├── LICENSE
├── README.md
└── rscripts
├── calc_EHHS.R
├── calc_LD.R
├── calc_allele_sharing.R
├── calc_hwe_chisq.R
├── calc_hwe_fisher.R
├── calc_iES.R
├── calc_neiFis_multispop.R
├── calc_neiFis_onepop.R
├── calc_snp_stats.R
├── calc_wcFst_spop_pairs.R
├── calc_wcFstats.R
├── exampleI.ASdist.nj.png
├── exampleI.R
├── exampleI_data.RData
├── exampleI_functions.RData
├── geno_to_allelecnt.R
├── gwas_lm.R
├── plclust_in_colour.R
├── plot_marker_lox.R
├── plot_markers_by_set.R
└── simgeno.R
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 2, June 1991
3 |
4 | Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
5 | 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
6 | Everyone is permitted to copy and distribute verbatim copies
7 | of this license document, but changing it is not allowed.
8 |
9 | Preamble
10 |
11 | The licenses for most software are designed to take away your
12 | freedom to share and change it. By contrast, the GNU General Public
13 | License is intended to guarantee your freedom to share and change free
14 | software--to make sure the software is free for all its users. This
15 | General Public License applies to most of the Free Software
16 | Foundation's software and to any other program whose authors commit to
17 | using it. (Some other Free Software Foundation software is covered by
18 | the GNU Lesser General Public License instead.) You can apply it to
19 | your programs, too.
20 |
21 | When we speak of free software, we are referring to freedom, not
22 | price. Our General Public Licenses are designed to make sure that you
23 | have the freedom to distribute copies of free software (and charge for
24 | this service if you wish), that you receive source code or can get it
25 | if you want it, that you can change the software or use pieces of it
26 | in new free programs; and that you know you can do these things.
27 |
28 | To protect your rights, we need to make restrictions that forbid
29 | anyone to deny you these rights or to ask you to surrender the rights.
30 | These restrictions translate to certain responsibilities for you if you
31 | distribute copies of the software, or if you modify it.
32 |
33 | For example, if you distribute copies of such a program, whether
34 | gratis or for a fee, you must give the recipients all the rights that
35 | you have. You must make sure that they, too, receive or can get the
36 | source code. And you must show them these terms so they know their
37 | rights.
38 |
39 | We protect your rights with two steps: (1) copyright the software, and
40 | (2) offer you this license which gives you legal permission to copy,
41 | distribute and/or modify the software.
42 |
43 | Also, for each author's protection and ours, we want to make certain
44 | that everyone understands that there is no warranty for this free
45 | software. If the software is modified by someone else and passed on, we
46 | want its recipients to know that what they have is not the original, so
47 | that any problems introduced by others will not reflect on the original
48 | authors' reputations.
49 |
50 | Finally, any free program is threatened constantly by software
51 | patents. We wish to avoid the danger that redistributors of a free
52 | program will individually obtain patent licenses, in effect making the
53 | program proprietary. To prevent this, we have made it clear that any
54 | patent must be licensed for everyone's free use or not licensed at all.
55 |
56 | The precise terms and conditions for copying, distribution and
57 | modification follow.
58 |
59 | GNU GENERAL PUBLIC LICENSE
60 | TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
61 |
62 | 0. This License applies to any program or other work which contains
63 | a notice placed by the copyright holder saying it may be distributed
64 | under the terms of this General Public License. The "Program", below,
65 | refers to any such program or work, and a "work based on the Program"
66 | means either the Program or any derivative work under copyright law:
67 | that is to say, a work containing the Program or a portion of it,
68 | either verbatim or with modifications and/or translated into another
69 | language. (Hereinafter, translation is included without limitation in
70 | the term "modification".) Each licensee is addressed as "you".
71 |
72 | Activities other than copying, distribution and modification are not
73 | covered by this License; they are outside its scope. The act of
74 | running the Program is not restricted, and the output from the Program
75 | is covered only if its contents constitute a work based on the
76 | Program (independent of having been made by running the Program).
77 | Whether that is true depends on what the Program does.
78 |
79 | 1. You may copy and distribute verbatim copies of the Program's
80 | source code as you receive it, in any medium, provided that you
81 | conspicuously and appropriately publish on each copy an appropriate
82 | copyright notice and disclaimer of warranty; keep intact all the
83 | notices that refer to this License and to the absence of any warranty;
84 | and give any other recipients of the Program a copy of this License
85 | along with the Program.
86 |
87 | You may charge a fee for the physical act of transferring a copy, and
88 | you may at your option offer warranty protection in exchange for a fee.
89 |
90 | 2. You may modify your copy or copies of the Program or any portion
91 | of it, thus forming a work based on the Program, and copy and
92 | distribute such modifications or work under the terms of Section 1
93 | above, provided that you also meet all of these conditions:
94 |
95 | a) You must cause the modified files to carry prominent notices
96 | stating that you changed the files and the date of any change.
97 |
98 | b) You must cause any work that you distribute or publish, that in
99 | whole or in part contains or is derived from the Program or any
100 | part thereof, to be licensed as a whole at no charge to all third
101 | parties under the terms of this License.
102 |
103 | c) If the modified program normally reads commands interactively
104 | when run, you must cause it, when started running for such
105 | interactive use in the most ordinary way, to print or display an
106 | announcement including an appropriate copyright notice and a
107 | notice that there is no warranty (or else, saying that you provide
108 | a warranty) and that users may redistribute the program under
109 | these conditions, and telling the user how to view a copy of this
110 | License. (Exception: if the Program itself is interactive but
111 | does not normally print such an announcement, your work based on
112 | the Program is not required to print an announcement.)
113 |
114 | These requirements apply to the modified work as a whole. If
115 | identifiable sections of that work are not derived from the Program,
116 | and can be reasonably considered independent and separate works in
117 | themselves, then this License, and its terms, do not apply to those
118 | sections when you distribute them as separate works. But when you
119 | distribute the same sections as part of a whole which is a work based
120 | on the Program, the distribution of the whole must be on the terms of
121 | this License, whose permissions for other licensees extend to the
122 | entire whole, and thus to each and every part regardless of who wrote it.
123 |
124 | Thus, it is not the intent of this section to claim rights or contest
125 | your rights to work written entirely by you; rather, the intent is to
126 | exercise the right to control the distribution of derivative or
127 | collective works based on the Program.
128 |
129 | In addition, mere aggregation of another work not based on the Program
130 | with the Program (or with a work based on the Program) on a volume of
131 | a storage or distribution medium does not bring the other work under
132 | the scope of this License.
133 |
134 | 3. You may copy and distribute the Program (or a work based on it,
135 | under Section 2) in object code or executable form under the terms of
136 | Sections 1 and 2 above provided that you also do one of the following:
137 |
138 | a) Accompany it with the complete corresponding machine-readable
139 | source code, which must be distributed under the terms of Sections
140 | 1 and 2 above on a medium customarily used for software interchange; or,
141 |
142 | b) Accompany it with a written offer, valid for at least three
143 | years, to give any third party, for a charge no more than your
144 | cost of physically performing source distribution, a complete
145 | machine-readable copy of the corresponding source code, to be
146 | distributed under the terms of Sections 1 and 2 above on a medium
147 | customarily used for software interchange; or,
148 |
149 | c) Accompany it with the information you received as to the offer
150 | to distribute corresponding source code. (This alternative is
151 | allowed only for noncommercial distribution and only if you
152 | received the program in object code or executable form with such
153 | an offer, in accord with Subsection b above.)
154 |
155 | The source code for a work means the preferred form of the work for
156 | making modifications to it. For an executable work, complete source
157 | code means all the source code for all modules it contains, plus any
158 | associated interface definition files, plus the scripts used to
159 | control compilation and installation of the executable. However, as a
160 | special exception, the source code distributed need not include
161 | anything that is normally distributed (in either source or binary
162 | form) with the major components (compiler, kernel, and so on) of the
163 | operating system on which the executable runs, unless that component
164 | itself accompanies the executable.
165 |
166 | If distribution of executable or object code is made by offering
167 | access to copy from a designated place, then offering equivalent
168 | access to copy the source code from the same place counts as
169 | distribution of the source code, even though third parties are not
170 | compelled to copy the source along with the object code.
171 |
172 | 4. You may not copy, modify, sublicense, or distribute the Program
173 | except as expressly provided under this License. Any attempt
174 | otherwise to copy, modify, sublicense or distribute the Program is
175 | void, and will automatically terminate your rights under this License.
176 | However, parties who have received copies, or rights, from you under
177 | this License will not have their licenses terminated so long as such
178 | parties remain in full compliance.
179 |
180 | 5. You are not required to accept this License, since you have not
181 | signed it. However, nothing else grants you permission to modify or
182 | distribute the Program or its derivative works. These actions are
183 | prohibited by law if you do not accept this License. Therefore, by
184 | modifying or distributing the Program (or any work based on the
185 | Program), you indicate your acceptance of this License to do so, and
186 | all its terms and conditions for copying, distributing or modifying
187 | the Program or works based on it.
188 |
189 | 6. Each time you redistribute the Program (or any work based on the
190 | Program), the recipient automatically receives a license from the
191 | original licensor to copy, distribute or modify the Program subject to
192 | these terms and conditions. You may not impose any further
193 | restrictions on the recipients' exercise of the rights granted herein.
194 | You are not responsible for enforcing compliance by third parties to
195 | this License.
196 |
197 | 7. If, as a consequence of a court judgment or allegation of patent
198 | infringement or for any other reason (not limited to patent issues),
199 | conditions are imposed on you (whether by court order, agreement or
200 | otherwise) that contradict the conditions of this License, they do not
201 | excuse you from the conditions of this License. If you cannot
202 | distribute so as to satisfy simultaneously your obligations under this
203 | License and any other pertinent obligations, then as a consequence you
204 | may not distribute the Program at all. For example, if a patent
205 | license would not permit royalty-free redistribution of the Program by
206 | all those who receive copies directly or indirectly through you, then
207 | the only way you could satisfy both it and this License would be to
208 | refrain entirely from distribution of the Program.
209 |
210 | If any portion of this section is held invalid or unenforceable under
211 | any particular circumstance, the balance of the section is intended to
212 | apply and the section as a whole is intended to apply in other
213 | circumstances.
214 |
215 | It is not the purpose of this section to induce you to infringe any
216 | patents or other property right claims or to contest validity of any
217 | such claims; this section has the sole purpose of protecting the
218 | integrity of the free software distribution system, which is
219 | implemented by public license practices. Many people have made
220 | generous contributions to the wide range of software distributed
221 | through that system in reliance on consistent application of that
222 | system; it is up to the author/donor to decide if he or she is willing
223 | to distribute software through any other system and a licensee cannot
224 | impose that choice.
225 |
226 | This section is intended to make thoroughly clear what is believed to
227 | be a consequence of the rest of this License.
228 |
229 | 8. If the distribution and/or use of the Program is restricted in
230 | certain countries either by patents or by copyrighted interfaces, the
231 | original copyright holder who places the Program under this License
232 | may add an explicit geographical distribution limitation excluding
233 | those countries, so that distribution is permitted only in or among
234 | countries not thus excluded. In such case, this License incorporates
235 | the limitation as if written in the body of this License.
236 |
237 | 9. The Free Software Foundation may publish revised and/or new versions
238 | of the General Public License from time to time. Such new versions will
239 | be similar in spirit to the present version, but may differ in detail to
240 | address new problems or concerns.
241 |
242 | Each version is given a distinguishing version number. If the Program
243 | specifies a version number of this License which applies to it and "any
244 | later version", you have the option of following the terms and conditions
245 | either of that version or of any later version published by the Free
246 | Software Foundation. If the Program does not specify a version number of
247 | this License, you may choose any version ever published by the Free Software
248 | Foundation.
249 |
250 | 10. If you wish to incorporate parts of the Program into other free
251 | programs whose distribution conditions are different, write to the author
252 | to ask for permission. For software which is copyrighted by the Free
253 | Software Foundation, write to the Free Software Foundation; we sometimes
254 | make exceptions for this. Our decision will be guided by the two goals
255 | of preserving the free status of all derivatives of our free software and
256 | of promoting the sharing and reuse of software generally.
257 |
258 | NO WARRANTY
259 |
260 | 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
261 | FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
262 | OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
263 | PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
264 | OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
265 | MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
266 | TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
267 | PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
268 | REPAIR OR CORRECTION.
269 |
270 | 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
271 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
272 | REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
273 | INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
274 | OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
275 | TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
276 | YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
277 | PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
278 | POSSIBILITY OF SUCH DAMAGES.
279 |
280 | END OF TERMS AND CONDITIONS
281 |
282 | How to Apply These Terms to Your New Programs
283 |
284 | If you develop a new program, and you want it to be of the greatest
285 | possible use to the public, the best way to achieve this is to make it
286 | free software which everyone can redistribute and change under these terms.
287 |
288 | To do so, attach the following notices to the program. It is safest
289 | to attach them to the start of each source file to most effectively
290 | convey the exclusion of warranty; and each file should have at least
291 | the "copyright" line and a pointer to where the full notice is found.
