├── .gitignore
├── LICENSE
├── README.md
├── data
└── 20k.txt
├── download_tts_models.py
├── generate_clips.py
├── models
├── vits
│ ├── LICENSE
│ ├── README.md
│ ├── attentions.py
│ ├── commons.py
│ ├── configs
│ │ ├── ljs_base.json
│ │ ├── ljs_nosdp.json
│ │ └── vctk_base.json
│ ├── data_utils.py
│ ├── filelists
│ │ ├── ljs_audio_text_test_filelist.txt
│ │ ├── ljs_audio_text_test_filelist.txt.cleaned
│ │ ├── ljs_audio_text_train_filelist.txt
│ │ ├── ljs_audio_text_train_filelist.txt.cleaned
│ │ ├── ljs_audio_text_val_filelist.txt
│ │ ├── ljs_audio_text_val_filelist.txt.cleaned
│ │ ├── vctk_audio_sid_text_test_filelist.txt
│ │ ├── vctk_audio_sid_text_test_filelist.txt.cleaned
│ │ ├── vctk_audio_sid_text_train_filelist.txt
│ │ ├── vctk_audio_sid_text_train_filelist.txt.cleaned
│ │ ├── vctk_audio_sid_text_val_filelist.txt
│ │ └── vctk_audio_sid_text_val_filelist.txt.cleaned
│ ├── losses.py
│ ├── mel_processing.py
│ ├── models.py
│ ├── modules.py
│ ├── monotonic_align
│ │ ├── __init__.py
│ │ ├── core.pyx
│ │ └── setup.py
│ ├── preprocess.py
│ ├── pretrained_models
│ │ └── .gitkeep
│ ├── requirements.txt
│ ├── resources
│ │ ├── fig_1a.png
│ │ ├── fig_1b.png
│ │ └── training.png
│ ├── text
│ │ ├── LICENSE
│ │ ├── __init__.py
│ │ ├── cleaners.py
│ │ └── symbols.py
│ ├── train.py
│ ├── train_ms.py
│ ├── transforms.py
│ └── utils.py
└── waveglow
│ ├── Dockerfile
│ ├── MANIFEST.in
│ ├── README.md
│ ├── TextToSpeechModel
│ ├── __init__.py
│ ├── artifacts
│ │ ├── __init__.py
│ │ ├── cmudict_dictionary
│ │ ├── heteronyms
│ │ └── libritts_train_clean_100_audiopath_text_sid_shorterthan10s_atleast5min_train_filelist.txt
│ ├── audio_processing.py
│ ├── bentoml.yml
│ ├── data.py
│ ├── flowtron.py
│ ├── glow.py
│ ├── text
│ │ ├── LICENSE
│ │ ├── __init__.py
│ │ ├── acronyms.py
│ │ ├── cleaners.py
│ │ ├── cmudict.py
│ │ ├── cmudict_dictionary
│ │ ├── datestime.py
│ │ ├── heteronyms
│ │ ├── numbers.py
│ │ └── symbols.py
│ ├── text_to_speech.py
│ └── waveglow_artifact.py
│ ├── bentoml-init.sh
│ ├── bentoml.yml
│ ├── docker-entrypoint.sh
│ ├── environment.yml
│ ├── python_version
│ ├── requirements.txt
│ └── setup.py
└── requirements.txt
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | pip-wheel-metadata/
24 | share/python-wheels/
25 | *.egg-info/
26 | .installed.cfg
27 | *.egg
28 | MANIFEST
29 |
30 | # PyInstaller
31 | # Usually these files are written by a python script from a template
32 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
33 | *.manifest
34 | *.spec
35 |
36 | # Installer logs
37 | pip-log.txt
38 | pip-delete-this-directory.txt
39 |
40 | # Unit test / coverage reports
41 | htmlcov/
42 | .tox/
43 | .nox/
44 | .coverage
45 | .coverage.*
46 | .cache
47 | nosetests.xml
48 | coverage.xml
49 | *.cover
50 | *.py,cover
51 | .hypothesis/
52 | .pytest_cache/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | target/
76 |
77 | # Jupyter Notebook
78 | .ipynb_checkpoints
79 |
80 | # IPython
81 | profile_default/
82 | ipython_config.py
83 |
84 | # pyenv
85 | .python-version
86 |
87 | # pipenv
88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
91 | # install all needed dependencies.
92 | #Pipfile.lock
93 |
94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow
95 | __pypackages__/
96 |
97 | # Celery stuff
98 | celerybeat-schedule
99 | celerybeat.pid
100 |
101 | # SageMath parsed files
102 | *.sage.py
103 |
104 | # Environments
105 | .env
106 | .venv
107 | env/
108 | venv/
109 | ENV/
110 | env.bak/
111 | venv.bak/
112 |
113 | # Spyder project settings
114 | .spyderproject
115 | .spyproject
116 |
117 | # Rope project settings
118 | .ropeproject
119 |
120 | # mkdocs documentation
121 | /site
122 |
123 | # mypy
124 | .mypy_cache/
125 | .dmypy.json
126 | dmypy.json
127 |
128 | # Pyre type checker
129 | .pyre/
130 |
131 | # Large ML models
132 | *.pt
133 | *.pth
134 | *.onnx
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Readme
2 |
3 | This repository contains text-to-speech (TTS) models and utilities designed produce synthetic training datasets for other speech-related models (e.g., [openWakeWord](https://github.com/dscripka/openWakeWord)).
4 |
5 | It includes two specific open-source TTS models that I have found to be useful when generating synthetic speech. Specifically:
6 |
7 | - [Nvidia Waveglow](https://github.com/NVIDIA/waveglow)
8 | - [VITS](https://github.com/jaywalnut310/vits)
9 |
10 | Note that the code in this repository varies greatly in quality and structure as it was derived from multiple sources. It is primarily meant for research and experimentation, and you are encouraged to makes changes and updates before relying on this code for production purposes. Also, these models are only trained on English TTS datasets (VCTK and LibriTTS), and will not produce accurate speech for other languages.
11 |
12 | # Installation
13 |
14 | First clone this repository:
15 |
16 | ```bash
17 | git clone https://github.com/dscripka/synthetic_speech_dataset_generation
18 | ```
19 |
20 | Then install the requirements into your virtual environment of choice:
21 |
22 | ```bash
23 | pip install -r requirements.txt
24 | ```
25 |
26 | If installing in an environment with GPUs available, you will need to update `requirements.txt` to include versions of Torch compatible with your GPU configuration. Note that while it is possible to generate data on CPUs only, the WAVEGLOW model will be very slow (e.g., 5-10 seconds per generation). The VITS model is somewhat faster on CPU (~1-3 seconds per generation), but for the large amounts of data generation that is often needed to train robust models, a GPU is *strongly* recommended.
27 |
28 | The TTS models themselves are not stored in this repository and need to be downloaded separately. There is an included script that will download the files and place them in the appropriate location within the repository.
29 |
30 | ```bash
31 | python download_tts_models.py
32 | ```
33 |
34 | To test that everything is working correctly after these steps, use this command and listen to the output in the `generated_clips` directory that is created:
35 |
36 | ```bash
37 | python generate_clips.py --model VITS --text "This is some test speech" --N 1 --output_dir generated_clips
38 | ```
39 |
40 | # Usage
41 |
42 | The primary way to generate synthetic speech is via the CLI in `generate_clips.py`. To see all of the possible arguments, use `python generate_clips.py --help`.
43 |
44 | As a quick example of usage, the following command will generate 5000 clips of the phrase "turn on the office lights" using the Nvidia Waveglow model (on a GPU) trained on the LibriTTS dataset. Additionally, the `--max_per_speaker` argument will limit the number of generations for each of the ~2300 LibriTTS training voices to 1, and after that limit is reached a random voice will be created by [spherical interpolation](https://en.wikipedia.org/wiki/Slerp) of random speaker embeddings.
45 |
46 | ```
47 | python generate_clips.py \
48 | --model WAVEGLOW \
49 | --enable_gpu \
50 | --text "turn on the office lights" \
51 | --N 5000 \
52 | --max_per_speaker 1 \
53 | --output_dir /path/to/output/directory
54 | ```
55 |
56 | # License
57 |
58 | The `generate_clips.py` code in this repository is licensed under Apache 2.0. The included TTS models (and the associated code from the source repos) have their own licenses, and you are strongly encouraged to review the original repositories to determine if the license is appropriate for a given use-case.
59 |
60 | - [Nvidia Waveglow](https://github.com/NVIDIA/waveglow)
61 | - [VITS](https://github.com/jaywalnut310/vits)
--------------------------------------------------------------------------------
/download_tts_models.py:
--------------------------------------------------------------------------------
1 | # Copyright 2022 David Scripka. All rights reserved.
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | # Imports
16 | import functools
17 | import pathlib
18 | import shutil
19 | import requests
20 | import os
21 | from tqdm.auto import tqdm
22 |
23 | # Helper function to download files (from https://stackoverflow.com/a/63831344)
24 | def download(url, filename):
25 | r = requests.get(url, stream=True, allow_redirects=True)
26 | if r.status_code != 200:
27 | r.raise_for_status() # Will only raise for 4xx codes, so...
28 | raise RuntimeError(f"Request to {url} returned status code {r.status_code}")
29 | file_size = int(r.headers.get('Content-Length', 0))
30 |
31 | path = pathlib.Path(filename).expanduser().resolve()
32 | path.parent.mkdir(parents=True, exist_ok=True)
33 |
34 | desc = "(Unknown total file size)" if file_size == 0 else ""
35 | r.raw.read = functools.partial(r.raw.read, decode_content=True) # Decompress if needed
36 | with tqdm.wrapattr(r.raw, "read", total=file_size, desc=desc) as r_raw:
37 | with path.open("wb") as f:
38 | shutil.copyfileobj(r_raw, f)
39 |
40 | return path
41 |
42 | # Download files
43 | print("Downloading TTS models...\n")
44 | vits_model = "https://f002.backblazeb2.com/file/openwakeword-resources/tts_models/pretrained_vctk.pth"
45 | waveglow_model = "https://f002.backblazeb2.com/file/openwakeword-resources/tts_models/waveglow_256channels_universal_v5.pt"
46 | flowtron_libritts_model = "https://f002.backblazeb2.com/file/openwakeword-resources/tts_models/flowtron_libritts2p3k.pt"
47 |
48 | download(vits_model, vits_model.split("/")[-1])
49 | download(waveglow_model, waveglow_model.split("/")[-1])
50 | download(flowtron_libritts_model, flowtron_libritts_model.split("/")[-1])
51 |
52 | # Move model files to correct locations
53 | print("\nMoving model files.....")
54 | shutil.move(vits_model.split("/")[-1], os.path.join("models", "vits", "pretrained_models", vits_model.split("/")[-1]))
55 | shutil.move(waveglow_model.split("/")[-1], os.path.join("models", "waveglow", "TextToSpeechModel", "artifacts", waveglow_model.split("/")[-1]))
56 | shutil.move(flowtron_libritts_model.split("/")[-1], os.path.join("models", "waveglow", "TextToSpeechModel", "artifacts", flowtron_libritts_model.split("/")[-1]))
57 | print("Done!")
--------------------------------------------------------------------------------
/models/vits/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2021 Jaehyeon Kim
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/models/vits/README.md:
--------------------------------------------------------------------------------
1 | # VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
2 |
3 | ### Jaehyeon Kim, Jungil Kong, and Juhee Son
4 |
5 | In our recent [paper](https://arxiv.org/abs/2106.06103), we propose VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech.
6 |
7 | Several recent end-to-end text-to-speech (TTS) models enabling single-stage training and parallel sampling have been proposed, but their sample quality does not match that of two-stage TTS systems. In this work, we present a parallel end-to-end TTS method that generates more natural sounding audio than current two-stage models. Our method adopts variational inference augmented with normalizing flows and an adversarial training process, which improves the expressive power of generative modeling. We also propose a stochastic duration predictor to synthesize speech with diverse rhythms from input text. With the uncertainty modeling over latent variables and the stochastic duration predictor, our method expresses the natural one-to-many relationship in which a text input can be spoken in multiple ways with different pitches and rhythms. A subjective human evaluation (mean opinion score, or MOS) on the LJ Speech, a single speaker dataset, shows that our method outperforms the best publicly available TTS systems and achieves a MOS comparable to ground truth.
8 |
9 | Visit our [demo](https://jaywalnut310.github.io/vits-demo/index.html) for audio samples.
10 |
11 | We also provide the [pretrained models](https://drive.google.com/drive/folders/1ksarh-cJf3F5eKJjLVWY0X1j1qsQqiS2?usp=sharing).
12 |
13 | ** Update note: Thanks to [Rishikesh (ऋषिकेश)](https://github.com/jaywalnut310/vits/issues/1), our interactive TTS demo is now available on [Colab Notebook](https://colab.research.google.com/drive/1CO61pZizDj7en71NQG_aqqKdGaA_SaBf?usp=sharing).
14 |
15 |
16 |
17 | VITS at training |
18 | VITS at inference |
19 |
20 |
21 |  |
22 |  |
23 |
24 |
25 |
26 |
27 | ## Pre-requisites
28 | 0. Python >= 3.6
29 | 0. Clone this repository
30 | 0. Install python requirements. Please refer [requirements.txt](requirements.txt)
31 | 1. You may need to install espeak first: `apt-get install espeak`
32 | 0. Download datasets
33 | 1. Download and extract the LJ Speech dataset, then rename or create a link to the dataset folder: `ln -s /path/to/LJSpeech-1.1/wavs DUMMY1`
34 | 1. For mult-speaker setting, download and extract the VCTK dataset, and downsample wav files to 22050 Hz. Then rename or create a link to the dataset folder: `ln -s /path/to/VCTK-Corpus/downsampled_wavs DUMMY2`
35 | 0. Build Monotonic Alignment Search and run preprocessing if you use your own datasets.
36 | ```sh
37 | # Cython-version Monotonoic Alignment Search
38 | cd monotonic_align
39 | python setup.py build_ext --inplace
40 |
41 | # Preprocessing (g2p) for your own datasets. Preprocessed phonemes for LJ Speech and VCTK have been already provided.
42 | # python preprocess.py --text_index 1 --filelists filelists/ljs_audio_text_train_filelist.txt filelists/ljs_audio_text_val_filelist.txt filelists/ljs_audio_text_test_filelist.txt
43 | # python preprocess.py --text_index 2 --filelists filelists/vctk_audio_sid_text_train_filelist.txt filelists/vctk_audio_sid_text_val_filelist.txt filelists/vctk_audio_sid_text_test_filelist.txt
44 | ```
45 |
46 |
47 | ## Training Exmaple
48 | ```sh
49 | # LJ Speech
50 | python train.py -c configs/ljs_base.json -m ljs_base
51 |
52 | # VCTK
53 | python train_ms.py -c configs/vctk_base.json -m vctk_base
54 | ```
55 |
56 |
57 | ## Inference Example
58 | See [inference.ipynb](inference.ipynb)
59 |
--------------------------------------------------------------------------------
/models/vits/attentions.py:
--------------------------------------------------------------------------------
1 | import copy
2 | import math
3 | import numpy as np
4 | import torch
5 | from torch import nn
6 | from torch.nn import functional as F
7 |
8 | import commons
9 | import modules
10 | from modules import LayerNorm
11 |
12 |
13 | class Encoder(nn.Module):
14 | def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
15 | super().__init__()
16 | self.hidden_channels = hidden_channels
17 | self.filter_channels = filter_channels
18 | self.n_heads = n_heads
19 | self.n_layers = n_layers
20 | self.kernel_size = kernel_size
21 | self.p_dropout = p_dropout
22 | self.window_size = window_size
23 |
24 | self.drop = nn.Dropout(p_dropout)
25 | self.attn_layers = nn.ModuleList()
26 | self.norm_layers_1 = nn.ModuleList()
27 | self.ffn_layers = nn.ModuleList()
28 | self.norm_layers_2 = nn.ModuleList()
29 | for i in range(self.n_layers):
30 | self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
31 | self.norm_layers_1.append(LayerNorm(hidden_channels))
32 | self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
33 | self.norm_layers_2.append(LayerNorm(hidden_channels))
34 |
35 | def forward(self, x, x_mask):
36 | attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
37 | x = x * x_mask
38 | for i in range(self.n_layers):
39 | y = self.attn_layers[i](x, x, attn_mask)
40 | y = self.drop(y)
41 | x = self.norm_layers_1[i](x + y)
42 |
43 | y = self.ffn_layers[i](x, x_mask)
44 | y = self.drop(y)
45 | x = self.norm_layers_2[i](x + y)
46 | x = x * x_mask
47 | return x
48 |
49 |
50 | class Decoder(nn.Module):
51 | def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
52 | super().__init__()
53 | self.hidden_channels = hidden_channels
54 | self.filter_channels = filter_channels
55 | self.n_heads = n_heads
56 | self.n_layers = n_layers
57 | self.kernel_size = kernel_size
58 | self.p_dropout = p_dropout
59 | self.proximal_bias = proximal_bias
60 | self.proximal_init = proximal_init
61 |
62 | self.drop = nn.Dropout(p_dropout)
63 | self.self_attn_layers = nn.ModuleList()
64 | self.norm_layers_0 = nn.ModuleList()
65 | self.encdec_attn_layers = nn.ModuleList()
66 | self.norm_layers_1 = nn.ModuleList()
67 | self.ffn_layers = nn.ModuleList()
68 | self.norm_layers_2 = nn.ModuleList()
69 | for i in range(self.n_layers):
70 | self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
71 | self.norm_layers_0.append(LayerNorm(hidden_channels))
72 | self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
73 | self.norm_layers_1.append(LayerNorm(hidden_channels))
74 | self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
75 | self.norm_layers_2.append(LayerNorm(hidden_channels))
76 |
77 | def forward(self, x, x_mask, h, h_mask):
78 | """
79 | x: decoder input
80 | h: encoder output
81 | """
82 | self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
83 | encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
84 | x = x * x_mask
85 | for i in range(self.n_layers):
86 | y = self.self_attn_layers[i](x, x, self_attn_mask)
87 | y = self.drop(y)
88 | x = self.norm_layers_0[i](x + y)
89 |
90 | y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
91 | y = self.drop(y)
92 | x = self.norm_layers_1[i](x + y)
93 |
94 | y = self.ffn_layers[i](x, x_mask)
95 | y = self.drop(y)
96 | x = self.norm_layers_2[i](x + y)
97 | x = x * x_mask
98 | return x
99 |
100 |
101 | class MultiHeadAttention(nn.Module):
102 | def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
103 | super().__init__()
104 | assert channels % n_heads == 0
105 |
106 | self.channels = channels
107 | self.out_channels = out_channels
108 | self.n_heads = n_heads
109 | self.p_dropout = p_dropout
110 | self.window_size = window_size
111 | self.heads_share = heads_share
112 | self.block_length = block_length
113 | self.proximal_bias = proximal_bias
114 | self.proximal_init = proximal_init
115 | self.attn = None
116 |
117 | self.k_channels = channels // n_heads
118 | self.conv_q = nn.Conv1d(channels, channels, 1)
119 | self.conv_k = nn.Conv1d(channels, channels, 1)
120 | self.conv_v = nn.Conv1d(channels, channels, 1)
121 | self.conv_o = nn.Conv1d(channels, out_channels, 1)
122 | self.drop = nn.Dropout(p_dropout)
123 |
124 | if window_size is not None:
125 | n_heads_rel = 1 if heads_share else n_heads
126 | rel_stddev = self.k_channels**-0.5
127 | self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
128 | self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
129 |
130 | nn.init.xavier_uniform_(self.conv_q.weight)
131 | nn.init.xavier_uniform_(self.conv_k.weight)
132 | nn.init.xavier_uniform_(self.conv_v.weight)
133 | if proximal_init:
134 | with torch.no_grad():
135 | self.conv_k.weight.copy_(self.conv_q.weight)
136 | self.conv_k.bias.copy_(self.conv_q.bias)
137 |
138 | def forward(self, x, c, attn_mask=None):
139 | q = self.conv_q(x)
140 | k = self.conv_k(c)
141 | v = self.conv_v(c)
142 |
143 | x, self.attn = self.attention(q, k, v, mask=attn_mask)
144 |
145 | x = self.conv_o(x)
146 | return x
147 |
148 | def attention(self, query, key, value, mask=None):
149 | # reshape [b, d, t] -> [b, n_h, t, d_k]
150 | b, d, t_s, t_t = (*key.size(), query.size(2))
151 | query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
152 | key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
153 | value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
154 |
155 | scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
156 | if self.window_size is not None:
157 | assert t_s == t_t, "Relative attention is only available for self-attention."
158 | key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
159 | rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
160 | scores_local = self._relative_position_to_absolute_position(rel_logits)
161 | scores = scores + scores_local
162 | if self.proximal_bias:
163 | assert t_s == t_t, "Proximal bias is only available for self-attention."
164 | scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
165 | if mask is not None:
166 | scores = scores.masked_fill(mask == 0, -1e4)
167 | if self.block_length is not None:
168 | assert t_s == t_t, "Local attention is only available for self-attention."
169 | block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
170 | scores = scores.masked_fill(block_mask == 0, -1e4)
171 | p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
172 | p_attn = self.drop(p_attn)
173 | output = torch.matmul(p_attn, value)
174 | if self.window_size is not None:
175 | relative_weights = self._absolute_position_to_relative_position(p_attn)
176 | value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
177 | output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
178 | output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
179 | return output, p_attn
180 |
181 | def _matmul_with_relative_values(self, x, y):
182 | """
183 | x: [b, h, l, m]
184 | y: [h or 1, m, d]
185 | ret: [b, h, l, d]
186 | """
187 | ret = torch.matmul(x, y.unsqueeze(0))
188 | return ret
189 |
190 | def _matmul_with_relative_keys(self, x, y):
191 | """
192 | x: [b, h, l, d]
193 | y: [h or 1, m, d]
194 | ret: [b, h, l, m]
195 | """
196 | ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
197 | return ret
198 |
199 | def _get_relative_embeddings(self, relative_embeddings, length):
200 | max_relative_position = 2 * self.window_size + 1
201 | # Pad first before slice to avoid using cond ops.
202 | pad_length = max(length - (self.window_size + 1), 0)
203 | slice_start_position = max((self.window_size + 1) - length, 0)
204 | slice_end_position = slice_start_position + 2 * length - 1
205 | if pad_length > 0:
206 | padded_relative_embeddings = F.pad(
207 | relative_embeddings,
208 | commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
209 | else:
210 | padded_relative_embeddings = relative_embeddings
211 | used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
212 | return used_relative_embeddings
213 |
214 | def _relative_position_to_absolute_position(self, x):
215 | """
216 | x: [b, h, l, 2*l-1]
217 | ret: [b, h, l, l]
218 | """
219 | batch, heads, length, _ = x.size()
220 | # Concat columns of pad to shift from relative to absolute indexing.
221 | x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
222 |
223 | # Concat extra elements so to add up to shape (len+1, 2*len-1).
224 | x_flat = x.view([batch, heads, length * 2 * length])
225 | x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
226 |
227 | # Reshape and slice out the padded elements.
228 | x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
229 | return x_final
230 |
231 | def _absolute_position_to_relative_position(self, x):
232 | """
233 | x: [b, h, l, l]
234 | ret: [b, h, l, 2*l-1]
235 | """
236 | batch, heads, length, _ = x.size()
237 | # padd along column
238 | x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
239 | x_flat = x.view([batch, heads, length**2 + length*(length -1)])
240 | # add 0's in the beginning that will skew the elements after reshape
241 | x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
242 | x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
243 | return x_final
244 |
245 | def _attention_bias_proximal(self, length):
246 | """Bias for self-attention to encourage attention to close positions.
247 | Args:
248 | length: an integer scalar.
249 | Returns:
250 | a Tensor with shape [1, 1, length, length]
251 | """
252 | r = torch.arange(length, dtype=torch.float32)
253 | diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
254 | return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
255 |
256 |
257 | class FFN(nn.Module):
258 | def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
259 | super().__init__()
260 | self.in_channels = in_channels
261 | self.out_channels = out_channels
262 | self.filter_channels = filter_channels
263 | self.kernel_size = kernel_size
264 | self.p_dropout = p_dropout
265 | self.activation = activation
266 | self.causal = causal
267 |
268 | if causal:
269 | self.padding = self._causal_padding
270 | else:
271 | self.padding = self._same_padding
272 |
273 | self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
274 | self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
275 | self.drop = nn.Dropout(p_dropout)
276 |
277 | def forward(self, x, x_mask):
278 | x = self.conv_1(self.padding(x * x_mask))
279 | if self.activation == "gelu":
280 | x = x * torch.sigmoid(1.702 * x)
281 | else:
282 | x = torch.relu(x)
283 | x = self.drop(x)
284 | x = self.conv_2(self.padding(x * x_mask))
285 | return x * x_mask
286 |
287 | def _causal_padding(self, x):
288 | if self.kernel_size == 1:
289 | return x
290 | pad_l = self.kernel_size - 1
291 | pad_r = 0
292 | padding = [[0, 0], [0, 0], [pad_l, pad_r]]
293 | x = F.pad(x, commons.convert_pad_shape(padding))
294 | return x
295 |
296 | def _same_padding(self, x):
297 | if self.kernel_size == 1:
298 | return x
299 | pad_l = (self.kernel_size - 1) // 2
300 | pad_r = self.kernel_size // 2
301 | padding = [[0, 0], [0, 0], [pad_l, pad_r]]
302 | x = F.pad(x, commons.convert_pad_shape(padding))
303 | return x
304 |
--------------------------------------------------------------------------------
/models/vits/commons.py:
--------------------------------------------------------------------------------
1 | import math
2 | import numpy as np
3 | import torch
4 | from torch import nn
5 | from torch.nn import functional as F
6 |
7 |
8 | def init_weights(m, mean=0.0, std=0.01):
9 | classname = m.__class__.__name__
10 | if classname.find("Conv") != -1:
11 | m.weight.data.normal_(mean, std)
12 |
13 |
14 | def get_padding(kernel_size, dilation=1):
15 | return int((kernel_size*dilation - dilation)/2)
16 |
17 |
18 | def convert_pad_shape(pad_shape):
19 | l = pad_shape[::-1]
20 | pad_shape = [item for sublist in l for item in sublist]
21 | return pad_shape
22 |
23 |
24 | def intersperse(lst, item):
25 | result = [item] * (len(lst) * 2 + 1)
26 | result[1::2] = lst
27 | return result
28 |
29 |
30 | def kl_divergence(m_p, logs_p, m_q, logs_q):
31 | """KL(P||Q)"""
32 | kl = (logs_q - logs_p) - 0.5
33 | kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
34 | return kl
35 |
36 |
37 | def rand_gumbel(shape):
38 | """Sample from the Gumbel distribution, protect from overflows."""
