, encoding bioavailability is only supported with
6 | 1) depot compartments (explicit definition in the ODE system) or
7 | 2) through PK macros (only standard compartment components).
8 |
9 | However, in the associated publication, the model uses bioavailability after IV dosing, amongst others to account for uncertainty in dose level (==> 1 is not possible).
10 | Also, it uses a combined linear-nonlinear elimination model (==> 2 is not possible).
11 |
12 |
--------------------------------------------------------------------------------
/197/197.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_Biomarker_GIST.mod",
4 | "Output_real_Biomarker_GIST.lst",
5 | "Command.txt",
6 | "Simulated_Biomarker_GIST.csv",
7 | "Output_simulated_Biomarker_GIST.lst",
8 | "DDMODEL00000197.rdf"
9 | ],
10 | "version": 5
11 | }
--------------------------------------------------------------------------------
/197/Command.txt:
--------------------------------------------------------------------------------
1 | ### please fill in commented lines
2 | # this file is mandatory for submission scenarios 1, 2 and 4.
3 | ###################### if the executable model is written in original language #####
4 | ###################### please specify the block below
5 | ###### Scenario = 4
6 | ###### PsN version = 4.5.9
7 | ###### Original tool version = 7.3
8 | ###### Input data = Simulated_Biomarker_GIST.csv
9 | ###### Executable model = Executable_Biomarker_GIST.mod
10 | ###### Output = Output_simulated_Biomarker_GIST.lst
11 | ###################### end block
12 |
13 | ###### Script used as execution command for NONMEM via PsN: #############
14 | execute Executable_Biomarker_GIST.mod
15 |
--------------------------------------------------------------------------------
/197/DDMODEL00000197.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 | No
9 | Yes
10 |
11 | PD model (predicting plasma concentrations) of biomarkers during sunitinib treatment of imatinib-resistant GIST;
12 |
13 |
14 |
15 | Final PD model (predicting plasma concentrations) of biomarkers during sunitinib treatment of imatinib-resistant GIST. 4 biomarkers: VEGF, sVEGFR-2, sVEGFR-3 and sKIT and 4 compartments, 1 for each biomarker, initiated to estimated baselines at t=0. Log-transformed plasma concentrations (DV) and effect on dA/dt for each biomarker as indirect response models. Sigmoid Imax for VEGF/sVEGFR-2 (hill factor) and Imax for sVEGFR-3/sKIT. Inhibition of Kout for VEGF and Kin for sVEGFR-2, sVEGFR-3 and sKIT. Lin. disease progression model for VEGF and sKIT (otherwise baseline only). No covariates. IIV on baseline, MRT (1/Kout), IC50 and disease progression slope. Residual error: Additive (on log scale) on VEGF, sVEGFR-3 and sKIT, and Additive + proportional (on log scale) on sVEGFR-2. Estimation method: FOCE with INTERACTION (+ COVARIANCE STEP).
16 |
17 |
18 |
19 |
20 |
21 |
--------------------------------------------------------------------------------
/198/198.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_TGI_GIST.mod",
4 | "DDMODEL00000198.rdf",
5 | "Simulated_TGI_GIST.csv",
6 | "Output_real_TGI_GIST.lst",
7 | "Command.txt",
8 | "Output_simulated_TGI_GIST.lst"
9 | ],
10 | "version": 6
11 | }
--------------------------------------------------------------------------------
/198/Command.txt:
--------------------------------------------------------------------------------
1 | ### please fill in commented lines
2 | # this file is mandatory for submission scenarios 1, 2 and 4.
3 | ###################### if the executable model is written in original language #####
4 | ###################### please specify the block below
5 | ###### Scenario = 4
6 | ###### PsNversion (if any) = 4.5.9
7 | ###### Original tool version= NM7.3
8 | ###### Input data= Simulated_TGI_GIST.csv
9 | ###### Executable model= Executable_TGI_GIST.mod
10 | ###### Output= Output_simulated_TGI_GIST.lst
11 | ###################### end block
12 |
13 | ###### Script used as execution command for NONMEM via PsN: #############
14 |
15 | execute Executable_TGI_GIST_GIST.mod
16 |
--------------------------------------------------------------------------------
/198/DDMODEL00000198.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 | Tumor growth inhibition model; PD model predicting tumour size during sunitinib treatment of imatinib-resistant GIST
8 |
9 |
10 | Yes
11 |
12 |
13 |
14 | No
15 |
16 |
17 | Final PD model (predicting tumour size) of drug and biomarkers during sunitinib treatment of imatinib-resistant GIST. 2 biomarkers from BM included: sVEGFR-3 and sKIT. 4 compartments initiated to BM posthoc baselines at t=0. 1st/2nd compartment: sKIT timecourse with and without drug effect (placebo). 3rd compartment: sVEGFR-3 timecourse. 4th compartment: tumour size timecourse. Normal scale tumour measurements (DV). Tumour timecourse is a growth inhibition model. Linear inhibition effect by AUC (+) and sKIT/sVEGFR-3 (-). Sunitinib AUC=DOSE/CL. Baseline tumour size covariate; residual variability as measure error. Tumour regrowth/resistance with exponential time-dependent function. Covariate: Baseline tumour size observation. IIV on rate constants: growth rate, drug effect and sKIT effect. Residual error (shared variance estimate): Proportional on DV and Proportional on baseline tumour size observation. Estimation method: FOCE with INTERACTION (NO COVARIANCE STEP).
18 |
19 |
20 |
--------------------------------------------------------------------------------
/212/212.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_tamoxifen.xml",
4 | "Output_simulated_tamoxifen.lst",
5 | "Command.txt",
6 | "Model_Accommodations.txt",
7 | "Output_simulated_tamoxifen_SO.xml",
8 | "Executable_tamoxifen.mdl",
9 | "Output_real_tamoxifen.pdf",
10 | "Simulated_tamoxifen.csv",
11 | "DDMODEL00000212.rdf"
12 | ],
13 | "version": 8
14 | }
--------------------------------------------------------------------------------
/212/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Scenario = 1
2 | ###### MDL version =
3 | ###### IO product =
4 | ###### Input data = Simulated_tamoxifen.csv
5 | ###### Executable model = Executable_tamoxifen.mdl
6 | ###### Output = Output_tamoxifen_SO.xml
7 |
8 | #Initialisation
9 | rm(list=ls(all=F)) #clean your workspace first
10 |
11 | #Set working directory
12 | myfolder <- "tamoxifen" # name of your project folder
13 | setwd(file.path(Sys.getenv("MDLIDE_WORKSPACE_HOME"),myfolder))
14 |
15 | #Set name of .mdl file and dataset for future tasks
16 | mymodel <- "Executable_tamoxifen"
17 | datafile <- "Simulated_tamoxifen.csv"
18 | mdlfile <- paste0(mymodel,".mdl")
19 |
20 | #ESTIMATE model parameters using NONMEM
21 | nm <- estimate(mdlfile, target="NONMEM", subfolder="NONMEM")
22 |
23 | # Print the estimated parameters
24 | parameters_nm <- getPopulationParameters(nm, what="estimates")$MLE
25 | print(nm)
26 |
27 |
--------------------------------------------------------------------------------
/212/DDMODEL00000212.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 | Joint parent-metabolite (tamoxifen and endoxifen) PK model with one compartment each and an additonal hypothetical liver compartment to account for the fraction of tamoxifen directly metabolised to endoxifen. CYP2D6 and CYP3A4/5 phenotypes (dextromethorphan model-based individual CL values) have been implemented as power functions and centred around the population median on the formation of endoxifen (CL23).
8 | No
9 | To better understand the highly variable pharmacokinetics of tamoxifen and its major metabolite endoxifen in breast cancer patients considering CYP2D6 and CYP3A4/5 phenotypes.
10 |
11 |
12 | No
13 |
14 | a) EVID and L2 item (as in dataset and used in original model) not us for the estimation task utilising DDMoRe framework; b) Residual error for parent (tamoxifen) and metabolite (endoxifen) estimated without considering correlations and as standard deviations (thus as structural parameters in NONMEM as THETAs); c) lag time handled differently by ddmore products than by NONMEM. These differences led to minor differences in estimates (esp. tlag).
15 |
16 |
17 |
18 |
19 |
--------------------------------------------------------------------------------
/212/Model_Accommodations.txt:
--------------------------------------------------------------------------------
1 | #Differences: Uploaded model vs. related publication referred to.
2 |
3 | ###### Model differences and reasons
4 | a) EVID and L2 item (as in dataset and used in original model)
5 | not us for estimations utilising DDMoRe framework;
6 | b) Residual error for parent (tamoxifen) and metabolite (endoxifen)
7 | estimated without considering correlations and as standard deviations
8 | (structural parameters in NONMEM as THETAs);
9 | c) lag time handled differently by ddmore convertors than by NONMEM.
10 | These differences led to minor differences in estimates (esp. tlag).
11 |
12 |
13 |
--------------------------------------------------------------------------------
/212/Output_real_tamoxifen.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/212/Output_real_tamoxifen.pdf
--------------------------------------------------------------------------------
/213/213.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_Meropenem_MDL.xml",
4 | "Executable_Meropenem_MDL.mdl",
5 | "Model_Accommodations.txt",
6 | "Simulated_DatasetMeropenem.csv",
7 | "Output_simulated_Meropenem.lst",
8 | "Command.txt",
9 | "DDMODEL00000213.rdf",
10 | "Output_simulated_Meropenem.SO.xml"
11 | ],
12 | "version": 12
13 | }
--------------------------------------------------------------------------------
/213/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Scenario = 1
2 | ###### MDL version =
3 | ###### IO product =
4 | ###### Input data = Simulated_DatasetMeropenem.csv
5 | ###### Executable model = Executable_Meropenem_MDL.mdl
6 | ###### Output = Output_simulated_Meropenem.SO.xml
7 |
8 | #Initialisation
9 | rm(list=ls(all=F)) #clean your workspace first
10 |
11 | #Set working directory
12 | myfolder <- "Lisa_Submission" # name of your project folder
13 | setwd(file.path(Sys.getenv("MDLIDE_WORKSPACE_HOME"),myfolder))
14 |
15 | #Set name of .mdl file and dataset for future tasks
16 | mymodel <- "Executable_Meropenem_MDL"
17 | datafile <- "Simulated_DatasetMeropenem.csv"
18 | mdlfile <- paste0(mymodel,".mdl")
19 |
20 | #ESTIMATE model parameters using Monolix
21 | nm <- estimate(mdlfile, target="MONOLIX", subfolder="Monolix")
22 |
23 |
--------------------------------------------------------------------------------
/213/DDMODEL00000213.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 | To understand PK and variability of meropenem in adult patients
9 | No
10 | Covariate effect of creatinine clearance on CL was fixed to original value from publication since no information on the distribution of cretainine clearance was given in the original publication
11 | No
12 |
13 |
14 | Two compartment model with linear elimination;
15 |
16 |
17 |
18 |
19 |
--------------------------------------------------------------------------------
/213/Model_Accommodations.txt:
--------------------------------------------------------------------------------
1 | ###### Model ########
2 |
3 | - Original model was used as described in publication (Li et al);
4 | - Covariate effect of creatinine clearance (CLCR) on CL was fixed to original value from publication (0.62), since no information on the distribution of CLCR was given in the pulication
5 |
6 |
7 | ###### Simulated Dataset ########
8 |
9 | - Software used for simulation: simulx
10 | - Number of simulated patients: 79 (=original patient number)
11 | - Dosing regime: 6 dosing groups (as mentioned in original publication)
12 | Group 1: 14 patients: 500 mg --> 1000 mg/h,
13 | Group 2: 13 patients: 1000 mg --> 2000 mg/h,
14 | Group 3: 13 patients: 2000 mg --> 3000 mg/h,
15 | Group 4: 13 patients: 500 mg --> 166.7 mg/h,
16 | Group 5: 13 patients: 1000 mg --> 333.3 mg/h
17 | Group 6: 13 patients: 2000 mg --> 666.7 mg/h
18 | - Creatinine clearance in patients: all median CLCR of 83 mL/min, since no information was given on the distribution of CLCR in original population
19 | - Age in patients: assuming a log normal distribution of age, using information from original publication (median=35.0 yrs, sd= 18.2 yrs)
20 | - Body weight in patients: assuming a log normal distribution of body weight, using information from original publication (median=70.0 kg, sd=16.1 kg)
21 |
22 |
--------------------------------------------------------------------------------
/214/214.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_HFSmodel.mod",
4 | "Output_real_HFSmodel.lst",
5 | "Model_Accommodations.txt",
6 | "DDMODEL00000214.rdf",
7 | "Command.txt",
8 | "Output_simulated_HFSmodel.lst",
9 | "Simulated_GHFS_HFSmodel.csv"
10 | ],
11 | "version": 4
12 | }
--------------------------------------------------------------------------------
/214/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Prepared and run by Maria Luisa Sardu
2 | ##### Scenario= 4
3 | ##### PsN version=4.4.8
4 | ##### Original tool version=nm_7.3.0
5 | ##### Input data= Original data not shared
6 | ##### Executable model= Executable_HFSmodel.mod
7 | ##### Output=Output_simulated_HFSmodel.lst
8 |
9 | ###### Script used as execution command for NONMEM via PsN: ##########
10 | execute Executable_HFSmodel.mod
11 |
12 |
--------------------------------------------------------------------------------
/214/DDMODEL00000214.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 |
11 |
12 | Yes
13 | No
14 | Longitudinal model to predict Hand and Foot Syndrome grades dynamics in patients with solid tumors receiving capecitabine in two phase III studies. HFS grades are ordered categorical data from 0 no toxicity to 3 maximum toxicity.The model describes the risk of developing HFS using proportional odds model including a sigmoidal maximum effect driven by capecitabine exposure. As HFS grades are not independent from one point to the other, a Markov model was used to define transition probabilities. To describe Capecitabine exposure the (kinetic-pharmacodynamic) K-PD approach was used. Only baseline-calculated serum creatinine clearance (CRCL) was included as model covariate.
15 | Predict Hand and Foot Syndrome dynamics in cancer patients receiving capecitabine from 2 phase III studies.
16 |
17 |
18 |
--------------------------------------------------------------------------------
/214/Executable_HFSmodel.mod:
--------------------------------------------------------------------------------
1 |
2 |
3 | $PROB Logit model with KPD approach EMAX model covariate CRCL
4 | $INPUT C ID WEEK=TIME MDV EVID GHFS=DV AMT ADDL II AGE SEX WT HT SERUM SERCORR WTCOR SEXCOEFF BSA CLCR
5 | $DATA ../Datasets/Simulated_HFSmodel.csv IGNORE=C
6 | $SUBROUTINES ADVAN1 TRANS1
7 |
8 | $PK
9 | TCLCR=THETA(12)
10 | TVK=THETA(1)
11 |
12 | K=TVK*EXP(ETA(1))
13 |
14 |
15 | IF (TIME.EQ.0) BCLCR=CLCR
16 | IIV=ETA(2)+(BCLCR-75.5)*TCLCR
17 |
18 | B00=THETA(2)
19 | B10=THETA(3)
20 | B20=THETA(4)
21 | EMAX0=THETA(5)
22 | ED50=THETA(6)
23 |
24 | B01=THETA(7)
25 | B11=THETA(8)
26 | B21=THETA(9)
27 |
28 | EMAX1=THETA(10)
29 | EMAX2=THETA(11)
30 |
31 | IF (TIME.EQ.0) SWM1=0
32 |
33 |
34 | $ERROR
35 | CALLFL=0
36 | IPRED=F
37 | EMAX=EMAX0
38 | IF(SWM1.EQ.1) EMAX=EMAX1
39 | IF(SWM1.EQ.2) EMAX=EMAX2
40 | EFF=EMAX*(F*K)/((F*K)+(ED50))
41 | A0=0
42 | A1=0
43 | SPREC=SWM1
44 | IF (SWM1.EQ.0) THEN
45 | A0=B00
46 | A1=A0+B01
47 | ENDIF
48 | IF (SWM1.EQ.1) THEN
49 | A0=B10
50 | A1=A0+B11
51 | ENDIF
52 | IF (SWM1.EQ.2) THEN
53 | A0=B20
54 | A1=A0+B21
55 | ENDIF
56 | A0=A0-EFF+IIV
57 | A1=A1-EFF+IIV
58 |
59 | SWM1=GHFS
60 |
61 | PC0=EXP(A0)/(1+EXP(A0))
62 | PC1=EXP(A1)/(1+EXP(A1))
63 | PC2=1
64 |
65 |
66 | P0=PC0
67 | P1=PC1-PC0
68 | P2=PC2-PC1
69 |
70 |
71 | Y=-1
72 | IF (DV.LT.0.5) Y=P0
73 | IF (DV.GE.0.5.AND.DV.LT.1.5) Y=P1
74 | IF (DV.GE.1.5.AND.DV.LT.2.5) Y=P2
75 |
76 | $THETA
77 | (0,0.159) ; 1 TVK
78 | (4.62) ; 2 B00
79 | (0.683) ; 3 B10
80 | (1.99) ; 4 B20
81 | (3.8) ; 5 EMAX0
82 | (0,13000) ; 6 ED50
83 | (0,0.602) ; 7* B01
84 | (0,5.24) ; 8* B11
85 | (0,0.322) ; 9 B21
86 | (0,6.3) ;10 EMAX1
87 | (0,9.9) ;11 EMAX2
88 | (0,0.00552) ;12 TCLCR
89 |
90 |
91 | $OMEGA BLOCK(2)
92 | 0.468
93 | 0.402 0.8
94 |
95 | $EST METHOD=1 MAXEVALS=9999 PRINT=5 LIKE LAPLACE SIGDIGITS=1 SLOW
96 | NOABORT
97 | $TABLE ID TIME AMT MDV SPREC IPRED K TVK TCLCR
98 | P0 P1 P2 A0 A1 PC0 PC1 PC2 ETA1 ETA2 EMAX ED50 EFF
99 | ONEHEADER NOPRINT FILE=ddmore159.tab
100 | $COV SLOW UNCONDITIONAL MATRIX=S
101 |
102 |
--------------------------------------------------------------------------------
/214/Model_Accommodations.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/214/Model_Accommodations.txt
--------------------------------------------------------------------------------
/215/215.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_Pimasertib_AeDropout.mod",
4 | "Output_simulated_Pimasertib_AeDropout.lst",
5 | "DDMODEL00000215.rdf",
6 | "Simulated_Pimasertib_AeDropout.csv",
7 | "Command.txt",
8 | "Output_real_Pimasertib_AeDropout.lst",
9 | "Model_Accommodations.txt"
10 | ],
11 | "version": 6
12 | }
--------------------------------------------------------------------------------
/215/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Prepared and run by Maria Luisa Sardu
2 | ##### Scenario= 4
3 | ##### PsN version=4.4.8
4 | ##### Original tool version=nm_7.3.0
5 | ##### Input data= Original data not shared
6 | ##### Executable model= Executable_Pimasertib_AeDropout.mod
7 | ##### Output=Output_simulated_PimasertibAeDropout.lst
8 |
9 | ###### Script used as execution command for NONMEM via PsN: ##########
10 | Execute Executable_Pimasertib_AeDropout.mod
11 |
12 |
--------------------------------------------------------------------------------
/215/Model_Accommodations.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/215/Model_Accommodations.txt
--------------------------------------------------------------------------------
/217/217.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_SLD.mod",
4 | "Output_simulated_SLD.lst",
5 | "Output_real_SLD.lst",
6 | "DDMODEL00000217.rdf",
7 | "Simulated_SLD.csv",
8 | "Command.txt"
9 | ],
10 | "version": 13
11 | }
--------------------------------------------------------------------------------
/217/Command.txt:
--------------------------------------------------------------------------------
1 | ### please fill in commented lines
2 | # this file is mandatory for submission scenarios 1, 2 and 4.
