├── Computer Vision.png
├── CoursesTeach (2).png
├── Introduction_to_Computer_Vision.ipynb
├── ReadMe.md
├── sign_mnist_test.csv
├── 📚Chapter 8 L1 Hough transform Lines
└── New Text Document.txt
├── 📚Chapter 1-Introduction
└── New Text Document.txt
├── 📚Chapter 2-Image As Function
└── New Text Document.txt
├── 📚Chapter 3-Filtering
└── New Text Document.txt
├── 📚Chapter 4-Linearity and Convolution
└── New Text Document.txt
├── 📚Chapter 5-Filters as Templates
└── New Text Document.txt
├── 📚Chapter 6-Edge detection Gradients
└── New Text Document.txt
├── 📚Chapter7 Edge detection 2D operators
└── New Text Document.txt
└── 📚🧑🎓📝Other Best Free Resources to Learn Computer Vision
└── New Text Document.txt
/Computer Vision.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dr-mushtaq/Computer-Vision/98f9bba7847e2df533f030ff21fe01946eafb98a/Computer Vision.png
--------------------------------------------------------------------------------
/CoursesTeach (2).png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dr-mushtaq/Computer-Vision/98f9bba7847e2df533f030ff21fe01946eafb98a/CoursesTeach (2).png
--------------------------------------------------------------------------------
/ReadMe.md:
--------------------------------------------------------------------------------
1 | ## **👁️ Welcome to the Computer Vision Compendium!👋🛒**
2 |
3 | ##
**1-Introduction**
4 |
5 |
6 |
7 |
8 |
9 |
10 | 🚀 Explore the vast landscape of computer vision through our comprehensive repository, It include resource about deep learning for vision, image processing tutorials, OpenCV projects, YOLO object detection, CNN tutorials, vision transformers, serving as your A-Z guide to this captivating field. Whether you're delving into image processing, object detection, or deep learning, you'll find a treasure trove of resources here to deepen your understanding and hone your skills.
11 |
12 | computer vision course, computer vision with Python, AI in image analysis, edge detection, computer vision GitHub repository, free computer vision resources
13 |
14 |
15 |
16 |
17 |
18 |
19 | ## 📚 Table of Contents
20 | - [Introduction](#1-introduction)
21 | - [Why Join This Course?](#why-join-this-course)
22 | - [How to Get Involved](#how-to-get-involved-in-the-computer-vision-project)
23 | - [Chapters Overview](#course-01---introduction-of-computer-vision)
24 | - [Computer Vision Resources](#computer-vision-resources)
25 |
26 |
27 | ## **🎯 Why Join This Course?**
28 |
29 | 1. 📸 End-to-End Learning: Master the full spectrum of computer vision — from image basics and filters to deep learning, object detection, and segmentation.
30 |
31 | 2. 🛠 Practical Implementation: Each topic includes hands-on coding exercises, Jupyter notebooks, and real-world projects.
32 |
33 | 3. 🌍 Collaborative Development: Join a global community of learners, developers, and researchers. Contribute on GitHub through pull requests, discussions, and issue tracking..
34 |
35 | 4. 🤖 Cutting-Edge Tech Stack: Stay at the forefront with tools like CNNs, YOLO, OpenCV, Vision Transformers, and more — all integrated with AI-powered workflows.
36 |
37 | 
38 | 
39 |
40 |
41 | ## **💡 How to Get Involved in the Computer Vision Project?**
42 |
43 | 🚀 **Fork & Star the Repo**:Show your support and stay updated — fork the repository and give it a ⭐ on GitHub!
44 |
45 | 👩💻 **Dive Into Structured Lessons**: Start learning with well-organized, beginner-to-advanced tutorials curated to help you build real skills step by step.
46 |
47 | 🛠️ **Contribute to Code & Content**:Enhance existing blogs, refine code, fix bugs, or write new tutorials on exciting computer vision topics.
48 |
49 | 🧪 **Experiment & Innovate**:Use the provided codebase as your playground — tweak, test, and explore to discover something new.
50 |
51 | 🤝 **Collaborate with the Community**:Join discussions, review PRs, and team up with fellow developers, students, and AI enthusiasts around the world.
52 |
53 | 📌 **Share Your Knowledge**:Submit your own implementations, mini-projects, or useful resources like blogs, website, videos, GitHub repos, and research papers etc.
54 |
55 | Also please subscribe to my [youtube channel!](https://www.youtube.com/@coursesteach-mv5si)
56 |
57 | ## 🛠️ We're Actively Looking for Contributors To:
58 | - Add new tutorials (Python, OpenCV, YOLO, etc.)
59 | - Convert lessons into interactive Colab notebooks
60 | - Fix broken links and typos
61 | - Translate lessons into other languages (e.g., Urdu, Spanish)
62 | - Add quizzes or solutions
63 | - improve the current blog
64 | - suggestion other important website ,repistory,youtube Channel etc
65 | - Create blog from next topic in our jounrney
66 | - Suggest new topics or Video ,Course
67 | - Create Video from blog
68 |
69 | Star this repo if you find it useful ⭐
70 |
71 | ## **🌍 Join Our Community**
72 |
73 | 🔗 [**YouTube Channe**l](https://www.youtube.com/@coursesteach-mv5si/videos)
74 |
75 | 🔗 [**SubStack Blogs**](https://substack.com/@coursesteach)
76 |
77 | 🔗 [**Facebook**](https://www.facebook.com/CourseTeach)
78 |
79 | 🔗 [**LinkedIn**](https://www.linkedin.com/company/90909828/admin/page-posts/published/)
80 |
81 | 📬 Need Help? Connect with us on [**WhatsApp**](https://chat.whatsapp.com/L9URPRThBEa7GFl0mlwggg)
82 |
83 | ## 📬 Stay Updated with Weekly Computer Vison Lessons!
