├── .classpath ├── .project ├── .settings └── org.eclipse.jdt.core.prefs ├── README.md ├── bin └── com │ └── machinelearning │ ├── LogisticRegression.class │ ├── MachineLearning.class │ └── NaiveBayes.class ├── datasets ├── heart-test.txt ├── heart-train.txt ├── simple-test.txt ├── simple-train.txt ├── vote-test.txt └── vote-train.txt ├── results ├── logisticregression.txt ├── naivebayes.txt └── writeup.txt └── src └── com └── machinelearning ├── LogisticRegression.java ├── MachineLearning.java └── NaiveBayes.java /.classpath: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | -------------------------------------------------------------------------------- /.project: -------------------------------------------------------------------------------- 1 | 2 | 3 | naiveBayesLogisticRegression 4 | 5 | 6 | 7 | 8 | 9 | org.eclipse.jdt.core.javabuilder 10 | 11 | 12 | 13 | 14 | 15 | org.eclipse.jdt.core.javanature 16 | 17 | 18 | -------------------------------------------------------------------------------- /.settings/org.eclipse.jdt.core.prefs: -------------------------------------------------------------------------------- 1 | #Sun Mar 07 15:29:59 PST 2010 2 | eclipse.preferences.version=1 3 | org.eclipse.jdt.core.compiler.codegen.inlineJsrBytecode=enabled 4 | org.eclipse.jdt.core.compiler.codegen.targetPlatform=1.5 5 | org.eclipse.jdt.core.compiler.codegen.unusedLocal=preserve 6 | org.eclipse.jdt.core.compiler.compliance=1.5 7 | org.eclipse.jdt.core.compiler.debug.lineNumber=generate 8 | org.eclipse.jdt.core.compiler.debug.localVariable=generate 9 | org.eclipse.jdt.core.compiler.debug.sourceFile=generate 10 | org.eclipse.jdt.core.compiler.problem.assertIdentifier=error 11 | org.eclipse.jdt.core.compiler.problem.enumIdentifier=error 12 | org.eclipse.jdt.core.compiler.source=1.5 13 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | ## Machine Learning 2 | This project contains simple implementations of Naive Bayes and Logistic 3 | Regression. 4 | -------------------------------------------------------------------------------- /bin/com/machinelearning/LogisticRegression.class: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/econner/MachineLearning/aa2115a8b1b49ad3427874488cfd80886635eddb/bin/com/machinelearning/LogisticRegression.class -------------------------------------------------------------------------------- /bin/com/machinelearning/MachineLearning.class: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/econner/MachineLearning/aa2115a8b1b49ad3427874488cfd80886635eddb/bin/com/machinelearning/MachineLearning.class -------------------------------------------------------------------------------- /bin/com/machinelearning/NaiveBayes.class: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/econner/MachineLearning/aa2115a8b1b49ad3427874488cfd80886635eddb/bin/com/machinelearning/NaiveBayes.class -------------------------------------------------------------------------------- /datasets/heart-test.txt: -------------------------------------------------------------------------------- 1 | 22 2 | 187 3 | 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0: 1 4 | 1 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0: 1 5 | 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 1: 1 6 | 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 0: 1 7 | 0 0 1 0 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0 1: 1 8 | 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 1: 1 9 | 1 0 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 0 1 0 1: 1 10 | 1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0: 1 11 | 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0: 1 12 | 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 0 1 0 0 0: 1 13 | 1 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0: 1 14 | 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0: 1 15 | 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1: 1 16 | 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0: 1 17 | 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0: 1 18 | 1 0 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0: 1 19 | 1 1 0 0 1 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0 1 1: 1 20 | 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 1: 1 21 | 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0: 1 22 | 1 1 1 0 1 0 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 0: 1 23 | 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0: 1 24 | 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1: 1 25 | 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0: 1 26 | 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0: 1 27 | 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0: 1 28 | 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0: 1 29 | 1 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0: 1 30 | 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 0 1 1 0 0: 1 31 | 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0: 1 32 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0: 1 33 | 1 1 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0: 1 34 | 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0: 1 35 | 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 1 1: 1 36 | 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1: 1 37 | 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0: 1 38 | 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1: 1 39 | 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0: 1 40 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0: 1 41 | 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 1 1 1: 1 42 | 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1: 1 43 | 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 1: 1 44 | 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0: 1 45 | 0 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 0 0 0 1 1 1: 1 46 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1: 1 47 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0: 1 48 | 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1: 1 49 | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1: 1 50 | 0 0 1 0 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1: 1 51 | 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0: 1 52 | 1 0 1 1 1 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 1 0: 1 53 | 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1: 1 54 | 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1: 1 55 | 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1: 1 56 | 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1: 1 57 | 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1: 1 58 | 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 0 1 1: 1 59 | 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1: 1 60 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1: 1 61 | 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0: 1 62 | 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1: 1 63 | 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 1: 1 64 | 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0: 1 65 | 0 1 0 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1: 1 66 | 1 0 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1: 1 67 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0: 1 68 | 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0: 1 69 | 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1: 1 70 | 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0: 1 71 | 1 1 0 1 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0: 1 72 | 1 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 0 1 1 0 1 1: 1 73 | 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 1: 1 74 | 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 1: 1 75 | 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1: 1 76 | 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1: 1 77 | 0 0 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0: 1 78 | 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 1: 1 79 | 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1: 1 80 | 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 0: 1 81 | 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 1: 1 82 | 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 1: 1 83 | 1 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1: 1 84 | 0 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 1 1: 1 85 | 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1: 1 86 | 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1: 1 87 | 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 0 0 1 1 0 0: 1 88 | 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1: 1 89 | 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 0 1 0 0: 1 90 | 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 1 1 0 1: 1 91 | 1 0 1 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1: 1 92 | 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0: 1 93 | 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 0: 1 94 | 1 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1: 1 95 | 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0: 1 96 | 0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 0: 1 97 | 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1: 1 98 | 0 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0: 1 99 | 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1: 1 100 | 1 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1: 1 101 | 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 0 1 0 0 1 1: 1 102 | 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1 1 1: 1 103 | 1 1 0 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0 0: 1 104 | 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1: 1 105 | 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 0: 1 106 | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0: 1 107 | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0: 1 108 | 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1: 1 109 | 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0: 1 110 | 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0: 1 111 | 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0: 1 112 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 1 113 | 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0: 1 114 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1: 1 115 | 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0: 1 116 | 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0: 1 117 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 1 118 | 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0: 1 119 | 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1: 1 120 | 1 1 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0: 1 121 | 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0: 1 122 | 1 1 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1: 1 123 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 1 124 | 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0: 1 125 | 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0: 1 126 | 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1: 1 127 | 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1: 1 128 | 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0: 1 129 | 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0: 1 130 | 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0 0: 1 131 | 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0: 1 132 | 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1 0 0: 1 133 | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0: 1 134 | 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1: 1 135 | 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0 0 1 0: 1 136 | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1: 1 137 | 1 0 0 0 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0: 1 138 | 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 1 1: 1 139 | 1 0 1 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0: 1 140 | 1 1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 0 0 0 1 1 0: 1 141 | 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1: 1 142 | 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0: 1 143 | 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 1: 1 144 | 0 1 1 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 1: 1 145 | 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1: 1 146 | 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 0 1: 1 147 | 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1: 1 148 | 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1: 1 149 | 1 1 1 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1: 1 150 | 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 1 1: 1 151 | 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 1 1 1: 1 152 | 1 0 0 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 0: 1 153 | 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1: 1 154 | 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0: 1 155 | 1 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0: 1 156 | 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 0 0: 1 157 | 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1: 1 158 | 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1: 1 159 | 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 0: 1 160 | 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0: 1 161 | 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1: 1 162 | 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1: 1 163 | 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0: 1 164 | 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 0 0 1 1: 1 165 | 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0: 1 166 | 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 1 1: 1 167 | 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0: 1 168 | 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0: 1 169 | 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1: 1 170 | 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1: 1 171 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 1 172 | 1 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0: 1 173 | 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 1 0 1 1 1 0 0: 1 174 | 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0: 1 175 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 176 | 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 0: 0 177 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 178 | 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1: 0 179 | 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0: 0 180 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 181 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 182 | 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0: 0 183 | 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0: 0 184 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 185 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 186 | 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0: 0 187 | 1 0 1 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0: 0 188 | 1 0 1 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0: 0 189 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 -------------------------------------------------------------------------------- /datasets/heart-train.txt: -------------------------------------------------------------------------------- 1 | 22 2 | 80 3 | 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0: 1 4 | 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1: 1 5 | 1 0 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0: 1 6 | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1: 1 7 | 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0: 1 8 | 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1: 1 9 | 1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 1: 1 10 | 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1: 1 11 | 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 1 1: 1 12 | 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0: 1 13 | 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1: 1 14 | 1 1 0 0 1 1 1 0 1 1 1 1 0 1 0 0 1 0 1 1 0 0: 1 15 | 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1: 1 16 | 