3 | ###################### if the executable model is written in original language #####
4 | ###################### please specify the block below
5 | ###### Scenario = 4
6 | ###### PsNversion (if any) = PsN-4.2.0
7 | ###### Original tool version= NM7.3
8 | ###### Input data= Simulated_SLD.csv
9 | ###### Executable model= Executable_SLD.mod
10 | ###### Output= Output_simulated_SLD.lst
11 | ###################### end block
12 |
13 | ###### Script used as execution command for NONMEM via PsN: #############
14 |
15 | execute Executable_SLD.mod
16 |
--------------------------------------------------------------------------------
/217/DDMODEL00000217.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 | Tumour size dynamics model for ovarian cancer patients
9 |
10 |
11 |
12 |
13 |
14 | Yes
15 | No
16 |
17 |
18 |
--------------------------------------------------------------------------------
/217/Executable_SLD.mod:
--------------------------------------------------------------------------------
1 | ; Claret-like model for describing CTS. No resistance to drug treatment. Independent additive effect of the two drugs. M3 method for BLQ. Additive error
2 |
3 | $SIZES LIM6=2000
4 | $PROBLEM Model for SLD(t)
5 |
6 | $INPUT CCOM,ID,
7 | TIME, ;in day
8 | DV, ;SLD in mm
9 | BQL, ;the LLOQ is 5 mm
10 | CB, ;exposure to carboplatin (per-cycle average AUC)
11 | G, ;exposure to gemcitabine (per-cycle average AUC)
12 | EVID,
13 | FLG, ;FLG=2 for SLD data, FLG=1 for exposure-related entries
14 | CMT ;CMT=1 for SLD data
15 |
16 | $DATA Simulated_SLD.csv IGNORE=C
17 |
18 | $SUBROUTINE ADVAN6 TOL=3
19 |
20 | $MODEL
21 | ;Tumour
22 | COMP = (TUMOUR, DEFOBS)
23 |
24 | $PK
25 | KG = THETA(1)*EXP(ETA(1)) ;tumour growth rate constant (1/day)
26 | KD0 = THETA(2)*EXP(ETA(2)) ;carboplatin related death rate constant (1/day/AUC0)
27 | KD1 = THETA(3)*EXP(ETA(2)) ;gemcitabine related death rate constant (1/day/AUC1)
28 | IBASE = THETA(4)*EXP(ETA(3)) ;baseline SLD (m)
29 | FADD = THETA(5) ;SD of additive error (mm)
30 |
31 | ; ==== SLD baseline ====
32 | A_0(1) = IBASE*1000
33 |
34 | ; Backward interpolation of exposure-related data
35 | IF(NEWIND.NE.2) OCB=CB
36 | IF(NEWIND.NE.2) OG=G
37 | E0 = OCB
38 | E1 = OG
39 | OCB=CB
40 | OG=G
41 |
42 | $DES
43 | ; Model for dSLD(t)
44 | DADT(1) = KG/1000 * A(1) - (KD0/1000 * E0 + KD1/100 * E1) * A(1)
45 |
46 | $ERROR
47 | LLOQ = 5 ;5 mm is LLOQ
48 | IPRED = A(1)
49 |
50 | W = FADD ;SD of additive unexpained variability
51 |
52 | ; Probability of SLD
6 |
7 |
8 |
9 |
10 | Yes
11 | Oncology, specifically Phase II/1b to Phase III drug development phases. The developed modelling framework links change in tumour size during treatment to survival probability in metastatic ovarian cancer. In addition the appearance of new lesions and their relationship to survival and disease characteristics has been captured.
12 |
13 | No
14 | None apart from using simulated patient data
15 |
16 |
17 |
18 |
--------------------------------------------------------------------------------
/219/219.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_BDQ_M2_PK_plus_WT_ALB_in_MDR-TB_patients.mod",
4 | "Output_real_BDQ_M2_PK_plus_WT_ALB_in_MDR-TB_patients.lst",
5 | "Simulated_data_BDQ_M2_PK_plus_WT_ALB_in_MDR-TB_patients.csv",
6 | "Output_simulated_executable_BDQ_M2_PK_plus_WT_ALB_in_MDR-TB_patients.lst",
7 | "Command.txt"
8 | ],
9 | "version": 5
10 | }
--------------------------------------------------------------------------------
/219/Command.txt:
--------------------------------------------------------------------------------
1 | ######################
2 | ###### Scenario = 4
3 | ###### PsNversion (if any) = 4.6.9
4 | ###### Original tool version= NM version 7.3
5 | ###### Input data= Simulated_data_BDQ_M2_PK_plus_WT_ALB_in_MDR-TB_patients.csv
6 | ###### Executable model= Executable_BDQ_M2_PK_plus_WT_ALB_in_MDR-TB_patients.mod
7 | ###### Output= Output_simulated_executable_BDQ_M2_PK_plus_WT_ALB_in_MDR-TB_patients.lst
8 | ######################
9 |
10 |
11 | ###### Script used as execution command for NONMEM via PsN: #############
12 |
13 | execute Executable_BDQ_M2_PK_plus_WT_ALB_in_MDR-TB_patients.mod
--------------------------------------------------------------------------------
/220/220.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_run32150.mod",
4 | "Output_real_run32150.lst",
5 | "Finmod_7_3.lst",
6 | "Command.txt",
7 | "DDMODEL00000220.rdf",
8 | "Output_simulated_Executable_run32150.lst",
9 | "Simulated_data.csv"
10 | ],
11 | "version": 10
12 | }
--------------------------------------------------------------------------------
/220/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Scenario = scenario 4
2 | ###### PsN version= 3.2.10
3 | ###### Original tool version = NONMEM version 6.2
4 | ###### Input data = Simulated_data.csv
5 | ###### Executable model = Executable_run32150.mod
6 | ###### Output = Output_simulated_original_run32150.lst
7 | ###### Output = Output_real_original_32150.lst
8 | ###### Output = Finmod_7_3.lst; the model re-run with real data in NONMEM version 7.3
9 |
10 |
11 | ###### Script used as execution command:
12 |
13 | execute Executable_run32150.mod
14 |
--------------------------------------------------------------------------------
/221/221.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_SLD_SUV_OS_GIST.mod",
4 | "DDMODEL00000221.rdf",
5 | "Output_real_SLD_SUV_OS_GIST.lst",
6 | "Command.txt",
7 | "Simulated_SLD_SUV_OS_GIST.csv",
8 | "Output_simulated_SLD_SUV_OS_GIST.lst"
9 | ],
10 | "version": 9
11 | }
--------------------------------------------------------------------------------
/221/Command.txt:
--------------------------------------------------------------------------------
1 | ### please fill in commented lines
2 | # this file is mandatory for submission scenarios 1, 2 and 4.
3 | ###################### if the executable model is written in original language #####
4 | ###################### please specify the block below
5 | ###### Scenario = 4
6 | ###### PsN version = 4.6.9
7 | ###### Original tool version = 7.3
8 | ###### Input data = Simulated_SLD_SUV_OS_GIST.csv
9 | ###### Executable model = Executable_SLD_SUV_OS_GIST.mod
10 | ###### Output = Output_simulated_SLD_SUV_OS_GIST.lst
11 | ###################### end block
12 |
13 | ###### Script used as execution command for NONMEM via PsN: #############
14 | execute Executable_SLD_SUV_OS_GIST.mod
15 |
--------------------------------------------------------------------------------
/221/DDMODEL00000221.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 | A tumor growth inhibition model describes the time-course of SLD. An indirect response model in which sunitinib stimulates tumor loss of SUVmax response best described the longitudinal SUVmax data, as assessed on FDG-PET scans. Inter-lesion variability in SUVmax is implemented similarly to inter-occasion variability. No disease progression was identified for SUVmax. A time-to-event model with a constant baseline hazard driven by the relative change in SUVmax from baseline for the lesion that responds the most was used to describe overall survival data.
9 | Changes in FDG-PET standardized uptake values reflecting tumor metabolic activity was suggested as a predictor for long-term clinical outcome in GIST patients treated with anti-angiogenic drugs such as sunitinib. The model characterized the inter-individual and inter-lesion variability in SUVmax response and the predictive ability of SUVmax-related metrics on overall survival.
10 |
11 | No
12 |
13 |
14 |
15 |
16 | None
17 | Yes
18 |
19 |
20 |
--------------------------------------------------------------------------------
/222/222.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_Fatigue_GIST.mod",
4 | "DDMODEL00000222.rdf",
5 | "Simulated_Fatigue_GIST.txt",
6 | "Output_real_Fatigue_GIST.lst_Fatigue_PSP_2014",
7 | "Command.txt",
8 | "Output_simulated_Fatigue_GIST.lst"
9 | ],
10 | "version": 9
11 | }
--------------------------------------------------------------------------------
/222/Command.txt:
--------------------------------------------------------------------------------
1 | ### please fill in commented lines
2 | # this file is mandatory for submission scenarios 1, 2 and 4.
3 | ###################### if the executable model is written in original language #####
4 | ###################### please specify the block below
5 | ###### Scenario = 4
6 | ###### PsN version = 4.6.9
7 | ###### Original tool version = 7.3
8 | ###### Input data = Simulated_Fatigue_GIST.txt
9 | ###### Executable model = Executable_Fatigue_GIST.mod
10 | ###### Output = Output_simulated_Fatigue_GIST.lst
11 | ###################### end block
12 |
13 | ###### Script used as execution command for NONMEM via PsN: #############
14 | execute Executable_Fatigue_GIST.mod
15 |
--------------------------------------------------------------------------------
/222/DDMODEL00000222.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 | Proportional odds models with a first-order Markov model for Fatigue in sunitinib treated GIST patients
8 |
9 |
10 |
11 |
12 | Yes
13 |
14 |
15 | No
16 | None
17 | Adverse effects may be useful alternative early indicators of pharmacodynamic activity as they could be more practical to use in the clinical setting
18 |
19 |
20 |
21 |
--------------------------------------------------------------------------------
/223/223.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_Novakovic_2016_multiplesclerosis_cladribine_irt.mod",
4 | "DDMODEL00000223.rdf",
5 | "Output_real_Novakovic_2016_multiplesclerosis_cladribine_irt.lst",
6 | "Output_simulated_Novakovic_2016_multiplesclerosis_cladribine_irt.lst",
7 | "Command.txt",
8 | "Simulated_Novakovic_2016_multiplesclerosis_cladribine_irt.csv"
9 | ],
10 | "version": 7
11 | }
--------------------------------------------------------------------------------
/223/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Scenario = 4
2 | ###### PsN version = 4.6.9
3 | ###### Original tool version = nm_7.3.0_g
4 | ###### Input data = Simulated_Novakovic_2016_multiplesclerosis_cladribine_irt.csv (original data not shared)
5 | ###### Executable model = Executable_Novakovic_2016_multiplesclerosis_cladribine_irt.mod
6 | ###### Output = Output_simulated_Novakovic_2016_multiplesclerosis_cladribine_irt.lst
7 |
8 | execute Executable_Novakovic_2016_multiplesclerosis_cladribine_irt.mod
--------------------------------------------------------------------------------
/224/224.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_myelosuppression_dailyANC.mod",
4 | "Output_simulated_Executable_myelosuppression_dailyANC.lst",
5 | "DDMODEL00000224.rdf",
6 | "Simulated_myelosuppression_dailyANC.csv",
7 | "Model_Accommodations.txt",
8 | "Command.txt"
9 | ],
10 | "version": 16
11 | }
--------------------------------------------------------------------------------
/224/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Scenario = 4
2 | ###### PsN version = 4.6.9
3 | ###### Original tool version = NONMEM 7.3
4 | ###### Input data = Simulated_myelosuppression_dailyANC.csv
5 | ###### Executable model = Executable_myelosuppression_dailyANC.mod
6 | ###### Output = Executable_myelosuppression_dailyANC.lst
7 |
8 | execute Executable_myelosuppression_dailyANC.mod
--------------------------------------------------------------------------------
/224/DDMODEL00000224.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 | No variability related to the gamma parameter
11 | This model was used to simulate daily measurements of ANC, which was subsequently used to predict the ANC with varying amount of data available for making the predictions. Also the precision of predicting time to baseline recovery, time to nadir and the nadir ANC value, was evaluated
12 |
13 | No
14 |
15 | No
16 |
17 |
18 |
--------------------------------------------------------------------------------
/224/Model_Accommodations.txt:
--------------------------------------------------------------------------------
1 | ###### Model differences = 1) The OMEGA related to the gamma paramater was set to 0 here (estimated to 0.0216452 in the original publication)
2 | 2) Code for extraction of nadir, time to recovery to baseline and time to different neutropenic grades is included
3 | 3) Only docetaxel is used
4 |
5 | ###### Reasons = Used to simulate for a different purpose
--------------------------------------------------------------------------------
/225/225.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "executeable_cipro.xml",
4 | "Model_Accommodations.txt",
5 | "Command_target.txt",
6 | "cipro_simulated.csv",
7 | "executeable_cipro_pkpd.mod",
8 | "cipro378.csv",
9 | "cipro202.csv",
10 | "DDMODEL00000225.rdf",
11 | "cipro378_VPC.mdl",
12 | "HO_Bacteria_PKPD _script.r",
13 | "cipro202_VPC.mdl",
14 | "output_simulated.lst"
15 | ],
16 | "version": 11
17 | }
--------------------------------------------------------------------------------
/225/Command_target.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/225/Command_target.txt
--------------------------------------------------------------------------------
/225/DDMODEL00000225.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 | Yes
8 |
9 | PKPD model for ciprofloxacin
10 | M3, B2, MTIME and L2 not included in mdl file.
11 |
12 |
13 | PKPD model for ciprofloxacin
14 |
15 |
16 | No
17 |
18 |
19 |
--------------------------------------------------------------------------------
/225/Model_Accommodations.txt:
--------------------------------------------------------------------------------
1 | Model_Accommodations
2 | This file has to be uploaded when the model is not implemented as in the original publication.
