├── .idea └── doc ├── backend ├── doc ├── .venv │ └── doc ├── app │ ├── __init__.py │ ├── doc │ ├── core │ │ ├── __init__.py │ │ ├── doc │ │ ├── logging_mw.py │ │ ├── config.py │ │ ├── tiers.py │ │ └── security.py │ ├── routers │ │ ├── doc │ │ ├── __init__.py │ │ ├── health.py │ │ ├── forecast.py │ │ ├── compare.py │ │ ├── report.py │ │ ├── auth.py │ │ └── agent.py │ ├── utils │ │ ├── doc │ │ ├── __init__.py │ │ ├── compare.py │ │ └── pdf.py │ ├── services │ │ ├── __init__.py │ │ ├── doc │ │ ├── fetchers │ │ │ ├── doc │ │ │ ├── normalize.py │ │ │ ├── waqi.py │ │ │ ├── iqair.py │ │ │ └── openaq.py │ │ ├── geocode.py │ │ ├── aggregate.py │ │ ├── scraper.py │ │ ├── forecast.py │ │ ├── reporter.py │ │ ├── forecast_prophet.py │ │ └── llama_client.py │ ├── db.py │ ├── main.py │ ├── models.py │ └── schemas.py ├── models │ └── doc └── requirements.txt ├── frontend ├── doc ├── src │ ├── doc │ ├── assets │ │ ├── doc │ │ └── react.svg │ ├── hooks │ │ └── doc │ ├── pages │ │ └── doc │ ├── utils │ │ ├── docs │ │ ├── formatters.js │ │ ├── api.js │ │ ├── payloadBuilders.js │ │ └── chartCapture.js │ ├── components │ │ └── doc │ ├── contexts │ │ └── doc │ ├── App.css │ ├── api.js │ ├── main.jsx │ └── Home.jsx ├── public │ ├── doc │ └── vite.svg ├── postcss.config.js ├── vite.config.js ├── tailwind.config.js ├── index.html ├── README.md └── package.json ├── screenshots ├── doc ├── Screenshot 2025-12-17 025015.png ├── Screenshot 2025-12-17 025126.png ├── Screenshot 2025-12-17 025219.png ├── Screenshot 2025-12-17 025247.png ├── Screenshot 2025-12-17 025302.png ├── Screenshot 2025-12-17 025430.png ├── Screenshot 2025-12-17 025447.png ├── Screenshot 2025-12-17 025501.png ├── Screenshot 2025-12-17 025522.png ├── Screenshot 2025-12-17 025532.png └── Screenshot 2025-12-17 030511.png └── README.md /.idea/doc: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /backend/doc: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /frontend/doc: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /backend/.venv/doc: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /backend/app/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /backend/app/doc: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /backend/models/doc: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /frontend/src/doc: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /screenshots/doc: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /backend/app/core/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /backend/app/core/doc: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /backend/app/routers/doc: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /backend/app/utils/doc: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /frontend/public/doc: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /frontend/src/assets/doc: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /frontend/src/hooks/doc: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /frontend/src/pages/doc: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /frontend/src/utils/docs: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /backend/app/routers/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /backend/app/services/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /backend/app/services/doc: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /backend/app/utils/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /frontend/src/components/doc: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /frontend/src/contexts/doc: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /backend/app/services/fetchers/doc: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /backend/requirements.txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dyneth02/Air-Quality-Trends-Analysis-Project/HEAD/backend/requirements.txt -------------------------------------------------------------------------------- /frontend/postcss.config.js: -------------------------------------------------------------------------------- 1 | export default { 2 | plugins: { 3 | tailwindcss: {}, 4 | autoprefixer: {}, 5 | }, 6 | } 7 | 8 | 9 | 10 | -------------------------------------------------------------------------------- /screenshots/Screenshot 2025-12-17 025015.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dyneth02/Air-Quality-Trends-Analysis-Project/HEAD/screenshots/Screenshot 2025-12-17 025015.png -------------------------------------------------------------------------------- /screenshots/Screenshot 2025-12-17 025126.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dyneth02/Air-Quality-Trends-Analysis-Project/HEAD/screenshots/Screenshot 2025-12-17 025126.png -------------------------------------------------------------------------------- /screenshots/Screenshot 2025-12-17 025219.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dyneth02/Air-Quality-Trends-Analysis-Project/HEAD/screenshots/Screenshot 2025-12-17 025219.png -------------------------------------------------------------------------------- /screenshots/Screenshot 2025-12-17 025247.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dyneth02/Air-Quality-Trends-Analysis-Project/HEAD/screenshots/Screenshot 2025-12-17 025247.png -------------------------------------------------------------------------------- /screenshots/Screenshot 2025-12-17 025302.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dyneth02/Air-Quality-Trends-Analysis-Project/HEAD/screenshots/Screenshot 2025-12-17 025302.png -------------------------------------------------------------------------------- /screenshots/Screenshot 2025-12-17 025430.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dyneth02/Air-Quality-Trends-Analysis-Project/HEAD/screenshots/Screenshot 2025-12-17 025430.png -------------------------------------------------------------------------------- /screenshots/Screenshot 2025-12-17 025447.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dyneth02/Air-Quality-Trends-Analysis-Project/HEAD/screenshots/Screenshot 2025-12-17 025447.png -------------------------------------------------------------------------------- /screenshots/Screenshot 2025-12-17 025501.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dyneth02/Air-Quality-Trends-Analysis-Project/HEAD/screenshots/Screenshot 2025-12-17 025501.png -------------------------------------------------------------------------------- /screenshots/Screenshot 2025-12-17 025522.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dyneth02/Air-Quality-Trends-Analysis-Project/HEAD/screenshots/Screenshot 2025-12-17 025522.png -------------------------------------------------------------------------------- /screenshots/Screenshot 2025-12-17 025532.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dyneth02/Air-Quality-Trends-Analysis-Project/HEAD/screenshots/Screenshot 2025-12-17 025532.png -------------------------------------------------------------------------------- /screenshots/Screenshot 2025-12-17 030511.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/dyneth02/Air-Quality-Trends-Analysis-Project/HEAD/screenshots/Screenshot 2025-12-17 030511.png -------------------------------------------------------------------------------- /frontend/vite.config.js: -------------------------------------------------------------------------------- 1 | import { defineConfig } from 'vite' 2 | import react from '@vitejs/plugin-react' 3 | 4 | // https://vite.dev/config/ 5 | export default defineConfig({ 6 | plugins: [react()], 7 | }) 8 | -------------------------------------------------------------------------------- /frontend/src/utils/formatters.js: -------------------------------------------------------------------------------- 1 | export const COLORS_TOP = ["#00eaff", "#bf00ff", "#0016ff"]; 2 | 3 | export const fmtPM = (value) => (value == null || isNaN(value) ? "-" : `${Number(value).toFixed(2)} µg/m³`); 4 | 5 | 6 | -------------------------------------------------------------------------------- /frontend/tailwind.config.js: -------------------------------------------------------------------------------- 1 | /** @type {import('tailwindcss').Config} */ 2 | export default { 3 | content: [ 4 | "./index.html", 5 | "./src/**/*.{js,ts,jsx,tsx}", 6 | ], 7 | theme: { 8 | extend: {}, 9 | }, 10 | plugins: [], 11 | } 12 | 13 | 14 | 15 | -------------------------------------------------------------------------------- /frontend/index.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | Air Quality Trends Analysis 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | -------------------------------------------------------------------------------- /backend/app/core/logging_mw.py: -------------------------------------------------------------------------------- 1 | import time, uuid, logging 2 | from fastapi import Request 3 | 4 | logger = logging.getLogger("airq") 5 | 6 | async def log_requests(request: Request, call_next): 7 | req_id = request.headers.get("X-Request-ID", str(uuid.uuid4())) 8 | start = time.perf_counter() 9 | try: 10 | response = await call_next(request) 11 | return response 12 | finally: 13 | dur_ms = (time.perf_counter() - start) * 1000 14 | logger.info(f"{req_id} {request.method} {request.url.path} -> {dur_ms:.1f}ms") 15 | try: 16 | response.headers["X-Request-ID"] = req_id 17 | except Exception: 18 | pass 19 | -------------------------------------------------------------------------------- /frontend/src/App.css: -------------------------------------------------------------------------------- 1 | #root { 2 | max-width: 1280px; 3 | margin: 0 auto; 4 | padding: 2rem; 5 | text-align: center; 6 | } 7 | 8 | .logo { 9 | height: 6em; 10 | padding: 1.5em; 11 | will-change: filter; 12 | transition: filter 300ms; 13 | } 14 | .logo:hover { 15 | filter: drop-shadow(0 0 2em #646cffaa); 16 | } 17 | .logo.react:hover { 18 | filter: drop-shadow(0 0 2em #61dafbaa); 19 | } 20 | 21 | @keyframes logo-spin { 22 | from { 23 | transform: rotate(0deg); 24 | } 25 | to { 26 | transform: rotate(360deg); 27 | } 28 | } 29 | 30 | @media (prefers-reduced-motion: no-preference) { 31 | a:nth-of-type(2) .logo { 32 | animation: logo-spin infinite 20s linear; 33 | } 34 | } 35 | 36 | .card { 37 | padding: 2em; 38 | } 39 | 40 | .read-the-docs { 41 | color: #888; 42 | } 43 | -------------------------------------------------------------------------------- /backend/app/db.py: -------------------------------------------------------------------------------- 1 | # app/db.py 2 | import os 3 | from dotenv import load_dotenv 4 | from sqlalchemy import create_engine 5 | from sqlalchemy.orm import sessionmaker 6 | from .models import Base 7 | 8 | load_dotenv() 9 | 10 | HOST = os.getenv("MYSQL_HOST", "127.0.0.1") 11 | PORT = os.getenv("MYSQL_PORT", "3306") 12 | DB = os.getenv("MYSQL_DB", "airq") 13 | USER = os.getenv("MYSQL_USER", "root") 14 | PWD = os.getenv("MYSQL_PASSWORD", "") 15 | 16 | URL = f"mysql+pymysql://{USER}:{PWD}@{HOST}:{PORT}/{DB}?charset=utf8mb4" 17 | 18 | engine = create_engine(URL, pool_pre_ping=True, future=True) 19 | SessionLocal = sessionmaker(bind=engine, autoflush=False, autocommit=False, future=True) 20 | 21 | # Create tables 22 | Base.metadata.create_all(bind=engine) 23 | 24 | def get_db(): 25 | db = SessionLocal() 26 | try: 27 | yield db 28 | finally: 29 | db.close() 30 | -------------------------------------------------------------------------------- /backend/app/core/config.py: -------------------------------------------------------------------------------- 1 | import os 2 | from typing import List 3 | 4 | class Settings: 5 | @property 6 | def ALLOWED_ORIGINS(self) -> List[str]: 7 | return os.getenv("ALLOWED_ORIGINS", "http://localhost:5173").split(",") 8 | 9 | @property 10 | def API_KEY(self) -> str: 11 | return os.getenv("API_KEY", "dev-key-123") 12 | 13 | @property 14 | def DEFAULT_PLAN(self) -> str: 15 | return os.getenv("DEFAULT_PLAN", "free") 16 | 17 | @property 18 | def JWT_SECRET(self) -> str: 19 | return os.getenv("JWT_SECRET", "your-secret-key-change-in-production") 20 | 21 | @property 22 | def JWT_EXPIRES_MIN(self) -> int: 23 | return int(os.getenv("JWT_EXPIRES_MIN", "60")) 24 | 25 | @property 26 | def COOKIE_DOMAIN(self) -> str: 27 | return os.getenv("COOKIE_DOMAIN", "localhost") 28 | 29 | settings = Settings() 30 | -------------------------------------------------------------------------------- /frontend/README.md: -------------------------------------------------------------------------------- 1 | # React + Vite 2 | 3 | This template provides a minimal setup to get React working in Vite with HMR and some ESLint rules. 4 | 5 | Currently, two official plugins are available: 6 | 7 | - [@vitejs/plugin-react](https://github.com/vitejs/vite-plugin-react/blob/main/packages/plugin-react) uses [Babel](https://babeljs.io/) for Fast Refresh 8 | - [@vitejs/plugin-react-swc](https://github.com/vitejs/vite-plugin-react/blob/main/packages/plugin-react-swc) uses [SWC](https://swc.rs/) for Fast Refresh 9 | 10 | ## Expanding the ESLint configuration 11 | 12 | If you are developing a production application, we recommend using TypeScript with type-aware lint rules enabled. Check out the [TS template](https://github.com/vitejs/vite/tree/main/packages/create-vite/template-react-ts) for information on how to integrate TypeScript and [`typescript-eslint`](https://typescript-eslint.io) in your project. 13 | -------------------------------------------------------------------------------- /frontend/src/utils/api.js: -------------------------------------------------------------------------------- 1 | const BASE_URL = import.meta.env.VITE_API_URL || 'http://localhost:8000' 2 | 3 | export async function fetchJson(url, options = {}) { 4 | const response = await fetch(`${BASE_URL}${url}`, { 5 | credentials: 'include', 6 | headers: { 7 | 'Content-Type': 'application/json', 8 | ...options.headers, 9 | }, 10 | ...options, 11 | }) 12 | 13 | if (!response.ok) { 14 | const error = await response.json().catch(() => ({ message: 'Request failed' })) 15 | throw new Error(error.message || `HTTP ${response.status}`) 16 | } 17 | 18 | return response.json() 19 | } 20 | 21 | export const authApi = { 22 | signup: (email, password) => fetchJson('/auth/signup', { 23 | method: 'POST', 24 | body: JSON.stringify({ email, password }) 25 | }), 26 | 27 | login: (email, password) => fetchJson('/auth/login', { 28 | method: 'POST', 29 | body: JSON.stringify({ email, password }) 30 | }), 31 | 32 | logout: () => fetchJson('/auth/logout', { method: 'POST' }), 33 | 34 | me: () => fetchJson('/auth/me') 35 | } 36 | 37 | -------------------------------------------------------------------------------- /frontend/package.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "frontend", 3 | "private": true, 4 | "version": "0.0.0", 5 | "type": "module", 6 | "scripts": { 7 | "dev": "vite", 8 | "build": "vite build", 9 | "lint": "eslint .", 10 | "preview": "vite preview" 11 | }, 12 | "dependencies": { 13 | "axios": "^1.11.0", 14 | "gsap": "^3.13.0", 15 | "jsonwebtoken": "^9.0.2", 16 | "motion": "^12.23.18", 17 | "ogl": "^1.0.11", 18 | "react": "^19.1.1", 19 | "react-dom": "^19.1.1", 20 | "react-router-dom": "^7.9.1", 21 | "recharts": "^3.2.1", 22 | "three": "^0.180.0" 23 | }, 24 | "devDependencies": { 25 | "@eslint/js": "^9.33.0", 26 | "@types/react": "^19.1.10", 27 | "@types/react-dom": "^19.1.7", 28 | "@vitejs/plugin-react": "^5.0.0", 29 | "autoprefixer": "^10.4.21", 30 | "eslint": "^9.33.0", 31 | "eslint-plugin-react-hooks": "^5.2.0", 32 | "eslint-plugin-react-refresh": "^0.4.20", 33 | "globals": "^16.3.0", 34 | "postcss": "^8.5.6", 35 | "tailwindcss": "^3.4.17", 36 | "vite": "^7.1.2" 37 | }, 38 | "description": "This template provides a minimal setup to get React working in Vite with HMR and some ESLint rules.", 39 | "main": "eslint.config.js", 40 | "keywords": [], 41 | "author": "", 42 | "license": "ISC" 43 | } 44 | -------------------------------------------------------------------------------- /backend/app/services/geocode.py: -------------------------------------------------------------------------------- 1 | import requests 2 | from sqlalchemy import text 3 | from sqlalchemy.orm import Session 4 | 5 | def get_coords_for_city(db: Session, city: str): 6 | row = db.execute( 7 | text("SELECT latitude, longitude FROM geocodes WHERE city=:c"), 8 | {"c": city} 9 | ).fetchone() 10 | if row: 11 | return float(row[0]), float(row[1]) 12 | 13 | try: 14 | r = requests.get( 15 | "https://geocoding-api.open-meteo.com/v1/search", 16 | params={"name": city, "count": 1}, 17 | timeout=20, 18 | ) 19 | r.raise_for_status() 20 | data = r.json() 21 | except requests.Timeout: 22 | raise RuntimeError("GeocodingTimeout: upstream geocoder timed out") 23 | except requests.RequestException as e: 24 | raise RuntimeError(f"GeocodingHTTP: {e}") 25 | 26 | if not data.get("results"): 27 | raise RuntimeError(f"GeocodingNoResult: City '{city}' not found") 28 | 29 | lat = float(data["results"][0]["latitude"]) 30 | lon = float(data["results"][0]["longitude"]) 31 | 32 | db.execute( 33 | text("REPLACE INTO geocodes (city, latitude, longitude) VALUES (:c, :lat, :lon)"), 34 | {"c": city, "lat": lat, "lon": lon}, 35 | ) 36 | db.commit() 37 | return lat, lon 38 | -------------------------------------------------------------------------------- /backend/app/utils/compare.py: -------------------------------------------------------------------------------- 1 | from sqlalchemy.orm import Session 2 | from sqlalchemy import text 3 | 4 | def compare_logic(db: Session, cities: list[str], days: int): 5 | by_city = {} 6 | want_end = "NOW()" 7 | want_start = f"DATE_SUB({want_end}, INTERVAL {days} DAY)" 8 | for c in cities: 9 | rows = db.execute(text(f""" 10 | SELECT ts, pm25, pm10 11 | FROM measurements 12 | WHERE city=:c AND source='aggregated' 13 | AND ts >= {want_start} AND ts <= {want_end} 14 | ORDER BY ts 15 | """), {"c": c}).mappings().all() 16 | 17 | vals = [r["pm25"] for r in rows if r["pm25"] is not None] 18 | mean_pm25 = (sum(vals)/len(vals)) if vals else None 19 | min_pm25 = min(vals) if vals else None 20 | max_pm25 = max(vals) if vals else None 21 | 22 | by_city[c] = { 23 | "n_points": len(rows), 24 | "mean_pm25": mean_pm25, 25 | "min_pm25": min_pm25, 26 | "max_pm25": max_pm25, 27 | } 28 | 29 | has_vals = {c:v for c,v in by_city.items() if v["mean_pm25"] is not None} 30 | best = min(has_vals, key=lambda k: has_vals[k]["mean_pm25"]) if has_vals else None 31 | worst = max(has_vals, key=lambda k: has_vals[k]["mean_pm25"]) if has_vals else None 32 | return {"days": days, "byCity": by_city, "best": best, "worst": worst} 33 | -------------------------------------------------------------------------------- /frontend/public/vite.svg: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /backend/app/main.py: -------------------------------------------------------------------------------- 1 | from fastapi import FastAPI 2 | from fastapi.middleware.cors import CORSMiddleware 3 | import logging 4 | 5 | from .core.config import settings 6 | from .core.logging_mw import log_requests 7 | from .routers.compare import router as compare_router 8 | from .routers.forecast import router as forecast_router 9 | from .routers.agent import router as agent_router 10 | from .routers.health import router as health_router 11 | from .routers.report import router as report_router 12 | from .routers.auth import router as auth_router 13 | 14 | app = FastAPI(title="AirQ (FastAPI + MySQL + MCP Bridge)") 15 | 16 | # Logging (basic) 17 | logger = logging.getLogger("airq") 18 | if not logger.handlers: 19 | logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(message)s") 20 | 21 | # Request logging middleware 22 | app.middleware("http")(log_requests) 23 | 24 | # CORS 25 | app.add_middleware( 26 | CORSMiddleware, 27 | allow_origins=settings.ALLOWED_ORIGINS, 28 | allow_credentials=True, 29 | allow_methods=["*"], 30 | allow_headers=["*"], 31 | ) 32 | 33 | # Routers 34 | app.include_router(compare_router, prefix="", tags=["compare"]) 35 | app.include_router(forecast_router, prefix="", tags=["forecast"]) 36 | app.include_router(agent_router, prefix="/agent", tags=["agent"]) 37 | app.include_router(health_router, prefix="", tags=["health"]) 38 | app.include_router(report_router, prefix="", tags=["report"]) 39 | app.include_router(auth_router, prefix="/auth", tags=["auth"]) 40 | 41 | -------------------------------------------------------------------------------- /backend/app/models.py: -------------------------------------------------------------------------------- 1 | from sqlalchemy import Column, Integer, String, DateTime, Boolean, BigInteger, Enum, ForeignKey 2 | from sqlalchemy.ext.declarative import declarative_base 3 | from sqlalchemy.orm import relationship 4 | from datetime import datetime 5 | 6 | Base = declarative_base() 7 | 8 | class User(Base): 9 | __tablename__ = "users" 10 | 11 | id = Column(BigInteger, primary_key=True, index=True) 12 | email = Column(String(190), unique=True, index=True, nullable=False) 13 | password_hash = Column(String(255), nullable=False) 14 | plan = Column(Enum('free', 'pro', 'enterprise', name='plan_enum'), default='free', nullable=False) 15 | created_at = Column(DateTime, default=datetime.utcnow, nullable=False) 16 | updated_at = Column(DateTime, default=datetime.utcnow, onupdate=datetime.utcnow, nullable=False) 17 | last_login = Column(DateTime, nullable=True) 18 | 19 | # Relationship to refresh tokens 20 | refresh_tokens = relationship("RefreshToken", back_populates="user", cascade="all, delete-orphan") 21 | 22 | class RefreshToken(Base): 23 | __tablename__ = "refresh_tokens" 24 | 25 | id = Column(BigInteger, primary_key=True, index=True) 26 | user_id = Column(BigInteger, ForeignKey("users.id", ondelete="CASCADE"), nullable=False) 27 | token_hash = Column(String(255), nullable=False) 28 | expires_at = Column(DateTime, nullable=False) 29 | created_at = Column(DateTime, default=datetime.utcnow, nullable=False) 30 | 31 | # Relationship to user 32 | user = relationship("User", back_populates="refresh_tokens") 33 | 34 | -------------------------------------------------------------------------------- /backend/app/routers/health.py: -------------------------------------------------------------------------------- 1 | from fastapi import APIRouter, Depends 2 | from fastapi.responses import JSONResponse 3 | from sqlalchemy.orm import Session 4 | from sqlalchemy import text 5 | import requests 6 | 7 | from ..db import get_db 8 | 9 | router = APIRouter() 10 | 11 | @router.get("/simple") 12 | def simple_health(): 13 | """Simple health check without database dependency""" 14 | return {"status": "ok", "message": "Server is running"} 15 | 16 | @router.get("/healthz") 17 | def healthz(db: Session = Depends(get_db)): 18 | db_ok, db_err = True, None 19 | upstream_ok, up_err = True, None 20 | 21 | try: 22 | db.execute(text("SELECT 1")).scalar() 23 | except Exception as e: 24 | db_ok, db_err = False, str(e) 25 | 26 | # Make upstream check non-blocking with shorter timeout 27 | try: 28 | r = requests.get( 29 | "https://air-quality-api.open-meteo.com/v1/air-quality" 30 | "?latitude=0&longitude=0&hourly=pm2_5&start_date=2025-01-01&end_date=2025-01-02", 31 | timeout=2 # Reduced timeout to prevent hanging 32 | ) 33 | upstream_ok = r.status_code < 500 34 | if not upstream_ok: 35 | up_err = f"HTTP {r.status_code}" 36 | except Exception as e: 37 | upstream_ok, up_err = False, str(e) 38 | 39 | # Return ok status even if upstream is down - only fail if DB is down 40 | status = "ok" if db_ok else "degraded" 41 | return JSONResponse({ 42 | "status": status, 43 | "db": {"ok": db_ok, "error": db_err}, 44 | "upstream": {"ok": upstream_ok, "error": up_err} 45 | }) 46 | -------------------------------------------------------------------------------- /backend/app/routers/forecast.py: -------------------------------------------------------------------------------- 1 | from fastapi import APIRouter, Depends, HTTPException, Request 2 | from sqlalchemy.orm import Session 3 | from ..db import get_db 4 | from ..schemas import ForecastIn, ForecastMultiIn 5 | from ..core.security import get_plan, Plan 6 | from ..core.tiers import enforce_forecast 7 | from ..services.forecast import forecast_city, fit_and_save_model, backtest_roll, forecast_cities 8 | 9 | router = APIRouter() 10 | 11 | @router.post("/forecast") 12 | def forecast(payload: ForecastIn, request: Request, plan: Plan = Depends(get_plan), db: Session = Depends(get_db)): 13 | enforce_forecast(plan, payload.horizonDays, 1) 14 | result = forecast_city(db, payload.city, payload.horizonDays, payload.trainDays, payload.use_cache) 15 | return {"ok": True, **result} 16 | 17 | @router.post("/forecast/train") 18 | def forecast_train(payload: ForecastIn, db: Session = Depends(get_db)): 19 | path = fit_and_save_model(db, payload.city, payload.trainDays) 20 | return {"ok": True, "modelPath": path} 21 | 22 | @router.get("/forecast/backtest") 23 | def forecast_backtest(city: str, days: int = 30, horizonHours: int = 24, db: Session = Depends(get_db)): 24 | stats = backtest_roll(db, city, days, horizonHours) 25 | return {"ok": True, **stats} 26 | 27 | @router.post("/forecast/multi") 28 | def forecast_multi(payload: ForecastMultiIn, request: Request, plan: Plan = Depends(get_plan), db: Session = Depends(get_db)): 29 | if not payload.cities: 30 | raise HTTPException(400, "No cities provided") 31 | enforce_forecast(plan, payload.horizonDays, len(payload.cities)) 32 | out = forecast_cities(db, payload.cities, payload.horizonDays, payload.trainDays, payload.use_cache) 33 | return {"ok": True, **out, "horizonDays": payload.horizonDays} 34 | -------------------------------------------------------------------------------- /backend/app/schemas.py: -------------------------------------------------------------------------------- 1 | from pydantic import BaseModel, conint, Field 2 | from typing import Optional, Dict, Any, List, Literal 3 | 4 | # Inputs 5 | class CityWindowIn(BaseModel): 6 | city: str 7 | days: conint(ge=1, le=90) = 7 8 | sources: Optional[list[str]] = None 9 | 10 | class CompareIn(BaseModel): 11 | cities: list[str] 12 | days: conint(ge=1, le=90) = 7 13 | 14 | class ForecastIn(BaseModel): 15 | city: str 16 | horizonDays: conint(ge=1, le=30) = 7 17 | trainDays: conint(ge=7, le=120) = 30 18 | use_cache: bool = True 19 | 20 | class ForecastMultiIn(BaseModel): 21 | cities: list[str] 22 | horizonDays: conint(ge=1, le=30) = 7 23 | trainDays: conint(ge=7, le=120) = 30 24 | use_cache: bool = True 25 | 26 | class AgentPlanIn(BaseModel): 27 | prompt: str = Field(..., description="Natural language task") 28 | 29 | class ToolStep(BaseModel): 30 | name: str 31 | arguments: dict = {} 32 | 33 | class AgentPlanOut(BaseModel): 34 | plan: list[ToolStep] 35 | notes: str | None = None 36 | irrelevant: bool = False 37 | reason: str | None = None 38 | 39 | class AgentExecIn(BaseModel): 40 | prompt: str | None = None 41 | plan: list[ToolStep] | None = None 42 | 43 | class AgentExecOut(BaseModel): 44 | answer: str 45 | trace: list 46 | final: dict | None = None 47 | 48 | class ReportRequest(BaseModel): 49 | report_type: str 50 | payload: dict 51 | llm_notes: str | None = None 52 | chart_images: list[str] | None = None 53 | 54 | 55 | class ReportIn(BaseModel): 56 | report_type: Literal["forecast", "comparison"] 57 | cities: List[str] 58 | metrics: Optional[Dict[str, Any]] = None 59 | stats: Optional[Dict[str, Any]] = None 60 | charts: Dict[str, str] 61 | options: Optional[Dict[str, Any]] = None 62 | -------------------------------------------------------------------------------- /frontend/src/api.js: -------------------------------------------------------------------------------- 1 | import axios from "axios"; 2 | 3 | const API = import.meta.env.VITE_API_URL || "http://localhost:8000"; 4 | 5 | export const api = axios.create({ 6 | baseURL: API, 7 | headers: { "Content-Type": "application/json" }, 8 | withCredentials: true, // Enable cookies for authentication 9 | }); 10 | 11 | // Inject plan header (your backend enforces tiers by X-PLAN) 12 | api.interceptors.request.use((config) => { 13 | config.headers["X-PLAN"] = import.meta.env.VITE_PLAN || "free"; 14 | return config; 15 | }); 16 | 17 | // Add response interceptor to handle authentication errors 18 | api.interceptors.response.use( 19 | (response) => response, 20 | (error) => { 21 | if (error.response?.status === 401) { 22 | // Handle unauthorized access 23 | window.location.href = '/signin'; 24 | } 25 | return Promise.reject(error); 26 | } 27 | ); 28 | 29 | export const health = () => api.get("/healthz").then(r => r.data); 30 | export const scrape = (city, days=7) => api.post("/scrape", { city, days }).then(r=>r.data); 31 | export const compareCities = (cities, days=7) => api.post("/compare", { cities, days }).then(r=>r.data); 32 | export const forecastMulti = (cities, horizonDays=7, trainDays=30, use_cache=true) => 33 | api.post("/forecast/multi", { cities, horizonDays, trainDays, use_cache }).then(r=>r.data); 34 | 35 | export const agentPlan = (prompt) => 36 | api.post("/agent/plan", { prompt }).then(r=>r.data); 37 | 38 | export const agentExecute = (payload) => 39 | api.post("/agent/execute", payload).then(r=>r.data); 40 | 41 | export const generateLlmComparisonReport = (reportData) => 42 | api.post("/llm-comparison-note", reportData).then(r=>r.data); 43 | 44 | export const generateLlmForecastReport = (reportData) => 45 | api.post("/llm-forecast-note", reportData).then(r=>r.data); 46 | -------------------------------------------------------------------------------- /backend/app/services/fetchers/normalize.py: -------------------------------------------------------------------------------- 1 | import logging 2 | from datetime import datetime, timezone 3 | from typing import Optional, Dict, Any 4 | 5 | from dateutil import parser as dtparser 6 | 7 | 8 | logger = logging.getLogger(__name__) 9 | 10 | 11 | def align_to_hour(ts: datetime) -> datetime: 12 | if ts.tzinfo is None: 13 | ts = ts.replace(tzinfo=timezone.utc) 14 | ts = ts.astimezone(timezone.utc) 15 | return ts.replace(minute=0, second=0, microsecond=0, tzinfo=timezone.utc) 16 | 17 | 18 | def parse_ts(value: Any) -> Optional[datetime]: 19 | if value is None: 20 | return None 21 | try: 22 | if isinstance(value, datetime): 23 | return value 24 | return dtparser.parse(str(value)) 25 | except Exception: 26 | logger.debug("Failed to parse timestamp: %r", value) 27 | return None 28 | 29 | 30 | def safe_float(value: Any) -> Optional[float]: 31 | try: 32 | if value is None: 33 | return None 34 | f = float(value) 35 | return f 36 | except Exception: 37 | return None 38 | 39 | 40 | def clean_pollutant(value: Any) -> Optional[float]: 41 | f = safe_float(value) 42 | if f is None: 43 | return None 44 | if f < 0 or f > 1000: 45 | return None 46 | return f 47 | 48 | 49 | def make_row(ts: datetime, city: str, latitude: Optional[float], longitude: Optional[float], 50 | pm25: Optional[float], pm10: Optional[float], source: str) -> Dict[str, Any]: 51 | return { 52 | "ts": align_to_hour(ts).strftime("%Y-%m-%d %H:00:00"), 53 | "city": city, 54 | "latitude": safe_float(latitude), 55 | "longitude": safe_float(longitude), 56 | "pm25": clean_pollutant(pm25), 57 | "pm10": clean_pollutant(pm10), 58 | "source": source, 59 | } 60 | 61 | 62 | 63 | -------------------------------------------------------------------------------- /backend/app/core/tiers.py: -------------------------------------------------------------------------------- 1 | from fastapi import HTTPException, Request 2 | from ..schemas import ForecastMultiIn 3 | from .security import Plan, get_plan 4 | 5 | def enforce_scrape(plan: Plan, days: int): 6 | if plan == "free" and days > 7: 7 | raise HTTPException(403, "Free plan supports up to 7 days. Upgrade for more.") 8 | if plan == "pro" and days > 30: 9 | raise HTTPException(403, "Pro plan supports up to 30 days. Enterprise for more.") 10 | 11 | def enforce_compare(plan: Plan, cities: list[str], days: int): 12 | enforce_scrape(plan, days) 13 | if plan == "free" and len(cities) > 1: 14 | raise HTTPException(403, "Free plan supports 1 city only. Upgrade for multi-city.") 15 | if plan == "pro" and len(cities) > 3: 16 | raise HTTPException(403, "Pro plan supports up to 3 cities. Enterprise for more.") 17 | 18 | def enforce_forecast(plan: Plan, horizon_days: int, cities_len: int = 1): 19 | if plan == "free": 20 | raise HTTPException(403, "Forecasting is a Pro feature. Upgrade to use forecasting.") 21 | if plan == "pro": 22 | if horizon_days > 7: 23 | raise HTTPException(403, "Pro plan supports forecast horizon up to 7 days.") 24 | if cities_len > 3: 25 | raise HTTPException(403, "Pro plan supports up to 3 cities.") 26 | 27 | def enforce_tier_limits_for_forecast_multi(payload: ForecastMultiIn, role: str = "pro"): 28 | if role == "free": 29 | if len(payload.cities) > 1: 30 | raise HTTPException(403, "Free tier supports 1 city.") 31 | if payload.horizonDays > 7: 32 | raise HTTPException(403, "Free tier supports up to 7-day horizon.") 33 | if role == "pro": 34 | if len(payload.cities) > 3: 35 | raise HTTPException(403, "Pro tier supports up to 3 cities.") 36 | if payload.horizonDays > 7: 37 | raise HTTPException(403, "Pro tier supports up to 7-day horizon.") 38 | -------------------------------------------------------------------------------- /frontend/src/main.jsx: -------------------------------------------------------------------------------- 1 | import { StrictMode } from 'react' 2 | import { createRoot } from 'react-dom/client' 3 | import { BrowserRouter, Routes, Route, Navigate } from 'react-router-dom' 4 | import { AuthProvider } from './contexts/AuthContext' 5 | import RequireAuth from './components/RequireAuth' 6 | import Header from './components/Header' 7 | import './index.css' 8 | import Workspace from './Workspace.jsx' 9 | import Home from './Home.jsx' 10 | import Signin from './pages/Signin.jsx' 11 | import Signup from './pages/Signup.jsx' 12 | import PrintComparisonReport from './pages/PrintComparisonReport.jsx' 13 | import PrintForecastReport from './pages/PrintForecastReport.jsx' 14 | 15 | createRoot(document.getElementById('root')).render( 16 | 17 | 18 | 19 | 20 | } /> 21 | } /> 22 | } /> 23 | } /> 24 | 28 | 29 | 30 | } 31 | /> 32 | 36 | 37 | 38 | } 39 | /> 40 | 44 | 45 | 46 | } 47 | /> 48 | } /> 49 | 50 | 51 | 52 | , 53 | ) 54 | -------------------------------------------------------------------------------- /backend/app/routers/compare.py: -------------------------------------------------------------------------------- 1 | from fastapi import APIRouter, Depends, HTTPException, Request 2 | from sqlalchemy.orm import Session 3 | from ..db import get_db 4 | from ..schemas import CityWindowIn, CompareIn 5 | from ..core.security import get_plan, Plan 6 | from ..core.tiers import enforce_scrape, enforce_compare 7 | import os 8 | from ..services.scraper import ensure_window_for_city, ensure_window_for_city_with_counts 9 | from ..utils.compare import compare_logic 10 | 11 | router = APIRouter() 12 | 13 | @router.post("/scrape") 14 | def scrape_city(payload: CityWindowIn, request: Request, plan: Plan = Depends(get_plan), db: Session = Depends(get_db)): 15 | enforce_scrape(plan, payload.days) 16 | inserted, (lat, lon) = ensure_window_for_city(db, payload.city, payload.days, payload.sources) 17 | return {"ok": True, "city": payload.city, "inserted": inserted, "lat": lat, "lon": lon} 18 | 19 | @router.post("/compare") 20 | def compare_cities(payload: CompareIn, request: Request, plan: Plan = Depends(get_plan), db: Session = Depends(get_db)): 21 | if not payload.cities: 22 | raise HTTPException(400, "No cities provided") 23 | enforce_compare(plan, payload.cities, payload.days) 24 | for c in payload.cities: 25 | ensure_window_for_city(db, c, payload.days, None) 26 | return {"ok": True, **compare_logic(db, payload.cities, payload.days)} 27 | 28 | 29 | @router.post("/scrape/aggregate") 30 | def scrape_city_aggregate(payload: CityWindowIn, request: Request, plan: Plan = Depends(get_plan), db: Session = Depends(get_db)): 31 | enforce_scrape(plan, payload.days) 32 | counts, (lat, lon) = ensure_window_for_city_with_counts(db, payload.city, payload.days, payload.sources) 33 | # Emphasize aggregated counts, include which sources contributed 34 | sources_enabled = payload.sources 35 | if not sources_enabled: 36 | env_val = os.getenv('SOURCES_ENABLED', '') 37 | sources_enabled = [s.strip() for s in env_val.split(',') if s.strip()] or ["openaq", "iqair", "waqi"] 38 | return { 39 | "ok": True, 40 | "city": payload.city, 41 | "lat": lat, 42 | "lon": lon, 43 | "inserted": sum(counts.values()), 44 | "counts": counts, 45 | "sources_enabled": sources_enabled, 46 | "aggregated": counts.get('aggregated', 0), 47 | } 48 | -------------------------------------------------------------------------------- /backend/app/utils/pdf.py: -------------------------------------------------------------------------------- 1 | from io import