39 | uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
40 | return -torch.log(-torch.log(uniform_samples))
41 |
42 |
43 | def rand_gumbel_like(x):
44 | g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
45 | return g
46 |
47 |
48 | def slice_segments(x, ids_str, segment_size=4):
49 | ret = torch.zeros_like(x[:, :, :segment_size])
50 | for i in range(x.size(0)):
51 | idx_str = ids_str[i]
52 | idx_end = idx_str + segment_size
53 | ret[i] = x[i, :, idx_str:idx_end]
54 | return ret
55 |
56 |
57 | def rand_slice_segments(x, x_lengths=None, segment_size=4):
58 | b, d, t = x.size()
59 | if x_lengths is None:
60 | x_lengths = t
61 | ids_str_max = x_lengths - segment_size + 1
62 | ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
63 | ret = slice_segments(x, ids_str, segment_size)
64 | return ret, ids_str
65 |
66 |
67 | def get_timing_signal_1d(
68 | length, channels, min_timescale=1.0, max_timescale=1.0e4):
69 | position = torch.arange(length, dtype=torch.float)
70 | num_timescales = channels // 2
71 | log_timescale_increment = (
72 | math.log(float(max_timescale) / float(min_timescale)) /
73 | (num_timescales - 1))
74 | inv_timescales = min_timescale * torch.exp(
75 | torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
76 | scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
77 | signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
78 | signal = F.pad(signal, [0, 0, 0, channels % 2])
79 | signal = signal.view(1, channels, length)
80 | return signal
81 |
82 |
83 | def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
84 | b, channels, length = x.size()
85 | signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
86 | return x + signal.to(dtype=x.dtype, device=x.device)
87 |
88 |
89 | def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
90 | b, channels, length = x.size()
91 | signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
92 | return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
93 |
94 |
95 | def subsequent_mask(length):
96 | mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
97 | return mask
98 |
99 |
100 | @torch.jit.script
101 | def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
102 | n_channels_int = n_channels[0]
103 | in_act = input_a + input_b
104 | t_act = torch.tanh(in_act[:, :n_channels_int, :])
105 | s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
106 | acts = t_act * s_act
107 | return acts
108 |
109 |
110 | def convert_pad_shape(pad_shape):
111 | l = pad_shape[::-1]
112 | pad_shape = [item for sublist in l for item in sublist]
113 | return pad_shape
114 |
115 |
116 | def shift_1d(x):
117 | x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
118 | return x
119 |
120 |
121 | def sequence_mask(length, max_length=None):
122 | if max_length is None:
123 | max_length = length.max()
124 | x = torch.arange(max_length, dtype=length.dtype, device=length.device)
125 | return x.unsqueeze(0) < length.unsqueeze(1)
126 |
127 |
128 | def generate_path(duration, mask):
129 | """
130 | duration: [b, 1, t_x]
131 | mask: [b, 1, t_y, t_x]
132 | """
133 | device = duration.device
134 |
135 | b, _, t_y, t_x = mask.shape
136 | cum_duration = torch.cumsum(duration, -1)
137 |
138 | cum_duration_flat = cum_duration.view(b * t_x)
139 | path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
140 | path = path.view(b, t_x, t_y)
141 | path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
142 | path = path.unsqueeze(1).transpose(2,3) * mask
143 | return path
144 |
145 |
146 | def clip_grad_value_(parameters, clip_value, norm_type=2):
147 | if isinstance(parameters, torch.Tensor):
148 | parameters = [parameters]
149 | parameters = list(filter(lambda p: p.grad is not None, parameters))
150 | norm_type = float(norm_type)
151 | if clip_value is not None:
152 | clip_value = float(clip_value)
153 |
154 | total_norm = 0
155 | for p in parameters:
156 | param_norm = p.grad.data.norm(norm_type)
157 | total_norm += param_norm.item() ** norm_type
158 | if clip_value is not None:
159 | p.grad.data.clamp_(min=-clip_value, max=clip_value)
160 | total_norm = total_norm ** (1. / norm_type)
161 | return total_norm
162 |
--------------------------------------------------------------------------------
/models/vits/configs/ljs_base.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "eval_interval": 1000,
5 | "seed": 1234,
6 | "epochs": 20000,
7 | "learning_rate": 2e-4,
8 | "betas": [0.8, 0.99],
9 | "eps": 1e-9,
10 | "batch_size": 64,
11 | "fp16_run": true,
12 | "lr_decay": 0.999875,
13 | "segment_size": 8192,
14 | "init_lr_ratio": 1,
15 | "warmup_epochs": 0,
16 | "c_mel": 45,
17 | "c_kl": 1.0
18 | },
19 | "data": {
20 | "training_files":"filelists/ljs_audio_text_train_filelist.txt.cleaned",
21 | "validation_files":"filelists/ljs_audio_text_val_filelist.txt.cleaned",
22 | "text_cleaners":["english_cleaners2"],
23 | "max_wav_value": 32768.0,
24 | "sampling_rate": 22050,
25 | "filter_length": 1024,
26 | "hop_length": 256,
27 | "win_length": 1024,
28 | "n_mel_channels": 80,
29 | "mel_fmin": 0.0,
30 | "mel_fmax": null,
31 | "add_blank": true,
32 | "n_speakers": 0,
33 | "cleaned_text": true
34 | },
35 | "model": {
36 | "inter_channels": 192,
37 | "hidden_channels": 192,
38 | "filter_channels": 768,
39 | "n_heads": 2,
40 | "n_layers": 6,
41 | "kernel_size": 3,
42 | "p_dropout": 0.1,
43 | "resblock": "1",
44 | "resblock_kernel_sizes": [3,7,11],
45 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
46 | "upsample_rates": [8,8,2,2],
47 | "upsample_initial_channel": 512,
48 | "upsample_kernel_sizes": [16,16,4,4],
49 | "n_layers_q": 3,
50 | "use_spectral_norm": false
51 | }
52 | }
53 |
--------------------------------------------------------------------------------
/models/vits/configs/ljs_nosdp.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "eval_interval": 1000,
5 | "seed": 1234,
6 | "epochs": 20000,
7 | "learning_rate": 2e-4,
8 | "betas": [0.8, 0.99],
9 | "eps": 1e-9,
10 | "batch_size": 64,
11 | "fp16_run": true,
12 | "lr_decay": 0.999875,
13 | "segment_size": 8192,
14 | "init_lr_ratio": 1,
15 | "warmup_epochs": 0,
16 | "c_mel": 45,
17 | "c_kl": 1.0
18 | },
19 | "data": {
20 | "training_files":"filelists/ljs_audio_text_train_filelist.txt.cleaned",
21 | "validation_files":"filelists/ljs_audio_text_val_filelist.txt.cleaned",
22 | "text_cleaners":["english_cleaners2"],
23 | "max_wav_value": 32768.0,
24 | "sampling_rate": 22050,
25 | "filter_length": 1024,
26 | "hop_length": 256,
27 | "win_length": 1024,
28 | "n_mel_channels": 80,
29 | "mel_fmin": 0.0,
30 | "mel_fmax": null,
31 | "add_blank": true,
32 | "n_speakers": 0,
33 | "cleaned_text": true
34 | },
35 | "model": {
36 | "inter_channels": 192,
37 | "hidden_channels": 192,
38 | "filter_channels": 768,
39 | "n_heads": 2,
40 | "n_layers": 6,
41 | "kernel_size": 3,
42 | "p_dropout": 0.1,
43 | "resblock": "1",
44 | "resblock_kernel_sizes": [3,7,11],
45 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
46 | "upsample_rates": [8,8,2,2],
47 | "upsample_initial_channel": 512,
48 | "upsample_kernel_sizes": [16,16,4,4],
49 | "n_layers_q": 3,
50 | "use_spectral_norm": false,
51 | "use_sdp": false
52 | }
53 | }
54 |
--------------------------------------------------------------------------------
/models/vits/configs/vctk_base.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "eval_interval": 1000,
5 | "seed": 1234,
6 | "epochs": 10000,
7 | "learning_rate": 2e-4,
8 | "betas": [0.8, 0.99],
9 | "eps": 1e-9,
10 | "batch_size": 64,
11 | "fp16_run": true,
12 | "lr_decay": 0.999875,
13 | "segment_size": 8192,
14 | "init_lr_ratio": 1,
15 | "warmup_epochs": 0,
16 | "c_mel": 45,
17 | "c_kl": 1.0
18 | },
19 | "data": {
20 | "training_files":"filelists/vctk_audio_sid_text_train_filelist.txt.cleaned",
21 | "validation_files":"filelists/vctk_audio_sid_text_val_filelist.txt.cleaned",
22 | "text_cleaners":["english_cleaners2"],
23 | "max_wav_value": 32768.0,
24 | "sampling_rate": 22050,
25 | "filter_length": 1024,
26 | "hop_length": 256,
27 | "win_length": 1024,
28 | "n_mel_channels": 80,
29 | "mel_fmin": 0.0,
30 | "mel_fmax": null,
31 | "add_blank": true,
32 | "n_speakers": 109,
33 | "cleaned_text": true
34 | },
35 | "model": {
36 | "inter_channels": 192,
37 | "hidden_channels": 192,
38 | "filter_channels": 768,
39 | "n_heads": 2,
40 | "n_layers": 6,
41 | "kernel_size": 3,
42 | "p_dropout": 0.1,
43 | "resblock": "1",
44 | "resblock_kernel_sizes": [3,7,11],
45 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
46 | "upsample_rates": [8,8,2,2],
47 | "upsample_initial_channel": 512,
48 | "upsample_kernel_sizes": [16,16,4,4],
49 | "n_layers_q": 3,
50 | "use_spectral_norm": false,
51 | "gin_channels": 256
52 | }
53 | }
54 |
--------------------------------------------------------------------------------
/models/vits/filelists/ljs_audio_text_val_filelist.txt:
--------------------------------------------------------------------------------
1 | DUMMY1/LJ022-0023.wav|The overwhelming majority of people in this country know how to sift the wheat from the chaff in what they hear and what they read.
2 | DUMMY1/LJ043-0030.wav|If somebody did that to me, a lousy trick like that, to take my wife away, and all the furniture, I would be mad as hell, too.
3 | DUMMY1/LJ005-0201.wav|as is shown by the report of the Commissioners to inquire into the state of the municipal corporations in eighteen thirty-five.
4 | DUMMY1/LJ001-0110.wav|Even the Caslon type when enlarged shows great shortcomings in this respect:
5 | DUMMY1/LJ003-0345.wav|All the committee could do in this respect was to throw the responsibility on others.
6 | DUMMY1/LJ007-0154.wav|These pungent and well-grounded strictures applied with still greater force to the unconvicted prisoner, the man who came to the prison innocent, and still uncontaminated,
7 | DUMMY1/LJ018-0098.wav|and recognized as one of the frequenters of the bogus law-stationers. His arrest led to that of others.
8 | DUMMY1/LJ047-0044.wav|Oswald was, however, willing to discuss his contacts with Soviet authorities. He denied having any involvement with Soviet intelligence agencies
9 | DUMMY1/LJ031-0038.wav|The first physician to see the President at Parkland Hospital was Dr. Charles J. Carrico, a resident in general surgery.
10 | DUMMY1/LJ048-0194.wav|during the morning of November twenty-two prior to the motorcade.
11 | DUMMY1/LJ049-0026.wav|On occasion the Secret Service has been permitted to have an agent riding in the passenger compartment with the President.
12 | DUMMY1/LJ004-0152.wav|although at Mr. Buxton's visit a new jail was in process of erection, the first step towards reform since Howard's visitation in seventeen seventy-four.
13 | DUMMY1/LJ008-0278.wav|or theirs might be one of many, and it might be considered necessary to "make an example."
14 | DUMMY1/LJ043-0002.wav|The Warren Commission Report. By The President's Commission on the Assassination of President Kennedy. Chapter seven. Lee Harvey Oswald:
15 | DUMMY1/LJ009-0114.wav|Mr. Wakefield winds up his graphic but somewhat sensational account by describing another religious service, which may appropriately be inserted here.
16 | DUMMY1/LJ028-0506.wav|A modern artist would have difficulty in doing such accurate work.
17 | DUMMY1/LJ050-0168.wav|with the particular purposes of the agency involved. The Commission recognizes that this is a controversial area
18 | DUMMY1/LJ039-0223.wav|Oswald's Marine training in marksmanship, his other rifle experience and his established familiarity with this particular weapon
19 | DUMMY1/LJ029-0032.wav|According to O'Donnell, quote, we had a motorcade wherever we went, end quote.
20 | DUMMY1/LJ031-0070.wav|Dr. Clark, who most closely observed the head wound,
21 | DUMMY1/LJ034-0198.wav|Euins, who was on the southwest corner of Elm and Houston Streets testified that he could not describe the man he saw in the window.
22 | DUMMY1/LJ026-0068.wav|Energy enters the plant, to a small extent,
23 | DUMMY1/LJ039-0075.wav|once you know that you must put the crosshairs on the target and that is all that is necessary.
24 | DUMMY1/LJ004-0096.wav|the fatal consequences whereof might be prevented if the justices of the peace were duly authorized
25 | DUMMY1/LJ005-0014.wav|Speaking on a debate on prison matters, he declared that
26 | DUMMY1/LJ012-0161.wav|he was reported to have fallen away to a shadow.
27 | DUMMY1/LJ018-0239.wav|His disappearance gave color and substance to evil reports already in circulation that the will and conveyance above referred to
28 | DUMMY1/LJ019-0257.wav|Here the tread-wheel was in use, there cellular cranks, or hard-labor machines.
29 | DUMMY1/LJ028-0008.wav|you tap gently with your heel upon the shoulder of the dromedary to urge her on.
30 | DUMMY1/LJ024-0083.wav|This plan of mine is no attack on the Court;
31 | DUMMY1/LJ042-0129.wav|No night clubs or bowling alleys, no places of recreation except the trade union dances. I have had enough.
32 | DUMMY1/LJ036-0103.wav|The police asked him whether he could pick out his passenger from the lineup.
33 | DUMMY1/LJ046-0058.wav|During his Presidency, Franklin D. Roosevelt made almost four hundred journeys and traveled more than three hundred fifty thousand miles.
34 | DUMMY1/LJ014-0076.wav|He was seen afterwards smoking and talking with his hosts in their back parlor, and never seen again alive.
35 | DUMMY1/LJ002-0043.wav|long narrow rooms -- one thirty-six feet, six twenty-three feet, and the eighth eighteen,
36 | DUMMY1/LJ009-0076.wav|We come to the sermon.
37 | DUMMY1/LJ017-0131.wav|even when the high sheriff had told him there was no possibility of a reprieve, and within a few hours of execution.
38 | DUMMY1/LJ046-0184.wav|but there is a system for the immediate notification of the Secret Service by the confining institution when a subject is released or escapes.
39 | DUMMY1/LJ014-0263.wav|When other pleasures palled he took a theatre, and posed as a munificent patron of the dramatic art.
40 | DUMMY1/LJ042-0096.wav|(old exchange rate) in addition to his factory salary of approximately equal amount
41 | DUMMY1/LJ049-0050.wav|Hill had both feet on the car and was climbing aboard to assist President and Mrs. Kennedy.
42 | DUMMY1/LJ019-0186.wav|seeing that since the establishment of the Central Criminal Court, Newgate received prisoners for trial from several counties,
43 | DUMMY1/LJ028-0307.wav|then let twenty days pass, and at the end of that time station near the Chaldasan gates a body of four thousand.
44 | DUMMY1/LJ012-0235.wav|While they were in a state of insensibility the murder was committed.
45 | DUMMY1/LJ034-0053.wav|reached the same conclusion as Latona that the prints found on the cartons were those of Lee Harvey Oswald.
46 | DUMMY1/LJ014-0030.wav|These were damnatory facts which well supported the prosecution.
47 | DUMMY1/LJ015-0203.wav|but were the precautions too minute, the vigilance too close to be eluded or overcome?
48 | DUMMY1/LJ028-0093.wav|but his scribe wrote it in the manner customary for the scribes of those days to write of their royal masters.
49 | DUMMY1/LJ002-0018.wav|The inadequacy of the jail was noticed and reported upon again and again by the grand juries of the city of London,
50 | DUMMY1/LJ028-0275.wav|At last, in the twentieth month,
51 | DUMMY1/LJ012-0042.wav|which he kept concealed in a hiding-place with a trap-door just under his bed.
52 | DUMMY1/LJ011-0096.wav|He married a lady also belonging to the Society of Friends, who brought him a large fortune, which, and his own money, he put into a city firm,
53 | DUMMY1/LJ036-0077.wav|Roger D. Craig, a deputy sheriff of Dallas County,
54 | DUMMY1/LJ016-0318.wav|Other officials, great lawyers, governors of prisons, and chaplains supported this view.
55 | DUMMY1/LJ013-0164.wav|who came from his room ready dressed, a suspicious circumstance, as he was always late in the morning.
56 | DUMMY1/LJ027-0141.wav|is closely reproduced in the life-history of existing deer. Or, in other words,
57 | DUMMY1/LJ028-0335.wav|accordingly they committed to him the command of their whole army, and put the keys of their city into his hands.
58 | DUMMY1/LJ031-0202.wav|Mrs. Kennedy chose the hospital in Bethesda for the autopsy because the President had served in the Navy.
59 | DUMMY1/LJ021-0145.wav|From those willing to join in establishing this hoped-for period of peace,
60 | DUMMY1/LJ016-0288.wav|"Müller, Müller, He's the man," till a diversion was created by the appearance of the gallows, which was received with continuous yells.
61 | DUMMY1/LJ028-0081.wav|Years later, when the archaeologists could readily distinguish the false from the true,
62 | DUMMY1/LJ018-0081.wav|his defense being that he had intended to commit suicide, but that, on the appearance of this officer who had wronged him,
63 | DUMMY1/LJ021-0066.wav|together with a great increase in the payrolls, there has come a substantial rise in the total of industrial profits
64 | DUMMY1/LJ009-0238.wav|After this the sheriffs sent for another rope, but the spectators interfered, and the man was carried back to jail.
65 | DUMMY1/LJ005-0079.wav|and improve the morals of the prisoners, and shall insure the proper measure of punishment to convicted offenders.
66 | DUMMY1/LJ035-0019.wav|drove to the northwest corner of Elm and Houston, and parked approximately ten feet from the traffic signal.
67 | DUMMY1/LJ036-0174.wav|This is the approximate time he entered the roominghouse, according to Earlene Roberts, the housekeeper there.
68 | DUMMY1/LJ046-0146.wav|The criteria in effect prior to November twenty-two, nineteen sixty-three, for determining whether to accept material for the PRS general files
69 | DUMMY1/LJ017-0044.wav|and the deepest anxiety was felt that the crime, if crime there had been, should be brought home to its perpetrator.
70 | DUMMY1/LJ017-0070.wav|but his sporting operations did not prosper, and he became a needy man, always driven to desperate straits for cash.
71 | DUMMY1/LJ014-0020.wav|He was soon afterwards arrested on suspicion, and a search of his lodgings brought to light several garments saturated with blood;
72 | DUMMY1/LJ016-0020.wav|He never reached the cistern, but fell back into the yard, injuring his legs severely.
73 | DUMMY1/LJ045-0230.wav|when he was finally apprehended in the Texas Theatre. Although it is not fully corroborated by others who were present,
74 | DUMMY1/LJ035-0129.wav|and she must have run down the stairs ahead of Oswald and would probably have seen or heard him.
75 | DUMMY1/LJ008-0307.wav|afterwards express a wish to murder the Recorder for having kept them so long in suspense.
76 | DUMMY1/LJ008-0294.wav|nearly indefinitely deferred.
77 | DUMMY1/LJ047-0148.wav|On October twenty-five,
78 | DUMMY1/LJ008-0111.wav|They entered a "stone cold room," and were presently joined by the prisoner.
79 | DUMMY1/LJ034-0042.wav|that he could only testify with certainty that the print was less than three days old.
80 | DUMMY1/LJ037-0234.wav|Mrs. Mary Brock, the wife of a mechanic who worked at the station, was there at the time and she saw a white male,
81 | DUMMY1/LJ040-0002.wav|Chapter seven. Lee Harvey Oswald: Background and Possible Motives, Part one.
82 | DUMMY1/LJ045-0140.wav|The arguments he used to justify his use of the alias suggest that Oswald may have come to think that the whole world was becoming involved
83 | DUMMY1/LJ012-0035.wav|the number and names on watches, were carefully removed or obliterated after the goods passed out of his hands.
84 | DUMMY1/LJ012-0250.wav|On the seventh July, eighteen thirty-seven,
85 | DUMMY1/LJ016-0179.wav|contracted with sheriffs and conveners to work by the job.
86 | DUMMY1/LJ016-0138.wav|at a distance from the prison.
87 | DUMMY1/LJ027-0052.wav|These principles of homology are essential to a correct interpretation of the facts of morphology.
88 | DUMMY1/LJ031-0134.wav|On one occasion Mrs. Johnson, accompanied by two Secret Service agents, left the room to see Mrs. Kennedy and Mrs. Connally.
89 | DUMMY1/LJ019-0273.wav|which Sir Joshua Jebb told the committee he considered the proper elements of penal discipline.
90 | DUMMY1/LJ014-0110.wav|At the first the boxes were impounded, opened, and found to contain many of O'Connor's effects.
91 | DUMMY1/LJ034-0160.wav|on Brennan's subsequent certain identification of Lee Harvey Oswald as the man he saw fire the rifle.
92 | DUMMY1/LJ038-0199.wav|eleven. If I am alive and taken prisoner,
93 | DUMMY1/LJ014-0010.wav|yet he could not overcome the strange fascination it had for him, and remained by the side of the corpse till the stretcher came.
94 | DUMMY1/LJ033-0047.wav|I noticed when I went out that the light was on, end quote,
95 | DUMMY1/LJ040-0027.wav|He was never satisfied with anything.
96 | DUMMY1/LJ048-0228.wav|and others who were present say that no agent was inebriated or acted improperly.
97 | DUMMY1/LJ003-0111.wav|He was in consequence put out of the protection of their internal law, end quote. Their code was a subject of some curiosity.
98 | DUMMY1/LJ008-0258.wav|Let me retrace my steps, and speak more in detail of the treatment of the condemned in those bloodthirsty and brutally indifferent days,
99 | DUMMY1/LJ029-0022.wav|The original plan called for the President to spend only one day in the State, making whirlwind visits to Dallas, Fort Worth, San Antonio, and Houston.
100 | DUMMY1/LJ004-0045.wav|Mr. Sturges Bourne, Sir James Mackintosh, Sir James Scarlett, and William Wilberforce.
101 |
--------------------------------------------------------------------------------
/models/vits/filelists/ljs_audio_text_val_filelist.txt.cleaned:
--------------------------------------------------------------------------------
1 | DUMMY1/LJ022-0023.wav|ðɪ ˌoʊvɚwˈɛlmɪŋ mədʒˈɔːɹɪɾi ʌv pˈiːpəl ɪn ðɪs kˈʌntɹi nˈoʊ hˌaʊ tə sˈɪft ðə wˈiːt fɹʌmðə tʃˈæf ɪn wˌʌt ðeɪ hˈɪɹ ænd wˌʌt ðeɪ ɹˈiːd.
2 | DUMMY1/LJ043-0030.wav|ɪf sˈʌmbɑːdi dˈɪd ðˈæt tə mˌiː, ɐ lˈaʊsi tɹˈɪk lˈaɪk ðˈæt, tə tˈeɪk maɪ wˈaɪf ɐwˈeɪ, ænd ˈɔːl ðə fˈɜːnɪtʃɚ, ˈaɪ wʊd biː mˈæd æz hˈɛl, tˈuː.
3 | DUMMY1/LJ005-0201.wav|ˌæzˌɪz ʃˈoʊn baɪ ðə ɹɪpˈoːɹt ʌvðə kəmˈɪʃənɚz tʊ ɪnkwˈaɪɚɹ ˌɪntʊ ðə stˈeɪt ʌvðə mjuːnˈɪsɪpəl kˌɔːɹpɚɹˈeɪʃənz ɪn eɪtˈiːn θˈɜːɾifˈaɪv.
4 | DUMMY1/LJ001-0110.wav|ˈiːvən ðə kˈæslɑːn tˈaɪp wɛn ɛnlˈɑːɹdʒd ʃˈoʊz ɡɹˈeɪt ʃˈɔːɹtkʌmɪŋz ɪn ðɪs ɹɪspˈɛkt:
5 | DUMMY1/LJ003-0345.wav|ˈɔːl ðə kəmˈɪɾi kʊd dˈuː ɪn ðɪs ɹɪspˈɛkt wʌz tə θɹˈoʊ ðə ɹɪspˌɑːnsəbˈɪlɪɾi ˌɑːn ˈʌðɚz.
6 | DUMMY1/LJ007-0154.wav|ðiːz pˈʌndʒənt ænd wˈɛlɡɹˈaʊndᵻd stɹˈɪktʃɚz ɐplˈaɪd wɪð stˈɪl ɡɹˈeɪɾɚ fˈoːɹs tə ðɪ ʌnkənvˈɪktᵻd pɹˈɪzənɚ, ðə mˈæn hˌuː kˈeɪm tə ðə pɹˈɪzən ˈɪnəsənt, ænd stˈɪl ʌnkəntˈæmᵻnˌeɪɾᵻd,
7 | DUMMY1/LJ018-0098.wav|ænd ɹˈɛkəɡnˌaɪzd æz wˈʌn ʌvðə fɹˈiːkwɛntɚz ʌvðə bˈoʊɡəs lˈɔːstˈeɪʃənɚz. hɪz ɐɹˈɛst lˈɛd tə ðæt ʌv ˈʌðɚz.
8 | DUMMY1/LJ047-0044.wav|ˈɑːswəld wʌz, haʊˈɛvɚ, wˈɪlɪŋ tə dɪskˈʌs hɪz kˈɑːntækts wɪð sˈoʊviət ɐθˈɔːɹɪɾiz. hiː dɪnˈaɪd hˌævɪŋ ˌɛni ɪnvˈɑːlvmənt wɪð sˈoʊviət ɪntˈɛlɪdʒəns ˈeɪdʒənsiz
9 | DUMMY1/LJ031-0038.wav|ðə fˈɜːst fɪzˈɪʃən tə sˈiː ðə pɹˈɛzɪdənt æt pˈɑːɹklənd hˈɑːspɪɾəl wʌz dˈɑːktɚ tʃˈɑːɹlz dʒˈeɪ. kˈæɹɪkˌoʊ, ɐ ɹˈɛzɪdənt ɪn dʒˈɛnɚɹəl sˈɜːdʒɚɹi.
10 | DUMMY1/LJ048-0194.wav|dˈʊɹɪŋ ðə mˈɔːɹnɪŋ ʌv noʊvˈɛmbɚ twˈɛntitˈuː pɹˈaɪɚ tə ðə mˈoʊɾɚkˌeɪd.
11 | DUMMY1/LJ049-0026.wav|ˌɑːn əkˈeɪʒən ðə sˈiːkɹət sˈɜːvɪs hɐzbɪn pɚmˈɪɾᵻd tə hæv ɐn ˈeɪdʒənt ɹˈaɪdɪŋ ɪnðə pˈæsɪndʒɚ kəmpˈɑːɹtmənt wɪððə pɹˈɛzɪdənt.
12 | DUMMY1/LJ004-0152.wav|ɑːlðˈoʊ æt mˈɪstɚ bˈʌkstənz vˈɪzɪt ɐ nˈuː dʒˈeɪl wʌz ɪn pɹˈɑːsɛs ʌv ɪɹˈɛkʃən, ðə fˈɜːst stˈɛp tʊwˈɔːɹdz ɹɪfˈɔːɹm sˈɪns hˈaʊɚdz vˌɪzɪtˈeɪʃən ɪn sˌɛvəntˈiːn sˈɛvəntifˈoːɹ.
13 | DUMMY1/LJ008-0278.wav|ɔːɹ ðˈɛɹz mˌaɪt biː wˈʌn ʌv mˈɛni, ænd ɪt mˌaɪt biː kənsˈɪdɚd nˈɛsəsɚɹi tuː "mˌeɪk ɐn ɛɡzˈæmpəl."
14 | DUMMY1/LJ043-0002.wav|ðə wˈɔːɹən kəmˈɪʃən ɹɪpˈoːɹt. baɪ ðə pɹˈɛzɪdənts kəmˈɪʃən ɑːnðɪ ɐsˌæsᵻnˈeɪʃən ʌv pɹˈɛzɪdənt kˈɛnədi. tʃˈæptɚ sˈɛvən. lˈiː hˈɑːɹvi ˈɑːswəld:
15 | DUMMY1/LJ009-0114.wav|mˈɪstɚ wˈeɪkfiːld wˈaɪndz ˈʌp hɪz ɡɹˈæfɪk bˌʌt sˈʌmwʌt sɛnsˈeɪʃənəl ɐkˈaʊnt baɪ dɪskɹˈaɪbɪŋ ɐnˈʌðɚ ɹɪlˈɪdʒəs sˈɜːvɪs, wˌɪtʃ mˈeɪ ɐpɹˈoʊpɹɪətli biː ɪnsˈɜːɾᵻd hˈɪɹ.
16 | DUMMY1/LJ028-0506.wav|ɐ mˈɑːdɚn ˈɑːɹɾɪst wʊdhɐv dˈɪfɪkˌʌlti ɪn dˌuːɪŋ sˈʌtʃ ˈækjʊɹət wˈɜːk.
17 | DUMMY1/LJ050-0168.wav|wɪððə pɚtˈɪkjʊlɚ pˈɜːpəsᵻz ʌvðɪ ˈeɪdʒənsi ɪnvˈɑːlvd. ðə kəmˈɪʃən ɹˈɛkəɡnˌaɪzɪz ðæt ðɪs ɪz ɐ kˌɑːntɹəvˈɜːʃəl ˈɛɹiə
18 | DUMMY1/LJ039-0223.wav|ˈɑːswəldz mɚɹˈiːn tɹˈeɪnɪŋ ɪn mˈɑːɹksmənʃˌɪp, hɪz ˈʌðɚ ɹˈaɪfəl ɛkspˈiəɹɪəns ænd hɪz ɪstˈæblɪʃt fəmˌɪlɪˈæɹɪɾi wɪð ðɪs pɚtˈɪkjʊlɚ wˈɛpən
19 | DUMMY1/LJ029-0032.wav|ɐkˈoːɹdɪŋ tʊ oʊdˈɑːnəl, kwˈoʊt, wiː hɐd ɐ mˈoʊɾɚkˌeɪd wɛɹɹˈɛvɚ wiː wˈɛnt, ˈɛnd kwˈoʊt.
20 | DUMMY1/LJ031-0070.wav|dˈɑːktɚ klˈɑːɹk, hˌuː mˈoʊst klˈoʊsli ɑːbzˈɜːvd ðə hˈɛd wˈuːnd,
21 | DUMMY1/LJ034-0198.wav|jˈuːɪnz, hˌuː wʌz ɑːnðə saʊθwˈɛst kˈɔːɹnɚɹ ʌv ˈɛlm ænd hjˈuːstən stɹˈiːts tˈɛstɪfˌaɪd ðæt hiː kʊd nˌɑːt dɪskɹˈaɪb ðə mˈæn hiː sˈɔː ɪnðə wˈɪndoʊ.
22 | DUMMY1/LJ026-0068.wav|ˈɛnɚdʒi ˈɛntɚz ðə plˈænt, tʊ ɐ smˈɔːl ɛkstˈɛnt,
23 | DUMMY1/LJ039-0075.wav|wˈʌns juː nˈoʊ ðæt juː mˈʌst pˌʊt ðə kɹˈɔshɛɹz ɑːnðə tˈɑːɹɡɪt ænd ðæt ɪz ˈɔːl ðæt ɪz nˈɛsəsɚɹi.
24 | DUMMY1/LJ004-0096.wav|ðə fˈeɪɾəl kˈɑːnsɪkwənsᵻz wˈɛɹɑːf mˌaɪt biː pɹɪvˈɛntᵻd ɪf ðə dʒˈʌstɪsᵻz ʌvðə pˈiːs wɜː djˈuːli ˈɔːθɚɹˌaɪzd
25 | DUMMY1/LJ005-0014.wav|spˈiːkɪŋ ˌɑːn ɐ dɪbˈeɪt ˌɑːn pɹˈɪzən mˈæɾɚz, hiː dᵻklˈɛɹd ðˈæt
26 | DUMMY1/LJ012-0161.wav|hiː wʌz ɹɪpˈoːɹɾᵻd tə hæv fˈɔːlən ɐwˈeɪ tʊ ɐ ʃˈædoʊ.
27 | DUMMY1/LJ018-0239.wav|hɪz dˌɪsɐpˈɪɹəns ɡˈeɪv kˈʌlɚ ænd sˈʌbstəns tʊ ˈiːvəl ɹɪpˈoːɹts ɔːlɹˌɛdi ɪn sˌɜːkjʊlˈeɪʃən ðætðə wɪl ænd kənvˈeɪəns əbˌʌv ɹɪfˈɜːd tuː
28 | DUMMY1/LJ019-0257.wav|hˈɪɹ ðə tɹˈɛdwˈiːl wʌz ɪn jˈuːs, ðɛɹ sˈɛljʊlɚ kɹˈæŋks, ɔːɹ hˈɑːɹdlˈeɪbɚ məʃˈiːnz.