292 |
293 | {description}
294 | Copyright (C) {year} {fullname}
295 |
296 | This program is free software; you can redistribute it and/or modify
297 | it under the terms of the GNU General Public License as published by
298 | the Free Software Foundation; either version 2 of the License, or
299 | (at your option) any later version.
300 |
301 | This program is distributed in the hope that it will be useful,
302 | but WITHOUT ANY WARRANTY; without even the implied warranty of
303 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
304 | GNU General Public License for more details.
305 |
306 | You should have received a copy of the GNU General Public License along
307 | with this program; if not, write to the Free Software Foundation, Inc.,
308 | 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
309 |
310 | Also add information on how to contact you by electronic and paper mail.
311 |
312 | If the program is interactive, make it output a short notice like this
313 | when it starts in an interactive mode:
314 |
315 | Gnomovision version 69, Copyright (C) year name of author
316 | Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
317 | This is free software, and you are welcome to redistribute it
318 | under certain conditions; type `show c' for details.
319 |
320 | The hypothetical commands `show w' and `show c' should show the appropriate
321 | parts of the General Public License. Of course, the commands you use may
322 | be called something other than `show w' and `show c'; they could even be
323 | mouse-clicks or menu items--whatever suits your program.
324 |
325 | You should also get your employer (if you work as a programmer) or your
326 | school, if any, to sign a "copyright disclaimer" for the program, if
327 | necessary. Here is a sample; alter the names:
328 |
329 | Yoyodyne, Inc., hereby disclaims all copyright interest in the program
330 | `Gnomovision' (which makes passes at compilers) written by James Hacker.
331 |
332 | {signature of Ty Coon}, 1 April 1989
333 | Ty Coon, President of Vice
334 |
335 | This General Public License does not permit incorporating your program into
336 | proprietary programs. If your program is a subroutine library, you may
337 | consider it more useful to permit linking proprietary applications with the
338 | library. If this is what you want to do, use the GNU Lesser General
339 | Public License instead of this License.
340 |
341 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | ## Handy R functions for genetics research
2 |
3 | Originally hosted at http://evachan.org/rscripts.html, these R functions were initially written for my own research. Throughout the years, I've updated them (and fixed bugs) based on suggestions from users. If you find these useful in your own research, please cite this git repository. If you spot bugs or have suggestions for improvement, please let me know. Or, better, submit a pull request :)
4 |
5 | [Statistical Functions] (https://github.com/ekfchan/evachan.org-Rscripts#statistical-functions)
6 | [Plotting Functions] (https://github.com/ekfchan/evachan.org-Rscripts#plotting-functions)
7 | [Example Data] (https://github.com/ekfchan/evachan.org-Rscripts/blob/master/README.md#example-data-and-usage)
8 |
9 | ###The *geno* object
10 |
11 | The geno object (see [exampleI.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/exampleI.R)) on which all analysis depend was originally written for diploid data. All R functions in the repository should be applicable to diploid data. In some cases, should also be applicable to multi-allelic data. In fact, when these functions were written, they were geared towards genotyping array data. Keep that in mind when using these scripts.
12 |
13 |
14 | ###Statistical Functions
15 |
16 | [geno_to_allelecnt.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/geno_to_allelecnt.R)
17 | A function to convert biallelic unphased SNP genotypes, such as {AA,CC,GG,TT,AC,AG,AT,CG,CT,GT}, to number of copies/counts {0,1,2} of the reference (or arbitrary) allele.
18 | [See [example II](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/README.md#example-ii) and simgeno.R for example and usage.]
19 | [simgeno.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/simgeno.R)
20 | Very simple function to generate a biallelic unphased SNP genotype matrix in the format {AA,CC,GG,TT,AC,AG,AT,CG,CT,GT}. Used predominantly to test [geno_to_allelecnt.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/geno_to_allelecnt.R).
21 | [See [example II](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/README.md#example-ii) for usage and purpose.]
22 | [calc_EHHS.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/calc_EHHS.R)
23 | A function to calculate the normalised homozygosity between the i-th and j-th loci, EHHS(geno)i,j, for a given chromosome / linkage group ([Tang, Thornton, Stoneking 2007](http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0050171))
24 | [calc_iES.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/calc_iES.R)
25 | A function to calculate the integrated EHHS statistic, iES, as described in Tang, Thornton and Stoneking (2007). You'd probably want to [calculate the EHHS](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/calc_EHHS.R) first!
26 | [calc_LD.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/calc_LD.R)
27 | Given a biallelic genotype matrix, calculates one or more measures of linkage disequilibrium between all locus-pairs. The available LD measures include: [D](http://www.jstor.org/sici?sici=0014-3820%28196012%2914%3A4%3C458%3ATEDOCP%3E2.0.CO%3B2-4), [D'](http://www.genetics.org/cgi/reprint/49/1/49), [r2](http://www.springerlink.com/content/g6449ph0v65t5w87/), [X2 (chi-square)](http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WXD-4F1SCHP-33&_user=4421&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000059598&_version=1&_urlVersion=0&_userid=4421&md5=e0ec8112b03fb20f4212ae2b3e7d9fee), [X2' (chi-square-prime)](http://www.genetics.org/cgi/content/abstract/86/1/227).
28 | [See [example I](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/README.md#example-i) for example data and usage.]
29 | [calc_snp_stats.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/calc_snp_stats.R)
30 | A function to calculate basic SNP stats, including: allele frequency (p), MAF (minor allele frequency), MGF (minor genotype frequency), and tests for deviation from HWE (X2 test and Fisher's Exact test).
31 | [See [example I](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/README.md#example-i) for example data and usage.]
32 | [gwas_lm.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/gwas_lm.R)
33 | Performs single-locus (SNP) genome-wide association tests for one or more traits simultaneously under one or more of five inheritance models (additive, co-dominance, dominance, recessive, over-dominance) using linear regression.
34 | [calc_hwe_fisher.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/calc_hwe_fisher.R)
35 | A script to test for deviation from HWE using Fisher's Exact test. This test is also incorporated into [calc_snp_stats.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/calc_snp_stats.R).
36 | [See [example I](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/README.md#example-i) for example data and usage.]
37 | [calc_hwe_chisq.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/calc_hwe_chisq.R)
38 | A script to test for deviation from HWE using Pearson's Chi-Squared test. This test is also incorporated into calc_snp_stats.R.
39 | [See [example I](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/README.md#example-i) for example data and usage.]
40 | [calc_neiFis_multispop.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/calc_neiFis_multispop.R)
41 | A script to calculate inbreeding coefficients, [Fis](http://www3.interscience.wiley.com/journal/119623803/abstract), for each sub-population using a given set of SNP markers.
42 | [See [example I](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/README.md#example-i) for example data and usage.]
43 | [calc_neiFis_onepop.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/calc_neiFis_onepop.R)
44 | A script to calculate inbreeding coefficients, [Fis](http://www3.interscience.wiley.com/journal/119623803/abstract), for a given population using a given set of SNP markers.
45 | [See [example I](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/README.md#example-i) for example data and usage.]
46 | [calc_wcFstats.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/calc_wcFstats.R)
47 | A script to estimate the variance components and fixation indices as described in [Weir & Cockerham 1984 Evolution 38(6) : 1358-1370](http://www.jstor.org/stable/2408641?&Search=yes&term=weir&term=cockerham&list=hide&searchUri=%2Faction%2FdoBasicSearch%3FQuery%3Dweir%2Bcockerham%26jc%3Dj100004%26wc%3Don%26Search.x%3D0%26Search.y%3D0%26Search%3DSearch&item=2&ttl=275&returnArticleService=showArticle).
48 | [See [example I](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/README.md#example-i) for example data and usage. ]
49 | [calc_wcFst_spop_pairs.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/calc_wcFst_spop_pairs.R)
50 | A script to estimate Fst (theta) values for each pair of sub-populations using the method of [Weir & Cockerham 1984 Evolution 38(6): 1358-1370](http://www.jstor.org/stable/2408641?&Search=yes&term=weir&term=cockerham&list=hide&searchUri=%2Faction%2FdoBasicSearch%3FQuery%3Dweir%2Bcockerham%26jc%3Dj100004%26wc%3Don%26Search.x%3D0%26Search.y%3D0%26Search%3DSearch&item=2&ttl=275&returnArticleService=showArticle).
51 | [See [example I](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/README.md#example-i) for example data and usage.]
52 | [calc_allele_sharing.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/calc_allele_sharing.R)
53 | Calculates allele sharing distances between pairs of individuals (c.f. [Gao & Stramer 2007 BMC Genetics 8:34](http://www.biomedcentral.com/1471-2156/8/34)).
54 | [See [example I](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/README.md#example-i) for example data and usage.]
55 |
56 |
57 | ###Plotting Functions###
58 |
59 | [plclust_in_colour.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/plclust_in_colour.R)
60 | A modification of (wrapper to) plclust for plotting hclust (hierarchical cluster) objects with coloured leaf labels.
61 | [plot_marker_lox.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/plot_marker_lox.R)
62 | Generates a visual representation of the genetic positions of a set of markers.
63 | [plot_markers_by_set.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/plot_markers_by_set.R)
64 | A function to plot sets of markers on a map where the markers are coloured based on a defined variable.
65 |
66 |
67 | ###Example Data and Usage
68 |
69 | #####Example I
70 | [exampleI.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/exampleI.R)
71 | Download and read exampleI.R first. This script contains several very simple lines of codes for creating a geno and a subpop object, and their usages in the following scripts:
72 | ```R
73 | calc_wcFstats(geno, subpop)
74 | calc_wcFst_spop_pairs(geno, subpop)
75 | calc_neiFis_onepop(geno)
76 | calc_snp_stats(geno)
77 | calc_neiFis_multispop(geno,subpop)
78 | calc_LD(geno)
79 | calc_allele_sharing(geno)
80 | calc_hwe_chisq(geno)
81 | calc_hwe_fisher(geno)
82 | ```
83 | [exampleI_data.RData](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/exampleI_data.RData)
84 | A R workspace containing an instance of a _geno_ and _subpop_ objects used in [exampleI.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/exampleI.R); i.e. the actual datasets corresponding to the outputs in [exampleI.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/exampleI.R).
85 | [exampleI_functions.RData](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/exampleI_functions.RData)
86 | A R workspace containing all functions used in [exampleI.R](https://github.com/ekfchan/evachan.org-Rscripts/blob/master/rscripts/exampleI.R).
87 |
88 | #####Example II
89 | ```R
90 | geno <- simgeno()
91 | alleleCount <- geno_to_allelecnt(geno)
92 | ```
93 |
94 | 
95 | **Figure: NJ tree from Example I**
96 |
97 |
--------------------------------------------------------------------------------
/rscripts/calc_EHHS.R:
--------------------------------------------------------------------------------
1 | calc_EHHS <- function(geno, thresh=0.1) {
2 |
3 | ## March 2010
4 | ## Eva KF Chan
5 | ## http://evachan.org
6 | ##
7 | ## Function to calculate the EHHS(geno)i,j values for a given chromosome as described in:
8 | ## Tang K, Thornton KR, Stoneking M (2007) A New Approach for Using Genome Scans to Detect Recent Positive Selection in the Human Genome . PLoS Biol 5(7): e171 doi:10.1371/journal.pbio.0050171
9 | ##
10 | ## EHHS is the haplotype homozygosity between sites i and j, normalised by the homozygosity at site i:
11 | ## EHHS(geno)i,j = sum_k=1..n{ Ik,(hap ij) [1 if hap1 = hap2] } / suml=1..n{ I_i,(alle i) [1 if alle1 = alle2]}
12 | ## where:
13 | ## Ik,(hap ij) = identity of the two haplotypes between site i & j in one individual
14 | ## Il,(alle i) = identity of the alleles at site i
15 | ##
16 | ## EHHS_(geno)i,j = ( sum(k=1..n) {I_k,(hap ij) [1 if hap1 = hap2] )
17 | ## -------------------------------------------------
18 | ## ( sum(l=1..n) {I_l,(alle i) [1 if alle1 = alle2] )
19 | ##
20 | ## = number of individuals where hap1 = hap2
21 | ## ---------------------------------------------------
22 | ## number of individuals where alle1 = alle2 at site i
23 | ## Parameters:
24 | ## geno: matrix of genotypes (0,1,2,NA) of size marker (row) by sample (column)
25 | ## <>
26 | ## thresh: the threshold [0,1] to which EHHS is calculated for all j moving away
27 | ## from site i until EHHS < thresh (0.1 by default)
28 | ##
29 | ## Output:
30 | ## Returns a matrix of size MxM (M=number of markers=nrow(geno)) of EHHS values
31 | ## calcualted for all i-th marker (row) to each j-th marker (colum) until EHH < thresh
32 |
33 | geno[geno==2] <- 0 ## 0=homozygous; 1=heterozygous
34 | M = nrow(geno)
35 | EHH <- matrix(NA, ncol=M, nrow=M, dimnames=list(rownames(geno),rownames(geno)))
36 |
37 | for(i in 1:M) {
38 | initial_list = which(geno[i,]==0)
39 | Ii = length(initial_list)
40 | EHH[i,i] = 1
41 |
42 | ## left-flank
43 | cur_list = initial_list
44 | j = i-1
45 | while( j >= 1 ) {
46 | tmp_list = which(geno[j,]==0)
47 | cur_list = intersect( cur_list, tmp_list )
48 | Ij = length(cur_list)
49 | cur.EHH = Ij/Ii
50 | if (is.na(cur.EHH) | cur.EHH < thresh) { break } else {
51 | EHH[i,j] = cur.EHH
52 | }
53 | j = j-1
54 | }
55 |
56 | ## right-flank
57 | cur_list = initial_list
58 | j = i + 1
59 | while( j <= M ) {
60 | tmp_list = which(geno[j,]==0)
61 | cur_list = intersect( cur_list, tmp_list )
62 | Ij = length(cur_list)
63 | cur.EHH = Ij/Ii
64 | if (is.na(cur.EHH) | cur.EHH < thresh) { break } else {
65 | EHH[i,j] = cur.EHH
66 | }
67 | j = j+1
68 | }
69 | }
70 |
71 | return(EHH)
72 |
73 | }
74 |
--------------------------------------------------------------------------------
/rscripts/calc_LD.R:
--------------------------------------------------------------------------------
1 | calc_LD <- function( geno, inds=1:nrow(geno), get.D=T, get.Dprime=F, get.rsq=T, get.chisq=T, get.chisq_prime=F ) {
2 | ### Eva KF Chan
3 | ### 23 Feb 2009
4 | ### Last Modified: 29 Nov 2013
5 | ###
6 | ### Calculates D, D', r, chisq, chisq'
7 | ### Given locus A with allele frequencies pA & pa and locus B with allele frequencies pB and pb
8 | ### Let pAB be the allele frequencies of allele A/B. As the AB/ab is indistinguishable from Ab/aB, we assume equal probability for either assortment; i.e. For individuals with Aa at locus A and Bb at locus b, we assume p(AB/ab)=p(Ab/aB)=0.5. NOTE that this is assumption is part of the reason why this function is relatively fast, compare to, for example, the LD() function in R/genetics which estimates p(AB) using a maximum likelihood approach.