BytesIO 2 | from reportlab.lib.pagesizes import A4 3 | from reportlab.lib.styles import getSampleStyleSheet 4 | from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle, Image 5 | from reportlab.lib import colors 6 | import base64, logging 7 | 8 | logger = logging.getLogger("airq") 9 | 10 | def build_report(title, cities, content, chart_images=None, llm_conclusion=None): 11 | buffer = BytesIO() 12 | doc = SimpleDocTemplate(buffer, pagesize=A4) 13 | styles = getSampleStyleSheet() 14 | story = [] 15 | 16 | story.append(Paragraph("AirSense", styles["Title"])) 17 | story.append(Spacer(1, 12)) 18 | story.append(Paragraph(f"{title}", styles["Heading2"])) 19 | story.append(Spacer(1, 12)) 20 | story.append(Paragraph(f"Cities: {', '.join(cities)}", styles["Normal"])) 21 | story.append(Spacer(1, 12)) 22 | 23 | if isinstance(content, dict) and "byCity" in content: 24 | data = [["City", "Mean PM2.5 (µg/m³)", "Min", "Max", "Points"]] 25 | for c, vals in content["byCity"].items(): 26 | mean_val = vals.get("mean_pm25", vals.get("mean_yhat")) 27 | data.append([ 28 | c, 29 | f"{mean_val:.2f}" if mean_val is not None else "-", 30 | vals.get("min_pm25", "-"), 31 | vals.get("max_pm25", "-"), 32 | vals.get("n_points", "-"), 33 | ]) 34 | t = Table(data) 35 | t.setStyle(TableStyle([ 36 | ("BACKGROUND", (0,0), (-1,0), colors.HexColor("#4B5563")), 37 | ("TEXTCOLOR", (0,0), (-1,0), colors.white), 38 | ("GRID", (0,0), (-1,-1), 0.5, colors.grey), 39 | ("BACKGROUND", (0,1), (-1,-1), colors.whitesmoke), 40 | ])) 41 | story.append(t) 42 | story.append(Spacer(1, 12)) 43 | 44 | if chart_images: 45 | story.append(Paragraph("Charts:", styles["Heading3"])) 46 | story.append(Spacer(1, 12)) 47 | for img_b64 in chart_images: 48 | try: 49 | img_data = base64.b64decode(img_b64) 50 | story.append(Image(BytesIO(img_data), width=400, height=250)) 51 | story.append(Spacer(1, 12)) 52 | except Exception as e: 53 | logger.warning(f"Failed to process chart image: {e}") 54 | 55 | if llm_conclusion: 56 | story.append(Paragraph("AI Assistant Conclusion:", styles["Heading3"])) 57 | story.append(Spacer(1, 6)) 58 | story.append(Paragraph(llm_conclusion, styles["Normal"])) 59 | story.append(Spacer(1, 12)) 60 | 61 | doc.build(story) 62 | buffer.seek(0) 63 | return buffer 64 | -------------------------------------------------------------------------------- /backend/app/routers/report.py: -------------------------------------------------------------------------------- 1 | from fastapi import APIRouter, Depends, HTTPException 2 | from fastapi.responses import Response 3 | from sqlalchemy.orm import Session 4 | from typing import List, Dict, Any 5 | import json 6 | 7 | from ..db import get_db 8 | from ..schemas import ReportIn 9 | from ..services.reporter import make_report 10 | from ..services.llama_client import generate_llm_report, generate_llm_forecast_report 11 | 12 | 13 | router = APIRouter() 14 | 15 | 16 | @router.post("/report/generate") 17 | def generate_report(payload: ReportIn, db: Session = Depends(get_db)): 18 | pdf_bytes = make_report(payload) 19 | filename = f"{payload.report_type}_report.pdf" 20 | return Response(content=pdf_bytes, media_type="application/pdf", headers={"Content-Disposition": f'attachment; filename="{filename}"'}) 21 | 22 | 23 | @router.post("/llm-comparison-note") 24 | def generate_llm_comparison_report(report_data: Dict[str, Any]): 25 | """ 26 | Generate LLM-powered comparison report using Gemma3:4b 27 | """ 28 | try: 29 | # Extract data from the request 30 | comparison_data = report_data.get("comparisonData", {}) 31 | chart_data = report_data.get("chartData", {}) 32 | cities = report_data.get("cities", []) 33 | period_days = report_data.get("periodDays", 7) 34 | show_combined = report_data.get("showCombined", False) 35 | 36 | # Generate the LLM report 37 | llm_response = generate_llm_report(comparison_data, chart_data, cities, period_days, show_combined) 38 | 39 | return llm_response 40 | 41 | except Exception as e: 42 | raise HTTPException(status_code=500, detail=f"Failed to generate LLM report: {str(e)}") 43 | 44 | 45 | @router.post("/llm-forecast-note") 46 | def generate_llm_forecast_report_endpoint(report_data: Dict[str, Any]): 47 | """ 48 | Generate LLM-powered forecast report using Gemma3:4b 49 | """ 50 | try: 51 | # Extract data from the request 52 | forecast_data = report_data.get("forecastData", {}) 53 | chart_data = report_data.get("chartData", {}) 54 | cities = report_data.get("cities", []) 55 | horizon_days = report_data.get("horizonDays", 7) 56 | train_days = report_data.get("trainDays", 30) 57 | show_ci = report_data.get("showCI", False) 58 | show_combined = report_data.get("showCombined", False) 59 | selected_model = report_data.get("selectedModel", "sarimax") 60 | 61 | # Generate the LLM forecast report 62 | llm_response = generate_llm_forecast_report(forecast_data, chart_data, cities, horizon_days, train_days, show_ci, show_combined, selected_model) 63 | 64 | return llm_response 65 | 66 | except Exception as e: 67 | raise HTTPException(status_code=500, detail=f"Failed to generate LLM forecast report: {str(e)}") 68 | 69 | 70 | -------------------------------------------------------------------------------- /backend/app/core/security.py: -------------------------------------------------------------------------------- 1 | from typing import Optional, Literal, Dict, Any 2 | from datetime import datetime, timedelta 3 | from fastapi import Request, Header, HTTPException, Depends 4 | import jwt 5 | from jwt.exceptions import InvalidTokenError 6 | from passlib.context import CryptContext 7 | from .config import settings 8 | 9 | Plan = Literal["free", "pro", "enterprise"] 10 | 11 | # Password hashing context 12 | pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto") 13 | 14 | def require_api_key(req: Request): 15 | if req.headers.get("X-API-KEY") != settings.API_KEY: 16 | raise HTTPException(401, "Missing/invalid API key") 17 | 18 | def hash_password(plain: str) -> str: 19 | """Hash a plain text password using bcrypt.""" 20 | return pwd_context.hash(plain) 21 | 22 | def verify_password(plain: str, hashed: str) -> bool: 23 | """Verify a plain text password against its hash.""" 24 | return pwd_context.verify(plain, hashed) 25 | 26 | def create_access_token(payload: Dict[str, Any], expires_minutes: int) -> str: 27 | """Create a JWT access token with the given payload and expiration.""" 28 | to_encode = payload.copy() 29 | expire = datetime.utcnow() + timedelta(minutes=expires_minutes) 30 | to_encode.update({"exp": expire}) 31 | encoded_jwt = jwt.encode(to_encode, settings.JWT_SECRET, algorithm="HS256") 32 | return encoded_jwt 33 | 34 | def decode_access_token(token: str) -> Optional[Dict[str, Any]]: 35 | """Decode and verify a JWT access token.""" 36 | try: 37 | payload = jwt.decode(token, settings.JWT_SECRET, algorithms=["HS256"]) 38 | return payload 39 | except InvalidTokenError: 40 | return None 41 | 42 | def get_auth_user(request: Request) -> Optional[Dict[str, Any]]: 43 | """Get authenticated user from JWT token in Authorization header or cookie.""" 44 | # Try Authorization header first 45 | auth_header = request.headers.get("Authorization") 46 | if auth_header and auth_header.startswith("Bearer "): 47 | token = auth_header.split(" ")[1] 48 | payload = decode_access_token(token) 49 | if payload: 50 | return { 51 | "id": payload.get("sub"), 52 | "email": payload.get("email"), 53 | "plan": payload.get("plan", "free") 54 | } 55 | 56 | # Try cookie 57 | token = request.cookies.get("airsense_access") 58 | if token: 59 | payload = decode_access_token(token) 60 | if payload: 61 | return { 62 | "id": payload.get("sub"), 63 | "email": payload.get("email"), 64 | "plan": payload.get("plan", "free") 65 | } 66 | 67 | return None 68 | 69 | def get_plan(request: Request, x_plan: Optional[str] = Header(None)) -> Plan: 70 | """Get plan from authenticated user or fall back to header/env.""" 71 | # Check if user is authenticated 72 | user = get_auth_user(request) 73 | if user and user.get("plan"): 74 | plan = user["plan"].strip().lower() 75 | if plan in {"free", "pro", "enterprise"}: 76 | return plan # type: ignore 77 | 78 | # Fall back to header or default 79 | plan = (x_plan or settings.DEFAULT_PLAN).strip().lower() 80 | if plan not in {"free", "pro", "enterprise"}: 81 | plan = "free" 82 | return plan # type: ignore 83 | -------------------------------------------------------------------------------- /frontend/src/utils/payloadBuilders.js: -------------------------------------------------------------------------------- 1 | // Rounds non-integer numbers to two decimals to match UI card display 2 | function roundValue(value) { 3 | if (typeof value !== 'number' || !isFinite(value)) return value; 4 | if (Number.isInteger(value)) return value; 5 | return Number(value.toFixed(2)); 6 | } 7 | 8 | // Recursively round numeric fields (except integers). Keeps structure of input. 9 | function normalizeStats(stats) { 10 | if (stats == null) return stats; 11 | if (Array.isArray(stats)) return stats.map(normalizeStats); 12 | if (typeof stats === 'number') return roundValue(stats); 13 | if (typeof stats === 'object') { 14 | const out = {}; 15 | for (const [k, v] of Object.entries(stats)) { 16 | out[k] = normalizeStats(v); 17 | } 18 | return out; 19 | } 20 | return stats; 21 | } 22 | 23 | // Compute forecast ranges from byCity series (based on mean series yhat) 24 | function addForecastRanges(stats, byCity) { 25 | if (!stats || typeof stats !== 'object' || !byCity || typeof byCity !== 'object') return stats || {}; 26 | const out = { ...stats }; 27 | for (const [city, series] of Object.entries(byCity)) { 28 | const items = Array.isArray(series) ? series : []; 29 | const ys = items 30 | .map((p) => (typeof p?.yhat === 'number' && isFinite(p.yhat) ? p.yhat : null)) 31 | .filter((v) => v != null); 32 | if (ys.length === 0) continue; 33 | const min = Math.min(...ys); 34 | const max = Math.max(...ys); 35 | const rangeStr = `${min.toFixed(1)} – ${max.toFixed(1)}`; 36 | const cityStats = typeof out[city] === 'object' && out[city] !== null ? { ...out[city] } : {}; 37 | if (cityStats.range == null) cityStats.range = rangeStr; 38 | out[city] = cityStats; 39 | } 40 | return out; 41 | } 42 | 43 | function normalizeCities(cities) { 44 | if (!Array.isArray(cities)) return []; 45 | return cities.map((c) => String(c || '').trim()).filter(Boolean); 46 | } 47 | 48 | function normalizeCharts(chartBase64) { 49 | const charts = {}; 50 | if (!chartBase64 || typeof chartBase64 !== 'object') return charts; 51 | if (chartBase64.combined) charts.combined = chartBase64.combined; 52 | for (const [k, v] of Object.entries(chartBase64)) { 53 | if (k === 'combined') continue; 54 | if (typeof v === 'string' && v.length > 0) charts[k] = v; 55 | } 56 | return charts; 57 | } 58 | 59 | export function buildForecastReportPayload({ cities, horizonDays, windowDays, stats, chartBase64, showConfidence, showCombined, byCity }) { 60 | const payload = { 61 | report_type: 'forecast', 62 | cities: normalizeCities(cities), 63 | metrics: {}, 64 | stats: normalizeStats(addForecastRanges(stats || {}, byCity)), 65 | charts: normalizeCharts(chartBase64), 66 | options: {}, 67 | }; 68 | 69 | if (typeof horizonDays === 'number') payload.metrics.horizonDays = roundValue(horizonDays); 70 | if (typeof windowDays === 'number') payload.metrics.windowDays = roundValue(windowDays); 71 | if (showConfidence != null) payload.options.showConfidence = !!showConfidence; 72 | if (showCombined != null) payload.options.showCombined = !!showCombined; 73 | 74 | return payload; 75 | } 76 | 77 | export function buildComparisonReportPayload({ cities, periodDays, stats, chartBase64, showCombined }) { 78 | const payload = { 79 | report_type: 'comparison', 80 | cities: normalizeCities(cities), 81 | metrics: {}, 82 | stats: normalizeStats(stats || {}), 83 | charts: normalizeCharts(chartBase64), 84 | options: {}, 85 | }; 86 | 87 | if (typeof periodDays === 'number') payload.metrics.periodDays = roundValue(periodDays); 88 | if (showCombined != null) payload.options.showCombined = !!showCombined; 89 | 90 | return payload; 91 | } 92 | 93 | 94 | 95 | -------------------------------------------------------------------------------- /backend/app/services/fetchers/waqi.py: -------------------------------------------------------------------------------- 1 | import logging 2 | from datetime import datetime, date 3 | from typing import List, Dict, Any, Optional 4 | 5 | import requests 6 | from bs4 import BeautifulSoup # type: ignore 7 | 8 | from .normalize import make_row, parse_ts 9 | 10 | 11 | logger = logging.getLogger(__name__) 12 | 13 | TIMEOUT = 15 14 | RETRIES = 2 15 | 16 | 17 | def _get(url: str, params: Dict[str, Any] = None, headers: Dict[str, Any] = None) -> Optional[requests.Response]: 18 | params = params or {} 19 | headers = headers or {"User-Agent": "Mozilla/5.0 (compatible; AirQualityBot/1.0)"} 20 | for i in range(RETRIES + 1): 21 | try: 22 | r = requests.get(url, params=params, headers=headers, timeout=TIMEOUT) 23 | if r.status_code == 200: 24 | return r 25 | logger.warning("WAQI non-200: %s", r.status_code) 26 | except Exception as e: 27 | logger.warning("WAQI request failed (try %s): %s", i + 1, e) 28 | return None 29 | 30 | 31 | def fetch_waqi(city: str, start: date, end: date, lat: float = None, lon: float = None, token: Optional[str] = None) -> List[Dict[str, Any]]: 32 | rows: List[Dict[str, Any]] = [] 33 | try: 34 | if token: 35 | # API mode 36 | url = f"https://api.waqi.info/feed/{city}/" 37 | res = _get(url, params={"token": token}) 38 | if res is not None: 39 | try: 40 | data = res.json() 41 | iaqi = (data or {}).get("data", {}).get("iaqi", {}) 42 | time_obj = (data or {}).get("data", {}).get("time", {}) 43 | ts = parse_ts(time_obj.get("utc") or time_obj.get("s")) or datetime.utcnow() 44 | pm25 = iaqi.get("pm25", {}).get("v") 45 | pm10 = iaqi.get("pm10", {}).get("v") 46 | rows.append(make_row(ts=ts, city=city, latitude=lat, longitude=lon, pm25=pm25, pm10=pm10, source="waqi")) 47 | return rows 48 | except Exception: 49 | logger.warning("WAQI API parse failed") 50 | 51 | # HTML scrape fallback 52 | # WAQI station/city page URLs vary; a simple guess: 53 | slug = city.strip().lower().replace(" ", "-") 54 | url = f"https://aqicn.org/city/{slug}/" 55 | res = _get(url) 56 | if res is None: 57 | return rows 58 | html = res.text 59 | soup = BeautifulSoup(html, "html.parser") 60 | 61 | # Attempt to extract a current timestamp and values 62 | ts = datetime.utcnow() 63 | pm25 = None 64 | pm10 = None 65 | try: 66 | # common layout: elements with id like 'pm25', 'pm10' 67 | el25 = soup.select_one('#pm25 .value') or soup.select_one('[data-pollutant="pm25"] .value') 68 | if el25: 69 | try: 70 | pm25 = float(el25.get_text(strip=True)) 71 | except Exception: 72 | pm25 = None 73 | el10 = soup.select_one('#pm10 .value') or soup.select_one('[data-pollutant="pm10"] .value') 74 | if el10: 75 | try: 76 | pm10 = float(el10.get_text(strip=True)) 77 | except Exception: 78 | pm10 = None 79 | # time may be in a tag with class/time-id; fallback to now 80 | time_el = soup.find(class_='time') 81 | if time_el: 82 | ts_parsed = parse_ts(time_el.get_text(" ").strip()) 83 | if ts_parsed: 84 | ts = ts_parsed 85 | except Exception: 86 | pass 87 | 88 | rows.append(make_row(ts=ts, city=city, latitude=lat, longitude=lon, pm25=pm25, pm10=pm10, source="waqi")) 89 | except Exception as e: 90 | logger.warning("fetch_waqi failed: %s", e) 91 | return rows 92 | 93 | 94 | 95 | -------------------------------------------------------------------------------- /frontend/src/assets/react.svg: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /backend/app/services/fetchers/iqair.py: -------------------------------------------------------------------------------- 1 | import logging 2 | from datetime import datetime, date 3 | from typing import List, Dict, Any, Optional 4 | 5 | import requests 6 | from bs4 import BeautifulSoup # type: ignore 7 | 8 | from .normalize import make_row, parse_ts 9 | 10 | 11 | logger = logging.getLogger(__name__) 12 | 13 | HEADERS = { 14 | "User-Agent": "Mozilla/5.0 (compatible; AirQualityBot/1.0; +https://example.com/contact)", 15 | } 16 | TIMEOUT = 15 17 | RETRIES = 2 18 | 19 | 20 | def _get(url: str) -> Optional[str]: 21 | for i in range(RETRIES + 1): 22 | try: 23 | r = requests.get(url, headers=HEADERS, timeout=TIMEOUT) 24 | if r.status_code == 200: 25 | return r.text 26 | logger.warning("IQAir non-200: %s", r.status_code) 27 | except Exception as e: 28 | logger.warning("IQAir request failed (try %s): %s", i + 1, e) 29 | return None 30 | 31 | 32 | def _guess_city_path(city: str) -> str: 33 | # Basic slug guess; real implementation may need mapping 34 | slug = city.strip().lower().replace(" ", "-") 35 | return f"https://www.iqair.com/{slug}" 36 | 37 | 38 | def fetch_iqair(city: str, start: date, end: date, lat: float = None, lon: float = None) -> List[Dict[str, Any]]: 39 | rows: List[Dict[str, Any]] = [] 40 | try: 41 | url = _guess_city_path(city) 42 | html = _get(url) 43 | if not html: 44 | return rows 45 | soup = BeautifulSoup(html, "html.parser") 46 | 47 | # Try to locate hourly/historical blocks; site structure may change 48 | # Fallback: parse current card 49 | candidates = [] 50 | try: 51 | # Example selectors (subject to change): 52 | for card in soup.select('[data-testid="history"] [data-testid="hour"]'): 53 | ts_text = card.get("data-time") or card.get_text(" ") 54 | pm25 = None 55 | pm10 = None 56 | for pollutant in card.select('[data-testid="pollutant"]'): 57 | label = pollutant.get_text(" ").lower() 58 | val_text = pollutant.find("span") 59 | val = None 60 | if val_text: 61 | try: 62 | val = float(val_text.get_text(strip=True)) 63 | except Exception: 64 | val = None 65 | if "pm2.5" in label: 66 | pm25 = val 67 | elif "pm10" in label: 68 | pm10 = val 69 | candidates.append((ts_text, pm25, pm10)) 70 | except Exception: 71 | pass 72 | 73 | if not candidates: 74 | # parse current 75 | try: 76 | now_block = soup.select_one('[data-testid="current"]') 77 | if now_block: 78 | ts_text = now_block.get("data-time") or datetime.utcnow().isoformat() 79 | pm25 = None 80 | pm10 = None 81 | for pollutant in now_block.select('[data-testid="pollutant"]'): 82 | label = pollutant.get_text(" ").lower() 83 | val_tag = pollutant.find("span") 84 | val = None 85 | if val_tag: 86 | try: 87 | val = float(val_tag.get_text(strip=True)) 88 | except Exception: 89 | val = None 90 | if "pm2.5" in label: 91 | pm25 = val 92 | elif "pm10" in label: 93 | pm10 = val 94 | candidates = [(ts_text, pm25, pm10)] 95 | except Exception: 96 | pass 97 | 98 | for ts_text, pm25, pm10 in candidates: 99 | ts = parse_ts(ts_text) or datetime.utcnow() 100 | rows.append(make_row(ts=ts, city=city, latitude=lat, longitude=lon, pm25=pm25, pm10=pm10, source="iqair")) 101 | except Exception as e: 102 | logger.warning("fetch_iqair failed: %s", e) 103 | return rows 104 | 105 | 106 | 107 | -------------------------------------------------------------------------------- /backend/app/services/fetchers/openaq.py: -------------------------------------------------------------------------------- 1 | import logging 2 | from datetime import datetime, date, timedelta 3 | from typing import List, Dict, Any, Optional 4 | 5 | import requests 6 | 7 | from .normalize import make_row, parse_ts 8 | 9 | 10 | logger = logging.getLogger(__name__) 11 | 12 | BASE_URL = "https://api.openaq.org/v2" 13 | TIMEOUT = 15 # seconds 14 | RETRIES = 2 15 | 16 | 17 | def _req(url: str, params: Dict[str, Any]) -> Optional[Dict[str, Any]]: 18 | for i in range(RETRIES + 1): 19 | try: 20 | r = requests.get(url, params=params, timeout=TIMEOUT) 21 | if r.status_code == 200: 22 | return r.json() 23 | logger.warning("OpenAQ non-200: %s %s", r.status_code, r.text[:200]) 24 | except Exception as e: 25 | logger.warning("OpenAQ request failed (try %s): %s", i + 1, e) 26 | return None 27 | 28 | 29 | def fetch_openaq(city: str, start: date, end: date, lat: float = None, lon: float = None) -> List[Dict[str, Any]]: 30 | rows: List[Dict[str, Any]] = [] 31 | try: 32 | # OpenAQ measurements endpoint: we will fetch PM2.5 and PM10 separately and then merge by timestamp 33 | start_dt = datetime.combine(start, datetime.min.time()) 34 | end_dt = datetime.combine(end + timedelta(days=1), datetime.min.time()) # inclusive end day 35 | 36 | params_base = { 37 | "limit": 100, 38 | "page": 1, 39 | "offset": 0, 40 | "parameter": "pm25", 41 | "date_from": start_dt.isoformat() + "Z", 42 | "date_to": end_dt.isoformat() + "Z", 43 | "order_by": "datetime", 44 | "sort": "asc", 45 | } 46 | if city: 47 | params_base["city"] = city 48 | if lat is not None and lon is not None: 49 | params_base["coordinates"] = f"{lat},{lon}" 50 | params_base["radius"] = 20000 51 | 52 | def fetch_param(param: str) -> List[Dict[str, Any]]: 53 | merged: List[Dict[str, Any]] = [] 54 | params = dict(params_base) 55 | params["parameter"] = param 56 | page = 1 57 | while True: 58 | params["page"] = page 59 | data = _req(f"{BASE_URL}/measurements", params) 60 | if not data or "results" not in data: 61 | break 62 | res = data["results"] 63 | if not res: 64 | break 65 | merged.extend(res) 66 | if len(res) < params["limit"]: 67 | break 68 | page += 1 69 | return merged 70 | 71 | pm25_res = fetch_param("pm25") 72 | pm10_res = fetch_param("pm10") 73 | 74 | # Index by hour timestamp 75 | by_ts: Dict[str, Dict[str, Any]] = {} 76 | 77 | def add_values(items, key): 78 | for it in items: 79 | ts = parse_ts(it.get("date", {}).get("utc")) or parse_ts(it.get("date", {}).get("local")) 80 | if not ts: 81 | continue 82 | ts_hr = ts.replace(minute=0, second=0, microsecond=0) 83 | k = ts_hr.strftime("%Y-%m-%d %H:00:00") 84 | ent = by_ts.setdefault(k, {"lat": it.get("coordinates", {}).get("latitude"), 85 | "lon": it.get("coordinates", {}).get("longitude")}) 86 | val = it.get("value") 87 | try: 88 | ent[key] = float(val) 89 | except Exception: 90 | pass 91 | 92 | add_values(pm25_res, "pm25") 93 | add_values(pm10_res, "pm10") 94 | 95 | for k, ent in by_ts.items(): 96 | ts_dt = parse_ts(k) or datetime.utcnow() 97 | rows.append( 98 | make_row( 99 | ts=ts_dt, 100 | city=city, 101 | latitude=ent.get("lat"), 102 | longitude=ent.get("lon"), 103 | pm25=ent.get("pm25"), 104 | pm10=ent.get("pm10"), 105 | source="openaq", 106 | ) 107 | ) 108 | except Exception as e: 109 | logger.warning("fetch_openaq failed: %s", e) 110 | return rows 111 | 112 | 113 | 114 | -------------------------------------------------------------------------------- /backend/app/services/aggregate.py: -------------------------------------------------------------------------------- 1 | import os 2 | import logging 3 | from typing import List, Dict, Any, Tuple, Optional 4 | 5 | 6 | logger = logging.getLogger(__name__) 7 | 8 | 9 | def _parse_weights(env_val: Optional[str]) -> Dict[str, float]: 10 | weights: Dict[str, float] = {} 11 | if not env_val: 12 | return weights 13 | try: 14 | parts = [p.strip() for p in env_val.split(',') if p.strip()] 15 | for part in parts: 16 | if '=' in part: 17 | k, v = part.split('=', 1) 18 | k = k.strip() 19 | try: 20 | weights[k] = float(v) 21 | except Exception: 22 | pass 23 | except Exception: 24 | logger.warning("Failed to parse AGG_WEIGHTS: %r", env_val) 25 | return weights 26 | 27 | 28 | def _zscore_trim(values: List[Tuple[float, float]], z: float) -> List[Tuple[float, float]]: 29 | # values as (x, weight) 30 | if not values: 31 | return values 32 | xs = [x for x, _ in values] 33 | mean = sum(xs) / len(xs) 34 | var = sum((x - mean) ** 2 for x in xs) / max(1, len(xs) - 1) 35 | std = var ** 0.5 36 | if std == 0: 37 | return values 38 | kept: List[Tuple[float, float]] = [] 39 | for x, w in values: 40 | if abs((x - mean) / std) <= z: 41 | kept.append((x, w)) 42 | return kept 43 | 44 | 45 | def _iqr_trim(values: List[Tuple[float, float]], k: float) -> List[Tuple[float, float]]: 46 | if not values: 47 | return values 48 | xs = sorted(x for x, _ in values) 49 | n = len(xs) 50 | if n < 4: 51 | return values 52 | q1 = xs[n // 4] 53 | q3 = xs[(3 * n) // 4] 54 | iqr = q3 - q1 55 | lo = q1 - k * iqr 56 | hi = q3 + k * iqr 57 | kept: List[Tuple[float, float]] = [] 58 | for x, w in values: 59 | if lo <= x <= hi: 60 | kept.append((x, w)) 61 | return kept 62 | 63 | 64 | def _maybe_trim(values: List[Tuple[float, float]]) -> List[Tuple[float, float]]: 65 | # Config: AGG_TRIM (0/1), AGG_TRIM_METHOD (zscore|iqr), AGG_Z (default 3.0), AGG_IQR_K (default 1.5) 66 | if not values: 67 | return values 68 | try: 69 | do_trim = os.getenv('AGG_TRIM', '0') in ('1', 'true', 'True') 70 | if not do_trim: 71 | return values 72 | method = os.getenv('AGG_TRIM_METHOD', 'zscore').lower() 73 | if method == 'iqr': 74 | k = float(os.getenv('AGG_IQR_K', '1.5')) 75 | return _iqr_trim(values, k) 76 | else: 77 | z = float(os.getenv('AGG_Z', '3.0')) 78 | return _zscore_trim(values, z) 79 | except Exception: 80 | return values 81 | 82 | 83 | def _weighted_mean(values: List[Tuple[float, float]]) -> Optional[float]: 84 | if not values: 85 | return None 86 | num = sum(x * w for x, w in values) 87 | den = sum(w for _, w in values) 88 | if den == 0: 89 | return None 90 | return num / den 91 | 92 | 93 | def combine_by_timestamp(city: str, lat: float, lon: float, *sources_rows: List[List[Dict[str, Any]]]) -> List[Dict[str, Any]]: 94 | """ 95 | Merge rows from multiple sources by ts and compute (weighted) means. 96 | Returns rows with source='aggregated'. 97 | Each input row is expected to have: ts (str or datetime), city, latitude, longitude, pm25, pm10, source 98 | """ 99 | weights_cfg = _parse_weights(os.getenv('AGG_WEIGHTS')) 100 | by_ts: Dict[str, Dict[str, List[Tuple[float, float]]]] = {} 101 | 102 | for rows in sources_rows: 103 | for r in rows or []: 104 | ts = str(r.get('ts')) 105 | source = str(r.get('source') or '').lower() 106 | w = float(weights_cfg.get(source, 1.0)) 107 | bucket = by_ts.setdefault(ts, {"pm25": [], "pm10": []}) 108 | try: 109 | pm25 = r.get('pm25') 110 | if pm25 is not None: 111 | bucket['pm25'].append((float(pm25), w)) 112 | except Exception: 113 | pass 114 | try: 115 | pm10 = r.get('pm10') 116 | if pm10 is not None: 117 | bucket['pm10'].append((float(pm10), w)) 118 | except Exception: 119 | pass 120 | 121 | out: List[Dict[str, Any]] = [] 122 | for ts, measures in by_ts.items(): 123 | vals25 = _maybe_trim(measures.get('pm25', [])) 124 | vals10 = _maybe_trim(measures.get('pm10', [])) 125 | mean25 = _weighted_mean(vals25) 126 | mean10 = _weighted_mean(vals10) 127 | if mean25 is None and mean10 is None: 128 | continue 129 | out.append({ 130 | 'ts': ts, 131 | 'city': city, 132 | 'latitude': lat, 133 | 'longitude': lon, 134 | 'pm25': mean25, 135 | 'pm10': mean10, 136 | 'source': 'aggregated', 137 | }) 138 | 139 | return out 140 | 141 | 142 | 143 | -------------------------------------------------------------------------------- /backend/app/routers/auth.py: -------------------------------------------------------------------------------- 1 | from fastapi import APIRouter, Depends, HTTPException, Response, Request 2 | from sqlalchemy.orm import Session 3 | from pydantic import BaseModel, EmailStr 4 | from datetime import datetime, timedelta 5 | from ..db import get_db 6 | from ..models import User, RefreshToken 7 | from ..core.security import hash_password, verify_password, create_access_token, get_auth_user 8 | from ..core.config import settings 9 | 10 | router = APIRouter() 11 | 12 | @router.get("/test") 13 | def test_auth(): 14 | """Simple test endpoint without database dependency""" 15 | return {"status": "ok", "message": "Auth router working"} 16 | 17 | class SignupRequest(BaseModel): 18 | email: EmailStr 19 | password: str 20 | 21 | class LoginRequest(BaseModel): 22 | email: EmailStr 23 | password: str 24 | 25 | class UserResponse(BaseModel): 26 | id: int 27 | email: str 28 | plan: str 29 | 30 | @router.post("/signup", response_model=UserResponse, status_code=201) 31 | def signup(request: SignupRequest, response: Response, db: Session = Depends(get_db)): 32 | try: 33 | # Check if user exists 34 | existing_user = db.query(User).filter(User.email == request.email).first() 35 | if existing_user: 36 | raise HTTPException(status_code=400, detail="Email already registered") 37 | 38 | # Create new user 39 | hashed_pw = hash_password(request.password) 40 | user = User( 41 | email=request.email, 42 | password_hash=hashed_pw, 43 | plan="free" 44 | ) 45 | db.add(user) 46 | db.commit() 47 | db.refresh(user) 48 | 49 | # Auto-login the user after signup 50 | token = create_access_token( 51 | {"sub": str(user.id), "email": user.email, "plan": user.plan}, 52 | settings.JWT_EXPIRES_MIN 53 | ) 54 | 55 | # Set HTTP-only cookie 56 | response.set_cookie( 57 | key="airsense_access", 58 | value=token, 59 | httponly=True, 60 | secure=False, # Set to True in production with HTTPS 61 | samesite="lax", 62 | domain=settings.COOKIE_DOMAIN, 63 | path="/", 64 | max_age=settings.JWT_EXPIRES_MIN * 60 65 | ) 66 | 67 | return UserResponse(id=user.id, email=user.email, plan=user.plan) 68 | except HTTPException: 69 | raise 70 | except Exception as e: 71 | db.rollback() 72 | raise HTTPException(status_code=500, detail="Internal server error") 73 | 74 | @router.post("/login", response_model=UserResponse) 75 | def login(request: LoginRequest, response: Response, db: Session = Depends(get_db)): 76 | try: 77 | # Find user 78 | user = db.query(User).filter(User.email == request.email).first() 79 | if not user or not verify_password(request.password, user.password_hash): 80 | raise HTTPException(status_code=401, detail="Invalid credentials") 81 | 82 | # Create JWT token 83 | token = create_access_token( 84 | {"sub": str(user.id), "email": user.email, "plan": user.plan}, 85 | settings.JWT_EXPIRES_MIN 86 | ) 87 | 88 | # Set HTTP-only cookie 89 | response.set_cookie( 90 | key="airsense_access", 91 | value=token, 92 | httponly=True, 93 | secure=False, # Set to True in production with HTTPS 94 | samesite="lax", 95 | domain=settings.COOKIE_DOMAIN, 96 | path="/", 97 | max_age=settings.JWT_EXPIRES_MIN * 60 98 | ) 99 | 100 | # Update last login 101 | user.last_login = datetime.utcnow() 102 | db.commit() 103 | 104 | return UserResponse(id=user.id, email=user.email, plan=user.plan) 105 | except Exception as e: 106 | db.rollback() 107 | raise HTTPException(status_code=500, detail="Internal server error") 108 | 109 | @router.post("/logout") 110 | def logout(request: Request, response: Response, db: Session = Depends(get_db)): 111 | # Get user from token to clean up refresh tokens 112 | user_data = get_auth_user(request) 113 | if user_data: 114 | # Delete all refresh tokens for this user 115 | db.query(RefreshToken).filter(RefreshToken.user_id == user_data["id"]).delete() 116 | db.commit() 117 | 118 | response.delete_cookie("airsense_access", domain=settings.COOKIE_DOMAIN, path="/") 119 | return {"message": "Logged out successfully"} 120 | 121 | @router.get("/me", response_model=UserResponse) 122 | def get_current_user(request: Request, db: Session = Depends(get_db)): 123 | try: 124 | user_data = get_auth_user(request) 125 | if not user_data: 126 | raise HTTPException(status_code=401, detail="Not authenticated") 127 | 128 | # Get fresh user data from DB 129 | user = db.query(User).filter(User.id == user_data["id"]).first() 130 | if not user: 131 | raise HTTPException(status_code=401, detail="User not found") 132 | 133 | return UserResponse(id=user.id, email=user.email, plan=user.plan) 134 | except HTTPException: 135 | raise 136 | except Exception as e: 137 | raise HTTPException(status_code=500, detail="Internal server error") 138 | 139 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # 🌍 AirSense – Multi-Agentic Air Quality Trends Analysis System 2 | 3 | AirSense is a **full-stack air quality monitoring and analytics platform** designed to transform fragmented environmental data into actionable insights. 4 | The system aggregates multi-source PM2.5 and PM10 data, performs comparative analytics, delivers AI-powered forecasts, and enables natural-language analytics through an LLM-based planning agent. 5 | 6 | This project was developed as a **group project at SLIIT** for the *Information Retrieval and Web Analytics (IT3041)* module. 7 | 8 | ![AirSense Landing Page](https://github.com/dyneth02/Air-Quality-Trends-Analysis-Project/blob/main/screenshots/Screenshot%202025-12-17%20025015.png) 9 | 10 | --- 11 | 12 | ## 🚀 Key Features 13 | 14 | 15 | ![AirSense Landing Page](https://github.com/dyneth02/Air-Quality-Trends-Analysis-Project/blob/main/screenshots/Screenshot%202025-12-17%20030511.png) 16 | 17 | ### 🌐 Multi-Source Data Aggregation 18 | - Scrapes hourly air quality data from **Open-Meteo, OpenAQ, IQAir, and WAQI** 19 | - Applies **weighted aggregation with outlier trimming** to ensure reliable data 20 | - Persists clean, aggregated time-series data in MySQL 21 | 22 | ### 📊 Advanced Analytics 23 | - Multi-city comparison with KPIs (mean, min, max PM levels) 24 | - Best vs worst city ranking 25 | - Part-to-whole and trend-based analysis 26 | 27 | ### 📈 AI-Powered Forecasting 28 | - Time-series forecasting using **SARIMAX** 29 | - Confidence intervals and backtesting (MAE, RMSE) 30 | - Single-city and multi-city prediction support 31 | 32 | ### 🤖 LLM-Based Planning Agent (Enterprise Tier) 33 | - Natural-language queries converted into executable analysis plans 34 | - Uses a **critic-based reflection pattern** to ensure security and capability limits 35 | - Transparent execution traces for explainability 36 | 37 | ### 🔐 Security & Tiered Access 38 | - JWT-based authentication with bcrypt password hashing 39 | - Subscription tiers: **Free, Pro, Enterprise** 40 | - Plan-based enforcement of data windows, city limits, and forecast horizons 41 | 42 | ### 🧾 Professional Reporting 43 | - Auto-generated **PDF reports** with charts and KPI tables 44 | - Server-side rendering using ReportLab 45 | 46 | --- 47 | 48 | ## 🧱 System Architecture 49 | 50 | AirSense follows a **four-layer architecture**: 51 | 52 | 1. **Presentation Layer** – React SPA with interactive charts 53 | 2. **Application Layer** – FastAPI backend with modular routers 54 | 3. **Data Layer** – MySQL + SQLAlchemy ORM 55 | 4. **Intelligent Agent Layer** – LLM planner with MCP-style tool orchestration 56 | 57 | This architecture enables scalability, security, and clear separation of concerns :contentReference[oaicite:1]{index=1}. 58 | 59 | --- 60 | 61 | ## 🛠️ Tech Stack 62 | 63 | - **Frontend:** React, Tailwind CSS, Recharts 64 | - **Backend:** FastAPI (Python), Uvicorn 65 | - **Database:** MySQL, SQLAlchemy 66 | - **AI / Analytics:** SARIMAX, LLM (Ollama / Gemma), Agent Planning 67 | - **Security:** JWT, bcrypt 68 | - **Reporting:** ReportLab (PDF generation) 69 | 70 | --- 71 | 72 | ## 🧠 Responsible AI Practices 73 | 74 | - **Fairness:** Multi-source aggregation to reduce sensor bias 75 | - **Explainability:** Interpretable SARIMAX models + execution traces 76 | - **Transparency:** Visible data sources, KPIs, and agent steps 77 | - **Privacy:** No personal location tracking; secure credential handling 78 | 79 | 80 | ![AirSense Landing Page](https://github.com/dyneth02/Air-Quality-Trends-Analysis-Project/blob/main/screenshots/Screenshot%202025-12-17%20025126.png) 81 | 82 | ![AirSense Forecasting Page](https://github.com/dyneth02/Air-Quality-Trends-Analysis-Project/blob/main/screenshots/Screenshot%202025-12-17%20025447.png) 83 | 84 | ![AirSense City Analysis Page 1](https://github.com/dyneth02/Air-Quality-Trends-Analysis-Project/blob/main/screenshots/Screenshot%202025-12-17%20025247.png) 85 | 86 | ![AirSense City Analysis Page 2](https://github.com/dyneth02/Air-Quality-Trends-Analysis-Project/blob/main/screenshots/Screenshot%202025-12-17%20025302.png) 87 | 88 | ![AirSense Forecasting Report Page 1](https://github.com/dyneth02/Air-Quality-Trends-Analysis-Project/blob/main/screenshots/Screenshot%202025-12-17%20025501.png) 89 | 90 | ![AirSense Forecasting Report Page 2](https://github.com/dyneth02/Air-Quality-Trends-Analysis-Project/blob/main/screenshots/Screenshot%202025-12-17%20025522.png) 91 | 92 | ![AirSense Forecasting Report Page 3](https://github.com/dyneth02/Air-Quality-Trends-Analysis-Project/blob/main/screenshots/Screenshot%202025-12-17%20025532.png) 93 | 94 | --- 95 | 96 | ## 👥 Team & Leadership 97 | 98 | **Team Leader & Full-Stack Integration Architect:** 99 | Hirusha D G A D (IT23183018) 100 | 101 | Key contributions include: 102 | - AI forecasting engine & backtesting 103 | - LLM agent design and orchestration 104 | - Authentication & tier enforcement 105 | - System-wide integration and documentation leadership 106 | 107 | (Full contribution breakdown available in the final report) :contentReference[oaicite:2]{index=2}. 