29 | DUMMY1/LJ028-0008.wav|juː tˈæp dʒˈɛntli wɪð jʊɹ hˈiːl əpˌɑːn ðə ʃˈoʊldɚɹ ʌvðə dɹˈoʊmdɚɹi tʊ ˈɜːdʒ hɜːɹ ˈɑːn.
30 | DUMMY1/LJ024-0083.wav|ðɪs plˈæn ʌv mˈaɪn ɪz nˈoʊ ɐtˈæk ɑːnðə kˈoːɹt;
31 | DUMMY1/LJ042-0129.wav|nˈoʊ nˈaɪt klˈʌbz ɔːɹ bˈoʊlɪŋ ˈælɪz, nˈoʊ plˈeɪsᵻz ʌv ɹˌɛkɹiːˈeɪʃən ɛksˈɛpt ðə tɹˈeɪd jˈuːniən dˈænsᵻz. ˈaɪ hæv hɐd ɪnˈʌf.
32 | DUMMY1/LJ036-0103.wav|ðə pəlˈiːs ˈæskt hˌɪm wˈɛðɚ hiː kʊd pˈɪk ˈaʊt hɪz pˈæsɪndʒɚ fɹʌmðə lˈaɪnʌp.
33 | DUMMY1/LJ046-0058.wav|dˈʊɹɪŋ hɪz pɹˈɛzɪdənsi, fɹˈæŋklɪn dˈiː. ɹˈoʊzəvˌɛlt mˌeɪd ˈɔːlmoʊst fˈoːɹ hˈʌndɹəd dʒˈɜːnɪz ænd tɹˈævəld mˈoːɹ ðɐn θɹˈiː hˈʌndɹəd fˈɪfti θˈaʊzənd mˈaɪlz.
34 | DUMMY1/LJ014-0076.wav|hiː wʌz sˈiːn ˈæftɚwɚdz smˈoʊkɪŋ ænd tˈɔːkɪŋ wɪð hɪz hˈoʊsts ɪn ðɛɹ bˈæk pˈɑːɹlɚ, ænd nˈɛvɚ sˈiːn ɐɡˈɛn ɐlˈaɪv.
35 | DUMMY1/LJ002-0043.wav|lˈɑːŋ nˈæɹoʊ ɹˈuːmz wˈʌn θˈɜːɾisˈɪks fˈiːt, sˈɪks twˈɛntiθɹˈiː fˈiːt, ænd ðɪ ˈeɪtθ eɪtˈiːn,
36 | DUMMY1/LJ009-0076.wav|wiː kˈʌm tə ðə sˈɜːmən.
37 | DUMMY1/LJ017-0131.wav|ˈiːvən wɛn ðə hˈaɪ ʃˈɛɹɪf hɐd tˈoʊld hˌɪm ðɛɹwˌʌz nˈoʊ pˌɑːsəbˈɪlɪɾi əvɚ ɹɪpɹˈiːv, ænd wɪðˌɪn ɐ fjˈuː ˈaɪʊɹz ʌv ˌɛksɪkjˈuːʃən.
38 | DUMMY1/LJ046-0184.wav|bˌʌt ðɛɹ ɪz ɐ sˈɪstəm fɚðɪ ɪmˈiːdɪət nˌoʊɾɪfɪkˈeɪʃən ʌvðə sˈiːkɹət sˈɜːvɪs baɪ ðə kənfˈaɪnɪŋ ˌɪnstɪtˈuːʃən wɛn ɐ sˈʌbdʒɛkt ɪz ɹɪlˈiːsd ɔːɹ ɛskˈeɪps.
39 | DUMMY1/LJ014-0263.wav|wˌɛn ˈʌðɚ plˈɛʒɚz pˈɔːld hiː tˈʊk ɐ θˈiəɾɚ, ænd pˈoʊzd æz ɐ mjuːnˈɪfɪsənt pˈeɪtɹən ʌvðə dɹəmˈæɾɪk ˈɑːɹt.
40 | DUMMY1/LJ042-0096.wav| ˈoʊld ɛkstʃˈeɪndʒ ɹˈeɪt ɪn ɐdˈɪʃən tə hɪz fˈæktɚɹi sˈælɚɹi ʌv ɐpɹˈɑːksɪmətli ˈiːkwəl ɐmˈaʊnt
41 | DUMMY1/LJ049-0050.wav|hˈɪl hɐd bˈoʊθ fˈiːt ɑːnðə kˈɑːɹ ænd wʌz klˈaɪmɪŋ ɐbˈoːɹd tʊ ɐsˈɪst pɹˈɛzɪdənt ænd mɪsˈɛs kˈɛnədi.
42 | DUMMY1/LJ019-0186.wav|sˈiːɪŋ ðæt sˈɪns ðɪ ɪstˈæblɪʃmənt ʌvðə sˈɛntɹəl kɹˈɪmɪnəl kˈoːɹt, nˈuːɡeɪt ɹɪsˈiːvd pɹˈɪzənɚz fɔːɹ tɹˈaɪəl fɹʌm sˈɛvɹəl kˈaʊntɪz,
43 | DUMMY1/LJ028-0307.wav|ðˈɛn lˈɛt twˈɛnti dˈeɪz pˈæs, ænd æt ðɪ ˈɛnd ʌv ðæt tˈaɪm stˈeɪʃən nˌɪɹ ðə tʃˈældæsən ɡˈeɪts ɐ bˈɑːdi ʌv fˈoːɹ θˈaʊzənd.
44 | DUMMY1/LJ012-0235.wav|wˌaɪl ðeɪ wɜːɹ ɪn ɐ stˈeɪt ʌv ɪnsˌɛnsəbˈɪlɪɾi ðə mˈɜːdɚ wʌz kəmˈɪɾᵻd.
45 | DUMMY1/LJ034-0053.wav|ɹˈiːtʃt ðə sˈeɪm kənklˈuːʒən æz lætˈoʊnə ðætðə pɹˈɪnts fˈaʊnd ɑːnðə kˈɑːɹtənz wɜː ðoʊz ʌv lˈiː hˈɑːɹvi ˈɑːswəld.
46 | DUMMY1/LJ014-0030.wav|ðiːz wɜː dˈæmnətˌoːɹi fˈækts wˌɪtʃ wˈɛl səpˈoːɹɾᵻd ðə pɹˌɑːsɪkjˈuːʃən.
47 | DUMMY1/LJ015-0203.wav|bˌʌt wɜː ðə pɹɪkˈɔːʃənz tˈuː mˈɪnɪt, ðə vˈɪdʒɪləns tˈuː klˈoʊs təbi ɪlˈuːdᵻd ɔːɹ ˌoʊvɚkˈʌm?
48 | DUMMY1/LJ028-0093.wav|bˌʌt hɪz skɹˈaɪb ɹˈoʊt ɪt ɪnðə mˈænɚ kˈʌstəmˌɛɹi fɚðə skɹˈaɪbz ʌv ðoʊz dˈeɪz tə ɹˈaɪt ʌv ðɛɹ ɹˈɔɪəl mˈæstɚz.
49 | DUMMY1/LJ002-0018.wav|ðɪ ɪnˈædɪkwəsi ʌvðə dʒˈeɪl wʌz nˈoʊɾɪsd ænd ɹɪpˈoːɹɾᵻd əpˌɑːn ɐɡˈɛn ænd ɐɡˈɛn baɪ ðə ɡɹˈænd dʒˈʊɹɪz ʌvðə sˈɪɾi ʌv lˈʌndən,
50 | DUMMY1/LJ028-0275.wav|æt lˈæst, ɪnðə twˈɛntiəθ mˈʌnθ,
51 | DUMMY1/LJ012-0042.wav|wˌɪtʃ hiː kˈɛpt kənsˈiːld ɪn ɐ hˈaɪdɪŋplˈeɪs wɪð ɐ tɹˈæpdˈoːɹ dʒˈʌst ˌʌndɚ hɪz bˈɛd.
52 | DUMMY1/LJ011-0096.wav|hiː mˈæɹɪd ɐ lˈeɪdi ˈɑːlsoʊ bɪlˈɑːŋɪŋ tə ðə səsˈaɪəɾi ʌv fɹˈɛndz, hˌuː bɹˈɔːt hˌɪm ɐ lˈɑːɹdʒ fˈɔːɹtʃən, wˈɪtʃ, ænd hɪz ˈoʊn mˈʌni, hiː pˌʊt ˌɪntʊ ɐ sˈɪɾi fˈɜːm,
53 | DUMMY1/LJ036-0077.wav|ɹˈɑːdʒɚ dˈiː. kɹˈeɪɡ, ɐ dˈɛpjuːɾi ʃˈɛɹɪf ʌv dˈæləs kˈaʊnti,
54 | DUMMY1/LJ016-0318.wav|ˈʌðɚɹ əfˈɪʃəlz, ɡɹˈeɪt lˈɔɪɚz, ɡˈʌvɚnɚz ʌv pɹˈɪzənz, ænd tʃˈæplɪnz səpˈoːɹɾᵻd ðɪs vjˈuː.
55 | DUMMY1/LJ013-0164.wav|hˌuː kˈeɪm fɹʌm hɪz ɹˈuːm ɹˈɛdi dɹˈɛst, ɐ səspˈɪʃəs sˈɜːkəmstˌæns, æz hiː wʌz ˈɔːlweɪz lˈeɪt ɪnðə mˈɔːɹnɪŋ.
56 | DUMMY1/LJ027-0141.wav|ɪz klˈoʊsli ɹɪpɹədˈuːst ɪnðə lˈaɪfhˈɪstɚɹi ʌv ɛɡzˈɪstɪŋ dˈɪɹ. ˈɔːɹ, ɪn ˈʌðɚ wˈɜːdz,
57 | DUMMY1/LJ028-0335.wav|ɐkˈoːɹdɪŋli ðeɪ kəmˈɪɾᵻd tə hˌɪm ðə kəmˈænd ʌv ðɛɹ hˈoʊl ˈɑːɹmi, ænd pˌʊt ðə kˈiːz ʌv ðɛɹ sˈɪɾi ˌɪntʊ hɪz hˈændz.
58 | DUMMY1/LJ031-0202.wav|mɪsˈɛs kˈɛnədi tʃˈoʊz ðə hˈɑːspɪɾəl ɪn bəθˈɛzdə fɚðɪ ˈɔːtɑːpsi bɪkˈʌz ðə pɹˈɛzɪdənt hɐd sˈɜːvd ɪnðə nˈeɪvi.
59 | DUMMY1/LJ021-0145.wav|fɹʌm ðoʊz wˈɪlɪŋ tə dʒˈɔɪn ɪn ɪstˈæblɪʃɪŋ ðɪs hˈoʊptfɔːɹ pˈiəɹɪəd ʌv pˈiːs,
60 | DUMMY1/LJ016-0288.wav|"mˈʌlɚ, mˈʌlɚ, hiːz ðə mˈæn," tˈɪl ɐ daɪvˈɜːʒən wʌz kɹiːˈeɪɾᵻd baɪ ðɪ ɐpˈɪɹəns ʌvðə ɡˈæloʊz, wˌɪtʃ wʌz ɹɪsˈiːvd wɪð kəntˈɪnjuːəs jˈɛlz.
61 | DUMMY1/LJ028-0081.wav|jˈɪɹz lˈeɪɾɚ, wˌɛn ðɪ ˌɑːɹkiːˈɑːlədʒˌɪsts kʊd ɹˈɛdɪli dɪstˈɪŋɡwɪʃ ðə fˈɑːls fɹʌmðə tɹˈuː,
62 | DUMMY1/LJ018-0081.wav|hɪz dɪfˈɛns bˌiːɪŋ ðæt hiː hɐd ɪntˈɛndᵻd tə kəmˈɪt sˈuːɪsˌaɪd, bˌʌt ðˈæt, ɑːnðɪ ɐpˈɪɹəns ʌv ðɪs ˈɑːfɪsɚ hˌuː hɐd ɹˈɔŋd hˌɪm,
63 | DUMMY1/LJ021-0066.wav|təɡˌɛðɚ wɪð ɐ ɡɹˈeɪt ˈɪnkɹiːs ɪnðə pˈeɪɹoʊlz, ðɛɹ hɐz kˈʌm ɐ səbstˈænʃəl ɹˈaɪz ɪnðə tˈoʊɾəl ʌv ɪndˈʌstɹɪəl pɹˈɑːfɪts
64 | DUMMY1/LJ009-0238.wav|ˈæftɚ ðɪs ðə ʃˈɛɹɪfs sˈɛnt fɔːɹ ɐnˈʌðɚ ɹˈoʊp, bˌʌt ðə spɛktˈeɪɾɚz ˌɪntəfˈɪɹd, ænd ðə mˈæn wʌz kˈæɹɪd bˈæk tə dʒˈeɪl.
65 | DUMMY1/LJ005-0079.wav|ænd ɪmpɹˈuːv ðə mˈɔːɹəlz ʌvðə pɹˈɪzənɚz, ænd ʃˌæl ɪnʃˈʊɹ ðə pɹˈɑːpɚ mˈɛʒɚɹ ʌv pˈʌnɪʃmənt tə kənvˈɪktᵻd əfˈɛndɚz.
66 | DUMMY1/LJ035-0019.wav|dɹˈoʊv tə ðə nɔːɹθwˈɛst kˈɔːɹnɚɹ ʌv ˈɛlm ænd hjˈuːstən, ænd pˈɑːɹkt ɐpɹˈɑːksɪmətli tˈɛn fˈiːt fɹʌmðə tɹˈæfɪk sˈɪɡnəl.
67 | DUMMY1/LJ036-0174.wav|ðɪs ɪz ðɪ ɐpɹˈɑːksɪmət tˈaɪm hiː ˈɛntɚd ðə ɹˈuːmɪŋhˌaʊs, ɐkˈoːɹdɪŋ tʊ ˈɜːliːn ɹˈɑːbɚts, ðə hˈaʊskiːpɚ ðˈɛɹ.
68 | DUMMY1/LJ046-0146.wav|ðə kɹaɪtˈiəɹɪə ɪn ɪfˈɛkt pɹˈaɪɚ tə noʊvˈɛmbɚ twˈɛntitˈuː, naɪntˈiːn sˈɪkstiθɹˈiː, fɔːɹ dɪtˈɜːmɪnɪŋ wˈɛðɚ tʊ ɐksˈɛpt mətˈiəɹɪəl fɚðə pˌiːˌɑːɹˈɛs dʒˈɛnɚɹəl fˈaɪlz
69 | DUMMY1/LJ017-0044.wav|ænd ðə dˈiːpəst æŋzˈaɪəɾi wʌz fˈɛlt ðætðə kɹˈaɪm, ɪf kɹˈaɪm ðˈɛɹ hɐdbɪn, ʃˌʊd biː bɹˈɔːt hˈoʊm tʊ ɪts pˈɜːpɪtɹˌeɪɾɚ.
70 | DUMMY1/LJ017-0070.wav|bˌʌt hɪz spˈoːɹɾɪŋ ˌɑːpɚɹˈeɪʃənz dɪdnˌɑːt pɹˈɑːspɚ, ænd hiː bɪkˌeɪm ɐ nˈiːdi mˈæn, ˈɔːlweɪz dɹˈɪvən tə dˈɛspɚɹət stɹˈeɪts fɔːɹ kˈæʃ.
71 | DUMMY1/LJ014-0020.wav|hiː wʌz sˈuːn ˈæftɚwɚdz ɐɹˈɛstᵻd ˌɑːn səspˈɪʃən, ænd ɐ sˈɜːtʃ ʌv hɪz lˈɑːdʒɪŋz bɹˈɔːt tə lˈaɪt sˈɛvɹəl ɡˈɑːɹmənts sˈætʃɚɹˌeɪɾᵻd wɪð blˈʌd;
72 | DUMMY1/LJ016-0020.wav|hiː nˈɛvɚ ɹˈiːtʃt ðə sˈɪstɚn, bˌʌt fˈɛl bˈæk ˌɪntʊ ðə jˈɑːɹd, ˈɪndʒɚɹɪŋ hɪz lˈɛɡz sɪvˈɪɹli.
73 | DUMMY1/LJ045-0230.wav|wˌɛn hiː wʌz fˈaɪnəli ˌæpɹɪhˈɛndᵻd ɪnðə tˈɛksəs θˈiəɾɚ. ɑːlðˈoʊ ɪt ɪz nˌɑːt fˈʊli kɚɹˈɑːbɚɹˌeɪɾᵻd baɪ ˈʌðɚz hˌuː wɜː pɹˈɛzənt,
74 | DUMMY1/LJ035-0129.wav|ænd ʃiː mˈʌstɐv ɹˈʌn dˌaʊn ðə stˈɛɹz ɐhˈɛd ʌv ˈɑːswəld ænd wʊd pɹˈɑːbəbli hæv sˈiːn ɔːɹ hˈɜːd hˌɪm.
75 | DUMMY1/LJ008-0307.wav|ˈæftɚwɚdz ɛkspɹˈɛs ɐ wˈɪʃ tə mˈɜːdɚ ðə ɹɪkˈoːɹdɚ fɔːɹ hˌævɪŋ kˈɛpt ðˌɛm sˌoʊ lˈɑːŋ ɪn səspˈɛns.
76 | DUMMY1/LJ008-0294.wav|nˌɪɹli ɪndˈɛfɪnətli dɪfˈɜːd.
77 | DUMMY1/LJ047-0148.wav|ˌɑːn ɑːktˈoʊbɚ twˈɛntifˈaɪv,
78 | DUMMY1/LJ008-0111.wav|ðeɪ ˈɛntɚd ˈeɪ "stˈoʊn kˈoʊld ɹˈuːm," ænd wɜː pɹˈɛzəntli dʒˈɔɪnd baɪ ðə pɹˈɪzənɚ.
79 | DUMMY1/LJ034-0042.wav|ðæt hiː kʊd ˈoʊnli tˈɛstɪfˌaɪ wɪð sˈɜːtənti ðætðə pɹˈɪnt wʌz lˈɛs ðɐn θɹˈiː dˈeɪz ˈoʊld.
80 | DUMMY1/LJ037-0234.wav|mɪsˈɛs mˈɛɹi bɹˈɑːk, ðə wˈaɪf əvə mɪkˈænɪk hˌuː wˈɜːkt æt ðə stˈeɪʃən, wʌz ðɛɹ æt ðə tˈaɪm ænd ʃiː sˈɔː ɐ wˈaɪt mˈeɪl,
81 | DUMMY1/LJ040-0002.wav|tʃˈæptɚ sˈɛvən. lˈiː hˈɑːɹvi ˈɑːswəld: bˈækɡɹaʊnd ænd pˈɑːsəbəl mˈoʊɾɪvz, pˈɑːɹt wˌʌn.
82 | DUMMY1/LJ045-0140.wav|ðɪ ˈɑːɹɡjuːmənts hiː jˈuːzd tə dʒˈʌstɪfˌaɪ hɪz jˈuːs ʌvðɪ ˈeɪliəs sədʒˈɛst ðæt ˈɑːswəld mˌeɪhɐv kˈʌm tə θˈɪŋk ðætðə hˈoʊl wˈɜːld wʌz bɪkˈʌmɪŋ ɪnvˈɑːlvd
83 | DUMMY1/LJ012-0035.wav|ðə nˈʌmbɚ ænd nˈeɪmz ˌɑːn wˈɑːtʃᵻz, wɜː kˈɛɹfəli ɹɪmˈuːvd ɔːɹ əblˈɪɾɚɹˌeɪɾᵻd ˈæftɚ ðə ɡˈʊdz pˈæst ˌaʊɾəv hɪz hˈændz.
84 | DUMMY1/LJ012-0250.wav|ɑːnðə sˈɛvənθ dʒuːlˈaɪ, eɪtˈiːn θˈɜːɾisˈɛvən,
85 | DUMMY1/LJ016-0179.wav|kəntɹˈæktᵻd wɪð ʃˈɛɹɪfs ænd kənvˈɛnɚz tə wˈɜːk baɪ ðə dʒˈɑːb.
86 | DUMMY1/LJ016-0138.wav|æɾə dˈɪstəns fɹʌmðə pɹˈɪzən.
87 | DUMMY1/LJ027-0052.wav|ðiːz pɹˈɪnsɪpəlz ʌv həmˈɑːlədʒi ɑːɹ ɪsˈɛnʃəl tʊ ɐ kɚɹˈɛkt ɪntˌɜːpɹɪtˈeɪʃən ʌvðə fˈækts ʌv mɔːɹfˈɑːlədʒi.
88 | DUMMY1/LJ031-0134.wav|ˌɑːn wˈʌn əkˈeɪʒən mɪsˈɛs dʒˈɑːnsən, ɐkˈʌmpənɪd baɪ tˈuː sˈiːkɹət sˈɜːvɪs ˈeɪdʒənts, lˈɛft ðə ɹˈuːm tə sˈiː mɪsˈɛs kˈɛnədi ænd mɪsˈɛs kənˈæli.
89 | DUMMY1/LJ019-0273.wav|wˌɪtʃ sˌɜː dʒˈɑːʃjuːə dʒˈɛb tˈoʊld ðə kəmˈɪɾi hiː kənsˈɪdɚd ðə pɹˈɑːpɚɹ ˈɛlɪmənts ʌv pˈiːnəl dˈɪsɪplˌɪn.
90 | DUMMY1/LJ014-0110.wav|æt ðə fˈɜːst ðə bˈɑːksᵻz wɜːɹ ɪmpˈaʊndᵻd, ˈoʊpənd, ænd fˈaʊnd tə kəntˈeɪn mˈɛnɪəv oʊkˈɑːnɚz ɪfˈɛkts.
91 | DUMMY1/LJ034-0160.wav|ˌɑːn bɹˈɛnənz sˈʌbsɪkwənt sˈɜːtən aɪdˈɛntɪfɪkˈeɪʃən ʌv lˈiː hˈɑːɹvi ˈɑːswəld æz ðə mˈæn hiː sˈɔː fˈaɪɚ ðə ɹˈaɪfəl.
92 | DUMMY1/LJ038-0199.wav|ɪlˈɛvən. ɪf ˈaɪ æm ɐlˈaɪv ænd tˈeɪkən pɹˈɪzənɚ,
93 | DUMMY1/LJ014-0010.wav|jˈɛt hiː kʊd nˌɑːt ˌoʊvɚkˈʌm ðə stɹˈeɪndʒ fˌæsᵻnˈeɪʃən ɪt hˈɐd fɔːɹ hˌɪm, ænd ɹɪmˈeɪnd baɪ ðə sˈaɪd ʌvðə kˈɔːɹps tˈɪl ðə stɹˈɛtʃɚ kˈeɪm.
94 | DUMMY1/LJ033-0047.wav|ˈaɪ nˈoʊɾɪsd wɛn ˈaɪ wɛnt ˈaʊt ðætðə lˈaɪt wʌz ˈɑːn, ˈɛnd kwˈoʊt,
95 | DUMMY1/LJ040-0027.wav|hiː wʌz nˈɛvɚ sˈæɾɪsfˌaɪd wɪð ˈɛnɪθˌɪŋ.
96 | DUMMY1/LJ048-0228.wav|ænd ˈʌðɚz hˌuː wɜː pɹˈɛzənt sˈeɪ ðæt nˈoʊ ˈeɪdʒənt wʌz ɪnˈiːbɹɪˌeɪɾᵻd ɔːɹ ˈæktᵻd ɪmpɹˈɑːpɚli.
97 | DUMMY1/LJ003-0111.wav|hiː wʌz ɪn kˈɑːnsɪkwəns pˌʊt ˌaʊɾəv ðə pɹətˈɛkʃən ʌv ðɛɹ ɪntˈɜːnəl lˈɔː, ˈɛnd kwˈoʊt. ðɛɹ kˈoʊd wʌzɐ sˈʌbdʒɛkt ʌv sˌʌm kjˌʊɹɪˈɑːsɪɾi.
98 | DUMMY1/LJ008-0258.wav|lˈɛt mˌiː ɹɪtɹˈeɪs maɪ stˈɛps, ænd spˈiːk mˈoːɹ ɪn diːtˈeɪl ʌvðə tɹˈiːtmənt ʌvðə kəndˈɛmd ɪn ðoʊz blˈʌdθɜːsti ænd bɹˈuːɾəli ɪndˈɪfɹənt dˈeɪz,
99 | DUMMY1/LJ029-0022.wav|ðɪ ɚɹˈɪdʒɪnəl plˈæn kˈɔːld fɚðə pɹˈɛzɪdənt tə spˈɛnd ˈoʊnli wˈʌn dˈeɪ ɪnðə stˈeɪt, mˌeɪkɪŋ wˈɜːlwɪnd vˈɪzɪts tə dˈæləs, fˈɔːɹt wˈɜːθ, sˌæn æntˈoʊnɪˌoʊ, ænd hjˈuːstən.
100 | DUMMY1/LJ004-0045.wav|mˈɪstɚ stˈɜːdʒᵻz bˈoːɹn, sˌɜː dʒˈeɪmz mˈækɪntˌɑːʃ, sˌɜː dʒˈeɪmz skˈɑːɹlɪt, ænd wˈɪljəm wˈɪlbɚfˌoːɹs.
101 |
--------------------------------------------------------------------------------
/models/vits/filelists/vctk_audio_sid_text_val_filelist.txt:
--------------------------------------------------------------------------------
1 | DUMMY2/p364/p364_240.wav|88|It had happened to him.
2 | DUMMY2/p280/p280_148.wav|52|It is open season on the Old Firm.
3 | DUMMY2/p231/p231_320.wav|50|However, he is a coach, and he remains a coach at heart.
4 | DUMMY2/p282/p282_129.wav|83|It is not a U-turn.
5 | DUMMY2/p254/p254_015.wav|41|The Greeks used to imagine that it was a sign from the gods to foretell war or heavy rain.
6 | DUMMY2/p228/p228_285.wav|57|The songs are just so good.
7 | DUMMY2/p334/p334_307.wav|38|If they don't, they can expect their funding to be cut.
8 | DUMMY2/p287/p287_081.wav|77|I've never seen anything like it.
9 | DUMMY2/p247/p247_083.wav|14|It is a job creation scheme.)
10 | DUMMY2/p264/p264_051.wav|65|We were leading by two goals.)
11 | DUMMY2/p335/p335_058.wav|49|Let's see that increase over the years.
12 | DUMMY2/p236/p236_225.wav|75|There is no quick fix.
13 | DUMMY2/p374/p374_353.wav|11|And that brings us to the point.
14 | DUMMY2/p272/p272_076.wav|69|Sounds like The Sixth Sense?
15 | DUMMY2/p271/p271_152.wav|27|The petition was formally presented at Downing Street yesterday.
16 | DUMMY2/p228/p228_127.wav|57|They've got to account for it.
17 | DUMMY2/p276/p276_223.wav|106|It's been a humbling year.
18 | DUMMY2/p262/p262_248.wav|45|The project has already secured the support of Sir Sean Connery.
19 | DUMMY2/p314/p314_086.wav|51|The team this year is going places.
20 | DUMMY2/p225/p225_038.wav|101|Diving is no part of football.
21 | DUMMY2/p279/p279_088.wav|25|The shareholders will vote to wind up the company on Friday morning.
22 | DUMMY2/p272/p272_018.wav|69|Aristotle thought that the rainbow was caused by reflection of the sun's rays by the rain.
23 | DUMMY2/p256/p256_098.wav|90|She told The Herald.
24 | DUMMY2/p261/p261_218.wav|100|All will be revealed in due course.
25 | DUMMY2/p265/p265_063.wav|73|IT shouldn't come as a surprise, but it does.
26 | DUMMY2/p314/p314_042.wav|51|It is all about people being assaulted, abused.
27 | DUMMY2/p241/p241_188.wav|86|I wish I could say something.
28 | DUMMY2/p283/p283_111.wav|95|It's good to have a voice.
29 | DUMMY2/p275/p275_006.wav|40|When the sunlight strikes raindrops in the air, they act as a prism and form a rainbow.
30 | DUMMY2/p228/p228_092.wav|57|Today I couldn't run on it.
31 | DUMMY2/p295/p295_343.wav|92|The atmosphere is businesslike.
32 | DUMMY2/p228/p228_187.wav|57|They will run a mile.
33 | DUMMY2/p294/p294_317.wav|104|It didn't put me off.
34 | DUMMY2/p231/p231_445.wav|50|It sounded like a bomb.
35 | DUMMY2/p272/p272_086.wav|69|Today she has been released.
36 | DUMMY2/p255/p255_210.wav|31|It was worth a photograph.
37 | DUMMY2/p229/p229_060.wav|67|And a film maker was born.
38 | DUMMY2/p260/p260_232.wav|81|The Home Office would not release any further details about the group.
39 | DUMMY2/p245/p245_025.wav|59|Johnson was pretty low.
40 | DUMMY2/p333/p333_185.wav|64|This area is perfect for children.
41 | DUMMY2/p244/p244_242.wav|78|He is a man of the people.
42 | DUMMY2/p376/p376_187.wav|71|"It is a terrible loss."
43 | DUMMY2/p239/p239_156.wav|48|It is a good lifestyle.
44 | DUMMY2/p307/p307_037.wav|22|He released a half-dozen solo albums.
45 | DUMMY2/p305/p305_185.wav|54|I am not even thinking about that.
46 | DUMMY2/p272/p272_081.wav|69|It was magic.
47 | DUMMY2/p302/p302_297.wav|30|I'm trying to stay open on that.
48 | DUMMY2/p275/p275_320.wav|40|We are in the end game.
49 | DUMMY2/p239/p239_231.wav|48|Then we will face the Danish champions.
50 | DUMMY2/p268/p268_301.wav|87|It was only later that the condition was diagnosed.