9 | ### D = pAB - pApB
10 | ### D' = { D/Dmax for D>=0 , where Dmax = min( pApb, papB )
11 | ### = { D/Dmin for D<0 , where Dmin = max(-pApB,-papb )
12 | ### r = D / sqrt( pApapBpb )
13 | ### chi2 = (2ND^2) / (pApapBpb)
14 | ### chi2'= chisq / ( 2N(l-1) ) where l=min(k,m)
15 | ### N = # individuals
16 | ### k & m = # alelles in locus A & B
17 | ###
18 | ### Arguments:
19 | ### geno: m x n matrix of genotypes {0,1,2,NA} where m=number of markers, n=number of individuals
20 | ### inds: integer vector of marker indices (rows of geno) for subseting markers for LD calculation
21 | ### get.D: {T,F} Boolean value to indicate whether the D measure is to be calculated
22 | ### get.Dprime: {T,F} Boolean value to indicate whether the D' measure is to be calculated
23 | ### get.rsq: {T,F} Boolean value to indicate whether the r^2 measure is to be calculated
24 | ### get.chisq: {T,F} Boolean value to indicate whether the chi2 measure is to be calculated
25 | ### get.chisq_prime: {T,F} Boolean value to indicate whether the chi2' measure is to be calculated
26 |
27 |
28 | if( all(!get.D, !get.Dprime, !get.rsq, !get.chisq, !get.chisq_prime) ) { stop('Must request at least one LD statistic.\n') }
29 | D_prime <- rsq <- chisq <- chisq_prime <- df <- NULL
30 | D <- matrix(NA, nrow=nrow(geno), ncol=length(inds))
31 | if( get.Dprime ) { D_prime <- matrix(NA, nrow=nrow(geno), ncol=length(inds)) }
32 | if( get.rsq ) { rsq <- matrix(NA, nrow=nrow(geno), ncol=length(inds)) }
33 | if( get.chisq | get.chisq_prime ) {
34 | chisq <- matrix(NA, nrow=nrow(geno), ncol=length(inds))
35 | df <- matrix(NA, nrow=nrow(geno), ncol=length(inds))
36 | if( get.chisq_prime ) { chisq_prime <- matrix(NA, nrow=nrow(geno), ncol=length(inds)) }
37 | }
38 |
39 | if( all(as.logical(!is.na(geno))) ) { #no missing data
40 | tmp.geno <- geno ## genotypes at locus A
41 | N <- ncol(tmp.geno) #number of individuals (diploid is assumed)
42 | pA <- ((2*apply(tmp.geno==0,1,sum,na.rm=T))+apply(tmp.geno==1,1,sum,na.rm=T)) / (2*N)
43 | pa <- 1-pA
44 | for(i in 1:length(inds)) {
45 | tmp.Bgeno <- matrix(tmp.geno[inds[i],],nrow=nrow(tmp.geno),ncol=ncol(tmp.geno),byrow=T) ## genotypes at locus B
46 | pB <- ((2*apply(tmp.Bgeno==0,1,sum,na.rm=T))+apply(tmp.Bgeno==1,1,sum,na.rm=T)) / (2*N)
47 | pb <- 1-pB
48 | pAB <- ((apply(tmp.geno==0 & tmp.Bgeno==0, 1, sum,na.rm=T)*2) + (apply(tmp.geno==1 & tmp.Bgeno==0, 1, sum,na.rm=T)) + (apply(tmp.geno==0 & tmp.Bgeno==1, 1, sum,na.rm=T)) + (apply(tmp.geno==1 & tmp.Bgeno==1, 1, sum,na.rm=T)*0.5)) / (2*N)
49 | D[,i] <- pAB-(pA*pB)
50 | if( get.Dprime ) {
51 | Dmax <- pmin(pA*pb, pa*pB)
52 | Dmin <- pmax(-pA*pB, -pa*pb)
53 | pos <- (D[,i]>=0)
54 | D_prime[which(pos),i] <- D[which(pos),i] / Dmax[which(pos)]
55 | D_prime[which(!pos),i] <- D[which(!pos),i] / Dmin[which(!pos)]
56 | }
57 | if( get.rsq ) {
58 | rsq[,i] <- (D[,i]*D[,i]) / (pA*pa*pB*pb)
59 | }
60 | if( get.chisq | get.chisq_prime ) {
61 | chisq[,i] <- (2*N*D[,i]*D[,i]) / (pA*pa*pB*pb)
62 | if( get.chisq_prime ) {
63 | k=2-as.integer(pA==0|pa==0)
64 | m=2-as.integer(pB==0|pb==0)
65 | #df[,i] <- (k-1)*(m-1)
66 | chisq_prime[,i] <- chisq[,i] / (2*N*pmin(k,m))
67 | }
68 | }
69 | }
70 | } else { #at least one missing data point in geno
71 | for(i in 1:length(inds)) {
72 | tmp.geno <- geno[,!is.na(geno[inds[i],])] ## genotypes at locus A; i.e. all loci, but excluding samples with missing data at lcous B (i)
73 | tmp.Bgeno <- matrix(tmp.geno[inds[i],],nrow=nrow(tmp.geno),ncol=ncol(tmp.geno),byrow=T) ## genotypes at locus B (i.e. i-th locus); pulling from tmp.geno, so samples with missing data at i-th locus (B) will also be excluded
74 | tmp.Bgeno[is.na(tmp.geno)] <- NA #anytime where locus A (i.e. all non i-th locus) is missing, set as missing
75 | N <- rowSums(!is.na(tmp.geno))
76 | pA <- ((2*apply(tmp.geno==0,1,sum,na.rm=T))+apply(tmp.geno==1,1,sum,na.rm=T)) / (2*N)
77 | pB <- ((2*apply(tmp.Bgeno==0,1,sum,na.rm=T))+apply(tmp.Bgeno==1,1,sum,na.rm=T)) / (2*N)
78 | pa <- 1-pA
79 | pb <- 1-pB
80 | pAB <- ((apply(tmp.geno==0 & tmp.Bgeno==0, 1, sum,na.rm=T)*2) + (apply(tmp.geno==1 & tmp.Bgeno==0, 1, sum,na.rm=T)) + (apply(tmp.geno==0 & tmp.Bgeno==1, 1, sum,na.rm=T)) + (apply(tmp.geno==1 & tmp.Bgeno==1, 1, sum,na.rm=T)*0.5)) / (2*N)
81 | D[,i] <- pAB-(pA*pB)
82 | if( get.Dprime ) {
83 | Dmax <- pmin(pA*pb, pa*pB)
84 | Dmin <- pmax(-pA*pB, -pa*pb)
85 | pos <- (D[,i]>=0)
86 | D_prime[which(pos),i] <- D[which(pos),i] / Dmax[which(pos)]
87 | D_prime[which(!pos),i] <- D[which(!pos),i] / Dmin[which(!pos)]
88 | }
89 | if( get.rsq ) {
90 | rsq[,i] <- (D[,i]*D[,i]) / (pA*pa*pB*pb)
91 | }
92 | if( get.chisq | get.chisq_prime ) {
93 | chisq[,i] <- (2*N*D[,i]*D[,i]) / (pA*pa*pB*pb)
94 | k=2-as.integer(pA==0|pa==0)
95 | m=2-as.integer(pB==0|pb==0)
96 | df[,i] <- (k-1)*(m-1)
97 | if( get.chisq_prime ) {
98 | chisq_prime[,i] <- chisq[,i] / (2*N*pmin(k,m))
99 | }
100 | }
101 | }
102 | }
103 | if( !get.D ) { D <- NULL }
104 | if( !get.chisq ) { chisq <- NULL }
105 | return(list(D=D, Dprime=D_prime, rsq=rsq, chisq=chisq, chisq_prime=chisq_prime, chisq_df=df))
106 | }
107 |
--------------------------------------------------------------------------------
/rscripts/calc_allele_sharing.R:
--------------------------------------------------------------------------------
1 | calc_allele_sharing <- function(geno)
2 | {
3 | ## Eva KF Chan
4 | ## http://evachan.org
5 | ##
6 | ## A script to calculate allele sharing distance between pairs of individuals
7 | ## (c.f. Gao & Stramer 2007 BMC Genetics 8:34)
8 | ## D_ij = (1/L) * sum(d_ij(l))
9 | ## where d_ij(l) = { 0 if individuals i & j have 2 alleles in common at l-th locus
10 | ## { 1 if individuals i & j have only 1 allele in common at l-th locus
11 | ## { 2 if individuals i & j have no allele in common at l-th locus
12 | ## and L = number of SNP loci.
13 | ##
14 | ## Input:
15 | ## geno: SNP-by-sample matrix of genotypes {0,1,2}; any other values are ignored.
16 | ##
17 | ## Output:
18 | ## symmetrical matix of allele-sharing distance between each pair of individuals (columns of geno)
19 | ##
20 | ## NOTE:: if one wants to use this distance matrix to obtain Ward's Minimum Variance
21 | ## Hierarchical Clustering as in Gao & Stramer 2007, simply use the following
22 | ## command:
23 | ## plot(allele.sharing.hclust <- hclust(as.dist(allele.sharing), method="ward"))
24 |
25 | n <- ncol(geno) ## number of individuals
26 | d <- matrix(NA, ncol=n, nrow=n, dimnames=list(colnames(geno),colnames(geno))) ## distance
27 |
28 | for(i in 1:n)
29 | {
30 | cat(i,"\n")
31 | z <- abs(geno - geno[,i])
32 | d[,i] <- apply(z, 2, mean, na.rm=T)
33 | }
34 |
35 | d
36 |
37 | }
38 |
--------------------------------------------------------------------------------
/rscripts/calc_hwe_chisq.R:
--------------------------------------------------------------------------------
1 | calc_hwe_chisq <- function(geno) {
2 |
3 | ## Copyright Eva Chan 2008
4 | ## http://evachan.org
5 | ##
6 | ## This is a function for testing the significance of deviation from HWE using Pearson's Chi-Squared test.
7 | ## chisq = [((Obs(AA)-Exp(AA))^2)/Exp(AA)] + [((Obs(Aa)-Exp(Aa))^2)/Exp(Aa)] + [((Obs(aa)-Exp(aa))^2)/Exp(aa)]
8 | ## df = 1 (# phenotypes - # alleles; i.e. 3 genotypes - 2 alleles)
9 | ##
10 | ## Input:
11 | ## geno: SNP-by-sample matrix of genotypes {0,1,2}; any other values are ignored.
12 | ##
13 | ## Output: two column matrix of Chi-square values and corresponding P-values for each SNP in geno.
