├── .gitignore
├── data
├── rda
│ ├── OJ.rda
│ ├── Auto.rda
│ ├── Khan.rda
│ ├── NCI60.rda
│ ├── Wage.rda
│ ├── Boston.rda
│ ├── Caravan.rda
│ ├── College.rda
│ ├── Credit.rda
│ ├── Default.rda
│ ├── Hitters.rda
│ ├── Smarket.rda
│ ├── Weekly.rda
│ ├── Carseats.rda
│ └── Portfolio.rda
├── datalist
└── csv
│ ├── USArrests.csv
│ ├── Portfolio.csv
│ ├── Carseats.csv
│ ├── Auto.csv
│ ├── Credit.csv
│ ├── Hitters.csv
│ └── Boston.csv
├── requirements.txt
├── LICENSE.md
├── README.md
└── labs
├── chapter8
└── decision_trees.ipynb
└── chapter4
└── KNN.ipynb
/.gitignore:
--------------------------------------------------------------------------------
1 | .DS_Store
2 | .ipynb_checkpoints
3 |
--------------------------------------------------------------------------------
/data/rda/OJ.rda:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dsnair/ISLR/HEAD/data/rda/OJ.rda
--------------------------------------------------------------------------------
/data/rda/Auto.rda:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dsnair/ISLR/HEAD/data/rda/Auto.rda
--------------------------------------------------------------------------------
/data/rda/Khan.rda:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dsnair/ISLR/HEAD/data/rda/Khan.rda
--------------------------------------------------------------------------------
/data/rda/NCI60.rda:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dsnair/ISLR/HEAD/data/rda/NCI60.rda
--------------------------------------------------------------------------------
/data/rda/Wage.rda:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dsnair/ISLR/HEAD/data/rda/Wage.rda
--------------------------------------------------------------------------------
/data/rda/Boston.rda:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dsnair/ISLR/HEAD/data/rda/Boston.rda
--------------------------------------------------------------------------------
/data/rda/Caravan.rda:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dsnair/ISLR/HEAD/data/rda/Caravan.rda
--------------------------------------------------------------------------------
/data/rda/College.rda:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dsnair/ISLR/HEAD/data/rda/College.rda
--------------------------------------------------------------------------------
/data/rda/Credit.rda:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dsnair/ISLR/HEAD/data/rda/Credit.rda
--------------------------------------------------------------------------------
/data/rda/Default.rda:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dsnair/ISLR/HEAD/data/rda/Default.rda
--------------------------------------------------------------------------------
/data/rda/Hitters.rda:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dsnair/ISLR/HEAD/data/rda/Hitters.rda
--------------------------------------------------------------------------------
/data/rda/Smarket.rda:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dsnair/ISLR/HEAD/data/rda/Smarket.rda
--------------------------------------------------------------------------------
/data/rda/Weekly.rda:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dsnair/ISLR/HEAD/data/rda/Weekly.rda
--------------------------------------------------------------------------------
/data/rda/Carseats.rda:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dsnair/ISLR/HEAD/data/rda/Carseats.rda
--------------------------------------------------------------------------------
/data/rda/Portfolio.rda:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/dsnair/ISLR/HEAD/data/rda/Portfolio.rda
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | pandas==0.21.0
2 | matplotlib==2.1.0
3 | scipy==1.0.0
4 | seaborn==0.8.1
5 | scikit-learn==0.19.1
6 | statsmodels==0.8.0
7 |
--------------------------------------------------------------------------------
/data/datalist:
--------------------------------------------------------------------------------
1 | Auto
2 | Boston
3 | Caravan
4 | Carseats
5 | College
6 | Credit
7 | Default
8 | Hitters
9 | Khan
10 | NCI60
11 | OJ
12 | Portfolio
13 | Smarket
14 | USArrests
15 | Wage
16 | Weekly
17 |
--------------------------------------------------------------------------------
/LICENSE.md:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2017 Jordi Warmenhoven
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/data/csv/USArrests.csv:
--------------------------------------------------------------------------------
1 | "State","Murder","Assault","UrbanPop","Rape"
2 | "Alabama",13.2,236,58,21.2
3 | "Alaska",10,263,48,44.5
4 | "Arizona",8.1,294,80,31
5 | "Arkansas",8.8,190,50,19.5
6 | "California",9,276,91,40.6
7 | "Colorado",7.9,204,78,38.7
8 | "Connecticut",3.3,110,77,11.1
9 | "Delaware",5.9,238,72,15.8
10 | "Florida",15.4,335,80,31.9
11 | "Georgia",17.4,211,60,25.8
12 | "Hawaii",5.3,46,83,20.2
13 | "Idaho",2.6,120,54,14.2
14 | "Illinois",10.4,249,83,24
15 | "Indiana",7.2,113,65,21
16 | "Iowa",2.2,56,57,11.3
17 | "Kansas",6,115,66,18
18 | "Kentucky",9.7,109,52,16.3
19 | "Louisiana",15.4,249,66,22.2
20 | "Maine",2.1,83,51,7.8
21 | "Maryland",11.3,300,67,27.8
22 | "Massachusetts",4.4,149,85,16.3
23 | "Michigan",12.1,255,74,35.1
24 | "Minnesota",2.7,72,66,14.9
25 | "Mississippi",16.1,259,44,17.1
26 | "Missouri",9,178,70,28.2
27 | "Montana",6,109,53,16.4
28 | "Nebraska",4.3,102,62,16.5
29 | "Nevada",12.2,252,81,46
30 | "New Hampshire",2.1,57,56,9.5
31 | "New Jersey",7.4,159,89,18.8
32 | "New Mexico",11.4,285,70,32.1
33 | "New York",11.1,254,86,26.1
34 | "North Carolina",13,337,45,16.1
35 | "North Dakota",0.8,45,44,7.3
36 | "Ohio",7.3,120,75,21.4
37 | "Oklahoma",6.6,151,68,20
38 | "Oregon",4.9,159,67,29.3
39 | "Pennsylvania",6.3,106,72,14.9
40 | "Rhode Island",3.4,174,87,8.3
41 | "South Carolina",14.4,279,48,22.5
42 | "South Dakota",3.8,86,45,12.8
43 | "Tennessee",13.2,188,59,26.9
44 | "Texas",12.7,201,80,25.5
45 | "Utah",3.2,120,80,22.9
46 | "Vermont",2.2,48,32,11.2
47 | "Virginia",8.5,156,63,20.7
48 | "Washington",4,145,73,26.2
49 | "West Virginia",5.7,81,39,9.3
50 | "Wisconsin",2.6,53,66,10.8
51 | "Wyoming",6.8,161,60,15.6
52 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # README
2 |
3 | ## Project Summary
4 |
5 | Do the labs from '[An Introduction to Statistical Learning](http://www-bcf.usc.edu/~gareth/ISL/index.html)' book, in Python. (The labs are done in R in the book.) The book is available for free download on the author's [website](http://www-bcf.usc.edu/~gareth/ISL/index.html) along with slides, video tutorials, and some datasets.
6 |
7 | ## Data
8 |
9 | The labs require the datasets listed below. These datasets are available on the [CRAN GitHub repo](https://github.com/cran/ISLR/tree/master/data).
10 |
11 | * `Auto`: Gas mileage, horsepower, and other information for cars.
12 | * `Boston`: Housing values and other information about Boston suburbs.
13 | * `Caravan`: Information about individuals offered caravan insurance.
14 | * `Carseats`: Information about car seat sales in 400 stores.
15 | * `College`: Demographic characteristics, tuition, and more for USA colleges.
16 | * `Default`: Customer default records for a credit card company.
17 | * `Hitters`: Records and salaries for baseball players.
18 | * `Khan`: Gene expression measurements for four cancer types.
19 | * `NCI60`: Gene expression measurements for 64 cancer cell lines.
20 | * `OJ`: Sales information for Citrus Hill and Minute Maid orange juice.
21 | * `Portfolio`: Past values of financial assets, for use in portfolio allocation.
22 | * `Smarket`: Daily percentage returns for S&P 500 over a 5-year period.
23 | * `USArrests`: Crime statistics per 100,000 residents in 50 states of USA.
24 | * `Wage`: Income survey data for males in central Atlantic region of USA.
25 | * `Weekly`: 1,089 weekly stock market returns for 21 years.
26 |
27 | ## Requirements
28 |
29 | ```shell
30 | $ pip install -r requirements.txt
31 | ```
32 |
33 | ## Work Summary
34 |
35 | 3 Regression:
36 | * Simple Linear Regression:
37 | * Coefficient of Determination
38 | * Residual Plot
39 | * Multiple Linear Regression:
40 | * Non-linearity
41 | * Heteroscedasticity
42 | * Leverage Statistic
43 | * Studentized Residuals
44 | * Correlation Heatmap
45 | * Variance Inflation Factor (VIF)
46 |
47 | 4 Classification:
48 | * Logistic Regression:
49 | * Confusion Matrix
50 | * Sensitivity
51 | * Precision
52 | * F1 score
53 | * K-Nearest Neighbors (KNN)
54 | ~~* Linear Discriminant Analysis~~
55 | ~~* Quadratic Discriminant Analysis~~
56 |
57 | 5 Resampling Methods:
58 | ~~* Validation Set~~
59 | ~~* Leave-One-Out Cross-Validation~~
60 | ~~* k-fold Cross-Validation~~
61 | ~~* Bootstrap~~
62 |
63 | 6 Linear Model Selection and Regularization:
64 | 7 Moving Beyond Linearity:
65 |
66 | 8 Tree-Based Methods:
67 | * Decision trees
68 | ~~* Bagging~~
69 | ~~* Random Forests~~
70 | ~~* Boosting~~
71 |
72 | 9 Support Vector Machines:
73 |
74 | 10 Unsupervised Learning:
75 | * Principal Component Analysis (PCA)
76 | * K-Means Clustering
77 | * Hierarchical Clustering
78 | ~~* Gaussian Mixture Models (GMM) Clustering~~
79 | ~~* Spectral Clustering~~
80 | ~~* Mean-Shift Clustering~~
81 | ~~* DBSCAN~~
82 |
--------------------------------------------------------------------------------
/data/csv/Portfolio.csv:
--------------------------------------------------------------------------------
1 | X,Y
2 | -0.895250889142,-0.234923525765
3 | -1.56245432748,-0.885175993045
4 | -0.417089883126,0.27188801805
5 | 1.04435572527,-0.734197504068
6 | -0.315568406681,0.841983429961
7 | -1.73712384902,-2.03719104075
8 | 1.96641315717,1.45295666192
9 | 2.15286789801,-0.43413862818
10 | -0.0812080267603,1.45080850219
11 | -0.891781794029,0.82101623454
12 | -0.29320170201,-1.04239112184
13 | 0.505779171069,0.608477825847
14 | 0.526751254093,-0.222493343283
15 | 1.06646932095,1.23135667526
16 | 0.294015895064,0.628589480036
17 | 0.0425492997634,-1.26757361755
18 | 1.83096958062,-0.572751605499
19 | -0.326937498878,-0.487472465046
20 | 0.521480415807,2.56598528732
21 | 1.39986834733,-0.357836127482
22 | -0.645447596469,-1.4124313895
23 | -0.90435187845,-0.568304791042
24 | -1.76458606962,-0.746272562068
25 | -1.81048463819,0.493747359351
26 | -1.16989891378,-2.72528149494
27 | -0.685375735369,-0.457615734339
28 | 1.09091803184,0.0144945075275
29 | -0.432340114041,-0.399831023509
30 | 0.268814775371,-0.201608350198
31 | -0.851840753541,-1.74182928585
32 | -1.49708417204,-0.826033329438
33 | 0.0887747459974,-0.887360712724
34 | -1.60172430963,-0.695299045953
35 | -1.24685724026,-1.52958488449
36 | -1.06298912831,-0.110637447364
37 | -0.26628305531,0.0451634696289
38 | 1.67658383263,2.52005288263
39 | 0.119572571441,0.535542781034
40 | -0.0860079872691,1.36359582806
41 | 0.368080289749,1.72937250997
42 | -0.27149420694,1.37926732742
43 | -0.0859264618788,-0.127662573751
44 | -0.190750153683,-0.461333357788
45 | -0.781679768391,1.02239787731
46 | 0.792436346461,-0.814298088655
47 | -0.282869886234,-1.03846880699
48 | -0.236625531903,0.928450553143
49 | 1.17183009101,1.72983145003
50 | 0.496942768505,-0.925139825949
51 | -0.887370979477,-2.28349795939
52 | -1.30695315836,-2.38160058115
53 | -2.4327641204,-2.02554558512
54 | -0.40718896096,-0.335098643325
55 | -0.285665299455,-1.30878131267
56 | 1.5222148831,1.20100315335
57 | -0.998106907438,-0.946268900068
58 | -0.289973726127,0.206256579941
59 | -1.236839243,-0.675447507317
60 | -0.359506962064,-2.70015447022
61 | 0.543559153033,0.422547552093
62 | -0.403647282895,-0.0543899228706
63 | 1.30330893266,1.32896747385
64 | -0.717117243406,1.33137979804
65 | -1.01270788406,-0.924769230819
66 | 0.831992902159,2.24774586895
67 | 1.33764359604,0.868256457488
68 | 0.601693509867,-0.198217563055
69 | 1.30285098047,1.10466637602
70 | -0.881700578927,-1.54068478518
71 | -0.824529071305,-1.3370078772
72 | -0.984356518466,-1.13916026592
73 | -1.38499150721,0.702699932949
74 | -0.358842560436,-1.69451276978
75 | -0.226618229456,0.801938547571
76 | -0.941077436691,-0.733188708932
77 | 2.46033594813,-0.0483728170022
78 | 0.716797281413,0.602336759898
79 | -0.248087023209,-1.01849037379
80 | 1.01077288944,0.0529780222229
81 | 2.31304863448,1.75235887916
82 | 0.835179797449,0.985714875658
83 | -1.07190333914,-1.24729787324
84 | -1.65052614385,0.215464529577
85 | -0.600485690305,-0.420940526974
86 | -0.0585293830471,0.127620874053
87 | 0.0757267446339,-0.522149221026
88 | -1.15783156137,0.590893742239
89 | 1.67360608794,0.114623316085
90 | -1.04398823978,-0.418944284341
91 | 0.014687476592,-0.558746620673
92 | 0.675321970429,1.48262978763
93 | 1.77834230986,0.942774111448
94 | -1.29576363941,-1.0852038131
95 | 0.0796020218475,-0.539100814054
96 | 2.26085771442,0.673224840267
97 | 0.479090923234,1.45477446091
98 | -0.535019997433,-0.399174811276
99 | -0.773129330645,-0.957174849521
100 | 0.403634339015,1.39603816899
101 | -0.588496438718,-0.497285090818
102 |
--------------------------------------------------------------------------------
/data/csv/Carseats.csv:
--------------------------------------------------------------------------------
1 | Sales,CompPrice,Income,Advertising,Population,Price,ShelveLoc,Age,Education,Urban,US
2 | 9.5,138,73,11,276,120,Bad,42,17,Yes,Yes
3 | 11.22,111,48,16,260,83,Good,65,10,Yes,Yes
4 | 10.06,113,35,10,269,80,Medium,59,12,Yes,Yes
5 | 7.4,117,100,4,466,97,Medium,55,14,Yes,Yes
6 | 4.15,141,64,3,340,128,Bad,38,13,Yes,No
7 | 10.81,124,113,13,501,72,Bad,78,16,No,Yes
8 | 6.63,115,105,0,45,108,Medium,71,15,Yes,No
9 | 11.85,136,81,15,425,120,Good,67,10,Yes,Yes
10 | 6.54,132,110,0,108,124,Medium,76,10,No,No
11 | 4.69,132,113,0,131,124,Medium,76,17,No,Yes
12 | 9.01,121,78,9,150,100,Bad,26,10,No,Yes
13 | 11.96,117,94,4,503,94,Good,50,13,Yes,Yes
14 | 3.98,122,35,2,393,136,Medium,62,18,Yes,No
15 | 10.96,115,28,11,29,86,Good,53,18,Yes,Yes
16 | 11.17,107,117,11,148,118,Good,52,18,Yes,Yes
17 | 8.71,149,95,5,400,144,Medium,76,18,No,No
18 | 7.58,118,32,0,284,110,Good,63,13,Yes,No
19 | 12.29,147,74,13,251,131,Good,52,10,Yes,Yes
20 | 13.91,110,110,0,408,68,Good,46,17,No,Yes
21 | 8.73,129,76,16,58,121,Medium,69,12,Yes,Yes
22 | 6.41,125,90,2,367,131,Medium,35,18,Yes,Yes
23 | 12.13,134,29,12,239,109,Good,62,18,No,Yes
24 | 5.08,128,46,6,497,138,Medium,42,13,Yes,No
25 | 5.87,121,31,0,292,109,Medium,79,10,Yes,No
26 | 10.14,145,119,16,294,113,Bad,42,12,Yes,Yes
27 | 14.9,139,32,0,176,82,Good,54,11,No,No
28 | 8.33,107,115,11,496,131,Good,50,11,No,Yes
29 | 5.27,98,118,0,19,107,Medium,64,17,Yes,No
30 | 2.99,103,74,0,359,97,Bad,55,11,Yes,Yes
31 | 7.81,104,99,15,226,102,Bad,58,17,Yes,Yes
32 | 13.55,125,94,0,447,89,Good,30,12,Yes,No
33 | 8.25,136,58,16,241,131,Medium,44,18,Yes,Yes
34 | 6.2,107,32,12,236,137,Good,64,10,No,Yes
35 | 8.77,114,38,13,317,128,Good,50,16,Yes,Yes
36 | 2.67,115,54,0,406,128,Medium,42,17,Yes,Yes
37 | 11.07,131,84,11,29,96,Medium,44,17,No,Yes
38 | 8.89,122,76,0,270,100,Good,60,18,No,No
39 | 4.95,121,41,5,412,110,Medium,54,10,Yes,Yes
40 | 6.59,109,73,0,454,102,Medium,65,15,Yes,No
41 | 3.24,130,60,0,144,138,Bad,38,10,No,No
42 | 2.07,119,98,0,18,126,Bad,73,17,No,No
43 | 7.96,157,53,0,403,124,Bad,58,16,Yes,No
44 | 10.43,77,69,0,25,24,Medium,50,18,Yes,No
45 | 4.12,123,42,11,16,134,Medium,59,13,Yes,Yes
46 | 4.16,85,79,6,325,95,Medium,69,13,Yes,Yes
47 | 4.56,141,63,0,168,135,Bad,44,12,Yes,Yes
48 | 12.44,127,90,14,16,70,Medium,48,15,No,Yes
49 | 4.38,126,98,0,173,108,Bad,55,16,Yes,No
50 | 3.91,116,52,0,349,98,Bad,69,18,Yes,No
51 | 10.61,157,93,0,51,149,Good,32,17,Yes,No
52 | 1.42,99,32,18,341,108,Bad,80,16,Yes,Yes
53 | 4.42,121,90,0,150,108,Bad,75,16,Yes,No
54 | 7.91,153,40,3,112,129,Bad,39,18,Yes,Yes
55 | 6.92,109,64,13,39,119,Medium,61,17,Yes,Yes
56 | 4.9,134,103,13,25,144,Medium,76,17,No,Yes
57 | 6.85,143,81,5,60,154,Medium,61,18,Yes,Yes
58 | 11.91,133,82,0,54,84,Medium,50,17,Yes,No
59 | 0.91,93,91,0,22,117,Bad,75,11,Yes,No
60 | 5.42,103,93,15,188,103,Bad,74,16,Yes,Yes
61 | 5.21,118,71,4,148,114,Medium,80,13,Yes,No
62 | 8.32,122,102,19,469,123,Bad,29,13,Yes,Yes
63 | 7.32,105,32,0,358,107,Medium,26,13,No,No
64 | 1.82,139,45,0,146,133,Bad,77,17,Yes,Yes
65 | 8.47,119,88,10,170,101,Medium,61,13,Yes,Yes
66 | 7.8,100,67,12,184,104,Medium,32,16,No,Yes
67 | 4.9,122,26,0,197,128,Medium,55,13,No,No
68 | 8.85,127,92,0,508,91,Medium,56,18,Yes,No
69 | 9.01,126,61,14,152,115,Medium,47,16,Yes,Yes
70 | 13.39,149,69,20,366,134,Good,60,13,Yes,Yes
71 | 7.99,127,59,0,339,99,Medium,65,12,Yes,No
72 | 9.46,89,81,15,237,99,Good,74,12,Yes,Yes
73 | 6.5,148,51,16,148,150,Medium,58,17,No,Yes
74 | 5.52,115,45,0,432,116,Medium,25,15,Yes,No
75 | 12.61,118,90,10,54,104,Good,31,11,No,Yes
76 | 6.2,150,68,5,125,136,Medium,64,13,No,Yes
77 | 8.55,88,111,23,480,92,Bad,36,16,No,Yes
78 | 10.64,102,87,10,346,70,Medium,64,15,Yes,Yes
79 | 7.7,118,71,12,44,89,Medium,67,18,No,Yes
80 | 4.43,134,48,1,139,145,Medium,65,12,Yes,Yes
81 | 9.14,134,67,0,286,90,Bad,41,13,Yes,No
82 | 8.01,113,100,16,353,79,Bad,68,11,Yes,Yes
83 | 7.52,116,72,0,237,128,Good,70,13,Yes,No
84 | 11.62,151,83,4,325,139,Good,28,17,Yes,Yes
85 | 4.42,109,36,7,468,94,Bad,56,11,Yes,Yes
86 | 2.23,111,25,0,52,121,Bad,43,18,No,No
87 | 8.47,125,103,0,304,112,Medium,49,13,No,No
88 | 8.7,150,84,9,432,134,Medium,64,15,Yes,No
89 | 11.7,131,67,7,272,126,Good,54,16,No,Yes
90 | 6.56,117,42,7,144,111,Medium,62,10,Yes,Yes
91 | 7.95,128,66,3,493,119,Medium,45,16,No,No
92 | 5.33,115,22,0,491,103,Medium,64,11,No,No
93 | 4.81,97,46,11,267,107,Medium,80,15,Yes,Yes
94 | 4.53,114,113,0,97,125,Medium,29,12,Yes,No
95 | 8.86,145,30,0,67,104,Medium,55,17,Yes,No
96 | 8.39,115,97,5,134,84,Bad,55,11,Yes,Yes
97 | 5.58,134,25,10,237,148,Medium,59,13,Yes,Yes
98 | 9.48,147,42,10,407,132,Good,73,16,No,Yes
99 | 7.45,161,82,5,287,129,Bad,33,16,Yes,Yes
100 | 12.49,122,77,24,382,127,Good,36,16,No,Yes
101 | 4.88,121,47,3,220,107,Bad,56,16,No,Yes
102 | 4.11,113,69,11,94,106,Medium,76,12,No,Yes
103 | 6.2,128,93,0,89,118,Medium,34,18,Yes,No
104 | 5.3,113,22,0,57,97,Medium,65,16,No,No
105 | 5.07,123,91,0,334,96,Bad,78,17,Yes,Yes
106 | 4.62,121,96,0,472,138,Medium,51,12,Yes,No
107 | 5.55,104,100,8,398,97,Medium,61,11,Yes,Yes
108 | 0.16,102,33,0,217,139,Medium,70,18,No,No
109 | 8.55,134,107,0,104,108,Medium,60,12,Yes,No
110 | 3.47,107,79,2,488,103,Bad,65,16,Yes,No
111 | 8.98,115,65,0,217,90,Medium,60,17,No,No
112 | 9.0,128,62,7,125,116,Medium,43,14,Yes,Yes
113 | 6.62,132,118,12,272,151,Medium,43,14,Yes,Yes
114 | 6.67,116,99,5,298,125,Good,62,12,Yes,Yes
115 | 6.01,131,29,11,335,127,Bad,33,12,Yes,Yes
116 | 9.31,122,87,9,17,106,Medium,65,13,Yes,Yes
117 | 8.54,139,35,0,95,129,Medium,42,13,Yes,No
118 | 5.08,135,75,0,202,128,Medium,80,10,No,No
119 | 8.8,145,53,0,507,119,Medium,41,12,Yes,No
120 | 7.57,112,88,2,243,99,Medium,62,11,Yes,Yes
121 | 7.37,130,94,8,137,128,Medium,64,12,Yes,Yes
122 | 6.87,128,105,11,249,131,Medium,63,13,Yes,Yes
123 | 11.67,125,89,10,380,87,Bad,28,10,Yes,Yes
124 | 6.88,119,100,5,45,108,Medium,75,10,Yes,Yes
125 | 8.19,127,103,0,125,155,Good,29,15,No,Yes
126 | 8.87,131,113,0,181,120,Good,63,14,Yes,No
127 | 9.34,89,78,0,181,49,Medium,43,15,No,No
128 | 11.27,153,68,2,60,133,Good,59,16,Yes,Yes
129 | 6.52,125,48,3,192,116,Medium,51,14,Yes,Yes
130 | 4.96,133,100,3,350,126,Bad,55,13,Yes,Yes
131 | 4.47,143,120,7,279,147,Bad,40,10,No,Yes
132 | 8.41,94,84,13,497,77,Medium,51,12,Yes,Yes
133 | 6.5,108,69,3,208,94,Medium,77,16,Yes,No
134 | 9.54,125,87,9,232,136,Good,72,10,Yes,Yes
135 | 7.62,132,98,2,265,97,Bad,62,12,Yes,Yes
136 | 3.67,132,31,0,327,131,Medium,76,16,Yes,No
137 | 6.44,96,94,14,384,120,Medium,36,18,No,Yes
138 | 5.17,131,75,0,10,120,Bad,31,18,No,No
139 | 6.52,128,42,0,436,118,Medium,80,11,Yes,No
140 | 10.27,125,103,12,371,109,Medium,44,10,Yes,Yes
141 | 12.3,146,62,10,310,94,Medium,30,13,No,Yes
142 | 6.03,133,60,10,277,129,Medium,45,18,Yes,Yes
143 | 6.53,140,42,0,331,131,Bad,28,15,Yes,No
144 | 7.44,124,84,0,300,104,Medium,77,15,Yes,No
145 | 0.53,122,88,7,36,159,Bad,28,17,Yes,Yes
146 | 9.09,132,68,0,264,123,Good,34,11,No,No
147 | 8.77,144,63,11,27,117,Medium,47,17,Yes,Yes
148 | 3.9,114,83,0,412,131,Bad,39,14,Yes,No
149 | 10.51,140,54,9,402,119,Good,41,16,No,Yes
150 | 7.56,110,119,0,384,97,Medium,72,14,No,Yes
151 | 11.48,121,120,13,140,87,Medium,56,11,Yes,Yes
152 | 10.49,122,84,8,176,114,Good,57,10,No,Yes
153 | 10.77,111,58,17,407,103,Good,75,17,No,Yes
154 | 7.64,128,78,0,341,128,Good,45,13,No,No
155 | 5.93,150,36,7,488,150,Medium,25,17,No,Yes
156 | 6.89,129,69,10,289,110,Medium,50,16,No,Yes
157 | 7.71,98,72,0,59,69,Medium,65,16,Yes,No
158 | 7.49,146,34,0,220,157,Good,51,16,Yes,No
159 | 10.21,121,58,8,249,90,Medium,48,13,No,Yes
160 | 12.53,142,90,1,189,112,Good,39,10,No,Yes
161 | 9.32,119,60,0,372,70,Bad,30,18,No,No
162 | 4.67,111,28,0,486,111,Medium,29,12,No,No
163 | 2.93,143,21,5,81,160,Medium,67,12,No,Yes
164 | 3.63,122,74,0,424,149,Medium,51,13,Yes,No
165 | 5.68,130,64,0,40,106,Bad,39,17,No,No
166 | 8.22,148,64,0,58,141,Medium,27,13,No,Yes
167 | 0.37,147,58,7,100,191,Bad,27,15,Yes,Yes
168 | 6.71,119,67,17,151,137,Medium,55,11,Yes,Yes
169 | 6.71,106,73,0,216,93,Medium,60,13,Yes,No
170 | 7.3,129,89,0,425,117,Medium,45,10,Yes,No
171 | 11.48,104,41,15,492,77,Good,73,18,Yes,Yes
172 | 8.01,128,39,12,356,118,Medium,71,10,Yes,Yes
173 | 12.49,93,106,12,416,55,Medium,75,15,Yes,Yes
174 | 9.03,104,102,13,123,110,Good,35,16,Yes,Yes
175 | 6.38,135,91,5,207,128,Medium,66,18,Yes,Yes
176 | 0.0,139,24,0,358,185,Medium,79,15,No,No
177 | 7.54,115,89,0,38,122,Medium,25,12,Yes,No
178 | 5.61,138,107,9,480,154,Medium,47,11,No,Yes
179 | 10.48,138,72,0,148,94,Medium,27,17,Yes,Yes
180 | 10.66,104,71,14,89,81,Medium,25,14,No,Yes
181 | 7.78,144,25,3,70,116,Medium,77,18,Yes,Yes
182 | 4.94,137,112,15,434,149,Bad,66,13,Yes,Yes
183 | 7.43,121,83,0,79,91,Medium,68,11,Yes,No
184 | 4.74,137,60,4,230,140,Bad,25,13,Yes,No
185 | 5.32,118,74,6,426,102,Medium,80,18,Yes,Yes
186 | 9.95,132,33,7,35,97,Medium,60,11,No,Yes
187 | 10.07,130,100,11,449,107,Medium,64,10,Yes,Yes
188 | 8.68,120,51,0,93,86,Medium,46,17,No,No
189 | 6.03,117,32,0,142,96,Bad,62,17,Yes,No
190 | 8.07,116,37,0,426,90,Medium,76,15,Yes,No
191 | 12.11,118,117,18,509,104,Medium,26,15,No,Yes
192 | 8.79,130,37,13,297,101,Medium,37,13,No,Yes
193 | 6.67,156,42,13,170,173,Good,74,14,Yes,Yes
194 | 7.56,108,26,0,408,93,Medium,56,14,No,No
195 | 13.28,139,70,7,71,96,Good,61,10,Yes,Yes
196 | 7.23,112,98,18,481,128,Medium,45,11,Yes,Yes
197 | 4.19,117,93,4,420,112,Bad,66,11,Yes,Yes
198 | 4.1,130,28,6,410,133,Bad,72,16,Yes,Yes
199 | 2.52,124,61,0,333,138,Medium,76,16,Yes,No
200 | 3.62,112,80,5,500,128,Medium,69,10,Yes,Yes
201 | 6.42,122,88,5,335,126,Medium,64,14,Yes,Yes
202 | 5.56,144,92,0,349,146,Medium,62,12,No,No
203 | 5.94,138,83,0,139,134,Medium,54,18,Yes,No
204 | 4.1,121,78,4,413,130,Bad,46,10,No,Yes
205 | 2.05,131,82,0,132,157,Bad,25,14,Yes,No
206 | 8.74,155,80,0,237,124,Medium,37,14,Yes,No
207 | 5.68,113,22,1,317,132,Medium,28,12,Yes,No
208 | 4.97,162,67,0,27,160,Medium,77,17,Yes,Yes
209 | 8.19,111,105,0,466,97,Bad,61,10,No,No
210 | 7.78,86,54,0,497,64,Bad,33,12,Yes,No
211 | 3.02,98,21,11,326,90,Bad,76,11,No,Yes
212 | 4.36,125,41,2,357,123,Bad,47,14,No,Yes
213 | 9.39,117,118,14,445,120,Medium,32,15,Yes,Yes
214 | 12.04,145,69,19,501,105,Medium,45,11,Yes,Yes
215 | 8.23,149,84,5,220,139,Medium,33,10,Yes,Yes
216 | 4.83,115,115,3,48,107,Medium,73,18,Yes,Yes
217 | 2.34,116,83,15,170,144,Bad,71,11,Yes,Yes
218 | 5.73,141,33,0,243,144,Medium,34,17,Yes,No
219 | 4.34,106,44,0,481,111,Medium,70,14,No,No
220 | 9.7,138,61,12,156,120,Medium,25,14,Yes,Yes
221 | 10.62,116,79,19,359,116,Good,58,17,Yes,Yes
222 | 10.59,131,120,15,262,124,Medium,30,10,Yes,Yes
223 | 6.43,124,44,0,125,107,Medium,80,11,Yes,No
224 | 7.49,136,119,6,178,145,Medium,35,13,Yes,Yes
225 | 3.45,110,45,9,276,125,Medium,62,14,Yes,Yes
226 | 4.1,134,82,0,464,141,Medium,48,13,No,No
227 | 6.68,107,25,0,412,82,Bad,36,14,Yes,No
228 | 7.8,119,33,0,245,122,Good,56,14,Yes,No
229 | 8.69,113,64,10,68,101,Medium,57,16,Yes,Yes
230 | 5.4,149,73,13,381,163,Bad,26,11,No,Yes
231 | 11.19,98,104,0,404,72,Medium,27,18,No,No
232 | 5.16,115,60,0,119,114,Bad,38,14,No,No
233 | 8.09,132,69,0,123,122,Medium,27,11,No,No
234 | 13.14,137,80,10,24,105,Good,61,15,Yes,Yes
235 | 8.65,123,76,18,218,120,Medium,29,14,No,Yes
236 | 9.43,115,62,11,289,129,Good,56,16,No,Yes
237 | 5.53,126,32,8,95,132,Medium,50,17,Yes,Yes
238 | 9.32,141,34,16,361,108,Medium,69,10,Yes,Yes
239 | 9.62,151,28,8,499,135,Medium,48,10,Yes,Yes
240 | 7.36,121,24,0,200,133,Good,73,13,Yes,No
241 | 3.89,123,105,0,149,118,Bad,62,16,Yes,Yes
242 | 10.31,159,80,0,362,121,Medium,26,18,Yes,No
243 | 12.01,136,63,0,160,94,Medium,38,12,Yes,No
244 | 4.68,124,46,0,199,135,Medium,52,14,No,No
245 | 7.82,124,25,13,87,110,Medium,57,10,Yes,Yes
246 | 8.78,130,30,0,391,100,Medium,26,18,Yes,No
247 | 10.0,114,43,0,199,88,Good,57,10,No,Yes
248 | 6.9,120,56,20,266,90,Bad,78,18,Yes,Yes
249 | 5.04,123,114,0,298,151,Bad,34,16,Yes,No
250 | 5.36,111,52,0,12,101,Medium,61,11,Yes,Yes
251 | 5.05,125,67,0,86,117,Bad,65,11,Yes,No
252 | 9.16,137,105,10,435,156,Good,72,14,Yes,Yes
253 | 3.72,139,111,5,310,132,Bad,62,13,Yes,Yes
254 | 8.31,133,97,0,70,117,Medium,32,16,Yes,No
255 | 5.64,124,24,5,288,122,Medium,57,12,No,Yes
256 | 9.58,108,104,23,353,129,Good,37,17,Yes,Yes
257 | 7.71,123,81,8,198,81,Bad,80,15,Yes,Yes
258 | 4.2,147,40,0,277,144,Medium,73,10,Yes,No
259 | 8.67,125,62,14,477,112,Medium,80,13,Yes,Yes
260 | 3.47,108,38,0,251,81,Bad,72,14,No,No
261 | 5.12,123,36,10,467,100,Bad,74,11,No,Yes
262 | 7.67,129,117,8,400,101,Bad,36,10,Yes,Yes
263 | 5.71,121,42,4,188,118,Medium,54,15,Yes,Yes
264 | 6.37,120,77,15,86,132,Medium,48,18,Yes,Yes
265 | 7.77,116,26,6,434,115,Medium,25,17,Yes,Yes
266 | 6.95,128,29,5,324,159,Good,31,15,Yes,Yes
267 | 5.31,130,35,10,402,129,Bad,39,17,Yes,Yes
268 | 9.1,128,93,12,343,112,Good,73,17,No,Yes
269 | 5.83,134,82,7,473,112,Bad,51,12,No,Yes
270 | 6.53,123,57,0,66,105,Medium,39,11,Yes,No
271 | 5.01,159,69,0,438,166,Medium,46,17,Yes,No
272 | 11.99,119,26,0,284,89,Good,26,10,Yes,No
273 | 4.55,111,56,0,504,110,Medium,62,16,Yes,No
274 | 12.98,113,33,0,14,63,Good,38,12,Yes,No
275 | 10.04,116,106,8,244,86,Medium,58,12,Yes,Yes
276 | 7.22,135,93,2,67,119,Medium,34,11,Yes,Yes
277 | 6.67,107,119,11,210,132,Medium,53,11,Yes,Yes
278 | 6.93,135,69,14,296,130,Medium,73,15,Yes,Yes
279 | 7.8,136,48,12,326,125,Medium,36,16,Yes,Yes
280 | 7.22,114,113,2,129,151,Good,40,15,No,Yes
281 | 3.42,141,57,13,376,158,Medium,64,18,Yes,Yes
282 | 2.86,121,86,10,496,145,Bad,51,10,Yes,Yes
283 | 11.19,122,69,7,303,105,Good,45,16,No,Yes
284 | 7.74,150,96,0,80,154,Good,61,11,Yes,No
285 | 5.36,135,110,0,112,117,Medium,80,16,No,No
286 | 6.97,106,46,11,414,96,Bad,79,17,No,No
287 | 7.6,146,26,11,261,131,Medium,39,10,Yes,Yes
288 | 7.53,117,118,11,429,113,Medium,67,18,No,Yes
289 | 6.88,95,44,4,208,72,Bad,44,17,Yes,Yes
290 | 6.98,116,40,0,74,97,Medium,76,15,No,No
291 | 8.75,143,77,25,448,156,Medium,43,17,Yes,Yes
292 | 9.49,107,111,14,400,103,Medium,41,11,No,Yes
293 | 6.64,118,70,0,106,89,Bad,39,17,Yes,No
294 | 11.82,113,66,16,322,74,Good,76,15,Yes,Yes
295 | 11.28,123,84,0,74,89,Good,59,10,Yes,No