84 |
85 | Never miss a tutorial! Get weekly insights, updates, and bonus content straight to your inbox.
86 | **Join hundreds of Computer Vision learners on Substack.**
87 |
88 | 👉 [**Subscribe to Our Computer Vision Newsletter**](https://substack.com/@coursesteach) ✨
89 |
90 | 💡 Optional Badge (to make it pop)
91 |
92 | [](https://substack.com/@coursesteach)
93 |
94 |
95 |
96 | 📕Beginner → Course 01 - 👁️ Introduction of Computer Vision
97 |
98 | ## 👁️ Chapter1: - **Foundations of Computer Vision**
99 | | Topic Name/Tutorial | Video | Code |
100 | |---|---|---|
101 | | [**✅1- What is computer Vision**](https://medium.com/@Coursesteach/computer-vision-part-1-ff493a713887)[-Substack Link](https://substack.com/home/post/p-155666365?source=queue) | [1](https://drive.google.com/file/d/1Cb-Cz0dRwNZzAp5f2K5cVNNwBRo3hki4/view) |[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
102 | |[**✅2-Computer Vision Tasks and Applications**](https://mushtaqmsit.substack.com/p/computer-vision-tasks-and-applications?r=f2squ&utm_campaign=post&utm_medium=web&triedRedirect=true)|[1](https://drive.google.com/file/d/1DCR-0UllT5J0GNHrTlklsHtF1OCskV0V/view)[-2](https://drive.google.com/file/d/1hDHQfd5h9Jiauk8olHG6Jft0AbOUh36n/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
103 | |[**✅Best Free Resources to Computer Vision**](https://open.substack.com/pub/mushtaqmsit/p/top-10-free-resources-to-learn-computer?r=f2squ&utm_campaign=post&utm_medium=web&showWelcomeOnShare=true)|---|---|
104 |
105 | ## 🔹Chapter2: - **Image As Function**
106 | | Topic Name/Tutorial | Video| Notbook |
107 | |---|---|---|
108 | |[**✅1-Images as Functions Part 1?**](https://substack.com/home/post/p-156223376)|[**1**](https://drive.google.com/file/d/1c6plHK4Yqg_ch8QiNTtfGuSZSK0mt3lf/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
109 | | [**✅2-Images as Functions Part 2?**](https://open.substack.com/pub/mushtaqmsit/p/understanding-images-as-functions-edb?r=f2squ&utm_campaign=post&utm_medium=web&showWelcomeOnShare=false) | [**1**](https://drive.google.com/file/d/1X5RS1-6JfZUmcyDvsP5KF1SR97CFzus2/view) | [](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb) |
110 | | [**✅3-Define an Image as a Function (Quiz)**](https://substack.com/@coursesteach/note/c-91928137?utm_source=notes-share-action&r=f2squ) |[**1**](https://drive.google.com/file/d/1FDmF_Gcl3wtvx6NyNuvl6KAiZlp7KD6Y/view)[**-2**](https://drive.google.com/file/d/1qiwSHYDHSp15_QhMdKuT2nBdhprLJNag/view) | [](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb) |
111 | |[**✅4-Color Planes and Color Image as a Function(Quiz)**](https://open.substack.com/pub/mushtaqmsit/p/understanding-rgb-channels-in-matlab?r=f2squ&utm_campaign=post&utm_medium=web&showWelcomeOnShare=false)|[**1**](https://drive.google.com/file/d/1351z7lTQfAqx3HEGvAGvtm_FVhaMPzK6/view)[**-2**](https://drive.google.com/file/d/1USR6tCVZKK5uN7TkKGduPsH8rVkTCMAY/view)[**-3**](https://drive.google.com/file/d/1qiwSHYDHSp15_QhMdKuT2nBdhprLJNag/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
112 | |[**✅5- Digital Images**](https://mushtaqmsit.substack.com/p/how-computers-see-images)|[**1**](https://drive.google.com/file/d/1bvwInP7sTDxJv6ou7myoIFZLen57tSv_/view)[**-2**](https://drive.google.com/file/d/1M70RJybxbFBjNjf-s_u33IEGZwETVzco/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
113 | |[**✅6-Compute Image Size Quiz-s**](https://mushtaqmsit.substack.com/p/how-to-calculate-image-size-width)|[1](https://www.youtube.com/watch?v=Xp4Oeqs1jUU)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
114 | |[**✅7-Read image in Matlab and Python-S**](https://mushtaqmsit.substack.com/p/how-to-read-and-process-images-in)|---|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
115 | |[**✅8-Image Size and Data Type Quiz/Solution-S**](https://mushtaqmsit.substack.com/p/how-to-get-image-size-and-data-type)|[**1**](https://drive.google.com/file/d/1-zlCSlEvKsBPyuPpUUCio15KdedHG_lj/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
116 | |[**✅9-Crop an Image-s**](https://mushtaqmsit.substack.com/p/what-is-mean-by-crop-an-image)|[**1**](https://drive.google.com/file/d/1y_0Q6HXXHwbJi8bFXSjIRmUTliZ_QETg/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