14 |
15 | ## assign all non {0,1,2} to NA
16 | geno[(geno!=0) & (geno!=1) & (geno!=2)] <- NA
17 | geno <- as.matrix(geno)
18 |
19 | n0 <- apply(geno==0,1,sum,na.rm=T)
20 | n1 <- apply(geno==1,1,sum,na.rm=T)
21 | n2 <- apply(geno==2,1,sum,na.rm=T)
22 | n <- n0+n1+n2
23 | obs <- cbind(n0, n1, n2)
24 | p <- ((2*n0)+n1)/(2*n)
25 | q <- (1-p)
26 | expected <- cbind(p*p, 2*p*q, q*q)
27 | expected <- expected*n
28 | chisq <- (obs-expected)
29 | chisq <- (chisq*chisq) /expected
30 | chisq <- apply(chisq,1,sum)
31 | chisq.p <- 1-pchisq(chisq,df=1)
32 |
33 | res <- cbind(chisq=chisq, chisq.p=chisq.p)
34 | rownames(res) <- rownames(geno)
35 | res
36 |
37 | }
38 |
--------------------------------------------------------------------------------
/rscripts/calc_hwe_fisher.R:
--------------------------------------------------------------------------------
1 | calc_hwe_fisher <- function(geno) {
2 |
3 | ## Copyright Eva Chan 2008
4 | ## htp://evachan.org
5 | ##
6 | ## This is a function for testing the significance of deviation from HWE
7 | ## using Fisher's Exact test.
8 | ## Note that the observed number of Aa and aA genotypes are identical if
9 | ## their sum is even, else Aa is always one more than aA.
10 | ##
11 | ## Input:
12 | ## geno: SNP-by-sample matrix of genotypes {0,1,2}; any other values are ignored.
13 | ##
14 | ## Output: two column matrix of Odds Ratio and corresponding P-values for each SNP in geno.
15 |
16 | ## assign all non {0,1,2} to NA
17 | geno[(geno!=0) & (geno!=1) & (geno!=2)] <- NA
18 | geno <- as.matrix(geno)
19 |
20 | n0 <- apply(geno==0, 1, sum, na.rm=T)
21 | n1 <- apply(geno==1, 1, sum, na.rm=T)
22 | n2 <- apply(geno==2, 1, sum, na.rm=T)
23 |
24 | z <- cbind(n0, ceiling(n1/2), floor(n1/2), n2)
25 | z <- lapply( split( z, 1:nrow(z) ), matrix, ncol=2 )
26 | z <- lapply( z, fisher.test )
27 |
28 | res <- cbind( odds.ratio = as.numeric(unlist(lapply(z, "[[", "estimate"))),
29 | p.values = as.numeric(unlist(lapply(z, "[[", "p.value"))) )
30 | rownames(res) <- rownames(geno)
31 | res
32 |
33 | }
34 |
--------------------------------------------------------------------------------
/rscripts/calc_iES.R:
--------------------------------------------------------------------------------
1 | calc_iES <- function(EHHS, lox) {
2 |
3 | ## Eva KF Chan
4 | ## Nov 2008
5 | ## http://evachan.org
6 | ##
7 | ## A function to calculate the iES statistics as per Tang K, Thornton KR, Stoneking M (2007) A New Approach for Using Genome Scans to Detect Recent Positive Selection in the Human Genome . PLoS Biol 5(7): e171 doi:10.1371/journal.pbio.0050171
8 | ## iES integrates the area under the curve of EHHS against distance:
9 | ## iES_i = sum_for_j_from_a+1_to_b = { (EHHS_i,j-1 + EHHS_i,j) * (Pos_j - Pos_j-1) } / 2
10 | ## where:
11 | ## a & b are the two ending positions where EHHS < X
12 | ## Pos_j is the physical position of site j
13 | ##
14 | ## Parameters:
15 | ## EHHS: matrix of size MxM (M=number of markers=nrow(geno)) of EHHS values calcualted for all i-th marker (row) to each j-th marker (colum) until EHH < thresh
16 | ## <>
17 | ## lox: genomic location of the markers (row) in EHHS; THIS SHOULD BE IN SAME ORDER AS EHHS
18 |
19 | if( nrow(EHHS) != length(lox) ) { stop("Number of positions given does not agree with number of markers.\n") }
20 |
21 | M <- length(lox)
22 | iES <- rep(NA, M)
23 |
24 | x = lox[2:M] - lox[1:(M-1)]
25 | for(i in 1:M) {
26 | y = EHHS[i,1:(M-1)] + EHHS[i,2:M]
27 | if( !all(is.na(y)) ) {
28 | iES[i] = sum(y*x, na.rm=T) / 2
29 | }; rm(y)
30 | }
31 |
32 | iES
33 |
34 | }
35 |
--------------------------------------------------------------------------------
/rscripts/calc_neiFis_multispop.R:
--------------------------------------------------------------------------------
1 | calc_neiFis_multispop <- function (geno, spop) {
2 |
3 | ## Copyright Eva Chan 2008
4 | ## eva@evachan.org
5 | ##
6 | ## A script to calculate inbreeding coefficients, Fis (Nei 1977 Ann Hum Genet 41:225-233),
7 | ## for each sub-population from a given set of SNP markers.
8 | ##
9 | ## Input:
10 | ## geno: SNP-by-sample matrix of genotypes {0,1,2}; any other values are ignored.
11 | ## spop: a factor indicating the sub-population to which the corresponding samples
12 | ## (columns) in geno belong.
13 | ##
14 | ## Output: list of
15 | ## 1) aveloc: numeric vector of Fis averaged over all loci for each sub-population,
16 | ## the total population (2nd last value),
17 | ## and average of total population (last value)
18 | ## 2) perloc: matrix of Fis per SNP (row) for each sub-population,
19 | ## the total population (2nd last column),
20 | ## and average of total population (last column)
21 |
22 | ## assign all non {0,1,2} to NA
23 | geno[(geno!=0) & (geno!=1) & (geno!=2)] <- NA
24 | geno <- as.matrix(geno)
25 |
26 | m = nrow(geno) ## number of markers
27 | N = ncol(geno) ## number of samples
28 |
29 | if( length(spop) != N ) { stop( "Number of samples with genotypes does not match provided number of spop.\n" ) }
30 | spop <- as.factor(as.character(spop))
31 | unique.spop <- levels(spop)
32 | nspop <- length(unique.spop)
33 |
34 | ## determine numbers of each genotypes for each spop at each locus
35 | nNA <- nAA <- nAa <- naa <- matrix(NA, ncol=nspop, nrow=m, dimnames=list(NULL,unique.spop))
36 | for(i in 1:nspop) {
37 | inds <- which(spop == unique.spop[i])
38 | nAA[,i] <- apply(geno[,inds]==0,1,sum,na.rm=T)
39 | nAa[,i] <- apply(geno[,inds]==1,1,sum,na.rm=T)
40 | naa[,i] <- apply(geno[,inds]==2,1,sum,na.rm=T)
41 | }
42 | n <- nAA + nAa + naa
43 | nAA <- cbind(nAA, total=apply(nAA[,unique.spop],1,sum))
44 | nAa <- cbind(nAa, total=apply(nAa[,unique.spop],1,sum))
45 | naa <- cbind(naa, total=apply(naa[,unique.spop],1,sum))
46 | n <- cbind(n, total=apply(n[,unique.spop],1,sum))
47 |
48 | Ho <- (nAa/n) ## observed het
49 | p <- ((2*nAA)+nAa)/(2*n) ## allele freq
50 | He <- (n/(n-1)) * ((2*p*(1-p)) - (Ho/(2*n))) ## Nei's expected het
51 |
52 | s <- apply(!is.na(n[,unique.spop]),1,sum) ## number of spop per marker
53 | n_tilda <- s/apply((1/n[,unique.spop]),1,sum) ## harmonic mean of sample sizes
54 | Ho <- cbind(Ho, average=(apply(Ho[,unique.spop],1,sum,na.rm=T)/s)) ## Ho averged over samples
55 | He <- cbind(He, average=( (n_tilda/(n_tilda-1)) * ((apply(2*p[,unique.spop]*(1-p[,unique.spop]),1,sum,na.rm=T)/s) - (Ho[,"average"]/(2*n_tilda))) )) ## Nei's averaged He
56 |
57 | ncFis <- 1 - (apply(Ho,2,mean,na.rm=T) / apply(He,2,mean,na.rm=T))
58 | ncFis.perloc <- 1 - (Ho/He)
59 |
60 | list(aveloc = ncFis, perloc = ncFis.perloc)
61 |
62 | }
63 |
--------------------------------------------------------------------------------
/rscripts/calc_neiFis_onepop.R:
--------------------------------------------------------------------------------
1 | calc_neiFis_onepop <- function (geno) {
2 |
3 | ## Copyright Eva Chan 2008
4 | ## eva@evachan.org
5 | ##
6 | ## A script to calculate inbreeding coefficients, Fis (Nei 1977 Ann Hum Genet 41:225-233),
7 | ## for total population from a given set of SNP markers.
8 | ##
9 | ## Input:
10 | ## geno: SNP-by-sample matrix of genotypes {0,1,2}; any other values are ignored.
11 | ##
12 | ## Output: list of
13 | ## 1) aveloc: single Fis value averaged over all loci for the given population
14 | ## 2) perloc: numeric vector of Fis per SNP (row) for the given population
15 |
16 | ## assign all non {0,1,2} to NA
17 | geno[(geno!=0) & (geno!=1) & (geno!=2)] <- NA
18 | geno <- as.matrix(geno)
19 |
20 | m = nrow(geno) ## number of markers
21 | N = ncol(geno) ## number of samples
22 |
23 | ## determine numbers of each genotypes for the given pop at each locus
24 | nNA <- apply(is.na(geno),1,sum)
25 | nAA <- apply(geno==0,1,sum,na.rm=T)
26 | nAa <- apply(geno==1,1,sum,na.rm=T)
27 | naa <- apply(geno==2,1,sum,na.rm=T)
28 | n <- nAA + nAa + naa
29 |
30 | Ho <- (nAa/n) ## observed het
31 | p <- ((2*nAA)+nAa)/(2*n) ## allele freq
32 | He <- (n/(n-1)) * ((2*p*(1-p)) - (Ho/(2*n))) ## Nei's expected het
33 |
34 | ncFis <- 1 - (mean(Ho,na.rm=T) / mean(He,na.rm=T))
35 | ncFis.perloc <- 1 - (Ho/He)
36 |
37 | list(aveloc = ncFis, perloc = ncFis.perloc)
38 |
39 | }
40 |
--------------------------------------------------------------------------------
/rscripts/calc_snp_stats.R:
--------------------------------------------------------------------------------
1 | calc_snp_stats <- function(geno)
2 | {
3 | ## Eva KF Chan
4 | ## http://evachan.org
5 | ##
6 | ## Created: 21/08/07
7 | ## Last Modified: 21/10/12
8 | ##
9 | ## Function to calculate basic stats on SNPs, including: allele frequency, MAF, and exact estimate of HWE
10 | ##
11 | ## geno: snp-by-individual matrix of genotypes, {0,1,2}.
12 | ## NOTE:: any other values are ignored
13 | ##
14 | ## OUTPUT: data.frame of
15 | ## n, n0, n1, n2: number of samples with total non-missing genotype, and geno=0,1,or 2
16 | ## p: allele frequency
17 | ## maf & mgf: minor allele & genotype frequencies
18 | ## mono: {T,F} indicating if marker is monomorphic (MAF<0%)
19 | ## loh: {T,F} indicating if marker has loss of heterozygote
20 | ## hwe.chisq & hwe.chisq.p: chi-square test statistic for deviation from HWE and correp p-value
21 | ## hwe.fisher & hwe.fisher.p: Fisher's Exact test statistic for deviation from HWE and correp p-value
22 | ##
23 |
24 | m <- nrow(geno) ## number of snps
25 | n <- ncol(geno) ## number of individuals
26 |
27 | ## assign all non {0,1,2} to NA
28 | geno[(geno!=0) & (geno!=1) & (geno!=2)] <- NA
29 | geno <- as.matrix(geno)
30 |
31 | ## calc_n
32 | n0 <- apply(geno==0,1,sum,na.rm=T)
33 | n1 <- apply(geno==1,1,sum,na.rm=T)
34 | n2 <- apply(geno==2,1,sum,na.rm=T)
35 |
36 | n <- n0 + n1 + n2
37 |
38 | ## calculate allele frequencies
39 | p <- ((2*n0)+n1)/(2*n)
40 | q <- 1 - p
41 | maf <- pmin(p, q)
42 | mgf <- apply(cbind(n0,n1,n2),1,min) / n
43 |
44 | ## HWE: Chi-Square test
45 | obs <- cbind(n0=n0,n1=n1,n2=n2)
46 | exp <- cbind(p*p, 2*p*q, q*q)
47 | exp <- exp*n
48 | chisq <- (obs-exp)
49 | chisq <- (chisq*chisq) /exp
50 | hwe.chisq <- apply(chisq,1,sum)
51 | hwe.chisq.p <- 1-pchisq(hwe.chisq,df=1)
52 |
53 | ## HWE: Fisher's Exact test
54 | z <- cbind(n0, ceiling(n1/2), floor(n1/2), n2)
55 | z <- lapply( split( z, 1:nrow(z) ), matrix, ncol=2 )
56 | z <- lapply( z, fisher.test )
57 | hwe.fisher <- as.numeric(unlist(lapply(z, "[[", "estimate")))
58 | hwe.fisher.p <- as.numeric(unlist(lapply(z, "[[", "p.value")))
59 |
60 | # MODIFIED 21 Oct 2012: prior to this version, we had "mono=(mgf<0)" instead of "mono<(maf<0)"
61 | res <- data.frame( n=n, n0=n0, n1=n1, n2=n2, p=p, maf=maf, mgf=mgf,
62 | mono=(maf<=0), loh=(n1<=0),
63 | hwe.chisq=hwe.chisq, hwe.chisq.p=hwe.chisq.p,
64 | hwe.fisher=hwe.fisher, hwe.fisher.p=hwe.fisher.p,
65 | stringsAsFactors=F )
66 | row.names(res) <- row.names(geno)
67 | res
68 | }
--------------------------------------------------------------------------------
/rscripts/calc_wcFst_spop_pairs.R:
--------------------------------------------------------------------------------
1 | calc_wcFst_spop_pairs <- function(geno, spop, plot.nj=F) {
2 |
3 | ## Copyright Eva Chan 2008
4 | ## eva@evachan.org
5 | ##
6 | ## A script to estimate Fst (theta) values for each pair of sub-populations
7 | ## using the method of Weir & Cockerham 1984 Evolution 38(6): 1358-1370.