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1: 1 17 | 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1: 1 18 | 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1: 1 19 | 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0: 1 20 | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1: 1 21 | 1 0 1 0 1 0 1 1 0 1 0 1 1 0 0 0 1 0 0 1 1 0: 1 22 | 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0: 1 23 | 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1: 1 24 | 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0: 1 25 | 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0: 1 26 | 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0: 1 27 | 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0: 1 28 | 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0: 1 29 | 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0: 1 30 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0: 1 31 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1: 1 32 | 1 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 1: 1 33 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 1 34 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 1 35 | 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 1: 1 36 | 0 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1: 1 37 | 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 0: 1 38 | 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1: 1 39 | 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 0 0 0 1 1 1: 1 40 | 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0: 1 41 | 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0: 1 42 | 1 0 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0: 1 43 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1: 0 44 | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0: 0 45 | 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0: 0 46 | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 47 | 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0: 0 48 | 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1: 0 49 | 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0: 0 50 | 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 51 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 52 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0: 0 53 | 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1: 0 54 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 55 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 56 | 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0: 0 57 | 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1: 0 58 | 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 59 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0: 0 60 | 1 1 1 0 1 0 1 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0: 0 61 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 62 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 63 | 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0: 0 64 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 65 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1: 0 66 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 67 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 68 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 69 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1: 0 70 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 71 | 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 72 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 73 | 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 74 | 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0: 0 75 | 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0: 0 76 | 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0: 0 77 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 78 | 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0: 0 79 | 1 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0: 0 80 | 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0: 0 81 | 0 0 1 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1: 0 82 | 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0: 0 -------------------------------------------------------------------------------- /datasets/simple-test.txt: -------------------------------------------------------------------------------- 1 | 2 2 | 4 3 | 0 0: 0 4 | 0 1: 0 5 | 1 0: 1 6 | 1 1: 1 -------------------------------------------------------------------------------- /datasets/simple-train.txt: -------------------------------------------------------------------------------- 1 | 2 2 | 4 3 | 0 0: 0 4 | 0 1: 0 5 | 1 0: 1 6 | 1 1: 1 -------------------------------------------------------------------------------- /datasets/vote-test.txt: -------------------------------------------------------------------------------- 1 | 48 2 | 135 3 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 4 | 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 5 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 6 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 7 | 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 8 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 9 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1: 1 10 | 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0: 0 11 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 12 | 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0: 1 13 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 14 | 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 15 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 16 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0: 1 17 | 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 18 | 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0: 0 19 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 20 | 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0: 1 21 | 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0: 1 22 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0: 1 23 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 24 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 25 | 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0: 1 26 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0: 0 27 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 28 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 29 | 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 30 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1: 1 31 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 32 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 33 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 34 | 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 35 | 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0: 1 36 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0: 0 37 | 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1: 1 38 | 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0: 1 39 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0: 1 40 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 41 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0: 1 42 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 43 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0: 1 44 | 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 1 45 | 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0: 1 46 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1: 1 47 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1: 1 48 | 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0: 1 49 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 50 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 51 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1: 1 52 | 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 53 | 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 1 54 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 55 | 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0: 1 56 | 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 57 | 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 58 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0: 