117 | |[**✅10-Add 2 Images-s**](https://mushtaqmsit.substack.com/p/how-to-add-two-images-in-matlab-and)|[**1**](https://drive.google.com/file/d/1Yu5ZkkVHTm5LPErifK0AyqIAZlorljen/view)[**-2**](https://drive.google.com/file/d/1l6VCJK-gU9cQHvGtJKFj6G8x7xrWkMBx/view)[**-3**](https://drive.google.com/file/d/1-POxIAvqFL1rg3N8r_zQj2-SZz3Vbm-a/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
118 | |[**✅11-Multiply image by a scaler and Blend 2 Images⭐️**](https://mushtaqmsit.substack.com/p/mastering-scalar-multiplication-in)|[**1**](https://drive.google.com/file/d/1QKr5Vw3G1HfjyL3PgD1R6AuY8QU_XhSA/view?pli=1)[-2](https://drive.google.com/file/d/14bY1HdOaC5w4jLby2LwaawzmTwfzhSeB/view)[-3](https://drive.google.com/file/d/11W_RKLTU7XMZ1RHzBZYicBvCBCLxXhrg/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
119 | |[**✅12-Common Types of Noise⭐️**](https://mushtaqmsit.substack.com/p/understanding-image-noise-in-computer)|[**1**](https://drive.google.com/file/d/1BhYdBxwZZLRp144ozXJOVKSvVDRLUPs0/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
120 | |[**✅13-Image Difference⭐️**](https://mushtaqmsit.substack.com/p/image-difference-in-computer-vision)|[**1**](https://drive.google.com/file/d/1NgBBgdzHdmG9UPjFBr4HRYuwtJuSux2t/view)[-2](https://drive.google.com/file/d/1FBPEClURy0oNh-Nt23UmBO2hGwGn3sqw/view)[-3](https://drive.google.com/drive/folders/1q_lNYRTS2ggibGcrc6dEAS-SbRQYF4N2)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
121 | |[**✅14-Generate Gaussian Noise⭐️**](https://mushtaqmsit.substack.com/p/gaussian-noise-in-image-processing)|[**1**](https://drive.google.com/file/d/15ho2IRjIMlZ6dPslpwo9MGR6SumyM938/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
122 | |[**✅15-Effect of Sigma on Gaussian Noise⭐️**](https://mushtaqmsit.substack.com/p/understanding-the-effect-of-sigma)|[**1**](https://drive.google.com/file/d/1SOL6VtxIT08__IBVEsOOrhqYg2xicy2Q/view?usp=sharing)[-2](https://drive.google.com/file/d/1e9wH3cny9Z1UzMgi6-vcmUIJ-mGnDhtx/view)[-3](https://drive.google.com/file/d/1ixofehPc8WprhjNOKqtGIVx4dyyAbqwv/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
123 | |[**✅16-Apply Gaussian Noise⭐️**](https://mushtaqmsit.substack.com/p/applying-gaussian-noise-to-images)|[**1**](https://drive.google.com/file/d/17-X3uDm-_bKEZCLWrh6dzywgrd9Mc6pc/view)[-2](https://drive.google.com/file/d/1HdiI6F0MVJ3OB3VkTiMDreTA_mccXweC/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
124 | |[**✅17-Displaying Images in Matlab and Python⭐️**](https://mushtaqmsit.substack.com/p/basic-image-operations-in-python)|[**1**](https://drive.google.com/file/d/1H06n5AKN-XKDAAPk2GRaloQdSnG8fTgq/view?usp=sharing)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
125 |
126 | ## 🔹Chapter3: - **Filtering**
127 | | Topic Name/Tutorial | Video | NoteBook |
128 | |---|---|---|
129 | | [**✅1- What is Filtering?**](https://mushtaqmsit.substack.com/p/understanding-filters-in-computer) | [1](https://drive.google.com/file/d/1Dw9Iw2B7ag8bF8uz6jp1RfwuIsf5Cgsj/view?usp=sharing) |[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
130 | | [**✅2- What is Gaussian Noise?**](https://mushtaqmsit.substack.com/p/gaussian-noise-in-computer-vision) | [1](https://drive.google.com/file/d/1K6OvG6Hchl_3kNRw7OBIV40GgbCK3mMM/view?usp=sharing)[-2](https://drive.google.com/file/d/1L4-pNTYyvvts9em7w3cNuBGmNCEHy1IZ/view?usp=sharing) |[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
131 | | [**✅3- Weighted Moving Average?**](https://mushtaqmsit.substack.com/p/mastering-weighted-moving-averages) | [1](https://drive.google.com/file/d/1-O6oVfb4pv4zCMuJ7CSSAiTXncVcCNsf/view?usp=sharing)[-2](https://drive.google.com/file/d/17zB1EhTfSWDcck1fGaPWFL8wenY6C4DL/view?usp=sharing)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
132 | | [**🌐4- Correlation Filtering?**](https://medium.com/@Coursesteach/computer-vision-part-23-correlation-filtering-34e00910664a) | [1](https://drive.google.com/file/d/1kOOc3jmptZDQnTlxlsDrYfnB33gl0Ldb/view?usp=sharing)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
133 | | [**🌐5- Averaging Filter?**](https://medium.com/@Coursesteach/computer-vision-part-24-averaging-filter-b5dc3918c057) | [1](https://drive.google.com/file/d/1YjCaZ8bXkYSben2l3Qts3IOxbpY4ttcE/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
134 | | [**🌐6- Gaussian Filter?**](https://medium.com/@Coursesteach/computer-vision-part-25-gaussian-filter-c81ea05a4630) | [1](https://drive.google.com/file/d/1RV_UK3USN7rQjiB3Eq1ZZnR8ujAgHJD6/view?usp=sharing)[-2](https://drive.google.com/file/d/1z7svvKJn87Lmj1BchAViLLJ44_YTqFlN/view?usp=sharing)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