296 | 12.66,148,76,3,126,99,Good,60,11,Yes,Yes
297 | 4.21,118,35,14,502,137,Medium,79,10,No,Yes
298 | 8.21,127,44,13,160,123,Good,63,18,Yes,Yes
299 | 3.07,118,83,13,276,104,Bad,75,10,Yes,Yes
300 | 10.98,148,63,0,312,130,Good,63,15,Yes,No
301 | 9.4,135,40,17,497,96,Medium,54,17,No,Yes
302 | 8.57,116,78,1,158,99,Medium,45,11,Yes,Yes
303 | 7.41,99,93,0,198,87,Medium,57,16,Yes,Yes
304 | 5.28,108,77,13,388,110,Bad,74,14,Yes,Yes
305 | 10.01,133,52,16,290,99,Medium,43,11,Yes,Yes
306 | 11.93,123,98,12,408,134,Good,29,10,Yes,Yes
307 | 8.03,115,29,26,394,132,Medium,33,13,Yes,Yes
308 | 4.78,131,32,1,85,133,Medium,48,12,Yes,Yes
309 | 5.9,138,92,0,13,120,Bad,61,12,Yes,No
310 | 9.24,126,80,19,436,126,Medium,52,10,Yes,Yes
311 | 11.18,131,111,13,33,80,Bad,68,18,Yes,Yes
312 | 9.53,175,65,29,419,166,Medium,53,12,Yes,Yes
313 | 6.15,146,68,12,328,132,Bad,51,14,Yes,Yes
314 | 6.8,137,117,5,337,135,Bad,38,10,Yes,Yes
315 | 9.33,103,81,3,491,54,Medium,66,13,Yes,No
316 | 7.72,133,33,10,333,129,Good,71,14,Yes,Yes
317 | 6.39,131,21,8,220,171,Good,29,14,Yes,Yes
318 | 15.63,122,36,5,369,72,Good,35,10,Yes,Yes
319 | 6.41,142,30,0,472,136,Good,80,15,No,No
320 | 10.08,116,72,10,456,130,Good,41,14,No,Yes
321 | 6.97,127,45,19,459,129,Medium,57,11,No,Yes
322 | 5.86,136,70,12,171,152,Medium,44,18,Yes,Yes
323 | 7.52,123,39,5,499,98,Medium,34,15,Yes,No
324 | 9.16,140,50,10,300,139,Good,60,15,Yes,Yes
325 | 10.36,107,105,18,428,103,Medium,34,12,Yes,Yes
326 | 2.66,136,65,4,133,150,Bad,53,13,Yes,Yes
327 | 11.7,144,69,11,131,104,Medium,47,11,Yes,Yes
328 | 4.69,133,30,0,152,122,Medium,53,17,Yes,No
329 | 6.23,112,38,17,316,104,Medium,80,16,Yes,Yes
330 | 3.15,117,66,1,65,111,Bad,55,11,Yes,Yes
331 | 11.27,100,54,9,433,89,Good,45,12,Yes,Yes
332 | 4.99,122,59,0,501,112,Bad,32,14,No,No
333 | 10.1,135,63,15,213,134,Medium,32,10,Yes,Yes
334 | 5.74,106,33,20,354,104,Medium,61,12,Yes,Yes
335 | 5.87,136,60,7,303,147,Medium,41,10,Yes,Yes
336 | 7.63,93,117,9,489,83,Bad,42,13,Yes,Yes
337 | 6.18,120,70,15,464,110,Medium,72,15,Yes,Yes
338 | 5.17,138,35,6,60,143,Bad,28,18,Yes,No
339 | 8.61,130,38,0,283,102,Medium,80,15,Yes,No
340 | 5.97,112,24,0,164,101,Medium,45,11,Yes,No
341 | 11.54,134,44,4,219,126,Good,44,15,Yes,Yes
342 | 7.5,140,29,0,105,91,Bad,43,16,Yes,No
343 | 7.38,98,120,0,268,93,Medium,72,10,No,No
344 | 7.81,137,102,13,422,118,Medium,71,10,No,Yes
345 | 5.99,117,42,10,371,121,Bad,26,14,Yes,Yes
346 | 8.43,138,80,0,108,126,Good,70,13,No,Yes
347 | 4.81,121,68,0,279,149,Good,79,12,Yes,No
348 | 8.97,132,107,0,144,125,Medium,33,13,No,No
349 | 6.88,96,39,0,161,112,Good,27,14,No,No
350 | 12.57,132,102,20,459,107,Good,49,11,Yes,Yes
351 | 9.32,134,27,18,467,96,Medium,49,14,No,Yes
352 | 8.64,111,101,17,266,91,Medium,63,17,No,Yes
353 | 10.44,124,115,16,458,105,Medium,62,16,No,Yes
354 | 13.44,133,103,14,288,122,Good,61,17,Yes,Yes
355 | 9.45,107,67,12,430,92,Medium,35,12,No,Yes
356 | 5.3,133,31,1,80,145,Medium,42,18,Yes,Yes
357 | 7.02,130,100,0,306,146,Good,42,11,Yes,No
358 | 3.58,142,109,0,111,164,Good,72,12,Yes,No
359 | 13.36,103,73,3,276,72,Medium,34,15,Yes,Yes
360 | 4.17,123,96,10,71,118,Bad,69,11,Yes,Yes
361 | 3.13,130,62,11,396,130,Bad,66,14,Yes,Yes
362 | 8.77,118,86,7,265,114,Good,52,15,No,Yes
363 | 8.68,131,25,10,183,104,Medium,56,15,No,Yes
364 | 5.25,131,55,0,26,110,Bad,79,12,Yes,Yes
365 | 10.26,111,75,1,377,108,Good,25,12,Yes,No
366 | 10.5,122,21,16,488,131,Good,30,14,Yes,Yes
367 | 6.53,154,30,0,122,162,Medium,57,17,No,No
368 | 5.98,124,56,11,447,134,Medium,53,12,No,Yes
369 | 14.37,95,106,0,256,53,Good,52,17,Yes,No
370 | 10.71,109,22,10,348,79,Good,74,14,No,Yes
371 | 10.26,135,100,22,463,122,Medium,36,14,Yes,Yes
372 | 7.68,126,41,22,403,119,Bad,42,12,Yes,Yes
373 | 9.08,152,81,0,191,126,Medium,54,16,Yes,No
374 | 7.8,121,50,0,508,98,Medium,65,11,No,No
375 | 5.58,137,71,0,402,116,Medium,78,17,Yes,No
376 | 9.44,131,47,7,90,118,Medium,47,12,Yes,Yes
377 | 7.9,132,46,4,206,124,Medium,73,11,Yes,No
378 | 16.27,141,60,19,319,92,Good,44,11,Yes,Yes
379 | 6.81,132,61,0,263,125,Medium,41,12,No,No
380 | 6.11,133,88,3,105,119,Medium,79,12,Yes,Yes
381 | 5.81,125,111,0,404,107,Bad,54,15,Yes,No
382 | 9.64,106,64,10,17,89,Medium,68,17,Yes,Yes
383 | 3.9,124,65,21,496,151,Bad,77,13,Yes,Yes
384 | 4.95,121,28,19,315,121,Medium,66,14,Yes,Yes
385 | 9.35,98,117,0,76,68,Medium,63,10,Yes,No
386 | 12.85,123,37,15,348,112,Good,28,12,Yes,Yes
387 | 5.87,131,73,13,455,132,Medium,62,17,Yes,Yes
388 | 5.32,152,116,0,170,160,Medium,39,16,Yes,No
389 | 8.67,142,73,14,238,115,Medium,73,14,No,Yes
390 | 8.14,135,89,11,245,78,Bad,79,16,Yes,Yes
391 | 8.44,128,42,8,328,107,Medium,35,12,Yes,Yes
392 | 5.47,108,75,9,61,111,Medium,67,12,Yes,Yes
393 | 6.1,153,63,0,49,124,Bad,56,16,Yes,No
394 | 4.53,129,42,13,315,130,Bad,34,13,Yes,Yes
395 | 5.57,109,51,10,26,120,Medium,30,17,No,Yes
396 | 5.35,130,58,19,366,139,Bad,33,16,Yes,Yes
397 | 12.57,138,108,17,203,128,Good,33,14,Yes,Yes
398 | 6.14,139,23,3,37,120,Medium,55,11,No,Yes
399 | 7.41,162,26,12,368,159,Medium,40,18,Yes,Yes
400 | 5.94,100,79,7,284,95,Bad,50,12,Yes,Yes
401 | 9.71,134,37,0,27,120,Good,49,16,Yes,Yes
402 |
--------------------------------------------------------------------------------
/data/csv/Auto.csv:
--------------------------------------------------------------------------------
1 | mpg,cylinders,displacement,horsepower,weight,acceleration,year,origin,name
2 | 18.0,8,307.0,130,3504,12.0,70,1,chevrolet chevelle malibu
3 | 15.0,8,350.0,165,3693,11.5,70,1,buick skylark 320
4 | 18.0,8,318.0,150,3436,11.0,70,1,plymouth satellite
5 | 16.0,8,304.0,150,3433,12.0,70,1,amc rebel sst
6 | 17.0,8,302.0,140,3449,10.5,70,1,ford torino
7 | 15.0,8,429.0,198,4341,10.0,70,1,ford galaxie 500
8 | 14.0,8,454.0,220,4354,9.0,70,1,chevrolet impala
9 | 14.0,8,440.0,215,4312,8.5,70,1,plymouth fury iii
10 | 14.0,8,455.0,225,4425,10.0,70,1,pontiac catalina
11 | 15.0,8,390.0,190,3850,8.5,70,1,amc ambassador dpl
12 | 15.0,8,383.0,170,3563,10.0,70,1,dodge challenger se
13 | 14.0,8,340.0,160,3609,8.0,70,1,plymouth 'cuda 340
14 | 15.0,8,400.0,150,3761,9.5,70,1,chevrolet monte carlo
15 | 14.0,8,455.0,225,3086,10.0,70,1,buick estate wagon (sw)
16 | 24.0,4,113.0,95,2372,15.0,70,3,toyota corona mark ii
17 | 22.0,6,198.0,95,2833,15.5,70,1,plymouth duster
18 | 18.0,6,199.0,97,2774,15.5,70,1,amc hornet
19 | 21.0,6,200.0,85,2587,16.0,70,1,ford maverick
20 | 27.0,4,97.0,88,2130,14.5,70,3,datsun pl510
21 | 26.0,4,97.0,46,1835,20.5,70,2,volkswagen 1131 deluxe sedan
22 | 25.0,4,110.0,87,2672,17.5,70,2,peugeot 504
23 | 24.0,4,107.0,90,2430,14.5,70,2,audi 100 ls
24 | 25.0,4,104.0,95,2375,17.5,70,2,saab 99e
25 | 26.0,4,121.0,113,2234,12.5,70,2,bmw 2002
26 | 21.0,6,199.0,90,2648,15.0,70,1,amc gremlin
27 | 10.0,8,360.0,215,4615,14.0,70,1,ford f250
28 | 10.0,8,307.0,200,4376,15.0,70,1,chevy c20
29 | 11.0,8,318.0,210,4382,13.5,70,1,dodge d200
30 | 9.0,8,304.0,193,4732,18.5,70,1,hi 1200d
31 | 27.0,4,97.0,88,2130,14.5,71,3,datsun pl510
32 | 28.0,4,140.0,90,2264,15.5,71,1,chevrolet vega 2300
33 | 25.0,4,113.0,95,2228,14.0,71,3,toyota corona
34 | 19.0,6,232.0,100,2634,13.0,71,1,amc gremlin
35 | 16.0,6,225.0,105,3439,15.5,71,1,plymouth satellite custom
36 | 17.0,6,250.0,100,3329,15.5,71,1,chevrolet chevelle malibu
37 | 19.0,6,250.0,88,3302,15.5,71,1,ford torino 500
38 | 18.0,6,232.0,100,3288,15.5,71,1,amc matador
39 | 14.0,8,350.0,165,4209,12.0,71,1,chevrolet impala
40 | 14.0,8,400.0,175,4464,11.5,71,1,pontiac catalina brougham
41 | 14.0,8,351.0,153,4154,13.5,71,1,ford galaxie 500
42 | 14.0,8,318.0,150,4096,13.0,71,1,plymouth fury iii
43 | 12.0,8,383.0,180,4955,11.5,71,1,dodge monaco (sw)
44 | 13.0,8,400.0,170,4746,12.0,71,1,ford country squire (sw)
45 | 13.0,8,400.0,175,5140,12.0,71,1,pontiac safari (sw)
46 | 18.0,6,258.0,110,2962,13.5,71,1,amc hornet sportabout (sw)
47 | 22.0,4,140.0,72,2408,19.0,71,1,chevrolet vega (sw)
48 | 19.0,6,250.0,100,3282,15.0,71,1,pontiac firebird
49 | 18.0,6,250.0,88,3139,14.5,71,1,ford mustang
50 | 23.0,4,122.0,86,2220,14.0,71,1,mercury capri 2000
51 | 28.0,4,116.0,90,2123,14.0,71,2,opel 1900
52 | 30.0,4,79.0,70,2074,19.5,71,2,peugeot 304
53 | 30.0,4,88.0,76,2065,14.5,71,2,fiat 124b
54 | 31.0,4,71.0,65,1773,19.0,71,3,toyota corolla 1200
55 | 35.0,4,72.0,69,1613,18.0,71,3,datsun 1200
56 | 27.0,4,97.0,60,1834,19.0,71,2,volkswagen model 111
57 | 26.0,4,91.0,70,1955,20.5,71,1,plymouth cricket
58 | 24.0,4,113.0,95,2278,15.5,72,3,toyota corona hardtop
59 | 25.0,4,97.5,80,2126,17.0,72,1,dodge colt hardtop
60 | 23.0,4,97.0,54,2254,23.5,72,2,volkswagen type 3
61 | 20.0,4,140.0,90,2408,19.5,72,1,chevrolet vega
62 | 21.0,4,122.0,86,2226,16.5,72,1,ford pinto runabout
63 | 13.0,8,350.0,165,4274,12.0,72,1,chevrolet impala
64 | 14.0,8,400.0,175,4385,12.0,72,1,pontiac catalina
65 | 15.0,8,318.0,150,4135,13.5,72,1,plymouth fury iii
66 | 14.0,8,351.0,153,4129,13.0,72,1,ford galaxie 500
67 | 17.0,8,304.0,150,3672,11.5,72,1,amc ambassador sst
68 | 11.0,8,429.0,208,4633,11.0,72,1,mercury marquis
69 | 13.0,8,350.0,155,4502,13.5,72,1,buick lesabre custom
70 | 12.0,8,350.0,160,4456,13.5,72,1,oldsmobile delta 88 royale
71 | 13.0,8,400.0,190,4422,12.5,72,1,chrysler newport royal
72 | 19.0,3,70.0,97,2330,13.5,72,3,mazda rx2 coupe
73 | 15.0,8,304.0,150,3892,12.5,72,1,amc matador (sw)
74 | 13.0,8,307.0,130,4098,14.0,72,1,chevrolet chevelle concours (sw)
75 | 13.0,8,302.0,140,4294,16.0,72,1,ford gran torino (sw)
76 | 14.0,8,318.0,150,4077,14.0,72,1,plymouth satellite custom (sw)
77 | 18.0,4,121.0,112,2933,14.5,72,2,volvo 145e (sw)
78 | 22.0,4,121.0,76,2511,18.0,72,2,volkswagen 411 (sw)
79 | 21.0,4,120.0,87,2979,19.5,72,2,peugeot 504 (sw)
80 | 26.0,4,96.0,69,2189,18.0,72,2,renault 12 (sw)
81 | 22.0,4,122.0,86,2395,16.0,72,1,ford pinto (sw)
82 | 28.0,4,97.0,92,2288,17.0,72,3,datsun 510 (sw)
83 | 23.0,4,120.0,97,2506,14.5,72,3,toyouta corona mark ii (sw)
84 | 28.0,4,98.0,80,2164,15.0,72,1,dodge colt (sw)
85 | 27.0,4,97.0,88,2100,16.5,72,3,toyota corolla 1600 (sw)
86 | 13.0,8,350.0,175,4100,13.0,73,1,buick century 350
87 | 14.0,8,304.0,150,3672,11.5,73,1,amc matador
88 | 13.0,8,350.0,145,3988,13.0,73,1,chevrolet malibu
89 | 14.0,8,302.0,137,4042,14.5,73,1,ford gran torino
90 | 15.0,8,318.0,150,3777,12.5,73,1,dodge coronet custom
91 | 12.0,8,429.0,198,4952,11.5,73,1,mercury marquis brougham
92 | 13.0,8,400.0,150,4464,12.0,73,1,chevrolet caprice classic
93 | 13.0,8,351.0,158,4363,13.0,73,1,ford ltd
94 | 14.0,8,318.0,150,4237,14.5,73,1,plymouth fury gran sedan
95 | 13.0,8,440.0,215,4735,11.0,73,1,chrysler new yorker brougham
96 | 12.0,8,455.0,225,4951,11.0,73,1,buick electra 225 custom
97 | 13.0,8,360.0,175,3821,11.0,73,1,amc ambassador brougham
98 | 18.0,6,225.0,105,3121,16.5,73,1,plymouth valiant
99 | 16.0,6,250.0,100,3278,18.0,73,1,chevrolet nova custom
100 | 18.0,6,232.0,100,2945,16.0,73,1,amc hornet
101 | 18.0,6,250.0,88,3021,16.5,73,1,ford maverick
102 | 23.0,6,198.0,95,2904,16.0,73,1,plymouth duster
103 | 26.0,4,97.0,46,1950,21.0,73,2,volkswagen super beetle
104 | 11.0,8,400.0,150,4997,14.0,73,1,chevrolet impala
105 | 12.0,8,400.0,167,4906,12.5,73,1,ford country
106 | 13.0,8,360.0,170,4654,13.0,73,1,plymouth custom suburb
107 | 12.0,8,350.0,180,4499,12.5,73,1,oldsmobile vista cruiser
108 | 18.0,6,232.0,100,2789,15.0,73,1,amc gremlin
109 | 20.0,4,97.0,88,2279,19.0,73,3,toyota carina
110 | 21.0,4,140.0,72,2401,19.5,73,1,chevrolet vega
111 | 22.0,4,108.0,94,2379,16.5,73,3,datsun 610
112 | 18.0,3,70.0,90,2124,13.5,73,3,maxda rx3
113 | 19.0,4,122.0,85,2310,18.5,73,1,ford pinto
114 | 21.0,6,155.0,107,2472,14.0,73,1,mercury capri v6
115 | 26.0,4,98.0,90,2265,15.5,73,2,fiat 124 sport coupe
116 | 15.0,8,350.0,145,4082,13.0,73,1,chevrolet monte carlo s
117 | 16.0,8,400.0,230,4278,9.5,73,1,pontiac grand prix
118 | 29.0,4,68.0,49,1867,19.5,73,2,fiat 128
119 | 24.0,4,116.0,75,2158,15.5,73,2,opel manta
120 | 20.0,4,114.0,91,2582,14.0,73,2,audi 100ls
121 | 19.0,4,121.0,112,2868,15.5,73,2,volvo 144ea
122 | 15.0,8,318.0,150,3399,11.0,73,1,dodge dart custom
123 | 24.0,4,121.0,110,2660,14.0,73,2,saab 99le
124 | 20.0,6,156.0,122,2807,13.5,73,3,toyota mark ii
125 | 11.0,8,350.0,180,3664,11.0,73,1,oldsmobile omega
126 | 20.0,6,198.0,95,3102,16.5,74,1,plymouth duster
127 | 19.0,6,232.0,100,2901,16.0,74,1,amc hornet
128 | 15.0,6,250.0,100,3336,17.0,74,1,chevrolet nova
129 | 31.0,4,79.0,67,1950,19.0,74,3,datsun b210
130 | 26.0,4,122.0,80,2451,16.5,74,1,ford pinto
131 | 32.0,4,71.0,65,1836,21.0,74,3,toyota corolla 1200
132 | 25.0,4,140.0,75,2542,17.0,74,1,chevrolet vega
133 | 16.0,6,250.0,100,3781,17.0,74,1,chevrolet chevelle malibu classic
134 | 16.0,6,258.0,110,3632,18.0,74,1,amc matador
135 | 18.0,6,225.0,105,3613,16.5,74,1,plymouth satellite sebring
136 | 16.0,8,302.0,140,4141,14.0,74,1,ford gran torino
137 | 13.0,8,350.0,150,4699,14.5,74,1,buick century luxus (sw)
138 | 14.0,8,318.0,150,4457,13.5,74,1,dodge coronet custom (sw)
139 | 14.0,8,302.0,140,4638,16.0,74,1,ford gran torino (sw)
140 | 14.0,8,304.0,150,4257,15.5,74,1,amc matador (sw)
141 | 29.0,4,98.0,83,2219,16.5,74,2,audi fox
142 | 26.0,4,79.0,67,1963,15.5,74,2,volkswagen dasher
143 | 26.0,4,97.0,78,2300,14.5,74,2,opel manta
144 | 31.0,4,76.0,52,1649,16.5,74,3,toyota corona
145 | 32.0,4,83.0,61,2003,19.0,74,3,datsun 710
146 | 28.0,4,90.0,75,2125,14.5,74,1,dodge colt
147 | 24.0,4,90.0,75,2108,15.5,74,2,fiat 128
148 | 26.0,4,116.0,75,2246,14.0,74,2,fiat 124 tc
149 | 24.0,4,120.0,97,2489,15.0,74,3,honda civic
150 | 26.0,4,108.0,93,2391,15.5,74,3,subaru
151 | 31.0,4,79.0,67,2000,16.0,74,2,fiat x1.9
152 | 19.0,6,225.0,95,3264,16.0,75,1,plymouth valiant custom
153 | 18.0,6,250.0,105,3459,16.0,75,1,chevrolet nova
154 | 15.0,6,250.0,72,3432,21.0,75,1,mercury monarch
155 | 15.0,6,250.0,72,3158,19.5,75,1,ford maverick
156 | 16.0,8,400.0,170,4668,11.5,75,1,pontiac catalina
157 | 15.0,8,350.0,145,4440,14.0,75,1,chevrolet bel air
158 | 16.0,8,318.0,150,4498,14.5,75,1,plymouth grand fury
159 | 14.0,8,351.0,148,4657,13.5,75,1,ford ltd
160 | 17.0,6,231.0,110,3907,21.0,75,1,buick century
161 | 16.0,6,250.0,105,3897,18.5,75,1,chevroelt chevelle malibu
162 | 15.0,6,258.0,110,3730,19.0,75,1,amc matador
163 | 18.0,6,225.0,95,3785,19.0,75,1,plymouth fury
164 | 21.0,6,231.0,110,3039,15.0,75,1,buick skyhawk
165 | 20.0,8,262.0,110,3221,13.5,75,1,chevrolet monza 2+2
166 | 13.0,8,302.0,129,3169,12.0,75,1,ford mustang ii
167 | 29.0,4,97.0,75,2171,16.0,75,3,toyota corolla
168 | 23.0,4,140.0,83,2639,17.0,75,1,ford pinto
169 | 20.0,6,232.0,100,2914,16.0,75,1,amc gremlin
170 | 23.0,4,140.0,78,2592,18.5,75,1,pontiac astro
171 | 24.0,4,134.0,96,2702,13.5,75,3,toyota corona
172 | 25.0,4,90.0,71,2223,16.5,75,2,volkswagen dasher
173 | 24.0,4,119.0,97,2545,17.0,75,3,datsun 710
174 | 18.0,6,171.0,97,2984,14.5,75,1,ford pinto
175 | 29.0,4,90.0,70,1937,14.0,75,2,volkswagen rabbit
176 | 19.0,6,232.0,90,3211,17.0,75,1,amc pacer
177 | 23.0,4,115.0,95,2694,15.0,75,2,audi 100ls
178 | 23.0,4,120.0,88,2957,17.0,75,2,peugeot 504
179 | 22.0,4,121.0,98,2945,14.5,75,2,volvo 244dl
180 | 25.0,4,121.0,115,2671,13.5,75,2,saab 99le
181 | 33.0,4,91.0,53,1795,17.5,75,3,honda civic cvcc
182 | 28.0,4,107.0,86,2464,15.5,76,2,fiat 131
183 | 25.0,4,116.0,81,2220,16.9,76,2,opel 1900
184 | 25.0,4,140.0,92,2572,14.9,76,1,capri ii
185 | 26.0,4,98.0,79,2255,17.7,76,1,dodge colt
186 | 27.0,4,101.0,83,2202,15.3,76,2,renault 12tl
187 | 17.5,8,305.0,140,4215,13.0,76,1,chevrolet chevelle malibu classic
188 | 16.0,8,318.0,150,4190,13.0,76,1,dodge coronet brougham
189 | 15.5,8,304.0,120,3962,13.9,76,1,amc matador
190 | 14.5,8,351.0,152,4215,12.8,76,1,ford gran torino
191 | 22.0,6,225.0,100,3233,15.4,76,1,plymouth valiant
192 | 22.0,6,250.0,105,3353,14.5,76,1,chevrolet nova
193 | 24.0,6,200.0,81,3012,17.6,76,1,ford maverick
194 | 22.5,6,232.0,90,3085,17.6,76,1,amc hornet
195 | 29.0,4,85.0,52,2035,22.2,76,1,chevrolet chevette
196 | 24.5,4,98.0,60,2164,22.1,76,1,chevrolet woody
197 | 29.0,4,90.0,70,1937,14.2,76,2,vw rabbit
198 | 33.0,4,91.0,53,1795,17.4,76,3,honda civic
199 | 20.0,6,225.0,100,3651,17.7,76,1,dodge aspen se
200 | 18.0,6,250.0,78,3574,21.0,76,1,ford granada ghia
201 | 18.5,6,250.0,110,3645,16.2,76,1,pontiac ventura sj
202 | 17.5,6,258.0,95,3193,17.8,76,1,amc pacer d/l
203 | 29.5,4,97.0,71,1825,12.2,76,2,volkswagen rabbit
204 | 32.0,4,85.0,70,1990,17.0,76,3,datsun b-210
205 | 28.0,4,97.0,75,2155,16.4,76,3,toyota corolla
206 | 26.5,4,140.0,72,2565,13.6,76,1,ford pinto
207 | 20.0,4,130.0,102,3150,15.7,76,2,volvo 245
208 | 13.0,8,318.0,150,3940,13.2,76,1,plymouth volare premier v8
209 | 19.0,4,120.0,88,3270,21.9,76,2,peugeot 504
210 | 19.0,6,156.0,108,2930,15.5,76,3,toyota mark ii
211 | 16.5,6,168.0,120,3820,16.7,76,2,mercedes-benz 280s
212 | 16.5,8,350.0,180,4380,12.1,76,1,cadillac seville
213 | 13.0,8,350.0,145,4055,12.0,76,1,chevy c10
214 | 13.0,8,302.0,130,3870,15.0,76,1,ford f108
215 | 13.0,8,318.0,150,3755,14.0,76,1,dodge d100
216 | 31.5,4,98.0,68,2045,18.5,77,3,honda accord cvcc
217 | 30.0,4,111.0,80,2155,14.8,77,1,buick opel isuzu deluxe
218 | 36.0,4,79.0,58,1825,18.6,77,2,renault 5 gtl
219 | 25.5,4,122.0,96,2300,15.5,77,1,plymouth arrow gs
220 | 33.5,4,85.0,70,1945,16.8,77,3,datsun f-10 hatchback
221 | 17.5,8,305.0,145,3880,12.5,77,1,chevrolet caprice classic
222 | 17.0,8,260.0,110,4060,19.0,77,1,oldsmobile cutlass supreme
223 | 15.5,8,318.0,145,4140,13.7,77,1,dodge monaco brougham
224 | 15.0,8,302.0,130,4295,14.9,77,1,mercury cougar brougham
225 | 17.5,6,250.0,110,3520,16.4,77,1,chevrolet concours
226 | 20.5,6,231.0,105,3425,16.9,77,1,buick skylark
227 | 19.0,6,225.0,100,3630,17.7,77,1,plymouth volare custom
228 | 18.5,6,250.0,98,3525,19.0,77,1,ford granada
229 | 16.0,8,400.0,180,4220,11.1,77,1,pontiac grand prix lj
230 | 15.5,8,350.0,170,4165,11.4,77,1,chevrolet monte carlo landau
231 | 15.5,8,400.0,190,4325,12.2,77,1,chrysler cordoba
232 | 16.0,8,351.0,149,4335,14.5,77,1,ford thunderbird
233 | 29.0,4,97.0,78,1940,14.5,77,2,volkswagen rabbit custom
234 | 24.5,4,151.0,88,2740,16.0,77,1,pontiac sunbird coupe
235 | 26.0,4,97.0,75,2265,18.2,77,3,toyota corolla liftback
236 | 25.5,4,140.0,89,2755,15.8,77,1,ford mustang ii 2+2
237 | 30.5,4,98.0,63,2051,17.0,77,1,chevrolet chevette
238 | 33.5,4,98.0,83,2075,15.9,77,1,dodge colt m/m
239 | 30.0,4,97.0,67,1985,16.4,77,3,subaru dl
240 | 30.5,4,97.0,78,2190,14.1,77,2,volkswagen dasher
241 | 22.0,6,146.0,97,2815,14.5,77,3,datsun 810
242 | 21.5,4,121.0,110,2600,12.8,77,2,bmw 320i
243 | 21.5,3,80.0,110,2720,13.5,77,3,mazda rx-4
244 | 43.1,4,90.0,48,1985,21.5,78,2,volkswagen rabbit custom diesel
245 | 36.1,4,98.0,66,1800,14.4,78,1,ford fiesta
246 | 32.8,4,78.0,52,1985,19.4,78,3,mazda glc deluxe
247 | 39.4,4,85.0,70,2070,18.6,78,3,datsun b210 gx
248 | 36.1,4,91.0,60,1800,16.4,78,3,honda civic cvcc
249 | 19.9,8,260.0,110,3365,15.5,78,1,oldsmobile cutlass salon brougham
250 | 19.4,8,318.0,140,3735,13.2,78,1,dodge diplomat
251 | 20.2,8,302.0,139,3570,12.8,78,1,mercury monarch ghia
252 | 19.2,6,231.0,105,3535,19.2,78,1,pontiac phoenix lj
253 | 20.5,6,200.0,95,3155,18.2,78,1,chevrolet malibu
254 | 20.2,6,200.0,85,2965,15.8,78,1,ford fairmont (auto)
255 | 25.1,4,140.0,88,2720,15.4,78,1,ford fairmont (man)
256 | 20.5,6,225.0,100,3430,17.2,78,1,plymouth volare
257 | 19.4,6,232.0,90,3210,17.2,78,1,amc concord
258 | 20.6,6,231.0,105,3380,15.8,78,1,buick century special
259 | 20.8,6,200.0,85,3070,16.7,78,1,mercury zephyr
260 | 18.6,6,225.0,110,3620,18.7,78,1,dodge aspen
261 | 18.1,6,258.0,120,3410,15.1,78,1,amc concord d/l
262 | 19.2,8,305.0,145,3425,13.2,78,1,chevrolet monte carlo landau
263 | 17.7,6,231.0,165,3445,13.4,78,1,buick regal sport coupe (turbo)
264 | 18.1,8,302.0,139,3205,11.2,78,1,ford futura
265 | 17.5,8,318.0,140,4080,13.7,78,1,dodge magnum xe
266 | 30.0,4,98.0,68,2155,16.5,78,1,chevrolet chevette
267 | 27.5,4,134.0,95,2560,14.2,78,3,toyota corona
268 | 27.2,4,119.0,97,2300,14.7,78,3,datsun 510
269 | 30.9,4,105.0,75,2230,14.5,78,1,dodge omni
270 | 21.1,4,134.0,95,2515,14.8,78,3,toyota celica gt liftback
271 | 23.2,4,156.0,105,2745,16.7,78,1,plymouth sapporo
272 | 23.8,4,151.0,85,2855,17.6,78,1,oldsmobile starfire sx
273 | 23.9,4,119.0,97,2405,14.9,78,3,datsun 200-sx
274 | 20.3,5,131.0,103,2830,15.9,78,2,audi 5000
275 | 17.0,6,163.0,125,3140,13.6,78,2,volvo 264gl
276 | 21.6,4,121.0,115,2795,15.7,78,2,saab 99gle
277 | 16.2,6,163.0,133,3410,15.8,78,2,peugeot 604sl
278 | 31.5,4,89.0,71,1990,14.9,78,2,volkswagen scirocco
279 | 29.5,4,98.0,68,2135,16.6,78,3,honda accord lx
280 | 21.5,6,231.0,115,3245,15.4,79,1,pontiac lemans v6
281 | 19.8,6,200.0,85,2990,18.2,79,1,mercury zephyr 6
282 | 22.3,4,140.0,88,2890,17.3,79,1,ford fairmont 4
283 | 20.2,6,232.0,90,3265,18.2,79,1,amc concord dl 6
284 | 20.6,6,225.0,110,3360,16.6,79,1,dodge aspen 6
285 | 17.0,8,305.0,130,3840,15.4,79,1,chevrolet caprice classic
286 | 17.6,8,302.0,129,3725,13.4,79,1,ford ltd landau
287 | 16.5,8,351.0,138,3955,13.2,79,1,mercury grand marquis
288 | 18.2,8,318.0,135,3830,15.2,79,1,dodge st. regis
289 | 16.9,8,350.0,155,4360,14.9,79,1,buick estate wagon (sw)
290 | 15.5,8,351.0,142,4054,14.3,79,1,ford country squire (sw)
291 | 19.2,8,267.0,125,3605,15.0,79,1,chevrolet malibu classic (sw)
292 | 18.5,8,360.0,150,3940,13.0,79,1,chrysler lebaron town @ country (sw)
293 | 31.9,4,89.0,71,1925,14.0,79,2,vw rabbit custom
294 | 34.1,4,86.0,65,1975,15.2,79,3,maxda glc deluxe
295 | 35.7,4,98.0,80,1915,14.4,79,1,dodge colt hatchback custom
296 | 27.4,4,121.0,80,2670,15.0,79,1,amc spirit dl
297 | 25.4,5,183.0,77,3530,20.1,79,2,mercedes benz 300d
298 | 23.0,8,350.0,125,3900,17.4,79,1,cadillac eldorado
299 | 27.2,4,141.0,71,3190,24.8,79,2,peugeot 504
300 | 23.9,8,260.0,90,3420,22.2,79,1,oldsmobile cutlass salon brougham
301 | 34.2,4,105.0,70,2200,13.2,79,1,plymouth horizon
302 | 34.5,4,105.0,70,2150,14.9,79,1,plymouth horizon tc3
303 | 31.8,4,85.0,65,2020,19.2,79,3,datsun 210
304 | 37.3,4,91.0,69,2130,14.7,79,2,fiat strada custom
305 | 28.4,4,151.0,90,2670,16.0,79,1,buick skylark limited
306 | 28.8,6,173.0,115,2595,11.3,79,1,chevrolet citation
307 | 26.8,6,173.0,115,2700,12.9,79,1,oldsmobile omega brougham
308 | 33.5,4,151.0,90,2556,13.2,79,1,pontiac phoenix
309 | 41.5,4,98.0,76,2144,14.7,80,2,vw rabbit
310 | 38.1,4,89.0,60,1968,18.8,80,3,toyota corolla tercel
311 | 32.1,4,98.0,70,2120,15.5,80,1,chevrolet chevette
312 | 37.2,4,86.0,65,2019,16.4,80,3,datsun 310
313 | 28.0,4,151.0,90,2678,16.5,80,1,chevrolet citation
314 | 26.4,4,140.0,88,2870,18.1,80,1,ford fairmont
315 | 24.3,4,151.0,90,3003,20.1,80,1,amc concord
316 | 19.1,6,225.0,90,3381,18.7,80,1,dodge aspen
317 | 34.3,4,97.0,78,2188,15.8,80,2,audi 4000
318 | 29.8,4,134.0,90,2711,15.5,80,3,toyota corona liftback
319 | 31.3,4,120.0,75,2542,17.5,80,3,mazda 626
320 | 37.0,4,119.0,92,2434,15.0,80,3,datsun 510 hatchback
321 | 32.2,4,108.0,75,2265,15.2,80,3,toyota corolla
322 | 46.6,4,86.0,65,2110,17.9,80,3,mazda glc
323 | 27.9,4,156.0,105,2800,14.4,80,1,dodge colt
324 | 40.8,4,85.0,65,2110,19.2,80,3,datsun 210
325 | 44.3,4,90.0,48,2085,21.7,80,2,vw rabbit c (diesel)
326 | 43.4,4,90.0,48,2335,23.7,80,2,vw dasher (diesel)
327 | 36.4,5,121.0,67,2950,19.9,80,2,audi 5000s (diesel)
328 | 30.0,4,146.0,67,3250,21.8,80,2,mercedes-benz 240d
329 | 44.6,4,91.0,67,1850,13.8,80,3,honda civic 1500 gl
330 | 33.8,4,97.0,67,2145,18.0,80,3,subaru dl
331 | 29.8,4,89.0,62,1845,15.3,80,2,vokswagen rabbit
332 | 32.7,6,168.0,132,2910,11.4,80,3,datsun 280-zx
333 | 23.7,3,70.0,100,2420,12.5,80,3,mazda rx-7 gs
334 | 35.0,4,122.0,88,2500,15.1,80,2,triumph tr7 coupe
335 | 32.4,4,107.0,72,2290,17.0,80,3,honda accord
336 | 27.2,4,135.0,84,2490,15.7,81,1,plymouth reliant
337 | 26.6,4,151.0,84,2635,16.4,81,1,buick skylark
338 | 25.8,4,156.0,92,2620,14.4,81,1,dodge aries wagon (sw)
339 | 23.5,6,173.0,110,2725,12.6,81,1,chevrolet citation
340 | 30.0,4,135.0,84,2385,12.9,81,1,plymouth reliant
341 | 39.1,4,79.0,58,1755,16.9,81,3,toyota starlet
342 | 39.0,4,86.0,64,1875,16.4,81,1,plymouth champ
343 | 35.1,4,81.0,60,1760,16.1,81,3,honda civic 1300
344 | 32.3,4,97.0,67,2065,17.8,81,3,subaru
345 | 37.0,4,85.0,65,1975,19.4,81,3,datsun 210 mpg
346 | 37.7,4,89.0,62,2050,17.3,81,3,toyota tercel
347 | 34.1,4,91.0,68,1985,16.0,81,3,mazda glc 4
348 | 34.7,4,105.0,63,2215,14.9,81,1,plymouth horizon 4
349 | 34.4,4,98.0,65,2045,16.2,81,1,ford escort 4w
350 | 29.9,4,98.0,65,2380,20.7,81,1,ford escort 2h
351 | 33.0,4,105.0,74,2190,14.2,81,2,volkswagen jetta
352 | 33.7,4,107.0,75,2210,14.4,81,3,honda prelude
353 | 32.4,4,108.0,75,2350,16.8,81,3,toyota corolla
354 | 32.9,4,119.0,100,2615,14.8,81,3,datsun 200sx
355 | 31.6,4,120.0,74,2635,18.3,81,3,mazda 626
356 | 28.1,4,141.0,80,3230,20.4,81,2,peugeot 505s turbo diesel
357 | 30.7,6,145.0,76,3160,19.6,81,2,volvo diesel
358 | 25.4,6,168.0,116,2900,12.6,81,3,toyota cressida
359 | 24.2,6,146.0,120,2930,13.8,81,3,datsun 810 maxima
360 | 22.4,6,231.0,110,3415,15.8,81,1,buick century
361 | 26.6,8,350.0,105,3725,19.0,81,1,oldsmobile cutlass ls
362 | 20.2,6,200.0,88,3060,17.1,81,1,ford granada gl
363 | 17.6,6,225.0,85,3465,16.6,81,1,chrysler lebaron salon
364 | 28.0,4,112.0,88,2605,19.6,82,1,chevrolet cavalier
365 | 27.0,4,112.0,88,2640,18.6,82,1,chevrolet cavalier wagon
366 | 34.0,4,112.0,88,2395,18.0,82,1,chevrolet cavalier 2-door
367 | 31.0,4,112.0,85,2575,16.2,82,1,pontiac j2000 se hatchback
368 | 29.0,4,135.0,84,2525,16.0,82,1,dodge aries se
369 | 27.0,4,151.0,90,2735,18.0,82,1,pontiac phoenix
370 | 24.0,4,140.0,92,2865,16.4,82,1,ford fairmont futura
371 | 36.0,4,105.0,74,1980,15.3,82,2,volkswagen rabbit l
372 | 37.0,4,91.0,68,2025,18.2,82,3,mazda glc custom l
373 | 31.0,4,91.0,68,1970,17.6,82,3,mazda glc custom
374 | 38.0,4,105.0,63,2125,14.7,82,1,plymouth horizon miser
375 | 36.0,4,98.0,70,2125,17.3,82,1,mercury lynx l
376 | 36.0,4,120.0,88,2160,14.5,82,3,nissan stanza xe
377 | 36.0,4,107.0,75,2205,14.5,82,3,honda accord
378 | 34.0,4,108.0,70,2245,16.9,82,3,toyota corolla
379 | 38.0,4,91.0,67,1965,15.0,82,3,honda civic
380 | 32.0,4,91.0,67,1965,15.7,82,3,honda civic (auto)
381 | 38.0,4,91.0,67,1995,16.2,82,3,datsun 310 gx
382 | 25.0,6,181.0,110,2945,16.4,82,1,buick century limited
383 | 38.0,6,262.0,85,3015,17.0,82,1,oldsmobile cutlass ciera (diesel)
384 | 26.0,4,156.0,92,2585,14.5,82,1,chrysler lebaron medallion
385 | 22.0,6,232.0,112,2835,14.7,82,1,ford granada l
386 | 32.0,4,144.0,96,2665,13.9,82,3,toyota celica gt
387 | 36.0,4,135.0,84,2370,13.0,82,1,dodge charger 2.2
388 | 27.0,4,151.0,90,2950,17.3,82,1,chevrolet camaro
389 | 27.0,4,140.0,86,2790,15.6,82,1,ford mustang gl
390 | 44.0,4,97.0,52,2130,24.6,82,2,vw pickup
391 | 32.0,4,135.0,84,2295,11.6,82,1,dodge rampage
392 | 28.0,4,120.0,79,2625,18.6,82,1,ford ranger
393 | 31.0,4,119.0,82,2720,19.4,82,1,chevy s-10
394 |
--------------------------------------------------------------------------------
/data/csv/Credit.csv:
--------------------------------------------------------------------------------
1 | ID,Income,Limit,Rating,Cards,Age,Education,Gender,Student,Married,Ethnicity,Balance
2 | 1,14.891,3606,283,2,34,11, Male,No,Yes,Caucasian,333
3 | 2,106.025,6645,483,3,82,15,Female,Yes,Yes,Asian,903
4 | 3,104.593,7075,514,4,71,11, Male,No,No,Asian,580
