└── README.md /README.md: -------------------------------------------------------------------------------- 1 | # Open Satellite Image Cloud Detection Resources (OpenSICDR) 2 | 3 | We collect the latest open-source tools and datasets for cloud and cloud shadow detection, and launch this online project (Open Satellite Image Cloud Detection Resources, i.e., OpenSICDR) to promote the sharing of the latest research outputs of the field. If you would like to provide new resources, please kindly contact Dr. Zhiwei Li at dr.lizhiwei(AT)gmail.com or submit an update request. 4 | 5 | **Source:** 6 | 7 | Zhiwei Li, Huanfeng Shen, Qihao Weng, Yuzhuo Zhang, Peng Dou, Liangpei Zhang. **Cloud and Cloud Shadow Detection for Optical Satellite Imagery: Features, Algorithms, Validation, and Prospects**. *ISPRS Journal of Photogrammetry and Remote Sensing*, vol. 188, pp. 89-108, 2022. ([Link](https://doi.org/10.1016/j.isprsjprs.2022.03.020), [PDF](https://zhiweili.net/assets/pdf/2022.6_ISPRS%20P&RS_Cloud%20and%20cloud%20shadow%20detection%20for%20optical%20satellite%20imagery%EF%BC%9AFeatures,%20algorithms,%20validation,%20and%20prospects.pdf)) 8 | 9 |
10 | 11 | **Contributors:** 12 | 13 | - Dr. Zhiwei Li, Wuhan University, dr.lizhiwei(AT)gmail.com 14 | - Ms. Yuzhuo Zhang, Wuhan University, yuzhuozhang816(AT)whu.edu.cn 15 | 16 |
17 | 18 | **Update logs:** 19 | 20 | *Feb 28, 2024*: Added two new cloud detection datasets, GF1MS-WHU and GF2MS-WHU. 21 | 22 | *June 5, 2024*: 1) Added one new cloud detection dataset, CloudSEN12; Added parts of cloud mask products in Google Earth Engine; 23 | 24 |
25 | 26 | **Open-Source Datasets for Cloud and Cloud Shadow Detection** 27 | 28 | | Name | Image Source | References | Descriptions | Link | 29 | | :------------------------------ | :------------------------------------------- | :------------------------------------ | :----------------------------------------------------------- | :----------------------------------------------------------- | 30 | | L7_Irish | Landsat-7 (30 m) | Scaramuzza et al., 2012; USGS., 2016a | Contains 206 Landsat-7 scenes from nine global latitude zones with manually generated masks, of which only 45 scenes are labeled for cloud shadows. | [Link](https://landsat.usgs.gov/landsat-7-cloud-cover-assessment-validation-data) | 31 | | L8_SPARCS | Landsat-8 (30 m) | Hughes and Hayes, 2014; USGS., 2016c | Contains 80 subsets of Landsat-8 scenes with a size of 1000×1000 pixels that are labeled for both clouds and cloud shadows. | [Link](https://www.usgs.gov/core-science-systems/nli/landsat/spatial-procedures-automated-removal-cloud-and-shadow-sparcs) | 32 | | L8_Biome | Landsat-8 (30 m) | Foga et al., 2017; USGS., 2016b | Contains 96 Landsat-8 scenes from eight global biomes with manually generated cloud masks, of which 32 scenes are labeled for cloud shadows. | [Link](https://landsat.usgs.gov/landsat-8-cloud-cover-assessment-validation-data) | 33 | | 95-Cloud | Landsat-8 (30 m) | Mohajerani and Saeedi, 2019 | Contains 95 Landsat-8 images and associated pixel-level cloud labels that is an extension of the previously established 38-Cloud dataset. | [Link](https://github.com/SorourMo/95-Cloud-An-Extension-to-38-Cloud-Dataset) | 34 | | Snow-Cloud Validation Masks | Landsat-8 (30 m) | Stillinger and Collar, 2019 | Contains 13 Landsat-8 images and corresponding clouds and snow labels at mid-latitude mountainous regions. | [Link](https://zenodo.org/record/3240937) | 35 | | RICE_dataset | Landsat-8 (30 m) | Lin et al., 2019 | Contains 450 Landsat-8 images and corresponding cloud-free