3 | ###### Model differences = L2, MTIME, B2 and M3 not included
4 |
5 |
6 | ###### Reasons = not supported in MDL
7 |
8 |
--------------------------------------------------------------------------------
/227/227.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "glucoseKinetics.xml",
4 | "Executable_glucoseKinetics.mlxtran",
5 | "Command.txt",
6 | "glucoseKinetics.mdl",
7 | "original_model.txt",
8 | "glucoseKineticsPLOT.pdf",
9 | "Simulated_glucoseKinetics.csv",
10 | "Output_simulated_glucoseKinetics.txt",
11 | "Model_Accommodations.txt",
12 | "Long_technical_model_description_glucoseKinetics.txt",
13 | "Executable_glucoseKinetics_algorithms.xmlx",
14 | "Executable_glucoseKinetics.txt",
15 | "Output_real_glucoseKinetics.txt",
16 | "original_project.mlxtran",
17 | "DDMODEL00000227.rdf"
18 | ],
19 | "version": 15
20 | }
--------------------------------------------------------------------------------
/227/Executable_glucoseKinetics.mlxtran:
--------------------------------------------------------------------------------
1 | ; this script is generated automatically
2 |
3 | DESCRIPTION:
4 | Executable_glucoseKinetics.mlxtran
5 |
6 | DATA:
7 | path = "%MLXPROJECT%/",
8 | file ="Simulated_glucoseKinetics.csv",
9 | headers = {TIME,Y,MDV,DOSE,RATE,ID,X,X,DPT,X,X,X,X},
10 | columnDelimiter = ","
11 |
12 | INDIVIDUAL:
13 | Emax = {distribution=logNormal, iiv=yes},
14 | F = {distribution=logNormal, iiv=no},
15 | KmG = {distribution=logNormal, iiv=yes},
16 | KmI = {distribution=logNormal, iiv=yes},
17 | V = {distribution=logNormal, iiv=yes},
18 | Vmax0 = {distribution=logNormal, iiv=no},
19 | flambda2 = {distribution=logitNormal, iiv=yes},
20 | flambda3 = {distribution=logitNormal, iiv=yes},
21 | fw2 = {distribution=logitNormal, iiv=yes},
22 | gamma = {distribution=logNormal, iiv=yes},
23 | t12G = {distribution=logNormal, iiv=no},
24 | t12I = {distribution=logNormal, iiv=yes},
25 | w1 = {distribution=logitNormal, iiv=yes}
26 |
27 | CORRELATION:
28 | correlationIIV = {gamma,KmI}
29 |
30 | STRUCTURAL_MODEL:
31 | file = "mlxt:Executable_glucoseKinetics",
32 | path = "%MLXPROJECT%",
33 | output = {G}
34 |
35 |
36 | OBSERVATIONS:
37 | Y = {type=continuous, prediction=G, error=constant}
38 |
39 | TASKS:
40 | ; settings
41 | globalSettings={
42 | withVariance=yes,
43 | settingsAlgorithms="%MLXPROJECT%/Executable_glucoseKinetics_algorithms.xmlx",
44 | resultFolder="%MLXPROJECT%/Executable_glucoseKinetics"},
45 | ; workflow
46 | estimatePopulationParameters(
47 | initialValues={
48 | pop_Emax = 4812,
49 | pop_F = 2688 [method=FIXED],
50 | pop_KmG = 3.88,
51 | pop_KmI = 784,
52 | pop_V = 12648,
53 | pop_Vmax0 = 338,
54 | pop_flambda2 = 0.154,
55 | pop_flambda3 = 0.0582,
56 | pop_fw2 = 0.901,
57 | pop_gamma = 1.62,
58 | pop_t12G = 0.7 [method=FIXED],
59 | pop_t12I = 15.9,
60 | pop_w1 = 0.609,
61 | a_Y = 0.014,
62 | omega2_Emax = 0.112,
63 | omega2_KmG = 0.219,
64 | omega2_KmI = 0.263,
65 | omega2_V = 0.0557,
66 | omega2_flambda2 = 0,
67 | omega2_flambda3 = 0.179,
68 | omega2_fw2 = 0,
69 | omega2_gamma = 0.111,
70 | omega2_t12I = 0.151,
71 | omega2_w1 = 0.773
72 | } ),
73 | estimateIndividualParameters( method={conditionalMode} ),
74 | displayGraphics(),
75 |
76 |
--------------------------------------------------------------------------------
/227/Executable_glucoseKinetics.txt:
--------------------------------------------------------------------------------
1 | INPUT:
2 | parameter={flambda2, V, gamma, F, flambda3, Vmax0, KmG, KmI, t12G, t12I, Emax, w1, fw2}
3 | regressor={INS,GLU,TOBS,T1,GLU1,INS1}
4 |
5 | PK:
6 | depot(adm=1, target=X1)
7 | depot(adm=2, target=X)
8 | depot(adm=3, target=Z1)
9 | depot(adm=4, target=Z)
10 | depot(adm=5, target=xHL1, p=1/F)
11 | depot(adm=6, target=xHL2, p=1/F)
12 |
13 | EQUATION:
14 | VHL = 700
15 | deltaHL = 15
16 | delta = 10
17 | w2 = ((1)-(w1))*(fw2)
18 | w3 = ((1)-(w1))-(w2)
19 | lambda1 = ((((((((w1)*(flambda2))*(flambda3))+((w2)*(flambda3)))+(w3))/((flambda2)*(flambda3)))*(delta))*(F))/(((delta)*((V)-(VHL)))-(F))
20 | lambda2 = (lambda1)*(flambda2)
21 | lambda3 = (lambda2)*(flambda3)
22 | c1 = ((deltaHL)*(F))/(((deltaHL)*(VHL))-((2)*(F)))
23 | c2 = ((-(deltaHL))*(F))/(((deltaHL)*(VHL))-(F))
24 | I = ((((t)-(T1))/((TOBS)-(T1)))*((INS)-(INS1)))+(INS1)
25 | GL = ((((t)-(T1))/((TOBS)-(T1)))*((GLU)-(GLU1)))+(GLU1)
26 | t0 = 0
27 | X1_0 = 0
28 | X_0 = 0
29 | Z1_0 = 0
30 | Z_0 = 0
31 | Vmax = (Vmax0)+(((Emax)*((Z)^(gamma)))/(((KmI)^(gamma))+((Z)^(gamma))))
32 | cl = (Vmax)/((KmG)+(X))
33 | E = (cl)/(F)
34 | xHL1_0 = 0
35 | xHL2_0 = 0
36 | G = ((c1)*(xHL1))-((c1)*(xHL2))
37 | xPER1_0 = 0
38 | xPER2_0 = 0
39 | xPER3_0 = 0
40 | xPER4_0 = 0
41 | Gv = (delta)*(xPER4)
42 | ddt_X1 = (((GL)-(X1))*(log(2)))/(t12G)
43 | ddt_X = (((X1)-(X))*(log(2)))/(t12G)
44 | ddt_Z1 = (((I)-(Z1))*(log(2)))/(t12I)
45 | ddt_Z = (((Z1)-(Z))*(log(2)))/(t12I)
46 | ddt_xHL1 = ((c2)*(xHL1))+(Gv)
47 | ddt_xHL2 = ((-(deltaHL))*(xHL2))+(Gv)
48 | ddt_xPER1 = ((-(lambda1))*(xPER1))+(((w1)*((1)-(E)))*(G))
49 | ddt_xPER2 = ((-(lambda2))*(xPER2))+(((w2)*((1)-(E)))*(G))
50 | ddt_xPER3 = ((-(lambda3))*(xPER3))+(((w3)*((1)-(E)))*(G))
51 | ddt_xPER4 = ((((lambda1)*(xPER1))+((lambda2)*(xPER2)))+((lambda3)*(xPER3)))-((delta)*(xPER4))
52 |
53 | OUTPUT:
54 | output={G}
55 |
--------------------------------------------------------------------------------
/227/Long_technical_model_description_glucoseKinetics.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/227/Long_technical_model_description_glucoseKinetics.txt
--------------------------------------------------------------------------------
/227/Model_Accommodations.txt:
--------------------------------------------------------------------------------
1 | The model in MDL/PharmML language differs from the one used in the related publication in two aspects: 1) it does not consider that the subject undergoing a paired test is unique; 2) it is used as a simulation model, as performing parameter estimation on the provided dataset ("Simulated_glucoseKinetics.csv") would be meaningless, because of the used model inputs.
--------------------------------------------------------------------------------
/227/Output_real_glucoseKinetics.txt:
--------------------------------------------------------------------------------
1 | parameter s.e._sa r.s.e._sa pvalues_sa
2 | KM_pop 3.87734 0.3297 8.5 NaN
3 | VMAX0_pop 337.94204 19.18579 5.68 NaN
4 | ALP_pop 4812.08053 269.26479 5.6 NaN
5 | K1_pop 1.62258 0.07151 4.41 NaN
6 | KM1_pop 784.44216 54.45508 6.94 NaN
7 | TAUI_pop 15.94767 0.75883 4.76 NaN
8 | TAUGn_pop 0.59 0 0 NaN
9 | Vt1_pop 9.44524 0.02424 0.26 NaN
10 | fPEX31_pop -2.78482 0.09637 3.46 NaN
11 | fPEX21_pop -1.70593 0.19564 11.47 NaN
12 | PWG11_pop 0.44405 NaN NaN NaN
13 | fPWG21_pop 2.20819 0.08325 3.77 NaN
14 | Vt2_pop 0 0 0 NaN
15 | fPEX32_pop 0 0 0 NaN
16 | PWG12_pop 0 0 0 NaN
17 | fPEX22_pop 0 0 0 NaN
18 | fPWG22_pop 0 0 0 NaN
19 | F_pop 0.99192 0.09095 9.17 NaN
20 | omega2_KM 0.21922 0.06246 28.49 NaN
21 | omega2_VMAX0 0 0 0 NaN
22 | omega2_ALP 0.11244 0.02929 26.05 NaN
23 | omega2_K1 0.11138 0.02309 20.74 NaN
24 | omega2_KM1 0.26252 0.04696 17.89 NaN
25 | omega2_TAUI 0.15112 0.03536 23.4 NaN
26 | omega2_TAUGn 0 0 0 NaN
27 | omega2_Vt1 0 0 0 NaN
28 | omega2_fPEX31 0 0 0 NaN
29 | omega2_fPEX21 0 0 0 NaN
30 | omega2_PWG11 0 0 0 NaN
31 | omega2_fPWG21 0 0 0 NaN
32 | omega2_Vt2 0.05569 0.00953 17.11 NaN
33 | omega2_fPEX32 0.179 0.06227 34.79 NaN
34 | omega2_PWG12 0.77256 0.23144 29.96 NaN
35 | omega2_fPEX22 0 0 0 NaN
36 | omega2_fPWG22 0 0 0 NaN
37 | omega2_F 0.06969 0.02995 42.97 NaN
38 | " corr(K1,KM1)" -0.43889 0.10489 23.9 NaN
39 | a_1 0.02622 0.00121 4.61 NaN
40 | a_2 0.00736 0.00082 11.09 NaN
41 | a_3 0.005 0 0 NaN
42 | a_4 0.00571 0.00091 15.89 NaN
43 | a_5 0.01158 0.00196 16.89 NaN
44 | a_6 0.004 0 0 NaN
45 | a_7 0.00479 0.0011 22.92 NaN
46 | a_8 0.00893 0.00091 10.18 NaN
47 | a_9 0.00425 0.0002 4.64 NaN
48 | a_10 0.00966 0.0005 5.21 NaN
49 | a_11 0.01397 0.00062 4.44 NaN
50 | a_12 0.01203 0.00039 3.27 NaN
51 | a_13 0.01166 0.00083 7.1 NaN
52 | a_14 0.02511 0.00176 7.02 NaN
53 | a_15 0.00329 0.0004 12.07 NaN
54 |
--------------------------------------------------------------------------------
/227/glucoseKineticsPLOT.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/227/glucoseKineticsPLOT.pdf
--------------------------------------------------------------------------------
/228/228.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_run126h.mod",
4 | "Output_simulated_run126h.lst",
5 | "Simulated_ddmoremockdata2.txt",
6 | "DDMODEL00000228.rdf",
7 | "Output_real_run126c.lst",
8 | "Command.txt"
9 | ],
10 | "version": 16
11 | }
--------------------------------------------------------------------------------
/228/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Scenario = 4
2 | ###### PsN version = 4.6.9
3 | ###### Original tool version = NONMEM 7.3
4 | ###### Input data = Simulated_ddmoremockdata2.txt
5 | ###### Executable model = Executable_run126h.mod
6 | ###### Output = Output_simulated_run126h
7 |
8 | execute run126h.mod
9 |
--------------------------------------------------------------------------------
/228/DDMODEL00000228.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 |
11 |
12 | Gastric emptying together with glucose absorption (rate and extent) affects glucose exposure after oral glucose tolerance tests.
13 | Yes
14 | No
15 |
16 |
17 |
--------------------------------------------------------------------------------
/228/Executable_run126h.mod:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/228/Executable_run126h.mod
--------------------------------------------------------------------------------
/228/Output_real_run126c.lst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/228/Output_real_run126c.lst
--------------------------------------------------------------------------------
/228/Output_simulated_run126h.lst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/228/Output_simulated_run126h.lst
--------------------------------------------------------------------------------
/229/229.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "GO_PK_model.xml",
4 | "Model_Accommodations.txt",
5 | "GO_PK_model.mdl",
6 | "DDMODEL00000229.rdf"
7 | ],
8 | "version": 5
9 | }
--------------------------------------------------------------------------------
/229/DDMODEL00000229.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 | No
11 |
12 | The model is a mechanism-based model for oncotherapy by a conjugated mAb drug, Gemtuzumab ozogamicin (GO; commercial name Mylotarg), for patients with acute myeloid leukemia (AML). The model illustrates the interactions of the drug, GO, with leukemic blasts expressing a receptor, the cell surface antigen CD33, to which the mAb component of the drug (i.e. Gemtuzumab) binds. The drug-antigen complex is then internalized, allowing for the toxic component (ozogamicin) to induce cell lysis. The system consists of ordinary differential equations describing the dynamics of the drug, receptor, and drug-receptor complex, as well as the drug pharmacokinetics.
13 |
14 |
15 |
16 | The PK model was extended to include one peripheral compartment. The main reason is that the model was re-evaluated on the same data, using mixed-effects approach in Monolix.
17 |
18 | No
19 |
20 |
21 |
--------------------------------------------------------------------------------
/229/Model_Accommodations.txt:
--------------------------------------------------------------------------------
1 | ###### Model differences = The PK model was extended to include one peripheral compartment, in addition to the central compartment. The model parameters were re-evaluated using the same data as in the original publication.
2 |
3 |
4 | ###### Reasons = When comparing the parameter values estimated in Monolix to their values estimated in the original study by Jager et al. PLoS One 2011, some slight differences were observed. Furthermore, the original work estimated the parameters in a step-wise fashion, while here our approach was to estimate all the parameters simultaneously. In cosequence, we found that a two-compartment PK model provides better description of the data, judging by statistical criteria (AIC, BIC).
--------------------------------------------------------------------------------
/230/230.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "IL_21_PK_mode.xml",
4 | "Model_Accommodations.txt",
5 | "DDMODEL00000230.rdf",
6 | "IL_21_PK_model.mdl"
7 | ],
8 | "version": 4
9 | }
--------------------------------------------------------------------------------
/230/DDMODEL00000230.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 |
11 |
12 | This is PK model of IL-21 in mice, encompassing three different, modes of drug administration.
13 |
14 |
15 |
16 | No
17 | No
18 | The model was simplified by removing one of the compartments and the parameters were estimated using Monolix
19 |
20 |
21 |
22 |
--------------------------------------------------------------------------------
/230/Model_Accommodations.txt:
--------------------------------------------------------------------------------
1 | ###### Model differences = The PK model was simplified.
2 |
3 |
4 | ###### Reasons = The original work estimated the parameters by a step-wise fitting to minimize square error. Here we estimated all the parameters simultaneously, using mixed-effects methodology and compared several different models. In cosequence, we found that the present model has best on performance and robustness (i.e. low Akaike information criterion, low condition number, and minimal residual errors).
--------------------------------------------------------------------------------
/231/231.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Sunitinib_MPD6_model.xml",
4 | "Sunitinib_MPD6_model.mdl",
5 | "DDMODEL00000231.rdf"
6 | ],
7 | "version": 3
8 | }
--------------------------------------------------------------------------------
/231/DDMODEL00000231.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 | This is a semi-mechanistic PK/PD model for sunitinib therapy in non-small cell lung cancer patients. It was developed and validated using clinical trail data provided by the drug developer.
14 |
15 |
16 |
17 | Yes
18 |
19 |
20 |
--------------------------------------------------------------------------------
/233/233.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Fc_opg_uNTx_PKPD.xml",
4 | "Output_simulated_opg.pdf",
5 | "Fc_opg_uNTx_PKPD.mdl",
6 | "Input_real_opg.pdf",
7 | "DDMODEL00000233.rdf",
8 | "Vignette_opg.R",
9 | "Input_real_opg.R",
10 | "Executable_opg.R",
11 | "Command.txt",
12 | "opgpost.RDS",
13 | "Model_Accommodations.txt",
14 | "opg.cpp",
15 | "Vignette_opg.pdf",
16 | "Simulated_opg.txt"
17 | ],
18 | "version": 52
19 | }
--------------------------------------------------------------------------------
/233/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Prepared and run by Kyle Baron
2 | ##### Scenario= 4
3 | ##### mrgsolve version=mrgsolve_0.7.6.9028
4 | ##### Input data=Real_opg.pdf
5 | ##### Output=Output_simulated_opg.pdf
6 | ######## end block
7 |
8 | library(mrgsolve)
9 | mod <- mread("opg")
10 |
11 |
--------------------------------------------------------------------------------
/233/DDMODEL00000233.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 | No
11 |
12 | Yes
13 | None that I know of.
14 |
15 |
16 | Early dose selection.
17 |
18 |
19 |
--------------------------------------------------------------------------------
/233/Executable_opg.R:
--------------------------------------------------------------------------------
1 | #
2 | # Please see Vignette.R and Vignette.pdf
3 | # Model source code in opg.cpp
4 | #
--------------------------------------------------------------------------------
/233/Input_real_opg.R:
--------------------------------------------------------------------------------
1 | ##' ---
2 | ##' title: ""
3 | ##' date: ""
4 | ##' author: ""
5 | ##' output: pdf_document
6 | ##' ---
7 |
8 |
9 | #+ message=FALSE
10 | .libPaths("~/Rlibs/lib")
11 | library(mrgsolve)
12 | library(ggplot2)
13 | library(dplyr)
14 | library(metrumrg)
15 | library(parallel)
16 | library(knitr)
17 | opts_chunk$set(comment='.',echo=FALSE, message=FALSE)
18 |
19 | mod <- mread("opg")
20 | om <- omat(mod)
21 | sg <- smat(mod)
22 |
23 | mod %<>% mrgsolve:::collapse_omega() %>% mrgsolve:::collapse_sigma()
24 |
25 | est <- c(TVCL=168,TVVC=2800,TVP1=443,TVP2=269,TVQ1=15.5,
26 | TVQ2=3.02,TVKA=0.0131,TVVMAX=13300,TVKM=6.74,TVFSC=0.0719)
27 |
28 | rse <- c(3,2,16,14,16,13,4,13,11,0)
29 | var <- (rse*est/100)^2
30 |
31 | estt <- c(TVKSYN=0.864,TVKDEG=0.0204,TVIC50=5.38)
32 | rsee <- c(8,6,21)
33 | varr <- (rsee*estt/100)^2
34 |
35 |
36 | theta <- c(est,estt)
37 | Sigma <- diag(c(var,varr))
38 | omega <- as.matrix(omat(mod))
39 | sigma <- as.matrix(smat(mod))
40 | dimnames(omega) <- list(NULL,NULL)
41 | dimnames(sigma) <- list(NULL,NULL)
42 |
43 | #+ echo=TRUE, comment='.'
44 |
45 | ##' # Fixed effect estimates:
46 | #+ echo=FALSE
47 | data_frame(Name = names(theta),
48 | Estimate = theta,
49 | variance = diag(Sigma)) %>% as.data.frame
50 |
51 | ##' # Between subject variability
52 | om
53 |
54 | ##' # Residual error
55 | sg
56 |
57 | ##' # Simulation of posterior
58 | #+ echo=TRUE
59 | simpost <- function(n) {
60 | post <- metrumrg::simpar(n,
61 | theta,
62 | covar=Sigma,
63 | omega=omega,
64 | sigma=sigma,
65 | odf=100,sdf=1000)
66 | post <- post %>% as.data.frame
67 | nam <- names(post)
68 | nam <- sub(".", "", nam, fixed=TRUE)
69 | thetas <- which(grepl("TH",nam))
70 | nam[thetas] <- names(theta)
71 | nam <- sub("OM", "OMEGA",nam,fixed=TRUE)
72 | nam <- sub("SG", "SIGMA",nam,fixed=TRUE)
73 | names(post) <- nam
74 | post
75 | }
76 |
77 | #+ echo=TRUE
78 | set.seed(111)
79 | simpost(10)
80 |
81 | #+ echo=TRUE
82 | if(FALSE) {
83 | set.seed(22222)
84 | saveRDS(simpost(1000), file="opgpost.RDS")
85 | }
86 |
87 | ##' # Session Info
88 | sessionInfo()
89 |
90 |
--------------------------------------------------------------------------------
/233/Input_real_opg.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/233/Input_real_opg.pdf
--------------------------------------------------------------------------------
/233/Model_Accommodations.txt:
--------------------------------------------------------------------------------
1 | ## Full reference to publication
2 | ## Zierhut ML, Gastonguay MR, Martin SW, Vicini P, Bekker PJ, Holloway D, Leese
3 | ## PT, Peterson MC. Population PK-PD model for Fc-osteoprotegerin in healthy
4 | ## postmenopausal women. J Pharmacokinet Pharmacodyn. 2008 Aug;35(4):379-99.
5 | ## doi: 10.1007/s10928-008-9093-5. PubMed PMID: 18633695.