5 | 4,148.924,9504,681,3,36,11,Female,No,No,Asian,964
6 | 5,55.882,4897,357,2,68,16, Male,No,Yes,Caucasian,331
7 | 6,80.18,8047,569,4,77,10, Male,No,No,Caucasian,1151
8 | 7,20.996,3388,259,2,37,12,Female,No,No,African American,203
9 | 8,71.408,7114,512,2,87,9, Male,No,No,Asian,872
10 | 9,15.125,3300,266,5,66,13,Female,No,No,Caucasian,279
11 | 10,71.061,6819,491,3,41,19,Female,Yes,Yes,African American,1350
12 | 11,63.095,8117,589,4,30,14, Male,No,Yes,Caucasian,1407
13 | 12,15.045,1311,138,3,64,16, Male,No,No,Caucasian,0
14 | 13,80.616,5308,394,1,57,7,Female,No,Yes,Asian,204
15 | 14,43.682,6922,511,1,49,9, Male,No,Yes,Caucasian,1081
16 | 15,19.144,3291,269,2,75,13,Female,No,No,African American,148
17 | 16,20.089,2525,200,3,57,15,Female,No,Yes,African American,0
18 | 17,53.598,3714,286,3,73,17,Female,No,Yes,African American,0
19 | 18,36.496,4378,339,3,69,15,Female,No,Yes,Asian,368
20 | 19,49.57,6384,448,1,28,9,Female,No,Yes,Asian,891
21 | 20,42.079,6626,479,2,44,9, Male,No,No,Asian,1048
22 | 21,17.7,2860,235,4,63,16,Female,No,No,Asian,89
23 | 22,37.348,6378,458,1,72,17,Female,No,No,Caucasian,968
24 | 23,20.103,2631,213,3,61,10, Male,No,Yes,African American,0
25 | 24,64.027,5179,398,5,48,8, Male,No,Yes,African American,411
26 | 25,10.742,1757,156,3,57,15,Female,No,No,Caucasian,0
27 | 26,14.09,4323,326,5,25,16,Female,No,Yes,African American,671
28 | 27,42.471,3625,289,6,44,12,Female,Yes,No,Caucasian,654
29 | 28,32.793,4534,333,2,44,16, Male,No,No,African American,467
30 | 29,186.634,13414,949,2,41,14,Female,No,Yes,African American,1809
31 | 30,26.813,5611,411,4,55,16,Female,No,No,Caucasian,915
32 | 31,34.142,5666,413,4,47,5,Female,No,Yes,Caucasian,863
33 | 32,28.941,2733,210,5,43,16, Male,No,Yes,Asian,0
34 | 33,134.181,7838,563,2,48,13,Female,No,No,Caucasian,526
35 | 34,31.367,1829,162,4,30,10, Male,No,Yes,Caucasian,0
36 | 35,20.15,2646,199,2,25,14,Female,No,Yes,Asian,0
37 | 36,23.35,2558,220,3,49,12,Female,Yes,No,Caucasian,419
38 | 37,62.413,6457,455,2,71,11,Female,No,Yes,Caucasian,762
39 | 38,30.007,6481,462,2,69,9,Female,No,Yes,Caucasian,1093
40 | 39,11.795,3899,300,4,25,10,Female,No,No,Caucasian,531
41 | 40,13.647,3461,264,4,47,14, Male,No,Yes,Caucasian,344
42 | 41,34.95,3327,253,3,54,14,Female,No,No,African American,50
43 | 42,113.659,7659,538,2,66,15, Male,Yes,Yes,African American,1155
44 | 43,44.158,4763,351,2,66,13,Female,No,Yes,Asian,385
45 | 44,36.929,6257,445,1,24,14,Female,No,Yes,Asian,976
46 | 45,31.861,6375,469,3,25,16,Female,No,Yes,Caucasian,1120
47 | 46,77.38,7569,564,3,50,12,Female,No,Yes,Caucasian,997
48 | 47,19.531,5043,376,2,64,16,Female,Yes,Yes,Asian,1241
49 | 48,44.646,4431,320,2,49,15, Male,Yes,Yes,Caucasian,797
50 | 49,44.522,2252,205,6,72,15, Male,No,Yes,Asian,0
51 | 50,43.479,4569,354,4,49,13, Male,Yes,Yes,African American,902
52 | 51,36.362,5183,376,3,49,15, Male,No,Yes,African American,654
53 | 52,39.705,3969,301,2,27,20, Male,No,Yes,African American,211
54 | 53,44.205,5441,394,1,32,12, Male,No,Yes,Caucasian,607
55 | 54,16.304,5466,413,4,66,10, Male,No,Yes,Asian,957
56 | 55,15.333,1499,138,2,47,9,Female,No,Yes,Asian,0
57 | 56,32.916,1786,154,2,60,8,Female,No,Yes,Asian,0
58 | 57,57.1,4742,372,7,79,18,Female,No,Yes,Asian,379
59 | 58,76.273,4779,367,4,65,14,Female,No,Yes,Caucasian,133
60 | 59,10.354,3480,281,2,70,17, Male,No,Yes,Caucasian,333
61 | 60,51.872,5294,390,4,81,17,Female,No,No,Caucasian,531
62 | 61,35.51,5198,364,2,35,20,Female,No,No,Asian,631
63 | 62,21.238,3089,254,3,59,10,Female,No,No,Caucasian,108
64 | 63,30.682,1671,160,2,77,7,Female,No,No,Caucasian,0
65 | 64,14.132,2998,251,4,75,17, Male,No,No,Caucasian,133
66 | 65,32.164,2937,223,2,79,15,Female,No,Yes,African American,0
67 | 66,12.0,4160,320,4,28,14,Female,No,Yes,Caucasian,602
68 | 67,113.829,9704,694,4,38,13,Female,No,Yes,Asian,1388
69 | 68,11.187,5099,380,4,69,16,Female,No,No,African American,889
70 | 69,27.847,5619,418,2,78,15,Female,No,Yes,Caucasian,822
71 | 70,49.502,6819,505,4,55,14, Male,No,Yes,Caucasian,1084
72 | 71,24.889,3954,318,4,75,12, Male,No,Yes,Caucasian,357
73 | 72,58.781,7402,538,2,81,12,Female,No,Yes,Asian,1103
74 | 73,22.939,4923,355,1,47,18,Female,No,Yes,Asian,663
75 | 74,23.989,4523,338,4,31,15, Male,No,No,Caucasian,601
76 | 75,16.103,5390,418,4,45,10,Female,No,Yes,Caucasian,945
77 | 76,33.017,3180,224,2,28,16, Male,No,Yes,African American,29
78 | 77,30.622,3293,251,1,68,16, Male,Yes,No,Caucasian,532
79 | 78,20.936,3254,253,1,30,15,Female,No,No,Asian,145
80 | 79,110.968,6662,468,3,45,11,Female,No,Yes,Caucasian,391
81 | 80,15.354,2101,171,2,65,14, Male,No,No,Asian,0
82 | 81,27.369,3449,288,3,40,9,Female,No,Yes,Caucasian,162
83 | 82,53.48,4263,317,1,83,15, Male,No,No,Caucasian,99
84 | 83,23.672,4433,344,3,63,11, Male,No,No,Caucasian,503
85 | 84,19.225,1433,122,3,38,14,Female,No,No,Caucasian,0
86 | 85,43.54,2906,232,4,69,11, Male,No,No,Caucasian,0
87 | 86,152.298,12066,828,4,41,12,Female,No,Yes,Asian,1779
88 | 87,55.367,6340,448,1,33,15, Male,No,Yes,Caucasian,815
89 | 88,11.741,2271,182,4,59,12,Female,No,No,Asian,0
90 | 89,15.56,4307,352,4,57,8, Male,No,Yes,African American,579
91 | 90,59.53,7518,543,3,52,9,Female,No,No,African American,1176
92 | 91,20.191,5767,431,4,42,16, Male,No,Yes,African American,1023
93 | 92,48.498,6040,456,3,47,16, Male,No,Yes,Caucasian,812
94 | 93,30.733,2832,249,4,51,13, Male,No,No,Caucasian,0
95 | 94,16.479,5435,388,2,26,16, Male,No,No,African American,937
96 | 95,38.009,3075,245,3,45,15,Female,No,No,African American,0
97 | 96,14.084,855,120,5,46,17,Female,No,Yes,African American,0
98 | 97,14.312,5382,367,1,59,17, Male,Yes,No,Asian,1380
99 | 98,26.067,3388,266,4,74,17,Female,No,Yes,African American,155
100 | 99,36.295,2963,241,2,68,14,Female,Yes,No,African American,375
101 | 100,83.851,8494,607,5,47,18, Male,No,No,Caucasian,1311
102 | 101,21.153,3736,256,1,41,11, Male,No,No,Caucasian,298
103 | 102,17.976,2433,190,3,70,16,Female,Yes,No,Caucasian,431
104 | 103,68.713,7582,531,2,56,16, Male,Yes,No,Caucasian,1587
105 | 104,146.183,9540,682,6,66,15, Male,No,No,Caucasian,1050
106 | 105,15.846,4768,365,4,53,12,Female,No,No,Caucasian,745
107 | 106,12.031,3182,259,2,58,18,Female,No,Yes,Caucasian,210
108 | 107,16.819,1337,115,2,74,15, Male,No,Yes,Asian,0
109 | 108,39.11,3189,263,3,72,12, Male,No,No,Asian,0
110 | 109,107.986,6033,449,4,64,14, Male,No,Yes,Caucasian,227
111 | 110,13.561,3261,279,5,37,19, Male,No,Yes,Asian,297
112 | 111,34.537,3271,250,3,57,17,Female,No,Yes,Asian,47
113 | 112,28.575,2959,231,2,60,11,Female,No,No,African American,0
114 | 113,46.007,6637,491,4,42,14, Male,No,Yes,Caucasian,1046
115 | 114,69.251,6386,474,4,30,12,Female,No,Yes,Asian,768
116 | 115,16.482,3326,268,4,41,15, Male,No,No,Caucasian,271
117 | 116,40.442,4828,369,5,81,8,Female,No,No,African American,510
118 | 117,35.177,2117,186,3,62,16,Female,No,No,Caucasian,0
119 | 118,91.362,9113,626,1,47,17, Male,No,Yes,Asian,1341
120 | 119,27.039,2161,173,3,40,17,Female,No,No,Caucasian,0
121 | 120,23.012,1410,137,3,81,16, Male,No,No,Caucasian,0
122 | 121,27.241,1402,128,2,67,15,Female,No,Yes,Asian,0
123 | 122,148.08,8157,599,2,83,13, Male,No,Yes,Caucasian,454
124 | 123,62.602,7056,481,1,84,11,Female,No,No,Caucasian,904
125 | 124,11.808,1300,117,3,77,14,Female,No,No,African American,0
126 | 125,29.564,2529,192,1,30,12,Female,No,Yes,Caucasian,0
127 | 126,27.578,2531,195,1,34,15,Female,No,Yes,Caucasian,0
128 | 127,26.427,5533,433,5,50,15,Female,Yes,Yes,Asian,1404
129 | 128,57.202,3411,259,3,72,11,Female,No,No,Caucasian,0
130 | 129,123.299,8376,610,2,89,17, Male,Yes,No,African American,1259
131 | 130,18.145,3461,279,3,56,15, Male,No,Yes,African American,255
132 | 131,23.793,3821,281,4,56,12,Female,Yes,Yes,African American,868
133 | 132,10.726,1568,162,5,46,19, Male,No,Yes,Asian,0
134 | 133,23.283,5443,407,4,49,13, Male,No,Yes,African American,912
135 | 134,21.455,5829,427,4,80,12,Female,No,Yes,African American,1018
136 | 135,34.664,5835,452,3,77,15,Female,No,Yes,African American,835
137 | 136,44.473,3500,257,3,81,16,Female,No,No,African American,8
138 | 137,54.663,4116,314,2,70,8,Female,No,No,African American,75
139 | 138,36.355,3613,278,4,35,9, Male,No,Yes,Asian,187
140 | 139,21.374,2073,175,2,74,11,Female,No,Yes,Caucasian,0
141 | 140,107.841,10384,728,3,87,7, Male,No,No,African American,1597
142 | 141,39.831,6045,459,3,32,12,Female,Yes,Yes,African American,1425
143 | 142,91.876,6754,483,2,33,10, Male,No,Yes,Caucasian,605
144 | 143,103.893,7416,549,3,84,17, Male,No,No,Asian,669
145 | 144,19.636,4896,387,3,64,10,Female,No,No,African American,710
146 | 145,17.392,2748,228,3,32,14, Male,No,Yes,Caucasian,68
147 | 146,19.529,4673,341,2,51,14, Male,No,No,Asian,642
148 | 147,17.055,5110,371,3,55,15,Female,No,Yes,Caucasian,805
149 | 148,23.857,1501,150,3,56,16, Male,No,Yes,Caucasian,0
150 | 149,15.184,2420,192,2,69,11,Female,No,Yes,Caucasian,0
151 | 150,13.444,886,121,5,44,10, Male,No,Yes,Asian,0
152 | 151,63.931,5728,435,3,28,14,Female,No,Yes,African American,581
153 | 152,35.864,4831,353,3,66,13,Female,No,Yes,Caucasian,534
154 | 153,41.419,2120,184,4,24,11,Female,Yes,No,Caucasian,156
155 | 154,92.112,4612,344,3,32,17, Male,No,No,Caucasian,0
156 | 155,55.056,3155,235,2,31,16, Male,No,Yes,African American,0
157 | 156,19.537,1362,143,4,34,9,Female,No,Yes,Asian,0
158 | 157,31.811,4284,338,5,75,13,Female,No,Yes,Caucasian,429
159 | 158,56.256,5521,406,2,72,16,Female,Yes,Yes,Caucasian,1020
160 | 159,42.357,5550,406,2,83,12,Female,No,Yes,Asian,653
161 | 160,53.319,3000,235,3,53,13, Male,No,No,Asian,0
162 | 161,12.238,4865,381,5,67,11,Female,No,No,Caucasian,836
163 | 162,31.353,1705,160,3,81,14, Male,No,Yes,Caucasian,0
164 | 163,63.809,7530,515,1,56,12, Male,No,Yes,Caucasian,1086
165 | 164,13.676,2330,203,5,80,16,Female,No,No,African American,0
166 | 165,76.782,5977,429,4,44,12, Male,No,Yes,Asian,548
167 | 166,25.383,4527,367,4,46,11, Male,No,Yes,Caucasian,570
168 | 167,35.691,2880,214,2,35,15, Male,No,No,African American,0
169 | 168,29.403,2327,178,1,37,14,Female,No,Yes,Caucasian,0
170 | 169,27.47,2820,219,1,32,11,Female,No,Yes,Asian,0
171 | 170,27.33,6179,459,4,36,12,Female,No,Yes,Caucasian,1099
172 | 171,34.772,2021,167,3,57,9, Male,No,No,Asian,0
173 | 172,36.934,4270,299,1,63,9,Female,No,Yes,Caucasian,283
174 | 173,76.348,4697,344,4,60,18, Male,No,No,Asian,108
175 | 174,14.887,4745,339,3,58,12, Male,No,Yes,African American,724
176 | 175,121.834,10673,750,3,54,16, Male,No,No,African American,1573
177 | 176,30.132,2168,206,3,52,17, Male,No,No,Caucasian,0
178 | 177,24.05,2607,221,4,32,18, Male,No,Yes,Caucasian,0
179 | 178,22.379,3965,292,2,34,14,Female,No,Yes,Asian,384
180 | 179,28.316,4391,316,2,29,10,Female,No,No,Caucasian,453
181 | 180,58.026,7499,560,5,67,11,Female,No,No,Caucasian,1237
182 | 181,10.635,3584,294,5,69,16, Male,No,Yes,Asian,423
183 | 182,46.102,5180,382,3,81,12, Male,No,Yes,African American,516
184 | 183,58.929,6420,459,2,66,9,Female,No,Yes,African American,789
185 | 184,80.861,4090,335,3,29,15,Female,No,Yes,Asian,0
186 | 185,158.889,11589,805,1,62,17,Female,No,Yes,Caucasian,1448
187 | 186,30.42,4442,316,1,30,14,Female,No,No,African American,450
188 | 187,36.472,3806,309,2,52,13, Male,No,No,African American,188
189 | 188,23.365,2179,167,2,75,15, Male,No,No,Asian,0
190 | 189,83.869,7667,554,2,83,11, Male,No,No,African American,930
191 | 190,58.351,4411,326,2,85,16,Female,No,Yes,Caucasian,126
192 | 191,55.187,5352,385,4,50,17,Female,No,Yes,Caucasian,538
193 | 192,124.29,9560,701,3,52,17,Female,Yes,No,Asian,1687
194 | 193,28.508,3933,287,4,56,14, Male,No,Yes,Asian,336
195 | 194,130.209,10088,730,7,39,19,Female,No,Yes,Caucasian,1426
196 | 195,30.406,2120,181,2,79,14, Male,No,Yes,African American,0
197 | 196,23.883,5384,398,2,73,16,Female,No,Yes,African American,802
198 | 197,93.039,7398,517,1,67,12, Male,No,Yes,African American,749
199 | 198,50.699,3977,304,2,84,17,Female,No,No,African American,69
200 | 199,27.349,2000,169,4,51,16,Female,No,Yes,African American,0
201 | 200,10.403,4159,310,3,43,7, Male,No,Yes,Asian,571
202 | 201,23.949,5343,383,2,40,18, Male,No,Yes,African American,829
203 | 202,73.914,7333,529,6,67,15,Female,No,Yes,Caucasian,1048
204 | 203,21.038,1448,145,2,58,13,Female,No,Yes,Caucasian,0
205 | 204,68.206,6784,499,5,40,16,Female,Yes,No,African American,1411
206 | 205,57.337,5310,392,2,45,7,Female,No,No,Caucasian,456
207 | 206,10.793,3878,321,8,29,13, Male,No,No,Caucasian,638
208 | 207,23.45,2450,180,2,78,13, Male,No,No,Caucasian,0
209 | 208,10.842,4391,358,5,37,10,Female,Yes,Yes,Caucasian,1216
210 | 209,51.345,4327,320,3,46,15, Male,No,No,African American,230
211 | 210,151.947,9156,642,2,91,11,Female,No,Yes,African American,732
212 | 211,24.543,3206,243,2,62,12,Female,No,Yes,Caucasian,95
213 | 212,29.567,5309,397,3,25,15, Male,No,No,Caucasian,799
214 | 213,39.145,4351,323,2,66,13, Male,No,Yes,Caucasian,308
215 | 214,39.422,5245,383,2,44,19, Male,No,No,African American,637
216 | 215,34.909,5289,410,2,62,16,Female,No,Yes,Caucasian,681
217 | 216,41.025,4229,337,3,79,19,Female,No,Yes,Caucasian,246
218 | 217,15.476,2762,215,3,60,18, Male,No,No,Asian,52
219 | 218,12.456,5395,392,3,65,14, Male,No,Yes,Caucasian,955
220 | 219,10.627,1647,149,2,71,10,Female,Yes,Yes,Asian,195
221 | 220,38.954,5222,370,4,76,13,Female,No,No,Caucasian,653
222 | 221,44.847,5765,437,3,53,13,Female,Yes,No,Asian,1246
223 | 222,98.515,8760,633,5,78,11,Female,No,No,African American,1230
224 | 223,33.437,6207,451,4,44,9, Male,Yes,No,Caucasian,1549
225 | 224,27.512,4613,344,5,72,17, Male,No,Yes,Asian,573
226 | 225,121.709,7818,584,4,50,6, Male,No,Yes,Caucasian,701
227 | 226,15.079,5673,411,4,28,15,Female,No,Yes,Asian,1075
228 | 227,59.879,6906,527,6,78,15,Female,No,No,Caucasian,1032
229 | 228,66.989,5614,430,3,47,14,Female,No,Yes,Caucasian,482
230 | 229,69.165,4668,341,2,34,11,Female,No,No,African American,156
231 | 230,69.943,7555,547,3,76,9, Male,No,Yes,Asian,1058
232 | 231,33.214,5137,387,3,59,9, Male,No,No,African American,661
233 | 232,25.124,4776,378,4,29,12, Male,No,Yes,Caucasian,657
234 | 233,15.741,4788,360,1,39,14, Male,No,Yes,Asian,689
235 | 234,11.603,2278,187,3,71,11, Male,No,Yes,Caucasian,0
236 | 235,69.656,8244,579,3,41,14, Male,No,Yes,African American,1329
237 | 236,10.503,2923,232,3,25,18,Female,No,Yes,African American,191
238 | 237,42.529,4986,369,2,37,11, Male,No,Yes,Asian,489
239 | 238,60.579,5149,388,5,38,15, Male,No,Yes,Asian,443
240 | 239,26.532,2910,236,6,58,19,Female,No,Yes,Caucasian,52
241 | 240,27.952,3557,263,1,35,13,Female,No,Yes,Asian,163
242 | 241,29.705,3351,262,5,71,14,Female,No,Yes,Asian,148
243 | 242,15.602,906,103,2,36,11, Male,No,Yes,African American,0
244 | 243,20.918,1233,128,3,47,18,Female,Yes,Yes,Asian,16
245 | 244,58.165,6617,460,1,56,12,Female,No,Yes,Caucasian,856
246 | 245,22.561,1787,147,4,66,15,Female,No,No,Caucasian,0
247 | 246,34.509,2001,189,5,80,18,Female,No,Yes,African American,0
248 | 247,19.588,3211,265,4,59,14,Female,No,No,Asian,199
249 | 248,36.364,2220,188,3,50,19, Male,No,No,Caucasian,0
250 | 249,15.717,905,93,1,38,16, Male,Yes,Yes,Caucasian,0
251 | 250,22.574,1551,134,3,43,13,Female,Yes,Yes,Caucasian,98
252 | 251,10.363,2430,191,2,47,18,Female,No,Yes,Asian,0
253 | 252,28.474,3202,267,5,66,12, Male,No,Yes,Caucasian,132
254 | 253,72.945,8603,621,3,64,8,Female,No,No,Caucasian,1355
255 | 254,85.425,5182,402,6,60,12, Male,No,Yes,African American,218
256 | 255,36.508,6386,469,4,79,6,Female,No,Yes,Caucasian,1048
257 | 256,58.063,4221,304,3,50,8, Male,No,No,African American,118
258 | 257,25.936,1774,135,2,71,14,Female,No,No,Asian,0
259 | 258,15.629,2493,186,1,60,14, Male,No,Yes,Asian,0
260 | 259,41.4,2561,215,2,36,14, Male,No,Yes,Caucasian,0
261 | 260,33.657,6196,450,6,55,9,Female,No,No,Caucasian,1092
262 | 261,67.937,5184,383,4,63,12, Male,No,Yes,Asian,345
263 | 262,180.379,9310,665,3,67,8,Female,Yes,Yes,Asian,1050
264 | 263,10.588,4049,296,1,66,13,Female,No,Yes,Caucasian,465
265 | 264,29.725,3536,270,2,52,15,Female,No,No,African American,133
266 | 265,27.999,5107,380,1,55,10, Male,No,Yes,Caucasian,651
267 | 266,40.885,5013,379,3,46,13,Female,No,Yes,African American,549
268 | 267,88.83,4952,360,4,86,16,Female,No,Yes,Caucasian,15
269 | 268,29.638,5833,433,3,29,15,Female,No,Yes,Asian,942
270 | 269,25.988,1349,142,4,82,12, Male,No,No,Caucasian,0
271 | 270,39.055,5565,410,4,48,18,Female,No,Yes,Caucasian,772
272 | 271,15.866,3085,217,1,39,13, Male,No,No,Caucasian,136
273 | 272,44.978,4866,347,1,30,10,Female,No,No,Caucasian,436
274 | 273,30.413,3690,299,2,25,15,Female,Yes,No,Asian,728
275 | 274,16.751,4706,353,6,48,14, Male,Yes,No,Asian,1255
276 | 275,30.55,5869,439,5,81,9,Female,No,No,African American,967
277 | 276,163.329,8732,636,3,50,14, Male,No,Yes,Caucasian,529
278 | 277,23.106,3476,257,2,50,15,Female,No,No,Caucasian,209
279 | 278,41.532,5000,353,2,50,12, Male,No,Yes,Caucasian,531
280 | 279,128.04,6982,518,2,78,11,Female,No,Yes,Caucasian,250
281 | 280,54.319,3063,248,3,59,8,Female,Yes,No,Caucasian,269
282 | 281,53.401,5319,377,3,35,12,Female,No,No,African American,541
283 | 282,36.142,1852,183,3,33,13,Female,No,No,African American,0
284 | 283,63.534,8100,581,2,50,17,Female,No,Yes,Caucasian,1298
285 | 284,49.927,6396,485,3,75,17,Female,No,Yes,Caucasian,890
286 | 285,14.711,2047,167,2,67,6, Male,No,Yes,Caucasian,0
287 | 286,18.967,1626,156,2,41,11,Female,No,Yes,Asian,0
288 | 287,18.036,1552,142,2,48,15,Female,No,No,Caucasian,0
289 | 288,60.449,3098,272,4,69,8, Male,No,Yes,Caucasian,0
290 | 289,16.711,5274,387,3,42,16,Female,No,Yes,Asian,863
291 | 290,10.852,3907,296,2,30,9, Male,No,No,Caucasian,485
292 | 291,26.37,3235,268,5,78,11, Male,No,Yes,Asian,159
293 | 292,24.088,3665,287,4,56,13,Female,No,Yes,Caucasian,309
294 | 293,51.532,5096,380,2,31,15, Male,No,Yes,Caucasian,481
295 | 294,140.672,11200,817,7,46,9, Male,No,Yes,African American,1677
296 | 295,42.915,2532,205,4,42,13, Male,No,Yes,Asian,0
297 | 296,27.272,1389,149,5,67,10,Female,No,Yes,Caucasian,0
298 | 297,65.896,5140,370,1,49,17,Female,No,Yes,Caucasian,293
299 | 298,55.054,4381,321,3,74,17, Male,No,Yes,Asian,188
300 | 299,20.791,2672,204,1,70,18,Female,No,No,African American,0
301 | 300,24.919,5051,372,3,76,11,Female,No,Yes,African American,711
302 | 301,21.786,4632,355,1,50,17, Male,No,Yes,Caucasian,580
303 | 302,31.335,3526,289,3,38,7,Female,No,No,Caucasian,172
304 | 303,59.855,4964,365,1,46,13,Female,No,Yes,Caucasian,295
305 | 304,44.061,4970,352,1,79,11, Male,No,Yes,African American,414
306 | 305,82.706,7506,536,2,64,13,Female,No,Yes,Asian,905
307 | 306,24.46,1924,165,2,50,14,Female,No,Yes,Asian,0
308 | 307,45.12,3762,287,3,80,8, Male,No,Yes,Caucasian,70
309 | 308,75.406,3874,298,3,41,14,Female,No,Yes,Asian,0
310 | 309,14.956,4640,332,2,33,6, Male,No,No,Asian,681
311 | 310,75.257,7010,494,3,34,18,Female,No,Yes,Caucasian,885
312 | 311,33.694,4891,369,1,52,16, Male,Yes,No,African American,1036
313 | 312,23.375,5429,396,3,57,15,Female,No,Yes,Caucasian,844
314 | 313,27.825,5227,386,6,63,11, Male,No,Yes,Caucasian,823
315 | 314,92.386,7685,534,2,75,18,Female,No,Yes,Asian,843
316 | 315,115.52,9272,656,2,69,14, Male,No,No,African American,1140
317 | 316,14.479,3907,296,3,43,16, Male,No,Yes,Caucasian,463
318 | 317,52.179,7306,522,2,57,14, Male,No,No,Asian,1142
319 | 318,68.462,4712,340,2,71,16, Male,No,Yes,Caucasian,136
320 | 319,18.951,1485,129,3,82,13,Female,No,No,Caucasian,0
321 | 320,27.59,2586,229,5,54,16, Male,No,Yes,African American,0
322 | 321,16.279,1160,126,3,78,13, Male,Yes,Yes,African American,5
323 | 322,25.078,3096,236,2,27,15,Female,No,Yes,Caucasian,81
324 | 323,27.229,3484,282,6,51,11, Male,No,No,Caucasian,265
325 | 324,182.728,13913,982,4,98,17, Male,No,Yes,Caucasian,1999
326 | 325,31.029,2863,223,2,66,17, Male,Yes,Yes,Asian,415
327 | 326,17.765,5072,364,1,66,12,Female,No,Yes,Caucasian,732
328 | 327,125.48,10230,721,3,82,16, Male,No,Yes,Caucasian,1361
329 | 328,49.166,6662,508,3,68,14,Female,No,No,Asian,984
330 | 329,41.192,3673,297,3,54,16,Female,No,Yes,Caucasian,121
331 | 330,94.193,7576,527,2,44,16,Female,No,Yes,Caucasian,846
332 | 331,20.405,4543,329,2,72,17, Male,Yes,No,Asian,1054
333 | 332,12.581,3976,291,2,48,16, Male,No,Yes,Caucasian,474
334 | 333,62.328,5228,377,3,83,15, Male,No,No,Caucasian,380
335 | 334,21.011,3402,261,2,68,17, Male,No,Yes,African American,182
336 | 335,24.23,4756,351,2,64,15,Female,No,Yes,Caucasian,594
337 | 336,24.314,3409,270,2,23,7,Female,No,Yes,Caucasian,194
338 | 337,32.856,5884,438,4,68,13, Male,No,No,Caucasian,926
339 | 338,12.414,855,119,3,32,12, Male,No,Yes,African American,0
340 | 339,41.365,5303,377,1,45,14, Male,No,No,Caucasian,606
341 | 340,149.316,10278,707,1,80,16, Male,No,No,African American,1107
342 | 341,27.794,3807,301,4,35,8,Female,No,Yes,African American,320
343 | 342,13.234,3922,299,2,77,17,Female,No,Yes,Caucasian,426
344 | 343,14.595,2955,260,5,37,9, Male,No,Yes,African American,204
345 | 344,10.735,3746,280,2,44,17,Female,No,Yes,Caucasian,410
346 | 345,48.218,5199,401,7,39,10, Male,No,Yes,Asian,633
347 | 346,30.012,1511,137,2,33,17, Male,No,Yes,Caucasian,0
348 | 347,21.551,5380,420,5,51,18, Male,No,Yes,Asian,907
349 | 348,160.231,10748,754,2,69,17, Male,No,No,Caucasian,1192
350 | 349,13.433,1134,112,3,70,14, Male,No,Yes,Caucasian,0
351 | 350,48.577,5145,389,3,71,13,Female,No,Yes,Asian,503
352 | 351,30.002,1561,155,4,70,13,Female,No,Yes,Caucasian,0
353 | 352,61.62,5140,374,1,71,9, Male,No,Yes,Caucasian,302
354 | 353,104.483,7140,507,2,41,14, Male,No,Yes,African American,583
355 | 354,41.868,4716,342,2,47,18, Male,No,No,Caucasian,425
356 | 355,12.068,3873,292,1,44,18,Female,No,Yes,Asian,413
357 | 356,180.682,11966,832,2,58,8,Female,No,Yes,African American,1405
358 | 357,34.48,6090,442,3,36,14, Male,No,No,Caucasian,962
359 | 358,39.609,2539,188,1,40,14, Male,No,Yes,Asian,0
360 | 359,30.111,4336,339,1,81,18, Male,No,Yes,Caucasian,347
361 | 360,12.335,4471,344,3,79,12, Male,No,Yes,African American,611
362 | 361,53.566,5891,434,4,82,10,Female,No,No,Caucasian,712
363 | 362,53.217,4943,362,2,46,16,Female,No,Yes,Asian,382
364 | 363,26.162,5101,382,3,62,19,Female,No,No,African American,710
365 | 364,64.173,6127,433,1,80,10, Male,No,Yes,Caucasian,578
366 | 365,128.669,9824,685,3,67,16, Male,No,Yes,Asian,1243
367 | 366,113.772,6442,489,4,69,15, Male,Yes,Yes,Caucasian,790
368 | 367,61.069,7871,564,3,56,14, Male,No,Yes,Caucasian,1264
369 | 368,23.793,3615,263,2,70,14, Male,No,No,African American,216
370 | 369,89.0,5759,440,3,37,6,Female,No,No,Caucasian,345
371 | 370,71.682,8028,599,3,57,16, Male,No,Yes,Caucasian,1208
372 | 371,35.61,6135,466,4,40,12, Male,No,No,Caucasian,992
373 | 372,39.116,2150,173,4,75,15, Male,No,No,Caucasian,0
374 | 373,19.782,3782,293,2,46,16,Female,Yes,No,Caucasian,840
375 | 374,55.412,5354,383,2,37,16,Female,Yes,Yes,Caucasian,1003
376 | 375,29.4,4840,368,3,76,18,Female,No,Yes,Caucasian,588
377 | 376,20.974,5673,413,5,44,16,Female,No,Yes,Caucasian,1000
378 | 377,87.625,7167,515,2,46,10,Female,No,No,African American,767
379 | 378,28.144,1567,142,3,51,10, Male,No,Yes,Caucasian,0
380 | 379,19.349,4941,366,1,33,19, Male,No,Yes,Caucasian,717
381 | 380,53.308,2860,214,1,84,10, Male,No,Yes,Caucasian,0
382 | 381,115.123,7760,538,3,83,14,Female,No,No,African American,661
383 | 382,101.788,8029,574,2,84,11, Male,No,Yes,Caucasian,849
384 | 383,24.824,5495,409,1,33,9, Male,Yes,No,Caucasian,1352
385 | 384,14.292,3274,282,9,64,9, Male,No,Yes,Caucasian,382
386 | 385,20.088,1870,180,3,76,16, Male,No,No,African American,0
387 | 386,26.4,5640,398,3,58,15,Female,No,No,Asian,905
388 | 387,19.253,3683,287,4,57,10, Male,No,No,African American,371
389 | 388,16.529,1357,126,3,62,9, Male,No,No,Asian,0
390 | 389,37.878,6827,482,2,80,13,Female,No,No,Caucasian,1129
391 | 390,83.948,7100,503,2,44,18, Male,No,No,Caucasian,806
392 | 391,135.118,10578,747,3,81,15,Female,No,Yes,Asian,1393
393 | 392,73.327,6555,472,2,43,15,Female,No,No,Caucasian,721
394 | 393,25.974,2308,196,2,24,10, Male,No,No,Asian,0
395 | 394,17.316,1335,138,2,65,13, Male,No,No,African American,0
396 | 395,49.794,5758,410,4,40,8, Male,No,No,Caucasian,734
397 | 396,12.096,4100,307,3,32,13, Male,No,Yes,Caucasian,560
398 | 397,13.364,3838,296,5,65,17, Male,No,No,African American,480
399 | 398,57.872,4171,321,5,67,12,Female,No,Yes,Caucasian,138
400 | 399,37.728,2525,192,1,44,13, Male,No,Yes,Caucasian,0
401 | 400,18.701,5524,415,5,64,7,Female,No,No,Asian,966
402 |
--------------------------------------------------------------------------------
/labs/chapter8/decision_trees.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "import pandas as pd\n",
10 | "from sklearn.preprocessing import LabelEncoder\n",
11 | "from sklearn.model_selection import train_test_split\n",
12 | "from sklearn.tree import DecisionTreeClassifier\n",
13 | "from sklearn.metrics import classification_report"
14 | ]
15 | },
16 | {
17 | "cell_type": "markdown",
18 | "metadata": {},
19 | "source": [
20 | "**Summary** \n",
21 | "\n",
22 | "Decision trees can be used for both regression and classification problems. Think of decision trees as playing a [game of twenty questions](https://en.wikipedia.org/wiki/Twenty_Questions), where you have to arrive at an answer by asking no more than twenty questions and your next question depends on the answers to your previous questions. \n",
23 | "\n",
24 | "Mathematically, they split the predictor space into rectangular regions (refer Figure 8.3, page 308, PDF page 322), of possibly different sizes, such that the RSS in regression problems and the classification error rate in classification problems is minimized. That is, regression trees predict the mean response of the training observations that belong to the same region, and classification trees predict that each observation belongs to the most commonly occurring (mode) class of training observations in the region to which it belongs. (The variables used for splits are called *internal nodes*.)\n",
25 | "\n",
26 | "* RSS is defined as $\\sum \\left(y_i - \\hat{y}_{R_1} \\right)+\\sum \\left(y_i - \\hat{y}_{R_2} \\right)+\\cdots$, where $\\hat{y}$ is the mean response of observations in each of the regions $R_1, R_2, \\dots$.\n",
27 | "* Classification error rate is the fraction of observations in a region that do not belong to the most common class. Gini index and entropy serve as sophisticated classification error rate, where they measure the total variance across the classes.\n",
28 | "\n",
29 | "**Algorithm Biases** \n",
30 | "\n",
31 | "* Since decision trees make top-down decisions, they produce trees with good data splits at the top as opposed to bad splits at the top, even though both trees represent the same model.\n",
32 | "* This results to the trees being shorter since the trees ask good questions at the beginning. Note that larger trees are indicative of over-fitting the data, since they result from asking too many questions about the data.\n",
33 | "* Decision trees prefer correct models over incorrect models. That is, it will prefer a tree with not-so-good splits at the top but gives correct answers over a tree that has good splits at the top but produces incorrect answers."