51 | DUMMY2/p336/p336_088.wav|98|They failed to reach agreement yesterday.
52 | DUMMY2/p278/p278_255.wav|10|They made such decisions in London.
53 | DUMMY2/p361/p361_132.wav|79|That got me out.
54 | DUMMY2/p307/p307_146.wav|22|You hope he prevails.
55 | DUMMY2/p244/p244_147.wav|78|They could not ignore the will of parliament, he claimed.
56 | DUMMY2/p294/p294_283.wav|104|This is our unfinished business.
57 | DUMMY2/p283/p283_300.wav|95|I would have the hammer in the crowd.
58 | DUMMY2/p239/p239_079.wav|48|I can understand the frustrations of our fans.
59 | DUMMY2/p264/p264_009.wav|65|There is , according to legend, a boiling pot of gold at one end. )
60 | DUMMY2/p307/p307_348.wav|22|He did not oppose the divorce.
61 | DUMMY2/p304/p304_308.wav|72|We are the gateway to justice.
62 | DUMMY2/p281/p281_056.wav|36|None has ever been found.
63 | DUMMY2/p267/p267_158.wav|0|We were given a warm and friendly reception.
64 | DUMMY2/p300/p300_169.wav|102|Who do these people think they are?
65 | DUMMY2/p276/p276_177.wav|106|They exist in name alone.
66 | DUMMY2/p228/p228_245.wav|57|It is a policy which has the full support of the minister.
67 | DUMMY2/p300/p300_303.wav|102|I'm wondering what you feel about the youngest.
68 | DUMMY2/p362/p362_247.wav|15|This would give Scotland around eight members.
69 | DUMMY2/p326/p326_031.wav|28|United were in control without always being dominant.
70 | DUMMY2/p361/p361_288.wav|79|I did not think it was very proper.
71 | DUMMY2/p286/p286_145.wav|63|Tiger is not the norm.
72 | DUMMY2/p234/p234_071.wav|3|She did that for the rest of her life.
73 | DUMMY2/p263/p263_296.wav|39|The decision was announced at its annual conference in Dunfermline.
74 | DUMMY2/p323/p323_228.wav|34|She became a heroine of my childhood.
75 | DUMMY2/p280/p280_346.wav|52|It was a bit like having children.
76 | DUMMY2/p333/p333_080.wav|64|But the tragedy did not stop there.
77 | DUMMY2/p226/p226_268.wav|43|That decision is for the British Parliament and people.
78 | DUMMY2/p362/p362_314.wav|15|Is that right?
79 | DUMMY2/p240/p240_047.wav|93|It is so sad.
80 | DUMMY2/p250/p250_207.wav|24|You could feel the heat.
81 | DUMMY2/p273/p273_176.wav|56|Neither side would reveal the details of the offer.
82 | DUMMY2/p316/p316_147.wav|85|And frankly, it's been a while.
83 | DUMMY2/p265/p265_047.wav|73|It is unique.
84 | DUMMY2/p336/p336_353.wav|98|Sometimes you get them, sometimes you don't.
85 | DUMMY2/p230/p230_376.wav|35|This hasn't happened in a vacuum.
86 | DUMMY2/p308/p308_209.wav|107|There is great potential on this river.
87 | DUMMY2/p250/p250_442.wav|24|We have not yet received a letter from the Irish.
88 | DUMMY2/p260/p260_037.wav|81|It's a fact.
89 | DUMMY2/p299/p299_345.wav|58|We're very excited and challenged by the project.
90 | DUMMY2/p269/p269_218.wav|94|A Grampian Police spokesman said.
91 | DUMMY2/p306/p306_014.wav|12|To the Hebrews it was a token that there would be no more universal floods.
92 | DUMMY2/p271/p271_292.wav|27|It's a record label, not a form of music.
93 | DUMMY2/p247/p247_225.wav|14|I am considered a teenager.)
94 | DUMMY2/p294/p294_094.wav|104|It should be a condition of employment.
95 | DUMMY2/p269/p269_031.wav|94|Is this accurate?
96 | DUMMY2/p275/p275_116.wav|40|It's not fair.
97 | DUMMY2/p265/p265_006.wav|73|When the sunlight strikes raindrops in the air, they act as a prism and form a rainbow.
98 | DUMMY2/p285/p285_072.wav|2|Mr Irvine said Mr Rafferty was now in good spirits.
99 | DUMMY2/p270/p270_167.wav|8|We did what we had to do.
100 | DUMMY2/p360/p360_397.wav|60|It is a relief.
101 |
--------------------------------------------------------------------------------
/models/vits/filelists/vctk_audio_sid_text_val_filelist.txt.cleaned:
--------------------------------------------------------------------------------
1 | DUMMY2/p364/p364_240.wav|88|ɪt hɐd hˈæpənd tə hˌɪm.
2 | DUMMY2/p280/p280_148.wav|52|ɪt ɪz ˈoʊpən sˈiːzən ɑːnðɪ ˈoʊld fˈɜːm.
3 | DUMMY2/p231/p231_320.wav|50|haʊˈɛvɚ, hiː ɪz ɐ kˈoʊtʃ, ænd hiː ɹɪmˈeɪnz ɐ kˈoʊtʃ æt hˈɑːɹt.
4 | DUMMY2/p282/p282_129.wav|83|ɪt ɪz nˌɑːɾə jˈuːtˈɜːn.
5 | DUMMY2/p254/p254_015.wav|41|ðə ɡɹˈiːks jˈuːzd tʊ ɪmˈædʒɪn ðˌɐɾɪt wʌzɐ sˈaɪn fɹʌmðə ɡˈɑːdz tə foːɹtˈɛl wˈɔːɹ ɔːɹ hˈɛvi ɹˈeɪn.
6 | DUMMY2/p228/p228_285.wav|57|ðə sˈɔŋz ɑːɹ dʒˈʌst sˌoʊ ɡˈʊd.
7 | DUMMY2/p334/p334_307.wav|38|ɪf ðeɪ dˈoʊnt, ðeɪ kæn ɛkspˈɛkt ðɛɹ fˈʌndɪŋ təbi kˈʌt.
8 | DUMMY2/p287/p287_081.wav|77|aɪv nˈɛvɚ sˈiːn ˈɛnɪθˌɪŋ lˈaɪk ɪt.
9 | DUMMY2/p247/p247_083.wav|14|ɪt ɪz ɐ dʒˈɑːb kɹiːˈeɪʃən skˈiːm.
10 | DUMMY2/p264/p264_051.wav|65|wiː wɜː lˈiːdɪŋ baɪ tˈuː ɡˈoʊlz.
11 | DUMMY2/p335/p335_058.wav|49|lˈɛts sˈiː ðæt ˈɪnkɹiːs ˌoʊvɚ ðə jˈɪɹz.
12 | DUMMY2/p236/p236_225.wav|75|ðɛɹ ɪz nˈoʊ kwˈɪk fˈɪks.
13 | DUMMY2/p374/p374_353.wav|11|ænd ðæt bɹˈɪŋz ˌʌs tə ðə pˈɔɪnt.
14 | DUMMY2/p272/p272_076.wav|69|sˈaʊndz lˈaɪk ðə sˈɪksθ sˈɛns?
15 | DUMMY2/p271/p271_152.wav|27|ðə pətˈɪʃən wʌz fˈɔːɹməli pɹɪzˈɛntᵻd æt dˈaʊnɪŋ stɹˈiːt jˈɛstɚdˌeɪ.
16 | DUMMY2/p228/p228_127.wav|57|ðeɪv ɡɑːt tʊ ɐkˈaʊnt fɔːɹ ɪt.
17 | DUMMY2/p276/p276_223.wav|106|ɪts bˌɪn ɐ hˈʌmblɪŋ jˈɪɹ.
18 | DUMMY2/p262/p262_248.wav|45|ðə pɹˈɑːdʒɛkt hɐz ɔːlɹˌɛdi sɪkjˈʊɹd ðə səpˈoːɹt ʌv sˌɜː ʃˈɔːn kɑːnɚɹi.
19 | DUMMY2/p314/p314_086.wav|51|ðə tˈiːm ðɪs jˈɪɹ ɪz ɡˌoʊɪŋ plˈeɪsᵻz.
20 | DUMMY2/p225/p225_038.wav|101|dˈaɪvɪŋ ɪz nˈoʊ pˈɑːɹt ʌv fˈʊtbɔːl.
21 | DUMMY2/p279/p279_088.wav|25|ðə ʃˈɛɹhoʊldɚz wɪl vˈoʊt tə wˈaɪnd ˈʌp ðə kˈʌmpəni ˌɑːn fɹˈaɪdeɪ mˈɔːɹnɪŋ.
22 | DUMMY2/p272/p272_018.wav|69|ˈæɹɪstˌɑːɾəl θˈɔːt ðætðə ɹˈeɪnboʊ wʌz kˈɔːzd baɪ ɹɪflˈɛkʃən ʌvðə sˈʌnz ɹˈeɪz baɪ ðə ɹˈeɪn.
23 | DUMMY2/p256/p256_098.wav|90|ʃiː tˈoʊld ðə hˈɛɹəld.
24 | DUMMY2/p261/p261_218.wav|100|ˈɔːl wɪl biː ɹɪvˈiːld ɪn dˈuː kˈoːɹs.
25 | DUMMY2/p265/p265_063.wav|73|ɪt ʃˌʊdənt kˈʌm æz ɐ sɚpɹˈaɪz, bˌʌt ɪt dˈʌz.
26 | DUMMY2/p314/p314_042.wav|51|ɪt ɪz ˈɔːl ɐbˌaʊt pˈiːpəl bˌiːɪŋ ɐsˈɑːltᵻd, ɐbjˈuːsd.
27 | DUMMY2/p241/p241_188.wav|86|ˈaɪ wˈɪʃ ˈaɪ kʊd sˈeɪ sˈʌmθɪŋ.
28 | DUMMY2/p283/p283_111.wav|95|ɪts ɡˈʊd tə hæv ɐ vˈɔɪs.
29 | DUMMY2/p275/p275_006.wav|40|wˌɛn ðə sˈʌnlaɪt stɹˈaɪks ɹˈeɪndɹɑːps ɪnðɪ ˈɛɹ, ðeɪ ˈækt æz ɐ pɹˈɪzəm ænd fˈɔːɹm ɐ ɹˈeɪnboʊ.
30 | DUMMY2/p228/p228_092.wav|57|tədˈeɪ ˈaɪ kˌʊdənt ɹˈʌn ˈɑːn ɪt.
31 | DUMMY2/p295/p295_343.wav|92|ðɪ ˈætməsfˌɪɹ ɪz bˈɪznəslˌaɪk.
32 | DUMMY2/p228/p228_187.wav|57|ðeɪ wɪl ɹˈʌn ɐ mˈaɪl.
33 | DUMMY2/p294/p294_317.wav|104|ɪt dˈɪdnt pˌʊt mˌiː ˈɔf.
34 | DUMMY2/p231/p231_445.wav|50|ɪt sˈaʊndᵻd lˈaɪk ɐ bˈɑːm.
35 | DUMMY2/p272/p272_086.wav|69|tədˈeɪ ʃiː hɐzbɪn ɹɪlˈiːsd.
36 | DUMMY2/p255/p255_210.wav|31|ɪt wʌz wˈɜːθ ɐ fˈoʊɾəɡɹˌæf.
37 | DUMMY2/p229/p229_060.wav|67|ænd ɐ fˈɪlm mˈeɪkɚ wʌz bˈɔːɹn.
38 | DUMMY2/p260/p260_232.wav|81|ðə hˈoʊm ˈɑːfɪs wʊd nˌɑːt ɹɪlˈiːs ˌɛni fˈɜːðɚ diːtˈeɪlz ɐbˌaʊt ðə ɡɹˈuːp.
39 | DUMMY2/p245/p245_025.wav|59|dʒˈɑːnsən wʌz pɹˈɪɾi lˈoʊ.
40 | DUMMY2/p333/p333_185.wav|64|ðɪs ˈɛɹiə ɪz pˈɜːfɛkt fɔːɹ tʃˈɪldɹən.
41 | DUMMY2/p244/p244_242.wav|78|hiː ɪz ɐ mˈæn ʌvðə pˈiːpəl.
42 | DUMMY2/p376/p376_187.wav|71|"ɪt ɪz ɐ tˈɛɹəbəl lˈɔs."
43 | DUMMY2/p239/p239_156.wav|48|ɪt ɪz ɐ ɡˈʊd lˈaɪfstaɪl.
44 | DUMMY2/p307/p307_037.wav|22|hiː ɹɪlˈiːsd ɐ hˈæfdˈʌzən sˈoʊloʊ ˈælbəmz.
45 | DUMMY2/p305/p305_185.wav|54|ˈaɪ æm nˌɑːt ˈiːvən θˈɪŋkɪŋ ɐbˌaʊt ðˈæt.
46 | DUMMY2/p272/p272_081.wav|69|ɪt wʌz mˈædʒɪk.
47 | DUMMY2/p302/p302_297.wav|30|aɪm tɹˈaɪɪŋ tə stˈeɪ ˈoʊpən ˌɑːn ðˈæt.
48 | DUMMY2/p275/p275_320.wav|40|wiː ɑːɹ ɪnðɪ ˈɛnd ɡˈeɪm.
49 | DUMMY2/p239/p239_231.wav|48|ðˈɛn wiː wɪl fˈeɪs ðə dˈeɪnɪʃ tʃˈæmpiənz.
50 | DUMMY2/p268/p268_301.wav|87|ɪt wʌz ˈoʊnli lˈeɪɾɚ ðætðə kəndˈɪʃən wʌz dˌaɪəɡnˈoʊzd.
51 | DUMMY2/p336/p336_088.wav|98|ðeɪ fˈeɪld tə ɹˈiːtʃ ɐɡɹˈiːmənt jˈɛstɚdˌeɪ.
52 | DUMMY2/p278/p278_255.wav|10|ðeɪ mˌeɪd sˈʌtʃ dᵻsˈɪʒənz ɪn lˈʌndən.
53 | DUMMY2/p361/p361_132.wav|79|ðæt ɡɑːt mˌiː ˈaʊt.
54 | DUMMY2/p307/p307_146.wav|22|juː hˈoʊp hiː pɹɪvˈeɪlz.
55 | DUMMY2/p244/p244_147.wav|78|ðeɪ kʊd nˌɑːt ɪɡnˈoːɹ ðə wɪl ʌv pˈɑːɹləmənt, hiː klˈeɪmd.
56 | DUMMY2/p294/p294_283.wav|104|ðɪs ɪz ˌaʊɚɹ ʌnfˈɪnɪʃt bˈɪznəs.
57 | DUMMY2/p283/p283_300.wav|95|ˈaɪ wʊdhɐv ðə hˈæmɚɹ ɪnðə kɹˈaʊd.
58 | DUMMY2/p239/p239_079.wav|48|ˈaɪ kæn ˌʌndɚstˈænd ðə fɹʌstɹˈeɪʃənz ʌv ˌaʊɚ fˈænz.
59 | DUMMY2/p264/p264_009.wav|65|ðɛɹˈɪz , ɐkˈoːɹdɪŋ tə lˈɛdʒənd, ɐ bˈɔɪlɪŋ pˈɑːt ʌv ɡˈoʊld æt wˈʌn ˈɛnd.
60 | DUMMY2/p307/p307_348.wav|22|hiː dɪdnˌɑːt əpˈoʊz ðə dɪvˈoːɹs.
61 | DUMMY2/p304/p304_308.wav|72|wiː ɑːɹ ðə ɡˈeɪtweɪ tə dʒˈʌstɪs.
62 | DUMMY2/p281/p281_056.wav|36|nˈʌn hɐz ˈɛvɚ bˌɪn fˈaʊnd.
63 | DUMMY2/p267/p267_158.wav|0|wiː wɜː ɡˈɪvən ɐ wˈɔːɹm ænd fɹˈɛndli ɹɪsˈɛpʃən.
64 | DUMMY2/p300/p300_169.wav|102|hˌuː dˈuː ðiːz pˈiːpəl θˈɪŋk ðeɪ ɑːɹ?
65 | DUMMY2/p276/p276_177.wav|106|ðeɪ ɛɡzˈɪst ɪn nˈeɪm ɐlˈoʊn.
66 | DUMMY2/p228/p228_245.wav|57|ɪt ɪz ɐ pˈɑːlɪsi wˌɪtʃ hɐz ðə fˈʊl səpˈoːɹt ʌvðə mˈɪnɪstɚ.
67 | DUMMY2/p300/p300_303.wav|102|aɪm wˈʌndɚɹɪŋ wˌʌt juː fˈiːl ɐbˌaʊt ðə jˈʌŋɡəst.
68 | DUMMY2/p362/p362_247.wav|15|ðɪs wʊd ɡˈɪv skˈɑːtlənd ɐɹˈaʊnd ˈeɪt mˈɛmbɚz.
69 | DUMMY2/p326/p326_031.wav|28|juːnˈaɪɾᵻd wɜːɹ ɪn kəntɹˈoʊl wɪðˌaʊt ˈɔːlweɪz bˌiːɪŋ dˈɑːmɪnənt.
70 | DUMMY2/p361/p361_288.wav|79|ˈaɪ dɪdnˌɑːt θˈɪŋk ɪt wʌz vˈɛɹi pɹˈɑːpɚ.
71 | DUMMY2/p286/p286_145.wav|63|tˈaɪɡɚɹ ɪz nˌɑːt ðə nˈɔːɹm.
72 | DUMMY2/p234/p234_071.wav|3|ʃiː dˈɪd ðæt fɚðə ɹˈɛst ʌv hɜː lˈaɪf.
73 | DUMMY2/p263/p263_296.wav|39|ðə dᵻsˈɪʒən wʌz ɐnˈaʊnst æt ɪts ˈænjuːəl kˈɑːnfɹəns ɪn dˈʌnfɚmlˌaɪn.
74 | DUMMY2/p323/p323_228.wav|34|ʃiː bɪkˌeɪm ɐ hˈɛɹoʊˌɪn ʌv maɪ tʃˈaɪldhʊd.
75 | DUMMY2/p280/p280_346.wav|52|ɪt wʌzɐ bˈɪt lˈaɪk hˌævɪŋ tʃˈɪldɹən.
76 | DUMMY2/p333/p333_080.wav|64|bˌʌt ðə tɹˈædʒədi dɪdnˌɑːt stˈɑːp ðˈɛɹ.
77 | DUMMY2/p226/p226_268.wav|43|ðæt dᵻsˈɪʒən ɪz fɚðə bɹˈɪɾɪʃ pˈɑːɹləmənt ænd pˈiːpəl.
78 | DUMMY2/p362/p362_314.wav|15|ɪz ðæt ɹˈaɪt?
79 | DUMMY2/p240/p240_047.wav|93|ɪt ɪz sˌoʊ sˈæd.
80 | DUMMY2/p250/p250_207.wav|24|juː kʊd fˈiːl ðə hˈiːt.
81 | DUMMY2/p273/p273_176.wav|56|nˈiːðɚ sˈaɪd wʊd ɹɪvˈiːl ðə diːtˈeɪlz ʌvðɪ ˈɑːfɚ.
82 | DUMMY2/p316/p316_147.wav|85|ænd fɹˈæŋkli, ɪts bˌɪn ɐ wˈaɪl.
83 | DUMMY2/p265/p265_047.wav|73|ɪt ɪz juːnˈiːk.
84 | DUMMY2/p336/p336_353.wav|98|sˈʌmtaɪmz juː ɡˈɛt ðˌɛm, sˈʌmtaɪmz juː dˈoʊnt.
85 | DUMMY2/p230/p230_376.wav|35|ðɪs hˈæzənt hˈæpənd ɪn ɐ vˈækjuːm.
86 | DUMMY2/p308/p308_209.wav|107|ðɛɹ ɪz ɡɹˈeɪt pətˈɛnʃəl ˌɑːn ðɪs ɹˈɪvɚ.
87 | DUMMY2/p250/p250_442.wav|24|wiː hɐvnˌɑːt jˈɛt ɹɪsˈiːvd ɐ lˈɛɾɚ fɹʌmðɪ ˈaɪɹɪʃ.
88 | DUMMY2/p260/p260_037.wav|81|ɪts ɐ fˈækt.
89 | DUMMY2/p299/p299_345.wav|58|wɪɹ vˈɛɹi ɛksˈaɪɾᵻd ænd tʃˈælɪndʒd baɪ ðə pɹˈɑːdʒɛkt.
90 | DUMMY2/p269/p269_218.wav|94|ɐ ɡɹˈæmpiən pəlˈiːs spˈoʊksmən sˈɛd.
91 | DUMMY2/p306/p306_014.wav|12|tə ðə hˈiːbɹuːz ɪt wʌzɐ tˈoʊkən ðæt ðɛɹ wʊd biː nˈoʊmˌoːɹ jˌuːnɪvˈɜːsəl flˈʌdz.
92 | DUMMY2/p271/p271_292.wav|27|ɪts ɐ ɹˈɛkɚd lˈeɪbəl, nˌɑːɾə fˈɔːɹm ʌv mjˈuːzɪk.
93 | DUMMY2/p247/p247_225.wav|14|ˈaɪ æm kənsˈɪdɚd ɐ tˈiːneɪdʒɚ.
94 | DUMMY2/p294/p294_094.wav|104|ɪt ʃˌʊd biː ɐ kəndˈɪʃən ʌv ɛmplˈɔɪmənt.
95 | DUMMY2/p269/p269_031.wav|94|ɪz ðɪs ˈækjʊɹət?
96 | DUMMY2/p275/p275_116.wav|40|ɪts nˌɑːt fˈɛɹ.
97 | DUMMY2/p265/p265_006.wav|73|wˌɛn ðə sˈʌnlaɪt stɹˈaɪks ɹˈeɪndɹɑːps ɪnðɪ ˈɛɹ, ðeɪ ˈækt æz ɐ pɹˈɪzəm ænd fˈɔːɹm ɐ ɹˈeɪnboʊ.
98 | DUMMY2/p285/p285_072.wav|2|mˈɪstɚɹ ˈɜːvaɪn sˈɛd mˈɪstɚ ɹˈæfɚɾi wʌz nˈaʊ ɪn ɡˈʊd spˈɪɹɪts.
99 | DUMMY2/p270/p270_167.wav|8|wiː dˈɪd wˌʌt wiː hædtə dˈuː.
100 | DUMMY2/p360/p360_397.wav|60|ɪt ɪz ɐ ɹɪlˈiːf.
101 |
--------------------------------------------------------------------------------
/models/vits/losses.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch.nn import functional as F
3 |
4 | import commons
5 |
6 |
7 | def feature_loss(fmap_r, fmap_g):
8 | loss = 0
9 | for dr, dg in zip(fmap_r, fmap_g):
10 | for rl, gl in zip(dr, dg):
11 | rl = rl.float().detach()
12 | gl = gl.float()
13 | loss += torch.mean(torch.abs(rl - gl))
14 |
15 | return loss * 2
16 |
17 |
18 | def discriminator_loss(disc_real_outputs, disc_generated_outputs):
19 | loss = 0
20 | r_losses = []
21 | g_losses = []
22 | for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
23 | dr = dr.float()
24 | dg = dg.float()
25 | r_loss = torch.mean((1-dr)**2)
26 | g_loss = torch.mean(dg**2)
27 | loss += (r_loss + g_loss)
28 | r_losses.append(r_loss.item())
29 | g_losses.append(g_loss.item())
30 |
31 | return loss, r_losses, g_losses
32 |
33 |
34 | def generator_loss(disc_outputs):
35 | loss = 0
36 | gen_losses = []
37 | for dg in disc_outputs:
38 | dg = dg.float()
39 | l = torch.mean((1-dg)**2)
40 | gen_losses.append(l)
41 | loss += l
42 |
43 | return loss, gen_losses
44 |
45 |
46 | def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
47 | """
48 | z_p, logs_q: [b, h, t_t]
49 | m_p, logs_p: [b, h, t_t]
50 | """
51 | z_p = z_p.float()
52 | logs_q = logs_q.float()
53 | m_p = m_p.float()
54 | logs_p = logs_p.float()
55 | z_mask = z_mask.float()
56 |
57 | kl = logs_p - logs_q - 0.5
58 | kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
59 | kl = torch.sum(kl * z_mask)
60 | l = kl / torch.sum(z_mask)
61 | return l
62 |
--------------------------------------------------------------------------------
/models/vits/mel_processing.py:
--------------------------------------------------------------------------------
1 | import math
2 | import os
3 | import random
4 | import torch
5 | from torch import nn
6 | import torch.nn.functional as F
7 | import torch.utils.data
8 | import numpy as np
9 | import librosa
10 | import librosa.util as librosa_util
11 | from librosa.util import normalize, pad_center, tiny
12 | from scipy.signal import get_window
13 | from scipy.io.wavfile import read
14 | from librosa.filters import mel as librosa_mel_fn
15 |
16 | MAX_WAV_VALUE = 32768.0
17 |
18 |
19 | def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
20 | """
21 | PARAMS
22 | ------
23 | C: compression factor
24 | """
25 | return torch.log(torch.clamp(x, min=clip_val) * C)
26 |
27 |
28 | def dynamic_range_decompression_torch(x, C=1):
29 | """
30 | PARAMS
31 | ------
32 | C: compression factor used to compress
33 | """
34 | return torch.exp(x) / C
35 |
36 |
37 | def spectral_normalize_torch(magnitudes):
38 | output = dynamic_range_compression_torch(magnitudes)
39 | return output
40 |
41 |
42 | def spectral_de_normalize_torch(magnitudes):
43 | output = dynamic_range_decompression_torch(magnitudes)
44 | return output
45 |
46 |
47 | mel_basis = {}
48 | hann_window = {}
49 |
50 |
51 | def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
52 | if torch.min(y) < -1.:
53 | print('min value is ', torch.min(y))
54 | if torch.max(y) > 1.:
55 | print('max value is ', torch.max(y))
56 |
57 | global hann_window
58 | dtype_device = str(y.dtype) + '_' + str(y.device)
59 | wnsize_dtype_device = str(win_size) + '_' + dtype_device
60 | if wnsize_dtype_device not in hann_window:
61 | hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
62 |
63 | y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
64 | y = y.squeeze(1)
65 |
66 | spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
67 | center=center, pad_mode='reflect', normalized=False, onesided=True)
68 |
69 | spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
70 | return spec
71 |
72 |
73 | def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
74 | global mel_basis
75 | dtype_device = str(spec.dtype) + '_' + str(spec.device)
76 | fmax_dtype_device = str(fmax) + '_' + dtype_device
77 | if fmax_dtype_device not in mel_basis:
78 | mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
79 | mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
80 | spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
81 | spec = spectral_normalize_torch(spec)
82 | return spec
83 |
84 |
85 | def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
86 | if torch.min(y) < -1.:
87 | print('min value is ', torch.min(y))
88 | if torch.max(y) > 1.:
89 | print('max value is ', torch.max(y))
90 |
91 | global mel_basis, hann_window
92 | dtype_device = str(y.dtype) + '_' + str(y.device)
93 | fmax_dtype_device = str(fmax) + '_' + dtype_device
94 | wnsize_dtype_device = str(win_size) + '_' + dtype_device
95 | if fmax_dtype_device not in mel_basis:
96 | mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
97 | mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
98 | if wnsize_dtype_device not in hann_window:
99 | hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
100 |
101 | y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
102 | y = y.squeeze(1)
103 |
104 | spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
105 | center=center, pad_mode='reflect', normalized=False, onesided=True)
106 |
107 | spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
108 |
109 | spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
110 | spec = spectral_normalize_torch(spec)
111 |
112 | return spec
113 |
--------------------------------------------------------------------------------
/models/vits/monotonic_align/__init__.py:
--------------------------------------------------------------------------------
1 | # import numpy as np
2 | # import torch
3 | # from .monotonic_align.core import maximum_path_c
4 |
5 |
6 | # def maximum_path(neg_cent, mask):
7 | # """ Cython optimized version.
8 | # neg_cent: [b, t_t, t_s]
9 | # mask: [b, t_t, t_s]
10 | # """
11 | # device = neg_cent.device
12 | # dtype = neg_cent.dtype
13 | # neg_cent = neg_cent.data.cpu().numpy().astype(np.float32)
14 | # path = np.zeros(neg_cent.shape, dtype=np.int32)
15 |
16 | # t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32)
17 | # t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32)
18 | # maximum_path_c(path, neg_cent, t_t_max, t_s_max)
19 | # return torch.from_numpy(path).to(device=device, dtype=dtype)
20 |
--------------------------------------------------------------------------------
/models/vits/monotonic_align/core.pyx:
--------------------------------------------------------------------------------
1 | cimport cython
2 | from cython.parallel import prange
3 |
4 |
5 | @cython.boundscheck(False)
6 | @cython.wraparound(False)
7 | cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_y, int t_x, float max_neg_val=-1e9) nogil:
8 | cdef int x
9 | cdef int y
10 | cdef float v_prev
11 | cdef float v_cur
12 | cdef float tmp
13 | cdef int index = t_x - 1
14 |
15 | for y in range(t_y):
16 | for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
17 | if x == y:
18 | v_cur = max_neg_val
19 | else:
20 | v_cur = value[y-1, x]
21 | if x == 0:
22 | if y == 0:
23 | v_prev = 0.