6 | ###### Scenario = 4
7 | ###### Original publication PubMed ID: 18633695
8 | ###### There are no model differences
9 |
10 |
--------------------------------------------------------------------------------
/233/Output_simulated_opg.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/233/Output_simulated_opg.pdf
--------------------------------------------------------------------------------
/233/Vignette_opg.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/233/Vignette_opg.pdf
--------------------------------------------------------------------------------
/233/opgpost.RDS:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/233/opgpost.RDS
--------------------------------------------------------------------------------
/237/237.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_APAP.model",
4 | "Command.txt",
5 | "Model_Accommodations.txt",
6 | "FigOutput.png",
7 | "Output_real_APAP.txt",
8 | "Forward_APAP1.in",
9 | "Real_APAP_data.csv",
10 | "DDMODEL00000237.rdf",
11 | "RawData.R"
12 | ],
13 | "version": 46
14 | }
--------------------------------------------------------------------------------
/237/Command.txt:
--------------------------------------------------------------------------------
1 | ##### Scenario = 4
2 | ##### MCSim version = 5.4.0
3 | ##### Input data = Forward_APAP1.in
4 | ##### Executable model = APAP.model
5 | ##### Output = Output_real_APAP.txt
6 | ######## end block
7 |
8 | ###### Script used as execution command for MCsim ##########
9 | $ makemcsim APAP.model
10 | $ ./mcsim.APAP Forward_APAP1.in
11 |
12 |
13 | # Command in R
14 |
15 | Time<-c(0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0)
16 | CPL_APAP_mcgL <- c(9.2797, 9.4681, 9.2923, 9.0719, 8.7246, 8.3994, 8.1881, 7.892, 7.3309, 6.9294, 6.5891)
17 | CPL_AG_mcgL <- c(8.3935, 9.3632, 9.8072, 9.982, 10.0493, 9.926, 9.7817, 9.552, 9.1014, 8.6473, 8.2504)
18 | CPL_AS_mcgL <- c(8.317, 8.7968, 8.9727, 8.887, 8.7968, 8.539, 8.4138, 8.1712, 7.6798, 7.2098, 6.8372)
19 | CPL_APAP_mcgL <- exp(CPL_APAP_mcgL); CPL_AG_mcgL <- exp(CPL_AG_mcgL); CPL_AS_mcgL <- exp(CPL_AS_mcgL)
20 | APAP_data <- data.frame(Time, CPL_APAP_mcgL, CPL_AG_mcgL, CPL_AS_mcgL)
21 |
22 | write.csv(APAP_data, file = "Real_APAP_data.csv")
23 |
24 | APAP_forward1 <- read.delim("Output_real_APAP.txt", skip = 2)
25 |
26 | png(file="Out.png",width=2000,height=800,res=200)
27 | par(mfrow=c(1,3))
28 | for (i in 2:4) {
29 | plot(APAP_forward1$Time, APAP_forward1[,i], xlab = "Time (hr)", ylab = "",
30 | main = names(APAP_forward1)[i], las = 1, col = "red", lwd = 2,
31 | type = "l")
32 | points(APAP_data$Time, APAP_data[,i], pch=3)
33 | }
34 | dev.off()
35 |
36 |
37 |
--------------------------------------------------------------------------------
/237/DDMODEL00000237.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 |
11 |
12 | Yes
13 | No
14 | Predicting of ADME of APAP and its conjugated metabolites in humans
15 |
16 |
17 |
--------------------------------------------------------------------------------
/237/FigOutput.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/237/FigOutput.png
--------------------------------------------------------------------------------
/237/Forward_APAP1.in:
--------------------------------------------------------------------------------
1 | OutputFile("./Output_simulated_APAP.out");
2 |
3 |
4 | # Mean parameters
5 | lnUGT_VmaxC = 8.2277;
6 | lnCYP_Km = 4.8122;
7 | lnkPAPS_syn = 7.9251;
8 | lnCLC_AS = -2.0404;
9 | lnUGT_Km = 8.2749;
10 | lnTp = -2.0559;
11 | lnSULT_VmaxC = 5.9494;
12 | lnSULT_Ki = 5.9984;
13 | lnKm_AS = 9.7220;
14 | lnCYP_VmaxC = 0.0918;
15 | lnSULT_Km_paps = -1.1493;
16 | lnUGT_Km_GA = -1.4898;
17 | lnCLC_APAP = -4.6564;
18 | lnVmax_AG = 10.9996;
19 | lnCLC_AG = -1.9876;
20 | lnTg = -1.1567;
21 | lnVmax_AS = 13.6788;
22 | lnUGT_Ki = 10.7505;
23 | lnSULT_Km_apap = 6.7507;
24 | lnKm_AG = 9.6067;
25 | lnkGA_syn = 9.0430;
26 |
27 | Simulation { # 1:
28 | # Example with mg dose
29 | #=====================
30 | mgkg_flag = 0;
31 |
32 | OralExp_APAP = NDoses(2, 1 0, 0 0.75);
33 | OralDur_APAP = 0.75;
34 | OralDose_APAP_mg = 1000.0;
35 | lnOralDose_APAP_mg = 6.907755;
36 |
37 | IVExp_APAP = 0.;
38 | IVDose_APAP_mg = 0.;
39 | lnIVDose_APAP_mg = 0.;
40 |
41 | PrintStep(CPL_APAP_mcgL, 0, 14., 0.1);
42 | PrintStep(CPL_AG_mcgL, 0, 14., 0.1);
43 | PrintStep(CPL_AS_mcgL, 0, 14., 0.1);
44 | }
45 |
--------------------------------------------------------------------------------
/237/Model_Accommodations.txt:
--------------------------------------------------------------------------------
1 | ## Full reference to publication
2 | ## Zurlinden TJ, Reisfeld B
3 | ## Physiologically based modeling of the pharmacokinetics of acetaminophen and
4 | ## its major metabolites in humans using a Bayesian population approach. 2016
5 | ## Jun;41(3):267-80.
6 | ###### Scenario = 4
7 | ###### Original publication PubMed ID: 25636597
8 | ###### There are no model differences
--------------------------------------------------------------------------------
/237/RawData.R:
--------------------------------------------------------------------------------
1 | # Experimental data from Jansen et al.(2004) J Pharm Biomed Anal 34:585-593
2 |
3 | Time<-c(0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0)
4 | CPL_APAP_mcgL <- c(9.2797, 9.4681, 9.2923, 9.0719, 8.7246, 8.3994, 8.1881, 7.892, 7.3309, 6.9294, 6.5891)
5 | CPL_AG_mcgL <- c(8.3935, 9.3632, 9.8072, 9.982, 10.0493, 9.926, 9.7817, 9.552, 9.1014, 8.6473, 8.2504)
6 | CPL_AS_mcgL <- c(8.317, 8.7968, 8.9727, 8.887, 8.7968, 8.539, 8.4138, 8.1712, 7.6798, 7.2098, 6.8372)
7 | CPL_APAP_mcgL <- exp(CPL_APAP_mcgL); CPL_AG_mcgL <- exp(CPL_AG_mcgL); CPL_AS_mcgL <- exp(CPL_AS_mcgL)
8 | APAP_cal1.1 <- data.frame(Time, CPL_APAP_mcgL, CPL_AG_mcgL, CPL_AS_mcgL)
9 |
10 | write.csv(data, file = "Real_APAP_data.csv")
--------------------------------------------------------------------------------
/237/Real_APAP_data.csv:
--------------------------------------------------------------------------------
1 | "","Time","CPL_APAP_mcgL","CPL_AG_mcgL","CPL_AS_mcgL"
2 | "1",0.5,10718.2159692886,4418.25455490923,4092.86298301003
3 | "2",1,12940.2773323416,11651.6141145296,6613.04835658425
4 | "3",1.5,10854.1198871802,18164.0564498428,7884.86201846086
5 | "4",2,8707.15168746052,21633.5363842321,7237.27475888943
6 | "5",3,6152.41520519763,23139.583466448,6613.04835658425
7 | "6",4,4444.39930796318,20455.3552990003,5110.23157410655
8 | "7",5,3597.87977659991,17706.7287201038,4508.86167312117
9 | "8",6,2675.79015296837,14072.8121689708,3537.58652140466
10 | "9",8,1526.75523355034,8967.83889355122,2164.18689118262
11 | "10",10,1021.88066724697,5694.75013233772,1352.62171597682
12 | "11",12,727.126161778766,3829.15717801938,931.876224932784
13 |
--------------------------------------------------------------------------------
/238/238.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_run35b_ddm2.mod",
4 | "Readme_ddmore.txt",
5 | "Simulated_simdataDDM.csv",
6 | "DDMODEL00000238.rdf",
7 | "Output_simulated_run35b_ddm2.lst",
8 | "Output_real_run35b.lst",
9 | "Command.txt"
10 | ],
11 | "version": 18
12 | }
--------------------------------------------------------------------------------
/238/Command.txt:
--------------------------------------------------------------------------------
1 | nmfe73 run35b_ddm2.mod run35b_ddm2.lst
--------------------------------------------------------------------------------
/238/DDMODEL00000238.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 | No
8 |
9 | A population PK model for gentamicin TDM in neonates and infants
10 | A 3-compartment PK model with coding for time-varying covariates, and additive and proportional residual error model
11 |
12 |
13 |
14 | Yes
15 |
16 | /
17 |
18 |
19 |
--------------------------------------------------------------------------------
/238/Readme_ddmore.txt:
--------------------------------------------------------------------------------
1 | Description of files:
2 | - run35b.lst = final model .lst file
3 | - command = command used for running the model
4 | - simdataDDM = simulated data using the median values for covariates
5 | - run35b_ddm2.mod = model file using simdataDDM
6 | - run35b_ddm2.lst = output file using simdataDDM
--------------------------------------------------------------------------------
/239/239.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_P241.ctl",
4 | "Simulated_P241.csv",
5 | "Simulate_P241.ctl",
6 | "DDMODEL00000239.rdf",
7 | "Command.txt",
8 | "Output_real_P241.res",
9 | "Output_simulated_P241.res"
10 | ],
11 | "version": 12
12 | }
--------------------------------------------------------------------------------
/239/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Scenario = 4
2 | ###### Original tool version = NONMEM 7.3.0
3 | ###### Input data = Simulated_P241.csv
4 | ###### Executable model = Executable_P241.ctl
5 | ###### Output = Output_simulated_P241.res
6 |
7 | nmfe73 Executable_P241.ctl Output_simulated_P241.res
--------------------------------------------------------------------------------
/240/240.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_MTP.mod",
4 | "Command.txt",
5 | "Output_simulated_MTP.lst",
6 | "Output_real_MTP.lst",
7 | "DDMODEL00000240.rdf",
8 | "Model_Accomodations.txt",
9 | "Simulated_Mtb-H37Rv_In-vitro-NATG.csv"
10 | ],
11 | "version": 12
12 | }
--------------------------------------------------------------------------------
/240/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Prepared and run by Oskar Clewe
2 | ##### Scenario= 4
3 | ##### PsN version= 4.5.3
4 | ##### Original tool version=nm_7.3.0_g
5 | ##### Input data= Original data not shared
6 | ##### Executable model=Executable_MTP.mod
7 | ##### Output=Output_real_MTP.lst
8 | ######## end block
9 |
10 | ###### Script used as execution command for NONMEM via PsN: ##########
11 | execute Executable_MTP.mod
12 |
--------------------------------------------------------------------------------
/240/DDMODEL00000240.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 | Mycobacterium tuberculosis can exist in different states in vitro, which can be denoted as fast multiplying, slow multiplying and non-multiplying. Characterizing the natural growth of M. tuberculosis could provide a framework for accurate characterization of drug effects on the different bacterial states.
9 | No
10 | Yes
11 |
12 |
13 |
14 |
15 |
16 |
17 |
--------------------------------------------------------------------------------
/240/Model_Accomodations.txt:
--------------------------------------------------------------------------------
1 | ## Full reference to publication
2 | ## Clewe O, Aulin L, Hu Y, Coates AR, Simonsson US.
3 | ## A multistate tuberculosis pharmacometric model: a framework for studying anti-
4 | ## tubercular drug effects in vitro.
5 | ## J Antimicrob Chemother. 2016 Apr;71(4):964-74. doi: 10.1093/jac/dkv416. Epub 2015 ## Dec 24.
6 | ###### Scenario = 4
7 | ###### Original publication PubMed ID: 26702921
8 | ###### Model appears in publication with exposure response of rifampicin
9 |
--------------------------------------------------------------------------------
/240/Simulated_Mtb-H37Rv_In-vitro-NATG.csv:
--------------------------------------------------------------------------------
1 | TIME,ID,NDV,DV,EVID,MDV,AMT
2 | 0,1,9775,9.19,0,0,0
3 | 4,1,153430,11.9,0,0,0
4 | 7,1,4417126,15.3,0,0,0
5 | 14,1,88986924,18.3,0,0,0
6 | 35,1,148337404,18.8,0,0,0
7 | 45,1,95343812,18.4,0,0,0
8 | 60,1,37132382,17.4,0,0,0
9 | 70,1,17348211,16.7,0,0,0
10 | 80,1,7826296,15.9,0,0,0
11 | 120,1,1749778,14.4,0,0,0
12 | 200,1,1646232,14.3,0,0,0
--------------------------------------------------------------------------------
/243/243.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_runCOMPEV1_101.mod",
4 | "Executable_runCOMPEV2_005.mod",
5 | "Executable_runEV2_105.ctl",
6 | "BAST_PTTE_modelling.pdf",
7 | "Model_Accommodations.txt",
8 | "BAST_surv_functions.R",
9 | "Command.txt",
10 | "VPC_EV1_1.png",
11 | "VPC_EV1_1_dis.png",
12 | "DDMODEL00000243.rdf",
13 | "Executable_runEV1_201.mod",
14 | "Output_simulated_runEV1_201.res",
15 | "Output_simulated_runEV2_105.res",
16 | "Output_simulated_runCOMPEV1_101.res",
17 | "Executable_runEV2_105.mod",
18 | "VPCs.R",
19 | "Simulated_event_data.csv",
20 | "Output_simulated_runCOMPEV2_005.res"
21 | ],
22 | "version": 13
23 | }
--------------------------------------------------------------------------------
/243/BAST_PTTE_modelling.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/243/BAST_PTTE_modelling.pdf
--------------------------------------------------------------------------------
/243/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Prepared and run by Jon Moss
2 | ##### Scenario= 4
3 | ##### NONMEM version=7.3
4 | ##### Input data= Simulated_event_data.csv
5 | ##### Executable models=
6 | ##### Executable_runCOMPEV1_101.mod
7 | ##### Executable_runCOMPEV2_005.mod
8 | ##### Executable_runEV1_201.mod
9 | ##### Executable_runEV2_105.mod
10 | ##### Output=
11 | ##### Output_simulated_runCOMPEV1_101.res
12 | ##### Output_simulated_runCOMPEV2_005.res
13 | ##### Output_simulated_runEV1_201.res
14 | ##### Output_simulated_runEV2_105.res
15 | ######## end block
16 |
17 | ###### Scripts used as execution command for NONMEM ##########
18 | nmfe73.bat Executable_runCOMPEV1_101.mod Output_simulated_runCOMPEV1_101.res
19 | nmfe73.bat Executable_runCOMPEV2_005.mod Output_simulated_runCOMPEV1_005.res
20 | nmfe73.bat Executable_runEV1_201.mod Output_simulated_runEV1_201.res
21 | nmfe73.bat Executable_runEV2_105.mod Output_simulated_runEV2_105.res
--------------------------------------------------------------------------------
/243/DDMODEL00000243.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 |
11 |
12 | No
13 | No
14 | The Guiding documents and the submitted library of survival models facilitates the simulation of clinical trial outcomes with competing events
15 | Parametric time-to-event modelling and simulation of competing events
16 |
17 |
18 |
--------------------------------------------------------------------------------
/243/Model_Accommodations.txt:
--------------------------------------------------------------------------------
1 | ###### Model differences = there is not yet a publication to go along with the model
2 |
3 |
4 | ###### Reasons = We are seeking feedback from the DDMoRe community
--------------------------------------------------------------------------------
/243/VPC_EV1_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/243/VPC_EV1_1.png
--------------------------------------------------------------------------------
/243/VPC_EV1_1_dis.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/243/VPC_EV1_1_dis.png
--------------------------------------------------------------------------------
/244/244.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_Rif_PK.mod",
4 | "Output_simulated_Rif_PK.lst",
5 | "Output_real_Rif_PK.lst",
6 | "Simulated_Rif_PK_data.csv",
7 | "DDMODEL00000244.rdf",
8 | "Command.txt"
9 | ],
10 | "version": 3
11 | }
--------------------------------------------------------------------------------
/244/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Prepared and run by Robin Svensson
2 | ##### Scenario= 4
3 | ##### PsN version=4.6.8
4 | ##### Original tool version=nm_7.3.0_g
5 | ##### Input data= Original data not shared
6 | ##### Executable model=Executable_Rif_PK.mod
7 | ##### Output=Output_real_Rif_PK.lst
8 | ######## end block
9 |
10 | ###### Script used as execution command for NONMEM via PsN: ##########
11 | execute Executable_Rif_PK.mod
--------------------------------------------------------------------------------
/244/DDMODEL00000244.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 | The pharmacokinetics of high dose rifampicin was described using one-compartment disposition kinetics. The absorption was described using the transit absorption compartment model. The data included several non-linearities. Firstly, an enzyme tunr-over model was included to take into account the autoinduction for rifampicin. A Michaelis-Menten relationship was included for clearance in addition to a dose-dependency in the bioavailability where the bioavailability increased at higher doses.