34 | ]
35 | },
36 | {
37 | "cell_type": "code",
38 | "execution_count": 2,
39 | "metadata": {},
40 | "outputs": [
41 | {
42 | "data": {
43 | "text/html": [
44 | "
\n",
45 | "\n",
58 | "
\n",
59 | " \n",
60 | " \n",
61 | " | \n",
62 | " Sales | \n",
63 | " CompPrice | \n",
64 | " Income | \n",
65 | " Advertising | \n",
66 | " Population | \n",
67 | " Price | \n",
68 | " ShelveLoc | \n",
69 | " Age | \n",
70 | " Education | \n",
71 | " Urban | \n",
72 | " US | \n",
73 | "
\n",
74 | " \n",
75 | " \n",
76 | " \n",
77 | " | 0 | \n",
78 | " 9.50 | \n",
79 | " 138 | \n",
80 | " 73 | \n",
81 | " 11 | \n",
82 | " 276 | \n",
83 | " 120 | \n",
84 | " Bad | \n",
85 | " 42 | \n",
86 | " 17 | \n",
87 | " Yes | \n",
88 | " Yes | \n",
89 | "
\n",
90 | " \n",
91 | " | 1 | \n",
92 | " 11.22 | \n",
93 | " 111 | \n",
94 | " 48 | \n",
95 | " 16 | \n",
96 | " 260 | \n",
97 | " 83 | \n",
98 | " Good | \n",
99 | " 65 | \n",
100 | " 10 | \n",
101 | " Yes | \n",
102 | " Yes | \n",
103 | "
\n",
104 | " \n",
105 | " | 2 | \n",
106 | " 10.06 | \n",
107 | " 113 | \n",
108 | " 35 | \n",
109 | " 10 | \n",
110 | " 269 | \n",
111 | " 80 | \n",
112 | " Medium | \n",
113 | " 59 | \n",
114 | " 12 | \n",
115 | " Yes | \n",
116 | " Yes | \n",
117 | "
\n",
118 | " \n",
119 | " | 3 | \n",
120 | " 7.40 | \n",
121 | " 117 | \n",
122 | " 100 | \n",
123 | " 4 | \n",
124 | " 466 | \n",
125 | " 97 | \n",
126 | " Medium | \n",
127 | " 55 | \n",
128 | " 14 | \n",
129 | " Yes | \n",
130 | " Yes | \n",
131 | "
\n",
132 | " \n",
133 | " | 4 | \n",
134 | " 4.15 | \n",
135 | " 141 | \n",
136 | " 64 | \n",
137 | " 3 | \n",
138 | " 340 | \n",
139 | " 128 | \n",
140 | " Bad | \n",
141 | " 38 | \n",
142 | " 13 | \n",
143 | " Yes | \n",
144 | " No | \n",
145 | "
\n",
146 | " \n",
147 | "
\n",
148 | "
"
149 | ],
150 | "text/plain": [
151 | " Sales CompPrice Income Advertising Population Price ShelveLoc Age \\\n",
152 | "0 9.50 138 73 11 276 120 Bad 42 \n",
153 | "1 11.22 111 48 16 260 83 Good 65 \n",
154 | "2 10.06 113 35 10 269 80 Medium 59 \n",
155 | "3 7.40 117 100 4 466 97 Medium 55 \n",
156 | "4 4.15 141 64 3 340 128 Bad 38 \n",
157 | "\n",
158 | " Education Urban US \n",
159 | "0 17 Yes Yes \n",
160 | "1 10 Yes Yes \n",
161 | "2 12 Yes Yes \n",
162 | "3 14 Yes Yes \n",
163 | "4 13 Yes No "
164 | ]
165 | },
166 | "execution_count": 2,
167 | "metadata": {},
168 | "output_type": "execute_result"
169 | }
170 | ],
171 | "source": [
172 | "data = pd.read_csv(\"../../data/csv/Carseats.csv\")\n",
173 | "data.head()"
174 | ]
175 | },
176 | {
177 | "cell_type": "code",
178 | "execution_count": 3,
179 | "metadata": {},
180 | "outputs": [
181 | {
182 | "data": {
183 | "text/plain": [
184 | "Sales 0\n",
185 | "CompPrice 0\n",
186 | "Income 0\n",
187 | "Advertising 0\n",
188 | "Population 0\n",
189 | "Price 0\n",
190 | "ShelveLoc 0\n",
191 | "Age 0\n",
192 | "Education 0\n",
193 | "Urban 0\n",
194 | "US 0\n",
195 | "dtype: int64"
196 | ]
197 | },
198 | "execution_count": 3,
199 | "metadata": {},
200 | "output_type": "execute_result"
201 | }
202 | ],
203 | "source": [
204 | "data.isnull().sum()"
205 | ]
206 | },
207 | {
208 | "cell_type": "code",
209 | "execution_count": 4,
210 | "metadata": {},
211 | "outputs": [
212 | {
213 | "data": {
214 | "text/plain": [
215 | "array(['Bad', 'Good', 'Medium'], dtype=object)"
216 | ]
217 | },
218 | "execution_count": 4,
219 | "metadata": {},
220 | "output_type": "execute_result"
221 | }
222 | ],
223 | "source": [
224 | "data['ShelveLoc'].unique()"
225 | ]
226 | },
227 | {
228 | "cell_type": "code",
229 | "execution_count": 5,
230 | "metadata": {},
231 | "outputs": [
232 | {
233 | "data": {
234 | "text/plain": [
235 | "array(['Yes', 'No'], dtype=object)"
236 | ]
237 | },
238 | "execution_count": 5,
239 | "metadata": {},
240 | "output_type": "execute_result"
241 | }
242 | ],
243 | "source": [
244 | "data['Urban'].unique()"
245 | ]
246 | },
247 | {
248 | "cell_type": "code",
249 | "execution_count": 6,
250 | "metadata": {},
251 | "outputs": [
252 | {
253 | "data": {
254 | "text/plain": [
255 | "array(['Yes', 'No'], dtype=object)"
256 | ]
257 | },
258 | "execution_count": 6,
259 | "metadata": {},
260 | "output_type": "execute_result"
261 | }
262 | ],
263 | "source": [
264 | "data['US'].unique()"
265 | ]
266 | },
267 | {
268 | "cell_type": "markdown",
269 | "metadata": {},
270 | "source": [
271 | "LabelEncoder() assigns numbers to alphabetically sorted data. Eg: [C, A, B] $\\to$ [3, 1, 2]. This implies a natural ordering of the values and it is appropriate to order Bad, Good, Medium in an increasing manner."
272 | ]
273 | },
274 | {
275 | "cell_type": "code",
276 | "execution_count": 7,
277 | "metadata": {},
278 | "outputs": [
279 | {
280 | "data": {
281 | "text/html": [
282 | "\n",
283 | "\n",
296 | "
\n",
297 | " \n",
298 | " \n",
299 | " | \n",
300 | " Sales | \n",
301 | " CompPrice | \n",
302 | " Income | \n",
303 | " Advertising | \n",
304 | " Population | \n",
305 | " Price | \n",
306 | " ShelveLoc | \n",
307 | " Age | \n",
308 | " Education | \n",
309 | " Urban | \n",
310 | " US | \n",
311 | "
\n",
312 | " \n",
313 | " \n",
314 | " \n",
315 | " | 0 | \n",
316 | " 255 | \n",
317 | " 49 | \n",
318 | " 51 | \n",
319 | " 11 | \n",
320 | " 141 | \n",
321 | " 54 | \n",
322 | " 0 | \n",
323 | " 17 | \n",
324 | " 7 | \n",
325 | " 1 | \n",
326 | " 1 | \n",
327 | "
\n",
328 | " \n",
329 | " | 1 | \n",
330 | " 297 | \n",
331 | " 22 | \n",
332 | " 27 | \n",
333 | " 16 | \n",
334 | " 129 | \n",
335 | " 18 | \n",
336 | " 1 | \n",
337 | " 40 | \n",
338 | " 0 | \n",
339 | " 1 | \n",
340 | " 1 | \n",
341 | "
\n",
342 | " \n",
343 | " | 2 | \n",
344 | " 267 | \n",
345 | " 24 | \n",
346 | " 14 | \n",
347 | " 10 | \n",
348 | " 138 | \n",
349 | " 15 | \n",
350 | " 2 | \n",
351 | " 34 | \n",
352 | " 2 | \n",
353 | " 1 | \n",
354 | " 1 | \n",
355 | "
\n",
356 | " \n",
357 | " | 3 | \n",
358 | " 158 | \n",
359 | " 28 | \n",
360 | " 77 | \n",
361 | " 4 | \n",
362 | " 249 | \n",
363 | " 31 | \n",
364 | " 2 | \n",
365 | " 30 | \n",
366 | " 4 | \n",
367 | " 1 | \n",
368 | " 1 | \n",
369 | "
\n",
370 | " \n",
371 | " | 4 | \n",
372 | " 37 | \n",
373 | " 52 | \n",
374 | " 42 | \n",
375 | " 3 | \n",
376 | " 178 | \n",
377 | " 62 | \n",
378 | " 0 | \n",
379 | " 13 | \n",
380 | " 3 | \n",
381 | " 1 | \n",
382 | " 0 | \n",
383 | "
\n",
384 | " \n",
385 | "
\n",
386 | "
"
387 | ],
388 | "text/plain": [
389 | " Sales CompPrice Income Advertising Population Price ShelveLoc Age \\\n",
390 | "0 255 49 51 11 141 54 0 17 \n",
391 | "1 297 22 27 16 129 18 1 40 \n",
392 | "2 267 24 14 10 138 15 2 34 \n",
393 | "3 158 28 77 4 249 31 2 30 \n",
394 | "4 37 52 42 3 178 62 0 13 \n",
395 | "\n",
396 | " Education Urban US \n",
397 | "0 7 1 1 \n",
398 | "1 0 1 1 \n",
399 | "2 2 1 1 \n",
400 | "3 4 1 1 \n",
401 | "4 3 1 0 "
402 | ]
403 | },
404 | "execution_count": 7,
405 | "metadata": {},
406 | "output_type": "execute_result"
407 | }
408 | ],
409 | "source": [
410 | "data = data.apply(LabelEncoder().fit_transform)\n",
411 | "data.head()"
412 | ]
413 | },
414 | {
415 | "cell_type": "markdown",
416 | "metadata": {},
417 | "source": [
418 | "Create a binary variable High (sales), where High$=1$ if Sales$>8$; High$=0$ if Sales$\\le8$."
419 | ]
420 | },
421 | {
422 | "cell_type": "code",
423 | "execution_count": 8,
424 | "metadata": {},
425 | "outputs": [
426 | {
427 | "data": {
428 | "text/html": [
429 | "\n",
430 | "\n",
443 | "
\n",
444 | " \n",
445 | " \n",
446 | " | \n",
447 | " Sales | \n",
448 | " CompPrice | \n",
449 | " Income | \n",
450 | " Advertising | \n",
451 | " Population | \n",
452 | " Price | \n",
453 | " ShelveLoc | \n",
454 | " Age | \n",
455 | " Education | \n",
456 | " Urban | \n",
457 | " US | \n",
458 | " High | \n",
459 | "
\n",
460 | " \n",
461 | " \n",
462 | " \n",
463 | " | 0 | \n",
464 | " 255 | \n",
465 | " 49 | \n",
466 | " 51 | \n",
467 | " 11 | \n",
468 | " 141 | \n",
469 | " 54 | \n",
470 | " 0 | \n",
471 | " 17 | \n",
472 | " 7 | \n",
473 | " 1 | \n",
474 | " 1 | \n",
475 | " 1 | \n",
476 | "
\n",
477 | " \n",
478 | " | 1 | \n",
479 | " 297 | \n",
480 | " 22 | \n",
481 | " 27 | \n",
482 | " 16 | \n",
483 | " 129 | \n",
484 | " 18 | \n",
485 | " 1 | \n",
486 | " 40 | \n",
487 | " 0 | \n",
488 | " 1 | \n",
489 | " 1 | \n",
490 | " 1 | \n",
491 | "
\n",
492 | " \n",
493 | " | 2 | \n",
494 | " 267 | \n",
495 | " 24 | \n",
496 | " 14 | \n",
497 | " 10 | \n",
498 | " 138 | \n",
499 | " 15 | \n",
500 | " 2 | \n",
501 | " 34 | \n",
502 | " 2 | \n",
503 | " 1 | \n",
504 | " 1 | \n",
505 | " 1 | \n",
506 | "
\n",
507 | " \n",
508 | " | 3 | \n",
509 | " 158 | \n",
510 | " 28 | \n",
511 | " 77 | \n",
512 | " 4 | \n",
513 | " 249 | \n",
514 | " 31 | \n",
515 | " 2 | \n",
516 | " 30 | \n",
517 | " 4 | \n",
518 | " 1 | \n",
519 | " 1 | \n",
520 | " 1 | \n",
521 | "
\n",
522 | " \n",
523 | " | 4 | \n",
524 | " 37 | \n",
525 | " 52 | \n",
526 | " 42 | \n",
527 | " 3 | \n",
528 | " 178 | \n",
529 | " 62 | \n",
530 | " 0 | \n",
531 | " 13 | \n",
532 | " 3 | \n",
533 | " 1 | \n",
534 | " 0 | \n",
535 | " 1 | \n",
536 | "
\n",
537 | " \n",
538 | "
\n",
539 | "
"
540 | ],
541 | "text/plain": [
542 | " Sales CompPrice Income Advertising Population Price ShelveLoc Age \\\n",
543 | "0 255 49 51 11 141 54 0 17 \n",
544 | "1 297 22 27 16 129 18 1 40 \n",
545 | "2 267 24 14 10 138 15 2 34 \n",
546 | "3 158 28 77 4 249 31 2 30 \n",
547 | "4 37 52 42 3 178 62 0 13 \n",
548 | "\n",
549 | " Education Urban US High \n",
550 | "0 7 1 1 1 \n",
551 | "1 0 1 1 1 \n",
552 | "2 2 1 1 1 \n",
553 | "3 4 1 1 1 \n",
554 | "4 3 1 0 1 "
555 | ]
556 | },
557 | "execution_count": 8,
558 | "metadata": {},
559 | "output_type": "execute_result"
560 | }
561 | ],
562 | "source": [
563 | "data['High'] = data['Sales'].map(lambda x: 1 if x>8 else 0)\n",
564 | "data.head()"
565 | ]
566 | },
567 | {
568 | "cell_type": "code",
569 | "execution_count": 9,
570 | "metadata": {},
571 | "outputs": [
572 | {
573 | "data": {
574 | "text/plain": [
575 | "1 391\n",
576 | "0 9\n",
577 | "Name: High, dtype: int64"
578 | ]
579 | },
580 | "execution_count": 9,
581 | "metadata": {},
582 | "output_type": "execute_result"
583 | }
584 | ],
585 | "source": [
586 | "data['High'].value_counts()"
587 | ]
588 | },
589 | {
590 | "cell_type": "code",
591 | "execution_count": 10,
592 | "metadata": {},
593 | "outputs": [],
594 | "source": [
595 | "y = data['High']\n",
596 | "x = data.loc[:, ~data.columns.isin(['Sales', 'High'])]\n",
597 | "xTrainVal, xTestVal, yTrainVal, yTestVal = train_test_split(x, y, test_size=0.5)"
598 | ]
599 | },
600 | {
601 | "cell_type": "code",
602 | "execution_count": 11,
603 | "metadata": {},
604 | "outputs": [
605 | {
606 | "data": {
607 | "text/plain": [
608 | "DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,\n",
609 | " max_features=None, max_leaf_nodes=None,\n",
610 | " min_impurity_decrease=0.0, min_impurity_split=None,\n",
611 | " min_samples_leaf=1, min_samples_split=2,\n",
612 | " min_weight_fraction_leaf=0.0, presort=False, random_state=None,\n",
613 | " splitter='best')"
614 | ]
615 | },
616 | "execution_count": 11,
617 | "metadata": {},
618 | "output_type": "execute_result"
619 | }
620 | ],
621 | "source": [
622 | "model = DecisionTreeClassifier()\n",
623 | "model.fit(xTrainVal, yTrainVal)"
624 | ]
625 | },
626 | {
627 | "cell_type": "markdown",
628 | "metadata": {},
629 | "source": [
630 | "The true positive rate (Recall) is 100% in the training data and 97% in the testing data."
631 | ]
632 | },
633 | {
634 | "cell_type": "code",
635 | "execution_count": 12,
636 | "metadata": {},
637 | "outputs": [
638 | {
639 | "name": "stdout",
640 | "output_type": "stream",
641 | "text": [
642 | " precision recall f1-score support\n",
643 | "\n",
644 | " 0 1.00 1.00 1.00 5\n",
645 | " 1 1.00 1.00 1.00 195\n",
646 | "\n",
647 | "avg / total 1.00 1.00 1.00 200\n",
648 | "\n"
649 | ]
650 | }
651 | ],
652 | "source": [
653 | "# Training error\n",
654 | "print(classification_report(yTrainVal, model.predict(xTrainVal)))"
655 | ]
656 | },
657 | {
658 | "cell_type": "code",
659 | "execution_count": 13,
660 | "metadata": {},
661 | "outputs": [
662 | {
663 | "data": {
664 | "text/plain": [
665 | "1.0"
666 | ]
667 | },
668 | "execution_count": 13,
669 | "metadata": {},
670 | "output_type": "execute_result"
671 | }
672 | ],
673 | "source": [
674 | "model.score(xTrainVal, yTrainVal)"
675 | ]
676 | },
677 | {
678 | "cell_type": "code",
679 | "execution_count": 14,
680 | "metadata": {},
681 | "outputs": [
682 | {
683 | "name": "stdout",
684 | "output_type": "stream",
685 | "text": [
686 | " precision recall f1-score support\n",
687 | "\n",
688 | " 0 0.00 0.00 0.00 4\n",
689 | " 1 0.98 0.99 0.98 196\n",
690 | "\n",
691 | "avg / total 0.96 0.97 0.97 200\n",
692 | "\n"
693 | ]
694 | }
695 | ],
696 | "source": [
697 | "# Testing error\n",
698 | "print(classification_report(yTestVal, model.predict(xTestVal)))"
699 | ]
700 | },
701 | {
702 | "cell_type": "code",
703 | "execution_count": 15,
704 | "metadata": {},
705 | "outputs": [
706 | {
707 | "data": {
708 | "text/plain": [
709 | "0.96999999999999997"
710 | ]
711 | },
712 | "execution_count": 15,
713 | "metadata": {},
714 | "output_type": "execute_result"
715 | }
716 | ],
717 | "source": [
718 | "model.score(xTestVal, yTestVal)"
719 | ]
720 | },
721 | {
722 | "cell_type": "code",
723 | "execution_count": 16,
724 | "metadata": {},
725 | "outputs": [
726 | {
727 | "data": {
728 | "text/plain": [
729 | "[(0.5, 'Price'),\n",
730 | " (0.32, 'Age'),\n",
731 | " (0.09, 'Population'),\n",
732 | " (0.09, 'CompPrice'),\n",
733 | " (0.0, 'Urban'),\n",
734 | " (0.0, 'US'),\n",
735 | " (0.0, 'ShelveLoc'),\n",
736 | " (0.0, 'Income'),\n",
737 | " (0.0, 'Education'),\n",
738 | " (0.0, 'Advertising')]"
739 | ]
740 | },
741 | "execution_count": 16,
742 | "metadata": {},
743 | "output_type": "execute_result"
744 | }
745 | ],
746 | "source": [
747 | "# Feature importance\n",
748 | "sorted(zip(map(lambda x: round(x, 2), model.feature_importances_), x.columns), reverse=True)"
749 | ]
750 | },
751 | {
752 | "cell_type": "markdown",
753 | "metadata": {},
754 | "source": [
755 | "Notice that decision trees have high variance. That is, running the algorithm multiple times to randomly split training and validation data returns different predictions and feature importance score."
756 | ]
757 | },
758 | {
759 | "cell_type": "code",
760 | "execution_count": 17,
761 | "metadata": {},
762 | "outputs": [
763 | {
764 | "name": "stdout",
765 | "output_type": "stream",
766 | "text": [
767 | "Training error: 1.0\n",
768 | "Testing error: 0.97\n",
769 | "[(0.42, 'Age'), (0.25, 'Price'), (0.23, 'Advertising'), (0.1, 'Population'), (0.0, 'Urban'), (0.0, 'US'), (0.0, 'ShelveLoc'), (0.0, 'Income'), (0.0, 'Education'), (0.0, 'CompPrice')]\n",
770 | "\n",
771 | "Training error: 1.0\n",
772 | "Testing error: 0.96\n",
773 | "[(0.31, 'CompPrice'), (0.29, 'Income'), (0.16, 'Price'), (0.13, 'Advertising'), (0.11, 'Population'), (0.0, 'Urban'), (0.0, 'US'), (0.0, 'ShelveLoc'), (0.0, 'Education'), (0.0, 'Age')]\n",
774 | "\n",
775 | "Training error: 1.0\n",
776 | "Testing error: 0.98\n",
777 | "[(0.49, 'Price'), (0.28, 'Age'), (0.14, 'ShelveLoc'), (0.09, 'Population'), (0.01, 'CompPrice'), (0.0, 'Urban'), (0.0, 'US'), (0.0, 'Income'), (0.0, 'Education'), (0.0, 'Advertising')]\n",
778 | "\n",
779 | "Training error: 1.0\n",
780 | "Testing error: 0.97\n",
781 | "[(0.43, 'Age'), (0.36, 'Income'), (0.14, 'CompPrice'), (0.08, 'Price'), (0.0, 'Urban'), (0.0, 'US'), (0.0, 'ShelveLoc'), (0.0, 'Population'), (0.0, 'Education'), (0.0, 'Advertising')]\n",
782 | "\n"
783 | ]
784 | }
785 | ],
786 | "source": [
787 | "for k in range(1,5):\n",
788 | " xTrainVal, xTestVal, yTrainVal, yTestVal = train_test_split(x, y, test_size=0.5)\n",
789 | " model = DecisionTreeClassifier()\n",
790 | " model.fit(xTrainVal, yTrainVal)\n",
791 | " print \"Training error: {}\".format(model.score(xTrainVal, yTrainVal))\n",
792 | " print \"Testing error: {}\".format(model.score(xTestVal, yTestVal))\n",
793 | " print sorted(zip(map(lambda x: round(x, 2), model.feature_importances_), x.columns), reverse=True)\n",
794 | " print "
795 | ]
796 | }
797 | ],
798 | "metadata": {
799 | "kernelspec": {
800 | "display_name": "Python 2",
801 | "language": "python",
802 | "name": "python2"
803 | },
804 | "language_info": {
805 | "codemirror_mode": {
806 | "name": "ipython",
807 | "version": 2
808 | },
809 | "file_extension": ".py",
810 | "mimetype": "text/x-python",
811 | "name": "python",
812 | "nbconvert_exporter": "python",
813 | "pygments_lexer": "ipython2",
814 | "version": "2.7.14"
815 | }
816 | },
817 | "nbformat": 4,
818 | "nbformat_minor": 2
819 | }
820 |
--------------------------------------------------------------------------------
/data/csv/Hitters.csv:
--------------------------------------------------------------------------------
1 | "","AtBat","Hits","HmRun","Runs","RBI","Walks","Years","CAtBat","CHits","CHmRun","CRuns","CRBI","CWalks","League","Division","PutOuts","Assists","Errors","Salary","NewLeague"
2 | "-Andy Allanson",293,66,1,30,29,14,1,293,66,1,30,29,14,"A","E",446,33,20,NA,"A"
3 | "-Alan Ashby",315,81,7,24,38,39,14,3449,835,69,321,414,375,"N","W",632,43,10,475,"N"
4 | "-Alvin Davis",479,130,18,66,72,76,3,1624,457,63,224,266,263,"A","W",880,82,14,480,"A"
5 | "-Andre Dawson",496,141,20,65,78,37,11,5628,1575,225,828,838,354,"N","E",200,11,3,500,"N"
6 | "-Andres Galarraga",321,87,10,39,42,30,2,396,101,12,48,46,33,"N","E",805,40,4,91.5,"N"
7 | "-Alfredo Griffin",594,169,4,74,51,35,11,4408,1133,19,501,336,194,"A","W",282,421,25,750,"A"
8 | "-Al Newman",185,37,1,23,8,21,2,214,42,1,30,9,24,"N","E",76,127,7,70,"A"
9 | "-Argenis Salazar",298,73,0,24,24,7,3,509,108,0,41,37,12,"A","W",121,283,9,100,"A"
10 | "-Andres Thomas",323,81,6,26,32,8,2,341,86,6,32,34,8,"N","W",143,290,19,75,"N"
11 | "-Andre Thornton",401,92,17,49,66,65,13,5206,1332,253,784,890,866,"A","E",0,0,0,1100,"A"
12 | "-Alan Trammell",574,159,21,107,75,59,10,4631,1300,90,702,504,488,"A","E",238,445,22,517.143,"A"
13 | "-Alex Trevino",202,53,4,31,26,27,9,1876,467,15,192,186,161,"N","W",304,45,11,512.5,"N"
14 | "-Andy VanSlyke",418,113,13,48,61,47,4,1512,392,41,205,204,203,"N","E",211,11,7,550,"N"
15 | "-Alan Wiggins",239,60,0,30,11,22,6,1941,510,4,309,103,207,"A","E",121,151,6,700,"A"
16 | "-Bill Almon",196,43,7,29,27,30,13,3231,825,36,376,290,238,"N","E",80,45,8,240,"N"
17 | "-Billy Beane",183,39,3,20,15,11,3,201,42,3,20,16,11,"A","W",118,0,0,NA,"A"
18 | "-Buddy Bell",568,158,20,89,75,73,15,8068,2273,177,1045,993,732,"N","W",105,290,10,775,"N"
19 | "-Buddy Biancalana",190,46,2,24,8,15,5,479,102,5,65,23,39,"A","W",102,177,16,175,"A"
20 | "-Bruce Bochte",407,104,6,57,43,65,12,5233,1478,100,643,658,653,"A","W",912,88,9,NA,"A"
21 | "-Bruce Bochy",127,32,8,16,22,14,8,727,180,24,67,82,56,"N","W",202,22,2,135,"N"
22 | "-Barry Bonds",413,92,16,72,48,65,1,413,92,16,72,48,65,"N","E",280,9,5,100,"N"
23 | "-Bobby Bonilla",426,109,3,55,43,62,1,426,109,3,55,43,62,"A","W",361,22,2,115,"N"
24 | "-Bob Boone",22,10,1,4,2,1,6,84,26,2,9,9,3,"A","W",812,84,11,NA,"A"
25 | "-Bob Brenly",472,116,16,60,62,74,6,1924,489,67,242,251,240,"N","W",518,55,3,600,"N"
26 | "-Bill Buckner",629,168,18,73,102,40,18,8424,2464,164,1008,1072,402,"A","E",1067,157,14,776.667,"A"
27 | "-Brett Butler",587,163,4,92,51,70,6,2695,747,17,442,198,317,"A","E",434,9,3,765,"A"
28 | "-Bob Dernier",324,73,4,32,18,22,7,1931,491,13,291,108,180,"N","E",222,3,3,708.333,"N"
29 | "-Bo Diaz",474,129,10,50,56,40,10,2331,604,61,246,327,166,"N","W",732,83,13,750,"N"
30 | "-Bill Doran",550,152,6,92,37,81,5,2308,633,32,349,182,308,"N","W",262,329,16,625,"N"
31 | "-Brian Downing",513,137,20,90,95,90,14,5201,1382,166,763,734,784,"A","W",267,5,3,900,"A"
32 | "-Bobby Grich",313,84,9,42,30,39,17,6890,1833,224,1033,864,1087,"A","W",127,221,7,NA,"A"
33 | "-Billy Hatcher",419,108,6,55,36,22,3,591,149,8,80,46,31,"N","W",226,7,4,110,"N"
34 | "-Bob Horner",517,141,27,70,87,52,9,3571,994,215,545,652,337,"N","W",1378,102,8,NA,"N"
35 | "-Brook Jacoby",583,168,17,83,80,56,5,1646,452,44,219,208,136,"A","E",109,292,25,612.5,"A"
36 | "-Bob Kearney",204,49,6,23,25,12,7,1309,308,27,126,132,66,"A","W",419,46,5,300,"A"
37 | "-Bill Madlock",379,106,10,38,60,30,14,6207,1906,146,859,803,571,"N","W",72,170,24,850,"N"
38 | "-Bobby Meacham",161,36,0,19,10,17,4,1053,244,3,156,86,107,"A","E",70,149,12,NA,"A"
39 | "-Bob Melvin",268,60,5,24,25,15,2,350,78,5,34,29,18,"N","W",442,59,6,90,"N"
40 | "-Ben Oglivie",346,98,5,31,53,30,16,5913,1615,235,784,901,560,"A","E",0,0,0,NA,"A"
41 | "-Bip Roberts",241,61,1,34,12,14,1,241,61,1,34,12,14,"N","W",166,172,10,NA,"N"
42 | "-BillyJo Robidoux",181,41,1,15,21,33,2,232,50,4,20,29,45,"A","E",326,29,5,67.5,"A"
43 | "-Bill Russell",216,54,0,21,18,15,18,7318,1926,46,796,627,483,"N","W",103,84,5,NA,"N"
44 | "-Billy Sample",200,57,6,23,14,14,9,2516,684,46,371,230,195,"N","W",69,1,1,NA,"N"
45 | "-Bill Schroeder",217,46,7,32,19,9,4,694,160,32,86,76,32,"A","E",307,25,1,180,"A"
46 | "-Butch Wynegar",194,40,7,19,29,30,11,4183,1069,64,486,493,608,"A","E",325,22,2,NA,"A"
47 | "-Chris Bando",254,68,2,28,26,22,6,999,236,21,108,117,118,"A","E",359,30,4,305,"A"
48 | "-Chris Brown",416,132,7,57,49,33,3,932,273,24,113,121,80,"N","W",73,177,18,215,"N"
49 | "-Carmen Castillo",205,57,8,34,32,9,5,756,192,32,117,107,51,"A","E",58,4,4,247.5,"A"
50 | "-Cecil Cooper",542,140,12,46,75,41,16,7099,2130,235,987,1089,431,"A","E",697,61,9,NA,"A"
51 | "-Chili Davis",526,146,13,71,70,84,6,2648,715,77,352,342,289,"N","W",303,9,9,815,"N"
52 | "-Carlton Fisk",457,101,14,42,63,22,17,6521,1767,281,1003,977,619,"A","W",389,39,4,875,"A"
53 | "-Curt Ford",214,53,2,30,29,23,2,226,59,2,32,32,27,"N","E",109,7,3,70,"N"
54 | "-Cliff Johnson",19,7,0,1,2,1,4,41,13,1,3,4,4,"A","E",0,0,0,NA,"A"
55 | "-Carney Lansford",591,168,19,80,72,39,9,4478,1307,113,634,563,319,"A","W",67,147,4,1200,"A"
56 | "-Chet Lemon",403,101,12,45,53,39,12,5150,1429,166,747,666,526,"A","E",316,6,5,675,"A"
57 | "-Candy Maldonado",405,102,18,49,85,20,6,950,231,29,99,138,64,"N","W",161,10,3,415,"N"
58 | "-Carmelo Martinez",244,58,9,28,25,35,4,1335,333,49,164,179,194,"N","W",142,14,2,340,"N"
59 | "-Charlie Moore",235,61,3,24,39,21,14,3926,1029,35,441,401,333,"A","E",425,43,4,NA,"A"
60 | "-Craig Reynolds",313,78,6,32,41,12,12,3742,968,35,409,321,170,"N","W",106,206,7,416.667,"N"
61 | "-Cal Ripken",627,177,25,98,81,70,6,3210,927,133,529,472,313,"A","E",240,482,13,1350,"A"
62 | "-Cory Snyder",416,113,24,58,69,16,1,416,113,24,58,69,16,"A","E",203,70,10,90,"A"
63 | "-Chris Speier",155,44,6,21,23,15,16,6631,1634,98,698,661,777,"N","E",53,88,3,275,"N"
64 | "-Curt Wilkerson",236,56,0,27,15,11,4,1115,270,1,116,64,57,"A","W",125,199,13,230,"A"
65 | "-Dave Anderson",216,53,1,31,15,22,4,926,210,9,118,69,114,"N","W",73,152,11,225,"N"
66 | "-Doug Baker",24,3,0,1,0,2,3,159,28,0,20,12,9,"A","W",80,4,0,NA,"A"
67 | "-Don Baylor",585,139,31,93,94,62,17,7546,1982,315,1141,1179,727,"A","E",0,0,0,950,"A"
68 | "-Dann Bilardello",191,37,4,12,17,14,4,773,163,16,61,74,52,"N","E",391,38,8,NA,"N"
69 | "-Daryl Boston",199,53,5,29,22,21,3,514,120,8,57,40,39,"A","W",152,3,5,75,"A"
70 | "-Darnell Coles",521,142,20,67,86,45,4,815,205,22,99,103,78,"A","E",107,242,23,105,"A"
71 | "-Dave Collins",419,113,1,44,27,44,12,4484,1231,32,612,344,422,"A","E",211,2,1,NA,"A"
72 | "-Dave Concepcion",311,81,3,42,30,26,17,8247,2198,100,950,909,690,"N","W",153,223,10,320,"N"
73 | "-Darren Daulton",138,31,8,18,21,38,3,244,53,12,33,32,55,"N","E",244,21,4,NA,"N"
74 | "-Doug DeCinces",512,131,26,69,96,52,14,5347,1397,221,712,815,548,"A","W",119,216,12,850,"A"
75 | "-Darrell Evans",507,122,29,78,85,91,18,7761,1947,347,1175,1152,1380,"A","E",808,108,2,535,"A"
76 | "-Dwight Evans",529,137,26,86,97,97,15,6661,1785,291,1082,949,989,"A","E",280,10,5,933.333,"A"
77 | "-Damaso Garcia",424,119,6,57,46,13,9,3651,1046,32,461,301,112,"A","E",224,286,8,850,"N"
78 | "-Dan Gladden",351,97,4,55,29,39,4,1258,353,16,196,110,117,"N","W",226,7,3,210,"A"