8 | ##
9 | ## Arguments
10 | ## =========
11 | ## geno: matrix of genotypes with rows corresp. to markers and columns to individuals;
12 | ## notation for genotyeps are {0,1,2} indicating the number of one of the two alleles
13 | ## subpop: vector indicting the sub-popln to which the individuals belong to
14 | ## plot.nj: logical indicating whether a Neighbouring-Joining Tree of the results should be plotted.
15 | ## (note that the R/ape library is required for this); defaults to FALSE
16 | ##
17 | ## Side effects
18 | ## ============
19 | ## output: Symmetical matix (in which only upper triangle is filled) of theta (Fst) values for each
20 | ## pair of unique sub-populaitons.
21 | ## plot: neighbouring-joining tree of results.
22 |
23 | ## assign all non {0,1,2} to NA
24 | geno[(geno!=0) & (geno!=1) & (geno!=2)] <- NA
25 | geno <- as.matrix(geno)
26 |
27 | N = ncol(geno) ## sample size
28 | if( length(spop) != N ) { stop( "Number of samples with genotypes does not match provided number of spop.\n" ) }
29 | spop <- as.factor(as.character(spop))
30 | unique.spop <- levels(spop)
31 | nspop = length(unique.spop)
32 |
33 | n0 <- n1 <- n <- matrix(NA, ncol=nspop, nrow=nrow(geno), dimnames=list(NULL,unique.spop))
34 | for(i in 1:nspop) {
35 | inds <- which(spop == unique.spop[i])
36 | n0[,i] <- apply(geno[,inds]==0,1,sum,na.rm=T)
37 | n1[,i] <- apply(geno[,inds]==1,1,sum,na.rm=T)
38 | n[,i] <- apply(!is.na(geno[,inds]),1,sum,na.rm=T)
39 | }
40 | p <- ((2*n0)+n1)/(2*n) ## allele freq
41 | Ho <- (n1/n) ## observed het
42 |
43 | pairwise.wcFst <- matrix(NA, ncol=nspop, nrow=nspop)
44 | r=2 ## now, only two spops are examined at a time
45 | for( i in 1:(nspop-1) ) {
46 | for( j in (i+1):nspop ) {
47 |
48 | n_bar <- apply(n[,unique.spop[c(i,j)]],1,sum,na.rm=T)/r
49 | nc <- ((r*n_bar) - (apply((n[,unique.spop[c(i,j)]]*n[,unique.spop[c(i,j)]])/(r*n_bar),1,sum,na.rm=T))) / (r-1)
50 | p_bar <- apply( (n[,unique.spop[c(i,j)]]*p[,unique.spop[c(i,j)]])/(r*n_bar), 1, sum, na.rm=T )
51 | s_square <- apply( (n[,unique.spop[c(i,j)]]*((p[,unique.spop[c(i,j)]]-p_bar)^2)) / ((r-1)*n_bar), 1, sum, na.rm=T )
52 | h_bar <- apply((n[,unique.spop[c(i,j)]]*Ho[,unique.spop[c(i,j)]])/(r*n_bar), 1, sum, na.rm=T)
53 |
54 | a_hat <- (n_bar/nc) * ( s_square - ((1/(n_bar-1))*((p_bar*(1-p_bar)) - (((r-1)/r)*s_square) - ((1/4)*h_bar))) )
55 | b_hat <- (n_bar/(n_bar-1)) * ((p_bar*(1-p_bar)) - (((r-1)/r)*s_square) - ((((2*n_bar)-1)/(4*n_bar))*h_bar))
56 | c_hat <- h_bar/2
57 |
58 | inds <- which(is.finite(a_hat) & is.finite(b_hat) & is.finite(c_hat))
59 | pairwise.wcFst[i,j] <- sum(a_hat[inds],na.rm=T) / sum(apply(cbind(a_hat,b_hat,c_hat)[inds,],1,sum,na.rm=T),na.rm=T)
60 |
61 | rm(n_bar, nc, p_bar, s_square, h_bar, a_hat, b_hat, c_hat,inds)
62 | }
63 | }
64 | colnames(pairwise.wcFst) <- rownames(pairwise.wcFst) <- unique.spop
65 |
66 | ## plot Neighbouring-Joining Tree
67 | if(plot.nj) {
68 | library(ape)
69 | pairwise.wcFst.nj <- nj(as.dist(t(pairwise.wcFst)))
70 | plot(pairwise.wcFst.nj, main="Weir & Cockerham's Fst",sub="neighbor joining",type="unrooted")
71 | }
72 |
73 | pairwise.wcFst
74 |
75 | }
76 |
--------------------------------------------------------------------------------
/rscripts/calc_wcFstats.R:
--------------------------------------------------------------------------------
1 | calc_wcFstats <- function(geno, subpop) {
2 |
3 | ## Copyright Eva Chan 2008
4 | ## eva@evachan.org
5 | ##
6 | ## A script to estimate the variance components and fixation indices as described in
7 | ## Weir & Cockerham 1984 Evolution 38(6): 1358-1370.
8 | ##
9 | ## Arguments
10 | ## =========
11 | ## geno: matrix of genotypes with rows corresp. to markers and columns to individuals;
12 | ## notation for genotyeps are {0,1,2} indicating the number of one of the two alleles
13 | ## subpop: vector indicting the sub-popln to which the individuals belong to
14 | ##
15 | ## Output
16 | ## ======
17 | ## list of two objects: perloc and global
18 | ## perloc: matrix of 6 columns and as many rows as markers in geno
19 | ## the 6 columns contain the estiamted variance components and fixation indices per locus
20 | ## a = component of variance between subpops
21 | ## b = component of variance between individuals within subpops
22 | ## c = component of variance between gametes within individuals
23 | ## global: numeric vector of three values corresponding to the esimated F (Fit), theta (Fst), &
24 | ## f (Fis) across all loci
25 | ##
26 | ## Note
27 | ## ====
28 | ## R/HIERFSTAT also estimate F-statistics using variance component estimation.
29 | ## Results from that package is not too different to those from this function; I suspect
30 | ## there are two sources of differences:
31 | ## 1) all estimates of variance component from HIERFSTAT are doubled in magnitude to those
32 | ## from this function (i.e. scaled by factor of 2);
33 | ## 2) rounding off variations may also be present.
34 | ## The scaled difference in the estimates of variance components poses no problem when
35 | ## calcualting fixation indicies as the values scaling factor is cancelled out in the
36 | ## calculation of the ratios.
37 |
38 | spop <- unique(as.character(subpop)) ## unique spops
39 | r <- length(spop)
40 |
41 | n11 <- n12 <- n22 <- matrix(NA, ncol=r, nrow=nrow(geno))
42 | for(i in 1:r) {
43 | inds <- which(subpop == spop[i])
44 | n11[,i] <- apply(geno[,inds]==0,1,sum,na.rm=T)
45 | n12[,i] <- apply(geno[,inds]==1,1,sum,na.rm=T)
46 | n22[,i] <- apply(geno[,inds]==2,1,sum,na.rm=T)
47 | }
48 | ni <- n11 + n12 + n22
49 | pi_tilda <- ((2 * n11) + n12) / (2 * ni)
50 | hi_tilda <- n12 / ni
51 | n_bar <- apply(ni,1,sum,na.rm=T)/r
52 | # C_square <- ( apply(ni*ni,1,sum,na.rm=T) - (n_bar*n_bar*r) ) / ( (n_bar*n_bar) * (r-1) ) ## mod 2/3/2008
53 | # nc <- n_bar * (1 - (C_square/r))
54 | nc <- ((r*n_bar) - apply(((ni*ni)/(r*n_bar)),1,sum,na.rm=T)) / (r - 1)
55 | p_bar <- apply( (ni*pi_tilda)/(r*n_bar), 1, sum, na.rm=T )
56 | s_square <- apply( (ni*((pi_tilda-p_bar)^2)) / ((r-1)*n_bar), 1, sum, na.rm=T )
57 | h_bar <- apply((ni*hi_tilda)/(r*n_bar), 1, sum, na.rm=T)
58 |
59 | # F_hat = 1 - ( (h_bar*(1-(C_square/r))) / ( (2*p_bar*(1-p_bar)*(1-((n_bar*C_square)/(r*(n_bar-1))))) + (2*(s_square/r)*(1+(((r-1)*(n_bar*C_square))/(r*(n_bar-1))))) + ((h_bar/2)*(C_square/(r*(n_bar-1)))) ))
60 | # theta_hat <- (s_square - ((1/(n_bar-1))*((p_bar*(1-p_bar)) - (((r-1)/r)*s_square) - (h_bar/4)))) / (((1-((n_bar*C_square)/(r*(n_bar-1))))*p_bar*(1-p_bar)) + ((1+(((r-1)*n_bar*C_square)/(r*(n_bar-1))))*(s_square/r)) + ((C_square/(r*(n_bar-1)))*(h_bar/4)))
61 | # f_hat <- 1 - (h_hat / ((((2*n_bar)/(n_bar-1))*p_bar*(1-p_bar)) - (((2*n_bar*(r-1))/(r*(n_bar-1)))*s_square) - ((1/(n_bar-1))*(h_bar/2))))
62 |
63 | a_hat <- (n_bar/nc) * ( s_square - ((1/(n_bar-1))*((p_bar*(1-p_bar)) - (((r-1)/r)*s_square) - ((1/4)*h_bar))) )
64 | b_hat <- (n_bar/(n_bar-1)) * ((p_bar*(1-p_bar)) - (((r-1)/r)*s_square) - ((((2*n_bar)-1)/(4*n_bar))*h_bar))
65 | c_hat <- h_bar/2
66 |
67 | F_hat <- 1 - (c_hat / (a_hat + b_hat + c_hat))
68 | theta_hat <- a_hat / (a_hat + b_hat + c_hat)
69 | f_hat <- 1 - (c_hat / (b_hat + c_hat))
70 |
71 | F_hat_w <- 1 - (sum(c_hat,na.rm=T) / sum((a_hat + b_hat + c_hat),na.rm=T))
72 | theta_hat_w <- sum(a_hat,na.rm=T) / sum((a_hat + b_hat + c_hat),na.rm=T)
73 | f_hat_w <- 1 - (sum(c_hat,na.rm=T) / sum((b_hat + c_hat),na.rm=T))
74 |
75 | list( perloc=cbind(a_hat=a_hat, b_hat=b_hat, c_hat=c_hat, F_hat=F_hat, theta_hat=theta_hat, f_hat=f_hat),
76 | global=c(F_hat=F_hat_w, theta_hat=theta_hat_w, f_hat=f_hat_w) )
77 |
78 | }
79 |
80 |
--------------------------------------------------------------------------------
/rscripts/exampleI.ASdist.nj.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ekfchan/evachan.org-Rscripts/cbe314f3877c361a8b99fb1ece4dfa92a2a0d728/rscripts/exampleI.ASdist.nj.png
--------------------------------------------------------------------------------
/rscripts/exampleI.R:
--------------------------------------------------------------------------------
1 |
2 | ### ----------------------------------- ###
3 | ### Create Data ###
4 | ### ----------------------------------- ###
5 |
6 | ## Create data of 20 individuals belonging to three subpopulations (A,B,and C)
7 | subpop <- rep(LETTERS[1:3],c(8,5,7) )
8 |
9 | ## Simulate genotype matrix of 100 markers by 20 individuals, based on subpop.
10 | ## Simulation assumes the 100 markers are unlinked.