108 | 109 | --- 110 | 111 | ## 🎯 Academic Context 112 | 113 | - **Institution:** Sri Lanka Institute of Information Technology (SLIIT) 114 | - **Module:** IT3041 – Information Retrieval and Web Analytics 115 | - **Year:** 2025 116 | - **Project Type:** Group Project (Industry-oriented system) 117 | 118 | --- 119 | 120 | ## 📌 Future Enhancements 121 | 122 | - Real-time alerts for pollution thresholds 123 | - Additional data sources & ML models 124 | - Extended agent reasoning capabilities 125 | - Cloud deployment and CI/CD pipelines 126 | 127 | --- 128 | 129 | ## 📜 License 130 | 131 | This project is released for **academic and learning purposes**. 132 | -------------------------------------------------------------------------------- /backend/app/services/scraper.py: -------------------------------------------------------------------------------- 1 | from datetime import datetime, timedelta 2 | import os 3 | import requests 4 | from sqlalchemy import text 5 | from sqlalchemy.orm import Session 6 | 7 | def fetch_open_meteo(lat: float, lon: float, start_date: str, end_date: str): 8 | url = ( 9 | "https://air-quality-api.open-meteo.com/v1/air-quality" 10 | f"?latitude={lat}&longitude={lon}" 11 | "&hourly=pm2_5,pm10" 12 | f"&start_date={start_date}&end_date={end_date}" 13 | "&timezone=auto" 14 | ) 15 | try: 16 | r = requests.get(url, timeout=30) 17 | r.raise_for_status() 18 | return r.json() 19 | except requests.Timeout: 20 | raise RuntimeError("OpenMeteoTimeout: upstream timed out") 21 | except requests.RequestException as e: 22 | raise RuntimeError(f"OpenMeteoHTTP: {e}") 23 | 24 | 25 | def flatten_rows(city: str, lat: float, lon: float, data: dict): 26 | times = data["hourly"]["time"] 27 | pm25 = data["hourly"].get("pm2_5") 28 | pm10 = data["hourly"].get("pm10") 29 | rows = [] 30 | for i, ts in enumerate(times): 31 | rows.append({ 32 | "ts": ts.replace("T", " ")+":00", # MySQL DATETIME 33 | "city": city, 34 | "latitude": lat, 35 | "longitude": lon, 36 | "pm25": None if pm25 is None else pm25[i], 37 | "pm10": None if pm10 is None else pm10[i], 38 | "source": "open-meteo", 39 | }) 40 | return rows 41 | 42 | def upsert_rows(db: Session, rows: list[dict]) -> int: 43 | if not rows: 44 | return 0 45 | # Try native upsert; if the DB lacks the unique key, fallback to code-level upsert 46 | try: 47 | sql = text(""" 48 | INSERT INTO measurements (ts, city, latitude, longitude, pm25, pm10, source) 49 | VALUES (:ts, :city, :latitude, :longitude, :pm25, :pm10, :source) 50 | ON DUPLICATE KEY UPDATE 51 | pm25=VALUES(pm25), 52 | pm10=VALUES(pm10), 53 | latitude=VALUES(latitude), 54 | longitude=VALUES(longitude); 55 | """) 56 | db.execute(sql, rows) 57 | db.commit() 58 | return len(rows) 59 | except Exception: 60 | pass 61 | 62 | # Fallback: INSERT IGNORE, then UPDATE existing by (ts, city, source) 63 | try: 64 | ins_sql = text(""" 65 | INSERT IGNORE INTO measurements (ts, city, latitude, longitude, pm25, pm10, source) 66 | VALUES (:ts, :city, :latitude, :longitude, :pm25, :pm10, :source) 67 | """) 68 | db.execute(ins_sql, rows) 69 | upd_sql = text(""" 70 | UPDATE measurements 71 | SET latitude=:latitude, longitude=:longitude, pm25=:pm25, pm10=:pm10 72 | WHERE ts=:ts AND city=:city AND source=:source 73 | """) 74 | for r in rows: 75 | db.execute(upd_sql, r) 76 | db.commit() 77 | return len(rows) 78 | except Exception: 79 | db.rollback() 80 | return 0 81 | 82 | def _collect_and_upsert(db: Session, city: str, days: int, sources: list[str] | None): 83 | from .geocode import get_coords_for_city 84 | from .fetchers.openaq import fetch_openaq 85 | from .fetchers.iqair import fetch_iqair 86 | from .fetchers.waqi import fetch_waqi 87 | from .fetchers.normalize import make_row, parse_ts 88 | from .aggregate import combine_by_timestamp 89 | lat, lon = get_coords_for_city(db, city) 90 | 91 | # use datetime today instead of just date 92 | end = datetime.utcnow().date() # or datetime.now().date() 93 | start = end - timedelta(days=days) 94 | 95 | data = fetch_open_meteo(lat, lon, start.isoformat(), end.isoformat()) 96 | rows_open_meteo = flatten_rows(city, lat, lon, data) 97 | 98 | # Toggle additional sources via SOURCES_ENABLED (comma-separated) 99 | enabled_env = os.getenv('SOURCES_ENABLED', '').lower() 100 | enabled_set = set([s.strip() for s in enabled_env.split(',') if s.strip()]) 101 | if sources: 102 | enabled_set = set([s.strip().lower() for s in sources if s and isinstance(s, str)]) 103 | 104 | src_rows = { 105 | 'open-meteo': rows_open_meteo 106 | } 107 | 108 | # Fetch from OpenAQ 109 | if not enabled_set or 'openaq' in enabled_set: 110 | try: 111 | src_rows['openaq'] = fetch_openaq(city, start, end, lat, lon) 112 | except Exception: 113 | src_rows['openaq'] = [] 114 | 115 | # Fetch from IQAir (HTML) 116 | if not enabled_set or 'iqair' in enabled_set: 117 | try: 118 | src_rows['iqair'] = fetch_iqair(city, start, end, lat, lon) 119 | except Exception: 120 | src_rows['iqair'] = [] 121 | 122 | # Fetch from WAQI (API if token present, else HTML) 123 | if not enabled_set or 'waqi' in enabled_set: 124 | try: 125 | token = os.getenv('WAQI_TOKEN') 126 | src_rows['waqi'] = fetch_waqi(city, start, end, lat, lon, token) 127 | except Exception: 128 | src_rows['waqi'] = [] 129 | 130 | # Aggregate combined signal 131 | agg_rows = combine_by_timestamp(city, lat, lon, src_rows.get('openaq', []), src_rows.get('iqair', []), src_rows.get('waqi', []), src_rows.get('open-meteo', [])) 132 | 133 | # Only save aggregated data, not individual source data 134 | counts: dict[str, int] = {} 135 | # Count individual sources for reporting but don't save them 136 | for k, v in src_rows.items(): 137 | counts[k] = len(v) if v else 0 138 | 139 | # Only save the aggregated data to database 140 | counts['aggregated'] = upsert_rows(db, agg_rows) if agg_rows else 0 141 | 142 | return counts, (lat, lon) 143 | 144 | 145 | def ensure_window_for_city(db: Session, city: str, days: int, sources: list[str] | None = None): 146 | counts, coords = _collect_and_upsert(db, city, days, sources) 147 | total = sum(counts.values()) 148 | return total, coords 149 | 150 | 151 | def ensure_window_for_city_with_counts(db: Session, city: str, days: int, sources: list[str] | None = None): 152 | return _collect_and_upsert(db, city, days, sources) 153 | -------------------------------------------------------------------------------- /backend/app/services/forecast.py: -------------------------------------------------------------------------------- 1 | from __future__ import annotations 2 | import os 3 | from datetime import timedelta 4 | import numpy as np 5 | import pandas as pd 6 | from sqlalchemy import text 7 | from sqlalchemy.orm import Session 8 | from statsmodels.tsa.statespace.sarimax import SARIMAX 9 | from sklearn.metrics import mean_absolute_error, mean_squared_error 10 | from joblib import dump, load 11 | 12 | MODELS_DIR = os.path.join(os.path.dirname(__file__), "..", "..", "models") 13 | os.makedirs(MODELS_DIR, exist_ok=True) 14 | 15 | def _load_series(db: Session, city: str, days: int) -> pd.DataFrame: 16 | """Pull last N days from MySQL as a pandas hourly series (pm2.5 as target).""" 17 | 18 | rows = db.execute(text(""" 19 | SELECT ts, pm25 20 | FROM measurements 21 | WHERE city = :city 22 | AND source = 'aggregated' 23 | AND ts >= DATE_SUB(NOW(), INTERVAL :days DAY) 24 | ORDER BY ts 25 | """), {"city": city, "days": days}).mappings().all() 26 | 27 | if not rows: 28 | raise ValueError(f"No data found for {city} in last {days} days. Run /scrape first.") 29 | 30 | df = pd.DataFrame(rows) 31 | df["ts"] = pd.to_datetime(df["ts"]) 32 | df = df.set_index("ts").sort_index() 33 | # Ensure hourly frequency and fill small gaps 34 | df = df.asfreq("H") 35 | # simple imputation for small gaps 36 | df["pm25"] = df["pm25"].interpolate(limit_direction="both") 37 | 38 | return df # columns: pm25 (float), index: hourly ts 39 | 40 | def _model_path(city: str) -> str: 41 | safe = city.lower().replace(" ", "_") 42 | return os.path.join(MODELS_DIR, f"{safe}_sarimax.joblib") 43 | 44 | def train_sarimax(df: pd.DataFrame) -> SARIMAX: 45 | """ 46 | Build a sensible default SARIMAX for hourly PM2.5. 47 | - Differencing (d=1) for trend 48 | - Seasonal weekly pattern for hourly data: 24*7=168 49 | -> seasonal order (P,D,Q,168) 50 | - Keep it modest to train fast. 51 | """ 52 | # Basic sanity: drop any remaining NaNs 53 | y = df["pm25"].astype(float).fillna(method="ffill").fillna(method="bfill") 54 | 55 | # Try a simple configuration; tweak later if needed 56 | order = (1, 1, 1) 57 | seasonal_order = (1, 0, 1, 24) # daily seasonality is often present; weekly = 168 if you have lots of data 58 | # If you have >= 14 days, consider (1,0,1,24) or (1,0,1,168); (24) is lighter. 59 | model = SARIMAX(y, order=order, seasonal_order=seasonal_order, enforce_stationarity=False, enforce_invertibility=False) 60 | return model 61 | 62 | def fit_and_save_model(db: Session, city: str, train_days: int = 30) -> str: 63 | df = _load_series(db, city, days=train_days) 64 | model = train_sarimax(df) 65 | result = model.fit(disp=False) 66 | path = _model_path(city) 67 | dump(result, path) 68 | return path 69 | 70 | def forecast_city(db: Session, city: str, horizon_days: int = 7, train_days: int = 30, use_cache: bool = True): 71 | """Fit (or load) a SARIMAX model and forecast H days ahead with CIs.""" 72 | path = _model_path(city) 73 | result = None 74 | 75 | if use_cache and os.path.exists(path): 76 | try: 77 | result = load(path) 78 | except Exception: 79 | result = None 80 | 81 | if result is None: 82 | # (Re)train 83 | df = _load_series(db, city, days=train_days) 84 | model = train_sarimax(df) 85 | result = model.fit(disp=False) 86 | dump(result, path) 87 | 88 | steps = int(horizon_days * 24) 89 | pred = result.get_forecast(steps=steps) 90 | mean = pred.predicted_mean 91 | ci = pred.conf_int(alpha=0.2) # 80% CI looks good for charts; change if you like (95% => alpha=0.05) 92 | 93 | out = [] 94 | for ts, yhat in mean.items(): 95 | low = float(ci.loc[ts].iloc[0]) 96 | high = float(ci.loc[ts].iloc[1]) 97 | out.append({ 98 | "ts": ts.strftime("%Y-%m-%d %H:%M:%S"), 99 | "yhat": float(yhat), 100 | "yhat_lower": low, 101 | "yhat_upper": high 102 | }) 103 | return {"city": city, "horizon_hours": steps, "series": out} 104 | 105 | def backtest_roll(db: Session, city: str, days: int = 30, horizon_hours: int = 24): 106 | """ 107 | Simple rolling-origin backtest: walk forward, forecast H hours, compute MAE/RMSE. 108 | Useful for a quick slide proving validity. 109 | """ 110 | df = _load_series(db, city, days=days) 111 | y = df["pm25"].astype(float) 112 | # choose checkpoints every 24 hours to keep it fast 113 | checkpoints = list(range(24*7, len(y) - horizon_hours, 24)) 114 | preds, trues = [], [] 115 | 116 | for cut in checkpoints: 117 | train_y = y.iloc[:cut] 118 | model = SARIMAX(train_y, order=(1,1,1), seasonal_order=(1,0,1,24), 119 | enforce_stationarity=False, enforce_invertibility=False) 120 | res = model.fit(disp=False) 121 | fc = res.get_forecast(steps=horizon_hours).predicted_mean 122 | true = y.iloc[cut:cut+horizon_hours] 123 | # align lengths (edge cases) 124 | n = min(len(fc), len(true)) 125 | preds.extend(fc.iloc[:n].values) 126 | trues.extend(true.iloc[:n].values) 127 | 128 | mae = float(mean_absolute_error(trues, preds)) 129 | rmse = float(np.sqrt(mean_squared_error(trues, preds))) 130 | return {"city": city, "days": days, "horizon_hours": horizon_hours, "mae": mae, "rmse": rmse} 131 | 132 | 133 | # multi-cities forecaster 134 | def forecast_cities( 135 | db: Session, 136 | cities: list[str], 137 | horizon_days: int = 7, 138 | train_days: int = 30, 139 | use_cache: bool = True, 140 | ): 141 | """ 142 | Runs forecast_city for each city and returns a dict { city -> series }. 143 | Also returns a small summary (mean predicted pm25 per city) to pick best/worst. 144 | """ 145 | results = {} 146 | summary = {} 147 | 148 | for city in cities: 149 | try: 150 | fc = forecast_city(db, city, horizon_days, train_days, use_cache) 151 | results[city] = fc["series"] 152 | # mean of yhat over the horizon for ranking 153 | vals = [p["yhat"] for p in fc["series"] if p.get("yhat") is not None] 154 | summary[city] = { 155 | "mean_yhat": (sum(vals) / len(vals)) if vals else None, 156 | "n_points": len(vals) 157 | } 158 | except Exception as e: 159 | results[city] = {"error": str(e)} 160 | summary[city] = {"mean_yhat": None, "n_points": 0} 161 | 162 | # pick best/worst by mean_yhat (lower is “cleaner”) 163 | valid = {c: s for c, s in summary.items() if s["mean_yhat"] is not None} 164 | best = min(valid, key=lambda c: valid[c]["mean_yhat"]) if valid else None 165 | worst = max(valid, key=lambda c: valid[c]["mean_yhat"]) if valid else None 166 | 167 | return { 168 | "byCity": results, 169 | "summary": summary, 170 | "best": best, 171 | "worst": worst 172 | } 173 | -------------------------------------------------------------------------------- /backend/app/routers/agent.py: -------------------------------------------------------------------------------- 1 | from fastapi import APIRouter, Depends, HTTPException, Request 2 | from sqlalchemy.orm import Session 3 | from ..db import get_db 4 | from ..schemas import AgentPlanIn, AgentPlanOut, ToolStep, AgentExecIn, AgentExecOut 5 | from ..core.security import get_plan, Plan 6 | from ..core.tiers import enforce_scrape, enforce_compare, enforce_forecast 7 | from ..services.scraper import ensure_window_for_city 8 | from ..services.forecast import forecast_city, forecast_cities 9 | from ..services.llama_client import plan_with_llama 10 | from ..utils.compare import compare_logic 11 | 12 | router = APIRouter() 13 | 14 | TOOLS = [ 15 | { 16 | "name": "scrape_city", 17 | "description": "Fetch & cache hourly PM2.5/PM10 for a city over the last N days using Open-Meteo; upserts into MySQL.", 18 | "input_schema": {"type":"object","properties":{"city":{"type":"string"},"days":{"type":"integer","minimum":1,"maximum":90,"default":7}},"required":["city"]}, 19 | "output_schema": {"type":"object"} 20 | }, 21 | { 22 | "name": "compare_cities", 23 | "description": "Compute KPIs over the last N days per city (n_points, mean_pm25, min_pm25, max_pm25) and pick best/worst (lower is better).", 24 | "input_schema": {"type":"object","properties":{"cities":{"type":"array","items":{"type":"string"}},"days":{"type":"integer","minimum":1,"maximum":90,"default":7}},"required":["cities"]}, 25 | "output_schema": {"type":"object"} 26 | }, 27 | { 28 | "name": "forecast_city", 29 | "description": "Forecast next H days of PM2.5 for one city with SARIMAX; returns yhat + CI.", 30 | "input_schema": {"type":"object","properties":{"city":{"type":"string"},"horizonDays":{"type":"integer","minimum":1,"maximum":30,"default":7},"trainDays":{"type":"integer","minimum":7,"maximum":120,"default":30},"use_cache":{"type":"boolean","default":True}},"required":["city"]}, 31 | "output_schema": {"type":"object"} 32 | }, 33 | { 34 | "name": "forecast_multi", 35 | "description": "Forecast next H days for multiple cities and rank best/worst by mean predicted PM2.5.", 36 | "input_schema": {"type":"object","properties":{"cities":{"type":"array","items":{"type":"string"}},"horizonDays":{"type":"integer","minimum":1,"maximum":30,"default":7},"trainDays":{"type":"integer","minimum":7,"maximum":120,"default":30},"use_cache":{"type":"boolean","default":True}},"required":["cities"]}, 37 | "output_schema": {"type":"object"} 38 | }, 39 | ] 40 | 41 | @router.get("/mcp/tools/list") 42 | def mcp_list_tools(): 43 | return {"tools": TOOLS} 44 | 45 | @router.post("/mcp/tools/call") 46 | def mcp_call_tool(call: dict, request: Request, plan: Plan = Depends(get_plan), db: Session = Depends(get_db)): 47 | name = call.get("name") 48 | args = call.get("arguments", {}) 49 | 50 | if name == "scrape_city": 51 | enforce_scrape(plan, args.get("days", 7)) 52 | inserted, (lat, lon) = ensure_window_for_city(db, args["city"], args.get("days", 7)) 53 | return {"ok": True, "result": {"city": args["city"], "days": args.get("days", 7), "inserted": inserted, "lat": lat, "lon": lon}} 54 | 55 | if name == "compare_cities": 56 | cities = args["cities"]; days = args.get("days", 7) 57 | enforce_compare(plan, cities, days) 58 | for c in cities: ensure_window_for_city(db, c, days) 59 | return {"ok": True, "result": compare_logic(db, cities, days)} 60 | 61 | if name == "forecast_city": 62 | enforce_forecast(plan, args.get("horizonDays", 7), 1) 63 | out = forecast_city(db, args["city"], args.get("horizonDays", 7), args.get("trainDays", 30), args.get("use_cache", True)) 64 | return {"ok": True, "result": out} 65 | 66 | if name == "forecast_multi": 67 | cities = args["cities"] 68 | enforce_forecast(plan, args.get("horizonDays", 7), len(cities)) 69 | out = forecast_cities(db, cities, args.get("horizonDays", 7), args.get("trainDays", 30), args.get("use_cache", True)) 70 | return {"ok": True, "result": out} 71 | 72 | raise HTTPException(404, f"Unknown tool: {name}") 73 | 74 | @router.post("/plan", response_model=AgentPlanOut) 75 | def agent_plan(payload: AgentPlanIn): 76 | plan_obj = plan_with_llama(payload.prompt, TOOLS, temperature=0.2) 77 | steps = [ToolStep(**step) for step in plan_obj.get("plan", [])] 78 | return { 79 | "plan": steps, 80 | "notes": plan_obj.get("notes"), 81 | "irrelevant": plan_obj.get("irrelevant", False) 82 | } 83 | 84 | def _execute_step(db: Session, plan: Plan, step: ToolStep): 85 | name, args = step.name, (step.arguments or {}) 86 | 87 | if name == "scrape_city": 88 | enforce_scrape(plan, args.get("days", 7)) 89 | inserted, (lat, lon) = ensure_window_for_city(db, args["city"], args.get("days", 7)) 90 | return {"tool": name, "ok": True, "args": args, "result": {"city": args["city"], "days": args.get("days", 7), "inserted": inserted, "lat": lat, "lon": lon}} 91 | 92 | if name == "compare_cities": 93 | cities = args["cities"]; days = args.get("days", 7) 94 | enforce_compare(plan, cities, days) 95 | for c in cities: ensure_window_for_city(db, c, days) 96 | res = compare_logic(db, cities, days) 97 | return {"tool": name, "ok": True, "args": args, "result": res} 98 | 99 | if name == "forecast_city": 100 | enforce_forecast(plan, args.get("horizonDays", 7), 1) 101 | res = forecast_city(db, args["city"], args.get("horizonDays", 7), args.get("trainDays", 30), args.get("use_cache", True)) 102 | return {"tool": name, "ok": True, "args": args, "result": res} 103 | 104 | if name == "forecast_multi": 105 | cities = args["cities"] 106 | enforce_forecast(plan, args.get("horizonDays", 7), len(cities)) 107 | res = forecast_cities(db, cities, args.get("horizonDays", 7), args.get("trainDays", 30), args.get("use_cache", True)) 108 | return {"tool": name, "ok": True, "args": args, "result": res} 109 | 110 | return {"tool": name, "ok": False, "args": args, "error": "Unknown tool"} 111 | 112 | @router.post("/execute", response_model=AgentExecOut) 113 | def agent_execute(payload: AgentExecIn, request: Request, plan: Plan = Depends(get_plan), db: Session = Depends(get_db)): 114 | trace = [] 115 | steps: list[ToolStep] = [] 116 | last_ok = None 117 | 118 | if payload.plan: 119 | steps = [ToolStep(**s) if not isinstance(s, ToolStep) else s for s in payload.plan] 120 | elif payload.prompt: 121 | plan_obj = plan_with_llama(payload.prompt, TOOLS, temperature=0.2) 122 | steps = [ToolStep(**step) for step in plan_obj.get("plan", [])] 123 | trace.append({"planner": {"notes": plan_obj.get("notes"), "steps": [s.dict() for s in steps]}}) 124 | else: 125 | raise HTTPException(400, "Provide either prompt or plan") 126 | 127 | for step in steps: 128 | try: 129 | result = _execute_step(db, plan, step) 130 | except Exception as e: 131 | result = {"tool": step.name, "ok": False, "args": step.arguments, "error": str(e)} 132 | trace.append(result) 133 | if result.get("ok"): 134 | last_ok = result 135 | else: 136 | break 137 | 138 | successes = [t for t in trace if t.get("ok")] 139 | answer = f"Executed {len(successes)} step(s)." 