79 | "-Danny Heep",195,55,5,24,33,30,8,1313,338,25,144,149,153,"N","E",83,2,1,NA,"N"
80 | "-Dave Henderson",388,103,15,59,47,39,6,2174,555,80,285,274,186,"A","W",182,9,4,325,"A"
81 | "-Donnie Hill",339,96,4,37,29,23,4,1064,290,11,123,108,55,"A","W",104,213,9,275,"A"
82 | "-Dave Kingman",561,118,35,70,94,33,16,6677,1575,442,901,1210,608,"A","W",463,32,8,NA,"A"
83 | "-Davey Lopes",255,70,7,49,35,43,15,6311,1661,154,1019,608,820,"N","E",51,54,8,450,"N"
84 | "-Don Mattingly",677,238,31,117,113,53,5,2223,737,93,349,401,171,"A","E",1377,100,6,1975,"A"
85 | "-Darryl Motley",227,46,7,23,20,12,5,1325,324,44,156,158,67,"A","W",92,2,2,NA,"A"
86 | "-Dale Murphy",614,163,29,89,83,75,11,5017,1388,266,813,822,617,"N","W",303,6,6,1900,"N"
87 | "-Dwayne Murphy",329,83,9,50,39,56,9,3828,948,145,575,528,635,"A","W",276,6,2,600,"A"
88 | "-Dave Parker",637,174,31,89,116,56,14,6727,2024,247,978,1093,495,"N","W",278,9,9,1041.667,"N"
89 | "-Dan Pasqua",280,82,16,44,45,47,2,428,113,25,61,70,63,"A","E",148,4,2,110,"A"
90 | "-Darrell Porter",155,41,12,21,29,22,16,5409,1338,181,746,805,875,"A","W",165,9,1,260,"A"
91 | "-Dick Schofield",458,114,13,67,57,48,4,1350,298,28,160,123,122,"A","W",246,389,18,475,"A"
92 | "-Don Slaught",314,83,13,39,46,16,5,1457,405,28,156,159,76,"A","W",533,40,4,431.5,"A"
93 | "-Darryl Strawberry",475,123,27,76,93,72,4,1810,471,108,292,343,267,"N","E",226,10,6,1220,"N"
94 | "-Dale Sveum",317,78,7,35,35,32,1,317,78,7,35,35,32,"A","E",45,122,26,70,"A"
95 | "-Danny Tartabull",511,138,25,76,96,61,3,592,164,28,87,110,71,"A","W",157,7,8,145,"A"
96 | "-Dickie Thon",278,69,3,24,21,29,8,2079,565,32,258,192,162,"N","W",142,210,10,NA,"N"
97 | "-Denny Walling",382,119,13,54,58,36,12,2133,594,41,287,294,227,"N","W",59,156,9,595,"N"
98 | "-Dave Winfield",565,148,24,90,104,77,14,7287,2083,305,1135,1234,791,"A","E",292,9,5,1861.46,"A"
99 | "-Enos Cabell",277,71,2,27,29,14,15,5952,1647,60,753,596,259,"N","W",360,32,5,NA,"N"
100 | "-Eric Davis",415,115,27,97,71,68,3,711,184,45,156,119,99,"N","W",274,2,7,300,"N"
101 | "-Eddie Milner",424,110,15,70,47,36,7,2130,544,38,335,174,258,"N","W",292,6,3,490,"N"
102 | "-Eddie Murray",495,151,17,61,84,78,10,5624,1679,275,884,1015,709,"A","E",1045,88,13,2460,"A"
103 | "-Ernest Riles",524,132,9,69,47,54,2,972,260,14,123,92,90,"A","E",212,327,20,NA,"A"
104 | "-Ed Romero",233,49,2,41,23,18,8,1350,336,7,166,122,106,"A","E",102,132,10,375,"A"
105 | "-Ernie Whitt",395,106,16,48,56,35,10,2303,571,86,266,323,248,"A","E",709,41,7,NA,"A"
106 | "-Fred Lynn",397,114,23,67,67,53,13,5589,1632,241,906,926,716,"A","E",244,2,4,NA,"A"
107 | "-Floyd Rayford",210,37,8,15,19,15,6,994,244,36,107,114,53,"A","E",40,115,15,NA,"A"
108 | "-Franklin Stubbs",420,95,23,55,58,37,3,646,139,31,77,77,61,"N","W",206,10,7,NA,"N"
109 | "-Frank White",566,154,22,76,84,43,14,6100,1583,131,743,693,300,"A","W",316,439,10,750,"A"
110 | "-George Bell",641,198,31,101,108,41,5,2129,610,92,297,319,117,"A","E",269,17,10,1175,"A"
111 | "-Glenn Braggs",215,51,4,19,18,11,1,215,51,4,19,18,11,"A","E",116,5,12,70,"A"
112 | "-George Brett",441,128,16,70,73,80,14,6675,2095,209,1072,1050,695,"A","W",97,218,16,1500,"A"
113 | "-Greg Brock",325,76,16,33,52,37,5,1506,351,71,195,219,214,"N","W",726,87,3,385,"A"
114 | "-Gary Carter",490,125,24,81,105,62,13,6063,1646,271,847,999,680,"N","E",869,62,8,1925.571,"N"
115 | "-Glenn Davis",574,152,31,91,101,64,3,985,260,53,148,173,95,"N","W",1253,111,11,215,"N"
116 | "-George Foster",284,64,14,30,42,24,18,7023,1925,348,986,1239,666,"N","E",96,4,4,NA,"N"
117 | "-Gary Gaetti",596,171,34,91,108,52,6,2862,728,107,361,401,224,"A","W",118,334,21,900,"A"
118 | "-Greg Gagne",472,118,12,63,54,30,4,793,187,14,102,80,50,"A","W",228,377,26,155,"A"
119 | "-George Hendrick",283,77,14,45,47,26,16,6840,1910,259,915,1067,546,"A","W",144,6,5,700,"A"
120 | "-Glenn Hubbard",408,94,4,42,36,66,9,3573,866,59,429,365,410,"N","W",282,487,19,535,"N"
121 | "-Garth Iorg",327,85,3,30,44,20,8,2140,568,16,216,208,93,"A","E",91,185,12,362.5,"A"
122 | "-Gary Matthews",370,96,21,49,46,60,15,6986,1972,231,1070,955,921,"N","E",137,5,9,733.333,"N"
123 | "-Graig Nettles",354,77,16,36,55,41,20,8716,2172,384,1172,1267,1057,"N","W",83,174,16,200,"N"
124 | "-Gary Pettis",539,139,5,93,58,69,5,1469,369,12,247,126,198,"A","W",462,9,7,400,"A"
125 | "-Gary Redus",340,84,11,62,33,47,5,1516,376,42,284,141,219,"N","E",185,8,4,400,"A"
126 | "-Garry Templeton",510,126,2,42,44,35,11,5562,1578,44,703,519,256,"N","W",207,358,20,737.5,"N"
127 | "-Gorman Thomas",315,59,16,45,36,58,13,4677,1051,268,681,782,697,"A","W",0,0,0,NA,"A"
128 | "-Greg Walker",282,78,13,37,51,29,5,1649,453,73,211,280,138,"A","W",670,57,5,500,"A"
129 | "-Gary Ward",380,120,5,54,51,31,8,3118,900,92,444,419,240,"A","W",237,8,1,600,"A"
130 | "-Glenn Wilson",584,158,15,70,84,42,5,2358,636,58,265,316,134,"N","E",331,20,4,662.5,"N"
131 | "-Harold Baines",570,169,21,72,88,38,7,3754,1077,140,492,589,263,"A","W",295,15,5,950,"A"
132 | "-Hubie Brooks",306,104,14,50,58,25,7,2954,822,55,313,377,187,"N","E",116,222,15,750,"N"
133 | "-Howard Johnson",220,54,10,30,39,31,5,1185,299,40,145,154,128,"N","E",50,136,20,297.5,"N"
134 | "-Hal McRae",278,70,7,22,37,18,18,7186,2081,190,935,1088,643,"A","W",0,0,0,325,"A"
135 | "-Harold Reynolds",445,99,1,46,24,29,4,618,129,1,72,31,48,"A","W",278,415,16,87.5,"A"
136 | "-Harry Spilman",143,39,5,18,30,15,9,639,151,16,80,97,61,"N","W",138,15,1,175,"N"
137 | "-Herm Winningham",185,40,4,23,11,18,3,524,125,7,58,37,47,"N","E",97,2,2,90,"N"
138 | "-Jesse Barfield",589,170,40,107,108,69,6,2325,634,128,371,376,238,"A","E",368,20,3,1237.5,"A"
139 | "-Juan Beniquez",343,103,6,48,36,40,15,4338,1193,70,581,421,325,"A","E",211,56,13,430,"A"
140 | "-Juan Bonilla",284,69,1,33,18,25,5,1407,361,6,139,98,111,"A","E",122,140,5,NA,"N"
141 | "-John Cangelosi",438,103,2,65,32,71,2,440,103,2,67,32,71,"A","W",276,7,9,100,"N"
142 | "-Jose Canseco",600,144,33,85,117,65,2,696,173,38,101,130,69,"A","W",319,4,14,165,"A"
143 | "-Joe Carter",663,200,29,108,121,32,4,1447,404,57,210,222,68,"A","E",241,8,6,250,"A"
144 | "-Jack Clark",232,55,9,34,23,45,12,4405,1213,194,702,705,625,"N","E",623,35,3,1300,"N"
145 | "-Jose Cruz",479,133,10,48,72,55,17,7472,2147,153,980,1032,854,"N","W",237,5,4,773.333,"N"
146 | "-Julio Cruz",209,45,0,38,19,42,10,3859,916,23,557,279,478,"A","W",132,205,5,NA,"A"
147 | "-Jody Davis",528,132,21,61,74,41,6,2641,671,97,273,383,226,"N","E",885,105,8,1008.333,"N"
148 | "-Jim Dwyer",160,39,8,18,31,22,14,2128,543,56,304,268,298,"A","E",33,3,0,275,"A"
149 | "-Julio Franco",599,183,10,80,74,32,5,2482,715,27,330,326,158,"A","E",231,374,18,775,"A"
150 | "-Jim Gantner",497,136,7,58,38,26,11,3871,1066,40,450,367,241,"A","E",304,347,10,850,"A"
151 | "-Johnny Grubb",210,70,13,32,51,28,15,4040,1130,97,544,462,551,"A","E",0,0,0,365,"A"
152 | "-Jerry Hairston",225,61,5,32,26,26,11,1568,408,25,202,185,257,"A","W",132,9,0,NA,"A"
153 | "-Jack Howell",151,41,4,26,21,19,2,288,68,9,45,39,35,"A","W",28,56,2,95,"A"
154 | "-John Kruk",278,86,4,33,38,45,1,278,86,4,33,38,45,"N","W",102,4,2,110,"N"
155 | "-Jeffrey Leonard",341,95,6,48,42,20,10,2964,808,81,379,428,221,"N","W",158,4,5,100,"N"
156 | "-Jim Morrison",537,147,23,58,88,47,10,2744,730,97,302,351,174,"N","E",92,257,20,277.5,"N"
157 | "-John Moses",399,102,3,56,34,34,5,670,167,4,89,48,54,"A","W",211,9,3,80,"A"
158 | "-Jerry Mumphrey",309,94,5,37,32,26,13,4618,1330,57,616,522,436,"N","E",161,3,3,600,"N"
159 | "-Joe Orsulak",401,100,2,60,19,28,4,876,238,2,126,44,55,"N","E",193,11,4,NA,"N"
160 | "-Jorge Orta",336,93,9,35,46,23,15,5779,1610,128,730,741,497,"A","W",0,0,0,NA,"A"
161 | "-Jim Presley",616,163,27,83,107,32,3,1437,377,65,181,227,82,"A","W",110,308,15,200,"A"
162 | "-Jamie Quirk",219,47,8,24,26,17,12,1188,286,23,100,125,63,"A","W",260,58,4,NA,"A"
163 | "-Johnny Ray",579,174,7,67,78,58,6,3053,880,32,366,337,218,"N","E",280,479,5,657,"N"
164 | "-Jeff Reed",165,39,2,13,9,16,3,196,44,2,18,10,18,"A","W",332,19,2,75,"N"
165 | "-Jim Rice",618,200,20,98,110,62,13,7127,2163,351,1104,1289,564,"A","E",330,16,8,2412.5,"A"
166 | "-Jerry Royster",257,66,5,31,26,32,14,3910,979,33,518,324,382,"N","W",87,166,14,250,"A"
167 | "-John Russell",315,76,13,35,60,25,3,630,151,24,68,94,55,"N","E",498,39,13,155,"N"
168 | "-Juan Samuel",591,157,16,90,78,26,4,2020,541,52,310,226,91,"N","E",290,440,25,640,"N"
169 | "-John Shelby",404,92,11,54,49,18,6,1354,325,30,188,135,63,"A","E",222,5,5,300,"A"
170 | "-Joel Skinner",315,73,5,23,37,16,4,450,108,6,38,46,28,"A","W",227,15,3,110,"A"
171 | "-Jeff Stone",249,69,6,32,19,20,4,702,209,10,97,48,44,"N","E",103,8,2,NA,"N"
172 | "-Jim Sundberg",429,91,12,41,42,57,13,5590,1397,83,578,579,644,"A","W",686,46,4,825,"N"
173 | "-Jim Traber",212,54,13,28,44,18,2,233,59,13,31,46,20,"A","E",243,23,5,NA,"A"
174 | "-Jose Uribe",453,101,3,46,43,61,3,948,218,6,96,72,91,"N","W",249,444,16,195,"N"
175 | "-Jerry Willard",161,43,4,17,26,22,3,707,179,21,77,99,76,"A","W",300,12,2,NA,"A"
176 | "-Joel Youngblood",184,47,5,20,28,18,11,3327,890,74,419,382,304,"N","W",49,2,0,450,"N"
177 | "-Kevin Bass",591,184,20,83,79,38,5,1689,462,40,219,195,82,"N","W",303,12,5,630,"N"
178 | "-Kal Daniels",181,58,6,34,23,22,1,181,58,6,34,23,22,"N","W",88,0,3,86.5,"N"
179 | "-Kirk Gibson",441,118,28,84,86,68,8,2723,750,126,433,420,309,"A","E",190,2,2,1300,"A"
180 | "-Ken Griffey",490,150,21,69,58,35,14,6126,1839,121,983,707,600,"A","E",96,5,3,1000,"N"
181 | "-Keith Hernandez",551,171,13,94,83,94,13,6090,1840,128,969,900,917,"N","E",1199,149,5,1800,"N"
182 | "-Kent Hrbek",550,147,29,85,91,71,6,2816,815,117,405,474,319,"A","W",1218,104,10,1310,"A"
183 | "-Ken Landreaux",283,74,4,34,29,22,10,3919,1062,85,505,456,283,"N","W",145,5,7,737.5,"N"
184 | "-Kevin McReynolds",560,161,26,89,96,66,4,1789,470,65,233,260,155,"N","W",332,9,8,625,"N"
185 | "-Kevin Mitchell",328,91,12,51,43,33,2,342,94,12,51,44,33,"N","E",145,59,8,125,"N"
186 | "-Keith Moreland",586,159,12,72,79,53,9,3082,880,83,363,477,295,"N","E",181,13,4,1043.333,"N"
187 | "-Ken Oberkfell",503,136,5,62,48,83,10,3423,970,20,408,303,414,"N","W",65,258,8,725,"N"
188 | "-Ken Phelps",344,85,24,69,64,88,7,911,214,64,150,156,187,"A","W",0,0,0,300,"A"
189 | "-Kirby Puckett",680,223,31,119,96,34,3,1928,587,35,262,201,91,"A","W",429,8,6,365,"A"
190 | "-Kurt Stillwell",279,64,0,31,26,30,1,279,64,0,31,26,30,"N","W",107,205,16,75,"N"
191 | "-Leon Durham",484,127,20,66,65,67,7,3006,844,116,436,458,377,"N","E",1231,80,7,1183.333,"N"
192 | "-Len Dykstra",431,127,8,77,45,58,2,667,187,9,117,64,88,"N","E",283,8,3,202.5,"N"
193 | "-Larry Herndon",283,70,8,33,37,27,12,4479,1222,94,557,483,307,"A","E",156,2,2,225,"A"
194 | "-Lee Lacy",491,141,11,77,47,37,15,4291,1240,84,615,430,340,"A","E",239,8,2,525,"A"
195 | "-Len Matuszek",199,52,9,26,28,21,6,805,191,30,113,119,87,"N","W",235,22,5,265,"N"
196 | "-Lloyd Moseby",589,149,21,89,86,64,7,3558,928,102,513,471,351,"A","E",371,6,6,787.5,"A"
197 | "-Lance Parrish",327,84,22,53,62,38,10,4273,1123,212,577,700,334,"A","E",483,48,6,800,"N"
198 | "-Larry Parrish",464,128,28,67,94,52,13,5829,1552,210,740,840,452,"A","W",0,0,0,587.5,"A"
199 | "-Luis Rivera",166,34,0,20,13,17,1,166,34,0,20,13,17,"N","E",64,119,9,NA,"N"
200 | "-Larry Sheets",338,92,18,42,60,21,3,682,185,36,88,112,50,"A","E",0,0,0,145,"A"
201 | "-Lonnie Smith",508,146,8,80,44,46,9,3148,915,41,571,289,326,"A","W",245,5,9,NA,"A"
202 | "-Lou Whitaker",584,157,20,95,73,63,10,4704,1320,93,724,522,576,"A","E",276,421,11,420,"A"
203 | "-Mike Aldrete",216,54,2,27,25,33,1,216,54,2,27,25,33,"N","W",317,36,1,75,"N"
204 | "-Marty Barrett",625,179,4,94,60,65,5,1696,476,12,216,163,166,"A","E",303,450,14,575,"A"
205 | "-Mike Brown",243,53,4,18,26,27,4,853,228,23,101,110,76,"N","E",107,3,3,NA,"N"
206 | "-Mike Davis",489,131,19,77,55,34,7,2051,549,62,300,263,153,"A","W",310,9,9,780,"A"
207 | "-Mike Diaz",209,56,12,22,36,19,2,216,58,12,24,37,19,"N","E",201,6,3,90,"N"
208 | "-Mariano Duncan",407,93,8,47,30,30,2,969,230,14,121,69,68,"N","W",172,317,25,150,"N"
209 | "-Mike Easler",490,148,14,64,78,49,13,3400,1000,113,445,491,301,"A","E",0,0,0,700,"N"
210 | "-Mike Fitzgerald",209,59,6,20,37,27,4,884,209,14,66,106,92,"N","E",415,35,3,NA,"N"
211 | "-Mel Hall",442,131,18,68,77,33,6,1416,398,47,210,203,136,"A","E",233,7,7,550,"A"
212 | "-Mickey Hatcher",317,88,3,40,32,19,8,2543,715,28,269,270,118,"A","W",220,16,4,NA,"A"
213 | "-Mike Heath",288,65,8,30,36,27,9,2815,698,55,315,325,189,"N","E",259,30,10,650,"A"
214 | "-Mike Kingery",209,54,3,25,14,12,1,209,54,3,25,14,12,"A","W",102,6,3,68,"A"
215 | "-Mike LaValliere",303,71,3,18,30,36,3,344,76,3,20,36,45,"N","E",468,47,6,100,"N"
216 | "-Mike Marshall",330,77,19,47,53,27,6,1928,516,90,247,288,161,"N","W",149,8,6,670,"N"
217 | "-Mike Pagliarulo",504,120,28,71,71,54,3,1085,259,54,150,167,114,"A","E",103,283,19,175,"A"
218 | "-Mark Salas",258,60,8,28,33,18,3,638,170,17,80,75,36,"A","W",358,32,8,137,"A"
219 | "-Mike Schmidt",20,1,0,0,0,0,2,41,9,2,6,7,4,"N","E",78,220,6,2127.333,"N"
220 | "-Mike Scioscia",374,94,5,36,26,62,7,1968,519,26,181,199,288,"N","W",756,64,15,875,"N"
221 | "-Mickey Tettleton",211,43,10,26,35,39,3,498,116,14,59,55,78,"A","W",463,32,8,120,"A"
222 | "-Milt Thompson",299,75,6,38,23,26,3,580,160,8,71,33,44,"N","E",212,1,2,140,"N"
223 | "-Mitch Webster",576,167,8,89,49,57,4,822,232,19,132,83,79,"N","E",325,12,8,210,"N"
224 | "-Mookie Wilson",381,110,9,61,45,32,7,3015,834,40,451,249,168,"N","E",228,7,5,800,"N"
225 | "-Marvell Wynne",288,76,7,34,37,15,4,1644,408,16,198,120,113,"N","W",203,3,3,240,"N"
226 | "-Mike Young",369,93,9,43,42,49,5,1258,323,54,181,177,157,"A","E",149,1,6,350,"A"
227 | "-Nick Esasky",330,76,12,35,41,47,4,1367,326,55,167,198,167,"N","W",512,30,5,NA,"N"
228 | "-Ozzie Guillen",547,137,2,58,47,12,2,1038,271,3,129,80,24,"A","W",261,459,22,175,"A"
229 | "-Oddibe McDowell",572,152,18,105,49,65,2,978,249,36,168,91,101,"A","W",325,13,3,200,"A"
230 | "-Omar Moreno",359,84,4,46,27,21,12,4992,1257,37,699,386,387,"N","W",151,8,5,NA,"N"
231 | "-Ozzie Smith",514,144,0,67,54,79,9,4739,1169,13,583,374,528,"N","E",229,453,15,1940,"N"
232 | "-Ozzie Virgil",359,80,15,45,48,63,7,1493,359,61,176,202,175,"N","W",682,93,13,700,"N"
233 | "-Phil Bradley",526,163,12,88,50,77,4,1556,470,38,245,167,174,"A","W",250,11,1,750,"A"
234 | "-Phil Garner",313,83,9,43,41,30,14,5885,1543,104,751,714,535,"N","W",58,141,23,450,"N"
235 | "-Pete Incaviglia",540,135,30,82,88,55,1,540,135,30,82,88,55,"A","W",157,6,14,172,"A"
236 | "-Paul Molitor",437,123,9,62,55,40,9,4139,1203,79,676,390,364,"A","E",82,170,15,1260,"A"
237 | "-Pete O'Brien",551,160,23,86,90,87,5,2235,602,75,278,328,273,"A","W",1224,115,11,NA,"A"
238 | "-Pete Rose",237,52,0,15,25,30,24,14053,4256,160,2165,1314,1566,"N","W",523,43,6,750,"N"
239 | "-Pat Sheridan",236,56,6,41,19,21,5,1257,329,24,166,125,105,"A","E",172,1,4,190,"A"
240 | "-Pat Tabler",473,154,6,61,48,29,6,1966,566,29,250,252,178,"A","E",846,84,9,580,"A"
241 | "-Rafael Belliard",309,72,0,33,31,26,5,354,82,0,41,32,26,"N","E",117,269,12,130,"N"
242 | "-Rick Burleson",271,77,5,35,29,33,12,4933,1358,48,630,435,403,"A","W",62,90,3,450,"A"
243 | "-Randy Bush",357,96,7,50,45,39,5,1394,344,43,178,192,136,"A","W",167,2,4,300,"A"
244 | "-Rick Cerone",216,56,4,22,18,15,12,2796,665,43,266,304,198,"A","E",391,44,4,250,"A"
245 | "-Ron Cey",256,70,13,42,36,44,16,7058,1845,312,965,1128,990,"N","E",41,118,8,1050,"A"
246 | "-Rob Deer",466,108,33,75,86,72,3,652,142,44,102,109,102,"A","E",286,8,8,215,"A"
247 | "-Rick Dempsey",327,68,13,42,29,45,18,3949,939,78,438,380,466,"A","E",659,53,7,400,"A"
248 | "-Rich Gedman",462,119,16,49,65,37,7,2131,583,69,244,288,150,"A","E",866,65,6,NA,"A"
249 | "-Ron Hassey",341,110,9,45,49,46,9,2331,658,50,249,322,274,"A","E",251,9,4,560,"A"
250 | "-Rickey Henderson",608,160,28,130,74,89,8,4071,1182,103,862,417,708,"A","E",426,4,6,1670,"A"
251 | "-Reggie Jackson",419,101,18,65,58,92,20,9528,2510,548,1509,1659,1342,"A","W",0,0,0,487.5,"A"
252 | "-Ricky Jones",33,6,0,2,4,7,1,33,6,0,2,4,7,"A","W",205,5,4,NA,"A"
253 | "-Ron Kittle",376,82,21,42,60,35,5,1770,408,115,238,299,157,"A","W",0,0,0,425,"A"
254 | "-Ray Knight",486,145,11,51,76,40,11,3967,1102,67,410,497,284,"N","E",88,204,16,500,"A"
255 | "-Randy Kutcher",186,44,7,28,16,11,1,186,44,7,28,16,11,"N","W",99,3,1,NA,"N"
256 | "-Rudy Law",307,80,1,42,36,29,7,2421,656,18,379,198,184,"A","W",145,2,2,NA,"A"
257 | "-Rick Leach",246,76,5,35,39,13,6,912,234,12,102,96,80,"A","E",44,0,1,250,"A"
258 | "-Rick Manning",205,52,8,31,27,17,12,5134,1323,56,643,445,459,"A","E",155,3,2,400,"A"
259 | "-Rance Mulliniks",348,90,11,50,45,43,10,2288,614,43,295,273,269,"A","E",60,176,6,450,"A"
260 | "-Ron Oester",523,135,8,52,44,52,9,3368,895,39,377,284,296,"N","W",367,475,19,750,"N"
261 | "-Rey Quinones",312,68,2,32,22,24,1,312,68,2,32,22,24,"A","E",86,150,15,70,"A"
262 | "-Rafael Ramirez",496,119,8,57,33,21,7,3358,882,36,365,280,165,"N","W",155,371,29,875,"N"
263 | "-Ronn Reynolds",126,27,3,8,10,5,4,239,49,3,16,13,14,"N","E",190,2,9,190,"N"
264 | "-Ron Roenicke",275,68,5,42,42,61,6,961,238,16,128,104,172,"N","E",181,3,2,191,"N"
265 | "-Ryne Sandberg",627,178,14,68,76,46,6,3146,902,74,494,345,242,"N","E",309,492,5,740,"N"
266 | "-Rafael Santana",394,86,1,38,28,36,4,1089,267,3,94,71,76,"N","E",203,369,16,250,"N"
267 | "-Rick Schu",208,57,8,32,25,18,3,653,170,17,98,54,62,"N","E",42,94,13,140,"N"
268 | "-Ruben Sierra",382,101,16,50,55,22,1,382,101,16,50,55,22,"A","W",200,7,6,97.5,"A"
269 | "-Roy Smalley",459,113,20,59,57,68,12,5348,1369,155,713,660,735,"A","W",0,0,0,740,"A"
270 | "-Robby Thompson",549,149,7,73,47,42,1,549,149,7,73,47,42,"N","W",255,450,17,140,"N"
271 | "-Rob Wilfong",288,63,3,25,33,16,10,2682,667,38,315,259,204,"A","W",135,257,7,341.667,"A"
272 | "-Reggie Williams",303,84,4,35,32,23,2,312,87,4,39,32,23,"N","W",179,5,3,NA,"N"
273 | "-Robin Yount",522,163,9,82,46,62,13,7037,2019,153,1043,827,535,"A","E",352,9,1,1000,"A"
274 | "-Steve Balboni",512,117,29,54,88,43,6,1750,412,100,204,276,155,"A","W",1236,98,18,100,"A"
275 | "-Scott Bradley",220,66,5,20,28,13,3,290,80,5,27,31,15,"A","W",281,21,3,90,"A"
276 | "-Sid Bream",522,140,16,73,77,60,4,730,185,22,93,106,86,"N","E",1320,166,17,200,"N"
277 | "-Steve Buechele",461,112,18,54,54,35,2,680,160,24,76,75,49,"A","W",111,226,11,135,"A"
278 | "-Shawon Dunston",581,145,17,66,68,21,2,831,210,21,106,86,40,"N","E",320,465,32,155,"N"
279 | "-Scott Fletcher",530,159,3,82,50,47,6,1619,426,11,218,149,163,"A","W",196,354,15,475,"A"
280 | "-Steve Garvey",557,142,21,58,81,23,18,8759,2583,271,1138,1299,478,"N","W",1160,53,7,1450,"N"
281 | "-Steve Jeltz",439,96,0,44,36,65,4,711,148,1,68,56,99,"N","E",229,406,22,150,"N"
282 | "-Steve Lombardozzi",453,103,8,53,33,52,2,507,123,8,63,39,58,"A","W",289,407,6,105,"A"
283 | "-Spike Owen",528,122,1,67,45,51,4,1716,403,12,211,146,155,"A","W",209,372,17,350,"A"
284 | "-Steve Sax",633,210,6,91,56,59,6,3070,872,19,420,230,274,"N","W",367,432,16,90,"N"
285 | "-Tony Armas",16,2,0,1,0,0,2,28,4,0,1,0,0,"A","E",247,4,8,NA,"A"
286 | "-Tony Bernazard",562,169,17,88,73,53,8,3181,841,61,450,342,373,"A","E",351,442,17,530,"A"
287 | "-Tom Brookens",281,76,3,42,25,20,8,2658,657,48,324,300,179,"A","E",106,144,7,341.667,"A"
288 | "-Tom Brunansky",593,152,23,69,75,53,6,2765,686,133,369,384,321,"A","W",315,10,6,940,"A"
289 | "-Tony Fernandez",687,213,10,91,65,27,4,1518,448,15,196,137,89,"A","E",294,445,13,350,"A"
290 | "-Tim Flannery",368,103,3,48,28,54,8,1897,493,9,207,162,198,"N","W",209,246,3,326.667,"N"
291 | "-Tom Foley",263,70,1,26,23,30,4,888,220,9,83,82,86,"N","E",81,147,4,250,"N"
292 | "-Tony Gwynn",642,211,14,107,59,52,5,2364,770,27,352,230,193,"N","W",337,19,4,740,"N"
293 | "-Terry Harper",265,68,8,26,30,29,7,1337,339,32,135,163,128,"N","W",92,5,3,425,"A"
294 | "-Toby Harrah",289,63,7,36,41,44,17,7402,1954,195,1115,919,1153,"A","W",166,211,7,NA,"A"
295 | "-Tommy Herr",559,141,2,48,61,73,8,3162,874,16,421,349,359,"N","E",352,414,9,925,"N"
296 | "-Tim Hulett",520,120,17,53,44,21,4,927,227,22,106,80,52,"A","W",70,144,11,185,"A"
297 | "-Terry Kennedy",19,4,1,2,3,1,1,19,4,1,2,3,1,"N","W",692,70,8,920,"A"
298 | "-Tito Landrum",205,43,2,24,17,20,7,854,219,12,105,99,71,"N","E",131,6,1,286.667,"N"
299 | "-Tim Laudner",193,47,10,21,29,24,6,1136,256,42,129,139,106,"A","W",299,13,5,245,"A"
300 | "-Tom O'Malley",181,46,1,19,18,17,5,937,238,9,88,95,104,"A","E",37,98,9,NA,"A"
301 | "-Tom Paciorek",213,61,4,17,22,3,17,4061,1145,83,488,491,244,"A","W",178,45,4,235,"A"
302 | "-Tony Pena",510,147,10,56,52,53,7,2872,821,63,307,340,174,"N","E",810,99,18,1150,"N"
303 | "-Terry Pendleton",578,138,1,56,59,34,3,1399,357,7,149,161,87,"N","E",133,371,20,160,"N"
304 | "-Tony Perez",200,51,2,14,29,25,23,9778,2732,379,1272,1652,925,"N","W",398,29,7,NA,"N"
305 | "-Tony Phillips",441,113,5,76,52,76,5,1546,397,17,226,149,191,"A","W",160,290,11,425,"A"
306 | "-Terry Puhl",172,42,3,17,14,15,10,4086,1150,57,579,363,406,"N","W",65,0,0,900,"N"
307 | "-Tim Raines",580,194,9,91,62,78,8,3372,1028,48,604,314,469,"N","E",270,13,6,NA,"N"
308 | "-Ted Simmons",127,32,4,14,25,12,19,8396,2402,242,1048,1348,819,"N","W",167,18,6,500,"N"
309 | "-Tim Teufel",279,69,4,35,31,32,4,1359,355,31,180,148,158,"N","E",133,173,9,277.5,"N"
310 | "-Tim Wallach",480,112,18,50,71,44,7,3031,771,110,338,406,239,"N","E",94,270,16,750,"N"
311 | "-Vince Coleman",600,139,0,94,29,60,2,1236,309,1,201,69,110,"N","E",300,12,9,160,"N"
312 | "-Von Hayes",610,186,19,107,98,74,6,2728,753,69,399,366,286,"N","E",1182,96,13,1300,"N"
313 | "-Vance Law",360,81,5,37,44,37,7,2268,566,41,279,257,246,"N","E",170,284,3,525,"N"
314 | "-Wally Backman",387,124,1,67,27,36,7,1775,506,6,272,125,194,"N","E",186,290,17,550,"N"
315 | "-Wade Boggs",580,207,8,107,71,105,5,2778,978,32,474,322,417,"A","E",121,267,19,1600,"A"
316 | "-Will Clark",408,117,11,66,41,34,1,408,117,11,66,41,34,"N","W",942,72,11,120,"N"
317 | "-Wally Joyner",593,172,22,82,100,57,1,593,172,22,82,100,57,"A","W",1222,139,15,165,"A"
318 | "-Wayne Krenchicki",221,53,2,21,23,22,8,1063,283,15,107,124,106,"N","E",325,58,6,NA,"N"
319 | "-Willie McGee",497,127,7,65,48,37,5,2703,806,32,379,311,138,"N","E",325,9,3,700,"N"
320 | "-Willie Randolph",492,136,5,76,50,94,12,5511,1511,39,897,451,875,"A","E",313,381,20,875,"A"
321 | "-Wayne Tolleson",475,126,3,61,43,52,6,1700,433,7,217,93,146,"A","W",37,113,7,385,"A"
322 | "-Willie Upshaw",573,144,9,85,60,78,8,3198,857,97,470,420,332,"A","E",1314,131,12,960,"A"
323 | "-Willie Wilson",631,170,9,77,44,31,11,4908,1457,30,775,357,249,"A","W",408,4,3,1000,"A"
324 |
--------------------------------------------------------------------------------
/data/csv/Boston.csv:
--------------------------------------------------------------------------------
1 | "crim","zn","indus","chas","nox","rm","age","dis","rad","tax","ptratio","black","lstat","medv"
2 | 0.00632,18,2.31,0,0.538,6.575,65.2,4.09,1,296,15.3,396.9,4.98,24
3 | 0.02731,0,7.07,0,0.469,6.421,78.9,4.9671,2,242,17.8,396.9,9.14,21.6
4 | 0.02729,0,7.07,0,0.469,7.185,61.1,4.9671,2,242,17.8,392.83,4.03,34.7
5 | 0.03237,0,2.18,0,0.458,6.998,45.8,6.0622,3,222,18.7,394.63,2.94,33.4
6 | 0.06905,0,2.18,0,0.458,7.147,54.2,6.0622,3,222,18.7,396.9,5.33,36.2
7 | 0.02985,0,2.18,0,0.458,6.43,58.7,6.0622,3,222,18.7,394.12,5.21,28.7
8 | 0.08829,12.5,7.87,0,0.524,6.012,66.6,5.5605,5,311,15.2,395.6,12.43,22.9
9 | 0.14455,12.5,7.87,0,0.524,6.172,96.1,5.9505,5,311,15.2,396.9,19.15,27.1
10 | 0.21124,12.5,7.87,0,0.524,5.631,100,6.0821,5,311,15.2,386.63,29.93,16.5
11 | 0.17004,12.5,7.87,0,0.524,6.004,85.9,6.5921,5,311,15.2,386.71,17.1,18.9
12 | 0.22489,12.5,7.87,0,0.524,6.377,94.3,6.3467,5,311,15.2,392.52,20.45,15
13 | 0.11747,12.5,7.87,0,0.524,6.009,82.9,6.2267,5,311,15.2,396.9,13.27,18.9
14 | 0.09378,12.5,7.87,0,0.524,5.889,39,5.4509,5,311,15.2,390.5,15.71,21.7
15 | 0.62976,0,8.14,0,0.538,5.949,61.8,4.7075,4,307,21,396.9,8.26,20.4
16 | 0.63796,0,8.14,0,0.538,6.096,84.5,4.4619,4,307,21,380.02,10.26,18.2
17 | 0.62739,0,8.14,0,0.538,5.834,56.5,4.4986,4,307,21,395.62,8.47,19.9
18 | 1.05393,0,8.14,0,0.538,5.935,29.3,4.4986,4,307,21,386.85,6.58,23.1