8 |
9 | No difference
10 | Mechanistic Understanding, Dose & Schedule Selection and Label Recommendation, Variability Sources in PK and PD (CYP, Renal, Biomarkers)
11 |
12 | No
13 | Yes
14 |
15 |
16 |
17 |
18 |
19 |
--------------------------------------------------------------------------------
/245/245.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_run111.mod",
4 | "Output_real_run111.lst",
5 | "DDMODEL00000245.rdf",
6 | "Command.txt",
7 | "Output_simulated_Executable_run111.lst",
8 | "Simulated_comb2.dta"
9 | ],
10 | "version": 6
11 | }
--------------------------------------------------------------------------------
/245/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Scenario = 4
2 | ###### PsN version = 4.7.0 to run the Executable model
3 | ###### Original tool version 1 = NONMEM version 7.3 to run the Executable model
4 | ###### Original tool version 2 = NONMEM version 5.1 to run the original model
5 | ###### Input data = Simulated_comb2.dta
6 | ###### Executable model = Executable_run111.mod
7 | ###### Output1 = Output_simulated_Executable_run111.lst
8 | ###### Output2 = Output_real_run111.lst
9 | ###### Script used as execution command for NONMEM via PsN:
10 | execute Executable_run111.mod
11 |
12 |
--------------------------------------------------------------------------------
/245/Executable_run111.mod:
--------------------------------------------------------------------------------
1 | ;Rerun to estimate parameters at CLCR 70 and WT 75
2 | ;;1. Aim with run
3 | ;; Based on run93
4 | ;; Adding BLOCK(2)
5 | ;;2. Based on run31 from NXY-0004
6 | ;;3. Structural model
7 | ;; Two-compartment model
8 | ;;4. Covariate model
9 | ;; CLCR on CL (nonlinear)
10 | ;; WT on V1
11 | ;;5. Interindividual model
12 | ;; Exponential IIV for CL, V1,
13 | ;; and correlation between CL and V1
14 | ;;6. Residual variability
15 | ;; Proportional (but add w logtr data)
16 | ;;7. Estimation
17 | ;; FOCE
18 | ;;8. Other
19 | ;; Simulated_comb2.dta
20 | $PROB NXY-059 Analysis, SA-NXY-0004 and 0003
21 | $INPUT ID OID=DROP CENT=DROP PNO=DROP TARG DAT2=DROP
22 | TIME AMT DUR=DROP RATE ODV DV FU FLAG=DROP
23 | SEX AGE WT HT BMI RACE SCR CLCR FLA2 STUD
24 | $DATA /home/pm_common/Model_database/DDMoRe_Prep/Jonsson-S-2005_NXY059/Data/Simulated_comb2.dta IGNORE=@
25 | $SUBROUTINES ADVAN3 TRANS4
26 | $PK
27 | CREA = CLCR
28 | IF(CLCR.EQ.-99) CREA = 61.48
29 | IF(CLCR.EQ.-99.AND.ID.EQ.10) CREA = 34.55
30 | IF(CLCR.EQ.-99.AND.ID.EQ.21) CREA = 124.22
31 | IF(CREA.LE.40) CLCLCR = 0
32 | IF(CREA.GT.40) CLCLCR = THETA(6)*(CREA-40)
33 |
34 | IF(WT.EQ.-99) THEN
35 | V1WT = 0
36 | ELSE
37 | V1WT = THETA(7)*(WT-76.00)
38 | ENDIF
39 |
40 | CLCOV=1+CLCLCR
41 | V1COV=1+V1WT
42 |
43 | TVCL = THETA(5)*CLCOV
44 | TVV1 = THETA(2)*V1COV
45 | TVQ = THETA(3)
46 | TVV2 = THETA(4)
47 |
48 | CL = TVCL*EXP(ETA(1))
49 | V1 = TVV1*EXP(ETA(2))
50 | Q = TVQ
51 | V2 = TVV2
52 |
53 | S1 = V1
54 |
55 | $ERROR
56 | NPRE = F+0.000001
57 | IPRED = LOG(F+0.000001)
58 | IRES = DV-IPRED
59 | W = THETA(1)
60 | IWRES = IRES/W
61 | Y = IPRED+EPS(1)*W
62 |
63 |
64 | $THETA (0,0.1650) ;1 prop error
65 | $THETA (0,7.8500) ;2 V1
66 | $THETA (0,13.100) ;3 Q
67 | $THETA (0,7.2000) ;4 V2
68 | $THETA (0,2.8800) ;5 TVCL
69 | $THETA (-0.00972,0.0192,0.0505) ;6 CLCR on CLR
70 | $THETA (-0.020,0.0184,0.027) ;7 WT on V1
71 |
72 | $OMEGA BLOCK(2) 0.0536 0.02 0.160 ;IIV CL, V1
73 |
74 | $SIGMA 1 FIX
75 | $EST PRINT=2 METHOD=1 SIG=3 MSFO=msfb111 NOABORT MAX=0
76 | ;;COV
77 | ;;$TAB ID TIME TARG STUD ODV NPRE IPRED IWRES ONEHEADER NOPRINT FILE=sdtab111
78 | ;;$TAB ID V1 ETA(1) CL ETA(2) TVCL TVV1 ONEHEADER NOPRINT FILE=patab111
79 | ;;$TAB ID FU AGE WT HT BMI SCR CLCR ONEHEADER NOPRINT FILE=cotab111
80 | ;;$TAB ID SEX RACE ONEHEADER NOPRINT FILE=catab111
81 |
--------------------------------------------------------------------------------
/247/247.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_OriginalModelCode.mod",
4 | "Output_real_OriginalModelCode.lst",
5 | "Output_simulated_OriginalModelCode.lst",
6 | "DDMODEL00000247.rdf",
7 | "Command.txt",
8 | "Simulated_MidaCriticallyIll.csv"
9 | ],
10 | "version": 10
11 | }
--------------------------------------------------------------------------------
/247/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Scenario = 4
2 | ###### PsN version = 4.4.0
3 | ###### Original tool version = NM73
4 | ###### Input data = Simulated_MidaCriticallyIllChildren.csv
5 | ###### Executable model = Executable_OriginalModelCode.mod
6 | ###### Output = Executable_OriginalModelCode.lst
7 |
8 |
--------------------------------------------------------------------------------
/247/DDMODEL00000247.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 | Item response theory (IRT) was used to quantify the effect of morphine on pain around endotrachial succtioning in newborns that are mechanically ventilated.
10 |
11 |
12 | Yes
13 |
14 | No
15 |
16 |
17 |
--------------------------------------------------------------------------------
/247/Executable_OriginalModelCode.mod:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/247/Executable_OriginalModelCode.mod
--------------------------------------------------------------------------------
/248/248.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_OriginalModelCode.mod",
4 | "Simulated_PaediatricMorphinePK.csv",
5 | "Output_real_run4.lst",
6 | "DDMODEL00000248.rdf",
7 | "Output_simulated_OriginalModel Code.lst",
8 | "Command.txt"
9 | ],
10 | "version": 10
11 | }
--------------------------------------------------------------------------------
/248/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Scenario = 4
2 | ###### PsN version = 4.4.0
3 | ###### Original tool version = NM73
4 | ###### Input data = Simulated_PaediatricMorphinePK.csv
5 | ###### Executable model = Executable_OriginalModelCode.mod
6 | ###### Output = Output_Simulated_OriginalModelCode.lst
7 |
8 |
--------------------------------------------------------------------------------
/248/DDMODEL00000248.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 |
11 |
12 | Yes
13 | No
14 | Population PK model for morphine in postoperative newborns (including preterm newborns), infants and toddlers younger than three years of age.
15 |
16 |
17 |
--------------------------------------------------------------------------------
/249/249.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_OriginalModelCode.mod",
4 | "Output_simulated_OriginalModelCode.lst",
5 | "Output_real_OriginalModelCode.lst",
6 | "Simulated_MidaCriticallyIll.csv",
7 | "Command.txt",
8 | "DDMODEL00000249.rdf"
9 | ],
10 | "version": 10
11 | }
--------------------------------------------------------------------------------
/249/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Scenario = 4
2 | ###### PsN version = 4.4.0
3 | ###### Original tool version = NM73
4 | ###### Input data = Simulated_MidaCriticallyIllChildren.csv
5 | ###### Executable model = Executable_OriginalModelCode.mod
6 | ###### Output = Executable_OriginalModelCode.lst
7 |
8 |
--------------------------------------------------------------------------------
/249/DDMODEL00000249.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 |
11 |
12 | Yes
13 | No
14 | Midazolam PK in critically ill pediatric patients, using inflammation (quantified as CRP concentrations) and number of organs failing are most important covariates
15 |
16 |
17 |
--------------------------------------------------------------------------------
/250/250.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_FinalModelCode.mod",
4 | "Command.txt",
5 | "Simulated_DatafileMidaObesity.csv",
6 | "DDMODEL00000250.rdf",
7 | "Executable_AccessWeightModelCode.mod",
8 | "Output_real_AccessWeightModelCode.lst",
9 | "Output_simulated_FinalModelCode.lst",
10 | "Output_real_FinalModelCode.lst",
11 | "Output_simulated_AccessWeightModelCode.lst"
12 | ],
13 | "version": 10
14 | }
--------------------------------------------------------------------------------
/250/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Scenario = 4
2 | ###### PsN version = 4.4.0
3 | ###### Original tool version = NM73
4 | ###### Input data = SimulatedDatafileMidaObesity.csv
5 | ###### Executable model = Executable_FinalModelCode.mod
6 | ###### Output = Output_Real_FinalModelCode.lst
7 |
8 |
--------------------------------------------------------------------------------
/250/DDMODEL00000250.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 |
11 |
12 | Yes
13 | No
14 | The clearance of cytochrome P450 (CYP) 3A substrates is believed to be reduced in children, in patients with inflammation and obese patients. This study investigates the influence of combinations of these variables by quantifying the clearance of midazolam in obese adolescents and morbidly obese adults.
15 |
16 |
17 |
--------------------------------------------------------------------------------
/250/Executable_AccessWeightModelCode.mod:
--------------------------------------------------------------------------------
1 | $PROBLEM Mida PK in obese adolescents and adults with access weight quantification
2 | $INPUT ID ;<=30 = adults, >30 = adolescent
3 | TIME ;in min
4 | AMT ;in microgram
5 | RATE ;in microgram / min
6 | DV ;in microgram / L
7 | MDV
8 | CMT
9 | TBW ;total bodyweight in kg
10 | WTAL ;weight for age and length in kg
11 | WTAC ;access weight
12 |
13 | $DATA FinalDatasetMidaObeseAccessWeight.csv IGNORE=@
14 | $SUBROUTINES ADVAN6 TOL=5
15 |
16 | $MODEL
17 | COMP=(PODOSE)
18 | COMP=(CENTRAL)
19 | COMP=(PERIP)
20 | COMP=(TRANSIT1)
21 | COMP=(TRANSIT2)
22 | COMP=(TRANSIT3)
23 | COMP=(TRANSIT4)
24 | COMP=(TRANSIT5)
25 |
26 | $PK
27 | IF(ID.LE.30) TVCL=THETA(1)
28 | IF(ID.GT.30) TVCL=(THETA(1)*(WTAL/70)**THETA(7))+(THETA(8)*WTAC)
29 | CL=TVCL*EXP(ETA(1)) ;clearance L/min
30 | F1=THETA(2)*EXP(ETA(2)) ;bioavailability
31 | V2=THETA(3)*EXP(ETA(5)) ;central volume L
32 | Q=THETA(4)*EXP(ETA(3)) ;intercompartmental CL L/min
33 | IF(ID.LE.30) TVV3=THETA(5)*(TBW/141.8)**THETA(9)
34 | IF(ID.GT.30) TVV3=THETA(5)
35 | V3= TVV3*EXP(ETA(6)) ;peripheral volume L
36 | KA= THETA(6)*EXP(ETA(4)) ;absoprtion rate min-1
37 | KTR= KA ;transit rate min-1
38 |
39 | S2=V2
40 | S3=V3
41 |
42 | K14=KA
43 | K45=KTR
44 | K56=KTR
45 | K67=KTR
46 | K78=KTR
47 | K82=KTR
48 | K20=CL/V2
49 | K23=Q/V2
50 | K32=Q/V3
51 |
52 | $DES
53 | DADT(1)= -K14*A(1)
54 | DADT(2)= KTR*A(8) -K23*A(2) +K32*A(3) -K20*A(2)
55 | DADT(3)= K23*A(2) -K32*A(3)
56 | DADT(4)= K14*A(1) -KTR*A(4)
57 | DADT(5)= KTR*A(4) -KTR*A(5)
58 | DADT(6)= KTR*A(5) -KTR*A(6)
59 | DADT(7)= KTR*A(6) -KTR*A(7)
60 | DADT(8)= KTR*A(7) -KTR*A(8)
61 |
62 | $ERROR
63 | IPRED=F
64 | Y=F*(1+ERR(1)) ;proportional error model
65 |
66 | IRES=DV-IPRED
67 | DEL=0
68 | IF(IPRED.EQ.0)DEL=1
69 | IWRES=(1-DEL)*IRES/(IPRED+DEL)
70 |
71 | $THETA
72 | (0, 0.447) ;CL ADULTS (L/min)
73 | (0, 0.56) ;F1
74 | (0, 53.7) ;V2 (L)
75 | (0, 1.15) ;Q (L/min)
76 | (0, 168) ;V3 (L)
77 | (0, 0.114) ;KA
78 | (0.75) FIX ;POW CL
79 | (0, 0.00698) ;overweight
80 | (0, 3.22) ;TBW POW V3 ADULTS
81 |
82 | $OMEGA
83 | 0.0497 ;CL
84 | 0.143 ;F1
85 | 0.175 ;Q
86 | 0.226 ;KA
87 | 0.259 ;V2
88 | 0.146 ;V3
89 |
90 | $SIGMA
91 | 0.0892 ;porportional
92 |
93 | $EST SIGDIG=3 MAXEVAL=9999 PRINT=5 NOABORT METHOD=1 INTERACTION POSTHOC
94 | $COV
95 | $TABLE ID TIME IPRED IWRES CWRES CMT NOPRINT ONEHEADER NOAPPEND FILE=sdtab143
96 |
97 |
--------------------------------------------------------------------------------
/250/Executable_FinalModelCode.mod:
--------------------------------------------------------------------------------
1 | $PROBLEM Mida PK in obese adolescents and adults
2 | $INPUT ID ;<=30 = adults, >30 = adolescent
3 | TIME ;in min
4 | AMT ;in microgram
5 | RATE ;in microgram / min
6 | DV ;in microgram / L
7 | MDV
8 | CMT
9 | TBW ;total bodyweight in kg
10 | WTAL ;weight for age and length in kg
11 | WTAC ;access weight
12 | $DATA SimulatedDatafileMidaObesity.csv IGNORE=@
13 | $SUBROUTINES ADVAN6 TOL=5
14 |
15 | $MODEL
16 | COMP=(PODOSE)
17 | COMP=(CENTRAL)
18 | COMP=(PERIP)
19 | COMP=(TRANSIT1)
20 | COMP=(TRANSIT2)
21 | COMP=(TRANSIT3)
22 | COMP=(TRANSIT4)
23 | COMP=(TRANSIT5)
24 |
25 | $PK
26 | IF(ID.LE.30) TVCL=THETA(1)
27 | IF(ID.GT.30) TVCL=THETA(7)*(TBW/104.7)**THETA(8)
28 | CL=TVCL*EXP(ETA(1)) ;clearance L/min
29 | F1=THETA(2)*EXP(ETA(2)) ;bioavailability
30 | V2=THETA(3)*EXP(ETA(5)) ;central volume L
31 | Q=THETA(4)*EXP(ETA(3)) ;intercompartmental CL L/min
32 | IF(ID.LE.30) TVV3=THETA(5)*(TBW/141.8)**THETA(9)
33 | IF(ID.GT.30) TVV3=THETA(5)
34 | V3= TVV3*EXP(ETA(6)) ;peripheral volume L
35 | KA= THETA(6)*EXP(ETA(4)) ;absoprtion rate min-1
36 | KTR= KA ;transit rate min-1
37 |
38 | S2=V2
39 | S3=V3
40 |
41 | K14=KA
42 | K45=KTR
43 | K56=KTR
44 | K67=KTR
45 | K78=KTR
46 | K82=KTR
47 | K20=CL/V2
48 | K23=Q/V2
49 | K32=Q/V3
50 |
51 | $DES
52 | DADT(1)= -K14*A(1)
53 | DADT(2)= KTR*A(8) -K23*A(2) +K32*A(3) -K20*A(2)
54 | DADT(3)= K23*A(2) -K32*A(3)
55 | DADT(4)= K14*A(1) -KTR*A(4)
56 | DADT(5)= KTR*A(4) -KTR*A(5)
57 | DADT(6)= KTR*A(5) -KTR*A(6)
58 | DADT(7)= KTR*A(6) -KTR*A(7)
59 | DADT(8)= KTR*A(7) -KTR*A(8)
60 |
61 | $ERROR
62 | IPRED=F
63 | Y=F*(1+ERR(1)) ;proportional error model
64 |
65 | IRES=DV-IPRED
66 | DEL=0
67 | IF(IPRED.EQ.0)DEL=1
68 | IWRES=(1-DEL)*IRES/(IPRED+DEL)
69 |
70 | $THETA
71 | (0, 0.442) ;CL adults
72 | (0, 0.562) ;F1
73 | (0, 55.2) ;V2 (L)
74 | (0, 1.14) ;Q (L/min)
75 | (0, 172) ;V3 (L)
76 | (0, 0.115) ;KA
77 | (0, 0.71) ;CL adolsecents
78 | (0, 1.2) ;tbw pow CL adolescents
79 | (0, 3.28) ;tbw POW V3 adults
80 |
81 | $OMEGA
82 | 0.0433 ;CL
83 | 0.143 ;F1
84 | 0.165 ;Q
85 | 0.219 ;KA
86 | 0.294 ;V2
87 | 0.164 ;V3
88 |
89 | $SIGMA
90 | 0.0888 ;proportional
91 |
92 | $EST SIGDIG=3 MAXEVAL=9999 PRINT=5 NOABORT METHOD=1 INTERACTION POSTHOC
93 | $COV
94 | $TABLE ID TIME IPRED IWRES CWRES MDV CMT NOPRINT ONEHEADER NOAPPEND FILE=sdtab00134
--------------------------------------------------------------------------------
/256/256.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_OriginalModelCode.mod",
4 | "Simulated_PhenobarbitalNewbornsPK.csv",
5 | "Command.txt",
6 | "Output_simulated_OriginalModelCode.lst",
7 | "Output_real_run522.lst",
8 | "DDMODEL00000256.rdf"
9 | ],
10 | "version": 4
11 | }
--------------------------------------------------------------------------------
/256/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Scenario = 4
2 | ###### PsN version = 4.4.0
3 | ###### Original tool version = NM73
4 | ###### Input data = Simulated_PhenobarbitalNewbornsPK.csv
5 | ###### Executable model = Executable_OriginalModelCode.mod
6 | ###### Output = Output_real_run522.lst
7 |
8 |
--------------------------------------------------------------------------------
/256/DDMODEL00000256.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 |
11 |
12 | Yes
13 | No
14 | The PK of phenobarbital was quantified in preterm and term newborns, to optimize drug dosing
15 |
16 |
17 |
--------------------------------------------------------------------------------
/256/Executable_OriginalModelCode.mod:
--------------------------------------------------------------------------------
1 | $PROBLEM Phenobarbital PK in newborns
2 | $INPUT ID
3 | DOSE=AMT ;in mg
4 | CONC=DV ;in mg/L
5 | WEIGHT ;in kg
6 | CMT ;1 oral depot, 2 central
7 | TIME ;in hours
8 | RATE ;in mg/h
9 | BWEIGHT ;birthweight in kg
10 | AGE ;postnatal age in days
11 | MDV
12 | $DATA SimulatedPhenobarbitalNewbornsPK.csv IGNORE=@
13 | $SUBROUTINE ADVAN2 TRANS2
14 | $PK
15 |
16 | ;;; VWEIGHT-DEFINITION START
17 | VWEIGHT = ( 1 + THETA(6)*(WEIGHT - 2.70))
18 | ;;; VWEIGHT-DEFINITION END
19 |
20 | ;;; V-RELATION START
21 | VCOV=VWEIGHT
22 | ;;; V-RELATION END
23 |
24 |
25 | ;;; CLBW-DEFINITION START
26 | CLBW = ( 1 + THETA(5)*(BWEIGHT - 2.59))
27 | ;;; CLBW-DEFINITION END
28 |
29 | ;;; CLAGE-DEFINITION START
30 | CLAGE = ( 1 + THETA(4)*(AGE - 4.50))
31 | ;;; CLAGE-DEFINITION END
32 |
33 | ;;; CL-RELATION START
34 | CLCOV=CLAGE*CLBW
35 | ;;; CL-RELATION END
36 |
37 |
38 | TVCL = THETA(1) * CLCOV
39 | TVV = THETA(2) * VCOV
40 | CL = TVCL*EXP(ETA(1))
41 | V = TVV*EXP(ETA(2))
42 | F1 = THETA(8)
43 | KA = THETA(7)
44 | S2 = V
45 | K = CL/V
46 |
47 | $ERROR
48 | IPRED = F
49 | W = SQRT(THETA(3) * IPRED**2)
50 | IWRES = (DV-IPRED) / W
51 | Y= IPRED + EPS(1) * W
52 |
53 | $THETA
54 | (0, 0.00909) ;CL
55 | (0, 2.38) ;V
56 | (0, 0.0258) ; prop error
57 | (-0.01, 0.0533,0.2) ; CLAGE
58 | (-0.205, 0.369,0.5) ; CLBW
59 | (-0.555, 0.309,0.444) ; VWEIGHT
60 | (50) FIX ; KA
61 | (0, 0.594,1) ; F
62 |
63 | $OMEGA 0.0898
64 | $OMEGA 0.0504
65 |
66 | $SIGMA 1 FIX
67 |
68 | $ESTIMATION METHOD=1 INTERACTION MAXEVALS=9990 POSTHOC
69 | $COVARIANCE
70 | $TABLE ID TIME PRED IPRED RES WRES IWRES CWRES K KA CL V ETA1 ETA2
71 | ONEHEADER NOPRINT NOAPPEND FILE=sdtab524
72 |
73 |
--------------------------------------------------------------------------------
/259/259.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_MTP-GPDI.mod",
4 | "DDMODEL00000259.rdf",
5 | "Model_Accomodations.txt",
6 | "Output_real_MTP-GPDI.lst",
7 | "Output_simulated_MTP-GPDI.lst",
8 | "Command.txt",
9 | "Simulated_Mtb-B1585_In-vitro-NATG-RIF-INH-EMB.csv"
10 | ],
11 | "version": 11
12 | }
--------------------------------------------------------------------------------
/259/Command.txt:
--------------------------------------------------------------------------------
1 | /opt/local64/PsN/bin/execute Executable_MTP-GPDI.mod -dir=Executable_MTP-GPDI
2 |
--------------------------------------------------------------------------------
/259/DDMODEL00000259.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 |
11 |
12 | Yes
13 | No
14 | In vitro exposure response and PD interaction identification
15 |
16 |
17 |
--------------------------------------------------------------------------------
/259/Model_Accomodations.txt:
--------------------------------------------------------------------------------
1 | ## Full reference to publication
2 | ## Clewe O, Wicha SG, de Vogel CP, de Steenwinkel JEM, Simonsson US.