135 | | [**🌐7- Gaussian Filter with Matlab and Python?**](https://medium.com/@Coursesteach/computer-vision-part-26-gaussian-filter-with-matlab-and-python-672919cfb0c1) | [1](https://drive.google.com/file/d/1DY8UFbByrBrdbE4sdmcZa8G-kK3s3Q31/view?usp=sharing)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
136 | | [**🌐8- Remove Noise?(r)**](https://medium.com/@Coursesteach/computer-vision-part-27-remove-noise-001e6a7c838b) | [1](https://drive.google.com/file/d/1fzGcwjrWgzc57etIPUsnX_34LciTG1vs/view?usp=sharing)[-2](https://drive.google.com/file/d/1DgS_rRdmpJCckziIn1fRi6h_b0kLfTgj/view?usp=sharing)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
137 |
138 | ## 🔹Chapter4: - **Linearity and Convolution**
139 | | Topic Name/Tutorial | Video | NoteBook |
140 | |---|---|---|
141 | | [**🌐1- Introduction of linear intuition of filtering**](https://medium.com/@Coursesteach/computer-vision-part-28-introduction-of-linear-intuition-of-filtering-83b4269f6019) | [1](https://drive.google.com/file/d/1NRaqwkMiXd5oYWaBnm2BfgpQR3rSvjaj/view) |[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
142 | | [**🌐2- Impulse Function and Response**](https://medium.com/@Coursesteach/computer-vision-part-29-impulse-function-and-response-2b52dfedc54f) | [1](https://drive.google.com/file/d/1MWTi1FkAdo93cV6MwLMI41Kqn0zxBvFf/view?usp=sharing) |[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
143 | | [**🌐4- Filtering an Impulse Signal**](https://medium.com/@Coursesteach/computer-vision-part-29-impulse-function-and-response-2b52dfedc54f) | [1](https://drive.google.com/file/d/1KxMS0EEAgVO5SuNujypTUNEuu8qUcURE/view?usp=sharing) |[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
144 | | [**🌐5- Correlation vs Convolution**](https://medium.com/@Coursesteach/computer-vision-part-30-correlation-vs-convolution-168e1b6851b5) | [1](https://drive.google.com/file/d/1PlCNOA0ElHvpu4NvXHGt0Zyp073Kr0NS/view?usp=sharing)[-2](https://www.youtube.com/watch?v=FbDWmT93nUs) |[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
145 | | [**🌐5-Properties of Convolution**](https://medium.com/@Coursesteach/computer-vision-part-30-correlation-vs-convolution-168e1b6851b5) | [1](https://drive.google.com/file/d/1dCjqrkS6uGHMoVKvg1drtLPAxoZ8csIH/view?usp=sharing) |[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
146 | | [**🌐6-Computational Complexity and Separability**](https://medium.com/@Coursesteach/computer-vision-part-31-computational-complexity-and-separability-fc8d78ee3321) | [1](https://drive.google.com/file/d/1o3_E3oHa0SFXb_7WPWwF_HZw7JO9SV9Z/view) |[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
147 | | [**🌐7-Boundary Issues**](https://medium.com/@Coursesteach/computer-vision-part-31-computational-complexity-and-separability-fc8d78ee3321) | [1](https://drive.google.com/file/d/1iKZD68I6VGebQbVnVebMBf7B4VFA6Umh/view) |[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
148 | | [**🌐8-Methods**](https://medium.com/@Coursesteach/computer-vision-part-31-computational-complexity-and-separability-fc8d78ee3321) | [1](https://drive.google.com/file/d/1PkQJ7FngkptaxdvvTgowX8hiPBTmzHk_/view?usp=sharing) |[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
149 | | [**🌐9-Explore Edge Options**](https://medium.com/@Coursesteach/computer-vision-part-32-explore-edge-options-78aae07fe8c5) | [1](https://drive.google.com/file/d/1wZuQ-nlwxIZWWLEEJo4MU5gbcm8xoMxu/view) |[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
150 | | [**🌐10-Practicing with Linear Filters**](https://medium.com/@Coursesteach/computer-vision-part-33-practicing-with-linear-filters-db29d31a728b) | [1](https://drive.google.com/file/d/1EJMb8LFnTG87Po0LyjwhRDMD_G8BbDYy/view)[-2](https://drive.google.com/file/d/1m6GsASVUDYn8akRdejupOmLlmZ94A43i/view) |[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
151 | | [**🌐11-Different Kinds of Noise**](https://medium.com/@Coursesteach/computer-vision-part-34-different-kinds-of-noise-2e300d9e4174) | [1](https://drive.google.com/file/d/15zd1sPvVWY8lQlZWGPn9C0NWds5yMpT9/view)[-2](https://drive.google.com/file/d/1FLtZNGhdQLzjF2O-ZQLJxRPBnykSXDJ6/view)[-3](https://drive.google.com/file/d/1qxLwu4jroEZa9FsfyN5CEYI3XoMeX5TJ/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
152 |
153 | ## 🔹Chapter5: - **Filters as Templates**