19 | 0.7842,0,8.14,0,0.538,5.99,81.7,4.2579,4,307,21,386.75,14.67,17.5
20 | 0.80271,0,8.14,0,0.538,5.456,36.6,3.7965,4,307,21,288.99,11.69,20.2
21 | 0.7258,0,8.14,0,0.538,5.727,69.5,3.7965,4,307,21,390.95,11.28,18.2
22 | 1.25179,0,8.14,0,0.538,5.57,98.1,3.7979,4,307,21,376.57,21.02,13.6
23 | 0.85204,0,8.14,0,0.538,5.965,89.2,4.0123,4,307,21,392.53,13.83,19.6
24 | 1.23247,0,8.14,0,0.538,6.142,91.7,3.9769,4,307,21,396.9,18.72,15.2
25 | 0.98843,0,8.14,0,0.538,5.813,100,4.0952,4,307,21,394.54,19.88,14.5
26 | 0.75026,0,8.14,0,0.538,5.924,94.1,4.3996,4,307,21,394.33,16.3,15.6
27 | 0.84054,0,8.14,0,0.538,5.599,85.7,4.4546,4,307,21,303.42,16.51,13.9
28 | 0.67191,0,8.14,0,0.538,5.813,90.3,4.682,4,307,21,376.88,14.81,16.6
29 | 0.95577,0,8.14,0,0.538,6.047,88.8,4.4534,4,307,21,306.38,17.28,14.8
30 | 0.77299,0,8.14,0,0.538,6.495,94.4,4.4547,4,307,21,387.94,12.8,18.4
31 | 1.00245,0,8.14,0,0.538,6.674,87.3,4.239,4,307,21,380.23,11.98,21
32 | 1.13081,0,8.14,0,0.538,5.713,94.1,4.233,4,307,21,360.17,22.6,12.7
33 | 1.35472,0,8.14,0,0.538,6.072,100,4.175,4,307,21,376.73,13.04,14.5
34 | 1.38799,0,8.14,0,0.538,5.95,82,3.99,4,307,21,232.6,27.71,13.2
35 | 1.15172,0,8.14,0,0.538,5.701,95,3.7872,4,307,21,358.77,18.35,13.1
36 | 1.61282,0,8.14,0,0.538,6.096,96.9,3.7598,4,307,21,248.31,20.34,13.5
37 | 0.06417,0,5.96,0,0.499,5.933,68.2,3.3603,5,279,19.2,396.9,9.68,18.9
38 | 0.09744,0,5.96,0,0.499,5.841,61.4,3.3779,5,279,19.2,377.56,11.41,20
39 | 0.08014,0,5.96,0,0.499,5.85,41.5,3.9342,5,279,19.2,396.9,8.77,21
40 | 0.17505,0,5.96,0,0.499,5.966,30.2,3.8473,5,279,19.2,393.43,10.13,24.7
41 | 0.02763,75,2.95,0,0.428,6.595,21.8,5.4011,3,252,18.3,395.63,4.32,30.8
42 | 0.03359,75,2.95,0,0.428,7.024,15.8,5.4011,3,252,18.3,395.62,1.98,34.9
43 | 0.12744,0,6.91,0,0.448,6.77,2.9,5.7209,3,233,17.9,385.41,4.84,26.6
44 | 0.1415,0,6.91,0,0.448,6.169,6.6,5.7209,3,233,17.9,383.37,5.81,25.3
45 | 0.15936,0,6.91,0,0.448,6.211,6.5,5.7209,3,233,17.9,394.46,7.44,24.7
46 | 0.12269,0,6.91,0,0.448,6.069,40,5.7209,3,233,17.9,389.39,9.55,21.2
47 | 0.17142,0,6.91,0,0.448,5.682,33.8,5.1004,3,233,17.9,396.9,10.21,19.3
48 | 0.18836,0,6.91,0,0.448,5.786,33.3,5.1004,3,233,17.9,396.9,14.15,20
49 | 0.22927,0,6.91,0,0.448,6.03,85.5,5.6894,3,233,17.9,392.74,18.8,16.6
50 | 0.25387,0,6.91,0,0.448,5.399,95.3,5.87,3,233,17.9,396.9,30.81,14.4
51 | 0.21977,0,6.91,0,0.448,5.602,62,6.0877,3,233,17.9,396.9,16.2,19.4
52 | 0.08873,21,5.64,0,0.439,5.963,45.7,6.8147,4,243,16.8,395.56,13.45,19.7
53 | 0.04337,21,5.64,0,0.439,6.115,63,6.8147,4,243,16.8,393.97,9.43,20.5
54 | 0.0536,21,5.64,0,0.439,6.511,21.1,6.8147,4,243,16.8,396.9,5.28,25
55 | 0.04981,21,5.64,0,0.439,5.998,21.4,6.8147,4,243,16.8,396.9,8.43,23.4
56 | 0.0136,75,4,0,0.41,5.888,47.6,7.3197,3,469,21.1,396.9,14.8,18.9
57 | 0.01311,90,1.22,0,0.403,7.249,21.9,8.6966,5,226,17.9,395.93,4.81,35.4
58 | 0.02055,85,0.74,0,0.41,6.383,35.7,9.1876,2,313,17.3,396.9,5.77,24.7
59 | 0.01432,100,1.32,0,0.411,6.816,40.5,8.3248,5,256,15.1,392.9,3.95,31.6
60 | 0.15445,25,5.13,0,0.453,6.145,29.2,7.8148,8,284,19.7,390.68,6.86,23.3
61 | 0.10328,25,5.13,0,0.453,5.927,47.2,6.932,8,284,19.7,396.9,9.22,19.6
62 | 0.14932,25,5.13,0,0.453,5.741,66.2,7.2254,8,284,19.7,395.11,13.15,18.7
63 | 0.17171,25,5.13,0,0.453,5.966,93.4,6.8185,8,284,19.7,378.08,14.44,16
64 | 0.11027,25,5.13,0,0.453,6.456,67.8,7.2255,8,284,19.7,396.9,6.73,22.2
65 | 0.1265,25,5.13,0,0.453,6.762,43.4,7.9809,8,284,19.7,395.58,9.5,25
66 | 0.01951,17.5,1.38,0,0.4161,7.104,59.5,9.2229,3,216,18.6,393.24,8.05,33
67 | 0.03584,80,3.37,0,0.398,6.29,17.8,6.6115,4,337,16.1,396.9,4.67,23.5
68 | 0.04379,80,3.37,0,0.398,5.787,31.1,6.6115,4,337,16.1,396.9,10.24,19.4
69 | 0.05789,12.5,6.07,0,0.409,5.878,21.4,6.498,4,345,18.9,396.21,8.1,22
70 | 0.13554,12.5,6.07,0,0.409,5.594,36.8,6.498,4,345,18.9,396.9,13.09,17.4
71 | 0.12816,12.5,6.07,0,0.409,5.885,33,6.498,4,345,18.9,396.9,8.79,20.9
72 | 0.08826,0,10.81,0,0.413,6.417,6.6,5.2873,4,305,19.2,383.73,6.72,24.2
73 | 0.15876,0,10.81,0,0.413,5.961,17.5,5.2873,4,305,19.2,376.94,9.88,21.7
74 | 0.09164,0,10.81,0,0.413,6.065,7.8,5.2873,4,305,19.2,390.91,5.52,22.8
75 | 0.19539,0,10.81,0,0.413,6.245,6.2,5.2873,4,305,19.2,377.17,7.54,23.4
76 | 0.07896,0,12.83,0,0.437,6.273,6,4.2515,5,398,18.7,394.92,6.78,24.1
77 | 0.09512,0,12.83,0,0.437,6.286,45,4.5026,5,398,18.7,383.23,8.94,21.4
78 | 0.10153,0,12.83,0,0.437,6.279,74.5,4.0522,5,398,18.7,373.66,11.97,20
79 | 0.08707,0,12.83,0,0.437,6.14,45.8,4.0905,5,398,18.7,386.96,10.27,20.8
80 | 0.05646,0,12.83,0,0.437,6.232,53.7,5.0141,5,398,18.7,386.4,12.34,21.2
81 | 0.08387,0,12.83,0,0.437,5.874,36.6,4.5026,5,398,18.7,396.06,9.1,20.3
82 | 0.04113,25,4.86,0,0.426,6.727,33.5,5.4007,4,281,19,396.9,5.29,28
83 | 0.04462,25,4.86,0,0.426,6.619,70.4,5.4007,4,281,19,395.63,7.22,23.9
84 | 0.03659,25,4.86,0,0.426,6.302,32.2,5.4007,4,281,19,396.9,6.72,24.8
85 | 0.03551,25,4.86,0,0.426,6.167,46.7,5.4007,4,281,19,390.64,7.51,22.9
86 | 0.05059,0,4.49,0,0.449,6.389,48,4.7794,3,247,18.5,396.9,9.62,23.9
87 | 0.05735,0,4.49,0,0.449,6.63,56.1,4.4377,3,247,18.5,392.3,6.53,26.6
88 | 0.05188,0,4.49,0,0.449,6.015,45.1,4.4272,3,247,18.5,395.99,12.86,22.5
89 | 0.07151,0,4.49,0,0.449,6.121,56.8,3.7476,3,247,18.5,395.15,8.44,22.2
90 | 0.0566,0,3.41,0,0.489,7.007,86.3,3.4217,2,270,17.8,396.9,5.5,23.6
91 | 0.05302,0,3.41,0,0.489,7.079,63.1,3.4145,2,270,17.8,396.06,5.7,28.7
92 | 0.04684,0,3.41,0,0.489,6.417,66.1,3.0923,2,270,17.8,392.18,8.81,22.6
93 | 0.03932,0,3.41,0,0.489,6.405,73.9,3.0921,2,270,17.8,393.55,8.2,22
94 | 0.04203,28,15.04,0,0.464,6.442,53.6,3.6659,4,270,18.2,395.01,8.16,22.9
95 | 0.02875,28,15.04,0,0.464,6.211,28.9,3.6659,4,270,18.2,396.33,6.21,25
96 | 0.04294,28,15.04,0,0.464,6.249,77.3,3.615,4,270,18.2,396.9,10.59,20.6
97 | 0.12204,0,2.89,0,0.445,6.625,57.8,3.4952,2,276,18,357.98,6.65,28.4
98 | 0.11504,0,2.89,0,0.445,6.163,69.6,3.4952,2,276,18,391.83,11.34,21.4
99 | 0.12083,0,2.89,0,0.445,8.069,76,3.4952,2,276,18,396.9,4.21,38.7
100 | 0.08187,0,2.89,0,0.445,7.82,36.9,3.4952,2,276,18,393.53,3.57,43.8
101 | 0.0686,0,2.89,0,0.445,7.416,62.5,3.4952,2,276,18,396.9,6.19,33.2
102 | 0.14866,0,8.56,0,0.52,6.727,79.9,2.7778,5,384,20.9,394.76,9.42,27.5
103 | 0.11432,0,8.56,0,0.52,6.781,71.3,2.8561,5,384,20.9,395.58,7.67,26.5
104 | 0.22876,0,8.56,0,0.52,6.405,85.4,2.7147,5,384,20.9,70.8,10.63,18.6
105 | 0.21161,0,8.56,0,0.52,6.137,87.4,2.7147,5,384,20.9,394.47,13.44,19.3
106 | 0.1396,0,8.56,0,0.52,6.167,90,2.421,5,384,20.9,392.69,12.33,20.1
107 | 0.13262,0,8.56,0,0.52,5.851,96.7,2.1069,5,384,20.9,394.05,16.47,19.5
108 | 0.1712,0,8.56,0,0.52,5.836,91.9,2.211,5,384,20.9,395.67,18.66,19.5
109 | 0.13117,0,8.56,0,0.52,6.127,85.2,2.1224,5,384,20.9,387.69,14.09,20.4
110 | 0.12802,0,8.56,0,0.52,6.474,97.1,2.4329,5,384,20.9,395.24,12.27,19.8
111 | 0.26363,0,8.56,0,0.52,6.229,91.2,2.5451,5,384,20.9,391.23,15.55,19.4
112 | 0.10793,0,8.56,0,0.52,6.195,54.4,2.7778,5,384,20.9,393.49,13,21.7
113 | 0.10084,0,10.01,0,0.547,6.715,81.6,2.6775,6,432,17.8,395.59,10.16,22.8
114 | 0.12329,0,10.01,0,0.547,5.913,92.9,2.3534,6,432,17.8,394.95,16.21,18.8
115 | 0.22212,0,10.01,0,0.547,6.092,95.4,2.548,6,432,17.8,396.9,17.09,18.7
116 | 0.14231,0,10.01,0,0.547,6.254,84.2,2.2565,6,432,17.8,388.74,10.45,18.5
117 | 0.17134,0,10.01,0,0.547,5.928,88.2,2.4631,6,432,17.8,344.91,15.76,18.3
118 | 0.13158,0,10.01,0,0.547,6.176,72.5,2.7301,6,432,17.8,393.3,12.04,21.2
119 | 0.15098,0,10.01,0,0.547,6.021,82.6,2.7474,6,432,17.8,394.51,10.3,19.2
120 | 0.13058,0,10.01,0,0.547,5.872,73.1,2.4775,6,432,17.8,338.63,15.37,20.4
121 | 0.14476,0,10.01,0,0.547,5.731,65.2,2.7592,6,432,17.8,391.5,13.61,19.3
122 | 0.06899,0,25.65,0,0.581,5.87,69.7,2.2577,2,188,19.1,389.15,14.37,22
123 | 0.07165,0,25.65,0,0.581,6.004,84.1,2.1974,2,188,19.1,377.67,14.27,20.3
124 | 0.09299,0,25.65,0,0.581,5.961,92.9,2.0869,2,188,19.1,378.09,17.93,20.5
125 | 0.15038,0,25.65,0,0.581,5.856,97,1.9444,2,188,19.1,370.31,25.41,17.3
126 | 0.09849,0,25.65,0,0.581,5.879,95.8,2.0063,2,188,19.1,379.38,17.58,18.8
127 | 0.16902,0,25.65,0,0.581,5.986,88.4,1.9929,2,188,19.1,385.02,14.81,21.4
128 | 0.38735,0,25.65,0,0.581,5.613,95.6,1.7572,2,188,19.1,359.29,27.26,15.7
129 | 0.25915,0,21.89,0,0.624,5.693,96,1.7883,4,437,21.2,392.11,17.19,16.2
130 | 0.32543,0,21.89,0,0.624,6.431,98.8,1.8125,4,437,21.2,396.9,15.39,18
131 | 0.88125,0,21.89,0,0.624,5.637,94.7,1.9799,4,437,21.2,396.9,18.34,14.3
132 | 0.34006,0,21.89,0,0.624,6.458,98.9,2.1185,4,437,21.2,395.04,12.6,19.2
133 | 1.19294,0,21.89,0,0.624,6.326,97.7,2.271,4,437,21.2,396.9,12.26,19.6
134 | 0.59005,0,21.89,0,0.624,6.372,97.9,2.3274,4,437,21.2,385.76,11.12,23
135 | 0.32982,0,21.89,0,0.624,5.822,95.4,2.4699,4,437,21.2,388.69,15.03,18.4
136 | 0.97617,0,21.89,0,0.624,5.757,98.4,2.346,4,437,21.2,262.76,17.31,15.6
137 | 0.55778,0,21.89,0,0.624,6.335,98.2,2.1107,4,437,21.2,394.67,16.96,18.1
138 | 0.32264,0,21.89,0,0.624,5.942,93.5,1.9669,4,437,21.2,378.25,16.9,17.4
139 | 0.35233,0,21.89,0,0.624,6.454,98.4,1.8498,4,437,21.2,394.08,14.59,17.1
140 | 0.2498,0,21.89,0,0.624,5.857,98.2,1.6686,4,437,21.2,392.04,21.32,13.3
141 | 0.54452,0,21.89,0,0.624,6.151,97.9,1.6687,4,437,21.2,396.9,18.46,17.8
142 | 0.2909,0,21.89,0,0.624,6.174,93.6,1.6119,4,437,21.2,388.08,24.16,14
143 | 1.62864,0,21.89,0,0.624,5.019,100,1.4394,4,437,21.2,396.9,34.41,14.4
144 | 3.32105,0,19.58,1,0.871,5.403,100,1.3216,5,403,14.7,396.9,26.82,13.4
145 | 4.0974,0,19.58,0,0.871,5.468,100,1.4118,5,403,14.7,396.9,26.42,15.6
146 | 2.77974,0,19.58,0,0.871,4.903,97.8,1.3459,5,403,14.7,396.9,29.29,11.8
147 | 2.37934,0,19.58,0,0.871,6.13,100,1.4191,5,403,14.7,172.91,27.8,13.8
148 | 2.15505,0,19.58,0,0.871,5.628,100,1.5166,5,403,14.7,169.27,16.65,15.6
149 | 2.36862,0,19.58,0,0.871,4.926,95.7,1.4608,5,403,14.7,391.71,29.53,14.6
150 | 2.33099,0,19.58,0,0.871,5.186,93.8,1.5296,5,403,14.7,356.99,28.32,17.8
151 | 2.73397,0,19.58,0,0.871,5.597,94.9,1.5257,5,403,14.7,351.85,21.45,15.4
152 | 1.6566,0,19.58,0,0.871,6.122,97.3,1.618,5,403,14.7,372.8,14.1,21.5
153 | 1.49632,0,19.58,0,0.871,5.404,100,1.5916,5,403,14.7,341.6,13.28,19.6
154 | 1.12658,0,19.58,1,0.871,5.012,88,1.6102,5,403,14.7,343.28,12.12,15.3
155 | 2.14918,0,19.58,0,0.871,5.709,98.5,1.6232,5,403,14.7,261.95,15.79,19.4
156 | 1.41385,0,19.58,1,0.871,6.129,96,1.7494,5,403,14.7,321.02,15.12,17
157 | 3.53501,0,19.58,1,0.871,6.152,82.6,1.7455,5,403,14.7,88.01,15.02,15.6
158 | 2.44668,0,19.58,0,0.871,5.272,94,1.7364,5,403,14.7,88.63,16.14,13.1
159 | 1.22358,0,19.58,0,0.605,6.943,97.4,1.8773,5,403,14.7,363.43,4.59,41.3
160 | 1.34284,0,19.58,0,0.605,6.066,100,1.7573,5,403,14.7,353.89,6.43,24.3
161 | 1.42502,0,19.58,0,0.871,6.51,100,1.7659,5,403,14.7,364.31,7.39,23.3
162 | 1.27346,0,19.58,1,0.605,6.25,92.6,1.7984,5,403,14.7,338.92,5.5,27
163 | 1.46336,0,19.58,0,0.605,7.489,90.8,1.9709,5,403,14.7,374.43,1.73,50
164 | 1.83377,0,19.58,1,0.605,7.802,98.2,2.0407,5,403,14.7,389.61,1.92,50
165 | 1.51902,0,19.58,1,0.605,8.375,93.9,2.162,5,403,14.7,388.45,3.32,50
166 | 2.24236,0,19.58,0,0.605,5.854,91.8,2.422,5,403,14.7,395.11,11.64,22.7
167 | 2.924,0,19.58,0,0.605,6.101,93,2.2834,5,403,14.7,240.16,9.81,25
168 | 2.01019,0,19.58,0,0.605,7.929,96.2,2.0459,5,403,14.7,369.3,3.7,50
169 | 1.80028,0,19.58,0,0.605,5.877,79.2,2.4259,5,403,14.7,227.61,12.14,23.8
170 | 2.3004,0,19.58,0,0.605,6.319,96.1,2.1,5,403,14.7,297.09,11.1,23.8
171 | 2.44953,0,19.58,0,0.605,6.402,95.2,2.2625,5,403,14.7,330.04,11.32,22.3
172 | 1.20742,0,19.58,0,0.605,5.875,94.6,2.4259,5,403,14.7,292.29,14.43,17.4
173 | 2.3139,0,19.58,0,0.605,5.88,97.3,2.3887,5,403,14.7,348.13,12.03,19.1
174 | 0.13914,0,4.05,0,0.51,5.572,88.5,2.5961,5,296,16.6,396.9,14.69,23.1
175 | 0.09178,0,4.05,0,0.51,6.416,84.1,2.6463,5,296,16.6,395.5,9.04,23.6
176 | 0.08447,0,4.05,0,0.51,5.859,68.7,2.7019,5,296,16.6,393.23,9.64,22.6
177 | 0.06664,0,4.05,0,0.51,6.546,33.1,3.1323,5,296,16.6,390.96,5.33,29.4
178 | 0.07022,0,4.05,0,0.51,6.02,47.2,3.5549,5,296,16.6,393.23,10.11,23.2
179 | 0.05425,0,4.05,0,0.51,6.315,73.4,3.3175,5,296,16.6,395.6,6.29,24.6
180 | 0.06642,0,4.05,0,0.51,6.86,74.4,2.9153,5,296,16.6,391.27,6.92,29.9
181 | 0.0578,0,2.46,0,0.488,6.98,58.4,2.829,3,193,17.8,396.9,5.04,37.2
182 | 0.06588,0,2.46,0,0.488,7.765,83.3,2.741,3,193,17.8,395.56,7.56,39.8
183 | 0.06888,0,2.46,0,0.488,6.144,62.2,2.5979,3,193,17.8,396.9,9.45,36.2
184 | 0.09103,0,2.46,0,0.488,7.155,92.2,2.7006,3,193,17.8,394.12,4.82,37.9
185 | 0.10008,0,2.46,0,0.488,6.563,95.6,2.847,3,193,17.8,396.9,5.68,32.5
186 | 0.08308,0,2.46,0,0.488,5.604,89.8,2.9879,3,193,17.8,391,13.98,26.4
187 | 0.06047,0,2.46,0,0.488,6.153,68.8,3.2797,3,193,17.8,387.11,13.15,29.6
188 | 0.05602,0,2.46,0,0.488,7.831,53.6,3.1992,3,193,17.8,392.63,4.45,50
189 | 0.07875,45,3.44,0,0.437,6.782,41.1,3.7886,5,398,15.2,393.87,6.68,32
190 | 0.12579,45,3.44,0,0.437,6.556,29.1,4.5667,5,398,15.2,382.84,4.56,29.8
191 | 0.0837,45,3.44,0,0.437,7.185,38.9,4.5667,5,398,15.2,396.9,5.39,34.9
192 | 0.09068,45,3.44,0,0.437,6.951,21.5,6.4798,5,398,15.2,377.68,5.1,37
193 | 0.06911,45,3.44,0,0.437,6.739,30.8,6.4798,5,398,15.2,389.71,4.69,30.5
194 | 0.08664,45,3.44,0,0.437,7.178,26.3,6.4798,5,398,15.2,390.49,2.87,36.4
195 | 0.02187,60,2.93,0,0.401,6.8,9.9,6.2196,1,265,15.6,393.37,5.03,31.1
196 | 0.01439,60,2.93,0,0.401,6.604,18.8,6.2196,1,265,15.6,376.7,4.38,29.1
197 | 0.01381,80,0.46,0,0.422,7.875,32,5.6484,4,255,14.4,394.23,2.97,50
198 | 0.04011,80,1.52,0,0.404,7.287,34.1,7.309,2,329,12.6,396.9,4.08,33.3
199 | 0.04666,80,1.52,0,0.404,7.107,36.6,7.309,2,329,12.6,354.31,8.61,30.3
200 | 0.03768,80,1.52,0,0.404,7.274,38.3,7.309,2,329,12.6,392.2,6.62,34.6
201 | 0.0315,95,1.47,0,0.403,6.975,15.3,7.6534,3,402,17,396.9,4.56,34.9
202 | 0.01778,95,1.47,0,0.403,7.135,13.9,7.6534,3,402,17,384.3,4.45,32.9
203 | 0.03445,82.5,2.03,0,0.415,6.162,38.4,6.27,2,348,14.7,393.77,7.43,24.1
204 | 0.02177,82.5,2.03,0,0.415,7.61,15.7,6.27,2,348,14.7,395.38,3.11,42.3
205 | 0.0351,95,2.68,0,0.4161,7.853,33.2,5.118,4,224,14.7,392.78,3.81,48.5
206 | 0.02009,95,2.68,0,0.4161,8.034,31.9,5.118,4,224,14.7,390.55,2.88,50
207 | 0.13642,0,10.59,0,0.489,5.891,22.3,3.9454,4,277,18.6,396.9,10.87,22.6
208 | 0.22969,0,10.59,0,0.489,6.326,52.5,4.3549,4,277,18.6,394.87,10.97,24.4
209 | 0.25199,0,10.59,0,0.489,5.783,72.7,4.3549,4,277,18.6,389.43,18.06,22.5
210 | 0.13587,0,10.59,1,0.489,6.064,59.1,4.2392,4,277,18.6,381.32,14.66,24.4
211 | 0.43571,0,10.59,1,0.489,5.344,100,3.875,4,277,18.6,396.9,23.09,20
212 | 0.17446,0,10.59,1,0.489,5.96,92.1,3.8771,4,277,18.6,393.25,17.27,21.7
213 | 0.37578,0,10.59,1,0.489,5.404,88.6,3.665,4,277,18.6,395.24,23.98,19.3
214 | 0.21719,0,10.59,1,0.489,5.807,53.8,3.6526,4,277,18.6,390.94,16.03,22.4
215 | 0.14052,0,10.59,0,0.489,6.375,32.3,3.9454,4,277,18.6,385.81,9.38,28.1
216 | 0.28955,0,10.59,0,0.489,5.412,9.8,3.5875,4,277,18.6,348.93,29.55,23.7
217 | 0.19802,0,10.59,0,0.489,6.182,42.4,3.9454,4,277,18.6,393.63,9.47,25
218 | 0.0456,0,13.89,1,0.55,5.888,56,3.1121,5,276,16.4,392.8,13.51,23.3
219 | 0.07013,0,13.89,0,0.55,6.642,85.1,3.4211,5,276,16.4,392.78,9.69,28.7
220 | 0.11069,0,13.89,1,0.55,5.951,93.8,2.8893,5,276,16.4,396.9,17.92,21.5
221 | 0.11425,0,13.89,1,0.55,6.373,92.4,3.3633,5,276,16.4,393.74,10.5,23
222 | 0.35809,0,6.2,1,0.507,6.951,88.5,2.8617,8,307,17.4,391.7,9.71,26.7
223 | 0.40771,0,6.2,1,0.507,6.164,91.3,3.048,8,307,17.4,395.24,21.46,21.7
224 | 0.62356,0,6.2,1,0.507,6.879,77.7,3.2721,8,307,17.4,390.39,9.93,27.5
225 | 0.6147,0,6.2,0,0.507,6.618,80.8,3.2721,8,307,17.4,396.9,7.6,30.1
226 | 0.31533,0,6.2,0,0.504,8.266,78.3,2.8944,8,307,17.4,385.05,4.14,44.8
227 | 0.52693,0,6.2,0,0.504,8.725,83,2.8944,8,307,17.4,382,4.63,50
228 | 0.38214,0,6.2,0,0.504,8.04,86.5,3.2157,8,307,17.4,387.38,3.13,37.6
229 | 0.41238,0,6.2,0,0.504,7.163,79.9,3.2157,8,307,17.4,372.08,6.36,31.6
230 | 0.29819,0,6.2,0,0.504,7.686,17,3.3751,8,307,17.4,377.51,3.92,46.7
231 | 0.44178,0,6.2,0,0.504,6.552,21.4,3.3751,8,307,17.4,380.34,3.76,31.5
232 | 0.537,0,6.2,0,0.504,5.981,68.1,3.6715,8,307,17.4,378.35,11.65,24.3
233 | 0.46296,0,6.2,0,0.504,7.412,76.9,3.6715,8,307,17.4,376.14,5.25,31.7
234 | 0.57529,0,6.2,0,0.507,8.337,73.3,3.8384,8,307,17.4,385.91,2.47,41.7
235 | 0.33147,0,6.2,0,0.507,8.247,70.4,3.6519,8,307,17.4,378.95,3.95,48.3
236 | 0.44791,0,6.2,1,0.507,6.726,66.5,3.6519,8,307,17.4,360.2,8.05,29
237 | 0.33045,0,6.2,0,0.507,6.086,61.5,3.6519,8,307,17.4,376.75,10.88,24
238 | 0.52058,0,6.2,1,0.507,6.631,76.5,4.148,8,307,17.4,388.45,9.54,25.1
239 | 0.51183,0,6.2,0,0.507,7.358,71.6,4.148,8,307,17.4,390.07,4.73,31.5
240 | 0.08244,30,4.93,0,0.428,6.481,18.5,6.1899,6,300,16.6,379.41,6.36,23.7
241 | 0.09252,30,4.93,0,0.428,6.606,42.2,6.1899,6,300,16.6,383.78,7.37,23.3
242 | 0.11329,30,4.93,0,0.428,6.897,54.3,6.3361,6,300,16.6,391.25,11.38,22
243 | 0.10612,30,4.93,0,0.428,6.095,65.1,6.3361,6,300,16.6,394.62,12.4,20.1
244 | 0.1029,30,4.93,0,0.428,6.358,52.9,7.0355,6,300,16.6,372.75,11.22,22.2
245 | 0.12757,30,4.93,0,0.428,6.393,7.8,7.0355,6,300,16.6,374.71,5.19,23.7
246 | 0.20608,22,5.86,0,0.431,5.593,76.5,7.9549,7,330,19.1,372.49,12.5,17.6
247 | 0.19133,22,5.86,0,0.431,5.605,70.2,7.9549,7,330,19.1,389.13,18.46,18.5
248 | 0.33983,22,5.86,0,0.431,6.108,34.9,8.0555,7,330,19.1,390.18,9.16,24.3
249 | 0.19657,22,5.86,0,0.431,6.226,79.2,8.0555,7,330,19.1,376.14,10.15,20.5
250 | 0.16439,22,5.86,0,0.431,6.433,49.1,7.8265,7,330,19.1,374.71,9.52,24.5
251 | 0.19073,22,5.86,0,0.431,6.718,17.5,7.8265,7,330,19.1,393.74,6.56,26.2
252 | 0.1403,22,5.86,0,0.431,6.487,13,7.3967,7,330,19.1,396.28,5.9,24.4
253 | 0.21409,22,5.86,0,0.431,6.438,8.9,7.3967,7,330,19.1,377.07,3.59,24.8
254 | 0.08221,22,5.86,0,0.431,6.957,6.8,8.9067,7,330,19.1,386.09,3.53,29.6
255 | 0.36894,22,5.86,0,0.431,8.259,8.4,8.9067,7,330,19.1,396.9,3.54,42.8
256 | 0.04819,80,3.64,0,0.392,6.108,32,9.2203,1,315,16.4,392.89,6.57,21.9
257 | 0.03548,80,3.64,0,0.392,5.876,19.1,9.2203,1,315,16.4,395.18,9.25,20.9
258 | 0.01538,90,3.75,0,0.394,7.454,34.2,6.3361,3,244,15.9,386.34,3.11,44
259 | 0.61154,20,3.97,0,0.647,8.704,86.9,1.801,5,264,13,389.7,5.12,50
260 | 0.66351,20,3.97,0,0.647,7.333,100,1.8946,5,264,13,383.29,7.79,36
261 | 0.65665,20,3.97,0,0.647,6.842,100,2.0107,5,264,13,391.93,6.9,30.1
262 | 0.54011,20,3.97,0,0.647,7.203,81.8,2.1121,5,264,13,392.8,9.59,33.8
263 | 0.53412,20,3.97,0,0.647,7.52,89.4,2.1398,5,264,13,388.37,7.26,43.1
264 | 0.52014,20,3.97,0,0.647,8.398,91.5,2.2885,5,264,13,386.86,5.91,48.8
265 | 0.82526,20,3.97,0,0.647,7.327,94.5,2.0788,5,264,13,393.42,11.25,31
266 | 0.55007,20,3.97,0,0.647,7.206,91.6,1.9301,5,264,13,387.89,8.1,36.5
267 | 0.76162,20,3.97,0,0.647,5.56,62.8,1.9865,5,264,13,392.4,10.45,22.8
268 | 0.7857,20,3.97,0,0.647,7.014,84.6,2.1329,5,264,13,384.07,14.79,30.7
269 | 0.57834,20,3.97,0,0.575,8.297,67,2.4216,5,264,13,384.54,7.44,50
270 | 0.5405,20,3.97,0,0.575,7.47,52.6,2.872,5,264,13,390.3,3.16,43.5
271 | 0.09065,20,6.96,1,0.464,5.92,61.5,3.9175,3,223,18.6,391.34,13.65,20.7
272 | 0.29916,20,6.96,0,0.464,5.856,42.1,4.429,3,223,18.6,388.65,13,21.1
273 | 0.16211,20,6.96,0,0.464,6.24,16.3,4.429,3,223,18.6,396.9,6.59,25.2
274 | 0.1146,20,6.96,0,0.464,6.538,58.7,3.9175,3,223,18.6,394.96,7.73,24.4
275 | 0.22188,20,6.96,1,0.464,7.691,51.8,4.3665,3,223,18.6,390.77,6.58,35.2
276 | 0.05644,40,6.41,1,0.447,6.758,32.9,4.0776,4,254,17.6,396.9,3.53,32.4
277 | 0.09604,40,6.41,0,0.447,6.854,42.8,4.2673,4,254,17.6,396.9,2.98,32
278 | 0.10469,40,6.41,1,0.447,7.267,49,4.7872,4,254,17.6,389.25,6.05,33.2
279 | 0.06127,40,6.41,1,0.447,6.826,27.6,4.8628,4,254,17.6,393.45,4.16,33.1
280 | 0.07978,40,6.41,0,0.447,6.482,32.1,4.1403,4,254,17.6,396.9,7.19,29.1
281 | 0.21038,20,3.33,0,0.4429,6.812,32.2,4.1007,5,216,14.9,396.9,4.85,35.1
282 | 0.03578,20,3.33,0,0.4429,7.82,64.5,4.6947,5,216,14.9,387.31,3.76,45.4
283 | 0.03705,20,3.33,0,0.4429,6.968,37.2,5.2447,5,216,14.9,392.23,4.59,35.4
284 | 0.06129,20,3.33,1,0.4429,7.645,49.7,5.2119,5,216,14.9,377.07,3.01,46
285 | 0.01501,90,1.21,1,0.401,7.923,24.8,5.885,1,198,13.6,395.52,3.16,50
286 | 0.00906,90,2.97,0,0.4,7.088,20.8,7.3073,1,285,15.3,394.72,7.85,32.2
287 | 0.01096,55,2.25,0,0.389,6.453,31.9,7.3073,1,300,15.3,394.72,8.23,22
288 | 0.01965,80,1.76,0,0.385,6.23,31.5,9.0892,1,241,18.2,341.6,12.93,20.1
289 | 0.03871,52.5,5.32,0,0.405,6.209,31.3,7.3172,6,293,16.6,396.9,7.14,23.2
290 | 0.0459,52.5,5.32,0,0.405,6.315,45.6,7.3172,6,293,16.6,396.9,7.6,22.3
291 | 0.04297,52.5,5.32,0,0.405,6.565,22.9,7.3172,6,293,16.6,371.72,9.51,24.8
292 | 0.03502,80,4.95,0,0.411,6.861,27.9,5.1167,4,245,19.2,396.9,3.33,28.5
293 | 0.07886,80,4.95,0,0.411,7.148,27.7,5.1167,4,245,19.2,396.9,3.56,37.3
294 | 0.03615,80,4.95,0,0.411,6.63,23.4,5.1167,4,245,19.2,396.9,4.7,27.9
295 | 0.08265,0,13.92,0,0.437,6.127,18.4,5.5027,4,289,16,396.9,8.58,23.9
296 | 0.08199,0,13.92,0,0.437,6.009,42.3,5.5027,4,289,16,396.9,10.4,21.7
297 | 0.12932,0,13.92,0,0.437,6.678,31.1,5.9604,4,289,16,396.9,6.27,28.6
298 | 0.05372,0,13.92,0,0.437,6.549,51,5.9604,4,289,16,392.85,7.39,27.1
299 | 0.14103,0,13.92,0,0.437,5.79,58,6.32,4,289,16,396.9,15.84,20.3
300 | 0.06466,70,2.24,0,0.4,6.345,20.1,7.8278,5,358,14.8,368.24,4.97,22.5
301 | 0.05561,70,2.24,0,0.4,7.041,10,7.8278,5,358,14.8,371.58,4.74,29
302 | 0.04417,70,2.24,0,0.4,6.871,47.4,7.8278,5,358,14.8,390.86,6.07,24.8
303 | 0.03537,34,6.09,0,0.433,6.59,40.4,5.4917,7,329,16.1,395.75,9.5,22
304 | 0.09266,34,6.09,0,0.433,6.495,18.4,5.4917,7,329,16.1,383.61,8.67,26.4
305 | 0.1,34,6.09,0,0.433,6.982,17.7,5.4917,7,329,16.1,390.43,4.86,33.1
306 | 0.05515,33,2.18,0,0.472,7.236,41.1,4.022,7,222,18.4,393.68,6.93,36.1
307 | 0.05479,33,2.18,0,0.472,6.616,58.1,3.37,7,222,18.4,393.36,8.93,28.4
308 | 0.07503,33,2.18,0,0.472,7.42,71.9,3.0992,7,222,18.4,396.9,6.47,33.4
309 | 0.04932,33,2.18,0,0.472,6.849,70.3,3.1827,7,222,18.4,396.9,7.53,28.2
310 | 0.49298,0,9.9,0,0.544,6.635,82.5,3.3175,4,304,18.4,396.9,4.54,22.8
311 | 0.3494,0,9.9,0,0.544,5.972,76.7,3.1025,4,304,18.4,396.24,9.97,20.3
312 | 2.63548,0,9.9,0,0.544,4.973,37.8,2.5194,4,304,18.4,350.45,12.64,16.1
313 | 0.79041,0,9.9,0,0.544,6.122,52.8,2.6403,4,304,18.4,396.9,5.98,22.1
314 | 0.26169,0,9.9,0,0.544,6.023,90.4,2.834,4,304,18.4,396.3,11.72,19.4
315 | 0.26938,0,9.9,0,0.544,6.266,82.8,3.2628,4,304,18.4,393.39,7.9,21.6
316 | 0.3692,0,9.9,0,0.544,6.567,87.3,3.6023,4,304,18.4,395.69,9.28,23.8
317 | 0.25356,0,9.9,0,0.544,5.705,77.7,3.945,4,304,18.4,396.42,11.5,16.2
318 | 0.31827,0,9.9,0,0.544,5.914,83.2,3.9986,4,304,18.4,390.7,18.33,17.8
319 | 0.24522,0,9.9,0,0.544,5.782,71.7,4.0317,4,304,18.4,396.9,15.94,19.8
320 | 0.40202,0,9.9,0,0.544,6.382,67.2,3.5325,4,304,18.4,395.21,10.36,23.1
321 | 0.47547,0,9.9,0,0.544,6.113,58.8,4.0019,4,304,18.4,396.23,12.73,21
322 | 0.1676,0,7.38,0,0.493,6.426,52.3,4.5404,5,287,19.6,396.9,7.2,23.8
323 | 0.18159,0,7.38,0,0.493,6.376,54.3,4.5404,5,287,19.6,396.9,6.87,23.1
324 | 0.35114,0,7.38,0,0.493,6.041,49.9,4.7211,5,287,19.6,396.9,7.7,20.4
325 | 0.28392,0,7.38,0,0.493,5.708,74.3,4.7211,5,287,19.6,391.13,11.74,18.5
326 | 0.34109,0,7.38,0,0.493,6.415,40.1,4.7211,5,287,19.6,396.9,6.12,25
327 | 0.19186,0,7.38,0,0.493,6.431,14.7,5.4159,5,287,19.6,393.68,5.08,24.6
328 | 0.30347,0,7.38,0,0.493,6.312,28.9,5.4159,5,287,19.6,396.9,6.15,23
329 | 0.24103,0,7.38,0,0.493,6.083,43.7,5.4159,5,287,19.6,396.9,12.79,22.2
330 | 0.06617,0,3.24,0,0.46,5.868,25.8,5.2146,4,430,16.9,382.44,9.97,19.3
331 | 0.06724,0,3.24,0,0.46,6.333,17.2,5.2146,4,430,16.9,375.21,7.34,22.6
332 | 0.04544,0,3.24,0,0.46,6.144,32.2,5.8736,4,430,16.9,368.57,9.09,19.8
333 | 0.05023,35,6.06,0,0.4379,5.706,28.4,6.6407,1,304,16.9,394.02,12.43,17.1
334 | 0.03466,35,6.06,0,0.4379,6.031,23.3,6.6407,1,304,16.9,362.25,7.83,19.4
335 | 0.05083,0,5.19,0,0.515,6.316,38.1,6.4584,5,224,20.2,389.71,5.68,22.2
336 | 0.03738,0,5.19,0,0.515,6.31,38.5,6.4584,5,224,20.2,389.4,6.75,20.7
337 | 0.03961,0,5.19,0,0.515,6.037,34.5,5.9853,5,224,20.2,396.9,8.01,21.1
338 | 0.03427,0,5.19,0,0.515,5.869,46.3,5.2311,5,224,20.2,396.9,9.8,19.5
339 | 0.03041,0,5.19,0,0.515,5.895,59.6,5.615,5,224,20.2,394.81,10.56,18.5
340 | 0.03306,0,5.19,0,0.515,6.059,37.3,4.8122,5,224,20.2,396.14,8.51,20.6
341 | 0.05497,0,5.19,0,0.515,5.985,45.4,4.8122,5,224,20.2,396.9,9.74,19
342 | 0.06151,0,5.19,0,0.515,5.968,58.5,4.8122,5,224,20.2,396.9,9.29,18.7