11 | geno <- matrix( NA, ncol=20, nrow=100,
12 | dimnames=list(paste('M',sapply(mapply(rep,3-nchar(1:100),MoreArgs=list(x=0)),paste,collapse=''),1:100,sep=''),paste('S',sapply(mapply(rep,2-nchar(1:20),MoreArgs=list(x=0)),paste,collapse=''),1:20,sep='')))
13 |
14 | for( i in 1:100 ) {
15 | for( s in LETTERS[1:3] ) {
16 | sinds <- which(subpop==s)
17 | tmp.prob = runif(1)
18 | geno[i,sinds] <-
19 | sample(0:1,length(sinds),replace=T,p=c(tmp.prob,1-tmp.prob)) +
20 | sample(0:1,length(sinds),replace=T,p=c(tmp.prob,1-tmp.prob))
21 | rm(sinds, tmp.prob)
22 | }; rm(s)
23 | }; rm(i)
24 |
25 |
26 | ### ----------------------------------- ###
27 | ### Example Usage ###
28 | ### ----------------------------------- ###
29 |
30 | ### calc_wcFstats.R
31 | ### ===============
32 | wcFstats <- calc_wcFstats(geno,subpop)
33 | sapply(wcFstats,head) #peek at the output
34 | #$perloc
35 | # a_hat b_hat c_hat F_hat theta_hat f_hat
36 | #[1,] 0.134044839 -0.025315126 0.175 0.38321581 0.472438497 -0.169122807
37 | #[2,] 0.066264674 0.001680672 0.200 0.25357912 0.247306679 0.008333333
38 | #[3,] 0.252778401 0.034926471 0.050 0.85194173 0.748518669 0.411255411
39 | #[4,] 0.134213227 -0.045168067 0.200 0.30806660 0.464333073 -0.291723202
40 | #[5,] 0.001800148 0.014548319 0.200 0.07556544 0.008320593 0.067809058
41 | #[6,] 0.089654564 -0.038130252 0.125 0.29188224 0.507887911 -0.438935913
42 | #
43 | #$global
44 | # F_hat theta_hat f_hat
45 | #0.343454963 0.341996174 0.002216991
46 |
47 |
48 | ### calc_wcFst_spop_pairs.R
49 | ### =======================
50 | wcFstats.spop.pairs <- calc_wcFst_spop_pairs( geno, subpop, TRUE )
51 | wcFstats.spop.pairs #output: FST between the three pairs of subpopulations: A vs B, A vs C, and B vs C.
52 | # A B C
53 | #A NA 0.3850011 0.3405093
54 | #B NA NA 0.2961459
55 | #C NA NA NA
56 |
57 |
58 | ### calc_neiFis_onepop.R
59 | ### ====================
60 | neiFis.popA <- calc_neiFis_onepop(geno[,which(subpop=='A')])
61 | sapply(neiFis.popA,head) #peek at the output:
62 | #$aveloc
63 | #[1] 0.05077399
64 | #
65 | #$perloc
66 | # M001 M002 M003 M004 M005 M006
67 | # NaN -0.27272727 0.00000000 -0.07692308 0.30000000 NaN
68 | geno[1:6,which(subpop=='A')] #Note: markers at which FIS cannot be calculated have NA (missing) values. In this example, markers M001 & M006 are monomorphic in subpopulation A.
69 | # S01 S02 S03 S04 S05 S06 S07 S08
70 | #M001 0 0 0 0 0 0 0 0
71 | #M002 1 0 1 0 0 1 1 0
72 | #M003 0 1 0 0 0 0 0 0
73 | #M004 1 2 1 2 2 2 2 2
74 | #M005 0 1 1 0 2 1 0 2
75 | #M006 2 2 2 2 2 2 2 2
76 |
77 |
78 | ### calc_snp_stats.R
79 | ### ================
80 | snp.stats <- calc_snp_stats(geno)
81 | head(snp.stats) #peek at the output
82 | # n n0 n1 n2 p maf mgf mono loh hwe.chisq hwe.chisq.p hwe.fisher hwe.fisher.p
83 | #M001 20 9 7 4 0.625 0.375 0.20 FALSE FALSE 1.28355556 0.2572389852 2.828469 0.3563467492
84 | #M002 20 8 8 4 0.600 0.400 0.20 FALSE FALSE 0.55555556 0.4560565403 1.929814 0.6479161705
85 | #M003 20 8 2 10 0.450 0.450 0.10 FALSE FALSE 12.73543516 0.0003587923 50.725102 0.0009228388
86 | #M004 20 4 8 8 0.400 0.400 0.20 FALSE FALSE 0.55555556 0.4560565403 1.929814 0.6479161705
87 | #M005 20 10 8 2 0.700 0.300 0.10 FALSE FALSE 0.04535147 0.8313590555 1.235838 1.0000000000
88 | #M006 20 1 5 14 0.175 0.175 0.05 FALSE FALSE 0.36018815 0.5484017591 2.218801 0.5087719298
89 |
90 | # Some of the statistics are actually not appropriate in the presence of known population substrucutre.
91 | # In our case, since our *geno* corresponded to individuals from three different subpopulations, we may wish to re-estimate the marker statistics on a by-population basis.
92 | snp.stats.popA <- calc_snp_stats(geno[,which(subpop=='A')]) #statistics for subpopulation A
93 | head(snp.stats.popA) #Note that markers M001, M006 (& others) were monomorphic and so chi-square could not be calculated.
94 | # n n0 n1 n2 p maf mgf mono loh hwe.chisq hwe.chisq.p hwe.fisher hwe.fisher.p
95 | #M001 8 8 0 0 1.0000 0.0000 0.00 TRUE TRUE NaN NaN 0.000000 1
96 | #M002 8 4 4 0 0.7500 0.2500 0.00 FALSE FALSE 0.88888889 0.3457786 0.000000 1
97 | #M003 8 7 1 0 0.9375 0.0625 0.00 FALSE FALSE 0.03555556 0.8504363 0.000000 1
98 | #M004 8 0 2 6 0.1250 0.1250 0.00 FALSE FALSE 0.16326531 0.6861678 0.000000 1
99 | #M005 8 3 3 2 0.5625 0.4375 0.25 FALSE FALSE 0.45351474 0.5006706 2.601683 1
100 | #M006 8 0 0 8 0.0000 0.0000 0.00 TRUE TRUE NaN NaN 0.000000 1
101 |
102 |
103 | ### calc_neiFis_multispop.R
104 | ### =======================
105 | neiFis.allpops <- calc_neiFis_multispop(geno,subpop)
106 | sapply(neiFis.allpops,head) #peek at output
107 | #$aveloc ## average FIS for each subpopulation, of combined pop, and averaged across the 3 subpops
108 | # A B C total average
109 | # 0.050773994 -0.096671949 0.017681729 0.265446224 -0.008713363
110 | #
111 | #$perloc ## FIS values for EACH marker
112 | # A B C total average
113 | #[1,] NaN -6.000000e-01 1.428571e-01 0.27717391 -0.22953762
114 | #[2,] -0.27272727 -1.428571e-01 3.684211e-01 0.19148936 0.00980153
115 | #[3,] 0.00000000 6.000000e-01 NaN 0.80710660 0.46406559
116 | #[4,] -0.07692308 -2.220446e-16 -5.000000e-01 0.19148936 -0.28099627
117 | #[5,] 0.30000000 -1.428571e-01 -2.000000e-01 0.07317073 0.03715450
118 | #[6,] NaN -6.000000e-01 2.220446e-16 0.15929204 -0.47610485
119 |
120 |
121 | ### calc_LD.R
122 | ## ==========
123 | LDrsq.allpops.SNPs1to50 <- calc_LD( geno, inds=1:50, get.D=F, get.Dprime=F, get.rsq=T, get.chisq=F, get.chisq_prime=F )
124 | sapply(LDrsq.allpops.SNPs1to50,'[',1:6,1:6) #peek at the output: notice that only $rsq is not NULL as we had asked calc_LD to return only r-square values.
125 | #$D
126 | #NULL
127 | #
128 | #$Dprime
129 | #NULL
130 | #
131 | #$rsq ##symmetircal matrix of r-squares estimated for all 100x100 pairs of markers
132 | # [,1] [,2] [,3] [,4] [,5] [,6]
133 | #[1,] 1.000000000 0.006734007 0.486531987 0.2045455 0.01010101 0.04306220
134 | #[2,] 0.006734007 1.000000000 0.001736111 0.1666667 0.16666667 0.03508772
135 | #[3,] 0.486531987 0.001736111 1.000000000 0.0234375 0.00000000 0.03508772
136 | #[4,] 0.204545455 0.166666667 0.023437500 1.0000000 0.00000000 0.21052632
137 | #[5,] 0.010101010 0.166666667 0.000000000 0.0000000 1.00000000 0.05263158
138 | #[6,] 0.043062201 0.035087719 0.035087719 0.2105263 0.05263158 1.00000000
139 | #
140 | #$chisq
141 | #NULL
142 | #
143 | #$chisq_prime
144 | #NULL
145 | #
146 | #$chisq_df
147 | #NULL
148 |
149 | # LD estimated using samples with known population structure may not be appropriate.
150 | # In our case here, we may wish to estimate LD using only samples from subpopulation A.
151 | LDrsq.popA.SNPs1to50 <- calc_LD( geno[,which(subpop=='A')], inds=1:50, get.D=F, get.Dprime=F, get.rsq=T, get.chisq=F, get.chisq_prime=F )
152 | LDrsq.popA.SNPs1to50$rsq[1:6,1:6] #peek at output: Note the large numbers of missing data due to (1) small sample size and (2) monomophic loci
153 | # [,1] [,2] [,3] [,4] [,5] [,6]
154 | #[1,] NaN NaN NaN NaN NaN NaN
155 | #[2,] NaN 1.00000000 0.14285714 NaN 0.06666667 NaN
156 | #[3,] NaN 0.14285714 1.00000000 NaN 0.08571429 NaN
157 | #[4,] NaN NaN NaN NaN NaN NaN
158 | #[5,] NaN 0.06666667 0.08571429 NaN 1.00000000 NaN
159 | #[6,] NaN NaN NaN NaN NaN NaN
160 |
161 |
162 | ### calc_allele_sharing.R
163 | ### =====================
164 | ASdist.allpop <- calc_allele_sharing(geno)
165 | rownames(ASdist.allpop) <- colnames(ASdist.allpop) <- colnames(geno) #Note that calc_allele_sharing does not preserve marker labels.
166 |
167 | #To use allele-sharing distance matrix as input for estiamting Neighbour-Joining Tree:
168 | library(ape) #the library with nj()
169 | ASdist.allpop.nj <- nj(ASdist.allpop)
170 | plot( ASdist.allpop.nj, tip.color=match(subpop,LETTERS[1:3]), type='unroot' )
171 |
172 |
173 | ### calc_hwe_chisq.R
174 | ### ================
175 | HWEchisq.allpop <- calc_hwe_chisq(geno)
176 | head(HWEchisq.allpop) #peek at output
177 | # chisq chisq.p
178 | #M001 1.28355556 0.2572389852
179 | #M002 0.55555556 0.4560565403
180 | #M003 12.73543516 0.0003587923
181 | #M004 0.55555556 0.4560565403
182 | #M005 0.04535147 0.8313590555
183 | #M006 0.36018815 0.5484017591
184 |
185 | # Testing of deviation from HWE in data with known population substructure may not be appropriate.
186 | # Here we re-estimate with only data from subpopulation A.
187 | HWEchisq.popA <- calc_hwe_chisq(geno[,which(subpop=='A')])
188 | head(HWEchisq.popA) #Note: chi-square cannot be calculated on monomorphic markers (e.g. M001 & M006)
189 | # chisq chisq.p
190 | #M001 NaN NaN
191 | #M002 0.88888889 0.3457786
192 | #M003 0.03555556 0.8504363
193 | #M004 0.16326531 0.6861678
194 | #M005 0.45351474 0.5006706
195 | #M006 NaN NaN
196 |
197 |
198 | ### calc_hwe_fisher.R
199 | ### =================
200 | HWEfisher.allpop <- calc_hwe_fisher(geno)
201 | head(HWEfisher.allpop) #peek at output
202 | # odds.ratio p.values
203 | #[1,] 2.828469 0.3563467492
204 | #[2,] 1.929814 0.6479161705
205 | #[3,] 50.725102 0.0009228388
206 | #[4,] 1.929814 0.6479161705
207 | #[5,] 1.235838 1.0000000000
208 | #[6,] 2.218801 0.5087719298
209 |
210 | # Testing of deviation from HWE in data with known population substructure may not be appropriate.
211 | # Here we re-estimate with only data from subpopulation A.
212 | HWEfisher.popA <- calc_hwe_fisher(geno[,which(subpop=='A')])
213 | head(HWEfisher.popA)
214 | # odds.ratio p.values
215 | #[1,] 0.000000 1
216 | #[2,] 0.000000 1
217 | #[3,] 0.000000 1
218 | #[4,] 0.000000 1
219 | #[5,] 2.601683 1
220 | #[6,] 0.000000 1
221 |
222 |
--------------------------------------------------------------------------------
/rscripts/exampleI_data.RData:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ekfchan/evachan.org-Rscripts/cbe314f3877c361a8b99fb1ece4dfa92a2a0d728/rscripts/exampleI_data.RData
--------------------------------------------------------------------------------
/rscripts/exampleI_functions.RData:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ekfchan/evachan.org-Rscripts/cbe314f3877c361a8b99fb1ece4dfa92a2a0d728/rscripts/exampleI_functions.RData
--------------------------------------------------------------------------------
/rscripts/geno_to_allelecnt.R:
--------------------------------------------------------------------------------
1 | geno_to_allelecnt <- function(geno, ref=NULL, info=FALSE) {
2 |
3 | ## http://evachan.org
4 | ## Eva KF Chan
5 | ## Created: 7 July 2014
6 | ##
7 | ## Converts a matrix of genotypes into a matrix of allele counts.