images and cloud labels with a size of 512×512 pixels in one of two subsets of the dataset. | [Link](https://github.com/BUPTLdy/RICE_DATASET) | 36 | | WHU Cloud Dataset | Landsat-8 (30 m) | Ji et al., 2021 | Contains 7 Landsat-8 images and corresponding cloud-free historical images and cloud and shadow masks in six different regions. | [Link](http://gpcv.whu.edu.cn/data/WHU_Cloud_Dataset.html) | 37 | | S2-Hollstein | Sentinel-2 (10 m) | Hollstein et al., 2016 | Consists 5,647,725 pixels based on images acquired over the entire globe with cloud, cirrus, snow, shadow, and water labels. | [Link](https://git.gfz-potsdam.de/EnMAP/sentinel2_manual_classification_clouds) | 38 | | S2-BaetensHagolle | Sentinel-2 (10 m) | Baetens et al., 2018, 2019 | Provides cloud masks for 38 Sentinel-2 scenes selected in 2017 or 2018, each with cloud and cloud shadow labels. | [Link](https://zenodo.org/record/1460961) | 39 | | T-S2/T-PS | Sentinel-2 (10 m)
PlanetScope (3 m) | Shendryk et al., 2019 | Contains 4,993 Sentinel-2 and 4,943 PlanetScope subscenes with a size of 512×512 pixels and only RGB and NIR bands over the Wet Tropics of Australia, each is labeled at the block level. | [Link](https://data.mendeley.com/datasets/6gdybpjnwh/1) | 40 | | Sentinel-2 Cloud Mask Catalogue | Sentinel-2 (10 m) | Francis et al., 2020 | Comprises 20 m resolution cloud masks for 513 subscenes, of which 424 subscenes are labeled for cloud shadows. | [Link](https://zenodo.org/record/4172871) | 41 | | Sentinel-2 KappaZeta | Sentinel-2 (10 m) | Domnich et al., 2021 | Contains 4403 labeled image blocks with a size of 512×512 pixels from 155 Sentinel-2 images over the Northern European terrestrial area. | [Link](https://zenodo.org/record/5095024) | 42 | | WHUS2-CD | Sentinel-2 (10 m) | Li et al., 2021 | Contains 32 Sentinel-2 images distributed in Mainland China and its reference cloud masks labeled at 10 m resolution. | [Link](https://github.com/Neooolee/WHUS2-CD) | 43 | | CloudSEN12 | Sentinel-2 (10 m) | Aybar et al., 2022 | Contains 49,400 Sentinel-2 image patches, each sized 509×509 pixels, evenly distributed across all continents except Antarctica. | [Link](https://cloudsen12.github.io/) | 44 | | **GF1_WHU** | Gaofen-1 WFV (16 m) | Li et al., 2017 | Contains 108 globally distributed GF-1 WFV scenes and their manually labeled cloud and cloud shadow masks. | **[Link](http://sendimage.whu.edu.cn/en/mfc-validation-data)** | 45 | | Levir_CS | Gaofen-1 WFV (16 m) | Wu et al., 2021 | Contains 4,168 globally distributed Gaofen-1 WFV scenes (down sampled to 160 m resolution) and the corresponding geographical data, cloud, and snow labels. | [Link](https://github.com/permanentCH5/GeoInfoNet) | 46 | | **GF1MS-WHU
GF2MS-WHU** | Gaofen-1 PMS (8 m)
Gaofen-2 PMS (8 m) | Zhu et al., 2024 | Contains 141 unlabeled and 33 well-annotated 8-m Gaofen-1 PMS multispectral images;
Contains 163 unlabeled and 29 well-annotated 4-m Gaofen-2 multispectral images. | [Link](https://github.com/whu-ZSC/GF1-GF2MS-WHU) | 47 | | WDCD dataset | Gaofen-1 PMS (8 m)
Ziyuan-3 MUX (5.8 m) | Li et al., 2020 | Contains over 200,000 globally distributed Gaofen-1 image blocks labeled at the block level for training and 30 Gaofen-1 and Ziyuan-3 scenes labeled at the pixel level for validation and testing. | [Link](https://github.com/weichenrs/WDCD) | 48 | | N/A | Gaofen series (N/A) | Sun et al., 2020 | Contains 745 paired NIR-R-G composited images and corresponding pixel-level labels with a size of 256×256 pixels. | [Link](https://bhpan.buaa.edu.cn/\#/link/DDC7765A5A049E0F9A0DAD0E9F7692C5) | 49 | | AIR-CD | Gaofen-2 PMS (4 m) | He et al., 2021 | Contains 34 Gaofen-2 full images and the corresponding cloud labels distributed at different regions of China. | [Link](https://github.com/AICyberTeam/AIR-CD) | 50 | | **HRC_WHU** | Google Earth (0.5 m to 15 m) | Li et al., 2019 | Comprises 150 globally distributed high-resolution images (0.5 m to 15 m resolution, three RGB channels) and the corresponding cloud masks. | **[Link](http://sendimage.whu.edu.cn/en/hrc_whu/)** | 51 | 52 |