0 59 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0: 1 60 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0: 1 61 | 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0: 0 62 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 63 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0: 0 64 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1: 1 65 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0: 0 66 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1: 0 67 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 68 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0: 1 69 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 70 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1: 1 71 | 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0: 1 72 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0: 1 73 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0: 0 74 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1: 0 75 | 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0: 0 76 | 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 77 | 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1: 1 78 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 79 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0: 1 80 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 81 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 0 0 1: 1 82 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0: 0 83 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 84 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1: 1 85 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0: 0 86 | 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0: 1 87 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0: 1 88 | 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 89 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 90 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 91 | 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0: 1 92 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 93 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0: 1 94 | 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 95 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 96 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 97 | 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 98 | 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 1 99 | 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0: 1 100 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 101 | 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1: 1 102 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 103 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0: 1 104 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0: 1 105 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0: 1 106 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1: 1 107 | 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1: 1 108 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 109 | 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0: 0 110 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0: 1 111 | 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0: 0 112 | 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1: 1 113 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 114 | 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0: 0 115 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 116 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0: 1 117 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 118 | 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0: 0 119 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0: 1 120 | 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0: 1 121 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 122 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 123 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 124 | 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0: 1 125 | 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 126 | 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1: 1 127 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 128 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0: 0 129 | 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1: 1 130 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1: 1 131 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 132 | 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0: 1 133 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 134 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 135 | 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0: 1 136 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0: 0 137 | 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 -------------------------------------------------------------------------------- /datasets/vote-train.txt: -------------------------------------------------------------------------------- 1 | 48 2 | 300 3 | 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 4 | 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0: 0 5 | 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0: 1 6 | 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0: 1 7 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 8 | 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0: 1 9 | 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 10 | 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 1 11 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0: 1 12 | 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1: 1 13 | 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0: 0 14 | 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0: 1 15 | 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 16 | 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0: 1 17 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0: 1 18 | 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 19 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0: 1 20 | 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0: 1 21 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 22 | 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0: 1 23 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0: 1 24 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 25 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0: 0 26 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 27 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 28 | 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 29 | 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0: 1 30 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1: 1 31 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 32 | 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1: 1 33 | 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1: 1 34 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 35 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 36 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 37 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0: 0 38 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 39 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 40 | 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1: 1 41 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0: 1 42 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0: 0 43 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0: 1 44 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 45 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 46 | 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0: 1 47 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 48 | 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0: 0 49 | 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1: 0 50 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 51 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0: 1 52 | 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 53 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0: 0 54 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1: 