154 | | Topic Name/Tutorial | Video | NoteBook |
155 | |---|---|---|
156 | | [**🌐1- Introduction of Filters as templates, 1D correlation and 2D Correlations**](https://medium.com/@Coursesteach/computer-vision-part-35-introduction-of-filters-as-templates-8a61c1b7a303) | [1](https://drive.google.com/file/d/1xun5nFgKESdTb2nrEQMP5ltjyt1EVpel/view)[-2](https://drive.google.com/file/d/1qaivyaKMS_8abNeu8-ubaOPByDQ1DiVf/view) [-3](https://drive.google.com/file/d/1mYyHLY97o_Ha6yn_DjxXv5HuGn7Pdesw/view) |[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
157 | | [**🌐2- Find Tempalte ID**](https://medium.com/@Coursesteach/computer-vision-part-36-find-template-1d-2fc954eca1f7) | [1](https://drive.google.com/file/d/1qzeQF-suulO4a9zMWEDWkPRIfPDiftVZ/view)[-2](https://drive.google.com/file/d/1IFjqWMAfOHAjsj0y33NWQQYG24nYokMy/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
158 | | [**🌐3- Template Matching⭐️**](https://medium.com/@Coursesteach/computer-vision-part-37-template-matching-848b423a84ad) | [1](https://drive.google.com/file/d/1SFFwv9u-ypL8GaYgo0BKQChRa2THKkmY/view)[-2](https://drive.google.com/file/d/1LlqdK1lCeXsjJGE84T8AS3vM59nLEOo6/view)[-3](https://drive.google.com/file/d/105OVSmotPZti1xwZqXGdlXwoaC-Rt2cr/view)[-4](https://drive.google.com/file/d/1dv1rIxwPC58qtz4OrML2tOXVow0eMuRD/view)[-5](https://drive.google.com/file/d/1WZi7cE3lvEAihNdqGF13rzFc8qg2xA5p/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
159 |
160 | ## 🔹Chapter6: - **Edge detection: Gradients**
161 | | Topic Name/Tutorial | Video | NoteBook |
162 | |---|---|---|
163 | | [**🌐1- Pattern Finding and Feature Detection**](https://medium.com/@Coursesteach/computer-vision-part-38-exploring-computer-vision-pattern-finding-and-feature-detection-ebd3b8d81353) | [1](https://drive.google.com/file/d/1Pgj5ejwo2sPEgWRkfTgA1YK9xj8KprsD/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
164 | | [**🌐2- Understanding Edges in Images: Why They Matter in Visual Perception**](https://medium.com/@Coursesteach/computer-vision-part-39-understanding-edges-in-images-why-they-matter-in-visual-perception-773ee3ece9a5) | [1](https://drive.google.com/file/d/1zE73_T53xLgqUxXo3nw3NqJJndKiJ_W_/view)[-2](https://drive.google.com/file/d/1YkOa4DCmOJqE7qO_DTAy60YklTxVv-nj/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
165 | | [**🌐3- Edge Detection⭐️**](https://medium.com/@Coursesteach/how-edge-detection-works-in-image-processing-step-by-step-explanation-computer-vision-part-40-49eecc06593a) | [1](https://drive.google.com/file/d/11_MgzHT5N-y_PaslRo27QvPAC1h5CNkf/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
166 | | [**🌐4-Derivatives and Edges⭐️**](https://medium.com/@Coursesteach/finding-peaks-and-edges-the-power-of-derivatives-in-function-analysis-computer-vision-part-41-6ffa1eb3a5cb) | [1](https://drive.google.com/file/d/1Gj_0J21g4SooclT-TlxXuYT1I_o5RhtU/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
167 | | [**🌐5-What is Gradients⭐️**](https://medium.com/@Coursesteach/understanding-differential-operators-and-gradients-in-images-computer-vision-part-42-d18ce2693148) | [1](https://drive.google.com/file/d/1tP-jDm498EXyKWs7NhUQmvzBBxJl7m_3/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
168 | | [**🌐6-Finite Differences⭐️**](https://medium.com/@Coursesteach/discrete-gradients-explained-a-beginners-guide-to-finite-differences-in-computing-computer-d3dd67c8c444) | [1](https://drive.google.com/file/d/19HxBZ53B1Xe74kz43KRqfpocm9gNGVs1/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
169 | | [**🌐7-Partial Derivatives of an Image⭐️**](https://medium.com/@Coursesteach/understanding-partial-derivatives-of-an-image-computer-vision-part-44-33ce203de23c) | [1](https://drive.google.com/file/d/1_e_GIFVSFb-4-Yxic164wBIw_Gsry4pM/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
170 | | [**🌐8-The Discrete Gradient⭐️**](https://medium.com/@Coursesteach/what-are-discrete-gradients-and-why-balanced-operators-matte-computer-vision-part-45-4a46134259bb) | [1](https://drive.google.com/file/d/1TY6yKP9X6PF7Jh2mr1Pqs2cEmrbFVcOU/view)[-2](https://www.youtube.com/watch?v=lOEBsQodtEQ)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
171 | | [**🌐9-Sobel Operator⭐️**](https://medium.com/@Coursesteach/understanding-the-sobel-operator-a-classic-edge-detection-technique-computer-vision-part-46-938faca6ad74) | [1](https://drive.google.com/file/d/1-hfJqthjbAIa_PhwpaNUqKK0uICfbfah/view)[-2](https://www.youtube.com/watch?v=uihBwtPIBxM)[-3](https://www.youtube.com/watch?v=Yz7h9L4gecQ)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