8 | ## It essentially converts the bi-allele SNP data format of {AA,AG,GG,CC,...}
9 | ## to the number of copies of the ref (or alphabetically "smaller") allele {0,1,2}
10 | ## Inputs:
11 | ## geno: Matrix of genotypes with rows corresponding to markers and columns
12 | ## to samples. NA is allowed.
13 | ## ref: Character vector of same size the number of rows in geno, representing
14 | ## the reference "allele". If absent, then conversion will be based on
15 | ## the alphabetically smaller allele.
16 | ## Output:
17 | ## If info is FALSE (default), the function returns a single matrix of the same size as geno, containing the counts of the reference/common allele at each marker (rows).
18 | ## If info is TRUE, a list will be return containing the matrix of allele counts as well as a data.frame of marker information. This is useful for checking which alelles are counted.
19 |
20 | if(!is.matrix(geno) | !mode(geno)=="character") { stop("geno must be of 'matrix' class and 'character' mode.\n") }
21 | if( !all(nchar(as.character(geno[!is.na(geno)]))==2) ) { stop("geno should contain bi-allelic genotypes, e.g. {AA,CC,GG,TT,AC,AG,AT,CG,CT,GT}\n") }
22 |
23 | markers <- data.frame( N=rowSums(!is.na(geno)) )
24 |
25 | alleles <- apply(cbind(substr(geno,1,1),substr(geno,2,2)),1,unique)
26 | if( is.matrix(alleles) ) { alleles <- lapply(apply(alleles,2,as.list),as.character) } #2017-03-15: corrected apply direction
27 | alleles <- lapply(alleles,sort)
28 | markers$numAlleles = sapply(alleles,length)
29 | if( any(markers$numAlleles>2) ) { stop("markers {",paste(which(markers$numAlleles>2),collapse=","),"} contains more than two alleles.\n") }
30 |
31 | markers$A1 = NA
32 | inds <- which(markers$numAlleles>0)
33 | markers$A1[inds] <- sapply(alleles[inds],'[[',1)
34 | markers$A2 = NA
35 | inds <- which(markers$numAlleles>1)
36 | markers$A2[inds] <- sapply(alleles[inds],'[[',2)
37 |
38 | if(is.null(ref)) { ref <- markers$A1; markers$input_ref=NA } else { markers$input_ref=ref }
39 | # If ref allele was not known, the alphabetically smaller allele is used
40 | if(length(inds<-which(is.na(ref)))>0) { ref[inds] = markers$A1[inds] }
41 | alt <- rep(NA,length(ref))
42 | inds <- which(ref==markers$A1); alt[inds] <- markers$A2[inds]
43 | inds <- which(ref==markers$A2); alt[inds] <- markers$A1[inds]
44 | inds <- which(is.na(alt)); alt[inds] = markers$A1[inds] #if neither alleles is the reference, arbitrarily assign the alphabetically smaller allele as the alt
45 | markers$ref = ref
46 | markers$alt = alt
47 |
48 | #if( any(ref!=markers$A1 & ref!=markers$A2) ) { warning("ref allele not present in geno for some markers. Conversions for these markers cannot be performed and will be coerced to NA.\n") }
49 |
50 | markers$G2 = paste(ref,ref,sep="") #2 copies of ref
51 | markers$G1.1 = paste(ref,alt,sep="") #1 copy of ref, ref allele coded first
52 | markers$G1.2 = paste(alt,ref,sep="") #1 copy of ref, reversed coding
53 | markers$G0 = paste(alt,alt,sep="") #0 copy of ref
54 | markers$G2[is.na(ref)] <- NA
55 | markers$G1.1[is.na(alt)] <- NA
56 | markers$G1.2[is.na(alt)] <- NA
57 | markers$G0[is.na(alt)] <- NA
58 |
59 | geno.as.num <- matrix( 0, ncol=ncol(geno), nrow=nrow(geno), dimnames=dimnames(geno) )
60 | geno.as.num[geno==markers$G2] <- 2
61 | geno.as.num[geno==markers$G1.1 | geno==markers$G1.2] <- 1
62 | geno.as.num[geno==markers$G0] <- 0
63 | geno.as.num[which(is.na(markers$ref)),] = NA
64 | geno.as.num[is.na(geno)] = NA
65 |
66 | if( info ) {
67 | return( list(allelecnt=geno.as.num, markers=markers[,c("N","numAlleles","input_ref","ref","alt")]) )
68 | } else {
69 | return(geno.as.num)
70 | }
71 | }
--------------------------------------------------------------------------------
/rscripts/gwas_lm.R:
--------------------------------------------------------------------------------
1 | gwas_lm <- function(pheno, geno, model = NULL) {
2 | ### Copyright 2006 - 2008 Eva Chan
3 | ### http://evachan.org
4 | ### Created: August 2006
5 | ### Last modified: July 2014
6 | ###
7 | ### For each of the traits in pheno, perform linear regression on one or more
8 | ### allelic models, using the genotype data provided in geno
9 | ###
10 | ### *** inputs ***
11 | ### pheno: matrix, or data.frame, of trait values: one trait per column with
12 | ### rownames(pheno) being sample IDs
13 | ### geno: matrix of genotypes: {0,1,2,NA}: one marker per row with rownames(geno) being
14 | ### marker IDs and one individual per column with colnames(geno) being sample IDs
15 | ### model: character vector listing the inheritence models to be tested;
16 | ### avaiable options are: logadditive, codominance; dominance, overdominance, recessive,
17 | ### or all (which is all of these five models): first three letter matches
18 | ###
19 | ### *** output ***
20 | ### res$
21 | ### trait$
22 | ### model
23 | ### Outputs a list of traits of lists of models of m-by-6 matrix,
24 | ### where rows of matrix corrrespond to each marke and
25 | ### columns of matrix to correspond to "f.stat", "df1", "df2", "p.val", "r.sq", "adj.r.sq"
26 |
27 | stopifnot( nrow(pheno) == ncol(geno) )
28 |
29 | ## Get phenotype names
30 | if(is.null(colnames(pheno))) { traits <- paste("trait",1:ncol(pheno),sep="") } else { traits <- colnames(pheno) }
31 | num.traits <- length(traits)
32 |
33 | ## Get marker names
34 | if(is.null(rownames(geno))) { markers <- paste("marker",1:nrow(geno),sep="") } else { markers <- rownames(geno) }
35 | num.markers <- length(markers)
36 |
37 | ## get sample names
38 | pheno.samples <- rownames(pheno)
39 | geno.samples <- colnames(geno)
40 | if(is.null(pheno.samples) | is.null(pheno.samples)) {
41 | if(nrow(pheno) == ncol(geno)) {
42 | samples <- paste("sample",1:nrow(pheno),sep="")
43 | } else {
44 | stop("Different sample numbers in pheno and geno!\n")
45 | }
46 | } else {
47 | if(!all(is.element(pheno.samples, geno.samples)) ) {
48 | stop("Different samples in pheno and geno!\n")
49 | } else {
50 | if(!all(pheno.samples == geno.samples) ) { #samples in different order between geno & pheno
51 | pheno <- pheno[match(geno.samples, pheno.samples),]
52 | }
53 | samples <- geno.samples
54 | }
55 | }
56 | rm(geno.samples, pheno.samples)
57 |
58 | ## Determine genetic models to test
59 | do.codom = do.logadd = do.dom = do.rec = do.overdom = F
60 | if(is.null(model) | is.na(model) | model=="") stop("No inheritance model selected\n")
61 | if(is.element("all", model)) { do.codom = T; do.logadd = T; do.dom = T; do.rec = T; do.overdom = T }
62 | submodel <- substr(model,1,3)
63 | if(is.element('add',submodel) | is.element('log',submodel)) { do.logadd=T }
64 | if(is.element('cod',submodel)) { do.codom=T }
65 | if(is.element('dom',submodel)) { do.dom=T }
66 | if(is.element('rec',submodel)) { do.rec=T }
67 | if(is.element('ove',submodel)) { do.overdom=T }
68 |
69 | res <- list()
70 |
71 | ## Perform GWAS on each trait
72 | for(i in 1:num.traits)
73 | {
74 | cat(traits[i],"\n")
75 | cur.phval <- as.vector(pheno[,i])
76 | inds <- which(!is.na(cur.phval))
77 | if (length(inds)<3) { next } #skip trait if fewer than 2 datapoints
78 | cur.phval <- cur.phval[inds]
79 |
80 | if(do.codom) codom.mat <- matrix(NA, ncol=6, nrow=num.markers, dimnames=list(markers,c("f.stat", "df1", "df2", "p.val", "r.sq", "adj.r.sq")))
81 | if(do.logadd) logadd.mat <- matrix(NA, ncol=6, nrow=num.markers, dimnames=list(markers,c("f.stat", "df1", "df2", "p.val", "r.sq", "adj.r.sq")))
82 | if(do.dom) dom.mat <- matrix(NA, ncol=6, nrow=num.markers, dimnames=list(markers,c("f.stat", "df1", "df2", "p.val", "r.sq", "adj.r.sq")))
83 | if(do.overdom) overdom.mat <- matrix(NA, ncol=6, nrow=num.markers, dimnames=list(markers,c("f.stat", "df1", "df2", "p.val", "r.sq", "adj.r.sq")))
84 | if(do.rec) rec.mat <- matrix(NA, ncol=6, nrow=num.markers, dimnames=list(markers,c("f.stat", "df1", "df2", "p.val", "r.sq", "adj.r.sq")))
85 |
86 | for(j in 1:num.markers)
87 | {
88 | cur.geval <- geno[j,inds]
89 | if(nlevels(as.factor(cur.geval))<=1) {next}
90 |
91 | if(do.codom)
92 | {
93 | z <- summary( lm( cur.phval ~ as.factor(cur.geval) ) )
94 | codom.mat[j,] <- c( z$fstatistic[1], z$fstatistic[2], z$fstatistic[3],
95 | 1-pf(z$fstatistic[1],z$fstatistic[2],z$fstatistic[3]),
96 | z$r.squared, z$adj.r.squared )
97 | }
98 |
99 | if(do.logadd)
100 | {
101 | z <- summary( lm( cur.phval ~ as.numeric(cur.geval) ) )
102 | logadd.mat[j,] <- c( z$fstatistic[1], z$fstatistic[2], z$fstatistic[3],
103 | 1-pf(z$fstatistic[1],z$fstatistic[2],z$fstatistic[3]),
104 | z$r.squared, z$adj.r.squared )
105 | }
106 |
107 | if(do.dom)
108 | {
109 | g <- as.factor(cur.geval == 0)
110 | if(nlevels(g)>1)
111 | {
112 | z <- summary( lm( cur.phval ~ g ) )
113 | dom.mat[j,] <- c( z$fstatistic[1], z$fstatistic[2], z$fstatistic[3],
114 | 1-pf(z$fstatistic[1],z$fstatistic[2],z$fstatistic[3]),
115 | z$r.squared, z$adj.r.squared )
116 | }
117 | }
118 |
119 | if(do.rec)
120 | {
121 | g <- as.factor(cur.geval == 2)
122 | if(nlevels(g)>1)
123 | {
124 | z <- summary( lm( cur.phval ~ g ) )
125 | rec.mat[j,] <- c( z$fstatistic[1], z$fstatistic[2], z$fstatistic[3],
126 | 1-pf(z$fstatistic[1],z$fstatistic[2],z$fstatistic[3]),
127 | z$r.squared, z$adj.r.squared )
128 | }
129 | }
130 |
131 | if(do.overdom)
132 | {
133 | g <- as.factor(cur.geval == 1)
134 | if(nlevels(g)>1)
135 | {
136 | z <- summary( lm( cur.phval ~ g ) )
137 | overdom.mat[j,] <- c( z$fstatistic[1], z$fstatistic[2], z$fstatistic[3],
138 | 1-pf(z$fstatistic[1],z$fstatistic[2],z$fstatistic[3]),
139 | z$r.squared, z$adj.r.squared )
140 | }
141 | }
142 | }
143 |
144 | res[[traits[i]]] <- list()
145 | if(do.codom) res[[traits[i]]][["codom"]] <- codom.mat
146 | if(do.logadd) res[[traits[i]]][["logadd"]] <- logadd.mat
147 | if(do.dom) res[[traits[i]]][["dom"]] <- dom.mat
148 | if(do.rec) res[[traits[i]]][["rec"]] <- rec.mat
149 | if(do.overdom) res[[traits[i]]][["overdom"]] <- overdom.mat
150 | }
151 |
152 | res
153 |
154 | }
--------------------------------------------------------------------------------
/rscripts/plclust_in_colour.R:
--------------------------------------------------------------------------------
1 | plclust_in_colour <- function( hclust, lab=hclust$labels, lab.col=rep(1,length(hclust$labels)), hang=0.1, ... )
2 | {
3 | ## Eva KF Chan 2009
4 | ## Modifiction of plclust for plotting hclust objects *in colour*!