0 55 | 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0: 1 56 | 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 57 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0: 0 58 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0: 1 59 | 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0: 1 60 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 61 | 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 1 62 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0: 0 63 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 64 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 65 | 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1: 1 66 | 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1: 1 67 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 68 | 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0: 1 69 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0: 1 70 | 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0: 1 71 | 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1: 0 72 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 73 | 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0: 0 74 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1: 0 75 | 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0: 1 76 | 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 77 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0: 1 78 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0: 0 79 | 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 80 | 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 81 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 82 | 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1: 0 83 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 84 | 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0: 1 85 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 86 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 87 | 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0: 1 88 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 89 | 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0: 1 90 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 91 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0: 1 92 | 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 93 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1: 0 94 | 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 95 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 96 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 97 | 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 98 | 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 99 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 100 | 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 101 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0: 1 102 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 103 | 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 104 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0: 0 105 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 106 | 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 107 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1: 0 108 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0: 1 109 | 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0: 1 110 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0: 1 111 | 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 112 | 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 113 | 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0: 1 114 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 115 | 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 116 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 117 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 118 | 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1: 1 119 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 120 | 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0: 1 121 | 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0: 0 122 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 123 | 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 124 | 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0: 1 125 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0: 1 126 | 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 127 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 128 | 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1: 0 129 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 130 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1: 1 131 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0: 1 132 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1: 1 133 | 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0: 1 134 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0: 1 135 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 136 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 137 | 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0: 1 138 | 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1: 1 139 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 140 | 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0: 1 141 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 142 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 143 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1: 0 144 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 145 | 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 146 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 147 | 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 148 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 149 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 150 | 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 151 | 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0: 0 152 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0: 1 153 | 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 154 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1: 0 155 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 156 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 157 | 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1: 0 158 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0: 1 159 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0: 0 160 | 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0: 1 161 | 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0: 1 162 | 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0: 1 163 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 164 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 165 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0: 1 166 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1: 1 167 | 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 168 | 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0: 1 169 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1: 0 170 | 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1: 1 171 | 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1: 1 172 | 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 173 | 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1: 1 174 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 175 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1: 1 176 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0: 1 177 | 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0: 1 178 | 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1: 1 179 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 180 | 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 181 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 182 | 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0: 1 183 | 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 184 | 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1: 1 185 | 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0: 1 186 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1: 1 187 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1: 0 188 | 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 