53 | 54 | **Open-Source Tools for Cloud and Cloud Shadow Detection** 55 | 56 | | | **Name** | **Applicable Images (Primarily)** | **References** | **Descriptions (Data and Method)** | **Link** | 57 | |:-----------|:------------|:-----------------------------|:-------------------------------|:--------------------------------------------|:----------------------------------------------------------------------------------------| 58 | | Landsat | Fmask | Landsat 4-8
Sentinel-2 | Zhu et al., 2012 & 2015 | Mono-temporal
Physical rule based | [Link](https://github.com/GERSL/Fmask) | 59 | | | Tmask | Landsat 4-8 | Zhu and Woodcock, 2014 | Multi-temporal
Temporal change based | [Link](https://github.com/GERSL/Tmask) | 60 | | | MSScvm | Landsat MSS | Braaten et al., 2015 | Multi-source
Physical rule based | [Link](https://github.com/jdbcode/MSScvm) | 61 | | | MFmask | Landsat 4-8 | Qiu et al., 2017 | Multi-source
Physical rule based | [Link](https://github.com/qsly09/MFmask) | 62 | | | MCM-GEE | Landsat-8 | Mateo-García et al., 2018 | Multi-temporal
Temporal change based | [Link](https://github.com/IPL-UV/ee_ipl_uv) | 63 | | | Cloud-Net | Landsat-8 | Mohajerani and Saeedi, 2019 | Mono-temporal
DL based | [Link](https://github.com/SorourMo/Cloud-Net-A-semantic-segmentation-CNN-for-cloud-detection) | 64 | | | Cmask | Landsat-8 | Qiu et al., 2020 | Multi-temporal
Temporal change based | [Link](https://github.com/GERSL/Cmask) | 65 | | | DAGANS | Landsat-8
Proba-V | Mateo-Garcia et al., 2020 | Mono-temporal
DL based | [Link](https://github.com/IPL-UV/pvl8dagans) | 66 | | | FCNN | Landsats-8
Sentinel-2 | López-Puigdollers et al., 2021 | Mono-temporal
DL based | [Link](https://github.com/IPL-UV/DL-L8S2-UV) | 67 | | Sentinel-2 | MAJA | Sentinel-2
VENμS
Landsat-8 | Hagolle et al., 2010 | Multi-temporal
Temporal change based | [Link](https://github.com/CNES/MAJA) | 68 | | | cB4S2 | Sentinel-2 | Hollstein et al., 2016 | Mono-temporal
Machine learning based | [Link](https://github.com/hollstein/cB4S2) | 69 | | | Sen2Cor | Sentinel-2 | Main-Knorn et al., 2017 | Mono-temporal
Physical rule based | [Link](https://step.esa.int/main/snap-supported-plugins/sen2cor/) | 70 | | | s2cloudless | Sentinel-2 | Zupanc, 2017 | Mono-temporal
Machine learning based | [Link](https://github.com/sentinel-hub/sentinel2-cloud-detector) | 71 | | | FORCE | Sentinel-2
Landsat 4-8 | Frantz et al., 2018 | Mono-temporal
Physical rule based | [Link](https://github.com/davidfrantz/force) | 72 | | | KappaMask | Sentinel-2 | Domnich et al., 2021 | Mono-temporal
DL based | [Link](https://github.com/kappazeta/cm_predict) | 73 | | | CD-FM3SF | Sentinel-2 | Li et al., 2021 | Mono-temporal
DL based | [Link](https://github.com/Neooolee/WHUS2-CD) | 74 | | Gaofen | **MFC** | Gaofen-1 WFV | Li et al., 2017 | Mono-temporal
Physical rule based | **[Link](http://sendimage.whu.edu.cn/en/mfc)** | 75 | | | GeoInfoNet | Gaofen-1 WFV | Wu et al., 2021 | Mono-temporal
DL based | [Link](https://github.com/permanentCH5/GeoInfoNet) | 76 | | Others | N/A | HR images | Xie et al., 2017 | Mono-temporal