172 | | [**🌐10-Well Known Gradients⭐️**](https://medium.com/@Coursesteach/understanding-the-sobel-operator-a-classic-edge-detection-technique-computer-vision-part-46-938faca6ad74) | [1](https://drive.google.com/file/d/10eyzaLcNMhZ7C4ZMMR9yXc86wHDcFYos/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
173 | | [**🌐11-Gradients direction⭐️**](https://medium.com/@Coursesteach/computing-image-gradients-direction-matlab-python-techniques-for-edge-detection-595b0be8f471) | [1](https://drive.google.com/file/d/18iLgY1BeyTTjnaQbnxJzVvXm9w-JjTh0/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
174 | | [**🌐12-But in the Real World⭐️**](https://medium.com/@Coursesteach/understanding-edge-detection-noise-and-derivatives-explained-computer-vision-p48-482bf2cfcd92) | [1](https://drive.google.com/file/d/1Ul0XDqYyzMWEpNgNIgRpZPXsnRsKLse-/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
175 |
176 | ## 🔹Chapter7: - **Edge detection: 2D operators**
177 | | Topic Name/Tutorial | Video | NoteBook |
178 | |---|---|---|
179 | |**🌐1- Introduction**| [1](https://drive.google.com/file/d/1uEKYbYERARDFaPyf_B9USjmJ51O2FKUc/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
180 | |**🌐2-Derivative of Gaussian Filter 2D**| [1](https://drive.google.com/file/d/1YeogWHkDpvYkcgtT_FU-YU-B2lkt7Xsc/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
181 | |**🌐3- Effect of Sigma on Derivatives**| [1](https://drive.google.com/file/d/1P72PPQaVJ_AgpiR69saOriU7L1x4BwJU/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
182 | |**🌐4-Canny Edge Operator P1 **| [1](https://drive.google.com/file/d/1vloOkCm0xaKojql0RXwZ9wjJ6FQwMo3f/viewJ_AgpiR69saOriU7L1x4BwJU/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
183 | |**🌐5-Canny Edge Operator P2**| [1](https://drive.google.com/file/d/1Zt1FG7FZv1LwBY0o_28fonHCDvrA28ww/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
184 | |**🌐6- For Your Eyes Only Demo**| [1](https://drive.google.com/file/d/1k7Lz_g5lC1bVs27jpfRkxabLA_fUVSAd/view)[-2](https://drive.google.com/file/d/1dZPrgk7_DrMvgAKpYaDUFDdmokrF-9jE/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
185 | |**🌐7-Canny Results**| [1](https://drive.google.com/file/d/1kxQoYDEc7l6MiigXjjvjDJAYxCWGOJE5/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
186 | |**🌐8-Single 2D Edge Detection Filter**| [1](https://drive.google.com/file/d/197iBxz3CNkGhSYUmCnCSlcqP7Q8osfUi/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
187 |
188 | ## 🔹Chapter8: - **L1 Hough transform: Lines**
189 | | Topic Name/Tutorial | Video | NoteBook |
190 | |---|---|---|
191 | |**🌐1- Introduction**| [1](https://drive.google.com/file/d/1ReFf1sLrgXGogfAEAX5uM0QZRv0MOEyH/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
192 | |**🌐2-Parametric Model**| [1](https://drive.google.com/file/d/1W4b4tFpzNz8z2Z8up5YqD6yBE3YWtguk/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
193 | |**🌐3-Line Fitting**| [1](https://drive.google.com/file/d/17IRoXWMSjrmsPSFpNM5b2kjo22YJ3d6f/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
194 | |**🌐4-Voting**| [1](https://drive.google.com/file/d/1yiUtV5ElVaYzahr-qdJDlEjDIIppItG4/view)[-2](https://www.youtube.com/watch?v=6yVMpaIoxIU)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
195 | |**🌐5-Hough Space**| [1](https://drive.google.com/file/d/18Oiw44jEOBDAQvgLqmf08UKitF5m849Y/view)[-2](https://www.youtube.com/watch?v=4zHbI-fFIlI)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
196 | |**🌐6-Polar Representation for Lines**| [1](https://drive.google.com/file/d/1Ch2hYB6vdrKa3yfHl3jDNour8hNGFoQu/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
197 | |**🌐7-Basic Hough Transform Algorithm**| [1](https://drive.google.com/file/d/1wrq9J5yCicGgumWu9iE9u7gaUJTjDuOJ/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
198 | |**🌐8-Complexity of the Hough Transform**| [1](https://drive.google.com/file/d/1iYZk9dMrnIpsJniPdmRRbxuQKe0TWkC2/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
199 | |**🌐9-Hough Example**| [1](https://drive.google.com/file/d/1Jkye2NVdFMkqSlsDChJxMhZth1-FPaOM/view)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