24 | else:
25 | v_prev = max_neg_val
26 | else:
27 | v_prev = value[y-1, x-1]
28 | value[y, x] += max(v_prev, v_cur)
29 |
30 | for y in range(t_y - 1, -1, -1):
31 | path[y, index] = 1
32 | if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]):
33 | index = index - 1
34 |
35 |
36 | @cython.boundscheck(False)
37 | @cython.wraparound(False)
38 | cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_ys, int[::1] t_xs) nogil:
39 | cdef int b = paths.shape[0]
40 | cdef int i
41 | for i in prange(b, nogil=True):
42 | maximum_path_each(paths[i], values[i], t_ys[i], t_xs[i])
43 |
--------------------------------------------------------------------------------
/models/vits/monotonic_align/setup.py:
--------------------------------------------------------------------------------
1 | from distutils.core import setup
2 | from Cython.Build import cythonize
3 | import numpy
4 |
5 | setup(
6 | name = 'monotonic_align',
7 | ext_modules = cythonize("core.pyx"),
8 | include_dirs=[numpy.get_include()]
9 | )
10 |
--------------------------------------------------------------------------------
/models/vits/preprocess.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import text
3 | from utils import load_filepaths_and_text
4 |
5 | if __name__ == '__main__':
6 | parser = argparse.ArgumentParser()
7 | parser.add_argument("--out_extension", default="cleaned")
8 | parser.add_argument("--text_index", default=1, type=int)
9 | parser.add_argument("--filelists", nargs="+", default=["filelists/ljs_audio_text_val_filelist.txt", "filelists/ljs_audio_text_test_filelist.txt"])
10 | parser.add_argument("--text_cleaners", nargs="+", default=["english_cleaners2"])
11 |
12 | args = parser.parse_args()
13 |
14 |
15 | for filelist in args.filelists:
16 | print("START:", filelist)
17 | filepaths_and_text = load_filepaths_and_text(filelist)
18 | for i in range(len(filepaths_and_text)):
19 | original_text = filepaths_and_text[i][args.text_index]
20 | cleaned_text = text._clean_text(original_text, args.text_cleaners)
21 | filepaths_and_text[i][args.text_index] = cleaned_text
22 |
23 | new_filelist = filelist + "." + args.out_extension
24 | with open(new_filelist, "w", encoding="utf-8") as f:
25 | f.writelines(["|".join(x) + "\n" for x in filepaths_and_text])
26 |
--------------------------------------------------------------------------------
/models/vits/pretrained_models/.gitkeep:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dscripka/synthetic_speech_dataset_generation/09cdc32c9efafefa603346819ba84aef4be2063b/models/vits/pretrained_models/.gitkeep
--------------------------------------------------------------------------------
/models/vits/requirements.txt:
--------------------------------------------------------------------------------
1 | Cython==0.29.21
2 | librosa==0.8.0
3 | matplotlib==3.3.1
4 | numpy==1.18.5
5 | phonemizer==3.2.1
6 | scipy==1.5.2
7 | tensorboard==2.3.0
8 | torch==1.6.0
9 | torchvision==0.7.0
10 | Unidecode==1.1.1
--------------------------------------------------------------------------------
/models/vits/resources/fig_1a.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dscripka/synthetic_speech_dataset_generation/09cdc32c9efafefa603346819ba84aef4be2063b/models/vits/resources/fig_1a.png
--------------------------------------------------------------------------------
/models/vits/resources/fig_1b.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dscripka/synthetic_speech_dataset_generation/09cdc32c9efafefa603346819ba84aef4be2063b/models/vits/resources/fig_1b.png
--------------------------------------------------------------------------------
/models/vits/resources/training.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dscripka/synthetic_speech_dataset_generation/09cdc32c9efafefa603346819ba84aef4be2063b/models/vits/resources/training.png
--------------------------------------------------------------------------------
/models/vits/text/LICENSE:
--------------------------------------------------------------------------------
1 | Copyright (c) 2017 Keith Ito
2 |
3 | Permission is hereby granted, free of charge, to any person obtaining a copy
4 | of this software and associated documentation files (the "Software"), to deal
5 | in the Software without restriction, including without limitation the rights
6 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7 | copies of the Software, and to permit persons to whom the Software is
8 | furnished to do so, subject to the following conditions:
9 |
10 | The above copyright notice and this permission notice shall be included in
11 | all copies or substantial portions of the Software.
12 |
13 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19 | THE SOFTWARE.
20 |
--------------------------------------------------------------------------------
/models/vits/text/__init__.py:
--------------------------------------------------------------------------------
1 | """ from https://github.com/keithito/tacotron """
2 | from text import cleaners
3 | from text.symbols import symbols
4 |
5 |
6 | # Mappings from symbol to numeric ID and vice versa:
7 | _symbol_to_id = {s: i for i, s in enumerate(symbols)}
8 | _id_to_symbol = {i: s for i, s in enumerate(symbols)}
9 |
10 |
11 | def text_to_sequence(text, cleaner_names):
12 | '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
13 | Args:
14 | text: string to convert to a sequence
15 | cleaner_names: names of the cleaner functions to run the text through
16 | Returns:
17 | List of integers corresponding to the symbols in the text
18 | '''
19 | sequence = []
20 |
21 | clean_text = _clean_text(text, cleaner_names)
22 | for symbol in clean_text:
23 | symbol_id = _symbol_to_id[symbol]
24 | sequence += [symbol_id]
25 | return sequence
26 |
27 |
28 | def cleaned_text_to_sequence(cleaned_text):
29 | '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
30 | Args:
31 | text: string to convert to a sequence
32 | Returns:
33 | List of integers corresponding to the symbols in the text
34 | '''
35 | sequence = [_symbol_to_id[symbol] for symbol in cleaned_text]
36 | return sequence
37 |
38 |
39 | def sequence_to_text(sequence):
40 | '''Converts a sequence of IDs back to a string'''
41 | result = ''
42 | for symbol_id in sequence:
43 | s = _id_to_symbol[symbol_id]
44 | result += s
45 | return result
46 |
47 |
48 | def _clean_text(text, cleaner_names):
49 | for name in cleaner_names:
50 | cleaner = getattr(cleaners, name)
51 | if not cleaner:
52 | raise Exception('Unknown cleaner: %s' % name)
53 | text = cleaner(text)
54 | return text
55 |
--------------------------------------------------------------------------------
/models/vits/text/cleaners.py:
--------------------------------------------------------------------------------
1 | """ from https://github.com/keithito/tacotron """
2 |
3 | '''
4 | Cleaners are transformations that run over the input text at both training and eval time.
5 |
6 | Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
7 | hyperparameter. Some cleaners are English-specific. You'll typically want to use:
8 | 1. "english_cleaners" for English text
9 | 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
10 | the Unidecode library (https://pypi.python.org/pypi/Unidecode)
11 | 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
12 | the symbols in symbols.py to match your data).
13 | '''
14 |
15 | import re
16 | from unidecode import unidecode
17 | from phonemizer import phonemize
18 | from phonemizer.backend import EspeakBackend
19 | from phonemizer.phonemize import _phonemize
20 | from phonemizer.separator import default_separator, Separator
21 |
22 | # Regular expression matching whitespace:
23 | _whitespace_re = re.compile(r'\s+')
24 |
25 | # List of (regular expression, replacement) pairs for abbreviations:
26 | _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
27 | ('mrs', 'misess'),
28 | ('mr', 'mister'),
29 | ('dr', 'doctor'),
30 | ('st', 'saint'),
31 | ('co', 'company'),
32 | ('jr', 'junior'),
33 | ('maj', 'major'),
34 | ('gen', 'general'),
35 | ('drs', 'doctors'),
36 | ('rev', 'reverend'),
37 | ('lt', 'lieutenant'),
38 | ('hon', 'honorable'),
39 | ('sgt', 'sergeant'),
40 | ('capt', 'captain'),
41 | ('esq', 'esquire'),
42 | ('ltd', 'limited'),
43 | ('col', 'colonel'),
44 | ('ft', 'fort'),
45 | ]]
46 |
47 | # espeak backend (instantiate once to avoid memory leaks)
48 | espeak_backend = EspeakBackend('en-us', preserve_punctuation=True, with_stress=True)
49 |
50 |
51 | def expand_abbreviations(text):
52 | for regex, replacement in _abbreviations:
53 | text = re.sub(regex, replacement, text)
54 | return text
55 |
56 |
57 | def expand_numbers(text):
58 | return normalize_numbers(text)
59 |
60 |
61 | def lowercase(text):
62 | return text.lower()
63 |
64 |
65 | def collapse_whitespace(text):
66 | return re.sub(_whitespace_re, ' ', text)
67 |
68 |
69 | def convert_to_ascii(text):
70 | return unidecode(text)
71 |
72 |
73 | def basic_cleaners(text):
74 | '''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
75 | text = lowercase(text)
76 | text = collapse_whitespace(text)
77 | return text
78 |
79 |
80 | def transliteration_cleaners(text):
81 | '''Pipeline for non-English text that transliterates to ASCII.'''
82 | text = convert_to_ascii(text)
83 | text = lowercase(text)
84 | text = collapse_whitespace(text)
85 | return text
86 |
87 |
88 | def english_cleaners(text):
89 | '''Pipeline for English text, including abbreviation expansion.'''
90 | text = convert_to_ascii(text)
91 | text = lowercase(text)
92 | text = expand_abbreviations(text)
93 | phonemes = phonemize(text, language='en-us', backend='espeak', strip=True)
94 | phonemes = collapse_whitespace(phonemes)
95 | return phonemes
96 |
97 |
98 | def english_cleaners2(text):
99 | '''Pipeline for English text, including abbreviation expansion. + punctuation + stress'''
100 | text = convert_to_ascii(text)
101 | text = lowercase(text)
102 | text = expand_abbreviations(text)
103 | # phonemes = phonemize(text, language='en-us', backend='espeak', strip=True, preserve_punctuation=True, with_stress=True)
104 | phonemes = _phonemize(espeak_backend, text, separator=default_separator, strip=True, njobs=1, prepend_text=False, preserve_empty_lines=False)
105 | phonemes = collapse_whitespace(phonemes)
106 | return phonemes
107 |
--------------------------------------------------------------------------------
/models/vits/text/symbols.py:
--------------------------------------------------------------------------------
1 | """ from https://github.com/keithito/tacotron """
2 |
3 | '''
4 | Defines the set of symbols used in text input to the model.
5 | '''
6 | _pad = '_'
7 | _punctuation = ';:,.!?¡¿—…"«»“” '
8 | _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
9 | _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
10 |
11 |
12 | # Export all symbols:
13 | symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
14 |
15 | # Special symbol ids
16 | SPACE_ID = symbols.index(" ")
17 |
--------------------------------------------------------------------------------
/models/vits/train.py:
--------------------------------------------------------------------------------
1 | import os
2 | import json
3 | import argparse
4 | import itertools
5 | import math
6 | import torch
7 | from torch import nn, optim
8 | from torch.nn import functional as F
9 | from torch.utils.data import DataLoader
10 | from torch.utils.tensorboard import SummaryWriter
11 | import torch.multiprocessing as mp
12 | import torch.distributed as dist
13 | from torch.nn.parallel import DistributedDataParallel as DDP
14 | from torch.cuda.amp import autocast, GradScaler
15 |
16 | import commons
17 | import utils
18 | from data_utils import (
19 | TextAudioLoader,
20 | TextAudioCollate,
21 | DistributedBucketSampler
22 | )
23 | from models import (
24 | SynthesizerTrn,
25 | MultiPeriodDiscriminator,
26 | )
27 | from losses import (
28 | generator_loss,
29 | discriminator_loss,
30 | feature_loss,
31 | kl_loss
32 | )
33 | from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
34 | from text.symbols import symbols
35 |
36 |
37 | torch.backends.cudnn.benchmark = True
38 | global_step = 0
39 |
40 |
41 | def main():
42 | """Assume Single Node Multi GPUs Training Only"""
43 | assert torch.cuda.is_available(), "CPU training is not allowed."
44 |
45 | n_gpus = torch.cuda.device_count()
46 | os.environ['MASTER_ADDR'] = 'localhost'
47 | os.environ['MASTER_PORT'] = '80000'
48 |
49 | hps = utils.get_hparams()
50 | mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
51 |
52 |
53 | def run(rank, n_gpus, hps):
54 | global global_step
55 | if rank == 0:
56 | logger = utils.get_logger(hps.model_dir)
57 | logger.info(hps)
58 | utils.check_git_hash(hps.model_dir)
59 | writer = SummaryWriter(log_dir=hps.model_dir)
60 | writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
61 |
62 | dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
63 | torch.manual_seed(hps.train.seed)
64 | torch.cuda.set_device(rank)
65 |
66 | train_dataset = TextAudioLoader(hps.data.training_files, hps.data)
67 | train_sampler = DistributedBucketSampler(
68 | train_dataset,
69 | hps.train.batch_size,
70 | [32,300,400,500,600,700,800,900,1000],
71 | num_replicas=n_gpus,
72 | rank=rank,
73 | shuffle=True)
74 | collate_fn = TextAudioCollate()
75 | train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
76 | collate_fn=collate_fn, batch_sampler=train_sampler)
77 | if rank == 0:
78 | eval_dataset = TextAudioLoader(hps.data.validation_files, hps.data)
79 | eval_loader = DataLoader(eval_dataset, num_workers=8, shuffle=False,
80 | batch_size=hps.train.batch_size, pin_memory=True,
81 | drop_last=False, collate_fn=collate_fn)
82 |
83 | net_g = SynthesizerTrn(
84 | len(symbols),
85 | hps.data.filter_length // 2 + 1,
86 | hps.train.segment_size // hps.data.hop_length,
87 | **hps.model).cuda(rank)
88 | net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
89 | optim_g = torch.optim.AdamW(
90 | net_g.parameters(),
91 | hps.train.learning_rate,
92 | betas=hps.train.betas,
93 | eps=hps.train.eps)
94 | optim_d = torch.optim.AdamW(
95 | net_d.parameters(),
96 | hps.train.learning_rate,
97 | betas=hps.train.betas,
98 | eps=hps.train.eps)
99 | net_g = DDP(net_g, device_ids=[rank])
100 | net_d = DDP(net_d, device_ids=[rank])
101 |
102 | try:
103 | _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
104 | _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
105 | global_step = (epoch_str - 1) * len(train_loader)
106 | except:
107 | epoch_str = 1
108 | global_step = 0
109 |
110 | scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
111 | scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
112 |
113 | scaler = GradScaler(enabled=hps.train.fp16_run)
114 |
115 | for epoch in range(epoch_str, hps.train.epochs + 1):
116 | if rank==0:
117 | train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
118 | else:
119 | train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
120 | scheduler_g.step()
121 | scheduler_d.step()
122 |
123 |
124 | def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
125 | net_g, net_d = nets
126 | optim_g, optim_d = optims
127 | scheduler_g, scheduler_d = schedulers
128 | train_loader, eval_loader = loaders
129 | if writers is not None:
130 | writer, writer_eval = writers
131 |
132 | train_loader.batch_sampler.set_epoch(epoch)
133 | global global_step
134 |
135 | net_g.train()
136 | net_d.train()
137 | for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths) in enumerate(train_loader):
138 | x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
139 | spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
140 | y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
141 |
142 | with autocast(enabled=hps.train.fp16_run):
143 | y_hat, l_length, attn, ids_slice, x_mask, z_mask,\
144 | (z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths)
145 |
146 | mel = spec_to_mel_torch(
147 | spec,
148 | hps.data.filter_length,
149 | hps.data.n_mel_channels,
150 | hps.data.sampling_rate,
151 | hps.data.mel_fmin,
152 | hps.data.mel_fmax)
153 | y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
154 | y_hat_mel = mel_spectrogram_torch(
155 | y_hat.squeeze(1),
156 | hps.data.filter_length,
157 | hps.data.n_mel_channels,
158 | hps.data.sampling_rate,
159 | hps.data.hop_length,
160 | hps.data.win_length,
161 | hps.data.mel_fmin,
162 | hps.data.mel_fmax
163 | )
164 |
165 | y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
166 |
167 | # Discriminator
168 | y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
169 | with autocast(enabled=False):
170 | loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
171 | loss_disc_all = loss_disc
172 | optim_d.zero_grad()
173 | scaler.scale(loss_disc_all).backward()
174 | scaler.unscale_(optim_d)
175 | grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
176 | scaler.step(optim_d)
177 |
178 | with autocast(enabled=hps.train.fp16_run):
179 | # Generator
180 | y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
181 | with autocast(enabled=False):
182 | loss_dur = torch.sum(l_length.float())
183 | loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
184 | loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
185 |
186 | loss_fm = feature_loss(fmap_r, fmap_g)
187 | loss_gen, losses_gen = generator_loss(y_d_hat_g)
188 | loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
189 | optim_g.zero_grad()
190 | scaler.scale(loss_gen_all).backward()
191 | scaler.unscale_(optim_g)
192 | grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
193 | scaler.step(optim_g)
194 | scaler.update()
195 |
196 | if rank==0:
197 | if global_step % hps.train.log_interval == 0:
198 | lr = optim_g.param_groups[0]['lr']
199 | losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
200 | logger.info('Train Epoch: {} [{:.0f}%]'.format(
201 | epoch,
202 | 100. * batch_idx / len(train_loader)))
203 | logger.info([x.item() for x in losses] + [global_step, lr])
204 |
205 | scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
206 | scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl})
207 |
208 | scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
209 | scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
210 | scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
211 | image_dict = {
212 | "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
213 | "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
214 | "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
215 | "all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy())
216 | }
217 | utils.summarize(
218 | writer=writer,
219 | global_step=global_step,
220 | images=image_dict,
221 | scalars=scalar_dict)
222 |
223 | if global_step % hps.train.eval_interval == 0:
224 | evaluate(hps, net_g, eval_loader, writer_eval)
225 | utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
226 | utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
227 | global_step += 1
228 |
229 | if rank == 0:
230 | logger.info('====> Epoch: {}'.format(epoch))
231 |
232 |
233 | def evaluate(hps, generator, eval_loader, writer_eval):
234 | generator.eval()
235 | with torch.no_grad():
236 | for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths) in enumerate(eval_loader):
237 | x, x_lengths = x.cuda(0), x_lengths.cuda(0)
238 | spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
239 | y, y_lengths = y.cuda(0), y_lengths.cuda(0)
240 |
241 | # remove else
242 | x = x[:1]
243 | x_lengths = x_lengths[:1]
244 | spec = spec[:1]
245 | spec_lengths = spec_lengths[:1]
246 | y = y[:1]
247 | y_lengths = y_lengths[:1]
248 | break
249 | y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, max_len=1000)
250 | y_hat_lengths = mask.sum([1,2]).long() * hps.data.hop_length
251 |
252 | mel = spec_to_mel_torch(
253 | spec,
254 | hps.data.filter_length,
255 | hps.data.n_mel_channels,
256 | hps.data.sampling_rate,
257 | hps.data.mel_fmin,
258 | hps.data.mel_fmax)
259 | y_hat_mel = mel_spectrogram_torch(
260 | y_hat.squeeze(1).float(),
261 | hps.data.filter_length,
262 | hps.data.n_mel_channels,
263 | hps.data.sampling_rate,
264 | hps.data.hop_length,
265 | hps.data.win_length,
266 | hps.data.mel_fmin,
267 | hps.data.mel_fmax
268 | )
269 | image_dict = {
270 | "gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
271 | }
272 | audio_dict = {
273 | "gen/audio": y_hat[0,:,:y_hat_lengths[0]]
274 | }
275 | if global_step == 0:
276 | image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
277 | audio_dict.update({"gt/audio": y[0,:,:y_lengths[0]]})
278 |
279 | utils.summarize(
280 | writer=writer_eval,
281 | global_step=global_step,
282 | images=image_dict,
283 | audios=audio_dict,
284 | audio_sampling_rate=hps.data.sampling_rate
285 | )
286 | generator.train()
287 |
288 |
289 | if __name__ == "__main__":
290 | main()
291 |
--------------------------------------------------------------------------------
/models/vits/train_ms.py:
--------------------------------------------------------------------------------
1 | import os
2 | import json
3 | import argparse
4 | import itertools
5 | import math
6 | import torch
7 | from torch import nn, optim
8 | from torch.nn import functional as F
9 | from torch.utils.data import DataLoader
10 | from torch.utils.tensorboard import SummaryWriter
11 | import torch.multiprocessing as mp
12 | import torch.distributed as dist
13 | from torch.nn.parallel import DistributedDataParallel as DDP
14 | from torch.cuda.amp import autocast, GradScaler
15 |
16 | import commons
17 | import utils
18 | from data_utils import (
19 | TextAudioSpeakerLoader,
20 | TextAudioSpeakerCollate,
21 | DistributedBucketSampler
22 | )
23 | from models import (
24 | SynthesizerTrn,
25 | MultiPeriodDiscriminator,
26 | )
27 | from losses import (
28 | generator_loss,
29 | discriminator_loss,
30 | feature_loss,
31 | kl_loss
32 | )
33 | from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
34 | from text.symbols import symbols
35 |
36 |
37 | torch.backends.cudnn.benchmark = True
38 | global_step = 0
39 |
40 |
41 | def main():
42 | """Assume Single Node Multi GPUs Training Only"""
43 | assert torch.cuda.is_available(), "CPU training is not allowed."
44 |
45 | n_gpus = torch.cuda.device_count()
46 | os.environ['MASTER_ADDR'] = 'localhost'
47 | os.environ['MASTER_PORT'] = '80000'
48 |
49 | hps = utils.get_hparams()
50 | mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
51 |
52 |
53 | def run(rank, n_gpus, hps):
54 | global global_step
55 | if rank == 0:
56 | logger = utils.get_logger(hps.model_dir)
57 | logger.info(hps)
58 | utils.check_git_hash(hps.model_dir)
59 | writer = SummaryWriter(log_dir=hps.model_dir)
60 | writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
61 |
62 | dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
63 | torch.manual_seed(hps.train.seed)
64 | torch.cuda.set_device(rank)
65 |
66 | train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
67 | train_sampler = DistributedBucketSampler(
68 | train_dataset,
69 | hps.train.batch_size,
70 | [32,300,400,500,600,700,800,900,1000],
71 | num_replicas=n_gpus,
72 | rank=rank,
73 | shuffle=True)
74 | collate_fn = TextAudioSpeakerCollate()
75 | train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
76 | collate_fn=collate_fn, batch_sampler=train_sampler)
77 | if rank == 0:
78 | eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
79 | eval_loader = DataLoader(eval_dataset, num_workers=8, shuffle=False,
80 | batch_size=hps.train.batch_size, pin_memory=True,
81 | drop_last=False, collate_fn=collate_fn)
82 |
83 | net_g = SynthesizerTrn(
84 | len(symbols),
85 | hps.data.filter_length // 2 + 1,
86 | hps.train.segment_size // hps.data.hop_length,
87 | n_speakers=hps.data.n_speakers,
88 | **hps.model).cuda(rank)
89 | net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
90 | optim_g = torch.optim.AdamW(
91 | net_g.parameters(),
92 | hps.train.learning_rate,
93 | betas=hps.train.betas,
94 | eps=hps.train.eps)
95 | optim_d = torch.optim.AdamW(
96 | net_d.parameters(),
97 | hps.train.learning_rate,
98 | betas=hps.train.betas,
99 | eps=hps.train.eps)
100 | net_g = DDP(net_g, device_ids=[rank])
101 | net_d = DDP(net_d, device_ids=[rank])
102 |
103 | try:
104 | _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
105 | _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
106 | global_step = (epoch_str - 1) * len(train_loader)
107 | except:
108 | epoch_str = 1
109 | global_step = 0
110 |
111 | scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
112 | scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
113 |
114 | scaler = GradScaler(enabled=hps.train.fp16_run)
115 |
116 | for epoch in range(epoch_str, hps.train.epochs + 1):
117 | if rank==0:
118 | train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
119 | else:
120 | train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
121 | scheduler_g.step()
122 | scheduler_d.step()
123 |
124 |
125 | def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
126 | net_g, net_d = nets
127 | optim_g, optim_d = optims
128 | scheduler_g, scheduler_d = schedulers
129 | train_loader, eval_loader = loaders
130 | if writers is not None:
131 | writer, writer_eval = writers
132 |
133 | train_loader.batch_sampler.set_epoch(epoch)
134 | global global_step
135 |
136 | net_g.train()
137 | net_d.train()
138 | for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(train_loader):
139 | x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
140 | spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
141 | y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
142 | speakers = speakers.cuda(rank, non_blocking=True)
143 |
144 | with autocast(enabled=hps.train.fp16_run):
145 | y_hat, l_length, attn, ids_slice, x_mask, z_mask,\
146 | (z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths, speakers)
147 |
148 | mel = spec_to_mel_torch(
149 | spec,
150 | hps.data.filter_length,
151 | hps.data.n_mel_channels,
152 | hps.data.sampling_rate,
153 | hps.data.mel_fmin,
154 | hps.data.mel_fmax)
155 | y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
156 | y_hat_mel = mel_spectrogram_torch(
157 | y_hat.squeeze(1),
158 | hps.data.filter_length,
159 | hps.data.n_mel_channels,
160 | hps.data.sampling_rate,
161 | hps.data.hop_length,
162 | hps.data.win_length,
163 | hps.data.mel_fmin,
164 | hps.data.mel_fmax
165 | )
166 |
167 | y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
168 |
169 | # Discriminator
170 | y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
171 | with autocast(enabled=False):
172 | loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
173 | loss_disc_all = loss_disc
174 | optim_d.zero_grad()
175 | scaler.scale(loss_disc_all).backward()
176 | scaler.unscale_(optim_d)
177 | grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
178 | scaler.step(optim_d)
179 |
180 | with autocast(enabled=hps.train.fp16_run):
181 | # Generator
182 | y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
183 | with autocast(enabled=False):
184 | loss_dur = torch.sum(l_length.float())
185 | loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
186 | loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
187 |
188 | loss_fm = feature_loss(fmap_r, fmap_g)
189 | loss_gen, losses_gen = generator_loss(y_d_hat_g)
190 | loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
191 | optim_g.zero_grad()
192 | scaler.scale(loss_gen_all).backward()
193 | scaler.unscale_(optim_g)
194 | grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
195 | scaler.step(optim_g)
196 | scaler.update()
197 |
198 | if rank==0:
199 | if global_step % hps.train.log_interval == 0:
200 | lr = optim_g.param_groups[0]['lr']
201 | losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
202 | logger.info('Train Epoch: {} [{:.0f}%]'.format(
203 | epoch,
204 | 100. * batch_idx / len(train_loader)))
205 | logger.info([x.item() for x in losses] + [global_step, lr])
206 |
207 | scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
208 | scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl})
209 |
210 | scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
211 | scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
212 | scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
213 | image_dict = {
214 | "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
215 | "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
216 | "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
217 | "all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy())
218 | }
219 | utils.summarize(
220 | writer=writer,
221 | global_step=global_step,
222 | images=image_dict,
223 | scalars=scalar_dict)
224 |
225 | if global_step % hps.train.eval_interval == 0:
226 | evaluate(hps, net_g, eval_loader, writer_eval)
227 | utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
228 | utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
229 | global_step += 1
230 |
231 | if rank == 0:
232 | logger.info('====> Epoch: {}'.format(epoch))
233 |
234 |
235 | def evaluate(hps, generator, eval_loader, writer_eval):
236 | generator.eval()
237 | with torch.no_grad():
238 | for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(eval_loader):
239 | x, x_lengths = x.cuda(0), x_lengths.cuda(0)
240 | spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
241 | y, y_lengths = y.cuda(0), y_lengths.cuda(0)
242 | speakers = speakers.cuda(0)
243 |
244 | # remove else
245 | x = x[:1]
246 | x_lengths = x_lengths[:1]
247 | spec = spec[:1]
248 | spec_lengths = spec_lengths[:1]
249 | y = y[:1]
250 | y_lengths = y_lengths[:1]
251 | speakers = speakers[:1]
252 | break
253 | y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, speakers, max_len=1000)
254 | y_hat_lengths = mask.sum([1,2]).long() * hps.data.hop_length
255 |
256 | mel = spec_to_mel_torch(
257 | spec,
258 | hps.data.filter_length,
259 | hps.data.n_mel_channels,
260 | hps.data.sampling_rate,
261 | hps.data.mel_fmin,
262 | hps.data.mel_fmax)
263 | y_hat_mel = mel_spectrogram_torch(
264 | y_hat.squeeze(1).float(),
265 | hps.data.filter_length,
266 | hps.data.n_mel_channels,
267 | hps.data.sampling_rate,
268 | hps.data.hop_length,
269 | hps.data.win_length,
270 | hps.data.mel_fmin,
271 | hps.data.mel_fmax
272 | )
273 | image_dict = {
274 | "gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
275 | }
276 | audio_dict = {
277 | "gen/audio": y_hat[0,:,:y_hat_lengths[0]]
278 | }
279 | if global_step == 0:
280 | image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
281 | audio_dict.update({"gt/audio": y[0,:,:y_lengths[0]]})
282 |