DL based | [Link](http://xfy.buaa.edu.cn/code.html) | 77 | 78 |
79 | 80 | **Open-Source Cloud and Cloud Shadow Mask Products in Google Earth Engine** 81 | 82 | [1] Sentinel-2: Cloud Probability. [[Link](https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_CLOUD_PROBABILITY)] 83 | 84 | [2] Sentinel-2: Cloud Score+. [[Link](https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_CLOUD_SCORE_PLUS_V1_S2_HARMONIZED)] 85 | 86 |
87 | 88 | **References** 89 | 90 | - Aybar, C., Ysuhuaylas, L., Loja, J., Gonzales, K., Herrera, F., Bautista, L., Yali, R., Flores, A., Diaz, L., Cuenca, N., Espinoza, W., Prudencio, F., Llactayo, V., Montero, D., Sudmanns, M., Tiede, D., Mateo-García, G., Gómez-Chova, L., 2022. CloudSEN12, a global dataset for semantic understanding of cloud and cloud shadow in Sentinel-2. Scientific Data 9. https://doi.org/10.1038/s41597-022-01878-2 91 | - Baetens, L., Desjardins, C., Hagolle, O., 2019. Validation of copernicus 92 | Sentinel-2 cloud masks obtained from MAJA, Sen2Cor, and FMask processors using 93 | reference cloud masks generated with a supervised active learning procedure. 94 | Remote Sensing 11, 1–25. https://doi.org/10.3390/rs11040433 95 | - Baetens, L., Hagolle, O., 2018. Sentinel-2 reference cloud masks generated by an 96 | active learning method [Data set]. https://doi.org/10.5281/zenodo.1460961 97 | - Braaten, J.D., Cohen, W.B., Yang, Z., 2015. Automated cloud and cloud shadow 98 | identification in Landsat MSS imagery for temperate ecosystems. Remote Sensing 99 | of Environment 169, 128–138. https://doi.org/10.1016/j.rse.2015.08.006 100 | - Domnich, M., Sünter, I., Trofimov, H., Wold, O., Harun, F., Kostiukhin, A., 101 | Jarveoja, M., Veske, M., Tamm, T., Voormansik, K., Olesk, A., Boccia, V., 102 | Longepe, N., Cadau, E.G., 2021. KappaMask: AI-Based Cloudmask Processor for 103 | Sentinel-2. Remote Sensing 13, 4140. https://doi.org/10.3390/rs13204100 104 | - Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., 105 | Schmidt, G.L., Dwyer, J.L., Joseph Hughes, M., Laue, B., 2017. Cloud detection 106 | algorithm comparison and validation for operational Landsat data products. 107 | Remote Sensing of Environment 194, 379–390. 108 | https://doi.org/10.1016/j.rse.2017.03.026 109 | - Francis, A., Mrziglod, J., Sidiropoulos, P., Muller, J.-P., 2020. Sentinel-2 110 | Cloud Mask Catalogue [Data set]. Zenodo. https://doi.org/10.5281/zenodo.4172871 111 | - Frantz, D., Ha?, E., Uhl, A., Stoffels, J., Hill, J., 2018. Improvement of the 112 | Fmask algorithm for Sentinel-2 images: Separating clouds from bright surfaces 113 | based on parallax effects. Remote Sensing of Environment 215, 471–481. 114 | https://doi.org/10.1016/j.rse.2018.04.046 115 | - Hagolle, O., Huc, M., Pascual, D.V., Dedieu, G., 2010. A multi-temporal method 116 | for cloud detection, applied to FORMOSAT-2, VENμS, LANDSAT and SENTINEL-2 117 | images. Remote Sensing of Environment 114, 1747–1755. 118 | https://doi.org/10.1016/j.rse.2010.03.002 119 | - He, Q., Sun, X., Yan, Z., Fu, K., 2021. DABNet: Deformable Contextual and 120 | Boundary-Weighted Network for Cloud Detection in Remote Sensing Images. IEEE 121 | Transactions on Geoscience and Remote Sensing 1–16. 122 | https://doi.org/10.1109/TGRS.2020.3045474 123 | - Hollstein, A., Segl, K., Guanter, L., Brell, M., Enesco, M., 2016. Ready-to-use 124 | methods for the detection of clouds, cirrus, snow, shadow, water and clear sky 125 | pixels in Sentinel-2 MSI images. Remote Sensing 8, 1–18. 