200 | |**🌐10-Hough Demo**| [1](https://drive.google.com/drive/u/0/home)|[](https://github.com/hussain0048/Computer-Vision-/blob/main/Introduction_to_Computer_Vision.ipynb)|
201 |
202 |
203 |
204 |
205 |
206 |
207 |
208 | 📕 Computer Vision Resources
209 |
210 | ## 🔹Chapter1: - **Free Courses**
211 | | Title/link| Description | Reading Status |
212 | |---|---|---|
213 | |[**✅1- Deep Learning for Computer Vision**](https://www.youtube.com/watch?v=0nqvO3AM2Vw&list=PL5-TkQAfAZFbzxjBHtzdVCWE0Zbhomg7r&index=3?fbclid=IwZXh0bgNhZW0CMTAAAR2J9tEPD3kPegVzCWQ0WkBYSS6go_0G0PjRSaNojiOjDG85ccS45lZGyBE_aem_Ack4D65TusReJ6ybfh6ZIy9MXZ6ezPKugIzvqWZO2HtMW1C4Y38SpzlpjSzB4pr4-X4tFDusPKaI4SeieXZKMIcn)|by Michigan Online,Youtube| Pending|
214 | |[**✅2- Introduction of Computer Science**](https://www.udacity.com/enrollment/ud810)|It is free course and it contain notes and video| Inprogress|
215 | |[**✅3-Community Computer Vision Course**](https://huggingface.co/learn/computer-vision-course/unit0/welcome/welcome)|It is free course huggingface and it contain notes and video| Pending|
216 | |[**✅4-Computer Vision Lane Detection Playlist**](https://www.youtube.com/watch?v=9CCs4stbwCo&list=PLCiTDJays9rWQkp_IuHOd15JXHyVaYQKE&index=1)|Highly recommend for anyone working on self-driving projects, OpenCV practice, or just learning how CV pipelines are structured in real-world scenarios.|
217 | ## 🔹Chapter2: - **Important Website**
218 | | Title/link| Description | Code |
219 | |---|---|---|
220 | |[**✅1- Road Map**](https://coggle.it/diagram/ZO5EUOut86Irr5hc/t/computer-vision-roadmap/760d909a1f28af1782645ff9b5af1dfd4481ce08bf258b4b54f868d7f3a1b8d5)|Road Map on Coggle|---|
221 |
222 | ## 🔹Chapter3: - **Important Social medica Groups**
223 | | Title/link| Description | Code |
224 | |---|---|---|
225 | |[**✅1- Jeff Heaton**](https://www.youtube.com/@HeatonResearch/about)|It is Videos and github|---|
226 | |[**✅2- First Principles of Computer Vision**](https://www.youtube.com/@firstprinciplesofcomputerv3258/playlists)|It is Videos and github|---|
227 |
228 | ## 🔹Chapter4: - **Free Books**
229 | | Title/link| Description | Code |
230 | |---|---|---|
231 | |[**✅1- Foundations of Computer Vision**](https://visionbook.mit.edu/)|Antonio Torralba, Phillip Isola, and William Freeman|---|
232 |
233 | ## 🔹Chapter5: - **Github Repository**
234 | | Title/link| Description | Status |
235 | |---|---|---|
236 | |[**✅1- Computer Science courses with video lectures**](https://github.com/Developer-Y/cs-video-courses?fbclid=IwZXh0bgNhZW0CMTAAAR2J9tEPD3kPegVzCWQ0WkBYSS6go_0G0PjRSaNojiOjDG85ccS45lZGyBE_aem_Ack4D65TusReJ6ybfh6ZIy9MXZ6ezPKugIzvqWZO2HtMW1C4Y38SpzlpjSzB4pr4-X4tFDusPKaI4SeieXZKMIcn)|It is Videos and github| Pending|
237 | |[**✅2-courses & resources**](https://github.com/SkalskiP/courses)|It is course of all AI domain| Pending|
238 | |[**✅3-AIBauchi-Computer-Vision-Bootcamp**](https://github.com/AIBauchi/AIBauchi-Computer-Vision-Bootcamp/tree/main)|It is course of all AI domain| Inprogress|
239 | |[**✅4-Awesome Computer Vision**](https://github.com/jbhuang0604/awesome-computer-vision?tab=readme-ov-file#courses)|It is course of all AI domain| Inprogress|
240 | |[**✅5-Community-led Computer Vision Community Course**](https://huggingface.co/learn/computer-vision-course/unit0/welcome/welcome)|This is the repository for a community-led course on Computer Vision. Over 60 contributors from the Hugging Face| Inprogress|
241 |
242 | ## 👁️ Chapter1: - **Important Library and Packages**
243 | | Title/link| Description | Resources |
244 | |---|---|---|
245 | |[**✅1- RBOT (ROI-Based Object Tracking**]()| is an **alternative to YOLO for custom object tracking**. Unlike traditional deep learning models that require thousands of images per object, RBOT aims to learn from **50-100 samples** and track objects without relying on bounding box detection.|---|
246 | |[**✅2- skimage**]()| skimage, short for scikit-image, is an open-source Python library designed for image processing and computer vision..|---|
247 |
248 |
249 | ## 👁️ Chapter1: - **Importatant tutorial**
250 | | Title/link| Description | Status |
251 | |---|---|---|
252 | |[**✅1- Multimodal Data Analysis with Deep Learning**](https://rackenzik.com/multimodal-data-analysis-with-deep-learning/)|It is Videos and github|pending|
253 |
254 |
255 | ## 💻 Workflow:
256 |
257 | - Fork the repository
258 |
259 | - Clone your forked repository using terminal or gitbash.