3 | ## A model-informed pre-clinical approach for prediction of clinical pharmacodynamic
4 | ## interactions of anti-tuberculosis drug combinations
5 | ## J Antimicrob Chemother. 2017 Accepted
6 | ###### Scenario = 4
7 | ###### Original publication PubMed ID:
8 |
--------------------------------------------------------------------------------
/261/261.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_simulated_KPD_CTC.count_PSA.mod",
4 | "Output_real_SAEM_KPD_CTC.count_PSA.lst",
5 | "Command.txt",
6 | "Simulated_KPD_CTC.count_PSA.csv",
7 | "DDMODEL00000261.rdf",
8 | "Output_real_COV_KPD_CTC.count_PSA.lst",
9 | "Output_simulated_KPD_CTC.count_PSA.lst"
10 | ],
11 | "version": 3
12 | }
--------------------------------------------------------------------------------
/261/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Prepared and run by Melanie Wilbaux
2 | ##### PsN version = 4.7.0
3 | ##### Original tool version = nm_7.3.0
4 | ##### Input data = Original data not shared
5 | ##### Simulated data: Simulated_KPD_CTC.count_PSA.csv
6 | ##### Executable model = Executable_simulated_KPD_CTC.count_PSA.mod
7 | ##### Output = Output_simulated_KPD_CTC.count_PSA.lst
8 | ######## end block
9 |
10 | ###### Script used as execution command for NONMEM via PsN: ##########
11 | execute Executable_simulated_KPD_CTC.count_PSA.mod
12 |
13 |
14 | ###### Nonmem outputs from the original model: ##########
15 | # 2 Nonmem outputs: (i) Parameter estimations using SAEM: Output_real_SAEM_KPD_CTC.count_PSA.lst
16 | # (ii) Covariance and uncertainty estimation ($COV): Output_real_COV_KPD_CTC.count_PSA.lst
--------------------------------------------------------------------------------
/261/DDMODEL00000261.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 |
11 |
12 | Yes
13 | No
14 | Assessment of treatment efficacy in metastatic castrationresistant prostate cancer (mCRPC) is limited by the frequent development of nonmeasurable bone metastases. The count of circulating tumor cells (CTCs) is emerging as a promising surrogate marker, which could replace the widely used prostate-specific antigen (PSA). CTC kinetic monitoring during treatment could be used to predict treatment efficacy in patients with mCRPC. However, relationships between the kinetics of CTCs and PSA have never been assessed. We built a semimechanistic population model of CTC and PSA kinetics during treatment.
15 |
16 |
17 |
--------------------------------------------------------------------------------
/261/Output_real_COV_KPD_CTC.count_PSA.lst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/261/Output_real_COV_KPD_CTC.count_PSA.lst
--------------------------------------------------------------------------------
/261/Output_real_SAEM_KPD_CTC.count_PSA.lst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/261/Output_real_SAEM_KPD_CTC.count_PSA.lst
--------------------------------------------------------------------------------
/262/262.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_simulated_CPHPC_dataset.ctl",
4 | "Output_real_CPHPC.lst",
5 | "Output_simulated_CPHPC_dataset.lst",
6 | "Simulated_CPHPC_dataset.csv",
7 | "Command.txt",
8 | "DDMODEL00000262.rdf"
9 | ],
10 | "version": 3
11 | }
--------------------------------------------------------------------------------
/262/Command.txt:
--------------------------------------------------------------------------------
1 |
2 | #example of text file for the CPHPC TMDD model published by T Sahota, CPT Pharmacometrics Syst Pharmacol. 2015 Feb; 4(2): e15.
3 | ########################################################################
4 | ########################################################################
5 | #### Original tool version NM 7.3
6 | #### Input data: Simulated_CPHPC_dataset.csv
7 | #### Executable model: Executable_simulated_CPHPC_dataset.ctl
8 | #### Output: Output_simulated_CPHPC_dataset.lst
9 | #### Script used as execution command for NONMEM via PsN
10 | execute 5_run1.mod
11 |
--------------------------------------------------------------------------------
/262/DDMODEL00000262.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 | The drug (R)-1-[6-[(R)-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC, GSK2315698, Ro 63-8695) has been shown to deplete serum amyloid P (SAP) in plasma in studies in healthy volunteers (CPH113776) and patients with amyloidosis (CPH114527). In this modelling work, we have characterized the exposure-response relationship between CPHPC and plasma SAP concentration, both in healthy volunteers and in patients with systemic amyloidosis, and used the results to develop a robust pharmacokinetic-pharmacodynamic (PK-PD) model that predicts suitable dosing regimens for CPHPC in individual subjects.
9 |
10 |
11 |
12 |
13 | None
14 | No
15 |
16 | Yes
17 |
18 |
19 |
--------------------------------------------------------------------------------
/262/Output_simulated_CPHPC_dataset.lst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/262/Output_simulated_CPHPC_dataset.lst
--------------------------------------------------------------------------------
/267/267.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_OriginalModelCode.mod",
4 | "Command.txt",
5 | "Output_real_OriginalModelCode.lst",
6 | "DDMODEL00000267.rdf",
7 | "Simulated_APAP_YoungWomen.csv",
8 | "Output_simulated_OriginalModelCode.lst"
9 | ],
10 | "version": 10
11 | }
--------------------------------------------------------------------------------
/267/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Scenario = 4
2 | ###### PsN version = 4.4.0
3 | ###### Original tool version = NM73
4 | ###### Input data = Simulated_APAP_YoungWomen.csv
5 | ###### Executable model = Executable_OriginalModelCode.mod
6 | ###### Output = Output_Simulated_OriginalModelCode.lst
7 |
8 |
--------------------------------------------------------------------------------
/267/DDMODEL00000267.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 |
11 |
12 | Yes
13 | No
14 | This model quantifies the pharmacokinetics of paracetamol and its glucuronide and sulphate metabolites in young women. The impact of pregnancy, time post partum and use of oral contraceptives was investigated.
15 |
16 |
17 |
--------------------------------------------------------------------------------
/268/20120910- DDMORE-WP1.3. Specificationdocument_remoxipride ECMdL.doc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/268/20120910- DDMORE-WP1.3. Specificationdocument_remoxipride ECMdL.doc
--------------------------------------------------------------------------------
/268/268.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_PK_rats.txt",
4 | "Output_simulated_PK_rats.lst",
5 | "Output_real_PK_rats.lst",
6 | "Command.txt",
7 | "DDMODEL00000268.rdf",
8 | "Simulated_PK_rats.csv",
9 | "20120910- DDMORE-WP1.3. Specificationdocument_remoxipride ECMdL.doc"
10 | ],
11 | "version": 7
12 | }
--------------------------------------------------------------------------------
/268/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Scenario = 4
2 | ###### PsNversion (if any) = 4.6
3 | ###### Original tool version= NONMEM version 7.3
4 | ###### Input data= Simulated_PK_rats
5 | ###### Executable model= Executable_PK_rats.txt
6 | ###### Output= Output_simulated_PK_rats.lst
7 |
8 |
9 | ###### Script used as execution command for NONMEM via PsN: #############
10 | execute Executable_PK_rats.txt
11 |
--------------------------------------------------------------------------------
/269/269.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_ModelI1_Morphine.mod",
4 | "Output_real_ModelII_MM3G.lst",
5 | "Output_simulated_ModelI_Morphine.lst",
6 | "Executable_ModelII_MM3G.mod",
7 | "Simulated_DataModel1_Morphine.csv",
8 | "Output_simulated_ModelII_MM3G.lst",
9 | "Command.txt",
10 | "DDMODEL00000269.rdf",
11 | "Output_real_ModelI_Morphine.lst",
12 | "Simulated_DataModel2_MM3G.csv"
13 | ],
14 | "version": 10
15 | }
--------------------------------------------------------------------------------
/269/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Scenario = 4
2 | ###### PsN version = 4.4.0
3 | ###### Original tool version = NM73
4 | ###### Input data = Simulated_DataModel1_Morphine.csv
5 | ###### Executable model = Executable_ModelI_Morphine.mod
6 | ###### Output = Output_simulated_ModelI_Morphine.lst
7 |
8 |
--------------------------------------------------------------------------------
/269/DDMODEL00000269.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 |
11 |
12 | Yes
13 | No
14 | Morphine PK in paediatric population using bodyweight-dependent exponent (BDE) model
15 |
16 |
17 |
--------------------------------------------------------------------------------
/271/271.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_ParacetamolInNewborns.mod",
4 | "Simulated_ParacetamolPKnewborns.csv",
5 | "Output_simulated_ParacetamolInNewborns.lst",
6 | "DDMODEL00000271.rdf",
7 | "Model_Accommodations.txt",
8 | "Command.txt",
9 | "Output_real_ParacetamolInNewborns.lst"
10 | ],
11 | "version": 9
12 | }
--------------------------------------------------------------------------------
/271/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Scenario = 4
2 | ###### PsN version = 4.4.0
3 | ###### Original tool version = NM73
4 | ###### Input data = Simulated_ParacetamolPKnewborns.csv
5 | ###### Executable model = Executable_ParacetamolInNewborns.mod
6 | ###### Output = Output_simulated_ParacetamolInNewborns.lst
7 |
8 |
--------------------------------------------------------------------------------
/271/DDMODEL00000271.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 |
11 |
12 | The publication mentiones additive errors for the recovered amounts in urine, while these were in fact proportional. The uploaded code has the correct error model sturcture
13 | No
14 | No
15 | The model describes the PK of paracetamol and its sulphate and glucuronide metabolite in plasma and urine for term and preterm newborns.
16 |
17 |
18 |
--------------------------------------------------------------------------------
/271/Model_Accommodations.txt:
--------------------------------------------------------------------------------
1 | The publication mentiones additive errors for the recovered amounts in urine, while these were in fact proportional.
2 | The uploaded code has the correct error model sturcture
--------------------------------------------------------------------------------
/273/273.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_Simulated_Dupilumab.ctl",
4 | "Command.txt",
5 | "DDMODEL00000273.rdf",
6 | "Simulated_Dupilumab.CSV",
7 | "Output_simulated_Dupilumab.lst"
8 | ],
9 | "version": 8
10 | }
--------------------------------------------------------------------------------
/273/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Scenario = 4
2 | ###### Wings for Nonmem = 4.4.0
3 | ###### Original tool version = NM73
4 | ###### Input data = Simulated_Duplimab.csv
5 | ###### Executable model = nmgo/Executable_Simulated_Dupulimab
6 | ###### Output = Output_simulated_Dupulimab.lst
7 |
8 |
9 |
10 |
--------------------------------------------------------------------------------
/273/DDMODEL00000273.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 | No
10 |
11 | The PK models was based on human data can be used to predict concentrations of functional dupilumab in future human studies, support regulatory responses, compare PK parameters of dupilumab to PK parameters of other monoclonal antibodies, support dose selection, test for weight, gender and disease as covariates, conduct allometric scaling, and develop a population PD model.
12 |
13 |
14 | Yes
15 |
16 |
17 |
--------------------------------------------------------------------------------
/274/274.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Terranova_2017_oncology_TGI.xml",
4 | "Terranova_2017_oncology_TGI.ctl",
5 | "Model_Accomodations.txt",
6 | "Executable_Terranova_2017_oncology_TGI_HM.ctl",
7 | "DDMODEL00000274.rdf",
8 | "Command.txt",
9 | "Terranova_2017_oncology_TGI.mdl",
10 | "Simulated_DEB_TGI_data.csv",
11 | "Output_simulated_Terranova_2017.pdf"
12 | ],
13 | "version": 5
14 | }
--------------------------------------------------------------------------------
/274/Model_Accomodations.txt:
--------------------------------------------------------------------------------
1 | Is the model implemented as in the original publication?
2 | Yes, even if among the drugs considered in the paper, only PACLITAXEL has been used
--------------------------------------------------------------------------------
/274/Output_simulated_Terranova_2017.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/274/Output_simulated_Terranova_2017.pdf
--------------------------------------------------------------------------------
/274/Simulated_DEB_TGI_data.csv:
--------------------------------------------------------------------------------
1 | ID,TIME,DV,DVID,AMT,EVID,CMT
2 | 1,0,.,1,.,0,.
3 | 1,0,.,2,.,0,.
4 | 1,8,.,1,3e+07,1,1
5 | 1,8,0.2041,2,.,0,.
6 | 1,8,22.4209,1,.,0,.
7 | 1,9,0.4059,2,.,0,.
8 | 1,9,21.3441,1,.,0,.
9 | 1,10,0.4499,2,.,0,.
10 | 1,10,20.5501,1,.,0,.
11 | 1,11,0.4097,2,.,0,.
12 | 1,11,20.7153,1,.,0,.
13 | 1,12,.,1,3e+07,1,1
14 | 1,12,0.4707,2,.,0,.
15 | 1,12,20.1543,1,.,0,.
16 | 1,13,0.4247,2,.,0,.
17 | 1,13,19.3253,1,.,0,.
18 | 1,14,0.4621,2,.,0,.
19 | 1,14,18.9129,1,.,0,.
20 | 1,15,0.5139,2,.,0,.
21 | 1,15,19.1111,1,.,0,.
22 | 1,16,.,1,3e+07,1,1
23 | 1,16,0.5928,2,.,0,.
24 | 1,16,19.5322,1,.,0,.
25 | 1,17,0.7459,2,.,0,.
26 | 1,17,18.6291,1,.,0,.
27 | 1,18,0.8213,2,.,0,.
28 | 1,18,18.6787,1,.,0,.
29 | 1,19,0.9453,2,.,0,.
30 | 1,19,17.6797,1,.,0,.
31 | 1,20,1.0855,2,.,0,.
32 | 1,20,18.0395,1,.,0,.
33 | 1,22,1.4833,2,.,0,.
34 | 1,22,17.7667,1,.,0,.
35 | 1,24,18.2298,1,.,0,.
36 | 1,24,2.2703,2,.,0,.
37 | 1,27,18.3924,1,.,0,.
38 | 1,27,3.2326,2,.,0,.
39 | 2,0,.,1,.,0,.
40 | 2,0,.,2,.,0,.
41 | 2,8,0.2031,2,.,0,.
42 | 2,8,22.0938,1,.,0,.
43 | 2,9,0.5086,2,.,0,.
44 | 2,9,22.1164,1,.,0,.
45 | 2,10,0.7596,2,.,0,.
46 | 2,10,21.8654,1,.,0,.
47 | 2,11,1.0716,2,.,0,.
48 | 2,11,21.6784,1,.,0,.
49 | 2,12,1.5361,2,.,0,.
50 | 2,12,20.9639,1,.,0,.
51 | 2,13,1.9591,2,.,0,.
52 | 2,13,21.0409,1,.,0,.
53 | 2,14,2.4343,2,.,0,.
54 | 2,14,20.8158,1,.,0,.
55 | 2,15,20.4351,1,.,0,.
56 | 2,15,3.1899,2,.,0,.
57 | 2,16,20.1315,1,.,0,.
58 | 2,16,3.7435,2,.,0,.
59 | 2,17,19.7076,1,.,0,.
60 | 2,17,4.4174,2,.,0,.