283 | utils.summarize(
284 | writer=writer_eval,
285 | global_step=global_step,
286 | images=image_dict,
287 | audios=audio_dict,
288 | audio_sampling_rate=hps.data.sampling_rate
289 | )
290 | generator.train()
291 |
292 |
293 | if __name__ == "__main__":
294 | main()
295 |
--------------------------------------------------------------------------------
/models/vits/transforms.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch.nn import functional as F
3 |
4 | import numpy as np
5 |
6 |
7 | DEFAULT_MIN_BIN_WIDTH = 1e-3
8 | DEFAULT_MIN_BIN_HEIGHT = 1e-3
9 | DEFAULT_MIN_DERIVATIVE = 1e-3
10 |
11 |
12 | def piecewise_rational_quadratic_transform(inputs,
13 | unnormalized_widths,
14 | unnormalized_heights,
15 | unnormalized_derivatives,
16 | inverse=False,
17 | tails=None,
18 | tail_bound=1.,
19 | min_bin_width=DEFAULT_MIN_BIN_WIDTH,
20 | min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
21 | min_derivative=DEFAULT_MIN_DERIVATIVE):
22 |
23 | if tails is None:
24 | spline_fn = rational_quadratic_spline
25 | spline_kwargs = {}
26 | else:
27 | spline_fn = unconstrained_rational_quadratic_spline
28 | spline_kwargs = {
29 | 'tails': tails,
30 | 'tail_bound': tail_bound
31 | }
32 |
33 | outputs, logabsdet = spline_fn(
34 | inputs=inputs,
35 | unnormalized_widths=unnormalized_widths,
36 | unnormalized_heights=unnormalized_heights,
37 | unnormalized_derivatives=unnormalized_derivatives,
38 | inverse=inverse,
39 | min_bin_width=min_bin_width,
40 | min_bin_height=min_bin_height,
41 | min_derivative=min_derivative,
42 | **spline_kwargs
43 | )
44 | return outputs, logabsdet
45 |
46 |
47 | def searchsorted(bin_locations, inputs, eps=1e-6):
48 | bin_locations[..., -1] += eps
49 | return torch.sum(
50 | inputs[..., None] >= bin_locations,
51 | dim=-1
52 | ) - 1
53 |
54 |
55 | def unconstrained_rational_quadratic_spline(inputs,
56 | unnormalized_widths,
57 | unnormalized_heights,
58 | unnormalized_derivatives,
59 | inverse=False,
60 | tails='linear',
61 | tail_bound=1.,
62 | min_bin_width=DEFAULT_MIN_BIN_WIDTH,
63 | min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
64 | min_derivative=DEFAULT_MIN_DERIVATIVE):
65 | inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
66 | outside_interval_mask = ~inside_interval_mask
67 |
68 | outputs = torch.zeros_like(inputs)
69 | logabsdet = torch.zeros_like(inputs)
70 |
71 | if tails == 'linear':
72 | unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
73 | constant = np.log(np.exp(1 - min_derivative) - 1)
74 | unnormalized_derivatives[..., 0] = constant
75 | unnormalized_derivatives[..., -1] = constant
76 |
77 | outputs[outside_interval_mask] = inputs[outside_interval_mask]
78 | logabsdet[outside_interval_mask] = 0
79 | else:
80 | raise RuntimeError('{} tails are not implemented.'.format(tails))
81 |
82 | outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
83 | inputs=inputs[inside_interval_mask],
84 | unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
85 | unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
86 | unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
87 | inverse=inverse,
88 | left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
89 | min_bin_width=min_bin_width,
90 | min_bin_height=min_bin_height,
91 | min_derivative=min_derivative
92 | )
93 |
94 | return outputs, logabsdet
95 |
96 | def rational_quadratic_spline(inputs,
97 | unnormalized_widths,
98 | unnormalized_heights,
99 | unnormalized_derivatives,
100 | inverse=False,
101 | left=0., right=1., bottom=0., top=1.,
102 | min_bin_width=DEFAULT_MIN_BIN_WIDTH,
103 | min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
104 | min_derivative=DEFAULT_MIN_DERIVATIVE):
105 | if torch.min(inputs) < left or torch.max(inputs) > right:
106 | raise ValueError('Input to a transform is not within its domain')
107 |
108 | num_bins = unnormalized_widths.shape[-1]
109 |
110 | if min_bin_width * num_bins > 1.0:
111 | raise ValueError('Minimal bin width too large for the number of bins')
112 | if min_bin_height * num_bins > 1.0:
113 | raise ValueError('Minimal bin height too large for the number of bins')
114 |
115 | widths = F.softmax(unnormalized_widths, dim=-1)
116 | widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
117 | cumwidths = torch.cumsum(widths, dim=-1)
118 | cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
119 | cumwidths = (right - left) * cumwidths + left
120 | cumwidths[..., 0] = left
121 | cumwidths[..., -1] = right
122 | widths = cumwidths[..., 1:] - cumwidths[..., :-1]
123 |
124 | derivatives = min_derivative + F.softplus(unnormalized_derivatives)
125 |
126 | heights = F.softmax(unnormalized_heights, dim=-1)
127 | heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
128 | cumheights = torch.cumsum(heights, dim=-1)
129 | cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
130 | cumheights = (top - bottom) * cumheights + bottom
131 | cumheights[..., 0] = bottom
132 | cumheights[..., -1] = top
133 | heights = cumheights[..., 1:] - cumheights[..., :-1]
134 |
135 | if inverse:
136 | bin_idx = searchsorted(cumheights, inputs)[..., None]
137 | else:
138 | bin_idx = searchsorted(cumwidths, inputs)[..., None]
139 |
140 | input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
141 | input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
142 |
143 | input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
144 | delta = heights / widths
145 | input_delta = delta.gather(-1, bin_idx)[..., 0]
146 |
147 | input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
148 | input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
149 |
150 | input_heights = heights.gather(-1, bin_idx)[..., 0]
151 |
152 | if inverse:
153 | a = (((inputs - input_cumheights) * (input_derivatives
154 | + input_derivatives_plus_one
155 | - 2 * input_delta)
156 | + input_heights * (input_delta - input_derivatives)))
157 | b = (input_heights * input_derivatives
158 | - (inputs - input_cumheights) * (input_derivatives
159 | + input_derivatives_plus_one
160 | - 2 * input_delta))
161 | c = - input_delta * (inputs - input_cumheights)
162 |
163 | discriminant = b.pow(2) - 4 * a * c
164 | assert (discriminant >= 0).all()
165 |
166 | root = (2 * c) / (-b - torch.sqrt(discriminant))
167 | outputs = root * input_bin_widths + input_cumwidths
168 |
169 | theta_one_minus_theta = root * (1 - root)
170 | denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
171 | * theta_one_minus_theta)
172 | derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
173 | + 2 * input_delta * theta_one_minus_theta
174 | + input_derivatives * (1 - root).pow(2))
175 | logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
176 |
177 | return outputs, -logabsdet
178 | else:
179 | theta = (inputs - input_cumwidths) / input_bin_widths
180 | theta_one_minus_theta = theta * (1 - theta)
181 |
182 | numerator = input_heights * (input_delta * theta.pow(2)
183 | + input_derivatives * theta_one_minus_theta)
184 | denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
185 | * theta_one_minus_theta)
186 | outputs = input_cumheights + numerator / denominator
187 |
188 | derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
189 | + 2 * input_delta * theta_one_minus_theta
190 | + input_derivatives * (1 - theta).pow(2))
191 | logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
192 |
193 | return outputs, logabsdet
194 |
--------------------------------------------------------------------------------
/models/vits/utils.py:
--------------------------------------------------------------------------------
1 | import os
2 | import glob
3 | import sys
4 | import argparse
5 | import logging
6 | import json
7 | import subprocess
8 | import numpy as np
9 | from scipy.io.wavfile import read
10 | import torch
11 |
12 | MATPLOTLIB_FLAG = False
13 |
14 | logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
15 | logger = logging
16 |
17 |
18 | def load_checkpoint(checkpoint_path, model, optimizer=None):
19 | assert os.path.isfile(checkpoint_path)
20 | checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
21 | iteration = checkpoint_dict['iteration']
22 | learning_rate = checkpoint_dict['learning_rate']
23 | if optimizer is not None:
24 | optimizer.load_state_dict(checkpoint_dict['optimizer'])
25 | saved_state_dict = checkpoint_dict['model']
26 | if hasattr(model, 'module'):
27 | state_dict = model.module.state_dict()
28 | else:
29 | state_dict = model.state_dict()
30 | new_state_dict= {}
31 | for k, v in state_dict.items():
32 | try:
33 | new_state_dict[k] = saved_state_dict[k]
34 | except:
35 | logger.info("%s is not in the checkpoint" % k)
36 | new_state_dict[k] = v
37 | if hasattr(model, 'module'):
38 | model.module.load_state_dict(new_state_dict)
39 | else:
40 | model.load_state_dict(new_state_dict)
41 | logger.info("Loaded checkpoint '{}' (iteration {})" .format(
42 | checkpoint_path, iteration))
43 | return model, optimizer, learning_rate, iteration
44 |
45 |
46 | def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
47 | logger.info("Saving model and optimizer state at iteration {} to {}".format(
48 | iteration, checkpoint_path))
49 | if hasattr(model, 'module'):
50 | state_dict = model.module.state_dict()
51 | else:
52 | state_dict = model.state_dict()
53 | torch.save({'model': state_dict,
54 | 'iteration': iteration,
55 | 'optimizer': optimizer.state_dict(),
56 | 'learning_rate': learning_rate}, checkpoint_path)
57 |
58 |
59 | def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
60 | for k, v in scalars.items():
61 | writer.add_scalar(k, v, global_step)
62 | for k, v in histograms.items():
63 | writer.add_histogram(k, v, global_step)
64 | for k, v in images.items():
65 | writer.add_image(k, v, global_step, dataformats='HWC')
66 | for k, v in audios.items():
67 | writer.add_audio(k, v, global_step, audio_sampling_rate)
68 |
69 |
70 | def latest_checkpoint_path(dir_path, regex="G_*.pth"):
71 | f_list = glob.glob(os.path.join(dir_path, regex))
72 | f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
73 | x = f_list[-1]
74 | print(x)
75 | return x
76 |
77 |
78 | def plot_spectrogram_to_numpy(spectrogram):
79 | global MATPLOTLIB_FLAG
80 | if not MATPLOTLIB_FLAG:
81 | import matplotlib
82 | matplotlib.use("Agg")
83 | MATPLOTLIB_FLAG = True
84 | mpl_logger = logging.getLogger('matplotlib')
85 | mpl_logger.setLevel(logging.WARNING)
86 | import matplotlib.pylab as plt
87 | import numpy as np
88 |
89 | fig, ax = plt.subplots(figsize=(10,2))
90 | im = ax.imshow(spectrogram, aspect="auto", origin="lower",
91 | interpolation='none')
92 | plt.colorbar(im, ax=ax)
93 | plt.xlabel("Frames")
94 | plt.ylabel("Channels")
95 | plt.tight_layout()
96 |
97 | fig.canvas.draw()
98 | data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
99 | data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
100 | plt.close()
101 | return data
102 |
103 |
104 | def plot_alignment_to_numpy(alignment, info=None):
105 | global MATPLOTLIB_FLAG
106 | if not MATPLOTLIB_FLAG:
107 | import matplotlib
108 | matplotlib.use("Agg")
109 | MATPLOTLIB_FLAG = True
110 | mpl_logger = logging.getLogger('matplotlib')
111 | mpl_logger.setLevel(logging.WARNING)
112 | import matplotlib.pylab as plt
113 | import numpy as np
114 |
115 | fig, ax = plt.subplots(figsize=(6, 4))
116 | im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
117 | interpolation='none')
118 | fig.colorbar(im, ax=ax)
119 | xlabel = 'Decoder timestep'
120 | if info is not None:
121 | xlabel += '\n\n' + info
122 | plt.xlabel(xlabel)
123 | plt.ylabel('Encoder timestep')
124 | plt.tight_layout()
125 |
126 | fig.canvas.draw()
127 | data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
128 | data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
129 | plt.close()
130 | return data
131 |
132 |
133 | def load_wav_to_torch(full_path):
134 | sampling_rate, data = read(full_path)
135 | return torch.FloatTensor(data.astype(np.float32)), sampling_rate
136 |
137 |
138 | def load_filepaths_and_text(filename, split="|"):
139 | with open(filename, encoding='utf-8') as f:
140 | filepaths_and_text = [line.strip().split(split) for line in f]
141 | return filepaths_and_text
142 |
143 |
144 | def get_hparams(init=True):
145 | parser = argparse.ArgumentParser()
146 | parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
147 | help='JSON file for configuration')
148 | parser.add_argument('-m', '--model', type=str, required=True,
149 | help='Model name')
150 |
151 | args = parser.parse_args()
152 | model_dir = os.path.join("./logs", args.model)
153 |
154 | if not os.path.exists(model_dir):
155 | os.makedirs(model_dir)
156 |
157 | config_path = args.config
158 | config_save_path = os.path.join(model_dir, "config.json")
159 | if init:
160 | with open(config_path, "r") as f:
161 | data = f.read()
162 | with open(config_save_path, "w") as f:
163 | f.write(data)
164 | else:
165 | with open(config_save_path, "r") as f:
166 | data = f.read()
167 | config = json.loads(data)
168 |
169 | hparams = HParams(**config)
170 | hparams.model_dir = model_dir
171 | return hparams
172 |
173 |
174 | def get_hparams_from_dir(model_dir):
175 | config_save_path = os.path.join(model_dir, "config.json")
176 | with open(config_save_path, "r") as f:
177 | data = f.read()
178 | config = json.loads(data)
179 |
180 | hparams =HParams(**config)
181 | hparams.model_dir = model_dir
182 | return hparams
183 |
184 |
185 | def get_hparams_from_file(config_path):
186 | with open(config_path, "r") as f:
187 | data = f.read()
188 | config = json.loads(data)
189 |
190 | hparams =HParams(**config)
191 | return hparams
192 |
193 |
194 | def check_git_hash(model_dir):
195 | source_dir = os.path.dirname(os.path.realpath(__file__))
196 | if not os.path.exists(os.path.join(source_dir, ".git")):
197 | logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
198 | source_dir
199 | ))
200 | return
201 |
202 | cur_hash = subprocess.getoutput("git rev-parse HEAD")
203 |
204 | path = os.path.join(model_dir, "githash")
205 | if os.path.exists(path):
206 | saved_hash = open(path).read()
207 | if saved_hash != cur_hash:
208 | logger.warn("git hash values are different. {}(saved) != {}(current)".format(
209 | saved_hash[:8], cur_hash[:8]))
210 | else:
211 | open(path, "w").write(cur_hash)
212 |
213 |
214 | def get_logger(model_dir, filename="train.log"):
215 | global logger
216 | logger = logging.getLogger(os.path.basename(model_dir))
217 | logger.setLevel(logging.DEBUG)
218 |
219 | formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
220 | if not os.path.exists(model_dir):
221 | os.makedirs(model_dir)
222 | h = logging.FileHandler(os.path.join(model_dir, filename))
223 | h.setLevel(logging.DEBUG)
224 | h.setFormatter(formatter)
225 | logger.addHandler(h)
226 | return logger
227 |
228 |
229 | class HParams():
230 | def __init__(self, **kwargs):
231 | for k, v in kwargs.items():
232 | if type(v) == dict:
233 | v = HParams(**v)
234 | self[k] = v
235 |
236 | def keys(self):
237 | return self.__dict__.keys()
238 |
239 | def items(self):
240 | return self.__dict__.items()
241 |
242 | def values(self):
243 | return self.__dict__.values()
244 |
245 | def __len__(self):
246 | return len(self.__dict__)
247 |
248 | def __getitem__(self, key):
249 | return getattr(self, key)
250 |
251 | def __setitem__(self, key, value):
252 | return setattr(self, key, value)
253 |
254 | def __contains__(self, key):
255 | return key in self.__dict__
256 |
257 | def __repr__(self):
258 | return self.__dict__.__repr__()
259 |
--------------------------------------------------------------------------------
/models/waveglow/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM bentoml/model-server:0.12.1-py37
2 |
3 | # Configure PIP install arguments, e.g. --index-url, --trusted-url, --extra-index-url
4 | ARG EXTRA_PIP_INSTALL_ARGS=
5 | ENV EXTRA_PIP_INSTALL_ARGS $EXTRA_PIP_INSTALL_ARGS
6 |
7 | ARG UID=1034
8 | ARG GID=1034
9 | RUN groupadd -g $GID -o bentoml && useradd -m -u $UID -g $GID -o -r bentoml
10 |
11 | ARG BUNDLE_PATH=/home/bentoml/bundle
12 | ENV BUNDLE_PATH=$BUNDLE_PATH
13 | ENV BENTOML_HOME=/home/bentoml/
14 |
15 | RUN mkdir $BUNDLE_PATH && chown bentoml:bentoml $BUNDLE_PATH -R
16 | RUN mkdir /home/bentoml/logs && chown bentoml:bentoml /home/bentoml/logs -R
17 | RUN mkdir /home/bentoml/prometheus_multiproc_dir && chown bentoml:bentoml /home/bentoml/prometheus_multiproc_dir -R
18 | WORKDIR $BUNDLE_PATH
19 |
20 | # copy over the init script; copy over entrypoint scripts
21 | COPY --chown=bentoml:bentoml bentoml-init.sh docker-entrypoint.sh ./
22 | RUN chmod +x ./bentoml-init.sh
23 |
24 | # Copy docker-entrypoint.sh again, because setup.sh might not exist. This prevent COPY command from failing.
25 | COPY --chown=bentoml:bentoml docker-entrypoint.sh setup.s[h] ./
26 | RUN ./bentoml-init.sh custom_setup
27 |
28 | COPY --chown=bentoml:bentoml docker-entrypoint.sh python_versio[n] ./
29 | RUN ./bentoml-init.sh ensure_python
30 |
31 | COPY --chown=bentoml:bentoml environment.yml ./
32 | RUN ./bentoml-init.sh restore_conda_env
33 |
34 | COPY --chown=bentoml:bentoml requirements.txt ./
35 | RUN ./bentoml-init.sh install_pip_packages
36 |
37 | COPY --chown=bentoml:bentoml docker-entrypoint.sh bundled_pip_dependencie[s] ./bundled_pip_dependencies/
38 | RUN rm ./bundled_pip_dependencies/docker-entrypoint.sh && ./bentoml-init.sh install_bundled_pip_packages
39 |
40 | # copy over model files
41 | COPY --chown=bentoml:bentoml . ./
42 |
43 | # the env var $PORT is required by heroku container runtime
44 | ENV PORT 5000
45 | EXPOSE $PORT
46 |
47 | USER bentoml
48 | RUN chmod +x ./docker-entrypoint.sh
49 | ENTRYPOINT [ "./docker-entrypoint.sh" ]
50 | CMD ["bentoml", "serve-gunicorn", "./"]
51 |
--------------------------------------------------------------------------------
/models/waveglow/MANIFEST.in:
--------------------------------------------------------------------------------
1 | include TextToSpeechModel/bentoml.yml
2 | graft TextToSpeechModel/artifacts
3 |
--------------------------------------------------------------------------------
/models/waveglow/README.md:
--------------------------------------------------------------------------------
1 | # Generated BentoService bundle - TextToSpeechModel:20210531095723_F76C2A
2 |
3 | This is a ML Service bundle created with BentoML, it is not recommended to edit
4 | code or files contained in this directory. Instead, edit the code that uses BentoML
5 | to create this bundle, and save a new BentoService bundle.
6 |
7 | A model that converts text into spoken speech
--------------------------------------------------------------------------------
/models/waveglow/TextToSpeechModel/__init__.py:
--------------------------------------------------------------------------------
1 | import os
2 | import sys
3 | import logging
4 |
5 | from bentoml import saved_bundle, configure_logging
6 | from bentoml.cli.bento_service import create_bento_service_cli
7 |
8 | # By default, ignore warnings when loading BentoService installed as PyPI distribution
9 | # CLI will change back to default log level in config(info), and by adding --quiet or
10 | # --verbose CLI option, user can change the CLI output behavior
11 | configure_logging(logging.ERROR)
12 |
13 | __VERSION__ = "20210531095723_F76C2A"
14 |
15 | __module_path = os.path.abspath(os.path.dirname(__file__))
16 |
17 | TextToSpeechModel = saved_bundle.load_bento_service_class(__module_path)
18 |
19 | cli=create_bento_service_cli(__module_path)
20 |
21 |
22 | def load():
23 | return saved_bundle.load_from_dir(__module_path)
24 |
25 |
26 | __all__ = ['__version__', 'TextToSpeechModel', 'load']
27 |
--------------------------------------------------------------------------------
/models/waveglow/TextToSpeechModel/artifacts/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dscripka/synthetic_speech_dataset_generation/09cdc32c9efafefa603346819ba84aef4be2063b/models/waveglow/TextToSpeechModel/artifacts/__init__.py
--------------------------------------------------------------------------------
/models/waveglow/TextToSpeechModel/artifacts/cmudict_dictionary:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dscripka/synthetic_speech_dataset_generation/09cdc32c9efafefa603346819ba84aef4be2063b/models/waveglow/TextToSpeechModel/artifacts/cmudict_dictionary
--------------------------------------------------------------------------------
/models/waveglow/TextToSpeechModel/artifacts/heteronyms:
--------------------------------------------------------------------------------
1 | abject
2 | abrogate
3 | absent
4 | abstract
5 | abuse
6 | ache
7 | Acre
8 | acuminate
9 | addict
10 | address
11 | adduct
12 | Adele
13 | advocate
14 | affect
15 | affiliate
16 | agape
17 | aged
18 | agglomerate
19 | aggregate
20 | agonic
21 | agora
22 | allied
23 | ally
24 | alternate
25 | alum
26 | am
27 | analyses
28 | Andrea
29 | animate
30 | apply
31 | appropriate
32 | approximate
33 | ares
34 | arithmetic
35 | arsenic
36 | articulate
37 | associate
38 | attribute
39 | august
40 | axes
41 | ay
42 | aye
43 | bases
44 | bass
45 | bathed
46 | bested
47 | bifurcate
48 | blessed
49 | blotto
50 | bow
51 | bowed
52 | bowman
53 | brassy
54 | buffet
55 | bustier
56 | carbonate
57 | Celtic
58 | choral
59 | Chumash
60 | close
61 | closer
62 | coax
63 | coincidence
64 | color coordinate
65 | colour coordinate
66 | comber
67 | combine
68 | combs
69 | committee
70 | commune
71 | compact
72 | complex
73 | compound
74 | compress
75 | concert
76 | conduct
77 | confine
78 | confines
79 | conflict
80 | conglomerate
81 | conscript
82 | conserve
83 | consist
84 | console
85 | consort
86 | construct
87 | consult
88 | consummate
89 | content
90 | contest
91 | contract
92 | contracts
93 | contrast
94 | converse
95 | convert
96 | convict
97 | coop
98 | coordinate
99 | covey
100 | crooked
101 | curate
102 | cussed
103 | decollate
104 | decrease
105 | defect
106 | defense
107 | delegate
108 | deliberate
109 | denier
110 | desert
111 | detail
112 | deviate
113 | diagnoses
114 | diffuse
115 | digest
116 | discard
117 | discharge
118 | discount
119 | do
120 | document
121 | does
122 | dogged
123 | domesticate
124 | Dominican
125 | dove
126 | dr
127 | drawer
128 | duplicate
129 | egress
130 | ejaculate
131 | eject
132 | elaborate
133 | ellipses
134 | email
135 | emu
136 | entrace
137 | entrance
138 | escort
139 | estimate
140 | eta
141 | Etna
142 | evening
143 | excise
144 | excuse
145 | exploit
146 | export
147 | extract
148 | fine
149 | flower
150 | forbear
151 | four-legged
152 | frequent
153 | furrier
154 | gallant
155 | gel
156 | geminate
157 | gillie
158 | glower
159 | Gotham
160 | graduate
161 | haggis
162 | heavy
163 | hinder
164 | house
165 | housewife
166 | impact
167 | imped
168 | implant
169 | implement
170 | import
171 | impress
172 | incense
173 | incline
174 | increase
175 | infix
176 | insert
177 | instar
178 | insult
179 | integral
180 | intercept
181 | interchange
182 | interflow
183 | interleaf
184 | intermediate
185 | intern
186 | interspace
187 | intimate
188 | intrigue
189 | invalid
190 | invert
191 | invite
192 | irony
193 | jagged
194 | Jesses
195 | Julies
196 | kite
197 | laminate
198 | Laos
199 | lather
200 | lead
201 | learned
202 | leasing
203 | lech
204 | legitimate
205 | lied
206 | lima
207 | lipread
208 | live
209 | lower
210 | lunged
211 | maas
212 | Magdalen
213 | manes
214 | mare
215 | marked
216 | merchandise
217 | merlion
218 | minute
219 | misconduct
220 | misled
221 | misprint
222 | mobile
223 | moderate
224 | mong
225 | moped
226 | moth
227 | mouth
228 | mow
229 | mpg
230 | multiply
231 | mush
232 | nana
233 | nice
234 | Nice
235 | number
236 | numerate
237 | nun
238 | object
239 | opiate
240 | ornament
241 | outbox
242 | outcry
243 | outpour
244 | outreach
245 | outride
246 | outright
247 | outside
248 | outwork
249 | overall
250 | overbid
251 | overcall
252 | overcast
253 | overfall
254 | overflow
255 | overhaul
256 | overhead
257 | overlap
258 | overlay
259 | overuse
260 | overweight
261 | overwork
262 | pace
263 | palled
264 | palling
265 | para
266 | pasty
267 | pate
268 | Pauline
269 | pedal
270 | peer
271 | perfect
272 | periodic
273 | permit
274 | pervert
275 | pinta
276 | placer
277 | platy
278 | polish
279 | Polish
280 | poll
281 | pontificate
282 | postulate
283 | pram
284 | prayer
285 | precipitate
286 | predate
287 | predicate
288 | prefix
289 | preposition
290 | present
291 | pretest
292 | primer
293 | proceeds
294 | produce
295 | progress
296 | project
297 | proportionate
298 | prospect
299 | protest
300 | pussy
301 | putter
302 | putting
303 | quite
304 | ragged
305 | raven
306 | re
307 | read
308 | reading
309 | Reading
310 | real
311 | rebel
312 | recall
313 | recap
314 | recitative
315 | recollect
316 | record
317 | recreate
318 | recreation
319 | redress
320 | refill
321 | refund
322 | refuse
323 | reject
324 | relay
325 | remake
326 | repaint
327 | reprint
328 | reread
329 | rerun
330 | resent
331 | reside
332 | resign
333 | respray
334 | resume
335 | retard
336 | retest
337 | retread
338 | rewrite
339 | root
340 | routed
341 | routing
342 | row
343 | rugged
344 | rummy
345 | sais
346 | sake
347 | sambuca
348 | saucier
349 | second
350 | secrete
351 | secreted
352 | secreting
353 | segment
354 | separate
355 | sewer
356 | shirk
357 | shower
358 | sin
359 | skied
360 | slaver
361 | slough
362 | sow
363 | spoof
364 | squid
365 | stingy
366 | subject
367 | subordinate
368 | subvert
369 | supply
370 | supposed
371 | survey
372 | suspect
373 | syringes
374 | tabulate
375 | tales
376 | tarrier
377 | tarry
378 | taxes
379 | taxis
380 | tear
381 | Theron
382 | thou
383 | three-legged
384 | tier
385 | tinged
386 | torment
387 | transfer
388 | transform
389 | transplant
390 | transport
391 | transpose
392 | tush
393 | two-legged
394 | unionised
395 | unionized
396 | update
397 | uplift
398 | upset
399 | use
400 | used
401 | vale
402 | violist
403 | viva
404 | ware
405 | whinged
406 | whoop
407 | wicked
408 | wind
409 | windy
410 | wino
411 | won
412 | worsted
413 | wound
414 |
--------------------------------------------------------------------------------
/models/waveglow/TextToSpeechModel/audio_processing.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import numpy as np
3 | from scipy.signal import get_window
4 | from librosa.filters import mel as librosa_mel_fn
5 | import librosa.util as librosa_util
6 |
7 | def window_sumsquare(window, n_frames, hop_length=200, win_length=800,
8 | n_fft=800, dtype=np.float32, norm=None):
9 | """
10 | # from librosa 0.6
11 | Compute the sum-square envelope of a window function at a given hop length.
12 |
13 | This is used to estimate modulation effects induced by windowing
14 | observations in short-time fourier transforms.
15 |
16 | Parameters
17 | ----------
18 | window : string, tuple, number, callable, or list-like
19 | Window specification, as in `get_window`
20 |
21 | n_frames : int > 0
22 | The number of analysis frames
23 |
24 | hop_length : int > 0
25 | The number of samples to advance between frames
26 |
27 | win_length : [optional]
28 | The length of the window function. By default, this matches `n_fft`.
29 |
30 | n_fft : int > 0
31 | The length of each analysis frame.
32 |
33 | dtype : np.dtype
34 | The data type of the output
35 |
36 | Returns
37 | -------
38 | wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
39 | The sum-squared envelope of the window function
40 | """
41 | if win_length is None:
42 | win_length = n_fft
43 |
44 | n = n_fft + hop_length * (n_frames - 1)
45 | x = np.zeros(n, dtype=dtype)
46 |
47 | # Compute the squared window at the desired length
48 | win_sq = get_window(window, win_length, fftbins=True)
49 | win_sq = librosa_util.normalize(win_sq, norm=norm)**2
50 | win_sq = librosa_util.pad_center(win_sq, n_fft)
51 |
52 | # Fill the envelope
53 | for i in range(n_frames):
54 | sample = i * hop_length
55 | x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))]
56 | return x
57 |
58 |
59 | def griffin_lim(magnitudes, stft_fn, n_iters=30):
60 | """
61 | PARAMS
62 | ------
63 | magnitudes: spectrogram magnitudes
64 | stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods
65 | """
66 |
67 | angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size())))
68 | angles = angles.astype(np.float32)
69 | angles = torch.autograd.Variable(torch.from_numpy(angles))
70 | signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
71 |
72 | for i in range(n_iters):
73 | _, angles = stft_fn.transform(signal)
74 | signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
75 | return signal
76 |
77 |
78 | def dynamic_range_compression(x, C=1, clip_val=1e-5):
79 | """
80 | PARAMS
81 | ------
82 | C: compression factor
83 | """
84 | return torch.log(torch.clamp(x, min=clip_val) * C)
85 |
86 |
87 | def dynamic_range_decompression(x, C=1):
88 | """
89 | PARAMS
90 | ------
91 | C: compression factor used to compress
92 | """
93 | return torch.exp(x) / C
94 |
95 |
96 | class TacotronSTFT(torch.nn.Module):
97 | def __init__(self, filter_length=1024, hop_length=256, win_length=1024,
98 | n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0,
99 | mel_fmax=None):
100 | super(TacotronSTFT, self).__init__()
101 | self.n_mel_channels = n_mel_channels
102 | self.sampling_rate = sampling_rate
103 | self.stft_fn = STFT(filter_length, hop_length, win_length)
104 | mel_basis = librosa_mel_fn(
105 | sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax)
106 | mel_basis = torch.from_numpy(mel_basis).float()
107 | self.register_buffer('mel_basis', mel_basis)
108 |
109 | def spectral_normalize(self, magnitudes):
110 | output = dynamic_range_compression(magnitudes)
111 | return output
112 |
113 | def spectral_de_normalize(self, magnitudes):
114 | output = dynamic_range_decompression(magnitudes)
115 | return output
116 |
117 | def mel_spectrogram(self, y):
118 | """Computes mel-spectrograms from a batch of waves
119 | PARAMS
120 | ------
121 | y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1]
122 |
123 | RETURNS
124 | -------
125 | mel_output: torch.FloatTensor of shape (B, n_mel_channels, T)
126 | """
127 | assert(torch.min(y.data) >= -1)
128 | assert(torch.max(y.data) <= 1)
129 |
130 | magnitudes, phases = self.stft_fn.transform(y)
131 | magnitudes = magnitudes.data
132 | mel_output = torch.matmul(self.mel_basis, magnitudes)
133 | mel_output = self.spectral_normalize(mel_output)
134 | return mel_output
135 |
136 | """
137 | BSD 3-Clause License
138 |
139 | Copyright (c) 2017, Prem Seetharaman
140 | All rights reserved.