189 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 190 | 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 1 191 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 192 | 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 1 193 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0: 0 194 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 195 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0: 1 196 | 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1: 1 197 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 198 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1: 1 199 | 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0: 0 200 | 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0: 1 201 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0: 1 202 | 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 203 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 204 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 205 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0: 1 206 | 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0: 1 207 | 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1: 1 208 | 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1: 1 209 | 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 210 | 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 211 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0: 1 212 | 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0: 1 213 | 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 214 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 215 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0: 1 216 | 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 217 | 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0: 1 218 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 219 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0: 0 220 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 1 221 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0: 1 222 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 223 | 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 224 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 225 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0: 1 226 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 227 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 228 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 229 | 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 230 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 231 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 232 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 233 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0: 1 234 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0: 1 235 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0: 1 236 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1: 0 237 | 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0: 1 238 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0: 1 239 | 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1: 1 240 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0: 1 241 | 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0: 1 242 | 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0: 0 243 | 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 244 | 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0: 1 245 | 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1: 1 246 | 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 247 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0: 1 248 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 249 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 250 | 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 251 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 252 | 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 253 | 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 254 | 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 255 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0: 1 256 | 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1: 0 257 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 258 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1: 0 259 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0: 1 260 | 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1: 1 261 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 262 | 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0: 1 263 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1: 0 264 | 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0: 1 265 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1: 1 266 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1: 0 267 | 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0: 1 268 | 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 269 | 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1: 1 270 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 271 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0: 0 272 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0: 1 273 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 274 | 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0: 0 275 | 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1: 1 276 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 277 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 278 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0: 1 279 | 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0: 1 280 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 281 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 282 | 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0: 0 283 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 284 | 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0: 1 285 | 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 1 286 | 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0: 1 287 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 288 | 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 289 | 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0: 1 290 | 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0: 1 291 | 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 292 | 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0: 1 293 | 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1: 0 294 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 295 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1: 0 296 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0: 0 297 | 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 298 | 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0: 0 299 | 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0: 0 300 | 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0: 1 301 | 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1: 1 302 | 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0: 0 -------------------------------------------------------------------------------- /results/logisticregression.txt: -------------------------------------------------------------------------------- 1 | simple-test.txt 2 | ------------ 3 | Class 0: tested 2, correctly classified 2 4 | Class 1: tested 2, correctly classified 2 5 | Overall: tested 4, correctly classified 4 6 | Accuracy = 1.0 7 | 8 | vote-test.txt 9 | ------------ 10 | Class 0: tested 52, correctly classified 51 11 | Class 1: tested 83, correctly classified 83 12 | Overall: tested 135, correctly classified 134 13 | Accuracy = 0.9925925925925926 14 | 15 | heart-test.txt 16 | ------------ 17 | Class 0: tested 15, correctly classified 12 18 | Class 1: tested 172, correctly classified 133 19 | Overall: tested 187, correctly classified 145 20 | Accuracy = 0.7754010695187166 -------------------------------------------------------------------------------- /results/naivebayes.txt: -------------------------------------------------------------------------------- 1 | simple-test.txt 2 | ----------------- 3 | MLE: 4 | Class 0: tested 2, correctly classified 