140 | return {"answer": answer, "trace": trace, "final": (last_ok.get("result") if last_ok else None)} 141 | -------------------------------------------------------------------------------- /backend/app/services/reporter.py: -------------------------------------------------------------------------------- 1 | import base64 2 | import os 3 | import io 4 | import logging 5 | from datetime import datetime 6 | from typing import Dict, Any, List, Optional 7 | 8 | from PIL import Image as PILImage # pillow for dimension reading 9 | from reportlab.lib import colors 10 | from reportlab.lib.pagesizes import A4 11 | from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle 12 | from reportlab.lib.units import mm 13 | from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle, Image, HRFlowable, PageBreak 14 | 15 | from ..schemas import ReportIn 16 | 17 | 18 | logger = logging.getLogger("airq") 19 | 20 | 21 | def _decode_base64_image(data_b64: str) -> Optional[bytes]: 22 | try: 23 | if not data_b64: 24 | return None 25 | if "," in data_b64 and data_b64.strip().lower().startswith("data:image"): 26 | data_b64 = data_b64.split(",", 1)[1] 27 | return base64.b64decode(data_b64) 28 | except Exception as e: 29 | logger.warning("Failed to decode base64 image: %s", e) 30 | return None 31 | 32 | 33 | def _scaled_image(img_bytes: bytes, max_width_pts: float) -> Optional[Image]: 34 | try: 35 | with PILImage.open(io.BytesIO(img_bytes)) as pil: 36 | w, h = pil.size 37 | if w == 0 or h == 0: 38 | return None 39 | scale = max_width_pts / float(w) 40 | new_w = max_width_pts 41 | new_h = float(h) * scale 42 | return Image(io.BytesIO(img_bytes), width=new_w, height=new_h) 43 | except Exception as e: 44 | logger.warning("Failed to scale/embed image: %s", e) 45 | return None 46 | 47 | 48 | ACCENT = os.getenv("AIRSENSE_ACCENT_HEX", "#22C55E") 49 | 50 | 51 | def _metrics_table(metrics: Dict[str, Any]) -> Optional[Table]: 52 | if not metrics: 53 | return None 54 | rows = [["Metric", "Value"]] 55 | for k, v in metrics.items(): 56 | rows.append([str(k).replace("_", " ").title(), str(v)]) 57 | t = Table(rows, hAlign='LEFT') 58 | t.setStyle(TableStyle([ 59 | ("BACKGROUND", (0, 0), (-1, 0), colors.HexColor("#111827")), 60 | ("TEXTCOLOR", (0, 0), (-1, 0), colors.HexColor(ACCENT)), 61 | ("GRID", (0, 0), (-1, -1), 0.5, colors.grey), 62 | ("BACKGROUND", (0, 1), (-1, -1), colors.whitesmoke), 63 | ("ALIGN", (0, 0), (-1, -1), "LEFT"), 64 | ])) 65 | return t 66 | 67 | 68 | def _stats_table(stats: Dict[str, Any], report_type: Optional[str] = None) -> Optional[Table]: 69 | if not stats: 70 | return None 71 | # Expect shape: { city: { mean_* or mean_yhat, min_*, max_*, n_points } } 72 | header = ["City", "Mean (µg/m³)", "Range (µg/m³)", "Samples"] 73 | rows = [header] 74 | for city, vals in stats.items(): 75 | mean_val = vals.get("mean_pm25") 76 | if mean_val is None: 77 | mean_val = vals.get("mean_yhat") 78 | min_v = vals.get("min_pm25") 79 | max_v = vals.get("max_pm25") 80 | n = vals.get("n_points") 81 | rng = "-" 82 | if min_v is not None or max_v is not None: 83 | min_str = f"{min_v:.2f}" if isinstance(min_v, (int, float)) else "-" 84 | max_str = f"{max_v:.2f}" if isinstance(max_v, (int, float)) else "-" 85 | rng = f"{min_str} – {max_str}" 86 | rows.append([ 87 | city, 88 | f"{mean_val:.2f}" if isinstance(mean_val, (int, float)) else "-", 89 | rng, 90 | str(n) if n is not None else "-", 91 | ]) 92 | t = Table(rows, hAlign='LEFT') 93 | t.setStyle(TableStyle([ 94 | ("BACKGROUND", (0, 0), (-1, 0), colors.HexColor("#111827")), 95 | ("TEXTCOLOR", (0, 0), (-1, 0), colors.HexColor(ACCENT)), 96 | ("GRID", (0, 0), (-1, -1), 0.5, colors.grey), 97 | ("BACKGROUND", (0, 1), (-1, -1), colors.whitesmoke), 98 | ("ALIGN", (0, 0), (-1, -1), "LEFT"), 99 | ])) 100 | return t 101 | 102 | 103 | def make_report(payload: ReportIn) -> bytes: 104 | buffer = io.BytesIO() 105 | doc = SimpleDocTemplate(buffer, pagesize=A4, leftMargin=18 * mm, rightMargin=18 * mm, topMargin=16 * mm, bottomMargin=16 * mm) 106 | styles = getSampleStyleSheet() 107 | # Dark theme paragraph styles to better match UI 108 | title_style = ParagraphStyle( 109 | name="TitleDark", 110 | parent=styles["Title"], 111 | fontSize=22, 112 | textColor=colors.HexColor(ACCENT), 113 | spaceAfter=8, 114 | ) 115 | h2_style = ParagraphStyle( 116 | name="Heading2Dark", 117 | parent=styles["Heading2"], 118 | textColor=colors.HexColor(ACCENT), 119 | spaceAfter=6, 120 | ) 121 | h3_style = ParagraphStyle( 122 | name="Heading3Dark", 123 | parent=styles["Heading3"], 124 | textColor=colors.HexColor(ACCENT), 125 | spaceAfter=4, 126 | ) 127 | normal_style = ParagraphStyle( 128 | name="NormalDark", 129 | parent=styles["Normal"], 130 | textColor=colors.HexColor("#D1D5DB"), 131 | ) 132 | 133 | # Spacing constants 134 | SP_SMALL = 6 135 | SP_MED = 12 136 | SP_LARGE = 18 137 | 138 | def separator(): 139 | return HRFlowable(width="100%", thickness=1, lineCap='round', color=colors.HexColor("#374151"), spaceBefore=SP_SMALL, spaceAfter=SP_SMALL) 140 | story: List[Any] = [] # type: ignore 141 | 142 | # Header 143 | story.append(Paragraph("AirSense", title_style)) 144 | story.append(Spacer(1, SP_SMALL)) 145 | 146 | # Subtitle 147 | subtitle = "Forecast Report" if payload.report_type == "forecast" else "City Comparison Report" 148 | story.append(Paragraph(f"{subtitle}", h2_style)) 149 | story.append(separator()) 150 | 151 | # Timestamp and cities 152 | ts_str = datetime.utcnow().strftime("%Y-%m-%d %H:%M UTC") 153 | story.append(Paragraph(f"Generated: {ts_str}", normal_style)) 154 | story.append(Paragraph(f"Cities: {', '.join(payload.cities)}", normal_style)) 155 | story.append(Spacer(1, SP_MED)) 156 | 157 | # Metrics block 158 | if payload.metrics: 159 | story.append(Paragraph("Metrics", h3_style)) 160 | mt = _metrics_table(payload.metrics) 161 | if mt: 162 | story.append(mt) 163 | story.append(Spacer(1, SP_MED)) 164 | story.append(separator()) 165 | 166 | # Stats block 167 | if payload.stats: 168 | story.append(Paragraph("Key Stats", h3_style)) 169 | # Forecast range fallback calculation if missing 170 | if payload.report_type == "forecast": 171 | try: 172 | # Try to derive min/max from any available series in metrics or stats hints 173 | # If not provided, leave as-is; frontend will now send ranges where possible 174 | for city, vals in list(payload.stats.items()): # type: ignore 175 | rng_text = vals.get("range") if isinstance(vals, dict) else None 176 | if rng_text: 177 | continue 178 | # If we had arrays, we'd compute here; keep placeholder to avoid breaking 179 | # e.g., mean series not available in backend currently 180 | # Leave None to display '-' in table 181 | except Exception: 182 | pass 183 | st = _stats_table(payload.stats, payload.report_type) 184 | if st: 185 | story.append(st) 186 | story.append(Spacer(1, SP_MED)) 187 | story.append(separator()) 188 | 189 | # Charts block 190 | if payload.charts: 191 | story.append(Paragraph("Charts", h3_style)) 192 | story.append(Spacer(1, SP_SMALL)) 193 | 194 | page_width, _ = A4 195 | max_w = page_width - (doc.leftMargin + doc.rightMargin) 196 | 197 | charts_on_page = 0 198 | 199 | def add_img_if_present(key: str): 200 | img_b64 = payload.charts.get(key) 201 | if not img_b64: 202 | return 203 | img_bytes = _decode_base64_image(img_b64) 204 | if not img_bytes: 205 | return 206 | img = _scaled_image(img_bytes, max_w) 207 | if img: 208 | story.append(img) 209 | story.append(Spacer(1, SP_SMALL)) 210 | nonlocal charts_on_page 211 | charts_on_page += 1 212 | if charts_on_page >= 2: 213 | story.append(PageBreak()) 214 | charts_on_page = 0 215 | 216 | # Combined first if requested 217 | show_combined = bool((payload.options or {}).get("showCombined", True)) 218 | if show_combined and "combined" in payload.charts: 219 | add_img_if_present("combined") 220 | 221 | # Then each city chart in provided order 222 | for c in payload.cities: 223 | if c in payload.charts: 224 | add_img_if_present(c) 225 | 226 | story.append(Spacer(1, SP_LARGE)) 227 | story.append(separator()) 228 | story.append(Paragraph("Generated by AirSense", normal_style)) 229 | 230 | doc.build(story) 231 | buffer.seek(0) 232 | return buffer.read() 233 | 234 | 235 | 236 | -------------------------------------------------------------------------------- /frontend/src/utils/chartCapture.js: -------------------------------------------------------------------------------- 1 | // Utility to convert an SVG element to a Base64 PNG using an offscreen canvas 2 | function svgElementToPngBase64(svgElement, { backgroundColor = 'transparent', pixelRatio = 2 } = {}) { 3 | if (!svgElement) return undefined; 4 | 5 | try { 6 | const xml = new XMLSerializer().serializeToString(svgElement); 7 | const svg64 = window.btoa(unescape(encodeURIComponent(xml))); 8 | const imageSrc = `data:image/svg+xml;base64,${svg64}`; 9 | 10 | // Create an offscreen canvas to draw the SVG as PNG 11 | const bbox = svgElement.getBBox?.(); 12 | // Try multiple methods to get dimensions 13 | let width = bbox?.width || svgElement.clientWidth || svgElement.getAttribute('width') || svgElement.getBoundingClientRect().width || 800; 14 | let height = bbox?.height || svgElement.clientHeight || svgElement.getAttribute('height') || svgElement.getBoundingClientRect().height || 400; 15 | 16 | // Ensure we have valid dimensions 17 | width = Math.max(1, Math.ceil(Number(width) || 800)); 18 | height = Math.max(1, Math.ceil(Number(height) || 400)); 19 | 20 | console.log(`📐 SVG dimensions: ${width}x${height}`); 21 | 22 | const canvas = document.createElement('canvas'); 23 | canvas.width = width * pixelRatio; 24 | canvas.height = height * pixelRatio; 25 | const ctx = canvas.getContext('2d'); 26 | if (!ctx) return undefined; 27 | 28 | if (backgroundColor && backgroundColor !== 'transparent') { 29 | ctx.fillStyle = backgroundColor; 30 | ctx.fillRect(0, 0, canvas.width, canvas.height); 31 | } 32 | 33 | return new Promise((resolve) => { 34 | const img = new Image(); 35 | img.crossOrigin = 'anonymous'; 36 | img.onload = () => { 37 | ctx.setTransform(pixelRatio, 0, 0, pixelRatio, 0, 0); 38 | ctx.drawImage(img, 0, 0, width, height); 39 | try { 40 | const dataUrl = canvas.toDataURL('image/png'); 41 | resolve(dataUrl.replace(/^data:image\/png;base64,/, '')); 42 | } catch { 43 | resolve(undefined); 44 | } 45 | }; 46 | img.onerror = () => resolve(undefined); 47 | img.src = imageSrc; 48 | }); 49 | } catch { 50 | return undefined; 51 | } 52 | } 53 | 54 | // Try to capture a chart instance/ref to a Base64 PNG depending on library 55 | // - Chart.js: ref.current?.toBase64Image() 56 | // - ECharts: instance.getDataURL({ type: 'png' }) 57 | // - Recharts (SVG): query SVG inside container/ref and rasterize 58 | export async function captureChartAsBase64(chartRefOrInstance) { 59 | if (!chartRefOrInstance) return undefined; 60 | 61 | try { 62 | const refLike = chartRefOrInstance.current ?? chartRefOrInstance; 63 | 64 | // Chart.js instance or chart object exposing toBase64Image 65 | if (refLike && typeof refLike.toBase64Image === 'function') { 66 | try { 67 | const dataUrl = refLike.toBase64Image(); 68 | if (typeof dataUrl === 'string' && dataUrl.startsWith(', ''); 70 | } 71 | } catch {} 72 | } 73 | 74 | // ECharts instance 75 | if (refLike && typeof refLike.getDataURL === 'function') { 76 | try { 77 | const dataUrl = refLike.getDataURL({ type: 'png', pixelRatio: 2, backgroundColor: 'transparent' }); 78 | if (typeof dataUrl === 'string' && dataUrl.startsWith(', ''); 80 | } 81 | } catch {} 82 | } 83 | 84 | // Recharts: find descendant SVG and rasterize 85 | let container = null; 86 | if (refLike instanceof Element) container = refLike; 87 | else if (refLike && refLike.container instanceof Element) container = refLike.container; 88 | 89 | if (!container && typeof document !== 'undefined') { 90 | if (typeof chartRefOrInstance === 'string') { 91 | console.log(`🔍 Looking for element with selector: "${chartRefOrInstance}"`); 92 | container = document.querySelector(chartRefOrInstance); 93 | 94 | // Simplified fallback for combined chart 95 | if (!container && chartRefOrInstance.includes('combined')) { 96 | container = document.querySelector('#comparison-combined-chart') || document.querySelector('#forecast-combined-chart'); 97 | } 98 | 99 | // Simplified fallback for individual charts 100 | if (!container && chartRefOrInstance.includes('data-city')) { 101 | const cityMatch = chartRefOrInstance.match(/data-city="([^"]+)"/); 102 | if (cityMatch) { 103 | container = document.querySelector(`[data-city="${cityMatch[1]}"]`); 104 | } 105 | } 106 | 107 | // Additional fallback for forecast charts 108 | if (!container && chartRefOrInstance.includes('forecast')) { 109 | if (chartRefOrInstance.includes('combined')) { 110 | container = document.querySelector('#forecast-combined-chart'); 111 | } else { 112 | // Try to find any forecast chart container 113 | container = document.querySelector('#forecast-individual-charts'); 114 | } 115 | } 116 | 117 | console.log(`📦 Found container with selector:`, !!container); 118 | } 119 | } 120 | 121 | if (container) { 122 | console.log(`📊 Container found, looking for SVG element...`); 123 | const svg = container.querySelector('svg'); 124 | console.log(`🎨 SVG element found:`, !!svg); 125 | if (svg) { 126 | // Ensure SVG has proper dimensions and viewBox 127 | if (!svg.getAttribute('viewBox') && (svg.clientWidth > 0 || svg.clientHeight > 0)) { 128 | const width = svg.clientWidth || svg.getAttribute('width') || 800; 129 | const height = svg.clientHeight || svg.getAttribute('height') || 400; 130 | svg.setAttribute('viewBox', `0 0 ${width} ${height}`); 131 | console.log(`📐 Set viewBox to: 0 0 ${width} ${height}`); 132 | } 133 | 134 | console.log(`🔄 Converting SVG to PNG...`); 135 | const result = await svgElementToPngBase64(svg); 136 | console.log(`✅ SVG conversion result:`, !!result); 137 | return result; 138 | } else { 139 | console.log(`❌ No SVG element found in container`); 140 | } 141 | } else { 142 | console.log(`❌ No container found for selector:`, chartRefOrInstance); 143 | } 144 | 145 | // Fallback: if a raw SVG element was passed 146 | if (refLike instanceof SVGElement) { 147 | return await svgElementToPngBase64(refLike); 148 | } 149 | } catch {} 150 | 151 | return undefined; 152 | } 153 | 154 | // Wait for charts to be fully rendered 155 | async function waitForChartsToRender(maxWaitTime = 5000) { 156 | const startTime = Date.now(); 157 | 158 | while (Date.now() - startTime < maxWaitTime) { 159 | // Check if we have any SVG elements in the comparison charts 160 | const individualCharts = document.querySelectorAll('#comparison-individual-charts svg'); 161 | const combinedChart = document.querySelector('#comparison-combined-chart svg'); 162 | 163 | // Check if charts have reasonable dimensions 164 | const hasValidCharts = Array.from(individualCharts).some(svg => 165 | svg.clientWidth > 0 && svg.clientHeight > 0 166 | ) || (combinedChart && combinedChart.clientWidth > 0 && combinedChart.clientHeight > 0); 167 | 168 | if (hasValidCharts) { 169 | console.log('✅ Charts are ready for capture'); 170 | return true; 171 | } 172 | 173 | // Wait a bit before checking again 174 | await new Promise(resolve => setTimeout(resolve, 100)); 175 | } 176 | 177 | console.log('⚠️ Charts may not be fully rendered, proceeding anyway'); 178 | return false; 179 | } 180 | 181 | // Collect charts for report depending on mode and refs 182 | // mode: 'comparison' | 'forecast' 183 | // cityRefs: map cityName -> ref/selector/container for individual charts 184 | // combinedRef: ref/selector/container for combined chart 185 | // showConfidence: ensures capture reflects current CI toggle (we assume caller renders correctly before capture) 186 | export async function collectChartsForReport({ mode, cityRefs, combinedRef, showConfidence }) { 187 | const out = {}; 188 | console.log('🔍 collectChartsForReport called with:', { mode, cityRefs, combinedRef, showConfidence }); 189 | 190 | // Wait for charts to be fully rendered before attempting capture 191 | await waitForChartsToRender(); 192 | 193 | // Ensure current visible chart already reflects CI toggle; caller is responsible 194 | // We only capture what is on-screen now. 195 | 196 | // Combined 197 | if (combinedRef) { 198 | console.log('📊 Attempting to capture combined chart with ref:', combinedRef); 199 | const combined = await captureChartAsBase64(combinedRef); 200 | if (combined) { 201 | out.combined = combined; 202 | console.log('✅ Combined chart captured successfully'); 203 | } else { 204 | console.log('❌ Failed to capture combined chart'); 205 | } 206 | } 207 | 208 | // Individuals 209 | if (cityRefs && typeof cityRefs === 'object') { 210 | console.log('🏙️ Attempting to capture individual charts for cities:', Object.keys(cityRefs)); 211 | const entries = Object.entries(cityRefs); 212 | const results = await Promise.all(entries.map(async ([cityName, ref]) => { 213 | console.log(`📈 Capturing chart for ${cityName} with selector:`, ref); 214 | const img = await captureChartAsBase64(ref); 215 | if (img) { 216 | console.log(`✅ Successfully captured chart for ${cityName}`); 217 | } else { 218 | console.log(`❌ Failed to capture chart for ${cityName}`); 219 | } 220 | return [cityName, img]; 221 | })); 222 | 223 | results.forEach(([cityName, img]) => { 224 | if (img) out[cityName] = img; 225 | }); 226 | } 227 | 228 | console.log('🎯 Final captured charts:', Object.keys(out)); 229 | return out; 230 | } 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | -------------------------------------------------------------------------------- /backend/app/services/forecast_prophet.py: -------------------------------------------------------------------------------- 1 | # forecast_prophet.py (service) 2 | from __future__ import annotations 3 | import os 4 | from datetime import datetime, timedelta 5 | import numpy as np 6 | import pandas as pd 7 | from sqlalchemy import text 8 | from sqlalchemy.orm import Session 9 | from prophet import Prophet 10 | from sklearn.metrics import mean_absolute_error, mean_squared_error 11 | from joblib import dump, load 12 | import logging 13 | 14 | logger = logging.getLogger(__name__) 15 | 16 | MODELS_DIR = os.path.join(os.path.dirname(__file__), "..", "..", "models") 17 | os.makedirs(MODELS_DIR, exist_ok=True) 18 | 19 | def _load_series(db: Session, city: str, days: int) -> pd.DataFrame: 20 | """Pull last N days from MySQL as a pandas hourly series (pm2.5 as target).""" 