61 |
--------------------------------------------------------------------------------
/280/280.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_real_TB_Rifampicin_PK_Wilkins_2008.mod",
4 | "Simulated_TB_Rifampicin_PK_Wilkins_2008.csv",
5 | "catab.simulated_TB_Rifampicin_PK_Wilkins_2008",
6 | "TB_Rifampicin_PK_Wilkins_2008_simulated.phi",
7 | "Output_real_TB_Rifampicin_PK_Wilkins_2008",
8 | "cotab.simulated_TB_Rifampicin_PK_Wilkins_2008",
9 | "Command.txt",
10 | "TB_Rifampicin_PK_Wilkins_2008_simulated.lst",
11 | "TB_Rifampicin_PK_Wilkins_2008_simulated.shm",
12 | "TB_Rifampicin_PK_Wilkins_2008_simulated.xml",
13 | "TB_Rifampicin_PK_Wilkins_2008_real.lst",
14 | "TB_Rifampicin_PK_Wilkins_2008_simulated.shk",
15 | "TB_Rifampicin_PK_Wilkins_2008_simulated.cor",
16 | "Output_simulated_TB_Rifampicin_PK_Wilkins_2008",
17 | "Executable_simulated_TB_Rifampicin_PK_Wilkins_2008.mod",
18 | "sdtab.simulated_TB_Rifampicin_PK_Wilkins_2008",
19 | "TB_Rifampicin_PK_Wilkins_2008_simulated.cov",
20 | "TB_Rifampicin_PK_Wilkins_2008_simulated.ext",
21 | "TB_Rifampicin_PK_Wilkins_2008_simulated.coi",
22 | "DDMODEL00000280.rdf",
23 | "patab.simulated_TB_Rifampicin_PK_Wilkins_2008"
24 | ],
25 | "version": 3
26 | }
--------------------------------------------------------------------------------
/280/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Scenario = 4
2 | ###### PsN version = 4.6.0
3 | ###### Original tool version = 7.3.0
4 | ###### Input data = Simulated_TB_Rifampicin_PK_Wilkins_2008.csv
5 | ###### Executable model = Executable_simulated_TB_Rifampicin_PK_Wilkins_2008.mod
6 | ###### Output = Output_simulated_TB_Rifampicin_PK_Wilkins_2008
7 |
8 | execute Executable_simulated_TB_Rifampicin_PK_Wilkins_2008.mod -min_retries=5
9 |
--------------------------------------------------------------------------------
/280/DDMODEL00000280.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 | Population pharmacokinetics of rifampin in tuberculosis patients
8 | Yes
9 |
10 | No
11 |
12 | None
13 | One-compartment PK model with first-order elimination and complex absorption, implemented using a multiple-dose transit model. IIV on CL, V, mean transit time and number of transit compartments. IOV on CL and mean transit time. Combined additive and proportional residual error.
14 |
15 |
16 |
17 |
18 |
19 |
--------------------------------------------------------------------------------
/280/Output_real_TB_Rifampicin_PK_Wilkins_2008:
--------------------------------------------------------------------------------
1 | Parameter name Parameter estimate (unit) Relative standard error (%)
2 | [as in the model] [or Standard error; as given in publication]
3 |
4 | CL/F 19.2 (L/h) 1.29%
5 | V/F 53.2 (L) 1.16%
6 | ka 1.15 (/h) 3.91%
7 | MTT 0.424 (h) 3.82%
8 | n 7.13 8.42%
9 | SDC on MTT 1.04 8.78%
10 | SDC on CL 0.236 9.63%
11 |
12 | IIV on CL/F 0.279 (variance) 5.97%
13 | covariance CL-V 0.217 (covariance) 7.45%
14 | IIV on V/F 0.188 (variance) 10.9%
15 | IIV on ka 0.439 (variance) 11.0%
16 | IIV on MTT 0.361 (variance) 7.87%
17 | IIV on n 2.44 (variance) 13.7%
18 | IOV on CL 0.0508 (variance) 10.9%
19 | IOV on MTT 0.461 (variance) 11.3%
20 |
21 | Additive residual error 0.0508 (mg/L) 5.41%
22 | Proportional residual error 0.222 (proportion) 2.89%
23 |
--------------------------------------------------------------------------------
/280/Output_simulated_TB_Rifampicin_PK_Wilkins_2008:
--------------------------------------------------------------------------------
1 | Parameter name Parameter estimate (unit) Relative standard error (%)
2 | [as in the model] [or Standard error; as given in publication]
3 |
4 | CL/F 21.9 (L/h) 3.44%
5 | V/F 59.2 (L) 3.22%
6 | ka 1.00 (/h) 6.82%
7 | MTT 0.455 (h) 5.31%
8 | n 1.98 13.4%
9 | SDC on MTT 0.701 15.0%
10 | SDC on CL 0.174 20.8%
11 |
12 | IIV on CL/F 0.233 (variance) 9.27%
13 | covariance CL-V 0.203 (covariance) 9.73%
14 | IIV on V/F 0.182 (variance) 11.1%
15 | IIV on ka 0.412 (variance) 15.2%
16 | IIV on MTT 0.215 (variance) 21.2%
17 | IIV on n 0.967 (variance) 20.4%
18 | IOV on CL 0.0490 (variance) 8.15%
19 | IOV on MTT 0.422 (variance) 7.41%
20 |
21 | Additive residual error 0.0792 (mg/L) 7.71%
22 | Proportional residual error 0.237 (proportion) 2.61%
23 |
--------------------------------------------------------------------------------
/280/TB_Rifampicin_PK_Wilkins_2008_simulated.shk:
--------------------------------------------------------------------------------
1 | TABLE NO. 1: First Order Conditional Estimation with Interaction: Problem=1 Subproblem=0 Superproblem1=0 Iteration1=0 Superproblem2=0 Iteration2=0
2 | TYPE SUBPOP ETA(1) ETA(2) ETA(3) ETA(4) ETA(5) ETA(6) ETA(7) ETA(8) ETA(9) ETA(10) ETA(11) ETA(12) ETA(13) ETA(14) ETA(15) ETA(16) ETA(17)
3 | 1 1 -3.98846E-02 -4.10351E-02 1.71610E-01 1.35214E-01 5.26918E-03 1.42824E-02 1.25317E-02 5.42385E-03 4.00342E-03 7.39156E-04 5.12870E-02 2.64835E-02 3.68036E-02 6.54723E-02 3.67596E-02 4.82770E-02 3.04045E-01
4 | 2 1 2.92451E-02 2.56770E-02 3.23682E-02 1.94480E-02 8.61347E-03 9.49508E-03 9.32174E-03 8.41200E-03 7.99103E-03 8.35570E-03 2.28809E-02 2.38664E-02 2.56204E-02 2.41248E-02 2.13255E-02 2.18257E-02 3.50939E-02
5 | 3 1 1.72628E-01 1.10015E-01 1.14887E-07 3.60908E-12 5.40712E-01 1.32534E-01 1.78835E-01 5.19072E-01 6.16379E-01 9.29510E-01 2.49950E-02 2.67146E-01 1.50862E-01 6.64970E-03 8.47548E-02 2.69714E-02 4.62447E-18
6 | 4 1 4.01424E+00 4.57081E+00 2.01005E+01 3.36056E+01 3.83451E+01 3.20346E+01 3.32753E+01 3.97873E+01 4.28005E+01 4.01902E+01 4.42110E+01 4.18081E+01 3.75314E+01 4.11780E+01 4.80033E+01 4.67837E+01 4.34640E+01
7 | 5 1 3.44190E+01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
8 | 6 1 3.89127E+00 4.70260E+00 2.25468E+01 3.52403E+01 3.74758E+01 3.43688E+01 3.56786E+01 3.83925E+01 3.51787E+01 3.77336E+01 4.18077E+01 4.01318E+01 3.99214E+01 4.27271E+01 4.08871E+01 4.25750E+01 4.91960E+01
9 | 7 1 2.50000E+02 2.50000E+02 2.50000E+02 2.50000E+02 2.50000E+02 2.50000E+02 2.50000E+02 2.50000E+02 2.50000E+02 2.50000E+02 2.50000E+02 2.50000E+02 2.50000E+02 2.50000E+02 2.50000E+02 2.50000E+02 2.50000E+02
10 |
--------------------------------------------------------------------------------
/281/281.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_ddmore_final_run249.ctl",
4 | "Model_Accommodations.txt",
5 | "DDMODEL00000281.rdf",
6 | "Command.txt",
7 | "Output_simulated_ddmore_final_run249.res",
8 | "Output_real_data_original_final_run249.res",
9 | "Simulated_Lid_B04_ddmore.csv"
10 | ],
11 | "version": 3
12 | }
--------------------------------------------------------------------------------
/281/Command.txt:
--------------------------------------------------------------------------------
1 | nmfe73clear.bat Executable_ddmore_final_run249.ctl Output_simulated_ddmore_final_run249.res
--------------------------------------------------------------------------------
/281/DDMODEL00000281.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 |
11 |
12 | Yes
13 | No
14 | Model for parent drug and three metabolites
15 | Population PK model
16 |
17 |
18 |
--------------------------------------------------------------------------------
/281/Model_Accommodations.txt:
--------------------------------------------------------------------------------
1 | The uploaded model and the model in the publication used as reference do not differ.
--------------------------------------------------------------------------------
/284/284.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_Simulated_IMNIVO_PPK.CTL",
4 | "Output_simulated_SIMNIVO_PPK.lst",
5 | "Command.txt",
6 | "NIVO-PPKFinalModel-CPT.CTL",
7 | "Simulated_pkdata1_dataset.csv",
8 | "Output_real_Nivo-PPK.lst",
9 | "DDMODEL00000284.rdf"
10 | ],
11 | "version": 11
12 | }
--------------------------------------------------------------------------------
/284/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Scenario = 4
2 | ###### Wings for Nonmem = 4.4.0
3 | ###### Original tool version = NM73
4 | ###### Input data = Simulated_pkdata1.csv
5 | ###### Executable model = nmgo/Executable_Simulated_Imnivo_ppk.ctl
6 | ###### Output = Output_simulated_Simnivo_ppk.lst
7 |
8 |
9 | NMGO Executable_Simulated_IMNIVO_PPK
10 |
--------------------------------------------------------------------------------
/284/DDMODEL00000284.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 | No
8 |
9 | This analysis assessed the clinical relevance of demographic and pathophysiological covariates affecting PK of nivolumab. The model also explored the PK of nivolumab across tumor types and was used to determine individual exposures in patients to support exposureâ?? response analyses for target populations. This analysis serves as an example for characterizing time-varying clearance for monoclonal antibodies.
10 | None
11 | Yes
12 | Nivolumab pharmacokinetics is linear with a time-varying clearance. A full covariate model was developed to assess covariate effects on pharmacokinetic parameters. Nivolumab clearance and volume of distribution increase with body weight. The final model included the effects of baseline performance status (PS), baseline body weight, and baseline estimated glomerular filtration rate (eGFR), sex, and race on clearance, and effects of baseline body weight and sex on volume of distribution in the central compartment. Sex, PS, baseline eGFR, age, race, baseline lactate dehydrogenase, mild hepatic impairment, tumor type, tumor burden, and programmed death ligand-1 expression had a significant but not clinically relevant (<20%) effect on nivolumab clearance.
13 |
14 |
15 |
16 |
17 |
18 |
19 |
--------------------------------------------------------------------------------
/285/285.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_Laouenant_2015_CPTPSP_hb_RBV",
4 | "Simulated_Laouenant_2015_CPTPSP_hb_RBV.txt",
5 | "DDMODEL00000285.rdf",
6 | "Output_real_Laouenant_2015_CPTPSP_hb_RBV",
7 | "Command.txt",
8 | "Output_simulated_Laouenant_2015_CPTPSP_hb_RBV"
9 | ],
10 | "version": 6
11 | }
--------------------------------------------------------------------------------
/285/Command.txt:
--------------------------------------------------------------------------------
1 | use the monolix 2016R1 interface
--------------------------------------------------------------------------------
/285/DDMODEL00000285.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 |
11 |
12 | Empirical Bayes estimates of individual values of ribavirin PK parameters (exponential model of trough concentrations at steady state) are used as regressors to link the concentration of ribavirin with the inhibition of hemoglobin synthesis (turnover model)
13 | Yes
14 | No
15 |
16 |
17 |
--------------------------------------------------------------------------------
/285/Executable_Laouenant_2015_CPTPSP_hb_RBV:
--------------------------------------------------------------------------------
1 | DESCRIPTION: Model for hb-RBV Modcupic
2 |
3 | INPUT:
4 |
5 | parameter = {hb0,Kout,EC50}
6 | regressor = {css_mode,k_mode}
7 |
8 | EQUATION:
9 |
10 | if t <= 0
11 | riba = 0
12 | else
13 | riba = css_mode*(1-exp(-k_mode*t))
14 | end
15 |
16 | hb_0 = hb0
17 |
18 | ddt_hb = hb0*Kout*(1-(riba/(riba+EC50)))-Kout*hb
19 |
20 | OUTPUT:
21 | output = hb
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
--------------------------------------------------------------------------------
/285/Output_real_Laouenant_2015_CPTPSP_hb_RBV:
--------------------------------------------------------------------------------
1 | ******************************************************************
2 | * hb.mlxtran
3 | * November 06, 2013 at 16:52:44
4 | ******************************************************************
5 |
6 | Estimation of the population parameters
7 |
8 | parameter s.e. (lin) r.s.e.(%)
9 | hb0 : 14.3 0.36 3
10 | Kout : 0.124 0.033 27
11 | EC50 : 8.28e+003 8.4e+002 10
12 |
13 | omega_hb0 : 0.0853 0.019 22
14 | omega_Kout : 0.383 0.45 118
15 | omega_EC50 : 0.301 0.087 29
16 |
17 | a : 0.737 0.073 10
18 |
19 | ______________________________________________
20 | correlation matrix of the estimates(linearization)
21 |
22 | hb0 1
23 | Kout 0.16 1
24 | EC50 -0.21 0.11 1
25 |
26 | Eigenvalues (min, max, max/min): 0.67 1.2 1.8
27 |
28 | omega_hb0 1
29 | omega_Kout -0.02 1
30 | omega_EC50 -0.05 0.03 1
31 | a -0.05 -0.33 -0.15 1
32 |
33 | Eigenvalues (min, max, max/min): 0.64 1.4 2.2
34 |
35 |
36 | Population parameters and Fisher Information Matrix estimation...
37 |
38 | Elapsed time is 22 seconds.
39 | CPU time is 28.2 seconds.
40 | ______________________________________________________________
41 |
42 | Log-likelihood Estimation by linearization
43 |
44 | -2 x log-likelihood: 252.93
45 | Akaike Information Criteria (AIC): 266.93
46 | Bayesian Information Criteria (BIC): 271.88
47 | ______________________________________________________________
48 |
49 |
--------------------------------------------------------------------------------
/285/Output_simulated_Laouenant_2015_CPTPSP_hb_RBV:
--------------------------------------------------------------------------------
1 | ******************************************************************
2 | * project.mat
3 | * April 24, 2018 at 14:59:20
4 | * Monolix version: 4.4.0
5 | ******************************************************************
6 |
7 | Estimation of the population parameters
8 |
9 | parameter s.e. (lin) r.s.e.(%)
10 | hb0_pop : 14.2 0.31 2
11 | Kout_pop : 0.258 0.11 43
12 | EC50_pop : 9.37e+003 1.1e+003 11
13 |
14 | omega_hb0 : 0.0606 0.017 29
15 | omega_Kout : 0.538 0.69 129
16 | omega_EC50 : 0.301 0.097 32
17 |
18 | a : 0.868 0.082 9
19 |
20 | ______________________________________________
21 | correlation matrix of the estimates(linearization)
22 |
23 | hb0_pop 1
24 | Kout_pop 0.2 1
25 | EC50_pop -0.4 -0.03 1
26 |
27 | Eigenvalues (min, max, max/min): 0.57 1.5 2.6
28 |
29 | omega_hb0 1
30 | omega_Kout -0.02 1
31 | omega_EC50 -0.14 0.04 1
32 | a -0.09 -0.27 -0.14 1
33 |
34 | Eigenvalues (min, max, max/min): 0.66 1.3 2
35 |
36 |
37 | Population parameters and Fisher Information Matrix estimation...
38 |
39 | Elapsed time is 13.5 seconds.
40 | CPU time is 31.2 seconds.
41 |
--------------------------------------------------------------------------------
/290/290.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_simulated_CPathAD.mod",
4 | "Simulated_data_CPathAD.csv",
5 | "Command.txt",
6 | "Output_real_CPathAD.lst",
7 | "DDMODEL00000290.rdf",
8 | "Output_simulated_CPathAD.lst"
9 | ],
10 | "version": 5
11 | }
--------------------------------------------------------------------------------
/290/Command.txt:
--------------------------------------------------------------------------------
1 | # Example on a text file with executable original code, here example is NONMEM
2 | ommented lines
3 | # this file is mandatory for submission scenario 1 and 2 and 4.
4 | ###################### if the executable model is written in original language #####
5 | ###################### please specify the block below
6 | ###### Scenario = 4
7 | ###### PsNversion (if any) = 4.7.0
8 | ###### Original tool version= NM 7.4
9 | ###### Input data= Simulated_data_CPathAD.csv
10 | ###### Executable model= Executable_simulated_CPathAD.mod
11 | ###### Output= Output_simulated_CPathAD.lst
12 | ###################### end block
13 | ###### Script used as execution command for NONMEM via PsN: #############
14 | C:\Perl64\bin/execute -parafile=pirana_auto_mpi.pnm -nodes=3 Executable_simulated_CPathAD.mod
15 |
--------------------------------------------------------------------------------
/290/DDMODEL00000290.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 | No
10 | Yes
11 |
12 | See publication at PMID 25168488
13 | An updated Alzheimer's disease progression model: incorporating non-linearity, beta regression, and a third-level random effect in NONMEM. For access to the real individual clinical trial data go to https://codr.c-path.org/
14 |
15 |
16 |
17 |
18 |
19 |
20 |
--------------------------------------------------------------------------------
/294/294.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_Paracetamol_Zebrafish_345dpf.mod",
4 | "Command.txt",
5 | "DDMODEL00000294.rdf",
6 | "Output_real_Paracetamol_Zebrafish_345dpf.lst",
7 | "Real_Paracetamol_Zebrafish_345dpf.csv"
8 | ],
9 | "version": 14
10 | }
--------------------------------------------------------------------------------
/294/Command.txt:
--------------------------------------------------------------------------------
1 | execute Executable_Paracetamol_Zebrafish_345dpf.mod
--------------------------------------------------------------------------------
/294/DDMODEL00000294.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 | No
9 | Yes
10 |
11 | Impact of age on absorption and elimination of paracetamol by zebrafish larvae
12 |
13 |
14 | Zebrafish larvae of 3, 4, and 5 dpf have been treated with 1 mM paracetamol in surrounding medium for designated times after which internal exposure is quantified in homogenates (destructive sampling). Model identifies age as covariate on absorption (discrete, changed between 3 and 4 dpf) and on elimination (power relation, 17.5% increased elimination per day post fertilisation). Error model is combination of additive and proportional.