260 |
261 | - Make changes to the cloned repository
262 |
263 | - Add, Commit and Push
264 |
265 | - Then in Github, in your cloned repository find the option to make a pull request
266 |
267 | > print("Start contributing for Computer Vision")
268 | >
269 | ## ⚙️ Things to Note
270 |
271 | * Anybody interested in learning and contributing to computer Vision repository
272 | * There are no hard prerequisites other than a dedication to learning
273 | * Some experience with the following will be beneficial:,C++ Programming, Basic of Computer
274 | * You can only work on issues that have been assigned to you.
275 | * If you want to contribute the algorithm, it's preferrable that you create a new issue before making a PR and link your PR to that issue.
276 | * If you have modified/added code work, make sure the code compiles before submitting.
277 | * Strictly use snake_case (underscore_separated) in your file_name and push it in correct folder.
278 | * Do not update the **[README.md](https://github.com/prathimacode-hub/ML-ProjectKart/blob/main/README.md).**
279 |
280 | ## 🔍 Explore more
281 | Explore cutting-edge tools and Python libraries, access insightful slides and source code, and tap into a wealth of free online courses from top universities and organizations. Connect with like-minded individuals on Reddit, Facebook, and beyond, and stay updated with our YouTube channel and GitHub repository. Don’t wait — enroll now and unleash your Computer Vision potential!”
282 |
283 | * [Computer Vision Basic](https://coursesteach.com/enrol/index.php?id=133)
284 |
285 |
286 | ## **✨Top Contributors**
287 | We would love your help in making this repository even better! If you know of an amazing Computer Vision course or you know intrested Computer Vision related tutorial/Video that isn't listed here, or if you have any suggestions for improvement in any course content, feel free to open an issue or submit a course contribution request.
288 |
289 | Together, let's make this the best AI learning hub website! 🚀
290 |
291 | Thanks goes to these Wonderful People. Contributions of any kind are welcome!🚀
292 |
293 |
294 |
295 |
296 |
297 |
298 |
299 |
300 |
301 |
302 |
--------------------------------------------------------------------------------
/📚Chapter 8 L1 Hough transform Lines/New Text Document.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dr-mushtaq/Computer-Vision/98f9bba7847e2df533f030ff21fe01946eafb98a/📚Chapter 8 L1 Hough transform Lines/New Text Document.txt
--------------------------------------------------------------------------------
/📚Chapter 1-Introduction/New Text Document.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dr-mushtaq/Computer-Vision/98f9bba7847e2df533f030ff21fe01946eafb98a/📚Chapter 1-Introduction/New Text Document.txt
--------------------------------------------------------------------------------
/📚Chapter 2-Image As Function/New Text Document.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dr-mushtaq/Computer-Vision/98f9bba7847e2df533f030ff21fe01946eafb98a/📚Chapter 2-Image As Function/New Text Document.txt
--------------------------------------------------------------------------------
/📚Chapter 3-Filtering/New Text Document.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dr-mushtaq/Computer-Vision/98f9bba7847e2df533f030ff21fe01946eafb98a/📚Chapter 3-Filtering/New Text Document.txt
--------------------------------------------------------------------------------
/📚Chapter 4-Linearity and Convolution/New Text Document.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dr-mushtaq/Computer-Vision/98f9bba7847e2df533f030ff21fe01946eafb98a/📚Chapter 4-Linearity and Convolution/New Text Document.txt
--------------------------------------------------------------------------------
/📚Chapter 5-Filters as Templates/New Text Document.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dr-mushtaq/Computer-Vision/98f9bba7847e2df533f030ff21fe01946eafb98a/📚Chapter 5-Filters as Templates/New Text Document.txt
--------------------------------------------------------------------------------
/📚Chapter 6-Edge detection Gradients/New Text Document.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dr-mushtaq/Computer-Vision/98f9bba7847e2df533f030ff21fe01946eafb98a/📚Chapter 6-Edge detection Gradients/New Text Document.txt
--------------------------------------------------------------------------------
/📚Chapter7 Edge detection 2D operators/New Text Document.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dr-mushtaq/Computer-Vision/98f9bba7847e2df533f030ff21fe01946eafb98a/📚Chapter7 Edge detection 2D operators/New Text Document.txt
--------------------------------------------------------------------------------
/📚🧑🎓📝Other Best Free Resources to Learn Computer Vision/New Text Document.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dr-mushtaq/Computer-Vision/98f9bba7847e2df533f030ff21fe01946eafb98a/📚🧑🎓📝Other Best Free Resources to Learn Computer Vision/New Text Document.txt
--------------------------------------------------------------------------------