21 | 22 | rows = db.execute(text(""" 23 | SELECT ts, pm25 24 | FROM measurements 25 | WHERE city = :city 26 | AND source = 'aggregated' 27 | AND ts >= DATE_SUB(NOW(), INTERVAL :days DAY) 28 | ORDER BY ts 29 | """), {"city": city, "days": days}).mappings().all() 30 | 31 | if not rows: 32 | raise ValueError(f"No data found for {city} in last {days} days. Run /scrape first.") 33 | 34 | df = pd.DataFrame(rows) 35 | df["ts"] = pd.to_datetime(df["ts"]) 36 | df = df.set_index("ts").sort_index() 37 | 38 | # Ensure hourly frequency and fill small gaps 39 | df = df.asfreq("H") 40 | # Simple imputation for small gaps 41 | df["pm25"] = df["pm25"].interpolate(limit_direction="both") 42 | 43 | return df # columns: pm25 (float), index: hourly ts 44 | 45 | def _model_path(city: str) -> str: 46 | """Generate safe filesystem path for model storage.""" 47 | safe = city.lower().replace(" ", "_") 48 | return os.path.join(MODELS_DIR, f"{safe}_prophet.joblib") 49 | 50 | def train_prophet(df: pd.DataFrame) -> Prophet: 51 | """ 52 | Build a Prophet model for hourly PM2.5 forecasting. 53 | Prophet expects DataFrame with 'ds' (datetime) and 'y' (target) columns. 54 | 55 | Configuration: 56 | - Daily seasonality enabled (24-hour pattern) 57 | - Weekly seasonality enabled (7-day pattern) 58 | - Yearly seasonality disabled (not enough data typically) 59 | - Changepoint prior scale: controls flexibility (0.05 = moderate) 60 | - Seasonality prior scale: controls seasonality strength (10.0 = default) 61 | """ 62 | 63 | # Prepare data in Prophet format 64 | prophet_df = pd.DataFrame({ 65 | 'ds': df.index, 66 | 'y': df['pm25'].astype(float) 67 | }) 68 | 69 | # Remove any NaN values 70 | prophet_df = prophet_df.dropna() 71 | 72 | # Initialize Prophet model with appropriate settings for hourly data 73 | model = Prophet( 74 | daily_seasonality=True, # Capture daily patterns 75 | weekly_seasonality=True, # Capture weekly patterns 76 | yearly_seasonality=False, # Disable yearly (usually not enough data) 77 | changepoint_prior_scale=0.05, # Moderate flexibility for trend changes 78 | seasonality_prior_scale=10.0, # Default seasonality strength 79 | seasonality_mode='additive', # Additive seasonality (can use 'multiplicative' if needed) 80 | interval_width=0.80, # 80% confidence intervals (matches SARIMAX version) 81 | ) 82 | 83 | # Add hourly seasonality explicitly (Prophet doesn't add this by default) 84 | # Fourier order of 8 captures complex hourly patterns 85 | model.add_seasonality( 86 | name='hourly', 87 | period=24, 88 | fourier_order=8 89 | ) 90 | 91 | return model 92 | 93 | def fit_and_save_model(db: Session, city: str, train_days: int = 30) -> str: 94 | """ 95 | Fit Prophet model on training data and save to disk. 96 | 97 | Args: 98 | db: Database session 99 | city: City name 100 | train_days: Number of days to use for training (default: 30) 101 | 102 | Returns: 103 | Path to saved model file 104 | """ 105 | df = _load_series(db, city, days=train_days) 106 | 107 | # Prepare Prophet DataFrame 108 | prophet_df = pd.DataFrame({ 109 | 'ds': df.index, 110 | 'y': df['pm25'].astype(float) 111 | }).dropna() 112 | 113 | # Initialize and fit model 114 | model = train_prophet(df) 115 | model.fit(prophet_df) 116 | 117 | # Save fitted model 118 | path = _model_path(city) 119 | dump(model, path) 120 | logger.info(f"Prophet model saved for {city} at {path}") 121 | 122 | return path 123 | 124 | def forecast_city( 125 | db: Session, 126 | city: str, 127 | horizon_days: int = 7, 128 | train_days: int = 30, 129 | use_cache: bool = True 130 | ): 131 | """ 132 | Fit (or load) a Prophet model and forecast H days ahead with confidence intervals. 133 | 134 | Args: 135 | db: Database session 136 | city: City name 137 | horizon_days: Number of days to forecast ahead 138 | train_days: Number of days to use for training 139 | use_cache: Whether to use cached model if available 140 | 141 | Returns: 142 | Dict with city, horizon_hours, and forecast series 143 | """ 144 | path = _model_path(city) 145 | model = None 146 | 147 | # Try to load cached model 148 | if use_cache and os.path.exists(path): 149 | try: 150 | model = load(path) 151 | logger.info(f"Loaded cached Prophet model for {city}") 152 | except Exception as e: 153 | logger.warning(f"Failed to load cached model for {city}: {e}") 154 | model = None 155 | 156 | # Train new model if cache miss or disabled 157 | if model is None: 158 | df = _load_series(db, city, days=train_days) 159 | 160 | # Prepare Prophet DataFrame 161 | prophet_df = pd.DataFrame({ 162 | 'ds': df.index, 163 | 'y': df['pm25'].astype(float) 164 | }).dropna() 165 | 166 | # Initialize and fit model 167 | model = train_prophet(df) 168 | model.fit(prophet_df) 169 | 170 | # Save for future use 171 | dump(model, path) 172 | logger.info(f"Trained and saved new Prophet model for {city}") 173 | 174 | # Generate future dataframe for forecasting 175 | steps = int(horizon_days * 24) # Convert days to hours 176 | future = model.make_future_dataframe(periods=steps, freq='H') 177 | 178 | # Make predictions 179 | forecast = model.predict(future) 180 | 181 | # Extract only future predictions (not historical) 182 | forecast_future = forecast.tail(steps) 183 | 184 | # Format output 185 | out = [] 186 | for _, row in forecast_future.iterrows(): 187 | out.append({ 188 | "ts": row['ds'].strftime("%Y-%m-%d %H:%M:%S"), 189 | "yhat": float(row['yhat']), 190 | "yhat_lower": float(row['yhat_lower']), 191 | "yhat_upper": float(row['yhat_upper']) 192 | }) 193 | 194 | return { 195 | "city": city, 196 | "horizon_hours": steps, 197 | "series": out 198 | } 199 | 200 | def backtest_roll( 201 | db: Session, 202 | city: str, 203 | days: int = 30, 204 | horizon_hours: int = 24 205 | ): 206 | """ 207 | Simple rolling-origin backtest: walk forward, forecast H hours, compute MAE/RMSE. 208 | 209 | Args: 210 | db: Database session 211 | city: City name 212 | days: Total days of data to use for backtesting 213 | horizon_hours: Forecast horizon in hours 214 | 215 | Returns: 216 | Dict with city, days, horizon_hours, mae, and rmse 217 | """ 218 | df = _load_series(db, city, days=days) 219 | y = df["pm25"].astype(float).dropna() 220 | 221 | # Choose checkpoints every 24 hours to keep it fast 222 | min_train = 24 * 7 # Minimum 7 days training 223 | checkpoints = list(range(min_train, len(y) - horizon_hours, 24)) 224 | 225 | if not checkpoints: 226 | raise ValueError(f"Not enough data for backtesting. Need at least {min_train + horizon_hours} hours") 227 | 228 | preds, trues = [], [] 229 | 230 | for i, cut in enumerate(checkpoints): 231 | try: 232 | # Prepare training data 233 | train_y = y.iloc[:cut] 234 | train_df = pd.DataFrame({ 235 | 'ds': train_y.index, 236 | 'y': train_y.values 237 | }) 238 | 239 | # Train model 240 | model = Prophet( 241 | daily_seasonality=True, 242 | weekly_seasonality=True, 243 | yearly_seasonality=False, 244 | changepoint_prior_scale=0.05, 245 | seasonality_prior_scale=10.0, 246 | seasonality_mode='additive', 247 | interval_width=0.80, 248 | ) 249 | model.add_seasonality(name='hourly', period=24, fourier_order=8) 250 | 251 | # Suppress Prophet's verbose logging 252 | with suppress_stdout_stderr(): 253 | model.fit(train_df) 254 | 255 | # Forecast 256 | future = model.make_future_dataframe(periods=horizon_hours, freq='H') 257 | forecast = model.predict(future) 258 | fc = forecast.tail(horizon_hours)['yhat'] 259 | 260 | # Get true values 261 | true = y.iloc[cut:cut + horizon_hours] 262 | 263 | # Align lengths (edge cases) 264 | n = min(len(fc), len(true)) 265 | preds.extend(fc.iloc[:n].values) 266 | trues.extend(true.iloc[:n].values) 267 | 268 | logger.info(f"Backtest checkpoint {i+1}/{len(checkpoints)} completed for {city}") 269 | 270 | except Exception as e: 271 | logger.warning(f"Backtest checkpoint {i+1} failed for {city}: {e}") 272 | continue 273 | 274 | if not preds or not trues: 275 | raise ValueError(f"Backtest failed: no valid predictions generated for {city}") 276 | 277 | # Compute metrics 278 | mae = float(mean_absolute_error(trues, preds)) 279 | rmse = float(np.sqrt(mean_squared_error(trues, preds))) 280 | 281 | return { 282 | "city": city, 283 | "days": days, 284 | "horizon_hours": horizon_hours, 285 | "mae": mae, 286 | "rmse": rmse, 287 | "n_checkpoints": len(checkpoints), 288 | "n_predictions": len(preds) 289 | } 290 | 291 | def forecast_cities( 292 | db: Session, 293 | cities: list[str], 294 | horizon_days: int = 7, 295 | train_days: int = 30, 296 | use_cache: bool = True, 297 | ): 298 | """ 299 | Runs forecast_city for each city and returns a dict { city -> series }. 300 | Also returns a small summary (mean predicted pm25 per city) to pick best/worst. 301 | 302 | Args: 303 | db: Database session 304 | cities: List of city names 305 | horizon_days: Number of days to forecast ahead 306 | train_days: Number of days to use for training 307 | use_cache: Whether to use cached models 308 | 309 | Returns: 310 | Dict with byCity forecasts, summary stats, best city, and worst city 311 | """ 312 | results = {} 313 | summary = {} 314 | 315 | for city in cities: 316 | try: 317 | fc = forecast_city(db, city, horizon_days, train_days, use_cache) 318 | results[city] = fc["series"] 319 | 320 | # Mean of yhat over the horizon for ranking 321 | vals = [p["yhat"] for p in fc["series"] if p.get("yhat") is not None] 322 | summary[city] = { 323 | "mean_yhat": (sum(vals) / len(vals)) if vals else None, 324 | "n_points": len(vals) 325 | } 326 | logger.info(f"Forecast completed for {city}: mean_yhat={summary[city]['mean_yhat']:.2f}") 327 | 328 | except Exception as e: 329 | logger.error(f"Forecast failed for {city}: {e}") 330 | results[city] = {"error": str(e)} 331 | summary[city] = {"mean_yhat": None, "n_points": 0} 332 | 333 | # Pick best/worst by mean_yhat (lower is "cleaner") 334 | valid = {c: s for c, s in summary.items() if s["mean_yhat"] is not None} 335 | best = min(valid, key=lambda c: valid[c]["mean_yhat"]) if valid else None 336 | worst = max(valid, key=lambda c: valid[c]["mean_yhat"]) if valid else None 337 | 338 | return { 339 | "byCity": results, 340 | "summary": summary, 341 | "best": best, 342 | "worst": worst 343 | } 344 | 345 | # Utility context manager to suppress Prophet's verbose output 346 | class suppress_stdout_stderr: 347 | """ 348 | Context manager to suppress stdout and stderr. 349 | Useful for suppressing Prophet's verbose logging during backtesting. 350 | """ 351 | def __enter__(self): 352 | import sys 353 | self.old_stdout = sys.stdout 354 | self.old_stderr = sys.stderr 355 | sys.stdout = open(os.devnull, 'w') 356 | sys.stderr = open(os.devnull, 'w') 357 | 358 | def __exit__(self, exc_type, exc_val, exc_tb): 359 | import sys 360 | sys.stdout.close() 361 | sys.stderr.close() 362 | sys.stdout = self.old_stdout 363 | sys.stderr = self.old_stderr -------------------------------------------------------------------------------- /frontend/src/Home.jsx: -------------------------------------------------------------------------------- 1 | import { motion } from "framer-motion"; 2 | import { useNavigate } from "react-router-dom"; 3 | import AuroraBackground from "./components/common/AuroraBackground"; 4 | import AuroraButton from "./components/common/AuroraButton"; 5 | import Header from "./components/Header"; 6 | import CloudIcon from "./components/common/icons/CloudIcon"; 7 | import BarChartIcon from "./components/common/icons/BarChartIcon"; 8 | import CpuIcon from "./components/common/icons/CpuIcon"; 9 | import MessageIcon from "./components/common/icons/MessageIcon"; 10 | import LiquidEther from "./components/LiquidEther.jsx"; 11 | 12 | export default function Home() { 13 | const navigate = useNavigate(); 14 | 15 | const handleNavigateToWorkspace = () => { 16 | navigate('/workspace'); 17 | }; 18 | 19 | return ( 20 |
21 | 22 |
23 | 24 | 25 | 26 | 27 |
29 | ); 30 | } 31 | 32 | function HeroSection({ onNavigateToWorkspace }) { 33 | return ( 34 |
35 | {/* LiquidEther Background */} 36 |
37 | 55 |
56 | 57 |
58 | 64 | 65 | Intelligent Air Quality 66 | 67 |
68 | Analytics Platform 69 |
70 | 76 | Advanced AI-powered platform for real-time air quality monitoring, 77 | predictive forecasting, and comprehensive environmental analytics. 78 | Make data-driven decisions for healthier cities. 79 | 80 | 86 | 87 | Start Analyzing 88 | 89 | 90 |
91 |
92 |
93 | ); 94 | } 95 | 96 | function ServicesSection() { 97 | const services = [ 98 | { icon: CloudIcon, title: "Data Collection", description: "Real-time air quality data scraping from multiple sources with advanced validation", color: "from-cyan-500 to-blue-500" }, 99 | { icon: BarChartIcon, title: "City Comparison", description: "Compare PM2.5 levels across multiple cities with interactive visualizations", color: "from-purple-500 to-pink-500" }, 100 | { icon: CpuIcon, title: "AI Forecasting", description: "Predict future air quality trends using machine learning models", color: "from-green-500 to-cyan-500" }, 101 | { icon: MessageIcon, title: "AI Assistant", description: "Natural language queries for instant air quality insights and analysis", color: "from-orange-500 to-red-500" }, 102 | { icon: CloudIcon, title: "Report Generation", description: "Automated PDF reports with charts, insights, and recommendations", color: "from-blue-500 to-purple-500" }, 103 | ]; 104 | 105 | return ( 106 |
107 |
108 | 114 | Our Services 115 | 116 | 122 | Comprehensive suite of tools for air quality analysis and environmental monitoring 123 | 124 |
125 |
126 | {services.map((service, index) => ( 127 | 135 |
136 | 137 |
138 |

{service.title}

139 |

{service.description}

140 |
141 | ))} 142 | 148 |
149 | 150 |
151 |

Advanced Analytics

152 |

153 | Leverage cutting-edge AI and machine learning for deep environmental insights 154 |

155 |
156 | {["Real-time", "Predictive", "Multi-city", "Historical"].map((tag) => ( 157 | 158 | {tag} 159 | 160 | ))} 161 |
162 |
163 |
164 |
165 | ); 166 | } 167 | 168 | function PricingSection({ onNavigateToWorkspace }) { 169 | const plans = [ 170 | { name: "Free", price: "$0", period: "Per month", popular: false, features: { cities: "1 city per request", lookback: "7 days scrape lookback", forecasting: "Not available", confidence: "✗ Confidence intervals", reports: "✗ PDF report generator", agent: "No agentic planner", api: "Rate-limited API access", support: "Community support" }, cta: "Get Started", variant: "secondary" }, 171 | { name: "Pro", price: "$19.99", period: "Per month", popular: true, features: { cities: "Up to 3 cities", lookback: "30 days scrape lookback", forecasting: "Yes 💹 up to 7-day horizon", confidence: "Included Confidence intervals", reports: "Basic PDF reports", agent: "No agentic planner", api: "Standard API access", support: "Priority support" }, cta: "Start Pro", variant: "primary" }, 172 | { name: "Enterprise", price: "$499.99", period: "Billed annually", popular: false, features: { cities: "Unlimited cities", lookback: "90 days scrape lookback", forecasting: "Yes 💹 up to 30-day horizon", confidence: "Included Confidence intervals", reports: "Branded, multi-chart reports", agent: "Full agentic planner", api: "Priority + SLA API access", support: "Priority support" }, cta: "Contact Sales", variant: "success" }, 173 | ]; 174 | 175 | return ( 176 |
177 |
178 | 184 | Pricing & Plans 185 | 186 | 192 | Choose the plan that fits your air-quality analytics needs. Upgrade anytime. 193 | 194 |
195 |
196 | {plans.map((plan, index) => ( 197 | 207 | {plan.popular && ( 208 |
209 | 210 | Most Popular 211 | 212 |
213 | )} 214 |
215 |

{plan.name}

216 |
217 | {plan.price} 218 | {plan.period} 219 |
220 |
221 |
222 | {Object.entries(plan.features).map(([key, value]) => ( 223 |
224 | {key.replace(/([A-Z])/g, ' $1').toLowerCase()}: 225 | {value} 226 |
227 | ))} 228 |
229 | 230 | {plan.cta} 231 | 232 |
233 | ))} 234 |
235 |
236 | ); 237 | } 238 | 239 | function FAQSection() { 240 | const faqs = [ 241 | { question: "How accurate is the air quality data?", answer: "Our data is sourced from multiple reliable environmental monitoring stations and validated through advanced algorithms for maximum accuracy." }, 242 | { question: "Can I integrate with my existing systems?", answer: "Yes, we provide comprehensive API access for seamless integration with your existing environmental monitoring systems." }, 243 | { question: "What cities are currently supported?", answer: "We support major cities worldwide with continuous expansion. Contact us for specific city availability." }, 244 | { question: "How often is the data updated?", answer: "Data is updated in real-time with most sources providing updates every 15-30 minutes." }, 245 | ]; 246 | return ( 247 |
248 |
249 | 255 | Frequently Asked Questions 256 | 257 |
258 |
259 | {faqs.map((faq, index) => ( 260 | 267 |

{faq.question}

268 |

{faq.answer}

269 |
270 | ))} 271 |
272 |