141 |
142 | * Redistribution and use in source and binary forms, with or without
143 | modification, are permitted provided that the following conditions are met:
144 |
145 | * Redistributions of source code must retain the above copyright notice,
146 | this list of conditions and the following disclaimer.
147 |
148 | * Redistributions in binary form must reproduce the above copyright notice, this
149 | list of conditions and the following disclaimer in the
150 | documentation and/or other materials provided with the distribution.
151 |
152 | * Neither the name of the copyright holder nor the names of its
153 | contributors may be used to endorse or promote products derived from this
154 | software without specific prior written permission.
155 |
156 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
157 | ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
158 | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
159 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
160 | ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
161 | (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
162 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
163 | ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
164 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
165 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
166 | """
167 | import torch.nn.functional as F
168 | from torch.autograd import Variable
169 | from scipy.signal import get_window
170 | from librosa.util import pad_center, tiny
171 |
172 | class STFT(torch.nn.Module):
173 | """adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""
174 | def __init__(self, filter_length=800, hop_length=200, win_length=800,
175 | window='hann'):
176 | super(STFT, self).__init__()
177 | self.filter_length = filter_length
178 | self.hop_length = hop_length
179 | self.win_length = win_length
180 | self.window = window
181 | self.forward_transform = None
182 | scale = self.filter_length / self.hop_length
183 | fourier_basis = np.fft.fft(np.eye(self.filter_length))
184 |
185 | cutoff = int((self.filter_length / 2 + 1))
186 | fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]),
187 | np.imag(fourier_basis[:cutoff, :])])
188 |
189 | forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
190 | inverse_basis = torch.FloatTensor(
191 | np.linalg.pinv(scale * fourier_basis).T[:, None, :])
192 |
193 | if window is not None:
194 | assert(win_length >= filter_length)
195 | # get window and zero center pad it to filter_length
196 | fft_window = get_window(window, win_length, fftbins=True)
197 | fft_window = pad_center(fft_window, filter_length)
198 | fft_window = torch.from_numpy(fft_window).float()
199 |
200 | # window the bases
201 | forward_basis *= fft_window
202 | inverse_basis *= fft_window
203 |
204 | self.register_buffer('forward_basis', forward_basis.float())
205 | self.register_buffer('inverse_basis', inverse_basis.float())
206 |
207 | def transform(self, input_data):
208 | num_batches = input_data.size(0)
209 | num_samples = input_data.size(1)
210 |
211 | self.num_samples = num_samples
212 |
213 | # similar to librosa, reflect-pad the input
214 | input_data = input_data.view(num_batches, 1, num_samples)
215 | input_data = F.pad(
216 | input_data.unsqueeze(1),
217 | (int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
218 | mode='reflect')
219 | input_data = input_data.squeeze(1)
220 |
221 | forward_transform = F.conv1d(
222 | input_data,
223 | Variable(self.forward_basis, requires_grad=False),
224 | stride=self.hop_length,
225 | padding=0)
226 |
227 | cutoff = int((self.filter_length / 2) + 1)
228 | real_part = forward_transform[:, :cutoff, :]
229 | imag_part = forward_transform[:, cutoff:, :]
230 |
231 | magnitude = torch.sqrt(real_part**2 + imag_part**2)
232 | phase = torch.autograd.Variable(
233 | torch.atan2(imag_part.data, real_part.data))
234 |
235 | return magnitude, phase
236 |
237 | def inverse(self, magnitude, phase):
238 | recombine_magnitude_phase = torch.cat(
239 | [magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)
240 |
241 | inverse_transform = F.conv_transpose1d(
242 | recombine_magnitude_phase,
243 | Variable(self.inverse_basis, requires_grad=False),
244 | stride=self.hop_length,
245 | padding=0)
246 |
247 | if self.window is not None:
248 | window_sum = window_sumsquare(
249 | self.window, magnitude.size(-1), hop_length=self.hop_length,
250 | win_length=self.win_length, n_fft=self.filter_length,
251 | dtype=np.float32)
252 | # remove modulation effects
253 | approx_nonzero_indices = torch.from_numpy(
254 | np.where(window_sum > tiny(window_sum))[0])
255 | window_sum = torch.autograd.Variable(
256 | torch.from_numpy(window_sum), requires_grad=False)
257 | inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices]
258 |
259 | # scale by hop ratio
260 | inverse_transform *= float(self.filter_length) / self.hop_length
261 |
262 | inverse_transform = inverse_transform[:, :, int(self.filter_length/2):]
263 | inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):]
264 |
265 | return inverse_transform
266 |
267 | def forward(self, input_data):
268 | self.magnitude, self.phase = self.transform(input_data)
269 | reconstruction = self.inverse(self.magnitude, self.phase)
270 | return reconstruction
271 |
--------------------------------------------------------------------------------
/models/waveglow/TextToSpeechModel/bentoml.yml:
--------------------------------------------------------------------------------
1 | version: 0.12.1
2 | kind: BentoService
3 | metadata:
4 | created_at: 2021-05-31 13:57:23.628577
5 | service_name: TextToSpeechModel
6 | service_version: 20210531095723_F76C2A
7 | module_name: text_to_speech
8 | module_file: text_to_speech.py
9 | env:
10 | pip_packages:
11 | - bentoml==0.12.1
12 | - torch==1.7.1
13 | - numpy==1.19.2
14 | - inflect==4.1.0
15 | - scipy==1.5.2
16 | - Unidecode==1.0.22
17 | - librosa==0.6.0
18 | conda_env:
19 | name: bentoml-default-conda-env
20 | dependencies: []
21 | python_version: 3.7.6
22 | docker_base_image: bentoml/model-server:0.12.1-py37
23 | apis:
24 | - name: predict
25 | docs: "BentoService inference API 'predict', input: 'JsonInput', output: 'DefaultOutput'"
26 | input_type: JsonInput
27 | output_type: DefaultOutput
28 | mb_max_batch_size: 4000
29 | mb_max_latency: 20000
30 | batch: false
31 | route: predict
32 | output_config:
33 | cors: '*'
34 | artifacts:
35 | - name: model
36 | artifact_type: WaveglowArtifact
37 | metadata: {}
38 |
--------------------------------------------------------------------------------
/models/waveglow/TextToSpeechModel/data.py:
--------------------------------------------------------------------------------
1 | ###############################################################################
2 | #
3 | # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | #
16 | ###############################################################################
17 | import re
18 | import os
19 | import sys
20 | import argparse
21 | import json
22 | import random
23 | import numpy as np
24 | import torch
25 | import torch.utils.data
26 | from scipy.io.wavfile import read
27 | from audio_processing import TacotronSTFT
28 | from text import text_to_sequence, cmudict, _clean_text, get_arpabet
29 |
30 |
31 | def load_filepaths_and_text(filename, split="|"):
32 | with open(filename, encoding='utf-8') as f:
33 | filepaths_and_text = [line.strip().split(split) for line in f]
34 | return filepaths_and_text
35 |
36 |
37 | def load_wav_to_torch(full_path):
38 | """ Loads wavdata into torch array """
39 | sampling_rate, data = read(full_path)
40 | return torch.from_numpy(data).float(), sampling_rate
41 |
42 |
43 | class Data(torch.utils.data.Dataset):
44 | def __init__(self, filelist_path, filter_length, hop_length, win_length,
45 | sampling_rate, mel_fmin, mel_fmax, max_wav_value, p_arpabet,
46 | cmudict_path, text_cleaners, speaker_ids=None, randomize=True,
47 | seed=1234):
48 | self.max_wav_value = max_wav_value
49 | self.audiopaths_and_text = load_filepaths_and_text(filelist_path)
50 | self.stft = TacotronSTFT(filter_length=filter_length,
51 | hop_length=hop_length,
52 | win_length=win_length,
53 | sampling_rate=sampling_rate,
54 | mel_fmin=mel_fmin, mel_fmax=mel_fmax)
55 | self.sampling_rate = sampling_rate
56 | self.text_cleaners = text_cleaners
57 | self.p_arpabet = p_arpabet
58 | self.cmudict = cmudict.CMUDict(cmudict_path, keep_ambiguous=True)
59 | if speaker_ids is None:
60 | self.speaker_ids = self.create_speaker_lookup_table(self.audiopaths_and_text)
61 | else:
62 | self.speaker_ids = speaker_ids
63 |
64 | random.seed(seed)
65 | if randomize:
66 | random.shuffle(self.audiopaths_and_text)
67 |
68 | def create_speaker_lookup_table(self, audiopaths_and_text):
69 | speaker_ids = np.sort(np.unique([x[2] for x in audiopaths_and_text]))
70 | d = {int(speaker_ids[i]): i for i in range(len(speaker_ids))}
71 | print("Number of speakers :", len(d))
72 | return d
73 |
74 | def get_mel(self, audio):
75 | audio_norm = audio / self.max_wav_value
76 | audio_norm = audio_norm.unsqueeze(0)
77 | audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
78 | melspec = self.stft.mel_spectrogram(audio_norm)
79 | melspec = torch.squeeze(melspec, 0)
80 | return melspec
81 |
82 | def get_speaker_id(self, speaker_id):
83 | return torch.LongTensor([self.speaker_ids[int(speaker_id)]])
84 |
85 | def get_text(self, text):
86 | text = _clean_text(text, self.text_cleaners)
87 | words = re.findall(r'\S*\{.*?\}\S*|\S+', text)
88 | text = ' '.join([get_arpabet(word, self.cmudict)
89 | if random.random() < self.p_arpabet else word
90 | for word in words])
91 | text_norm = torch.LongTensor(text_to_sequence(text))
92 | return text_norm
93 |
94 | def __getitem__(self, index):
95 | # Read audio and text
96 | audiopath, text, speaker_id = self.audiopaths_and_text[index]
97 | audio, sampling_rate = load_wav_to_torch(audiopath)
98 | if sampling_rate != self.sampling_rate:
99 | raise ValueError("{} SR doesn't match target {} SR".format(
100 | sampling_rate, self.sampling_rate))
101 |
102 | mel = self.get_mel(audio)
103 | text_encoded = self.get_text(text)
104 | speaker_id = self.get_speaker_id(speaker_id)
105 | return (mel, speaker_id, text_encoded)
106 |
107 | def __len__(self):
108 | return len(self.audiopaths_and_text)
109 |
110 |
111 | class DataCollate():
112 | """ Zero-pads model inputs and targets based on number of frames per step """
113 | def __init__(self, n_frames_per_step=1):
114 | self.n_frames_per_step = n_frames_per_step
115 |
116 | def __call__(self, batch):
117 | """Collate's training batch from normalized text and mel-spectrogram """
118 | # Right zero-pad all one-hot text sequences to max input length
119 | input_lengths, ids_sorted_decreasing = torch.sort(
120 | torch.LongTensor([len(x[2]) for x in batch]),
121 | dim=0, descending=True)
122 | max_input_len = input_lengths[0]
123 |
124 | text_padded = torch.LongTensor(len(batch), max_input_len)
125 | text_padded.zero_()
126 | for i in range(len(ids_sorted_decreasing)):
127 | text = batch[ids_sorted_decreasing[i]][2]
128 | text_padded[i, :text.size(0)] = text
129 |
130 | # Right zero-pad mel-spec
131 | num_mel_channels = batch[0][0].size(0)
132 | max_target_len = max([x[0].size(1) for x in batch])
133 | if max_target_len % self.n_frames_per_step != 0:
134 | max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step
135 | assert max_target_len % self.n_frames_per_step == 0
136 |
137 | # include mel padded, gate padded and speaker ids
138 | mel_padded = torch.FloatTensor(len(batch), num_mel_channels, max_target_len)
139 | mel_padded.zero_()
140 | gate_padded = torch.FloatTensor(len(batch), max_target_len)
141 | gate_padded.zero_()
142 | output_lengths = torch.LongTensor(len(batch))
143 | speaker_ids = torch.LongTensor(len(batch))
144 | for i in range(len(ids_sorted_decreasing)):
145 | mel = batch[ids_sorted_decreasing[i]][0]
146 | mel_padded[i, :, :mel.size(1)] = mel
147 | gate_padded[i, mel.size(1)-1:] = 1
148 | output_lengths[i] = mel.size(1)
149 | speaker_ids[i] = batch[ids_sorted_decreasing[i]][1]
150 |
151 | return mel_padded, speaker_ids, text_padded, input_lengths, output_lengths, gate_padded
152 |
153 |
154 | # ===================================================================
155 | # Takes directory of clean audio and makes directory of spectrograms
156 | # Useful for making test sets
157 | # ===================================================================
158 | if __name__ == "__main__":
159 | # Get defaults so it can work with no Sacred
160 | parser = argparse.ArgumentParser()
161 | parser.add_argument('-c', '--config', type=str,
162 | help='JSON file for configuration')
163 | parser.add_argument('-f', '--filelist', type=str,
164 | help='List of files to generate mels')
165 | parser.add_argument('-o', '--output_dir', type=str,
166 | help='Output directory')
167 | args = parser.parse_args()
168 |
169 | with open(args.config) as f:
170 | data = f.read()
171 | data_config = json.loads(data)["data_config"]
172 | mel2samp = Data(**data_config)
173 |
174 | # Make directory if it doesn't exist
175 | if not os.path.isdir(args.output_dir):
176 | os.makedirs(args.output_dir)
177 | os.chmod(args.output_dir, 0o775)
178 |
179 | filepaths_and_text = load_filepaths_and_text(args.filelist)
180 | for (filepath, text, speaker_id) in filepaths_and_text:
181 | print("speaker id", speaker_id)
182 | print("text", text)
183 | print("text encoded", mel2samp.get_text(text))
184 | audio, sr = load_wav_to_torch(filepath)
185 | melspectrogram = mel2samp.get_mel(audio)
186 | filename = os.path.basename(filepath)
187 | new_filepath = args.output_dir + '/' + filename + '.pt'
188 | print(new_filepath)
189 | torch.save(melspectrogram, new_filepath)
190 |
--------------------------------------------------------------------------------
/models/waveglow/TextToSpeechModel/text/LICENSE:
--------------------------------------------------------------------------------
1 | Copyright (c) 2017 Keith Ito
2 |
3 | Permission is hereby granted, free of charge, to any person obtaining a copy
4 | of this software and associated documentation files (the "Software"), to deal
5 | in the Software without restriction, including without limitation the rights
6 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7 | copies of the Software, and to permit persons to whom the Software is
8 | furnished to do so, subject to the following conditions:
9 |
10 | The above copyright notice and this permission notice shall be included in
11 | all copies or substantial portions of the Software.
12 |
13 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19 | THE SOFTWARE.
20 |
--------------------------------------------------------------------------------
/models/waveglow/TextToSpeechModel/text/__init__.py:
--------------------------------------------------------------------------------
1 | """ from https://github.com/keithito/tacotron """
2 | import re
3 | import pathlib
4 | from text import cleaners
5 | from text.symbols import symbols
6 | from text.symbols import _punctuation as punctuation_symbols
7 |
8 | # Mappings from symbol to numeric ID and vice versa:
9 | _symbol_to_id = {s: i for i, s in enumerate(symbols)}
10 | _id_to_symbol = {i: s for i, s in enumerate(symbols)}
11 |
12 | # Regular expression matching text enclosed in curly braces:
13 | _curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)')
14 |
15 | # for arpabet with apostrophe
16 | _apostrophe = re.compile(r"(?=\S*['])([a-zA-Z'-]+)")
17 |
18 | def text_to_sequence(text):
19 | '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
20 |
21 | The text can optionally have ARPAbet sequences enclosed in curly braces embedded
22 | in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street."
23 |
24 | Args:
25 | text: string to convert to a sequence
26 | cleaner_names: names of the cleaner functions to run the text through
27 |
28 | Returns:
29 | List of integers corresponding to the symbols in the text
30 | '''
31 | sequence = []
32 |
33 | # Check for curly braces and treat their contents as ARPAbet:
34 | while len(text):
35 | m = _curly_re.match(text)
36 | if not m:
37 | sequence += _symbols_to_sequence(text)
38 | break
39 | sequence += _symbols_to_sequence(m.group(1))
40 | sequence += _arpabet_to_sequence(m.group(2))
41 | text = m.group(3)
42 |
43 | return sequence
44 |
45 |
46 | def sequence_to_text(sequence):
47 | '''Converts a sequence of IDs back to a string'''
48 | result = ''
49 | for symbol_id in sequence:
50 | if symbol_id in _id_to_symbol:
51 | s = _id_to_symbol[symbol_id]
52 | # Enclose ARPAbet back in curly braces:
53 | if len(s) > 1 and s[0] == '@':
54 | s = '{%s}' % s[1:]
55 | result += s
56 | return result.replace('}{', ' ')
57 |
58 |
59 | def _clean_text(text, cleaner_names):
60 | for name in cleaner_names:
61 | cleaner = getattr(cleaners, name)
62 | if not cleaner:
63 | raise Exception('Unknown cleaner: %s' % name)
64 | text = cleaner(text)
65 |
66 | return text
67 |
68 |
69 | def _symbols_to_sequence(symbols):
70 | return [_symbol_to_id[s] for s in symbols if _should_keep_symbol(s)]
71 |
72 |
73 | def _arpabet_to_sequence(text):
74 | return _symbols_to_sequence(['@' + s for s in text.split()])
75 |
76 |
77 | def _should_keep_symbol(s):
78 | return s in _symbol_to_id and s is not '_' and s is not '~'
79 |
80 |
81 | def get_arpabet(word, cmudict, index=0):
82 | re_start_punc = r"\A\W+"
83 | re_end_punc = r"\W+\Z"
84 |
85 | start_symbols = re.findall(re_start_punc, word)
86 | if len(start_symbols):
87 | start_symbols = start_symbols[0]
88 | word = word[len(start_symbols):]
89 | else:
90 | start_symbols = ''
91 |
92 | end_symbols = re.findall(re_end_punc, word)
93 | if len(end_symbols):
94 | end_symbols = end_symbols[0]
95 | word = word[:-len(end_symbols)]
96 | else:
97 | end_symbols = ''
98 |
99 | arpabet_suffix = ''
100 | if _apostrophe.match(word) is not None and word.lower() != "it's" and word.lower()[-1] == 's':
101 | word = word[:-2]
102 | arpabet_suffix = ' Z'
103 | arpabet = None if word.lower() in HETERONYMS else cmudict.lookup(word)
104 |
105 | if arpabet is not None:
106 | return start_symbols + '{%s}' % (arpabet[index] + arpabet_suffix) + end_symbols
107 | else:
108 | return start_symbols + word + end_symbols
109 |
110 |
111 | def files_to_list(filename):
112 | """
113 | Takes a text file of filenames and makes a list of filenames
114 | """
115 | with open(filename, encoding='utf-8') as f:
116 | files = f.readlines()
117 |
118 | files = [f.rstrip() for f in files]
119 | return files
120 |
121 | HETERONYMS = set(files_to_list(str(pathlib.Path(__file__).parent.absolute()) + '/heteronyms'))
122 |
--------------------------------------------------------------------------------
/models/waveglow/TextToSpeechModel/text/acronyms.py:
--------------------------------------------------------------------------------
1 | import re
2 | import pathlib
3 | from .cmudict import CMUDict
4 |
5 | _letter_to_arpabet = {
6 | 'A': 'EY1',
7 | 'B': 'B IY1',
8 | 'C': 'S IY1',
9 | 'D': 'D IY1',
10 | 'E': 'IY1',
11 | 'F': 'EH1 F',
12 | 'G': 'JH IY1',
13 | 'H': 'EY1 CH',
14 | 'I': 'AY1',
15 | 'J': 'JH EY1',
16 | 'K': 'K EY1',
17 | 'L': 'EH1 L',
18 | 'M': 'EH1 M',
19 | 'N': 'EH1 N',
20 | 'O': 'OW1',
21 | 'P': 'P IY1',
22 | 'Q': 'K Y UW1',
23 | 'R': 'AA1 R',
24 | 'S': 'EH1 S',
25 | 'T': 'T IY1',
26 | 'U': 'Y UW1',
27 | 'V': 'V IY1',
28 | 'X': 'EH1 K S',
29 | 'Y': 'W AY1',
30 | 'W': 'D AH1 B AH0 L Y UW0',
31 | 'Z': 'Z IY1',
32 | 's': 'Z'
33 | }
34 |
35 | # must ignore roman numerals
36 | _acronym_re = re.compile(r'([A-Z][A-Z]+)s?|([A-Z]\.([A-Z]\.)+s?)')
37 | cmudict = CMUDict(str(pathlib.Path(__file__).parent.absolute()) + '/cmudict_dictionary', keep_ambiguous=False)
38 |
39 |
40 | def _expand_acronyms(m, add_spaces=True):
41 | acronym = m.group(0)
42 |
43 | # remove dots if they exist
44 | acronym = re.sub('\.', '', acronym)
45 |
46 | acronym = "".join(acronym.split())
47 | arpabet = cmudict.lookup(acronym)
48 |
49 | if arpabet is None:
50 | acronym = list(acronym)
51 | arpabet = ["{" + _letter_to_arpabet[letter] + "}" for letter in acronym]
52 | # temporary fix
53 | if arpabet[-1] == '{Z}' and len(arpabet) > 1:
54 | arpabet[-2] = arpabet[-2][:-1] + ' ' + arpabet[-1][1:]
55 | del arpabet[-1]
56 |
57 | arpabet = ' '.join(arpabet)
58 | else:
59 | arpabet = "{" + arpabet[0] + "}"
60 |
61 | return arpabet
62 |
63 |
64 | def normalize_acronyms(text):
65 | text = re.sub(_acronym_re, _expand_acronyms, text)
66 | return text
67 |
--------------------------------------------------------------------------------
/models/waveglow/TextToSpeechModel/text/cleaners.py:
--------------------------------------------------------------------------------
1 | """ adapted from https://github.com/keithito/tacotron """
2 |
3 | '''
4 | Cleaners are transformations that run over the input text at both training and eval time.
5 |
6 | Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
7 | hyperparameter. Some cleaners are English-specific. You'll typically want to use:
8 | 1. "english_cleaners" for English text
9 | 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
10 | the Unidecode library (https://pypi.python.org/pypi/Unidecode)
11 | 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
12 | the symbols in symbols.py to match your data).
13 | '''
14 |
15 | import re
16 | from unidecode import unidecode
17 | from .numbers import normalize_numbers
18 | from .acronyms import normalize_acronyms
19 | from .datestime import normalize_datestime
20 |
21 |
22 | # Regular expression matching whitespace:
23 | _whitespace_re = re.compile(r'\s+')
24 |
25 | # List of (regular expression, replacement) pairs for abbreviations:
26 | _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
27 | ('mrs', 'misess'),
28 | ('ms', 'miss'),
29 | ('mr', 'mister'),
30 | ('dr', 'doctor'),
31 | ('st', 'saint'),
32 | ('co', 'company'),
33 | ('jr', 'junior'),
34 | ('maj', 'major'),
35 | ('gen', 'general'),
36 | ('drs', 'doctors'),
37 | ('rev', 'reverend'),
38 | ('lt', 'lieutenant'),
39 | ('hon', 'honorable'),
40 | ('sgt', 'sergeant'),
41 | ('capt', 'captain'),
42 | ('esq', 'esquire'),
43 | ('ltd', 'limited'),
44 | ('col', 'colonel'),
45 | ('ft', 'fort'),
46 | ]]
47 |
48 | _safe_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
49 | ('no', 'number'),
50 | ]]
51 |
52 |
53 |
54 | def expand_abbreviations(text):
55 | for regex, replacement in _abbreviations:
56 | text = re.sub(regex, replacement, text)
57 | return text
58 |
59 | def expand_safe_abbreviations(text):
60 | for regex, replacement in _safe_abbreviations:
61 | text = re.sub(regex, replacement, text)
62 | return text
63 |
64 | def expand_numbers(text):
65 | return normalize_numbers(text)
66 |
67 |
68 | def expand_acronyms(text):
69 | return normalize_acronyms(text)
70 |
71 |
72 | def expand_datestime(text):
73 | return normalize_datestime(text)
74 |
75 |
76 | def lowercase(text):
77 | return text.lower()
78 |
79 |
80 | def collapse_whitespace(text):
81 | return re.sub(_whitespace_re, ' ', text)
82 |
83 |
84 | def separate_acronyms(text):
85 | text = re.sub(r"([0-9]+)([a-zA-Z]+)", r"\1 \2", text)
86 | text = re.sub(r"([a-zA-Z]+)([0-9]+)", r"\1 \2", text)
87 | return text
88 |
89 |
90 | def remove_hyphens(text):
91 | text = re.sub(r'(?<=\w)(-)(?=\w)', ' ', text)
92 | return text
93 |
94 |
95 | def convert_to_ascii(text):
96 | return unidecode(text)
97 |
98 |
99 | def basic_cleaners(text):
100 | '''Basic pipeline that collapses whitespace without transliteration.'''
101 | text = lowercase(text)
102 | text = collapse_whitespace(text)
103 | return text
104 |
105 |
106 | def transliteration_cleaners(text):
107 | '''Pipeline for non-English text that transliterates to ASCII.'''
108 | text = convert_to_ascii(text)
109 | text = lowercase(text)
110 | text = collapse_whitespace(text)
111 | return text
112 |
113 |
114 | def flowtron_cleaners(text):
115 | text = collapse_whitespace(text)
116 | text = remove_hyphens(text)
117 | text = expand_datestime(text)
118 | text = expand_numbers(text)
119 | text = expand_safe_abbreviations(text)
120 | text = expand_acronyms(text)
121 | return text
122 |
123 |
124 | def english_cleaners(text):
125 | '''Pipeline for English text, with number and abbreviation expansion.'''
126 | text = convert_to_ascii(text)
127 | text = lowercase(text)
128 | text = expand_numbers(text)
129 | text = expand_abbreviations(text)
130 | text = collapse_whitespace(text)
131 | return text
132 |
--------------------------------------------------------------------------------
/models/waveglow/TextToSpeechModel/text/cmudict.py:
--------------------------------------------------------------------------------
1 | """ from https://github.com/keithito/tacotron """
2 |
3 | import re
4 |
5 |
6 | valid_symbols = [
7 | 'AA', 'AA0', 'AA1', 'AA2', 'AE', 'AE0', 'AE1', 'AE2', 'AH', 'AH0', 'AH1', 'AH2',
8 | 'AO', 'AO0', 'AO1', 'AO2', 'AW', 'AW0', 'AW1', 'AW2', 'AY', 'AY0', 'AY1', 'AY2',
9 | 'B', 'CH', 'D', 'DH', 'EH', 'EH0', 'EH1', 'EH2', 'ER', 'ER0', 'ER1', 'ER2', 'EY',
10 | 'EY0', 'EY1', 'EY2', 'F', 'G', 'HH', 'IH', 'IH0', 'IH1', 'IH2', 'IY', 'IY0', 'IY1',
11 | 'IY2', 'JH', 'K', 'L', 'M', 'N', 'NG', 'OW', 'OW0', 'OW1', 'OW2', 'OY', 'OY0',
12 | 'OY1', 'OY2', 'P', 'R', 'S', 'SH', 'T', 'TH', 'UH', 'UH0', 'UH1', 'UH2', 'UW',
13 | 'UW0', 'UW1', 'UW2', 'V', 'W', 'Y', 'Z', 'ZH'
14 | ]
15 |
16 | _valid_symbol_set = set(valid_symbols)
17 |
18 |
19 | class CMUDict:
20 | '''Thin wrapper around CMUDict data. http://www.speech.cs.cmu.edu/cgi-bin/cmudict'''
21 | def __init__(self, file_or_path, keep_ambiguous=True):
22 | if isinstance(file_or_path, str):
23 | with open(file_or_path, encoding='latin-1') as f:
24 | entries = _parse_cmudict(f)
25 | else:
26 | entries = _parse_cmudict(file_or_path)
27 | if not keep_ambiguous:
28 | entries = {word: pron for word, pron in entries.items() if len(pron) == 1}
29 | self._entries = entries
30 |
31 |
32 | def __len__(self):
33 | return len(self._entries)
34 |
35 |
36 | def lookup(self, word):
37 | '''Returns list of ARPAbet pronunciations of the given word.'''