15 |
16 |
17 |
--------------------------------------------------------------------------------
/294/Executable_Paracetamol_Zebrafish_345dpf.mod:
--------------------------------------------------------------------------------
1 | ;; x1. Author: R.C. van Wijk (r.c.van.wijk@lacdr.leidenuniv.nl)
2 | ;; 3. Label: Base and covariate model
3 | ;; 4. Dataset: Zebrafish larvae exposed to 1 mM paracetamol at 3, 4, or 5 dpf
4 | ;; Description: Paracetamol PK model of 3-4-5 dpf zebrafish larvae, AGE as covariate on KA between 3 and 4dpf, and on K25 for all ages, prop and additive error
5 | $PROBLEM PK
6 | $INPUT ID TIME AMT DV EVID MDV CMT BQL AGE
7 | $DATA Real_Paracetamol_Zebrafish_345dpf.csv IGNORE=@ IGNORE=(BQL.EQ.1)
8 |
9 | ; units
10 | ; TIME = min
11 | ; DV = pmole / larva
12 | ; CL = central volume / min (V = fixed)
13 | ; V = total larval volume
14 | ; kA = pmole / min
15 |
16 | $SUBROUTINE ADVAN13 TOL=9
17 | $MODEL COMP ; CMT 1 dosing compartment
18 | COMP ; CMT 2 central paracetamol in larva
19 | $PK
20 | TVK12 = THETA(2) ;0-order absorption
21 | IF(AGE.GT.3) TVK12 = THETA(2) * (1 + THETA(3)) ;age-dependent K12 absorption
22 | TVK25 = THETA(1) * EXP(ETA(1)) ;1-order elimination
23 |
24 | K12 = TVK12
25 | K25 = TVK25 * ((1 + THETA(4)) ** (AGE - 3)) ;age-dependent K25 rate of elimination
26 |
27 | ;base parameters
28 | K25_BASE = THETA(1)
29 | K12_BASE = THETA(2)
30 | ;covariate parameters
31 | K12_COVAGE = THETA(3)
32 | K25_COVAGE = THETA(4)
33 |
34 | $DES
35 | DADT(1) = 0 ;constant infusion
36 | DADT(2) = K12 * A(1) - K25 * A(2)
37 |
38 | $ERROR
39 | IPRED = F
40 | Y = IPRED * (1 + EPS(1)) + EPS(2) ; prop and add error
41 | IRES = DV - IPRED
42 |
43 | $THETA (0,0.0192529) ; K25
44 | $THETA (0,0.289485) ; K12
45 | $THETA (0,1.06385) ; AGE_K12
46 | $THETA (0,0.174529) ; AGE_K25
47 | $OMEGA 0 FIX ; IIV K25, undistinguishable from residual variability due to destructive sampling
48 | $SIGMA 0.10906 ; prop error
49 | $SIGMA 0.0084383 ; add error
50 | $ESTIMATION METHOD=1 MAXEVAL=2000 NOABORT PRINT=5 SIG=3 POSTHOC
51 | $COVARIANCE PRINT=E
52 | $TABLE ID TIME DV IPRED PRED CWRES NOAPPEND NOPRINT ONEHEADER
53 | FILE=sdtab001
54 | $TABLE ID K25 K12 K12_COVAGE K25_COVAGE K12_BASE K25_BASE AGE
55 | NOPRINT NOAPPEND ONEHEADER FILE=patab001
56 |
57 |
--------------------------------------------------------------------------------
/295/295.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_CMS_colistin_PK_CRRT.mod",
4 | "Simulated_Data_CMS_colistin_PK_CRRT.csv",
5 | "Command.txt",
6 | "Output_simulated_CMS_colistin_PK_CRRT - Copie.lst",
7 | "DDMODEL00000295.rdf",
8 | "Model_Accommodations.txt",
9 | "Output_real_CMS_colistin_PK_CRRT.lst"
10 | ],
11 | "version": 12
12 | }
--------------------------------------------------------------------------------
/295/Command.txt:
--------------------------------------------------------------------------------
1 | execute Executable_CMS_colistin_PK.mod Output_real_CMS_colistin_PK.lst
--------------------------------------------------------------------------------
/295/Model_Accommodations.txt:
--------------------------------------------------------------------------------
1 | There are no model differences with the publication referenced
--------------------------------------------------------------------------------
/297/297.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_run1.mod",
4 | "Output_simulated_run1.lst",
5 | "Simulated_run1.csv",
6 | "DDMODEL00000297.rdf",
7 | "Command.txt"
8 | ],
9 | "version": 33
10 | }
--------------------------------------------------------------------------------
/297/Command.txt:
--------------------------------------------------------------------------------
1 | C:\Perl64\bin/execute Executable_run1.mod
2 |
--------------------------------------------------------------------------------
/297/DDMODEL00000297.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 |
11 | Yes
12 | No
13 | Acquiring a malaria infection during pregnancy has been associated with adverse health outcomes for both the mother and the foetus. The aim of this model was to describe the pharmacokinetic properties of artesunate and its metabolite dihydroartemisinin in non-pregnant and pregnant women
14 | None
15 |
16 | A detailed explanation of the model can be found in the published manuscript, Population pharmacokinetics of artesunate and dihydroartemisinin in pregnant and non-pregnant women with uncomplicated Plasmodium falciparum malaria in Burkina Faso (published at Wellcome Open Research)
17 |
18 |
19 |
--------------------------------------------------------------------------------
/297/Simulated_run1.csv:
--------------------------------------------------------------------------------
1 | #ID,DATE,TIME,DV,ODV,OODV,WT,EVID,MDV,OMDV,AMT,FLAG,CMT,CMT2,BQL,PREG ,PARA,PARL,SORT,HB,AST,ALT,BIL,EGA
2 | 1,10-07-08,14:03,.,.,0.569170565,51.5,0,1,0,0,1,2,1,1,1,810,6.697034248,1,9.1,20,20.3,0.45,5
3 | 1,10-07-08,14:03,.,.,0.97543622,51.5,0,1,0,0,2,3,2,1,1,810,6.697034248,2,9.1,20,20.3,0.45,5
4 | 1,10-07-08,14:20,.,.,.,51.5,1,1,1,520264.2943,0,1,1,0,1,810,6.697034248,3,9.1,20,20.3,0.45,5
5 | 1,10-07-08,14:36,29,3.36729583,3.36729583,51.5,0,0,0,0,1,2,1,0,1,810,6.697034248,4,9.1,20,20.3,0.45,5
6 | 1,10-07-08,14:36,75,4.317488114,4.317488114,51.5,0,0,0,0,2,3,2,0,1,810,6.697034248,5,9.1,20,20.3,0.45,5
7 | 1,10-07-08,14:51,75,4.317488114,4.317488114,51.5,0,0,0,0,1,2,1,0,1,810,6.697034248,6,9.1,20,20.3,0.45,5
8 | 1,10-07-08,14:51,97,4.574710979,4.574710979,51.5,0,0,0,0,2,3,2,0,1,810,6.697034248,7,9.1,20,20.3,0.45,5
9 | 1,10-07-08,15:20,30,3.401197382,3.401197382,51.5,0,0,0,0,1,2,1,0,1,810,6.697034248,8,9.1,20,20.3,0.45,5
10 | 1,10-07-08,15:20,9,2.197224577,2.197224577,51.5,0,0,0,0,2,3,2,0,1,810,6.697034248,9,9.1,20,20.3,0.45,5
11 | 1,10-07-08,16:22,13,2.564949357,2.564949357,51.5,0,0,0,0,1,2,1,0,1,810,6.697034248,10,9.1,20,20.3,0.45,5
12 | 1,10-07-08,16:22,30,3.401197382,3.401197382,51.5,0,0,0,0,2,3,2,0,1,810,6.697034248,11,9.1,20,20.3,0.45,5
13 | 1,10-07-08,17:23,23,3.135494216,3.135494216,51.5,0,0,0,0,1,2,1,0,1,810,6.697034248,12,9.1,20,20.3,0.45,5
14 | 1,10-07-08,17:23,99,4.59511985,4.59511985,51.5,0,0,0,0,2,3,2,0,1,810,6.697034248,13,9.1,20,20.3,0.45,5
15 | 1,10-07-08,18:21,.,.,0.569170565,51.5,0,1,0,0,1,2,1,1,1,810,6.697034248,14,9.1,20,20.3,0.45,5
16 | 1,10-07-08,18:21,30,3.401197382,3.401197382,51.5,0,0,0,0,2,3,2,0,1,810,6.697034248,15,9.1,20,20.3,0.45,5
17 | 1,10-07-08,19:22,.,.,0.569170565,51.5,0,1,0,0,1,2,1,1,1,810,6.697034248,16,9.1,20,20.3,0.45,5
18 | 1,10-07-08,19:22,27,3.295836866,3.295836866,51.5,0,0,0,0,2,3,2,0,1,810,6.697034248,17,9.1,20,20.3,0.45,5
19 | 1,10-07-08,20:21,.,.,0.569170565,51.5,0,1,0,0,1,2,1,1,1,810,6.697034248,18,9.1,20,20.3,0.45,5
20 | 1,10-07-08,20:21,75,4.317488114,4.317488114,51.5,0,0,0,0,2,3,2,0,1,810,6.697034248,19,9.1,20,20.3,0.45,5
21 | 1,10-07-08,22:20,.,.,0.569170565,51.5,0,1,0,0,1,2,1,1,1,810,6.697034248,20,9.1,20,20.3,0.45,5
22 | 1,10-07-08,22:20,93,4.532599493,4.532599493,51.5,0,0,0,0,2,3,2,0,1,810,6.697034248,21,9.1,20,20.3,0.45,5
23 | 1,10-08-08,0:21,.,.,0.569170565,51.5,0,1,0,0,1,2,1,1,1,810,6.697034248,22,9.1,20,20.3,0.45,5
24 | 1,10-08-08,0:21,.,.,0.97543622,51.5,0,1,0,0,2,3,2,1,1,810,6.697034248,23,9.1,20,20.3,0.45,5
25 | 1,10-08-08,2:20,.,.,0.569170565,51.5,0,1,0,0,1,2,1,1,1,810,6.697034248,24,9.1,20,20.3,0.45,5
26 | 1,10-08-08,2:20,.,.,0.97543622,51.5,0,1,0,0,2,3,2,1,1,810,6.697034248,25,9.1,20,20.3,0.45,5
27 | 1,10-14-08,14:20,.,.,.,51.5,2,1,1,0,0,1,1,0,1,810,6.697034248,3,9.1,20,20.3,0.45,5
28 |
--------------------------------------------------------------------------------
/298/298.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_sultiame_nonlinear_PK.mod",
4 | "Output_real_sultiame_nonlinear_PK.lst",
5 | "Output_simulated_sultiame_nonlinear_PK.lst",
6 | "Command.txt",
7 | "DDMODEL00000298.rdf",
8 | "Simulated_data_PK_sultiame.csv",
9 | "Model_Accomodations.txt"
10 | ],
11 | "version": 16
12 | }
--------------------------------------------------------------------------------
/298/Command.txt:
--------------------------------------------------------------------------------
1 | ###### Scenario = 4
2 | ###### PsN version =
3 | ###### Original tool version =
4 | ###### Input data =
5 | ###### Executable model =
6 | ###### Output =
7 |
8 | execute Executable_sultiame_nonlinear_PK.mod
--------------------------------------------------------------------------------
/298/DDMODEL00000298.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 | There are no model differences with the publication that is under review
8 |
9 | Non-linear distribution in erythrocytes
10 |
11 |
12 | No
13 | Theoretical model and differential equations will be available in Figure 1 of the publication (under submission)
14 |
15 |
16 | Yes
17 |
18 |
19 |
--------------------------------------------------------------------------------
/298/Model_Accomodations.txt:
--------------------------------------------------------------------------------
1 | There are no model differences with the publication that is under submission.
--------------------------------------------------------------------------------
/299/299.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_Misspecification Example using Nonlinear MEM V3.sas",
4 | "Simulated_dataset generator output.log",
5 | "Simulated_Dataset generator.sas",
6 | "Misspecification Example Using LMEM V3.log",
7 | "Command.txt",
8 | "DDMODEL00000299.rdf",
9 | "Misspecification Example Using Nonlinear MEM V3.log",
10 | "ReadMe-Case Study of a Misspecified Model V5.docx",
11 | "Simulated_concqt.sas7bdat",
12 | "Description_files.txt",
13 | "Misspecification Example Using Nonlinear MEM V3.htm",
14 | "Misspecification Example Using LMEM V3.htm",
15 | "Output_simulated_Misspecification Example Using LMEM V3.lst",
16 | "Executable_Misspecification Example using LMEM V3.sas",
17 | "Output_simulated_Misspecification Example Using Nonlinear MEM V3.lst"
18 | ],
19 | "version": 3
20 | }
--------------------------------------------------------------------------------
/299/Command.txt:
--------------------------------------------------------------------------------
1 | # for this Model entry there is no command line as the SAS code was directly executed in SAS
2 |
--------------------------------------------------------------------------------
/299/Description_files.txt:
--------------------------------------------------------------------------------
1 | # This file explains what is in the model entry:
2 |
3 | - Simulated_concqt.sas7dbat: simulated data generated with Simulated_Dataset generator.sas
4 |
5 | - Executable_Misspecification Example using LMEM V3: linear mixed effect model with mispecification
6 |
7 | - Executable_Misspecification Example using Nonlinear MEM V3 : non linear model without mispecification
8 |
9 | - ReadMe: describe the analysis
10 |
11 |
12 |
--------------------------------------------------------------------------------
/299/Misspecification Example Using LMEM V3.htm:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 | Sorry, that page doesn’t exist!
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
22 |
23 |
Sorry, that page doesn’t exist!
24 |
25 |
26 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
--------------------------------------------------------------------------------
/299/Misspecification Example Using Nonlinear MEM V3.htm:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 | Sorry, that page doesn’t exist!
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
22 |
23 |
Sorry, that page doesn’t exist!
24 |
25 |
26 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
--------------------------------------------------------------------------------
/299/ReadMe-Case Study of a Misspecified Model V5.docx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/299/ReadMe-Case Study of a Misspecified Model V5.docx
--------------------------------------------------------------------------------
/299/Simulated_concqt.sas7bdat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/299/Simulated_concqt.sas7bdat
--------------------------------------------------------------------------------
/301/301.json:
--------------------------------------------------------------------------------
1 | {
2 | "files": [
3 | "Executable_merop_PK_run3.mod",
4 | "Output_simulated_merop_PK_run3.lst",
5 | "Model_Accomodations.text",
6 | "Simulated_dataset.csv",
7 | "DDMODEL00000301.rdf",
8 | "Command.txt",
9 | "Output_real_merop_PK_run3.lst"
10 | ],
11 | "version": 52
12 | }
--------------------------------------------------------------------------------
/301/Command.txt:
--------------------------------------------------------------------------------
1 | /usr/local/bin/execute run3.mod -dir=run3.dir1 -retries=300
2 |
--------------------------------------------------------------------------------
/301/DDMODEL00000301.rdf:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 | Population pharmacokinetic model for meropenem in patients with severe pneumonia.
9 | No
10 |
11 |
12 |
13 |
14 |
15 |
16 |
--------------------------------------------------------------------------------
/301/Model_Accomodations.text:
--------------------------------------------------------------------------------
1 | ## Model related to:
2 | ## An input-output approach for model-informed personalized drug dosing for antibiotics:
3 | ## Application to meropenem in adult patients with severe pneumonia. British Journal of Pharmacology (submitted - July 2019)
4 | ## Authors: Pauline Thémans, Joseph J. Winkin, Flora T. Musuamba
5 | ###### Scenario = 4
6 | ######
7 | ###### There are no model differences
8 |
--------------------------------------------------------------------------------
/missingModels.txt:
--------------------------------------------------------------------------------
1 | 155
2 | 156
3 | 157
4 | 158
5 | 159
6 | 160
7 | 161
8 | 162
9 | 163
10 | 164
11 | 165
12 | 166
13 | 167
14 | 168
15 | 169
16 | 170
17 | 171
18 | 172
19 | 174
20 | 175
21 | 176
22 | 177
23 | 178
24 | 179
25 | 180
26 | 181
27 | 182
28 | 183
29 | 184
30 | 185
31 | 187
32 | 188
33 | 189
34 | 190
35 | 191
36 | 193
37 | 196
38 | 199
39 | 200
40 | 201
41 | 202
42 | 203
43 | 204
44 | 205
45 | 206
46 | 207
47 | 208
48 | 209
49 | 210
50 | 211
51 | 216
52 | 226
53 | 232
54 | 234
55 | 235
56 | 236
57 | 241
58 | 242
59 | 246
60 | 251
61 | 252
62 | 253
63 | 254
64 | 255
65 | 257
66 | 258
67 | 260
68 | 263
69 | 264
70 | 265
71 | 266
72 | 270
73 | 272
74 | 275
75 | 276
76 | 277
77 | 278
78 | 279
79 | 282
80 | 283
81 | 286
82 | 287
83 | 288
84 | 289
85 | 291
86 | 292
87 | 293
88 | 296
89 | 300
90 |
--------------------------------------------------------------------------------
/nmoutputs/Output_real_COV_KPD_CTC.count_PSA.lst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/nmoutputs/Output_real_COV_KPD_CTC.count_PSA.lst
--------------------------------------------------------------------------------
/nmoutputs/Output_real_SAEM_KPD_CTC.count_PSA.lst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/nmoutputs/Output_real_SAEM_KPD_CTC.count_PSA.lst
--------------------------------------------------------------------------------
/nmoutputs/Output_real_run126c.lst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/nmoutputs/Output_real_run126c.lst
--------------------------------------------------------------------------------
/nmoutputs/Output_simulated_CPHPC_dataset.lst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/nmoutputs/Output_simulated_CPHPC_dataset.lst
--------------------------------------------------------------------------------
/nmoutputs/Output_simulated_run126h.lst:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dpastoor/ddmore_scraping/2e2da3f1cbcae4c1f1e9262d1f833f71a1d7e2b4/nmoutputs/Output_simulated_run126h.lst
--------------------------------------------------------------------------------
/package.json:
--------------------------------------------------------------------------------
1 | {
2 | "name": "ddmore",
3 | "version": "1.0.0",
4 | "description": "",
5 | "main": "index.js",
6 | "scripts": {
7 | "test": "echo \"Error: no test specified\" && exit 1"
8 | },
9 | "author": "",
10 | "license": "ISC",
11 | "dependencies": {
12 | "left-pad": "^1.3.0",
13 | "lodash": "^4.17.15",
14 | "nightmare": "^3.0.2"
15 | }
16 | }
17 |
--------------------------------------------------------------------------------