273 | ); 274 | } 275 | 276 | function Footer() { 277 | return ( 278 | 302 | ); 303 | } 304 | 305 | 306 | 307 | -------------------------------------------------------------------------------- /backend/app/services/llama_client.py: -------------------------------------------------------------------------------- 1 | import os, json, requests 2 | 3 | OLLAMA_BASE = os.getenv("OLLAMA_BASE_URL", "http://127.0.0.1:11434") 4 | OLLAMA_MODEL = os.getenv("OLLAMA_MODEL", "gemma3:4b") 5 | 6 | CRITIC_PROMPT = """You are a strict capability critic for an MCP agent. 7 | The agent ONLY has these tools: scrape_city, compare_cities, forecast_city, forecast_multi. 8 | They work ONLY on air-quality data (PM2.5/PM10) over cities and time ranges. 9 | 10 | Your job: 11 | 1) Decide if the user's request is fully supported by these tools. 12 | 2) If the request is MIXED (supported + unsupported actions like writing blogs, emailing, designing, exporting docs), split it: 13 | - Extract the supported subtask (rewrite it cleanly). 14 | - List the unsupported parts with reasons. 15 | 3) If the request is gibberish or entirely unrelated (e.g., cooking, poems, finance), mark as IRRELEVANT. 16 | 17 | Return STRICT JSON: 18 | { 19 | "category": "supported" | "mixed" | "irrelevant", 20 | "unsupported_reasons": [ "" ], 21 | "supported_rewrite": "if category is mixed, rewrite only the supported part; else empty string", 22 | "examples": [ 23 | "Compare Colombo and Kandy last 7 days", 24 | "Forecast Panadura next 3 days (train 7 days)" 25 | ] 26 | } 27 | Only JSON. No extra text. 28 | """ 29 | 30 | SYSTEM_PROMPT = """You are a planning agent. Turn the user's request into a JSON plan of tool calls. 31 | Only use these tools and their JSON schemas. Return STRICT JSON with this shape: 32 | 33 | { 34 | "plan": [ 35 | {"name": "", "arguments": { ... }}, 36 | ... 37 | ], 38 | "notes": "very brief explanation", 39 | "irrelevant": false 40 | } 41 | 42 | Strictly follow these Rules: 43 | - Use only the listed tools; arguments must match the schemas. 44 | - If the user asks to compare, use compare_cities with at least 2 cities. 45 | - If forecasting multiple cities, use forecast_multi. 46 | - If data may be stale, insert a scrape_city step BEFORE compare/forecast. 47 | - REJECT requests like "Generate me an image comparing Colombo and Kandy for past 7 days", "Generate me an blogpost article comparing Colombo and Kandy for past 7 days", "Generate me an newspaper article forcasting Colombo and Kandy 7 days ahead" 48 | - REJECT asks requiring non-available abilities (blog writing, emails, PDFs, images, SQL DDL, etc.). 49 | - If the user's request is completely unrelated to air quality analysis (e.g., asking about weather, cooking, random topics), set "irrelevant": true and "plan": []. 50 | - For mixed requests: plan only the tool-capable part, set irrelevant=false, and include notes with unsupported_reasons. 51 | - Keep notes short. Do not include any text outside of the JSON object. 52 | """ 53 | 54 | def build_tool_catalog(tools: list[dict]) -> str: 55 | return json.dumps(tools, indent=2, ensure_ascii=False) 56 | 57 | def critique_prompt(prompt: str, tools: list[dict], temperature: float = 0.0, timeout: int = 45) -> dict: 58 | """Critique a prompt to determine if it's supported, mixed, or irrelevant.""" 59 | payload = { 60 | "model": OLLAMA_MODEL, 61 | "messages": [ 62 | {"role": "system", "content": CRITIC_PROMPT}, 63 | {"role": "user", "content": prompt} 64 | ], 65 | "stream": False, 66 | "format": "json", 67 | "options": {"temperature": temperature} 68 | } 69 | r = requests.post(f"{OLLAMA_BASE}/api/chat", json=payload, timeout=timeout) 70 | r.raise_for_status() 71 | raw = r.json()["message"]["content"] 72 | try: 73 | return json.loads(raw) 74 | except Exception: 75 | import re 76 | m = re.search(r"\{.*\}", raw, re.S) 77 | return json.loads(m.group(0)) if m else {"category":"irrelevant","unsupported_reasons":["Non-JSON critic output"],"supported_rewrite":""} 78 | 79 | def plan_with_llama(prompt: str, tools: list[dict], temperature: float = 0.2, timeout: int = 60) -> dict: 80 | """Ask Ollama (local) to produce a JSON plan.""" 81 | sys = SYSTEM_PROMPT + "\n\nTOOLS (JSON Schemas):\n" + build_tool_catalog(tools) 82 | payload = { 83 | "model": OLLAMA_MODEL, 84 | "messages": [ 85 | {"role": "system", "content": sys}, 86 | {"role": "user", "content": prompt} 87 | ], 88 | "stream": False, 89 | "format": "json", 90 | "options": {"temperature": temperature} 91 | } 92 | r = requests.post(f"{OLLAMA_BASE}/api/chat", json=payload, timeout=timeout) 93 | r.raise_for_status() 94 | data = r.json() 95 | content = data["message"]["content"] 96 | 97 | try: 98 | return json.loads(content) 99 | except json.JSONDecodeError: 100 | import re 101 | m = re.search(r"\{.*\}", content, re.S) 102 | if not m: 103 | raise RuntimeError("LLM did not return JSON plan") 104 | return json.loads(m.group(0)) 105 | 106 | def plan_with_critic(prompt: str, tools: list[dict], temperature: float = 0.2, timeout: int = 60) -> dict: 107 | """Two-stage planner: critique first, then plan if supported.""" 108 | critic = critique_prompt(prompt, tools) 109 | cat = critic.get("category","irrelevant") 110 | 111 | if cat == "irrelevant": 112 | return { 113 | "plan": [], 114 | "notes": None, 115 | "irrelevant": True, 116 | "reason": "Your request cannot be done with the available tools.", 117 | "unsupported_reasons": critic.get("unsupported_reasons",[]), 118 | "critic": critic 119 | } 120 | 121 | # Use original prompt if supported, or rewritten prompt if mixed 122 | use_prompt = prompt if cat == "supported" else critic.get("supported_rewrite") or prompt 123 | 124 | # Fall back to existing LLM planner 125 | base = plan_with_llama(use_prompt, tools, temperature=temperature, timeout=timeout) 126 | 127 | # If mixed, carry reasons forward 128 | if cat == "mixed": 129 | base["unsupported_reasons"] = critic.get("unsupported_reasons",[]) 130 | note = base.get("notes") or "" 131 | if base["unsupported_reasons"]: 132 | base["notes"] = (note + (" | " if note else "") + 133 | "Unsupported: " + "; ".join(base["unsupported_reasons"])) 134 | 135 | base["critic"] = critic 136 | return base 137 | 138 | def generate_llm_report(comparison_data, chart_data, cities, period_days, show_combined): 139 | """ 140 | Generate LLM-powered comparison report using Gemma3:4b 141 | """ 142 | 143 | SYSTEM_PROMPT = """You are an environmental health expert AI that generates structured air quality comparison reports. Your task is to analyze air quality data and return a comprehensive JSON report in the exact structure provided. 144 | 145 | CRITICAL REQUIREMENTS: 146 | 1. You MUST return ONLY valid JSON - no additional text, explanations, or markdown 147 | 2. You MUST use the exact JSON structure provided below 148 | 3. You MUST fill in all placeholders with actual data from the analysis 149 | 4. You MUST use scientific, factual language while maintaining accessibility 150 | 5. You MUST base all conclusions on the provided PM2.5 data and established health guidelines 151 | 152 | JSON STRUCTURE TO FOLLOW: 153 | { 154 | "report": { 155 | "title": "Air Quality Comparative Analysis & Health Impact Assessment", 156 | "executiveOverview": { 157 | "summary": "The analysis reveals significant disparities in air quality across the monitored cities. [City with best performance] demonstrates the most favorable conditions with an average PM2.5 of [X] µg/m³, while [City with worst performance] requires immediate attention with levels reaching [Y] µg/m³." 158 | }, 159 | "cityPerformanceBreakdown": { 160 | "topPerformer": { 161 | "city": "[Best City]", 162 | "averagePM25": "[Value] µg/m³", 163 | "healthImplications": "Air quality generally falls within acceptable limits, posing minimal health risks to the general population. Sensitive groups may still experience mild symptoms during peak periods.", 164 | "icon": "🏆" 165 | }, 166 | "areasNeedingImprovement": { 167 | "city": "[Worst City]", 168 | "averagePM25": "[Value] µg/m³", 169 | "healthRisks": "Prolonged exposure at these levels increases risks of respiratory and cardiovascular diseases. Immediate protective measures recommended.", 170 | "icon": "⚠️" 171 | } 172 | }, 173 | "healthAwarenessInsights": { 174 | "shortTermExposureEffects": { 175 | "healthyAdults": "Minor irritation, temporary breathing discomfort", 176 | "sensitiveGroups": "Aggravated asthma, increased respiratory symptoms", 177 | "elderlyAndChildren": "Higher susceptibility to respiratory infections" 178 | }, 179 | "longTermHealthImplications": { 180 | "risks": [ 181 | "Chronic respiratory diseases", 182 | "Cardiovascular complications", 183 | "Reduced lung function development in children", 184 | "Increased cancer risk with prolonged exposure" 185 | ] 186 | } 187 | }, 188 | "regionalPatternsAndTrends": { 189 | "description": "The data reveals [describe any patterns - seasonal variations, consistent poor performers, improving/declining trends]" 190 | }, 191 | "protectiveRecommendations": { 192 | "immediateActions": { 193 | "highPM25Areas": "Limit outdoor activities, use N95 masks", 194 | "indoorAirQuality": "Employ HEPA filters, maintain proper ventilation", 195 | "vulnerableGroups": "Regular health monitoring, avoid peak pollution hours" 196 | }, 197 | "longTermCommunityMeasures": [ 198 | "Enhanced public transportation systems", 199 | "Green space development", 200 | "Industrial emission controls", 201 | "Public health awareness campaigns" 202 | ] 203 | }, 204 | "comparativeRiskAssessment": { 205 | "description": "The analysis indicates that residents in [worst city] face approximately [X]% higher health risks compared to those in [best city], emphasizing the need for targeted interventions." 206 | } 207 | } 208 | } 209 | 210 | DATA INTERPRETATION GUIDELINES: 211 | - PM2.5 levels below 12 µg/m³: Good air quality 212 | - PM2.5 levels 12-35 µg/m³: Moderate air quality 213 | - PM2.5 levels 35-55 µg/m³: Unhealthy for sensitive groups 214 | - PM2.5 levels above 55 µg/m³: Unhealthy for all populations 215 | - Calculate risk percentage: ((worst_city_pm25 - best_city_pm25) / best_city_pm25 * 100) 216 | 217 | Remember: Return ONLY the JSON object, no other text.""" 218 | 219 | # Prepare the data for the LLM 220 | data_context = { 221 | "comparison_data": comparison_data, 222 | "chart_data": chart_data, 223 | "cities": cities, 224 | "period_days": period_days, 225 | "show_combined": show_combined 226 | } 227 | 228 | # Create the user prompt with the data 229 | user_prompt = f"""Please analyze the following air quality comparison data and generate a comprehensive report: 230 | 231 | Cities analyzed: {', '.join(cities) if cities else 'N/A'} 232 | Analysis period: {period_days} days 233 | Best performing city: {comparison_data.get('best', 'N/A')} 234 | Worst performing city: {comparison_data.get('worst', 'N/A')} 235 | 236 | City statistics: 237 | {json.dumps(comparison_data.get('byCity', {}), indent=2)} 238 | 239 | Please generate the structured report following the exact JSON format provided in the system prompt.""" 240 | 241 | payload = { 242 | "model": OLLAMA_MODEL, 243 | "messages": [ 244 | {"role": "system", "content": SYSTEM_PROMPT}, 245 | {"role": "user", "content": user_prompt} 246 | ], 247 | "stream": False, 248 | "format": "json", 249 | "options": {"temperature": 0.3} 250 | } 251 | 252 | try: 253 | r = requests.post(f"{OLLAMA_BASE}/api/chat", json=payload, timeout=120) 254 | r.raise_for_status() 255 | data = r.json() 256 | content = data["message"]["content"] 257 | 258 | # Parse the JSON response 259 | try: 260 | return json.loads(content) 261 | except json.JSONDecodeError: 262 | # Try to extract JSON from the response 263 | import re 264 | m = re.search(r"\{.*\}", content, re.S) 265 | if m: 266 | return json.loads(m.group(0)) 267 | else: 268 | raise RuntimeError("LLM did not return valid JSON") 269 | 270 | except requests.RequestException as e: 271 | raise RuntimeError(f"Failed to communicate with LLM: {str(e)}") 272 | except Exception as e: 273 | raise RuntimeError(f"Failed to generate LLM report: {str(e)}") 274 | 275 | def generate_llm_forecast_report(forecast_data, chart_data, cities, horizon_days, train_days, show_ci, show_combined, selected_model): 276 | """ 277 | Generate LLM-powered forecast report using Gemma3:4b 278 | """ 279 | 280 | SYSTEM_PROMPT = """You are an environmental health expert AI that generates structured air quality forecast reports. Your task is to analyze forecast data and return a comprehensive JSON report in the exact structure provided. 281 | 282 | CRITICAL REQUIREMENTS: 283 | 1. You MUST return ONLY valid JSON - no additional text, explanations, or markdown 284 | 2. You MUST use the exact JSON structure provided below 285 | 3. You MUST fill in all placeholders with actual data from the analysis 286 | 4. You MUST use scientific, factual language while maintaining accessibility 287 | 5. You MUST base all conclusions on the provided forecast data and established health guidelines 288 | 289 | JSON STRUCTURE TO FOLLOW: 290 | { 291 | "report": { 292 | "title": "AI-Powered Air Quality Forecast Analysis & Health Impact Assessment", 293 | "executiveOverview": { 294 | "summary": "The forecast analysis reveals significant variations in predicted air quality across the monitored cities. [City with best forecast] demonstrates the most favorable predicted conditions with an average forecast of [X] µg/m³, while [City with challenging forecast] requires attention with predicted levels reaching [Y] µg/m³." 295 | }, 296 | "forecastPerformance": { 297 | "bestForecast": { 298 | "city": "[Best City]", 299 | "averageForecast": "[Value] µg/m³", 300 | "forecastImplications": "Predicted air quality generally falls within acceptable limits, posing minimal health risks to the general population. Sensitive groups may still experience mild symptoms during peak periods.", 301 | "icon": "📈" 302 | }, 303 | "challengingForecast": { 304 | "city": "[Challenging City]", 305 | "averageForecast": "[Value] µg/m³", 306 | "forecastRisks": "Predicted exposure at these levels increases risks of respiratory and cardiovascular diseases. Immediate protective measures recommended.", 307 | "icon": "⚠️" 308 | } 309 | }, 310 | "modelPerformance": { 311 | "confidenceLevel": "High confidence in forecast accuracy based on historical data patterns", 312 | "predictionReliability": "Model shows strong predictive capability with [X]% accuracy on validation data", 313 | "modelType": "[SARIMAX/Prophet] - Optimized for time series forecasting with seasonal patterns" 314 | }, 315 | "forecastTrends": { 316 | "patterns": [ 317 | "Seasonal variation patterns detected", 318 | "Weekend vs weekday differences observed", 319 | "Peak pollution hours identified", 320 | "Long-term trend analysis completed" 321 | ] 322 | }, 323 | "healthImpact": { 324 | "shortTermRisks": { 325 | "highRiskAreas": "Areas with predicted PM2.5 levels above 35 µg/m³", 326 | "vulnerableGroups": "Children, elderly, and those with respiratory conditions at higher risk" 327 | }, 328 | "longTermImplications": [ 329 | "Chronic respiratory disease development risk", 330 | "Cardiovascular health impact assessment", 331 | "Reduced lung function in children", 332 | "Increased cancer risk with prolonged exposure" 333 | ] 334 | }, 335 | "recommendations": { 336 | "immediateActions": [ 337 | "Monitor air quality alerts in high-risk areas", 338 | "Use N95 masks during predicted high pollution periods", 339 | "Limit outdoor activities during peak forecast hours", 340 | "Ensure proper indoor air filtration systems" 341 | ], 342 | "longTermPlanning": [ 343 | "Develop air quality monitoring infrastructure", 344 | "Implement green space development plans", 345 | "Enhance public transportation systems", 346 | "Create public health awareness campaigns" 347 | ] 348 | }, 349 | "uncertaintyAssessment": { 350 | "description": "The forecast model demonstrates [X]% confidence in predictions, with uncertainty increasing over longer time horizons. Weather patterns and seasonal variations may impact forecast accuracy." 351 | } 352 | } 353 | } 354 | 355 | DATA INTERPRETATION GUIDELINES: 356 | - PM2.5 levels below 12 µg/m³: Good air quality forecast 357 | - PM2.5 levels 12-35 µg/m³: Moderate air quality forecast 358 | - PM2.5 levels 35-55 µg/m³: Unhealthy for sensitive groups forecast 359 | - PM2.5 levels above 55 µg/m³: Unhealthy for all populations forecast 360 | - Confidence intervals indicate prediction uncertainty 361 | - Model type affects forecast reliability and accuracy 362 | 363 | Remember: Return ONLY the JSON object, no other text.""" 364 | 365 | # Prepare the data for the LLM 366 | data_context = { 367 | "forecast_data": forecast_data, 368 | "chart_data": chart_data, 369 | "cities": cities, 370 | "horizon_days": horizon_days, 371 | "train_days": train_days, 372 | "show_ci": show_ci, 373 | "show_combined": show_combined, 374 | "selected_model": selected_model 375 | } 376 | 377 | # Create the user prompt with the data 378 | user_prompt = f"""Please analyze the following air quality forecast data and generate a comprehensive report: 379 | 380 | Cities forecasted: {', '.join(cities) if cities else 'N/A'} 381 | Forecast horizon: {horizon_days} days 382 | Training period: {train_days} days 383 | Model used: {selected_model} 384 | Best forecasted city: {forecast_data.get('best', 'N/A')} 385 | Challenging forecasted city: {forecast_data.get('worst', 'N/A')} 386 | 387 | Forecast statistics: 388 | {json.dumps(forecast_data.get('summary', {}), indent=2)} 389 | 390 | Please generate the structured report following the exact JSON format provided in the system prompt.""" 391 | 392 | payload = { 393 | "model": OLLAMA_MODEL, 394 | "messages": [ 395 | {"role": "system", "content": SYSTEM_PROMPT}, 396 | {"role": "user", "content": user_prompt} 397 | ], 398 | "stream": False, 399 | "format": "json", 400 | "options": {"temperature": 0.3} 401 | } 402 | 403 | try: 404 | r = requests.post(f"{OLLAMA_BASE}/api/chat", json=payload, timeout=120) 405 | r.raise_for_status() 406 | data = r.json() 407 | content = data["message"]["content"] 408 | 409 | # Parse the JSON response 410 | try: 411 | return json.loads(content) 412 | except json.JSONDecodeError: 413 | # Try to extract JSON from the response 414 | import re 415 | m = re.search(r"\{.*\}", content, re.S) 416 | if m: 417 | return json.loads(m.group(0)) 418 | else: 419 | raise RuntimeError("LLM did not return valid JSON") 420 | 421 | except requests.RequestException as e: 422 | raise RuntimeError(f"Failed to communicate with LLM: {str(e)}") 423 | except Exception as e: 424 | raise RuntimeError(f"Failed to generate LLM forecast report: {str(e)}") 425 | --------------------------------------------------------------------------------