343 | 0.01301,35,1.52,0,0.442,7.241,49.3,7.0379,1,284,15.5,394.74,5.49,32.7
344 | 0.02498,0,1.89,0,0.518,6.54,59.7,6.2669,1,422,15.9,389.96,8.65,16.5
345 | 0.02543,55,3.78,0,0.484,6.696,56.4,5.7321,5,370,17.6,396.9,7.18,23.9
346 | 0.03049,55,3.78,0,0.484,6.874,28.1,6.4654,5,370,17.6,387.97,4.61,31.2
347 | 0.03113,0,4.39,0,0.442,6.014,48.5,8.0136,3,352,18.8,385.64,10.53,17.5
348 | 0.06162,0,4.39,0,0.442,5.898,52.3,8.0136,3,352,18.8,364.61,12.67,17.2
349 | 0.0187,85,4.15,0,0.429,6.516,27.7,8.5353,4,351,17.9,392.43,6.36,23.1
350 | 0.01501,80,2.01,0,0.435,6.635,29.7,8.344,4,280,17,390.94,5.99,24.5
351 | 0.02899,40,1.25,0,0.429,6.939,34.5,8.7921,1,335,19.7,389.85,5.89,26.6
352 | 0.06211,40,1.25,0,0.429,6.49,44.4,8.7921,1,335,19.7,396.9,5.98,22.9
353 | 0.0795,60,1.69,0,0.411,6.579,35.9,10.7103,4,411,18.3,370.78,5.49,24.1
354 | 0.07244,60,1.69,0,0.411,5.884,18.5,10.7103,4,411,18.3,392.33,7.79,18.6
355 | 0.01709,90,2.02,0,0.41,6.728,36.1,12.1265,5,187,17,384.46,4.5,30.1
356 | 0.04301,80,1.91,0,0.413,5.663,21.9,10.5857,4,334,22,382.8,8.05,18.2
357 | 0.10659,80,1.91,0,0.413,5.936,19.5,10.5857,4,334,22,376.04,5.57,20.6
358 | 8.98296,0,18.1,1,0.77,6.212,97.4,2.1222,24,666,20.2,377.73,17.6,17.8
359 | 3.8497,0,18.1,1,0.77,6.395,91,2.5052,24,666,20.2,391.34,13.27,21.7
360 | 5.20177,0,18.1,1,0.77,6.127,83.4,2.7227,24,666,20.2,395.43,11.48,22.7
361 | 4.26131,0,18.1,0,0.77,6.112,81.3,2.5091,24,666,20.2,390.74,12.67,22.6
362 | 4.54192,0,18.1,0,0.77,6.398,88,2.5182,24,666,20.2,374.56,7.79,25
363 | 3.83684,0,18.1,0,0.77,6.251,91.1,2.2955,24,666,20.2,350.65,14.19,19.9
364 | 3.67822,0,18.1,0,0.77,5.362,96.2,2.1036,24,666,20.2,380.79,10.19,20.8
365 | 4.22239,0,18.1,1,0.77,5.803,89,1.9047,24,666,20.2,353.04,14.64,16.8
366 | 3.47428,0,18.1,1,0.718,8.78,82.9,1.9047,24,666,20.2,354.55,5.29,21.9
367 | 4.55587,0,18.1,0,0.718,3.561,87.9,1.6132,24,666,20.2,354.7,7.12,27.5
368 | 3.69695,0,18.1,0,0.718,4.963,91.4,1.7523,24,666,20.2,316.03,14,21.9
369 | 13.5222,0,18.1,0,0.631,3.863,100,1.5106,24,666,20.2,131.42,13.33,23.1
370 | 4.89822,0,18.1,0,0.631,4.97,100,1.3325,24,666,20.2,375.52,3.26,50
371 | 5.66998,0,18.1,1,0.631,6.683,96.8,1.3567,24,666,20.2,375.33,3.73,50
372 | 6.53876,0,18.1,1,0.631,7.016,97.5,1.2024,24,666,20.2,392.05,2.96,50
373 | 9.2323,0,18.1,0,0.631,6.216,100,1.1691,24,666,20.2,366.15,9.53,50
374 | 8.26725,0,18.1,1,0.668,5.875,89.6,1.1296,24,666,20.2,347.88,8.88,50
375 | 11.1081,0,18.1,0,0.668,4.906,100,1.1742,24,666,20.2,396.9,34.77,13.8
376 | 18.4982,0,18.1,0,0.668,4.138,100,1.137,24,666,20.2,396.9,37.97,13.8
377 | 19.6091,0,18.1,0,0.671,7.313,97.9,1.3163,24,666,20.2,396.9,13.44,15
378 | 15.288,0,18.1,0,0.671,6.649,93.3,1.3449,24,666,20.2,363.02,23.24,13.9
379 | 9.82349,0,18.1,0,0.671,6.794,98.8,1.358,24,666,20.2,396.9,21.24,13.3
380 | 23.6482,0,18.1,0,0.671,6.38,96.2,1.3861,24,666,20.2,396.9,23.69,13.1
381 | 17.8667,0,18.1,0,0.671,6.223,100,1.3861,24,666,20.2,393.74,21.78,10.2
382 | 88.9762,0,18.1,0,0.671,6.968,91.9,1.4165,24,666,20.2,396.9,17.21,10.4
383 | 15.8744,0,18.1,0,0.671,6.545,99.1,1.5192,24,666,20.2,396.9,21.08,10.9
384 | 9.18702,0,18.1,0,0.7,5.536,100,1.5804,24,666,20.2,396.9,23.6,11.3
385 | 7.99248,0,18.1,0,0.7,5.52,100,1.5331,24,666,20.2,396.9,24.56,12.3
386 | 20.0849,0,18.1,0,0.7,4.368,91.2,1.4395,24,666,20.2,285.83,30.63,8.8
387 | 16.8118,0,18.1,0,0.7,5.277,98.1,1.4261,24,666,20.2,396.9,30.81,7.2
388 | 24.3938,0,18.1,0,0.7,4.652,100,1.4672,24,666,20.2,396.9,28.28,10.5
389 | 22.5971,0,18.1,0,0.7,5,89.5,1.5184,24,666,20.2,396.9,31.99,7.4
390 | 14.3337,0,18.1,0,0.7,4.88,100,1.5895,24,666,20.2,372.92,30.62,10.2
391 | 8.15174,0,18.1,0,0.7,5.39,98.9,1.7281,24,666,20.2,396.9,20.85,11.5
392 | 6.96215,0,18.1,0,0.7,5.713,97,1.9265,24,666,20.2,394.43,17.11,15.1
393 | 5.29305,0,18.1,0,0.7,6.051,82.5,2.1678,24,666,20.2,378.38,18.76,23.2
394 | 11.5779,0,18.1,0,0.7,5.036,97,1.77,24,666,20.2,396.9,25.68,9.7
395 | 8.64476,0,18.1,0,0.693,6.193,92.6,1.7912,24,666,20.2,396.9,15.17,13.8
396 | 13.3598,0,18.1,0,0.693,5.887,94.7,1.7821,24,666,20.2,396.9,16.35,12.7
397 | 8.71675,0,18.1,0,0.693,6.471,98.8,1.7257,24,666,20.2,391.98,17.12,13.1
398 | 5.87205,0,18.1,0,0.693,6.405,96,1.6768,24,666,20.2,396.9,19.37,12.5
399 | 7.67202,0,18.1,0,0.693,5.747,98.9,1.6334,24,666,20.2,393.1,19.92,8.5
400 | 38.3518,0,18.1,0,0.693,5.453,100,1.4896,24,666,20.2,396.9,30.59,5
401 | 9.91655,0,18.1,0,0.693,5.852,77.8,1.5004,24,666,20.2,338.16,29.97,6.3
402 | 25.0461,0,18.1,0,0.693,5.987,100,1.5888,24,666,20.2,396.9,26.77,5.6
403 | 14.2362,0,18.1,0,0.693,6.343,100,1.5741,24,666,20.2,396.9,20.32,7.2
404 | 9.59571,0,18.1,0,0.693,6.404,100,1.639,24,666,20.2,376.11,20.31,12.1
405 | 24.8017,0,18.1,0,0.693,5.349,96,1.7028,24,666,20.2,396.9,19.77,8.3
406 | 41.5292,0,18.1,0,0.693,5.531,85.4,1.6074,24,666,20.2,329.46,27.38,8.5
407 | 67.9208,0,18.1,0,0.693,5.683,100,1.4254,24,666,20.2,384.97,22.98,5
408 | 20.7162,0,18.1,0,0.659,4.138,100,1.1781,24,666,20.2,370.22,23.34,11.9
409 | 11.9511,0,18.1,0,0.659,5.608,100,1.2852,24,666,20.2,332.09,12.13,27.9
410 | 7.40389,0,18.1,0,0.597,5.617,97.9,1.4547,24,666,20.2,314.64,26.4,17.2
411 | 14.4383,0,18.1,0,0.597,6.852,100,1.4655,24,666,20.2,179.36,19.78,27.5
412 | 51.1358,0,18.1,0,0.597,5.757,100,1.413,24,666,20.2,2.6,10.11,15
413 | 14.0507,0,18.1,0,0.597,6.657,100,1.5275,24,666,20.2,35.05,21.22,17.2
414 | 18.811,0,18.1,0,0.597,4.628,100,1.5539,24,666,20.2,28.79,34.37,17.9
415 | 28.6558,0,18.1,0,0.597,5.155,100,1.5894,24,666,20.2,210.97,20.08,16.3
416 | 45.7461,0,18.1,0,0.693,4.519,100,1.6582,24,666,20.2,88.27,36.98,7
417 | 18.0846,0,18.1,0,0.679,6.434,100,1.8347,24,666,20.2,27.25,29.05,7.2
418 | 10.8342,0,18.1,0,0.679,6.782,90.8,1.8195,24,666,20.2,21.57,25.79,7.5
419 | 25.9406,0,18.1,0,0.679,5.304,89.1,1.6475,24,666,20.2,127.36,26.64,10.4
420 | 73.5341,0,18.1,0,0.679,5.957,100,1.8026,24,666,20.2,16.45,20.62,8.8
421 | 11.8123,0,18.1,0,0.718,6.824,76.5,1.794,24,666,20.2,48.45,22.74,8.4
422 | 11.0874,0,18.1,0,0.718,6.411,100,1.8589,24,666,20.2,318.75,15.02,16.7
423 | 7.02259,0,18.1,0,0.718,6.006,95.3,1.8746,24,666,20.2,319.98,15.7,14.2
424 | 12.0482,0,18.1,0,0.614,5.648,87.6,1.9512,24,666,20.2,291.55,14.1,20.8
425 | 7.05042,0,18.1,0,0.614,6.103,85.1,2.0218,24,666,20.2,2.52,23.29,13.4
426 | 8.79212,0,18.1,0,0.584,5.565,70.6,2.0635,24,666,20.2,3.65,17.16,11.7
427 | 15.8603,0,18.1,0,0.679,5.896,95.4,1.9096,24,666,20.2,7.68,24.39,8.3
428 | 12.2472,0,18.1,0,0.584,5.837,59.7,1.9976,24,666,20.2,24.65,15.69,10.2
429 | 37.6619,0,18.1,0,0.679,6.202,78.7,1.8629,24,666,20.2,18.82,14.52,10.9
430 | 7.36711,0,18.1,0,0.679,6.193,78.1,1.9356,24,666,20.2,96.73,21.52,11
431 | 9.33889,0,18.1,0,0.679,6.38,95.6,1.9682,24,666,20.2,60.72,24.08,9.5
432 | 8.49213,0,18.1,0,0.584,6.348,86.1,2.0527,24,666,20.2,83.45,17.64,14.5
433 | 10.0623,0,18.1,0,0.584,6.833,94.3,2.0882,24,666,20.2,81.33,19.69,14.1
434 | 6.44405,0,18.1,0,0.584,6.425,74.8,2.2004,24,666,20.2,97.95,12.03,16.1
435 | 5.58107,0,18.1,0,0.713,6.436,87.9,2.3158,24,666,20.2,100.19,16.22,14.3
436 | 13.9134,0,18.1,0,0.713,6.208,95,2.2222,24,666,20.2,100.63,15.17,11.7
437 | 11.1604,0,18.1,0,0.74,6.629,94.6,2.1247,24,666,20.2,109.85,23.27,13.4
438 | 14.4208,0,18.1,0,0.74,6.461,93.3,2.0026,24,666,20.2,27.49,18.05,9.6
439 | 15.1772,0,18.1,0,0.74,6.152,100,1.9142,24,666,20.2,9.32,26.45,8.7
440 | 13.6781,0,18.1,0,0.74,5.935,87.9,1.8206,24,666,20.2,68.95,34.02,8.4
441 | 9.39063,0,18.1,0,0.74,5.627,93.9,1.8172,24,666,20.2,396.9,22.88,12.8
442 | 22.0511,0,18.1,0,0.74,5.818,92.4,1.8662,24,666,20.2,391.45,22.11,10.5
443 | 9.72418,0,18.1,0,0.74,6.406,97.2,2.0651,24,666,20.2,385.96,19.52,17.1
444 | 5.66637,0,18.1,0,0.74,6.219,100,2.0048,24,666,20.2,395.69,16.59,18.4
445 | 9.96654,0,18.1,0,0.74,6.485,100,1.9784,24,666,20.2,386.73,18.85,15.4
446 | 12.8023,0,18.1,0,0.74,5.854,96.6,1.8956,24,666,20.2,240.52,23.79,10.8
447 | 10.6718,0,18.1,0,0.74,6.459,94.8,1.9879,24,666,20.2,43.06,23.98,11.8
448 | 6.28807,0,18.1,0,0.74,6.341,96.4,2.072,24,666,20.2,318.01,17.79,14.9
449 | 9.92485,0,18.1,0,0.74,6.251,96.6,2.198,24,666,20.2,388.52,16.44,12.6
450 | 9.32909,0,18.1,0,0.713,6.185,98.7,2.2616,24,666,20.2,396.9,18.13,14.1
451 | 7.52601,0,18.1,0,0.713,6.417,98.3,2.185,24,666,20.2,304.21,19.31,13
452 | 6.71772,0,18.1,0,0.713,6.749,92.6,2.3236,24,666,20.2,0.32,17.44,13.4
453 | 5.44114,0,18.1,0,0.713,6.655,98.2,2.3552,24,666,20.2,355.29,17.73,15.2
454 | 5.09017,0,18.1,0,0.713,6.297,91.8,2.3682,24,666,20.2,385.09,17.27,16.1
455 | 8.24809,0,18.1,0,0.713,7.393,99.3,2.4527,24,666,20.2,375.87,16.74,17.8
456 | 9.51363,0,18.1,0,0.713,6.728,94.1,2.4961,24,666,20.2,6.68,18.71,14.9
457 | 4.75237,0,18.1,0,0.713,6.525,86.5,2.4358,24,666,20.2,50.92,18.13,14.1
458 | 4.66883,0,18.1,0,0.713,5.976,87.9,2.5806,24,666,20.2,10.48,19.01,12.7
459 | 8.20058,0,18.1,0,0.713,5.936,80.3,2.7792,24,666,20.2,3.5,16.94,13.5
460 | 7.75223,0,18.1,0,0.713,6.301,83.7,2.7831,24,666,20.2,272.21,16.23,14.9
461 | 6.80117,0,18.1,0,0.713,6.081,84.4,2.7175,24,666,20.2,396.9,14.7,20
462 | 4.81213,0,18.1,0,0.713,6.701,90,2.5975,24,666,20.2,255.23,16.42,16.4
463 | 3.69311,0,18.1,0,0.713,6.376,88.4,2.5671,24,666,20.2,391.43,14.65,17.7
464 | 6.65492,0,18.1,0,0.713,6.317,83,2.7344,24,666,20.2,396.9,13.99,19.5
465 | 5.82115,0,18.1,0,0.713,6.513,89.9,2.8016,24,666,20.2,393.82,10.29,20.2
466 | 7.83932,0,18.1,0,0.655,6.209,65.4,2.9634,24,666,20.2,396.9,13.22,21.4
467 | 3.1636,0,18.1,0,0.655,5.759,48.2,3.0665,24,666,20.2,334.4,14.13,19.9
468 | 3.77498,0,18.1,0,0.655,5.952,84.7,2.8715,24,666,20.2,22.01,17.15,19
469 | 4.42228,0,18.1,0,0.584,6.003,94.5,2.5403,24,666,20.2,331.29,21.32,19.1
470 | 15.5757,0,18.1,0,0.58,5.926,71,2.9084,24,666,20.2,368.74,18.13,19.1
471 | 13.0751,0,18.1,0,0.58,5.713,56.7,2.8237,24,666,20.2,396.9,14.76,20.1
472 | 4.34879,0,18.1,0,0.58,6.167,84,3.0334,24,666,20.2,396.9,16.29,19.9
473 | 4.03841,0,18.1,0,0.532,6.229,90.7,3.0993,24,666,20.2,395.33,12.87,19.6
474 | 3.56868,0,18.1,0,0.58,6.437,75,2.8965,24,666,20.2,393.37,14.36,23.2
475 | 4.64689,0,18.1,0,0.614,6.98,67.6,2.5329,24,666,20.2,374.68,11.66,29.8
476 | 8.05579,0,18.1,0,0.584,5.427,95.4,2.4298,24,666,20.2,352.58,18.14,13.8
477 | 6.39312,0,18.1,0,0.584,6.162,97.4,2.206,24,666,20.2,302.76,24.1,13.3
478 | 4.87141,0,18.1,0,0.614,6.484,93.6,2.3053,24,666,20.2,396.21,18.68,16.7
479 | 15.0234,0,18.1,0,0.614,5.304,97.3,2.1007,24,666,20.2,349.48,24.91,12
480 | 10.233,0,18.1,0,0.614,6.185,96.7,2.1705,24,666,20.2,379.7,18.03,14.6
481 | 14.3337,0,18.1,0,0.614,6.229,88,1.9512,24,666,20.2,383.32,13.11,21.4
482 | 5.82401,0,18.1,0,0.532,6.242,64.7,3.4242,24,666,20.2,396.9,10.74,23
483 | 5.70818,0,18.1,0,0.532,6.75,74.9,3.3317,24,666,20.2,393.07,7.74,23.7
484 | 5.73116,0,18.1,0,0.532,7.061,77,3.4106,24,666,20.2,395.28,7.01,25
485 | 2.81838,0,18.1,0,0.532,5.762,40.3,4.0983,24,666,20.2,392.92,10.42,21.8
486 | 2.37857,0,18.1,0,0.583,5.871,41.9,3.724,24,666,20.2,370.73,13.34,20.6
487 | 3.67367,0,18.1,0,0.583,6.312,51.9,3.9917,24,666,20.2,388.62,10.58,21.2
488 | 5.69175,0,18.1,0,0.583,6.114,79.8,3.5459,24,666,20.2,392.68,14.98,19.1
489 | 4.83567,0,18.1,0,0.583,5.905,53.2,3.1523,24,666,20.2,388.22,11.45,20.6
490 | 0.15086,0,27.74,0,0.609,5.454,92.7,1.8209,4,711,20.1,395.09,18.06,15.2
491 | 0.18337,0,27.74,0,0.609,5.414,98.3,1.7554,4,711,20.1,344.05,23.97,7
492 | 0.20746,0,27.74,0,0.609,5.093,98,1.8226,4,711,20.1,318.43,29.68,8.1
493 | 0.10574,0,27.74,0,0.609,5.983,98.8,1.8681,4,711,20.1,390.11,18.07,13.6
494 | 0.11132,0,27.74,0,0.609,5.983,83.5,2.1099,4,711,20.1,396.9,13.35,20.1
495 | 0.17331,0,9.69,0,0.585,5.707,54,2.3817,6,391,19.2,396.9,12.01,21.8
496 | 0.27957,0,9.69,0,0.585,5.926,42.6,2.3817,6,391,19.2,396.9,13.59,24.5
497 | 0.17899,0,9.69,0,0.585,5.67,28.8,2.7986,6,391,19.2,393.29,17.6,23.1
498 | 0.2896,0,9.69,0,0.585,5.39,72.9,2.7986,6,391,19.2,396.9,21.14,19.7
499 | 0.26838,0,9.69,0,0.585,5.794,70.6,2.8927,6,391,19.2,396.9,14.1,18.3
500 | 0.23912,0,9.69,0,0.585,6.019,65.3,2.4091,6,391,19.2,396.9,12.92,21.2
501 | 0.17783,0,9.69,0,0.585,5.569,73.5,2.3999,6,391,19.2,395.77,15.1,17.5
502 | 0.22438,0,9.69,0,0.585,6.027,79.7,2.4982,6,391,19.2,396.9,14.33,16.8
503 | 0.06263,0,11.93,0,0.573,6.593,69.1,2.4786,1,273,21,391.99,9.67,22.4
504 | 0.04527,0,11.93,0,0.573,6.12,76.7,2.2875,1,273,21,396.9,9.08,20.6
505 | 0.06076,0,11.93,0,0.573,6.976,91,2.1675,1,273,21,396.9,5.64,23.9
506 | 0.10959,0,11.93,0,0.573,6.794,89.3,2.3889,1,273,21,393.45,6.48,22
507 | 0.04741,0,11.93,0,0.573,6.03,80.8,2.505,1,273,21,396.9,7.88,11.9
508 |
--------------------------------------------------------------------------------
/labs/chapter4/KNN.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "import pandas as pd\n",
10 | "import numpy as np\n",
11 | "\n",
12 | "import seaborn as sns\n",
13 | "%matplotlib inline\n",
14 | "sns.set(rc={\"figure.figsize\":(12,8)})\n",
15 | "\n",
16 | "from sklearn.neighbors import KNeighborsClassifier\n",
17 | "from sklearn.metrics import confusion_matrix"
18 | ]
19 | },
20 | {
21 | "cell_type": "code",
22 | "execution_count": 2,
23 | "metadata": {},
24 | "outputs": [
25 | {
26 | "data": {
27 | "text/html": [
28 | "\n",
29 | "\n",
42 | "
\n",
43 | " \n",
44 | " \n",
45 | " | \n",
46 | " Year | \n",
47 | " Lag1 | \n",
48 | " Lag2 | \n",
49 | " Lag3 | \n",
50 | " Lag4 | \n",
51 | " Lag5 | \n",
52 | " Volume | \n",
53 | " Today | \n",
54 | " Direction | \n",
55 | "
\n",
56 | " \n",
57 | " \n",
58 | " \n",
59 | " | 0 | \n",
60 | " 2001 | \n",
61 | " 0.381 | \n",
62 | " -0.192 | \n",
63 | " -2.624 | \n",
64 | " -1.055 | \n",
65 | " 5.010 | \n",
66 | " 1.1913 | \n",
67 | " 0.959 | \n",
68 | " Up | \n",
69 | "
\n",
70 | " \n",
71 | " | 1 | \n",
72 | " 2001 | \n",
73 | " 0.959 | \n",
74 | " 0.381 | \n",
75 | " -0.192 | \n",
76 | " -2.624 | \n",
77 | " -1.055 | \n",
78 | " 1.2965 | \n",
79 | " 1.032 | \n",
80 | " Up | \n",
81 | "
\n",
82 | " \n",
83 | " | 2 | \n",
84 | " 2001 | \n",
85 | " 1.032 | \n",
86 | " 0.959 | \n",
87 | " 0.381 | \n",
88 | " -0.192 | \n",
89 | " -2.624 | \n",
90 | " 1.4112 | \n",
91 | " -0.623 | \n",
92 | " Down | \n",
93 | "
\n",
94 | " \n",
95 | " | 3 | \n",
96 | " 2001 | \n",
97 | " -0.623 | \n",
98 | " 1.032 | \n",
99 | " 0.959 | \n",
100 | " 0.381 | \n",
101 | " -0.192 | \n",
102 | " 1.2760 | \n",
103 | " 0.614 | \n",
104 | " Up | \n",
105 | "
\n",
106 | " \n",
107 | " | 4 | \n",
108 | " 2001 | \n",
109 | " 0.614 | \n",
110 | " -0.623 | \n",
111 | " 1.032 | \n",
112 | " 0.959 | \n",
113 | " 0.381 | \n",
114 | " 1.2057 | \n",
115 | " 0.213 | \n",
116 | " Up | \n",
117 | "
\n",
118 | " \n",
119 | "
\n",
120 | "
"
121 | ],
122 | "text/plain": [
123 | " Year Lag1 Lag2 Lag3 Lag4 Lag5 Volume Today Direction\n",
124 | "0 2001 0.381 -0.192 -2.624 -1.055 5.010 1.1913 0.959 Up\n",
125 | "1 2001 0.959 0.381 -0.192 -2.624 -1.055 1.2965 1.032 Up\n",
126 | "2 2001 1.032 0.959 0.381 -0.192 -2.624 1.4112 -0.623 Down\n",
127 | "3 2001 -0.623 1.032 0.959 0.381 -0.192 1.2760 0.614 Up\n",
128 | "4 2001 0.614 -0.623 1.032 0.959 0.381 1.2057 0.213 Up"
129 | ]
130 | },
131 | "execution_count": 2,
132 | "metadata": {},
133 | "output_type": "execute_result"
134 | }
135 | ],
136 | "source": [
137 | "df = pd.read_csv(\"../../data/csv/Smarket.csv\")\n",
138 | "df.head()"
139 | ]
140 | },
141 | {
142 | "cell_type": "markdown",
143 | "metadata": {},
144 | "source": [
145 | "### The Stock Market Data"
146 | ]
147 | },
148 | {
149 | "cell_type": "code",
150 | "execution_count": 3,
151 | "metadata": {},
152 | "outputs": [
153 | {
154 | "data": {
155 | "text/plain": [
156 | "['Year',\n",
157 | " 'Lag1',\n",
158 | " 'Lag2',\n",
159 | " 'Lag3',\n",
160 | " 'Lag4',\n",
161 | " 'Lag5',\n",
162 | " 'Volume',\n",
163 | " 'Today',\n",
164 | " 'Direction']"
165 | ]
166 | },
167 | "execution_count": 3,
168 | "metadata": {},
169 | "output_type": "execute_result"
170 | }
171 | ],
172 | "source": [
173 | "df.columns.tolist()"
174 | ]
175 | },
176 | {
177 | "cell_type": "code",
178 | "execution_count": 4,
179 | "metadata": {},
180 | "outputs": [
181 | {
182 | "data": {
183 | "text/plain": [
184 | "(1250, 9)"
185 | ]
186 | },
187 | "execution_count": 4,
188 | "metadata": {},
189 | "output_type": "execute_result"
190 | }
191 | ],
192 | "source": [
193 | "df.shape"
194 | ]
195 | },
196 | {
197 | "cell_type": "code",
198 | "execution_count": 5,
199 | "metadata": {},
200 | "outputs": [
201 | {
202 | "data": {
203 | "text/html": [
204 | "\n",
205 | "\n",
218 | "
\n",
219 | " \n",
220 | " \n",
221 | " | \n",
222 | " Year | \n",
223 | " Lag1 | \n",
224 | " Lag2 | \n",
225 | " Lag3 | \n",
226 | " Lag4 | \n",
227 | " Lag5 | \n",
228 | " Volume | \n",
229 | " Today | \n",
230 | "
\n",
231 | " \n",
232 | " \n",
233 | " \n",
234 | " | count | \n",
235 | " 1250.000000 | \n",
236 | " 1250.000000 | \n",
237 | " 1250.000000 | \n",
238 | " 1250.000000 | \n",
239 | " 1250.000000 | \n",
240 | " 1250.00000 | \n",
241 | " 1250.000000 | \n",
242 | " 1250.000000 | \n",
243 | "
\n",
244 | " \n",
245 | " | mean | \n",
246 | " 2003.016000 | \n",
247 | " 0.003834 | \n",
248 | " 0.003919 | \n",
249 | " 0.001716 | \n",
250 | " 0.001636 | \n",
251 | " 0.00561 | \n",
252 | " 1.478305 | \n",
253 | " 0.003138 | \n",
254 | "
\n",
255 | " \n",
256 | " | std | \n",
257 | " 1.409018 | \n",
258 | " 1.136299 | \n",
259 | " 1.136280 | \n",
260 | " 1.138703 | \n",
261 | " 1.138774 | \n",
262 | " 1.14755 | \n",
263 | " 0.360357 | \n",
264 | " 1.136334 | \n",
265 | "
\n",
266 | " \n",
267 | " | min | \n",
268 | " 2001.000000 | \n",
269 | " -4.922000 | \n",
270 | " -4.922000 | \n",
271 | " -4.922000 | \n",
272 | " -4.922000 | \n",
273 | " -4.92200 | \n",
274 | " 0.356070 | \n",
275 | " -4.922000 | \n",
276 | "
\n",
277 | " \n",
278 | " | 25% | \n",
279 | " 2002.000000 | \n",
280 | " -0.639500 | \n",
281 | " -0.639500 | \n",
282 | " -0.640000 | \n",
283 | " -0.640000 | \n",
284 | " -0.64000 | \n",
285 | " 1.257400 | \n",
286 | " -0.639500 | \n",
287 | "
\n",
288 | " \n",
289 | " | 50% | \n",
290 | " 2003.000000 | \n",
291 | " 0.039000 | \n",
292 | " 0.039000 | \n",
293 | " 0.038500 | \n",
294 | " 0.038500 | \n",
295 | " 0.03850 | \n",
296 | " 1.422950 | \n",
297 | " 0.038500 | \n",
298 | "
\n",
299 | " \n",
300 | " | 75% | \n",
301 | " 2004.000000 | \n",
302 | " 0.596750 | \n",
303 | " 0.596750 | \n",
304 | " 0.596750 | \n",
305 | " 0.596750 | \n",
306 | " 0.59700 | \n",
307 | " 1.641675 | \n",
308 | " 0.596750 | \n",
309 | "
\n",
310 | " \n",
311 | " | max | \n",
312 | " 2005.000000 | \n",
313 | " 5.733000 | \n",
314 | " 5.733000 | \n",
315 | " 5.733000 | \n",
316 | " 5.733000 | \n",
317 | " 5.73300 | \n",
318 | " 3.152470 | \n",
319 | " 5.733000 | \n",
320 | "
\n",
321 | " \n",
322 | "
\n",
323 | "
"
324 | ],
325 | "text/plain": [
326 | " Year Lag1 Lag2 Lag3 Lag4 \\\n",
327 | "count 1250.000000 1250.000000 1250.000000 1250.000000 1250.000000 \n",
328 | "mean 2003.016000 0.003834 0.003919 0.001716 0.001636 \n",
329 | "std 1.409018 1.136299 1.136280 1.138703 1.138774 \n",
330 | "min 2001.000000 -4.922000 -4.922000 -4.922000 -4.922000 \n",
331 | "25% 2002.000000 -0.639500 -0.639500 -0.640000 -0.640000 \n",
332 | "50% 2003.000000 0.039000 0.039000 0.038500 0.038500 \n",
333 | "75% 2004.000000 0.596750 0.596750 0.596750 0.596750 \n",
334 | "max 2005.000000 5.733000 5.733000 5.733000 5.733000 \n",
335 | "\n",
336 | " Lag5 Volume Today \n",
337 | "count 1250.00000 1250.000000 1250.000000 \n",
338 | "mean 0.00561 1.478305 0.003138 \n",
339 | "std 1.14755 0.360357 1.136334 \n",
340 | "min -4.92200 0.356070 -4.922000 \n",
341 | "25% -0.64000 1.257400 -0.639500 \n",
342 | "50% 0.03850 1.422950 0.038500 \n",
343 | "75% 0.59700 1.641675 0.596750 \n",
344 | "max 5.73300 3.152470 5.733000 "
345 | ]
346 | },
347 | "execution_count": 5,
348 | "metadata": {},
349 | "output_type": "execute_result"
350 | }
351 | ],
352 | "source": [
353 | "df.describe()"
354 | ]
355 | },
356 | {
357 | "cell_type": "code",
358 | "execution_count": 6,
359 | "metadata": {},
360 | "outputs": [
361 | {
362 | "data": {
363 | "text/plain": [
364 | "count 1250\n",
365 | "unique 2\n",
366 | "top Up\n",
367 | "freq 648\n",
368 | "Name: Direction, dtype: object"
369 | ]
370 | },
371 | "execution_count": 6,
372 | "metadata": {},
373 | "output_type": "execute_result"
374 | }
375 | ],
376 | "source": [
377 | "df['Direction'].describe()"
378 | ]
379 | },
380 | {
381 | "cell_type": "code",
382 | "execution_count": 7,
383 | "metadata": {},
384 | "outputs": [
385 | {
386 | "data": {
387 | "text/html": [
388 | "\n",
389 | "\n",
402 | "
\n",
403 | " \n",
404 | " \n",
405 | " | \n",
406 | " Year | \n",
407 | " Lag1 | \n",
408 | " Lag2 | \n",
409 | " Lag3 | \n",
410 | " Lag4 | \n",
411 | " Lag5 | \n",
412 | " Volume | \n",
413 | " Today | \n",
414 | "
\n",
415 | " \n",
416 | " \n",
417 | " \n",
418 | " | Year | \n",
419 | " 1.000000 | \n",
420 | " 0.029700 | \n",
421 | " 0.030596 | \n",
422 | " 0.033195 | \n",
423 | " 0.035689 | \n",
424 | " 0.029788 | \n",
425 | " 0.539006 | \n",
426 | " 0.030095 | \n",
427 | "
\n",
428 | " \n",
429 | " | Lag1 | \n",
430 | " 0.029700 | \n",
431 | " 1.000000 | \n",
432 | " -0.026294 | \n",
433 | " -0.010803 | \n",
434 | " -0.002986 | \n",
435 | " -0.005675 | \n",
436 | " 0.040910 | \n",
437 | " -0.026155 | \n",
438 | "
\n",
439 | " \n",
440 | " | Lag2 | \n",
441 | " 0.030596 | \n",
442 | " -0.026294 | \n",
443 | " 1.000000 | \n",
444 | " -0.025897 | \n",
445 | " -0.010854 | \n",
446 | " -0.003558 | \n",
447 | " -0.043383 | \n",
448 | " -0.010250 | \n",
449 | "
\n",
450 | " \n",
451 | " | Lag3 | \n",
452 | " 0.033195 | \n",
453 | " -0.010803 | \n",
454 | " -0.025897 | \n",
455 | " 1.000000 | \n",
456 | " -0.024051 | \n",
457 | " -0.018808 | \n",
458 | " -0.041824 | \n",
459 | " -0.002448 | \n",
460 | "
\n",
461 | " \n",
462 | " | Lag4 | \n",
463 | " 0.035689 | \n",
464 | " -0.002986 | \n",
465 | " -0.010854 | \n",
466 | " -0.024051 | \n",
467 | " 1.000000 | \n",
468 | " -0.027084 | \n",
469 | " -0.048414 | \n",
470 | " -0.006900 | \n",
471 | "
\n",
472 | " \n",
473 | " | Lag5 | \n",
474 | " 0.029788 | \n",
475 | " -0.005675 | \n",
476 | " -0.003558 | \n",
477 | " -0.018808 | \n",
478 | " -0.027084 | \n",
479 | " 1.000000 | \n",
480 | " -0.022002 | \n",
481 | " -0.034860 | \n",
482 | "
\n",
483 | " \n",
484 | " | Volume | \n",
485 | " 0.539006 | \n",
486 | " 0.040910 | \n",
487 | " -0.043383 | \n",
488 | " -0.041824 | \n",
489 | " -0.048414 | \n",
490 | " -0.022002 | \n",
491 | " 1.000000 | \n",
492 | " 0.014592 | \n",
493 | "
\n",
494 | " \n",
495 | " | Today | \n",
496 | " 0.030095 | \n",
497 | " -0.026155 | \n",
498 | " -0.010250 | \n",
499 | " -0.002448 | \n",
500 | " -0.006900 | \n",
501 | " -0.034860 | \n",
502 | " 0.014592 | \n",
503 | " 1.000000 | \n",
504 | "
\n",
505 | " \n",
506 | "
\n",
507 | "
"
508 | ],
509 | "text/plain": [
510 | " Year Lag1 Lag2 Lag3 Lag4 Lag5 Volume \\\n",
511 | "Year 1.000000 0.029700 0.030596 0.033195 0.035689 0.029788 0.539006 \n",
512 | "Lag1 0.029700 1.000000 -0.026294 -0.010803 -0.002986 -0.005675 0.040910 \n",
513 | "Lag2 0.030596 -0.026294 1.000000 -0.025897 -0.010854 -0.003558 -0.043383 \n",
514 | "Lag3 0.033195 -0.010803 -0.025897 1.000000 -0.024051 -0.018808 -0.041824 \n",
515 | "Lag4 0.035689 -0.002986 -0.010854 -0.024051 1.000000 -0.027084 -0.048414 \n",
516 | "Lag5 0.029788 -0.005675 -0.003558 -0.018808 -0.027084 1.000000 -0.022002 \n",
517 | "Volume 0.539006 0.040910 -0.043383 -0.041824 -0.048414 -0.022002 1.000000 \n",
518 | "Today 0.030095 -0.026155 -0.010250 -0.002448 -0.006900 -0.034860 0.014592 \n",
519 | "\n",
520 | " Today \n",
521 | "Year 0.030095 \n",
522 | "Lag1 -0.026155 \n",
523 | "Lag2 -0.010250 \n",
524 | "Lag3 -0.002448 \n",
525 | "Lag4 -0.006900 \n",
526 | "Lag5 -0.034860 \n",
527 | "Volume 0.014592 \n",
528 | "Today 1.000000 "
529 | ]
530 | },
531 | "execution_count": 7,
532 | "metadata": {},
533 | "output_type": "execute_result"
534 | }
535 | ],
536 | "source": [
537 | "# pairwise correlations\n",
538 | "df.corr()"
539 | ]
540 | },
541 | {
542 | "cell_type": "markdown",
543 | "metadata": {},
544 | "source": [
545 | "The correlations between the lag variables (previous days’) and today’s returns are close to zero."