5 | ## Arguments:
6 | ## hclust: hclust object
7 | ## lab: a character vector of labels of the leaves of the tree
8 | ## lab.col: colour for the labels; NA=default device foreground colour
9 | ## hang: as in hclust & plclust
10 | ## Side effect:
11 | ## A display of hierarchical cluster with coloured leaf labels.
12 |
13 | y <- rep(hclust$height,2)
14 | x <- as.numeric(hclust$merge)
15 |
16 | y <- y[which(x<0)]
17 | x <- x[which(x<0)]
18 |
19 | x <- abs(x)
20 |
21 | y <- y[order(x)]
22 | x <- x[order(x)]
23 |
24 | plot( hclust, labels=F, hang=hang, ... )
25 | text( x=x, y=y[hclust$order]-(max(hclust$height)*hang), labels=lab[hclust$order], col=lab.col[hclust$order], srt=90, adj=c(1,0.5), xpd=NA, ... )
26 |
27 | }
--------------------------------------------------------------------------------
/rscripts/plot_marker_lox.R:
--------------------------------------------------------------------------------
1 | plot_marker_lox <- function(chr, lox) {
2 |
3 | ## Copyright 2006-2008 Eva Chan
4 | ## eva@evachan.org
5 | ##
6 | ## This funciton generates a visual representation of a set of markers
7 | ## onto the genome.
8 | ##
9 | ## Inputs
10 | ## chr: vector of chromosomes
11 | ## lox: numeric vector of markers' positions on the corresponsing chrs
12 | ## NOTE:: chr and lox are assumed to be in same marker order!!
13 | ##
14 |
15 | ## remove markers with missing chr or pos
16 | inds <- which( is.na(chr) | is.na(lox) )
17 | if(length(inds)>0) {
18 | warning(length(inds), " SNPs are missing map information; they are ignored.\n")
19 | chr <- chr[-inds]
20 | lox <- lox[-inds]
21 | }
22 |
23 | ## set non-integer chromosomes as integers
24 | unique.chrs <- unique(chr)
25 | suppressWarnings(unique.chrs.as.num <- as.integer(unique(unique.chrs)))
26 | non.int.chrs.ind <- which(is.na(unique.chrs.as.num))
27 | chr.as.num <- chr
28 | if(length(non.int.chrs.ind)>0) {
29 | num.int.chrs <- length(unique.chrs) - length(non.int.chrs.ind)
30 | for(i in 1:length(non.int.chrs.ind)) {
31 | unique.chrs.as.num[non.int.chrs.ind[i]] <- num.int.chrs + i
32 | chr.as.num[which(chr==unique.chrs[non.int.chrs.ind[i]])] <- num.int.chrs + i
33 | }
34 | }
35 | chr.as.num <- as.integer(chr.as.num)
36 | unique.chrs <- unique.chrs[order(unique.chrs.as.num)]
37 | unique.chrs.as.num <- unique.chrs.as.num[order(unique.chrs.as.num)]
38 |
39 | ## set lox to Mb if in bases
40 | new.lox <- lox / 1000000
41 | if( max(new.lox) > 1 ) {
42 | lox <- new.lox
43 | yunit <- "(Mb)"
44 | rm(new.lox)
45 | } else { yunit = "(bases)" }
46 |
47 | ## calculate chromosome range
48 | chr.len <- rep(NA, length(unique.chrs))
49 | for(i in 1:length(chr.len)) {
50 | chr.len[i] <- max(lox[which(chr==unique.chrs[i])],na.rm=T)
51 | }
52 |
53 | ## plot frame
54 | plot( unique.chrs.as.num, chr.len, ylim=c(0, max(chr.len)), pch="_", xlab="Chromosome", ylab=paste("position",yunit), las=1, axes=F, cex=1.2, col="dark grey" )
55 | points( unique.chrs.as.num, rep(0, length(unique.chrs.as.num)), pch="_", cex=1.2, col="dark grey" )
56 | axis(1, at=1:length(unique.chrs.as.num), labels=unique.chrs, las=1)
57 | axis(2, las=1)
58 | for(i in 1:length(chr.len)) {
59 | points( rep(unique.chrs.as.num[i],2), c(0,chr.len[i]), type="l" )
60 | }
61 |
62 | ## plot markers
63 | points( chr.as.num, lox, pch="_" )
64 |
65 | }
66 |
--------------------------------------------------------------------------------
/rscripts/plot_markers_by_set.R:
--------------------------------------------------------------------------------
1 | plot_markers_by_set <- function(set, chrom, pos, horiz=F, usr.colours=NULL, pt.cex=1) {
2 |
3 | ## Copyright 2008 Eva Chan
4 | ## eva@evachan.org
5 | ##
6 | ## Generates a map of markers with different sets of markers marked with different colours.
7 | ## Parameters:
8 | ## set: factor indicating the set to which the corresponding markers belong.
9 | ## chrom: vector of chromosome to which the markers are located; sex chromosomes (X,Y) allowed.
10 | ## pos: numeric vector of chromosome position of markers.
11 | ## horiz: logical indicating if chromosomes should be represented horizontally.
12 | ## usr.colours: colour vector for each marker set; if NULL, default rainbow colours are used;
13 | ## if length is less than number of unique marker sets, colours will be recycled.
14 | ## pt.cex: expansion factor the markers and legend.
15 | ## NOTE:: Ordering of markers between the three parameters are assumed to be the same.
16 |
17 | ## check to ensure parameters are of the same length
18 | if( (length(chrom) != length(set)) || (length(pos) != length(set)) ) {
19 | stop("Parameters are of differnet length.\n")
20 | }
21 |
22 | ## exclude markers without known mapping info
23 | excl.inds <- unique(which(is.na(chrom) | is.na(pos)))
24 | if(length(excl.inds)>0) {
25 | warning(length(excl.inds)," markers have missing position and are excluded in plot.\n")
26 | set <- set[-excl.inds]
27 | chrom <- chrom[-excl.inds]
28 | pos <- pos[-excl.inds]
29 | }
30 |
31 | ## set "set" as factor variable
32 | set <- as.factor(as.character(set))
33 |
34 | ## check to ensure positions are given in numeric variables
35 | if(!is.numeric(pos)) {
36 | if(sum(is.na(suppressWarnings(as.numeric(pos))))>0) {
37 | stop("Inappropriate chromosome positions.\n")
38 | }
39 | pos <- as.numeric(pos)
40 | }
41 |
42 | ## check for and recode sex chromosomes
43 | chrom.ori <- chrom
44 | chrom.as.num <- suppressWarnings(as.numeric(chrom))
45 | if(sum(is.na(chrom.as.num)) > 0) {
46 | ## check for chrom X
47 | inds <- grep( "X", chrom, ignore.case=T )
48 | if(length(inds)>0) {
49 | chrom[inds] <- sum(!is.na(unique(chrom.as.num))) + 1
50 | chrom.as.num <- suppressWarnings(as.numeric(chrom))
51 | }
52 | }
53 | if(sum(is.na(chrom.as.num)) > 0) {
54 | ## check for chrom Y
55 | inds <- which( (chrom=="Y") | (chrom=="y") )
56 | if(length(inds)>0) {
57 | chrom[inds] <- sum(!is.na(unique(chrom.as.num))) + 1
58 | chrom.as.num <- suppressWarnings(as.numeric(chrom))
59 | }
60 | }
61 | if(sum(is.na(chrom.as.num)) > 0) {
62 | stop("Inappropriate chromosome:\n", paste(unique(chrom[which(is.na(chrom.as.num))]),collapse=", "), "\n")
63 | }
64 |
65 | ## set chromosome length
66 | pos.lab=""
67 | if( median(z <- (pos/1000000)) > 1 ) {
68 | pos <- z
69 | pos.lab <- "(Mb)"
70 | } else {
71 | if( median(z <- (pos/1000)) > 1 ) {
72 | pos <- z
73 | pos.lab <- "(kb)"
74 | }
75 | }
76 |
77 | unique.chroms <- sort(unique(chrom.as.num))
78 | if(is.null(usr.colours)) {
79 | usr.colours <- rainbow(nlevels(set))
80 | }
81 | if(length(usr.colours) < nlevels(set)) {
82 | warning("Colours provided is fewer than marker sets-- colours will be recycled\n")
83 | usr.colours <- rep(usr.colours,len=nlevels(set))
84 | }
85 | if(horiz) {
86 | plot( c(0,max(pos[which(chrom.as.num==unique.chroms[1])])), c(unique.chroms[1],unique.chroms[1]), type="l", ylim=c(0,length(unique.chroms)), xlim=c(0,ceiling(1.1*max(pos))), ylab="Chromosomes", xlab=paste("Position",pos.lab), las=1, axes=F )
87 | axis.lab <- unique(chrom.ori)[match(unique.chroms,unique(chrom.ori))]
88 | if(sum(is.na(axis.lab))==1) {
89 | axis.lab[(length(axis.lab))] <- "X"
90 | }
91 | if(sum(is.na(axis.lab))==2) {
92 | axis.lab[(length(axis.lab)-1):length(axis.lab)] <- c("X","Y")
93 | }
94 | axis(2, at=unique.chroms, labels=axis.lab, las=1 )
95 | axis(1, las=1)
96 | for(i in 2:length(unique.chroms)) {
97 | points( c(0,max(pos[which(chrom.as.num==unique.chroms[i])])), c(unique.chroms[i],unique.chroms[i]), type="l" )
98 | }
99 | for(i in 1:nlevels(set)) {
100 | text( pos[which(set==levels(set)[i])], chrom.as.num[which(set==levels(set)[i])], labels="|", col=usr.colours[i], cex=pt.cex )
101 | }
102 | legend(max(pos),length(unique.chroms),legend=levels(set), col=usr.colours, pch=45, bty="o", horiz=F, pt.cex=pt.cex, ncol=1)
103 | } else {
104 | plot( c(unique.chroms[1],unique.chroms[1]), c(0,max(pos[which(chrom.as.num==unique.chroms[1])])), type="l", xlim=c(0,length(unique.chroms)), ylim=c(0,ceiling(1.1*max(pos))), xlab="Chromosomes", ylab=paste("Position",pos.lab), las=1, axes=F )
105 | axis.lab <- unique(chrom.ori)[match(unique.chroms,unique(chrom.ori))]
106 | if(sum(is.na(axis.lab))==1) {
107 | axis.lab[(length(axis.lab))] <- "X"
108 | }
109 | if(sum(is.na(axis.lab))==2) {
110 | axis.lab[(length(axis.lab)-1):length(axis.lab)] <- c("X","Y")
111 | }
112 | axis(1, at=unique.chroms, labels=axis.lab, las=1 )
113 | axis(2, las=1)
114 | for(i in 2:length(unique.chroms)) {
115 | points( c(unique.chroms[i],unique.chroms[i]), c(0,max(pos[which(chrom.as.num==unique.chroms[i])])), type="l" )
116 | }
117 | for(i in 1:nlevels(set)) {
118 | text( chrom.as.num[which(set==levels(set)[i])], pos[which(set==levels(set)[i])], labels="--", col=usr.colours[i], cex=pt.cex )
119 | }
120 | legend(2,max(pos),legend=levels(set), col=usr.colours, pch=45, bty="o", horiz=T, pt.cex=pt.cex)
121 | }
122 |
123 | }
124 |
--------------------------------------------------------------------------------
/rscripts/simgeno.R:
--------------------------------------------------------------------------------
1 | simgeno <- function(M=100, N=30, propNA=0) {
2 |
3 | ## http://evachan.org
4 | ## Eva KF Chan
5 | ## Created: 7 July 2014
6 | ##
7 | ## Very simple function to simulate a matrix of biallelic unphased SNP genotypes in the format: {AA,CC,GG,TT,AC,AG,AT,CG,CT,GT}. This is written predominantly for the purpose of demonstrating the geno_toallelecnt.R function.
8 | ## Inputs:
9 | ## M: The number of SNP markers to simulate.
10 | ## N: The number of samples to simulate.
11 | ## propNA: The proportion of missing data to simulate.
12 | ## Output:
13 | ## A matrix of genotypes.
14 |
15 | alleles = c('A','C','G','T')
16 | a1 <- sample(alleles,M,replace=T)
17 | a2 <- sample(alleles,M,replace=T)
18 | g0=paste(a1,a1,sep='')
19 | g1=paste(a1,a2,sep='')
20 | g2=paste(a2,a2,sep='')
21 |
22 | geno <- matrix( NA, ncol=N, nrow=M, dimnames=list(paste("marker",1:M,sep=""),paste("sample",1:N,sep="")) )
23 | for( i in 1:M ) { geno[i,] <- sample(c(g0[i],g1[i],g2[i]),N,replace=T) }
24 | if( propNA>0 ) { geno[sample(1:(M*N),ceiling(M*N*propNA))] <- NA }
25 |
26 | geno
27 | }
28 |
--------------------------------------------------------------------------------