126 | https://doi.org/10.3390/rs8080666 127 | - Hughes, M.J., Hayes, D.J., 2014. Automated detection of cloud and cloud shadow 128 | in single-date Landsat imagery using neural networks and spatial 129 | post-processing. Remote Sensing 6, 4907–4926. https://doi.org/10.3390/rs6064907 130 | - Ji, S., Dai, P., Lu, M., Zhang, Y., 2021. Simultaneous Cloud Detection and 131 | Removal from Bitemporal Remote Sensing Images Using Cascade Convolutional Neural 132 | Networks. IEEE Transactions on Geoscience and Remote Sensing 59, 732–748. 133 | https://doi.org/10.1109/TGRS.2020.2994349 134 | - Li, J., Wu, Z., Hu, Z., Jian, C., Luo, S., Mou, L., Zhu, X.X., Molinier, M., 135 | 2021\. A Lightweight Deep Learning-Based Cloud Detection Method for Sentinel-2A 136 | Imagery Fusing Multiscale Spectral and Spatial Features. IEEE Transactions on 137 | Geoscience and Remote Sensing 1–19. https://doi.org/10.1109/TGRS.2021.3069641 138 | - Li, Y., Chen, W., Zhang, Y., Tao, C., Xiao, R., Tan, Y., 2020. Accurate cloud 139 | detection in high-resolution remote sensing imagery by weakly supervised deep 140 | learning. Remote Sensing of Environment 250. 141 | https://doi.org/10.1016/j.rse.2020.112045 142 | - Li, Z., Shen, H., Cheng, Q., Liu, Y., You, S., He, Z., 2019. Deep learning based 143 | cloud detection for medium and high resolution remote sensing images of 144 | different sensors. ISPRS Journal of Photogrammetry and Remote Sensing 150, 145 | 197–212. https://doi.org/10.1016/j.isprsjprs.2019.02.017 146 | - Li, Z., Shen, H., Li, H., Xia, G., Gamba, P., Zhang, L., 2017. Multi-feature 147 | combined cloud and cloud shadow detection in GaoFen-1 wide field of view 148 | imagery. Remote Sensing of Environment 191, 342–358. 149 | https://doi.org/10.1016/j.rse.2017.01.026 150 | - Lin, D., Xu, G., Wang, X., Wang, Y., Sun, X., Fu, K., 2019. A Remote Sensing 151 | Image Dataset for Cloud Removal. arXiv preprint arXiv:1901.00600. 152 | - López-Puigdollers, D., Mateo-García, G., Gómez-Chova, L., 2021. Benchmarking 153 | deep learning models for cloud detection in landsat-8 and sentinel-2 images. 154 | Remote Sensing 13, 1–20. https://doi.org/10.3390/rs13050992 155 | - Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V., Müller-Wilm, U., Gascon, 156 | F., 2017. Sen2Cor for Sentinel-2, in: Bruzzone, L., Bovolo, F., Benediktsson, 157 | J.A. (Eds.), Image and Signal Processing for Remote Sensing XXIII. SPIE, p. 3. 158 | https://doi.org/10.1117/12.2278218 159 | - Mateo-García, G., Gómez-Chova, L., Amorós-López, J., Mu?oz-Marí, J., 160 | Camps-Valls, G., 2018. Multitemporal cloud masking in the Google Earth Engine. 161 | Remote Sensing 10, 7–9. https://doi.org/10.3390/rs10071079 162 | - Mateo-Garcia, G., Laparra, V., Lopez-Puigdollers, D., Gomez-Chova, L., 2020. 163 | Cross-Sensor Adversarial Domain Adaptation of Landsat-8 and Proba-V Images for 164 | Cloud Detection. IEEE Journal of Selected Topics in Applied Earth Observations 165 | and Remote Sensing 14, 747–761. https://doi.org/10.1109/JSTARS.2020.3031741 166 | - Mohajerani, S., Saeedi, P., 2019. Cloud-Net: An End-To-End Cloud Detection 167 | Algorithm for Landsat 8 Imagery, in: International Geoscience and Remote Sensing 168 | Symposium (IGARSS). IEEE, pp. 1029–1032. 169 | https://doi.org/10.1109/IGARSS.2019.8898776 170 | - Qiu, S., He, B., Zhu, Z., Liao, Z., Quan, X., 2017. Improving Fmask cloud and 171 | cloud shadow detection in mountainous area for Landsats 4–8 images. Remote 172 | Sensing of Environment 199, 107–119. https://doi.org/10.1016/j.rse.2017.07.002 173 | - Qiu, S., Zhu, Z., Woodcock, C.E., 2020. Cirrus clouds that adversely affect 174 | Landsat 8 images: What are they and how to detect them? Remote Sensing of 175 | Environment 246, 111884. https://doi.org/10.1016/j.rse.2020.111884 176 | - Scaramuzza, P.L., Bouchard, M.A., Dwyer, J.L., 2012. Development of the landsat 177 | data continuity mission cloud-cover assessment algorithms. IEEE Transactions on 178 | Geoscience and Remote Sensing 50, 1140–1154. 