2 5 | Class 1: tested 2, correctly classified 2 6 | Overall: tested 4, correctly classified 4 7 | Accuracy = 1.0 8 | 9 | Laplace: 10 | Class 0: tested 2, correctly classified 2 11 | Class 1: tested 2, correctly classified 2 12 | Overall: tested 4, correctly classified 4 13 | Accuracy = 1.0 14 | 15 | vote-test.txt 16 | -------------- 17 | MLE: 18 | Class 0: tested 52, correctly classified 48 19 | Class 1: tested 83, correctly classified 76 20 | Overall: tested 135, correctly classified 124 21 | Accuracy = 0.9185185185185185 22 | 23 | Laplace: 24 | Class 0: tested 52, correctly classified 48 25 | Class 1: tested 83, correctly classified 76 26 | Overall: tested 135, correctly classified 124 27 | Accuracy = 0.9185185185185185 28 | 29 | heart-test.txt 30 | -------------- 31 | MLE: 32 | Class 0: tested 15, correctly classified 10 33 | Class 1: tested 172, correctly classified 135 34 | Overall: tested 187, correctly classified 145 35 | Accuracy = 0.7754010695187166 36 | 37 | Laplace: 38 | Class 0: tested 15, correctly classified 10 39 | Class 1: tested 172, correctly classified 130 40 | Overall: tested 187, correctly classified 140 41 | Accuracy = 0.7486631016042781 -------------------------------------------------------------------------------- /results/writeup.txt: -------------------------------------------------------------------------------- 1 | simple-test.txt 2 | ----------------- 3 | Naive Bayes 4 | 5 | MLE: 6 | Class 0: tested 2, correctly classified 2 7 | Class 1: tested 2, correctly classified 2 8 | Overall: tested 4, correctly classified 4 9 | Accuracy = 1.0 10 | 11 | Laplace: 12 | Class 0: tested 2, correctly classified 2 13 | Class 1: tested 2, correctly classified 2 14 | Overall: tested 4, correctly classified 4 15 | Accuracy = 1.0 16 | 17 | Logistic Regression 18 | 19 | Class 0: tested 2, correctly classified 2 20 | Class 1: tested 2, correctly classified 2 21 | Overall: tested 4, correctly classified 4 22 | Accuracy = 1.0 23 | 24 | 25 | vote-test.txt 26 | ----------------- 27 | Naive Bayes 28 | 29 | MLE: 30 | Class 0: tested 52, correctly classified 48 31 | Class 1: tested 83, correctly classified 76 32 | Overall: tested 135, correctly classified 124 33 | Accuracy = 0.9185185185185185 34 | 35 | Laplace: 36 | Class 0: tested 52, correctly classified 48 37 | Class 1: tested 83, correctly classified 76 38 | Overall: tested 135, correctly classified 124 39 | Accuracy = 0.9185185185185185 40 | 41 | Logistic Regression 42 | 43 | Class 0: tested 52, correctly classified 51 44 | Class 1: tested 83, correctly classified 83 45 | Overall: tested 135, correctly classified 134 46 | Accuracy = 0.9925925925925926 47 | 48 | b) For the vote data, logistic regression classified the test set almost perfectly, achieving 99% accuracy, which was about 7% better than the 49 | naive bayes model. This discrepancy most likely occurred because a particular member of Congress's voting record probably is highly dependent 50 | on the other votes he or she has made. Naive bayes does not do as well when the data points are not conditionally independent of each other. 51 | For logistic regression this dependency doesn't matter as much since we don't make such an assumption. 52 | 53 | 54 | heart-test.txt 55 | ------------------ 56 | Naive Bayes 57 | 58 | MLE: 59 | Class 0: tested 15, correctly classified 10 60 | Class 1: tested 172, correctly classified 135 61 | Overall: tested 187, correctly classified 145 62 | Accuracy = 0.7754010695187166 63 | 64 | Laplace: 65 | Class 0: tested 15, correctly classified 10 66 | Class 1: tested 172, correctly classified 130 67 | Overall: tested 187, correctly classified 140 68 | Accuracy = 0.7486631016042781 69 | 70 | Logistic Regression 71 | 72 | Class 0: tested 15, correctly classified 12 73 | Class 1: tested 172, correctly classified 133 74 | Overall: tested 187, correctly classified 145 75 | Accuracy = 0.7754010695187166 76 | 77 | c) For the heart data, logistic regression had the same performance as normal naive bayes. The algorithm did not perform 78 | better than naive bayes because the tomography readings are probably pretty well independent of each other. The training 79 | set was also quite a bit smaller than the test set (less than half as large). Logistic regression needs more training 80 | data since it is trying to optimize the value of Y, rather than model the whole distribution, and did not perform 81 | great because of this. I would hypothesize that, given more data, logistic regression would outperform naive bayes. Another approach is to tune the learning rate (see d) or increase the number of learning epochs to improve the performance. 82 | 83 | d) 84 | 85 | Class 0: tested 15, correctly classified 7 86 | Class 1: tested 172, correctly classified 168 87 | Overall: tested 187, correctly classified 175 88 | Accuracy = 0.9358288770053476 89 | 90 | Using a learning rate of 0.000001 I was able to get an accuracy of 0.9358288770053476. Lowering the learning rate 91 | greatly increased the accuracy of logistic regression. This improved performance resulted from the accuracy with which 92 | the gradient descent algorithm was able to reach the global maximum of the log-conditional likelihood function. By lowering 93 | the learning rate we take a smaller step toward the global maximum at each epoch and this results in a better fit. 94 | 95 | -------------------------------------------------------------------------------- /src/com/machinelearning/LogisticRegression.java: -------------------------------------------------------------------------------- 1 | package com.machinelearning; 2 | 3 | import java.io.BufferedReader; 4 | import java.io.FileReader; 5 | import java.io.IOException; 6 | 7 | public class LogisticRegression { 8 | private static final int NUM_EPOCHS = 10000; 9 | private static final double LEARNING_RATE = 0.000001; 10 | 11 | private int numTrainingExamples = 0; 12 | private int numFeatures = 0; 13 | private int[][] featureMatrix; 14 | private int[] LabelVector; 15 | 16 | // the learned weights 17 | private double[] weights; 18 | 19 | /* 20 | * Tests the logistic regression algorithm, assuming 21 | * the data has been correctly loaded into the instance variables 22 | * defined above. 23 | */ 24 | public void testLogisticRegression() 25 | { 26 | int numNeg = 0; 27 | int numPos = 0; 28 | int numCorrectNeg = 0; 29 | int numCorrectPos = 0; 30 | for(int i = 0; i < featureMatrix.length; i++) 31 | { 32 | int classification = getClassification(featureMatrix[i]); 33 | if(LabelVector[i] == 0) { 34 | numNeg++; 35 | if(classification == LabelVector[i]) 36 | numCorrectNeg++; 37 | } else { 38 | numPos++; 39 | if(classification == LabelVector[i]) 40 | numCorrectPos++; 41 | } 42 | } 43 | 44 | System.out.println("Class 0: tested " + numNeg + ", correctly classified " + numCorrectNeg); 45 | System.out.println("Class 1: tested " + numPos + ", correctly classified " + numCorrectPos); 46 | System.out.println("Overall: tested " + (numNeg+numPos) + ", correctly classified " + (numCorrectPos+numCorrectNeg)); 47 | System.out.println("Accuracy = " + (double)(numCorrectPos+numCorrectNeg) / (numNeg+numPos)); 48 | } 49 | 50 | /* 51 | * Calculates the linear term in the sigmoid function ("z") 52 | */ 53 | private double calculateLinearTerm(int[] featureVector) 54 | { 55 | double linearTerm = 0; 56 | for(int i = 0; i < featureVector.length; i++) 57 | { 58 | linearTerm += weights[i] * (double)featureVector[i]; 59 | } 60 | return linearTerm; 61 | } 62 | 63 | /* 64 | * Gets our binary classification for a given feature vector 65 | */ 66 | private int getClassification(int[] featureVector) { 67 | double logOdds = calculateLinearTerm(featureVector); 68 | 69 | if(logOdds > 0) 70 | return 1; 71 | return 0; 72 | } 73 | 74 | /* 75 | * Trains logistic regression using batch 76 | * gradient descent 77 | */ 78 | public void trainLogisticRegression() 79 | { 80 | // Initialize: weights = 0 for all 0 �j�m 81 | // add 1 for bias term 82 | weights = new double[numFeatures+1]; 83 | 84 | //weights initialization 85 | for(int i = 0; i < weights.length; i++) 86 | weights[i] = 0; 87 | 88 | for(int i = 0; i < NUM_EPOCHS; i++) 89 | { 90 | // add 1 for bias term 91 | double[] gradient = new double[numFeatures + 1]; 92 | 93 | //gradients initialization 94 | for(int g = 0; g < gradient.length; g++) 95 | gradient[g] = 0; 96 | 97 | /*for(int row = 0; row < featureMatrix.length; row++) 98 | { 99 | for(int col = 0; col < featureMatrix[0].length; col++) 100 | { 101 | gradient[col] += (double)featureMatrix[row][col] * ((double)LabelVector[row] - sigmoid(featureMatrix[row])); 102 | } 103 | } 104 | 105 | for(int j = 0; j < weights.length; j++) 106 | weights[j] += LEARNING_RATE * gradient[j];*/ 107 | 108 | for(int row = 0; row < featureMatrix.length; row++) 109 | { 110 | for(int col = 0; col < featureMatrix[0].length; col++) 111 | { 112 | weights[col] += LEARNING_RATE * ((double)featureMatrix[row][col] * ((double)LabelVector[row] - sigmoid(featureMatrix[row]))); 113 | } 114 | } 115 | } 116 | } 117 | 118 | 119 | /* 120 | * Calculates the sigmoid function (of the form 1 / (1 + e^(-z)) 121 | */ 122 | private double sigmoid(int[] featureVector) { 123 | 124 | double linearTerm = calculateLinearTerm(featureVector); 125 | return 1.0 / (1.0 + Math.exp(-linearTerm)); 126 | } 127 | 128 | /* 129 | * Input file are always of the format 130 | * 131 | * 132 | * < ... data ... > 133 | * This method reads those constants and sets up the appropriate instance variables. 134 | */ 135 | private void readFileConstants(BufferedReader input) throws NumberFormatException, IOException 136 | { 137 | // Get num features and num training examples 138 | numFeatures = Integer.parseInt(input.readLine()); 139 | numTrainingExamples = Integer.parseInt(input.readLine()); 140 | 141 | // add 1 for bias term 142 | featureMatrix = new int[numTrainingExamples][numFeatures+1]; 143 | LabelVector = new int[numTrainingExamples]; 144 | 145 | } 146 | 147 | /* 148 | * Reads in the feature data and ground truth vector from 149 | * given input file. 150 | */ 151 | public void readFeatureData(String fname) 152 | { 153 | try { 154 | 155 | BufferedReader input = new BufferedReader(new FileReader(fname)); 156 | readFileConstants(input); 157 | 158 | String[] lineVector; 159 | int i = 0; 160 | for(String line = input.readLine(); line != null; line = input.readLine()) { 161 | // bias term 162 | featureMatrix[i][0] = 1; 163 | 164 | lineVector = line.split(" "); 165 | for(int j = 0; j < lineVector.length - 1; j++) 166 | { 167 | // semi-colon denotes the end of the feature data 168 | if(lineVector[j].indexOf(':') != -1) { 169 | lineVector[j] = lineVector[j].substring(0, 1); 170 | } 171 | featureMatrix[i][j+1] = Integer.parseInt(lineVector[j]); 172 | } 173 | LabelVector[i] = Integer.parseInt(lineVector[lineVector.length-1]); 174 | 175 | i++; 176 | } 177 | input.close(); 178 | 179 | //printFeatureMatrix(); 180 | 181 | } catch(IOException e) { 182 | e.printStackTrace(); 183 | System.exit(1); 184 | } 185 | } 186 | } 187 | -------------------------------------------------------------------------------- /src/com/machinelearning/MachineLearning.java: -------------------------------------------------------------------------------- 1 | package com.machinelearning; 2 | 3 | public class MachineLearning { 4 | // PARAMETERS 5 | private String dataDir = "datasets/"; 6 | private String trainFile = "heart-train.txt"; 7 | private String testFile = "heart-test.txt"; 8 | 9 | public void doNaiveBayes() { 10 | 11 | String dataDir = "datasets/"; 12 | String trainFile = "heart-train.txt"; 13 | String testFile = "heart-test.txt"; 14 | // PARAMETER 15 | // use laplace or not? 16 | boolean useLaplace = true; 17 | 18 | NaiveBayes nb = new NaiveBayes(useLaplace); 19 | nb.readFeatureData(dataDir + trainFile); 20 | nb.trainNaiveBayes(); 21 | 22 | nb.readFeatureData(dataDir + testFile); 23 | nb.testNaiveBayes(); 24 | } 25 | 26 | public void doLogisticRegression() { 27 | LogisticRegression lr = new LogisticRegression(); 28 | lr.readFeatureData(dataDir + trainFile); 29 | lr.trainLogisticRegression(); 30 | 31 | lr.readFeatureData(dataDir + testFile); 32 | lr.testLogisticRegression(); 33 | } 34 | 35 | public static void main(String[] args) { 36 | MachineLearning ml = new MachineLearning(); 37 | ml.doNaiveBayes(); 38 | //ml.doLogisticRegression(); 39 | } 40 | } 41 | -------------------------------------------------------------------------------- /src/com/machinelearning/NaiveBayes.java: -------------------------------------------------------------------------------- 1 | package com.machinelearning; 2 | 3 | import java.io.BufferedReader; 4 | import java.io.FileReader; 5 | import java.io.IOException; 6 | 7 | public class NaiveBayes 8 | { 9 | private boolean useLaplace = false; 10 | 11 | private int numTrainingExamples = 0; 12 | private int numFeatures = 0; 13 | private int[][] featureMatrix; 14 | private int[] LabelVector; 15 | 16 | private int posCount = 0; 17 | private int negCount = 0; 18 | private int[] featureCountsPos; 19 | private int[] featureCountsNeg; 20 | 21 | public NaiveBayes(boolean useLap) { 22 | useLaplace = useLap; 23 | } 24 | 25 | private int getClassification(int[] featureVector) 26 | { 27 | double posDenom = posCount; 28 | double negDenom = negCount; 29 | 30 | if(useLaplace) { 31 | posDenom += featureCountsPos.length; 32 | negDenom += featureCountsNeg.length; 33 | } 34 | double logProbPos = Math.log((double) posCount / (posCount + negCount)); 35 | double logProbNeg = Math.log((double) negCount / (posCount + negCount)); 36 | 37 | double posClass = 0; 38 | double negClass = 0; 39 | for(int i = 0; i < featureVector.length; i++) 40 | { 41 | if(featureVector[i] == 1) { 42 | // has a "1" in position i and is of class pos or neg 43 | posClass = featureCountsPos[i]; 44 | negClass = featureCountsNeg[i]; 45 | } else { 46 | // has a "0" in position i and is of class positive or negative 47 | posClass = posCount - featureCountsPos[i]; 48 | negClass = negCount - featureCountsNeg[i]; 49 | } 50 | 51 | if(useLaplace) { 52 | posClass += 1; 53 | negClass += 1; 54 | } 55 | 56 | logProbPos += Math.log( posClass / posDenom ); 57 | logProbNeg += Math.log( negClass / negDenom ); 58 | } 59 | 60 | if(logProbPos > logProbNeg) 61 | return 1; 62 | 63 | return 0; 64 | 65 | } 66 | 67 | 68 | public void testNaiveBayes() 69 | { 70 | int numNeg = 0; 71 | int numPos = 0; 72 | int numCorrectNeg = 0; 73 | int numCorrectPos = 0; 74 | for(int i = 0; i < featureMatrix.length; i++) 75 | { 76 | int classification = getClassification(featureMatrix[i]); 77 | if(LabelVector[i] == 0) { 78 | numNeg++; 79 | if(classification == LabelVector[i]) 80 | numCorrectNeg++; 81 | } else { 82 | numPos++; 83 | if(classification == LabelVector[i]) 84 | numCorrectPos++; 85 | } 86 | } 87 | 88 | System.out.println("Class 0: tested " + numNeg + ", correctly classified " + numCorrectNeg); 89 | System.out.println("Class 1: tested " + numPos + ", correctly classified " + numCorrectPos); 90 | System.out.println("Overall: tested " + (numNeg+numPos) + ", correctly classified " + (numCorrectPos+numCorrectNeg)); 91 | System.out.println("Accuracy = " + (double)(numCorrectPos+numCorrectNeg) / (numNeg+numPos)); 92 | 93 | } 94 | 95 | 96 | /* 97 | * Trains the naive bayes classification model by initializing an array 98 | * for positive class counts and one for negative class counts. It then 99 | * iterates over the data and adds up the number of places where we see a 100 | * 1 with Y = 1 and the number of places we see a 1 with Y = 0. 101 | */ 102 | public void trainNaiveBayes() 103 | { 104 | featureCountsPos = new int[numFeatures]; 105 | featureCountsNeg = new int[numFeatures]; 106 | 107 | for(int i = 0; i < featureMatrix.length; i++) 108 | { 109 | //Calculate the num of positive instance or negative instance 110 | if(LabelVector[i] == 1) 111 | posCount++; 112 | else 113 | negCount++; 114 | 115 | for(int j = 0; j < featureMatrix[0].length; j++) 116 | { 117 | if(LabelVector[i] == 1) 118 | featureCountsPos[j] += featureMatrix[i][j]; 119 | else 120 | featureCountsNeg[j] += featureMatrix[i][j]; 121 | } 122 | } 123 | } 124 | 125 | /* 126 | * Input file are always of the format 127 | * 128 | * 129 | * < ... data ... > 130 | * :