546 | ]
547 | },
548 | {
549 | "cell_type": "code",
550 | "execution_count": 8,
551 | "metadata": {
552 | "scrolled": true
553 | },
554 | "outputs": [
555 | {
556 | "data": {
557 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAHfCAYAAABAjl6PAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3X98XXV9P/B30jY06W+gOkUQktb5\nGKCisAfsoVbKIr+KLRSsRanTbkMRsDh+tfyqUihMH8Do6EDn5kNwG4Xvd6wgbHRQHopzCDIYLbq1\nN4NZZKPFpJCEtqE53z/45mpLQk6be+7JuXk+//rk3vSe92k+j5tX3vdzzqcuSZIkAACAt1SfdwEA\nAFAEgjMAAKQgOAMAQAqCMwAApCA4AwBACoIzAACkMDrvAtLavPnVvEsAAGAEmDp1Qr+P6zgDAEAK\ngjMAAKQgOAMAQAqCMwAApCA4AwBACoIzAACkIDgDAEAKgjMAAKQgOAMAQAqCMwAApCA4AwBACoIz\nAACkIDgDAEAKgjMAAKQgOAMAQAqCMwDACFcqbYhSaUPeZQx7o/MuAACAfK1Z80BERLS0TM+5kuFN\nxxkAYAQrlTZEW9vGaGvbqOs8CMEZAGAE6+s27z7mzQRnAABIQXAGABjBWltP7HfMm7k4EABgBGtp\nmR7NzdPKYwYmOAMAjHA6zekIzgAAI5xOczrWOAMAQAqCMwAApCA4AwBACoIzAACkIDgDAEAKgjMA\nAKQgOAMAQAqCMwAApCA4AwBACoIzAACkIDgDAEAKgjMAAKQgOAMAQAqZBeedO3fG4sWL41Of+lTM\nnz8//vM//3OX5x9++OGYO3duzJs3L1atWpVVGQAAUBGZBee1a9dGRMTf/d3fxaJFi+LGG28sP9fT\n0xPLly+Pv/qrv4rbb7897rzzztiyZUtWpQAAwJBlFpx///d/P66++uqIiPjlL38ZEydOLD9XKpXi\noIMOikmTJkVDQ0N86EMfiscffzyrUgAAYMhGZ/rio0fHJZdcEmvWrImbb765/HhnZ2dMmDCh/PW4\nceOis7PzLV9rypSmGD16VGa1AgDAW8k0OEdEXH/99XHhhRfGJz/5yfj+978fTU1NMX78+Ojq6ip/\nT1dX1y5Buj/t7d1ZlwoAADF1av+5NLOlGvfcc0/cdtttERHR2NgYdXV1UV//xuFaWlri+eefj46O\njtixY0c88cQTccQRR2RVCgAADFldkiRJFi/c3d0dixcvji1btsTrr78ef/RHfxSvvfZadHd3x7x5\n8+Lhhx+OW265JZIkiblz58anP/3pt3y9zZtfzaJMAADYxUAd58yCc6UJzgAAVEPVl2oAAEAtEZwB\nACAFwRkAAFIQnAEAIAXBGQAAUhCcAQAgBcEZAABSEJwBACAFwRkAAFIQnAEAIAXBGQAAUhCcAQAg\nBcEZAABSEJwBACAFwRkAAFIQnAEAIAXBGQAAUhCcAQAgBcEZAABSEJwBACAFwRkAAFIQnAEAIAXB\nGQAAUhCcoQaUShuiVNqQdxkAUNNG510AMHRr1jwQEREtLdNzrgSASrnvvnvimWeeqsqxuru7IyKi\nqakp82MdfvgHYtasOZkfJwuCMxRcqbQh2to2lsfCMwB7qqdnx/8fZR+ci6wuSZIk7yLS2Lz51bxL\ngGHp1ltvLgfn5uZp8YUvnJ9zRQAUzfLlSyMiYvHipbnWMVxMnTqh38etcQYAgBQEZyi41tYT+x0D\nAJVljTMUXEvL9GhunlYeAwDZEJyhBug0A0D2BGeoATrNAJA9a5wBACAFwRkAAFIQnAEAIAXBGQAA\nUhCcAQAgBcEZAABSEJwBACAFwRkAAFIQnKEGlEobolTakHcZAFDT7BwINWDNmgciwg6CAJAlHWco\nuFJpQ7S1bYy2to26zgCQIcEZCq6v27z7GACoLMEZAABSEJyh4FpbT+x3DABUlosDoeBaWqZHc/O0\n8hgAyIbgDDVApxkAsic4Qw3QaQaA7FnjDAAAKQjOAACQguAMNcCW2wCQPWucoQbYchsAsqfjDAVn\ny20AqA7BGQrOltsAUB2CMxTca6919zsGACpLcIbCqxtgDABUkuAMBdfY2NjvGACoLMEZCu43t9u2\n9TYAZMft6KDgWlqmR3PztPIYAMiG4Aw1QKcZALInOEMN0GkGgOxZ4wwAAClk0nHu6emJJUuWxAsv\nvBA7duyIL37xi3HccceVn//Od74Td911V+y7774REfHVr341mpubsygFAAAqIpPgvHr16pg8eXJ8\n/etfj46OjpgzZ84uwXndunVx/fXXx2GHHZbF4QEAoOIyCc4nnHBCHH/88RERkSRJjBo1apfn169f\nH9/85jdj8+bN8bGPfSzOPvvsLMoAAICKySQ4jxs3LiIiOjs74/zzz49Fixbt8vzJJ58cZ555Zowf\nPz7OPffcWLt2bRx77LFv+ZpTpjTF6NGj3vJ7AADYc/X1b+w8O3XqhJwrGd4yu6vGiy++GF/60pfi\nzDPPjFNOOaX8eJIk8dnPfjYmTHjjBzNjxox49tlnBw3O7e3dWZUKADCi9fYmERGxefOrOVcyPAz0\nB0Qmd9XYsmVLfP7zn4+LLrooTj/99F2e6+zsjFmzZkVXV1ckSRKPPfaYtc4AAAx7mXScb7311njl\nlVdi5cqVsXLlyoiIOOOMM+K1116LefPmxQUXXBALFiyIhoaGOOaYY2LGjBlZlAEAABVTlyRJkncR\nafjoAAZWKm2ICBuhALB3li9fGhERixcvzbWO4WKgpRp2DoQasGbNAxEhOANAluwcCAVXKm2ItraN\n0da2sdx5BgAqT3CGguvrNu8+BgAqS3AGAIAUBGcouEMPPbzfMQBQWYIzFNwTTzzW7xgAqCzBGQqu\nvf1X/Y4BgMoSnKHgpkzZr98xAFBZgjMU3Cc+cVq/YwCgsmyAAgXX0jI93vGOA8pjACAbgjPUAJ1m\nAMie4Aw1QKcZALJnjTMAAKQgOAMAQAqCMwCMIKXShiiVNuRdBhSSNc4F0/dmZ00rAHtjzZoHIsLv\nEdgbgnPBeMMDYG+VShuirW1jeex3CewZSzUKpO8Nr61to4/ZANhjfc2X3cdAOoJzgXjDAwDIj+Bc\nIK+91t3vGADSaG09sd8xkI41zoVSN8AYAAbX0jI9mpunlcfAnhGcC6SxsbHfMQCkpdMMe89SjQLx\nERsAQ9XSMl23GfaSjnOB+IgNACA/gnPB6DQDAORDcC4YnWYAgHxY4wwAACkIzlADSqUNdpMEgIxZ\nqgE1oG8nSUt5ACA7Os5QcKXShmhr2xhtbRt1nQEgQ4IzFFxft3n3MQBQWYIzAACkIDhDwdlREgCq\nw8WBUHB2lASA6hCcoQboNANA9gRnqAE6zQCQPWucAQAgBcEZAABSEJwBACAFwRkAAFIQnAEAIAXB\nGQAAUhCcAQAgBcEZAABSqEuSJMm7iDQ2b3417xIAgBFu5cqbYuvWjrzLqLi+c5o0aXLOlVTWpEmT\n45xzFu3xv5s6dUK/j9s5sGBKpQ0RYac4dmVeAFTH1q0d0d7RHvVjx+VdSkX11o+KiIit23bkXEnl\n9G7rqvhrCs4Fs2bNAxEhILEr8wKgeurHjou3HfuZvMtgEC+tvaPir2mNc4GUShuirW1jtLVtLHcY\nwbwAgOoQnAukr6u4+5iRzbwAgOoQnAEAIAXBuUBaW0/sd8zIZl4AQHW4OLBAWlqmR3PztPIYAIDq\n0XEumNbWE3UV2cXq1f+33zEAUFk6zgWj08zu2ttf7ncMAFSWjjMU3JQp+/Y7BgAqS3CGgvvEJ+b2\nOwYAKstSDSi4lpbpMWbMmPIYAMiGjjMUXKm0IXp6eqKnp8fOgQCQIcEZCs7OgQBQHYIzAACkIDhD\nwdk5EACqQ3AumFJpg3WsAAA5yCQ49/T0xEUXXRRnnnlmnH766fHQQw/t8vzDDz8cc+fOjXnz5sWq\nVauyKKFmrVnzgHWs7GL16v/T7xgAqKxMbke3evXqmDx5cnz961+Pjo6OmDNnThx33HER8UaoXr58\nedx9993R2NgY8+fPj5kzZ8b++++fRSk1pVTaEG1tG8tjtx4jIqK9/Vf9jgGAysqk43zCCSfEl7/8\n5YiISJIkRo0aVX6uVCrFQQcdFJMmTYqGhob40Ic+FI8//ngWZdQcd0+gP1Om7NfvGACorEyC87hx\n42L8+PHR2dkZ559/fixatKj8XGdnZ0yYMGGX7+3s7MyiDBgRPvGJ0/odAwCVldnOgS+++GJ86Utf\nijPPPDNOOeWU8uPjx4+Prq6u8tddXV27BOmBTJnSFKNHjxr0+2rZGWfMjeuvv748njp18P83at/U\nqR+M++8/MCIijj76gzlXA1Db6uvr8i6BPVBfX1fRvJRJcN6yZUt8/vOfjyuvvDKOOeaYXZ5raWmJ\n559/Pjo6OqKpqSmeeOKJWLhw4aCv2d7enUWphbLffgdEc/O08njz5ldzrojh4qST5kREmBMAGevt\nTfIugT3Q25vs1e/GgcJ2JsH51ltvjVdeeSVWrlwZK1eujIiIM844I1577bWYN29eXHrppbFw4cJI\nkiTmzp0bb3/727Mooya5Ty/9caEoAGQvk+B8+eWXx+WXXz7g8zNnzoyZM2dmceiaJyABAOTDBigA\nAJBCZhcHwkh33333xDPPPFWVY3V3v3ENQFNTU1WOd/jhH4hZs+ZU5VgAMFwIzlADenp2/P9RdYIz\nAIxEgnPBlEobIsJa5yKYNWtO1bqyy5cvjYiIxYuXVuV4ADASCc4F07djoOAMAFBdLg4skFJpQ7S1\nbYy2to3lzjMAANWh41wgfd3mvrGuM0BtcDExFIPgDAAjiIuJYe8JzgXS2npi3HbbivIYgNrgYmIo\nBsG5QFpapkdz87TyGACoru7u7ujdsT1eWntH3qUwiN5tXdHd+3pFX1NwLhidZgCAfAjOBaPTDMXm\nIjAotqampuipHx1vO/YzeZfCIF5ae0c0jW2o6GsKzgA1ykVgAJUlOANUkYvAAIpr0A1QXnjhhfjc\n5z4XH//4x+Oll16KBQsWxKZNm6pRGwAADBuDBucrr7wyFi5cGOPGjYupU6fGrFmz4pJLLqlGbfSj\nVNpg10AAgBwMGpzb29vjwx/+cCRJEnV1dfHJT34yOjs7q1Eb/Viz5oFddhAEAKA6Bg3OY8eOjf/5\nn/+Jurq6iIh44oknoqGhslcokk6ptCHa2jZGW9tGXWcAgCob9OLAxYsXx9lnnx3//d//HbNnz46t\nW7fGTTfdVI3a2M1vdprXrHnArekAAKpo0OB8+OGHx9133x3PPfdc7Ny5M5qbm3WcAQAYcQYNzm1t\nbbFq1arYunXrLo8vX748s6LoX2vriXHbbSvKYwAAqmfQ4HzuuefGSSedFL/9279djXp4Cy0t06O5\neVp5DABA9QwanCdOnBjnnntuNWohBZ1mAIB8DBqcTz311Ljxxhvj6KOPjtGjf/3tRx11VKaF0T+d\nZgCAfAwanH/yk5/EM888E08++WT5sbq6uvjud7+baWEAADCcDBqc161bFw8++GA1aiGFvvs36zwD\nAFTXoBugvOc974mf//zn1aiFFOwcCACQj0E7zr/4xS/i1FNPjalTp8aYMWPKW28/9NBD1aiP39C3\nc2DfWNcZAKB6Bg3Ot9xySzXqIAU7BwIA5GfQ4Pz444/3+/gBBxxQ8WJ4a6+99lq/YwAAsjdocH7s\nscfK456envjpT38aRx55ZMyZMyfTwuhPMsAYAICsDRqcd99au6OjIy644ILMCmJgjY1N/Y4BAMje\noHfV2F1TU1O88MILWdTCIH5z10A7CAIAVNegHeezzjor6urqIiIiSZLYtGlTfPSjH828MN6spWV6\nNDdPK48BAKieQYPzeeedVx7X1dXFlClTYtq0aZkWVTT33XdPPPPMU1U5VmfnqxERsXz50qoc7/DD\nPxCzZlnPDgAwYHDuu5tGX7e5T3t7ezz++ONx1FFHZVsZ/dq5c2feJQAAjEgDBuebb755wH9UV1cX\n3/3udzMpqIhmzZpTta5sX6d58eKlVTkeAABvGDA433777bt83dnZGb29vTFx4sTMiwIAgOEm1Zbb\nF1xwQfziF7+IJEnine98Z9x0001x8MEHV6E8AAAYHga9Hd2VV14Zf/iHfxiPPfZY/OQnP4k//uM/\njiuuuKIatQEAwLAxaHBub2+PE044ofz1SSedFB0dHZkWBQAAw82gwbmhoSHWr19f/nrdunXR2NiY\naVEAADDcDLjGuaOjIyZPnhyXXXZZnHfeeTF58uRIkiS2bt0aN954YzVrBACA3A0YnI8//vg4+uij\n4/TTT49/+qd/iueeey56e3vjkEMOiYaGhmrWCAAAuRswOD/yyCPx4IMPxne+85246qqrYvbs2XHa\naacJzQDAiNa7rSteWntH3mVUVG/P9oiIqB+zT86VVE7vtq6IsZXNrQMG58bGxpg9e3bMnj07/vd/\n/zfuu+++OPfcc2Py5Mlx+umnxymnnFLRQgAAhrtJkybnXUImtm7vjoiISRUOmrka21Dxn9eg93GO\niHj7298eCxcujJNPPjlWrlwZixcvFpwBgBHnnHMW5V1CJuxMnM6gwfmVV16Jf/zHf4x77703tmzZ\nEqeeemo89NBD1agNAACGjQGD8/333x+rV6+Of/u3f4vjjjsuvvzlL8eRRx5ZzdoAAGDYGDA4f+97\n34vTTjstbrjhhmhqaqpmTQAAMOy8ZXAGAADeMOjOgQAAgOAMAACpCM4AAJCC4AwAACkIzgAAkILg\nDAAAKQjOAACQwqBbbkMtWbnypti6tSPvMiqu75yWL1+abyEZmDRpcpxzzqK8y2AE8n5RLN4rqAbB\nmRFl69aOaO9oj/qx4/IupaJ660dFRMTWbTtyrqSyerd15V0CI5j3i+LwXkG1CM6MOPVjx8Xbjv1M\n3mWQwktr78i7BEY47xfF4L2CarHGGQAAUhCcAQAghUyXajz99NPxjW98I26//fZdHv/Od74Td911\nV+y7774REfHVr341mpubsywFYEAuAisWF4EBecksOH/rW9+K1atXR2Nj45ueW7duXVx//fVx2GGH\nZXV4gNRcBFYcLgID8pRZcD7ooINixYoVcfHFF7/pufXr18c3v/nN2Lx5c3zsYx+Ls88+O6syAFJx\nEVgxuAgMyFNmwfn444+PTZs29fvcySefHGeeeWaMHz8+zj333Fi7dm0ce+yxb/l6U6Y0xejRo7Io\ntVDq6+siImLq1Ak5V1JMff9/FEd9fV3m8928KJZqzIm+41Ac1ZoXtUq+SKfqt6NLkiQ++9nPxoQJ\nb/xgZsyYEc8+++ygwbm9vbsa5Q17vb1JRERs3vxqzpUUU9//H8XR25tkPt/Ni2KpxpzoOw7FUa15\nUavki10N9AdE1e+q0dnZGbNmzYqurq5IkiQee+wxa50BABj2qtZxvvfee6O7uzvmzZsXF1xwQSxY\nsCAaGhrimGOOiRkzZlSrDAAA2CuZBud3vetdsWrVqoiIOOWUU8qPz5kzJ+bMmZPloQEAoKJsgAIA\nACkIzgAAkILgDAAAKQjOAACQguAMAAApVH0DFAAogu7u7ujdsd023wXQu60runtfz7sMRgAdZwAA\nSEHHGQD60dTUFD31o+Ntx34m71IYxEtr74imsQ15l8EIIDgDI56P5IvDR/JAnizVAACAFHScgRHP\nR/LF4SN5IE+CMyOKj+SLxcfyAAwnlmoAAEAKOs6MKD6SLxYfywMwnOg4AwBACoIzAACkULNLNVau\nvCm2bu3Iu4yK6zun5cuX5ltIBiZNmhznnLMo7zIAAPpVs8F569aOaO9oj/qx4/IupaJ660dFRMTW\nbTtyrqSyerd15V0CAMBbqtngHBFRP3aci8AKwu3hAIDhzhpnAABIQXAGAIAUBGcAAEhBcAYAgBQE\nZwAASEFwBgCAFGr6dnQAMBS927pq7naZvT3bIyKifsw+OVdSOb3buiLGNuRdRsXdd9898cwzT1Xl\nWNXcYO3wwz8Qs2bNyfw4WRCcAUJAKopqBqRJkyZX5TjVtnV7d0RETKqloDm2oWZ/XtUyZkwNzYcM\nCc7AiFerv3AFpKE555xFVTlOtfV1FBcvXpprHQxu1qw5he3M1irBGRjxBCQA0hCcGXF8JF8ctbpu\nEYBiEpwZUXwkXzDWLQIwjAjOjCg+kgcA9pb7OAMAQAqCMwAApFCzSzW6u7ujd8f2mrsIrFb1buuK\n7t7X8y4DAGBAOs4AAJBCzXacm5qaoqd+dLzt2M/kXQopvLT2jmiqtTtCAAA1RccZAABSEJwBACAF\nwRkAAFIQnAEAIAXBGQAAUhCcAQAgBcEZAABSEJwBACAFwRkAAFIQnAEAIAXBGQAAUhCcAQAgBcEZ\nAABSEJwBACAFwRkAAFIQnAEAIIXReReQpd5tXfHS2jvyLqOienu2R0RE/Zh9cq6ksnq3dUWMbci7\nDACAAdVscJ40aXLeJWRi6/buiIiYVGshc2xDzf7MAIDaULPB+ZxzFuVdQiaWL18aERGLFy/NtQ4A\ngJHGGmcAAEhBcAYAgBQEZwAASEFwBgCAFARnAABIQXAGAIAUBGcAAEgh0+D89NNPx1lnnfWmxx9+\n+OGYO3duzJs3L1atWpVlCQAAUBGZbYDyrW99K1avXh2NjY27PN7T0xPLly+Pu+++OxobG2P+/Pkx\nc+bM2H///bMqBQAAhiyzjvNBBx0UK1aseNPjpVIpDjrooJg0aVI0NDTEhz70oXj88cezKgMAACoi\ns47z8ccfH5s2bXrT452dnTFhwoTy1+PGjYvOzs5BX2/KlKYYPXpURWssovr6uoiImDp1wiDfyUhi\nXtAf84L+mBew9zILzgMZP358dHV1lb/u6uraJUgPpL29O8uyCqO3N4mIiM2bX825EoYT84L+mBf0\nx7yAwQ30h2XV76rR0tISzz//fHR0dMSOHTviiSeeiCOOOKLaZQAAwB6pWsf53nvvje7u7pg3b15c\neumlsXDhwkiSJObOnRtvf/vbq1UGAADslUyD87ve9a7y7eZOOeWU8uMzZ86MmTNnZnloAACoKBug\nAABACoIzAACkUPW7agCMZPfdd08888xTVTnW1q0dERGxfPnSqhzv8MM/ELNmzanKsQDyIDgD1Kgx\nYxryLgGgpgjOAFU0a9YcXVmAghKcASBnlvBAMQjOADCCWMIDe09wBoCcWcIDxeB2dAAAkILgDAAA\nKQjOAACQguAMAAApCM4AAJCC4AwAI8gPf7g2fvjDtXmXAYXkdnQAMIKsWfNARER85CPH5lwJFI+O\nMwCMED/84drYtm1bbNu2TdcZ9oKOM2TEFrrAcNPXbe4b6zrDnhGcoQbYQhdIY+fOnf2OgXQEZ8iI\nLXSB4WbixEnx8stbymNgz1jjDAAjxKRJk/sdA+kIzgAwQrS2ntjvGEjHUg0AGCFaWqZHc/O08hj6\nlEobIsK8GIzgDAAjiE4z/em744rg/NYEZ4AapYNEf8wHdlcqbYi2to3lsTkyMGucAWrUmjUP7HLf\nXoD+7H5/bwYmOEMNKJU2lLuLEPHrDlJb20ZzA6BCBGeoATqL7E4HCUjL3VbSs8YZCs7aNACGwt1W\n0tNxhoLTWaQ/OkjAnmhtPdF7RQo6zgA1SAcJ2BPeJ9LRcYaC01lkIDpIQFouMk9HxxkKrqVleowd\nO7Y8hj7mA5CWDVDS0XGGgiuVNsS2bdti27ZtugUA7DG3r0xPx7kC7rvvnnjmmaeqcqytWzsiImL5\n8qVVOd7hh38gZs2aU5VjsXd2vzhQtwCAPeH3SHqCc8GMGdOQdwkAACOS4FwBs2bN0ZUlN4ceenj5\nPs6HHnp4ztUAUDStrSfGbbetKI8ZmDXOUHDr1z/T7xgA0ui7fWVz8zTLNAah4wwAMMLpNKej4wwF\n5z7OAAxVS8t03eYUdJyh4OwQBwDVIThDDdBpBoDsWaoBAAAp6DhDDbBVKv3p2wHMvACoDMEZCq5v\nq9S+sZBEH39QAVSWpRoFUyptsI88u9h9q1SI+PUfVG1tG71nAFSI4Fwwa9Y8IBwBg/IHFUDlCc4F\nooNEf9zHGQCqQ3AuEB0k+mOrVPrjDyqAynNxINQAwYjd2RgHoPIE5wJpbT0xbrttRXkMfQQj+uN9\nAqCyBOcC0UEC9oT3CYDKEpwLRgcJACAfgnPB6CABAOTDXTUAACAFwRkAAFIQnAEAIAXBGQAAUhCc\nAQAgBcEZAABSEJwBalSptCFKpQ15lwFQM9zHGaBGrVnzQES4/ztApeg4A9SgUmlDtLVtjLa2jbrO\n7MInEbD3Mus49/b2xtKlS+M//uM/oqGhIZYtWxbvfve7y88vW7YsnnzyyRg3blxERKxcuTImTJiQ\nVTkAI0pft7lvrOtMH59EwN7LLDj/8z//c+zYsSPuvPPOeOqpp+K6666Lv/iLvyg/v379+vjLv/zL\n2HfffbMqAQD4DX2fRPSNhWfYM5kt1fjpT38aH/nIRyIi4gMf+ECsW7eu/Fxvb288//zzceWVV8an\nPvWpuPvuu7MqA2BEam09sd8xI9vun0QAeyazjnNnZ2eMHz++/PWoUaPi9ddfj9GjR0d3d3d85jOf\nic997nOxc+fOWLBgQRx22GHx3ve+N6tyAABgSDILzuPHj4+urq7y1729vTF69BuHa2xsjAULFkRj\nY2NERBx99NHx85///C2D85QpTTF69KisygWoKd/+9oPl8SOPPBhHH/3BHKthuDjjjLlx/fXXl8dT\np7q2CPZEZsH5gx/8YKxduzZOOumkeOqpp+I973lP+bnnnnsuFi1aFPfcc0/09vbGk08+Gaeeeupb\nvl57e3dWpQLUnJ6enbuMN29+NcdqGC722++AaG6eVh6bF9C/gf6ozCw4t7a2xo9+9KP41Kc+FUmS\nxLXXXht//dd/HQcddFAcd9xxMXv27PjkJz8ZY8aMidmzZ8f06S5QgL3Vd2spF/rQp7X1xLjtthXl\nMfQxH2Dv1SVJkuRdRBr+KoaB3XrrzRER8YUvnJ9zJQwn5gXA3ql6x5ls6CyyO7eXYiA6iwCVJTgX\njBvXszsbXTAQcwGgsmy5XSC20AUAyI/gXCBuXE9/bHQBANVhqQYUXEvL9PLtpXw0DwDZ0XEuEJ1F\nBtLaeqI5AQAZ03GGGqDTDAA/4I7MAAAIU0lEQVTZ03EuEGucAQDyIzgDAEAKgnOBWOMMAJAfa5wL\nxN0TAADyIzgXjE4zAEA+BOeC0WkG0urbYdT7BkBlCM4ANarv7juCM0BluDgQoAaVShuirW1jtLVt\nLHeeARgawRmgBrnvO0DlCc4AAJCC4AxQg9z3HaDyXBwIUIPc9x2g8gRngBql0wxQWYIzQI3SaQao\nLGucAQAgBcEZAABSEJwBACAFwRkAAFIQnAEAIAXBGQAAUhCcAQAgBcEZAABSEJwBACAFwRkAAFIQ\nnAEAIAXBGQAAUhCcAQAgBcEZAABSEJwBACCFuiRJkryLAACA4U7HGQAAUhCcAQAgBcEZAABSEJwB\nACAFwRkAAFIQnAEAIIXReRfAG3p6emLJkiXxwgsvxI4dO+KLX/xiTJs2LS699NKoq6uL6dOnx1VX\nXRX19fXx53/+5/HII4/E6NGjY8mSJfG+972v/DrXXnttHHLIITF//vwcz4ZKGeq8+NnPfhZXX311\njBo1KhoaGuL666+P/fffP+/TYoiGOi82btwYV1xxRSRJEgcffHAsW7YsRo/266DoKvV75N577407\n7rgj7rzzzhzPhkoZ6rx49tln4+yzz46DDz44IiLmz58fJ510Ur4nlaeEYeHuu+9Oli1bliRJkrS3\ntyczZsxIzj777ORf//VfkyRJkiuuuCJ58MEHk3Xr1iVnnXVW0tvbm7zwwgvJaaedliRJkrz88svJ\nwoULk+OOOy75m7/5m9zOg8oa6rz49Kc/nTz77LNJkiTJ3/7t3ybXXnttPidCRQ11Xnzxi19MfvKT\nnyRJkiSXXHJJ8uCDD+ZzIlTUUOdFkiTJ+vXrkwULFiRnnHFGLudA5Q11XqxatSr59re/nVv9w40W\nwzBxwgknxPHHHx8REUmSxKhRo2L9+vXxu7/7uxER8dGPfjR+9KMfxSGHHBIf/vCHo66uLt75znfG\nzp0741e/+lV0dXXFeeedFz/4wQ/yPA0qbKjz4oYbboi3ve1tERGxc+fO2GeffXI7FypnqPNixYoV\nMWrUqNixY0ds3rw5xo8fn+fpUCFDnRd1dXVxww03xJIlS+KKK67I81SooKHOi3Xr1sV//dd/xUMP\nPRTvfve7Y8mSJSP6PcMa52Fi3LhxMX78+Ojs7Izzzz8/Fi1aFEmSRF1dXfn5V199NTo7O3eZsH2P\nH3jggfH+978/r/LJyFDnRV9ofvLJJ+OOO+6IP/iDP8jjNKiwoc6LUaNGxQsvvBCzZs2K9vb2eO97\n35vXqVBBQ5kXHR0dcdlll8XixYtj3LhxeZ0CGRjq+8X73ve+uPjii+N73/teHHjggXHLLbfkdSrD\nguA8jLz44ouxYMGCmD17dpxyyilRX//rH09XV1dMnDgxxo8fH11dXbs8PmHChDzKpUqGOi/uv//+\nuOqqq+Kb3/xm7LvvvlWvn2wMdV4ccMAB8eCDD8b8+fPjuuuuq3r9ZGNv50VnZ2c8//zzsXTp0vjK\nV74SGzdujGuuuSaPUyADQ3m/aG1tjcMOOywiIlpbW+PZZ5+tev3DieA8TGzZsiU+//nPx0UXXRSn\nn356RET8zu/8Tjz22GMREfGDH/wgjjzyyPjgBz8Yjz76aPT29sYvf/nL6O3tFYZq2FDnxT/8wz/E\nHXfcEbfffnsceOCBeZ4KFTTUefGFL3whnnvuuYh4o6v0m79EKa6hzIv3ve998f3vfz9uv/32uOGG\nG2LatGlx2WWX5Xk6VMhQ3y8WLlwY//7v/x4RET/+8Y/j0EMPze1choO6JEmSvIsgYtmyZfHAAw9E\nc3Nz+bHLLrssli1bFj09PdHc3BzLli2LUaNGxYoVK+IHP/hB9Pb2xuLFi+PII48s/5sVK1bE/vvv\n764aNWIo8+KII46IY445Jt7xjnfExIkTIyLiqKOOivPPPz+v06FChvp+8eSTT8af/umfxpgxY6Kx\nsTGWLVtWXtZDcVXq98imTZviK1/5SqxatSqP06DChjov1q9fH1dffXWMGTMm9t9//7j66qtH9Bpn\nwRkAAFLw+RwAAKQgOAMAQAqCMwAApCA4AwBACoIzAACkIDgDFMjXvva1N91S8NFHH43jjjsuOjs7\nc6oKYGQQnAEK5E/+5E9i3bp18fDDD0dERHd3dyxdujSuvfbaEX1vVYBqcB9ngIL5l3/5l1iyZEnc\nf//9cfPNN0dvb28sWbIknn766Vi+fHls37499t133/ja174WBxxwQPz4xz+OP/uzP4vt27fHK6+8\nEpdcckl8/OMfjwsvvLC81fKll14aM2bMyPvUAIY1wRmggC6//PJ49dVXo62tLe66666or6+PuXPn\nxre+9a34rd/6rXjkkUfi9ttvj29/+9vxpS99KS666KI4+OCD49FHH41vfOMbcc8998SFF14Y++yz\nT1xzzTV5nw5AIYzOuwAA9tyll14aH/vYx+KWW26JsWPHxs9+9rPYtGlTnH322RERkSRJbN++PSIi\nbrjhhnj44Yfjvvvui6effjq6u7vLr/P+978/l/oBikhwBiig8ePHx8SJE+OAAw6IiIidO3fGwQcf\nHH//939f/vrll1+OJEli/vz58Xu/93tx1FFHxdFHHx2LFy8uv84+++yTS/0AReTiQIAaMG3atNi8\neXM8+eSTERFx5513xsUXXxy/+tWvYtOmTXH++efHjBkz4tFHH42dO3fmXC1AMek4A9SAsWPHxk03\n3RTXXHNN7NixIyZOnBjXXXdd7LfffvGJT3wiTj755Bg3blwcccQR0dXVFdu2bcu7ZIDCcXEgAACk\nYKkGAACkIDgDAEAKgjMAAKQgOAMAQAqCMwAApCA4AwBACoIzAACkIDgDAEAK/w+CxYIT+C//QQAA\nAABJRU5ErkJggg==\n",
558 | "text/plain": [
559 | ""
560 | ]
561 | },
562 | "metadata": {},
563 | "output_type": "display_data"
564 | }
565 | ],
566 | "source": [
567 | "sns.boxplot(x=df['Year'], y=df['Volume'], palette=sns.color_palette(\"Blues\", 1));"
568 | ]
569 | },
570 | {
571 | "cell_type": "markdown",
572 | "metadata": {},
573 | "source": [
574 | "The average number of shares traded daily increased from 2001 to 2005."
575 | ]
576 | },
577 | {
578 | "cell_type": "markdown",
579 | "metadata": {},
580 | "source": [
581 | "## K-Nearest Neighbor\n",
582 | "\n",
583 | "Direction = whether the market was Up or Down \n",
584 | "Lag1, Lag2 = percentage returns for the two previous trading days \n",
585 | "\n",
586 | "Predict Direction from Lag1 and Lag2:"
587 | ]
588 | },
589 | {
590 | "cell_type": "code",
591 | "execution_count": 9,
592 | "metadata": {},
593 | "outputs": [],
594 | "source": [
595 | "model = KNeighborsClassifier(n_neighbors=3)"
596 | ]
597 | },
598 | {
599 | "cell_type": "markdown",
600 | "metadata": {},
601 | "source": [
602 | "### Model Fit\n",
603 | "\n",
604 | "Use the observations from 2001 to 2004 as training data and the observations from 2005 as testing data."
605 | ]
606 | },
607 | {
608 | "cell_type": "code",
609 | "execution_count": 10,
610 | "metadata": {},
611 | "outputs": [
612 | {
613 | "name": "stdout",
614 | "output_type": "stream",
615 | "text": [
616 | "(998, 2)\n",
617 | "(252, 2)\n"
618 | ]
619 | }
620 | ],
621 | "source": [
622 | "xtrain = df[df['Year'] != 2005][['Lag1', 'Lag2']]\n",
623 | "xtest = df[df['Year'] == 2005][['Lag1', 'Lag2']]\n",
624 | "\n",
625 | "ytrain = df[df['Year'] != 2005][['Direction']]\n",
626 | "ytest = df[df['Year'] == 2005][['Direction']]\n",
627 | "\n",
628 | "print xtrain.shape\n",
629 | "print xtest.shape"
630 | ]
631 | },
632 | {
633 | "cell_type": "code",
634 | "execution_count": 11,
635 | "metadata": {},
636 | "outputs": [
637 | {
638 | "name": "stderr",
639 | "output_type": "stream",
640 | "text": [
641 | "/Users/divyanair/.pyenv/versions/2.7.14/envs/interview_env/lib/python2.7/site-packages/ipykernel_launcher.py:1: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
642 | " \"\"\"Entry point for launching an IPython kernel.\n"
643 | ]
644 | },
645 | {
646 | "data": {
647 | "text/plain": [
648 | "KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',\n",
649 | " metric_params=None, n_jobs=1, n_neighbors=3, p=2,\n",
650 | " weights='uniform')"
651 | ]
652 | },
653 | "execution_count": 11,
654 | "metadata": {},
655 | "output_type": "execute_result"
656 | }
657 | ],
658 | "source": [
659 | "model.fit(X=xtrain, y=ytrain)"
660 | ]
661 | },
662 | {
663 | "cell_type": "markdown",
664 | "metadata": {},
665 | "source": [
666 | "### Model Accuracy\n",
667 | "\n",
668 | "#### 1. Training Error"
669 | ]
670 | },
671 | {
672 | "cell_type": "code",
673 | "execution_count": 12,
674 | "metadata": {},
675 | "outputs": [
676 | {
677 | "data": {
678 | "text/plain": [
679 | "array(['Up', 'Up', 'Down', 'Up', 'Up'], dtype=object)"
680 | ]
681 | },
682 | "execution_count": 12,
683 | "metadata": {},
684 | "output_type": "execute_result"
685 | }
686 | ],
687 | "source": [
688 | "ypredTrain = model.predict(X=xtrain)\n",
689 | "ypredTrain[:5]"
690 | ]
691 | },
692 | {
693 | "cell_type": "code",
694 | "execution_count": 13,
695 | "metadata": {},
696 | "outputs": [
697 | {
698 | "data": {
699 | "text/plain": [
700 | "0.75450901803607218"
701 | ]
702 | },
703 | "execution_count": 13,
704 | "metadata": {},
705 | "output_type": "execute_result"
706 | }
707 | ],
708 | "source": [
709 | "np.mean(np.equal(ypredTrain, ytrain['Direction'].tolist()))"
710 | ]
711 | },
712 | {
713 | "cell_type": "markdown",
714 | "metadata": {},
715 | "source": [
716 | "#### 2. Testing Error"
717 | ]
718 | },
719 | {
720 | "cell_type": "code",
721 | "execution_count": 14,
722 | "metadata": {},
723 | "outputs": [
724 | {
725 | "data": {
726 | "text/plain": [
727 | "array(['Down', 'Down', 'Down', 'Up', 'Up'], dtype=object)"
728 | ]
729 | },
730 | "execution_count": 14,
731 | "metadata": {},
732 | "output_type": "execute_result"
733 | }
734 | ],
735 | "source": [
736 | "ypred = model.predict(X=xtest)\n",
737 | "ypred[:5]"
738 | ]
739 | },
740 | {
741 | "cell_type": "code",
742 | "execution_count": 15,
743 | "metadata": {},
744 | "outputs": [
745 | {
746 | "data": {
747 | "text/plain": [
748 | "array([[48, 63],\n",
749 | " [55, 86]])"
750 | ]
751 | },
752 | "execution_count": 15,
753 | "metadata": {},
754 | "output_type": "execute_result"
755 | }
756 | ],
757 | "source": [
758 | "confusion_matrix(ytest, ypred, labels=[\"Down\", \"Up\"])"
759 | ]
760 | },
761 | {
762 | "cell_type": "code",
763 | "execution_count": 16,
764 | "metadata": {},
765 | "outputs": [
766 | {
767 | "data": {
768 | "text/plain": [
769 | "0.53174603174603174"
770 | ]
771 | },
772 | "execution_count": 16,
773 | "metadata": {},
774 | "output_type": "execute_result"
775 | }
776 | ],
777 | "source": [
778 | "np.mean(np.equal(ypred, ytest['Direction'].tolist()))"
779 | ]
780 | }
781 | ],
782 | "metadata": {
783 | "kernelspec": {
784 | "display_name": "Python 2",
785 | "language": "python",
786 | "name": "python2"
787 | },
788 | "language_info": {
789 | "codemirror_mode": {
790 | "name": "ipython",
791 | "version": 2
792 | },
793 | "file_extension": ".py",
794 | "mimetype": "text/x-python",
795 | "name": "python",
796 | "nbconvert_exporter": "python",
797 | "pygments_lexer": "ipython2",
798 | "version": "2.7.14"
799 | }
800 | },
801 | "nbformat": 4,
802 | "nbformat_minor": 2
803 | }
804 |
--------------------------------------------------------------------------------