179 | https://doi.org/10.1109/TGRS.2011.2164087 180 | - Shendryk, Y., Rist, Y., Ticehurst, C., Thorburn, P., 2019. Deep learning for 181 | multi-modal classification of cloud, shadow and land cover scenes in PlanetScope 182 | and Sentinel-2 imagery. ISPRS Journal of Photogrammetry and Remote Sensing 157, 183 | 124–136. https://doi.org/10.1016/j.isprsjprs.2019.08.018 184 | - Stillinger, T., Collar, N., 2019. Snow-Cloud Validation Masks for Multispectral 185 | Satellite Data [Data set]. https://doi.org/10.5281/zennodo.3240937 186 | - Sun, H., Li, L., Xu, M., Li, Q., Huang, Z., 2020. Using Minimum Component and 187 | CNN for Satellite Remote Sensing Image Cloud Detection. IEEE Geoscience and 188 | Remote Sensing Letters 1–5. https://doi.org/10.1109/LGRS.2020.3014358 189 | - USGS., 2016a. L7 Irish Cloud Validation Masks. U.S. Geological Survey data 190 | release. 191 | https://landsat.usgs.gov/landsat-7-cloud-cover-assessment-validation-data. 192 | - USGS., 2016b. L8 Biome Cloud Validation Masks. U.S. Geological Survey, data 193 | release. 194 | https://landsat.usgs.gov/landsat-8-cloud-cover-assessment-validation-data. 195 | - USGS., 2016c. L8 SPARCS Cloud Validation Masks. U.S. Geological Survey data 196 | release. 197 | https://www.usgs.gov/core-science-systems/nli/landsat/spatial-procedures-automated-removal-cloud-and-shadow-sparcs. 198 | - Wu, X., Shi, Z., Zou, Z., 2021. A geographic information-driven method and a new 199 | large scale dataset for remote sensing cloud/snow detection. ISPRS Journal of 200 | Photogrammetry and Remote Sensing 174, 87–104. 201 | https://doi.org/10.1016/j.isprsjprs.2021.01.023 202 | - Xie, F., Shi, M., Shi, Z., Yin, J., Zhao, D., 2017. Multilevel cloud detection 203 | in remote sensing images based on deep learning. IEEE Journal of Selected Topics 204 | in Applied Earth Observations and Remote Sensing 10, 3631–3640. 205 | https://doi.org/10.1109/JSTARS.2017.2686488 206 | - Zhu, S., Li, Z., Shen, H., 2024. Transferring Deep Models for Cloud Detection in Multisensor Images via Weakly Supervised Learning. IEEE Transactions on Geoscience and Remote Sensing 62, 5609518. https://doi.org/10.1109/TGRS.2024.3358824 207 | - Zhu, Z., Wang, S., Woodcock, C.E., 2015. Improvement and expansion of the Fmask 208 | algorithm: Cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and 209 | Sentinel 2 images. Remote Sensing of Environment 159, 269–277. 210 | https://doi.org/10.1016/j.rse.2014.12.014 211 | - Zhu, Z., Woodcock, C.E., 2014. Automated cloud, cloud shadow, and snow detection 212 | in multitemporal Landsat data: An algorithm designed specifically for monitoring 213 | land cover change. Remote Sensing of Environment 152, 217–234. 214 | https://doi.org/10.1016/j.rse.2014.06.012 215 | - Zhu, Z., Woodcock, C.E., 2012. Object-based cloud and cloud shadow detection in 216 | Landsat imagery. Remote Sensing of Environment 118, 83–94. 217 | https://doi.org/10.1016/j.rse.2011.10.028 218 | - Zupanc, A., 2017. Improving cloud detection with machine learning. 219 | https://medium.com/sentinel-hub/improving-cloud-detection-with-machine-learning-c09dc5d7cf13. 220 | 221 | --------------------------------------------------------------------------------