38 | return self._entries.get(word.upper())
39 |
40 |
41 |
42 | _alt_re = re.compile(r'\([0-9]+\)')
43 |
44 |
45 | def _parse_cmudict(file):
46 | cmudict = {}
47 | for line in file:
48 | if len(line) and (line[0] >= 'A' and line[0] <= 'Z' or line[0] == "'"):
49 | parts = line.split(' ')
50 | word = re.sub(_alt_re, '', parts[0])
51 | pronunciation = _get_pronunciation(parts[1])
52 | if pronunciation:
53 | if word in cmudict:
54 | cmudict[word].append(pronunciation)
55 | else:
56 | cmudict[word] = [pronunciation]
57 | return cmudict
58 |
59 |
60 | def _get_pronunciation(s):
61 | parts = s.strip().split(' ')
62 | for part in parts:
63 | if part not in _valid_symbol_set:
64 | return None
65 | return ' '.join(parts)
66 |
--------------------------------------------------------------------------------
/models/waveglow/TextToSpeechModel/text/cmudict_dictionary:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dscripka/synthetic_speech_dataset_generation/09cdc32c9efafefa603346819ba84aef4be2063b/models/waveglow/TextToSpeechModel/text/cmudict_dictionary
--------------------------------------------------------------------------------
/models/waveglow/TextToSpeechModel/text/datestime.py:
--------------------------------------------------------------------------------
1 | import re
2 | _ampm_re = re.compile(r'([0-9]|0[0-9]|1[0-9]|2[0-3]):?([0-5][0-9])?\s*([AaPp][Mm]\b)')
3 |
4 |
5 | def _expand_ampm(m):
6 | matches = list(m.groups(0))
7 | txt = matches[0]
8 | if matches[1] == 0 or matches[1] == '0' or matches[1] == '00':
9 | pass
10 | else:
11 | txt += ' ' + matches[1]
12 |
13 | if matches[2][0] == 'a':
14 | txt += ' AM'
15 | elif matches[2][0] == 'p':
16 | txt += ' PM'
17 |
18 | return txt
19 |
20 |
21 | def normalize_datestime(text):
22 | text = re.sub(_ampm_re, _expand_ampm, text)
23 | text = re.sub(r"([0-9]|0[0-9]|1[0-9]|2[0-3]):([0-5][0-9])?", r"\1 \2", text)
24 | return text
25 |
--------------------------------------------------------------------------------
/models/waveglow/TextToSpeechModel/text/heteronyms:
--------------------------------------------------------------------------------
1 | abject
2 | abrogate
3 | absent
4 | abstract
5 | abuse
6 | ache
7 | Acre
8 | acuminate
9 | addict
10 | address
11 | adduct
12 | Adele
13 | advocate
14 | affect
15 | affiliate
16 | agape
17 | aged
18 | agglomerate
19 | aggregate
20 | agonic
21 | agora
22 | allied
23 | ally
24 | alternate
25 | alum
26 | am
27 | analyses
28 | Andrea
29 | animate
30 | apply
31 | appropriate
32 | approximate
33 | ares
34 | arithmetic
35 | arsenic
36 | articulate
37 | associate
38 | attribute
39 | august
40 | axes
41 | ay
42 | aye
43 | bases
44 | bass
45 | bathed
46 | bested
47 | bifurcate
48 | blessed
49 | blotto
50 | bow
51 | bowed
52 | bowman
53 | brassy
54 | buffet
55 | bustier
56 | carbonate
57 | Celtic
58 | choral
59 | Chumash
60 | close
61 | closer
62 | coax
63 | coincidence
64 | color coordinate
65 | colour coordinate
66 | comber
67 | combine
68 | combs
69 | committee
70 | commune
71 | compact
72 | complex
73 | compound
74 | compress
75 | concert
76 | conduct
77 | confine
78 | confines
79 | conflict
80 | conglomerate
81 | conscript
82 | conserve
83 | consist
84 | console
85 | consort
86 | construct
87 | consult
88 | consummate
89 | content
90 | contest
91 | contract
92 | contracts
93 | contrast
94 | converse
95 | convert
96 | convict
97 | coop
98 | coordinate
99 | covey
100 | crooked
101 | curate
102 | cussed
103 | decollate
104 | decrease
105 | defect
106 | defense
107 | delegate
108 | deliberate
109 | denier
110 | desert
111 | detail
112 | deviate
113 | diagnoses
114 | diffuse
115 | digest
116 | discard
117 | discharge
118 | discount
119 | do
120 | document
121 | does
122 | dogged
123 | domesticate
124 | Dominican
125 | dove
126 | dr
127 | drawer
128 | duplicate
129 | egress
130 | ejaculate
131 | eject
132 | elaborate
133 | ellipses
134 | email
135 | emu
136 | entrace
137 | entrance
138 | escort
139 | estimate
140 | eta
141 | Etna
142 | evening
143 | excise
144 | excuse
145 | exploit
146 | export
147 | extract
148 | fine
149 | flower
150 | forbear
151 | four-legged
152 | frequent
153 | furrier
154 | gallant
155 | gel
156 | geminate
157 | gillie
158 | glower
159 | Gotham
160 | graduate
161 | haggis
162 | heavy
163 | hinder
164 | house
165 | housewife
166 | impact
167 | imped
168 | implant
169 | implement
170 | import
171 | impress
172 | incense
173 | incline
174 | increase
175 | infix
176 | insert
177 | instar
178 | insult
179 | integral
180 | intercept
181 | interchange
182 | interflow
183 | interleaf
184 | intermediate
185 | intern
186 | interspace
187 | intimate
188 | intrigue
189 | invalid
190 | invert
191 | invite
192 | irony
193 | jagged
194 | Jesses
195 | Julies
196 | kite
197 | laminate
198 | Laos
199 | lather
200 | lead
201 | learned
202 | leasing
203 | lech
204 | legitimate
205 | lied
206 | lima
207 | lipread
208 | live
209 | lower
210 | lunged
211 | maas
212 | Magdalen
213 | manes
214 | mare
215 | marked
216 | merchandise
217 | merlion
218 | minute
219 | misconduct
220 | misled
221 | misprint
222 | mobile
223 | moderate
224 | mong
225 | moped
226 | moth
227 | mouth
228 | mow
229 | mpg
230 | multiply
231 | mush
232 | nana
233 | nice
234 | Nice
235 | number
236 | numerate
237 | nun
238 | object
239 | opiate
240 | ornament
241 | outbox
242 | outcry
243 | outpour
244 | outreach
245 | outride
246 | outright
247 | outside
248 | outwork
249 | overall
250 | overbid
251 | overcall
252 | overcast
253 | overfall
254 | overflow
255 | overhaul
256 | overhead
257 | overlap
258 | overlay
259 | overuse
260 | overweight
261 | overwork
262 | pace
263 | palled
264 | palling
265 | para
266 | pasty
267 | pate
268 | Pauline
269 | pedal
270 | peer
271 | perfect
272 | periodic
273 | permit
274 | pervert
275 | pinta
276 | placer
277 | platy
278 | polish
279 | Polish
280 | poll
281 | pontificate
282 | postulate
283 | pram
284 | prayer
285 | precipitate
286 | predate
287 | predicate
288 | prefix
289 | preposition
290 | present
291 | pretest
292 | primer
293 | proceeds
294 | produce
295 | progress
296 | project
297 | proportionate
298 | prospect
299 | protest
300 | pussy
301 | putter
302 | putting
303 | quite
304 | ragged
305 | raven
306 | re
307 | read
308 | reading
309 | Reading
310 | real
311 | rebel
312 | recall
313 | recap
314 | recitative
315 | recollect
316 | record
317 | recreate
318 | recreation
319 | redress
320 | refill
321 | refund
322 | refuse
323 | reject
324 | relay
325 | remake
326 | repaint
327 | reprint
328 | reread
329 | rerun
330 | resent
331 | reside
332 | resign
333 | respray
334 | resume
335 | retard
336 | retest
337 | retread
338 | rewrite
339 | root
340 | routed
341 | routing
342 | row
343 | rugged
344 | rummy
345 | sais
346 | sake
347 | sambuca
348 | saucier
349 | second
350 | secrete
351 | secreted
352 | secreting
353 | segment
354 | separate
355 | sewer
356 | shirk
357 | shower
358 | sin
359 | skied
360 | slaver
361 | slough
362 | sow
363 | spoof
364 | squid
365 | stingy
366 | subject
367 | subordinate
368 | subvert
369 | supply
370 | supposed
371 | survey
372 | suspect
373 | syringes
374 | tabulate
375 | tales
376 | tarrier
377 | tarry
378 | taxes
379 | taxis
380 | tear
381 | Theron
382 | thou
383 | three-legged
384 | tier
385 | tinged
386 | torment
387 | transfer
388 | transform
389 | transplant
390 | transport
391 | transpose
392 | tush
393 | two-legged
394 | unionised
395 | unionized
396 | update
397 | uplift
398 | upset
399 | use
400 | used
401 | vale
402 | violist
403 | viva
404 | ware
405 | whinged
406 | whoop
407 | wicked
408 | wind
409 | windy
410 | wino
411 | won
412 | worsted
413 | wound
414 |
--------------------------------------------------------------------------------
/models/waveglow/TextToSpeechModel/text/numbers.py:
--------------------------------------------------------------------------------
1 | """ from https://github.com/keithito/tacotron """
2 |
3 | import inflect
4 | import re
5 | _large_numbers = '(trillion|billion|million|thousand|hundred)'
6 | _measurements = '(f|c|k|d)'
7 | _measurements_key = {'f': 'fahrenheit', 'c': 'celsius', 'k': 'thousand', 'd': 'd'}
8 | _inflect = inflect.engine()
9 | _comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])')
10 | _decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)')
11 | _pounds_re = re.compile(r'£([0-9\,]*[0-9]+)')
12 | _dollars_re = re.compile(r'\$([0-9\.\,]*[0-9]+[ ]?{}?)'.format(_large_numbers), re.IGNORECASE)
13 | _measurement_re = re.compile(r'([0-9\.\,]*[0-9]+(\s)?{}\b)'.format(_measurements), re.IGNORECASE)
14 | _ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)')
15 | _number_re = re.compile(r"[0-9]+'s|[0-9]+")
16 |
17 | def _remove_commas(m):
18 | return m.group(1).replace(',', '')
19 |
20 |
21 | def _expand_decimal_point(m):
22 | return m.group(1).replace('.', ' point ')
23 |
24 |
25 | def _expand_dollars(m):
26 | match = m.group(1)
27 |
28 | # check for million, billion, etc...
29 | parts = match.split(' ')
30 | if len(parts) == 2 and len(parts[1]) > 0 and parts[1] in _large_numbers:
31 | return "{} {} {} ".format(parts[0], parts[1], 'dollars')
32 |
33 | parts = parts[0].split('.')
34 | if len(parts) > 2:
35 | return match + " dollars" # Unexpected format
36 | dollars = int(parts[0]) if parts[0] else 0
37 | cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
38 | if dollars and cents:
39 | dollar_unit = 'dollar' if dollars == 1 else 'dollars'
40 | cent_unit = 'cent' if cents == 1 else 'cents'
41 | return "{} {}, {} {} ".format(
42 | _inflect.number_to_words(dollars), dollar_unit,
43 | _inflect.number_to_words(cents), cent_unit)
44 | elif dollars:
45 | dollar_unit = 'dollar' if dollars == 1 else 'dollars'
46 | return "{} {} ".format(_inflect.number_to_words(dollars), dollar_unit)
47 | elif cents:
48 | cent_unit = 'cent' if cents == 1 else 'cents'
49 | return "{} {} ".format(_inflect.number_to_words(cents), cent_unit)
50 | else:
51 | return 'zero dollars'
52 |
53 |
54 | def _expand_ordinal(m):
55 | return _inflect.number_to_words(m.group(0))
56 |
57 |
58 | def _expand_measurement(m):
59 | _, number, measurement = re.split('(\d+(?:\.\d+)?)', m.group(0))
60 | number = _inflect.number_to_words(number)
61 | measurement = "".join(measurement.split())
62 | measurement = _measurements_key[measurement.lower()]
63 | return "{} {}".format(number, measurement)
64 |
65 |
66 | def _expand_number(m):
67 | _, number, suffix = re.split(r"(\d+(?:'\d+)?)", m.group(0))
68 | num = int(number)
69 | if num > 1000 and num < 3000:
70 | if num == 2000:
71 | text = 'two thousand'
72 | elif num > 2000 and num < 2010:
73 | text = 'two thousand ' + _inflect.number_to_words(num % 100)
74 | elif num % 100 == 0:
75 | text = _inflect.number_to_words(num // 100) + ' hundred'
76 | else:
77 | num = _inflect.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ')
78 | num = re.sub(r'-', ' ', num)
79 | text = num
80 | else:
81 | num = _inflect.number_to_words(num, andword='')
82 | num = re.sub(r'-', ' ', num)
83 | num = re.sub(r',', '', num)
84 | text = num
85 |
86 | if suffix == "'s" and text[-1] == 'y':
87 | text = text[:-1] + 'ies'
88 |
89 | return text
90 |
91 |
92 | def normalize_numbers(text):
93 | text = re.sub(_comma_number_re, _remove_commas, text)
94 | text = re.sub(_pounds_re, r'\1 pounds', text)
95 | text = re.sub(_dollars_re, _expand_dollars, text)
96 | text = re.sub(_decimal_number_re, _expand_decimal_point, text)
97 | text = re.sub(_ordinal_re, _expand_ordinal, text)
98 | text = re.sub(_measurement_re, _expand_measurement, text)
99 | text = re.sub(_number_re, _expand_number, text)
100 | return text
101 |
--------------------------------------------------------------------------------
/models/waveglow/TextToSpeechModel/text/symbols.py:
--------------------------------------------------------------------------------
1 | """ from https://github.com/keithito/tacotron """
2 |
3 | '''
4 | Defines the set of symbols used in text input to the model.
5 |
6 | The default is a set of ASCII characters that works well for English or text that has been run through Unidecode. For other data, you can modify _characters. See TRAINING_DATA.md for details. '''
7 | from text import cmudict
8 |
9 | _punctuation = '!\'",.:;? '
10 | _math = '#%&*+-/[]()'
11 | _special = '_@©°½—₩€$'
12 | _accented = 'áçéêëñöøćž'
13 | _numbers = '0123456789'
14 | _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
15 |
16 | # Prepend "@" to ARPAbet symbols to ensure uniqueness (some are the same as uppercase letters):
17 | _arpabet = ['@' + s for s in cmudict.valid_symbols]
18 |
19 | # Export all symbols:
20 | symbols = list(_punctuation + _math + _special + _accented + _numbers + _letters) + _arpabet
21 |
--------------------------------------------------------------------------------
/models/waveglow/TextToSpeechModel/text_to_speech.py:
--------------------------------------------------------------------------------
1 |
2 | # Create Bento for text to speech
3 |
4 | import os
5 | os.environ['CUDA_VISIBLE_DEVICES'] = '0'
6 |
7 | import torch
8 | from bentoml import env, artifacts, api, BentoService
9 | from bentoml.adapters import JsonInput
10 | from bentoml.frameworks.pytorch import PytorchModelArtifact
11 |
12 | from waveglow_artifact import WaveglowArtifact
13 | from glow import WaveGlow
14 | from data import Data
15 |
16 | import re
17 | import numpy as np
18 | import base64
19 | import pathlib
20 | import scipy
21 |
22 | @env(
23 | pip_packages=[
24 | "bentoml==0.12.1",
25 | "torch==1.7.1",
26 | "numpy==1.19.2",
27 | "inflect==4.1.0",
28 | "scipy==1.5.2",
29 | "Unidecode==1.0.22",
30 | "librosa==0.6.0"
31 | ]
32 | )
33 | @artifacts([WaveglowArtifact('model')])
34 | class TextToSpeechModel(BentoService):
35 | """
36 | A model that converts text into spoken speech
37 | """
38 | def __init__(self):
39 | super(TextToSpeechModel, self).__init__()
40 | self.data_config = {
41 | "text_cleaners": ["flowtron_cleaners"],
42 | "p_arpabet": 0.5,
43 | "cmudict_path": str(pathlib.Path(__file__).parent.absolute()) + "/artifacts/cmudict_dictionary",
44 | "sampling_rate": 22050,
45 | "filter_length": 1024,
46 | "hop_length": 256,
47 | "win_length": 1024,
48 | "mel_fmin": 0.0,
49 | "mel_fmax": 8000.0,
50 | "max_wav_value": 32768.0
51 | }
52 | training_files = str(pathlib.Path(__file__).parent.absolute()) + \
53 | "/artifacts/libritts_train_clean_100_audiopath_text_sid_shorterthan10s_atleast5min_train_filelist.txt"
54 | self.tokenizer = Data(training_files, **self.data_config)
55 |
56 | if torch.cuda.is_available():
57 | self.device = torch.device('cuda')
58 | else:
59 | self.device = torch.device('cpu')
60 |
61 | @api(input=JsonInput())
62 | def generate(self, parsed_json, speaker_id=[24], sample_rate=22050, sigma=0.8, n_frames=300):
63 | text = parsed_json['text']
64 | if parsed_json.get('speaker_id', None):
65 | speaker_id = parsed_json['speaker_id']
66 | if parsed_json.get('sample_rate', None):
67 | sample_rate = parsed_json['sample_rate']
68 | if parsed_json.get('sigma', None):
69 | sigma = parsed_json['sigma']
70 | if parsed_json.get('n_frames', None):
71 | n_frames = parsed_json['n_frames']
72 |
73 | sentences = re.split('\,|\.|\;|\?|\!', text) # tokenize into chunks by punctuation
74 | sentences = [i for i in sentences if i != ""]
75 | audio = []
76 | for sentence in sentences:
77 | speaker_vecs = torch.tensor(speaker_id)[None].to(self.device)#.cuda()
78 | text = self.tokenizer.get_text(sentence)[None].to(self.device)#.cuda()
79 |
80 | with torch.no_grad():
81 | # residual = torch.cuda.FloatTensor(1, 80, n_frames).normal_() * sigma
82 | residual = (torch.FloatTensor(1, 80, n_frames).normal_() * sigma).to(self.device)
83 | mels, attentions = self.artifacts.model.get("flowtron").infer(residual, speaker_vecs, text)
84 |
85 | if self.device.type == "cuda":
86 | mels = mels.half()
87 |
88 | clip = self.artifacts.model.get("waveglow").infer(mels, sigma=sigma).float()
89 | clip = clip.cpu().numpy()[0]
90 | clip = clip / np.abs(clip).max() # normalize audio
91 | if sample_rate != 22050:
92 | audio.append(scipy.signal.resample(clip, int(sample_rate*len(clip)/22050))) #convert to desired khz for playback
93 | else:
94 | audio.append(clip)
95 |
96 | speech = np.concatenate((audio))
97 | speech = (speech*32767).astype(np.int16) # convert to 16-bit PCM data
98 | return base64.b64encode(speech.tobytes()).decode('utf-8')
--------------------------------------------------------------------------------
/models/waveglow/TextToSpeechModel/waveglow_artifact.py:
--------------------------------------------------------------------------------
1 |
2 | # Custom interface for Nvidia Waveglow models
3 |
4 | import os
5 | os.environ['CUDA_VISIBLE_DEVICES'] = '0'
6 | import json
7 | from bentoml.utils import cloudpickle
8 | from bentoml.exceptions import InvalidArgument
9 | from bentoml.service.artifacts import BentoServiceArtifact
10 |
11 | from flowtron import Flowtron
12 |
13 | import torch
14 |
15 | class WaveglowArtifact(BentoServiceArtifact):
16 | def __init__(self, name):
17 | super(WaveglowArtifact, self).__init__(name)
18 | self._model = None
19 | self.model_config = {
20 | "n_speakers": 2311,
21 | "n_speaker_dim": 128,
22 | "n_text": 185,
23 | "n_text_dim": 512,
24 | "n_flows": 2,
25 | "n_mel_channels": 80,
26 | "n_attn_channels": 640,
27 | "n_hidden": 1024,
28 | "n_lstm_layers": 2,
29 | "mel_encoder_n_hidden": 512,
30 | "n_components": 0,
31 | "mean_scale": 0.0,
32 | "fixed_gaussian": True,
33 | "dummy_speaker_embedding": False,
34 | "use_gate_layer": True
35 | }
36 |
37 | def pack(self, model, metadata=None):
38 | self._model = model
39 | return self
40 |
41 | def get(self):
42 | return self._model
43 |
44 | def save(self, dst):
45 | pass
46 |
47 | def load(self, path):
48 | if torch.cuda.is_available():
49 | device = torch.device('cuda')
50 | else:
51 | device = torch.device('cpu')
52 |
53 | # load waveglow model
54 | waveglow = torch.load(os.path.join(path, 'waveglow_256channels_universal_v5.pt'))['model'].to(device)
55 | if device.type == "cuda":
56 | waveglow.cuda().half()
57 | waveglow.eval()
58 |
59 | # Load flowtron model
60 | flowtron = Flowtron(**self.model_config).to(device)
61 | state_dict = torch.load(os.path.join(path, "flowtron_libritts2p3k.pt"), map_location='cpu')['model'].state_dict()
62 | flowtron.load_state_dict(state_dict)
63 | _ = flowtron.eval()
64 |
65 | return self.pack({"waveglow": waveglow, "flowtron": flowtron})
66 |
--------------------------------------------------------------------------------
/models/waveglow/bentoml-init.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 | # Bash Script that installs the dependencies specified in the BentoService archive
3 | #
4 | # Usage:
5 | # * `bentoml-init.sh` to run the full script
6 | # * `bentoml-init.sh ` to run a specific step
7 | # available steps: [custom_setup ensure_python restore_conda_env install_pip_packages install_bundled_pip_packages
8 |
9 | set -ex
10 |
11 | # cd to the saved bundle directory
12 | SAVED_BUNDLE_PATH=$(cd "$(dirname "${BASH_SOURCE[0]}")" ; pwd -P)
13 | cd $SAVED_BUNDLE_PATH
14 |
15 | # Run the user defined setup.sh script if it is presented
16 | if [ $# -eq 0 ] || [ $1 == "custom_setup" ] ; then
17 | if [ -f ./setup.sh ]; then chmod +x ./setup.sh && bash -c ./setup.sh; fi
18 | fi
19 |
20 | # Check and install the right python version
21 | if [ $# -eq 0 ] || [ $1 == "ensure_python" ] ; then
22 | if [ -f ./python_version ]; then
23 | PY_VERSION_SAVED=$(cat ./python_version)
24 | # remove PATCH version - since most patch version only contains backwards compatible
25 | # bug fixes and the BentoML defautl docker base image will include the latest
26 | # patch version of each Python minor release
27 | DESIRED_PY_VERSION=${PY_VERSION_SAVED:0:3} # returns 3.6, 3.7 or 3.8
28 | CURRENT_PY_VERSION=$(python -c 'import sys; print(f"{sys.version_info.major}.{sys.version_info.minor}")')
29 |
30 | if [[ "$DESIRED_PY_VERSION" == "$CURRENT_PY_VERSION" ]]; then
31 | echo "Python Version in docker base image $CURRENT_PY_VERSION matches requirement python=$DESIRED_PY_VERSION. Skipping."
32 | else
33 | if command -v conda >/dev/null 2>&1; then
34 | echo "Installing python=$DESIRED_PY_VERSION with conda:"
35 | conda install -y -n base pkgs/main::python=$DESIRED_PY_VERSION pip
36 | else
37 | echo "WARNING: Python Version $DESIRED_PY_VERSION is required, but $CURRENT_PY_VERSION was found."
38 | fi
39 | fi
40 | fi
41 | fi
42 |
43 | if [ $# -eq 0 ] || [ $1 == "restore_conda_env" ] ; then
44 | if command -v conda >/dev/null 2>&1; then
45 | # set pip_interop_enabled to improve conda-pip interoperability. Conda can use
46 | # pip-installed packages to satisfy dependencies.
47 | # this option is only available after conda version 4.6.0
48 | # "|| true" ignores the error when the option is not found, for older conda version
49 | # This is commented out due to a bug with conda's implementation, we should revisit
50 | # after conda remove the experimental flag on pip_interop_enabled option
51 | # See more details on https://github.com/bentoml/BentoML/pull/1012
52 | # conda config --set pip_interop_enabled True || true
53 |
54 | echo "Updating conda base environment with environment.yml"
55 | conda env update -n base -f ./environment.yml
56 | conda clean --all
57 | else
58 | echo "WARNING: conda command not found, skipping conda dependencies in environment.yml"
59 | fi
60 | fi
61 |
62 | # Install PyPI packages specified in requirements.txt
63 | if [ $# -eq 0 ] || [ $1 == "install_pip_packages" ] ; then
64 | pip install -r ./requirements.txt --no-cache-dir $EXTRA_PIP_INSTALL_ARGS
65 | fi
66 |
67 | # Install additional python packages inside bundled pip dependencies directory
68 | if [ $# -eq 0 ] || [ $1 == "install_bundled_pip_packages" ] ; then
69 | for filename in ./bundled_pip_dependencies/*; do
70 | [ -e "$filename" ] || continue
71 | pip install -U "$filename"
72 | done
73 | fi
74 |
--------------------------------------------------------------------------------
/models/waveglow/bentoml.yml:
--------------------------------------------------------------------------------
1 | version: 0.12.1
2 | kind: BentoService
3 | metadata:
4 | created_at: 2021-05-31 13:57:23.628577
5 | service_name: TextToSpeechModel
6 | service_version: 20210531095723_F76C2A
7 | module_name: text_to_speech
8 | module_file: text_to_speech.py
9 | env:
10 | pip_packages:
11 | - bentoml==0.12.1
12 | - torch==1.7.1
13 | - numpy==1.19.2
14 | - inflect==4.1.0
15 | - scipy==1.5.2
16 | - Unidecode==1.0.22
17 | - librosa==0.6.0
18 | conda_env:
19 | name: bentoml-default-conda-env
20 | dependencies: []
21 | python_version: 3.7.6
22 | docker_base_image: bentoml/model-server:0.12.1-py37
23 | apis:
24 | - name: predict
25 | docs: "BentoService inference API 'predict', input: 'JsonInput', output: 'DefaultOutput'"
26 | input_type: JsonInput
27 | output_type: DefaultOutput
28 | mb_max_batch_size: 4000
29 | mb_max_latency: 20000
30 | batch: false
31 | route: predict
32 | output_config:
33 | cors: '*'
34 | artifacts:
35 | - name: model
36 | artifact_type: WaveglowArtifact
37 | metadata: {}
38 |
--------------------------------------------------------------------------------
/models/waveglow/docker-entrypoint.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 | set -Eeuo pipefail
3 |
4 | # check to see if this file is being run or sourced from another script
5 | _is_sourced() {
6 | # https://unix.stackexchange.com/a/215279
7 | [ "${#FUNCNAME[@]}" -ge 2 ] \
8 | && [ "${FUNCNAME[0]}" = '_is_sourced' ] \
9 | && [ "${FUNCNAME[1]}" = 'source' ]
10 | }
11 |
12 | _main() {
13 | # if first arg looks like a flag, assume we want to start bentoml YataiService
14 | if [ "${1:0:1}" = '-' ]; then
15 | set -- bentoml serve-gunicorn "$@" $BUNDLE_PATH
16 | fi
17 |
18 | # Set BentoML API server port via env var
19 | export BENTOML_PORT=$PORT \
20 | # Backward compatibility for BentoML prior to 0.7.5
21 | export BENTOML__APISERVER__DEFAULT_PORT=$PORT \
22 |
23 | exec "$@"
24 | }
25 |
26 | if ! _is_sourced; then
27 | _main "$@"
28 | fi
29 |
--------------------------------------------------------------------------------
/models/waveglow/environment.yml:
--------------------------------------------------------------------------------
1 | name: bentoml-default-conda-env
2 | dependencies: []
3 |
--------------------------------------------------------------------------------
/models/waveglow/python_version:
--------------------------------------------------------------------------------
1 | 3.7.6
--------------------------------------------------------------------------------
/models/waveglow/requirements.txt:
--------------------------------------------------------------------------------
1 | bentoml==0.12.1
2 | torch==1.7.1
3 | numpy==1.19.2
4 | inflect==4.1.0
5 | scipy==1.5.2
6 | Unidecode==1.0.22
7 | librosa==0.6.0
8 | numba==0.49.1
9 | llvmlite==0.32.1
--------------------------------------------------------------------------------
/models/waveglow/setup.py:
--------------------------------------------------------------------------------
1 | import setuptools
2 | try:
3 | # for pip >= 10
4 | from pip._internal.req import parse_requirements
5 | try:
6 | # for pip >= 20.0
7 | from pip._internal.network.session import PipSession
8 | except ModuleNotFoundError:
9 | # for pip >= 10, < 20.0
10 | from pip._internal.download import PipSession
11 | except ImportError:
12 | # for pip <= 9.0.3
13 | from pip.req import parse_requirements
14 | from pip.download import PipSession
15 |
16 | try:
17 | raw = parse_requirements('requirements.txt', session=PipSession())
18 |
19 | # pip >= 20.1 changed ParsedRequirement attribute from `req` to `requirement`
20 | install_reqs = []
21 | for i in raw:
22 | try:
23 | install_reqs.append(str(i.requirement))
24 | except AttributeError:
25 | install_reqs.append(str(i.req))
26 | except Exception:
27 | install_reqs = []
28 |
29 | setuptools.setup(
30 | name='TextToSpeechModel',
31 | version='20210531095723_F76C2A',
32 | description="BentoML generated model module",
33 | long_description="""# Generated BentoService bundle - TextToSpeechModel:20210531095723_F76C2A
34 |
35 | This is a ML Service bundle created with BentoML, it is not recommended to edit
36 | code or files contained in this directory. Instead, edit the code that uses BentoML
37 | to create this bundle, and save a new BentoService bundle.
38 |
39 | A model that converts text into spoken speech""",
40 | long_description_content_type="text/markdown",
41 | url="https://github.com/bentoml/BentoML",
42 | packages=setuptools.find_packages(),
43 | install_requires=install_reqs,
44 | include_package_data=True,
45 | package_data={
46 | 'TextToSpeechModel': ['bentoml.yml', 'artifacts/*']
47 | },
48 | entry_points={
49 | 'console_scripts': [
50 | 'TextToSpeechModel=TextToSpeechModel:cli',
51 | ],
52 | }
53 | )
54 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | requests>=2.28.2,<3
2 | tqdm>=4.47.0,<5
3 | torch==1.12.1
4 | numpy==1.23.3
5 | torchaudio==0.12.1
6 | librosa==0.9.2
7 | unidecode==1.3.6
8 | phonemizer==3.2.1
9 | bentoml==0.12.1
10 | inflect==6.0.2
11 | protobuf==3.19.1
--------------------------------------------------------------------------------